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Abstract

Through the assembly of procedural information about physical processes, the kinetic

Monte Carlo method offers a simple and efficient stochastic approach to model the

temporal evolution of a system. While suitable for a variety of systems, the approach

has found widespread use in the simulation of epitaxial growth. Motivated by chem-

ically reacting systems, we discuss the developments and elaborations of the kinetic

Monte Carlo method, highlighting the computational cost associated with realizing a

given algorithm. We then formulate a solid-on-solid bond counting model of epitax-

ial growth which permits surface atoms to advance the state of the system through

three events: hopping, evaporation, and condensation. Finally, we institute the ki-

netic Monte Carlo method to describe the evolution of a crystalline structure and to

examine how temperature influences the mobility of surface atoms.
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Chapter 1

Background on Epitaxial Growth

Epitaxy refers to the process by which a crystalline film grows on an underlying

crystalline substrate. The term is derived from the Greek prefix epi, meaning “upon”

or “above”, and the suffix taxis, meaning “arrangement” or “order.” As suggested by

such a designation, the process of epitaxy results in the deposition of atoms onto an

existing crystal in an ordered manner. The deposited film, or epitaxial layer, assumes

an orientation with accordance to the pre-existing morphology of the surface. The

epitaxial film may be of the same or different chemical structure as the substrate.

In order to precisely describe the effect of composition on surface growth, epitaxy is

categorized into two main types: homoepitaxy and heteroepitaxy. In homoepitaxy,

the deposited film is composed of the same material as the substrate whereas in

heteroepitaxy, the crystalline film grows on a substrate of a different material. The

variation in chemical compositions in heteroepitaxy introduces a lattice mismatch

between film and substrate, which creates a strain and thereby presents an additional

influence on the mechanism of crystal growth.

Attention to the dependance of growth on various factors, such as interfacial

energy, temperature, and lattice misfit, is of great importance as semiconductor and

nanotechnology fabrication is a common application of epitaxial growth. Integrated

circuits, for example, consist of a complex layering of semiconductor wafers and act as

an essential component for many electronic and photonic devices. The performance

and lifetime of such devices is rooted in their crystallinity; if growth is not well

controlled or a significant lattice mismatch exists, unfavorable surface features may
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form and alter the mechanical, electrical, and thermal properties of the device. To

achieve optimal performance, structural perfection is thus desired. Models of epitaxial

growth for technological applications therefore aim to identify the ideal conditions in

the fabrication process that will minimize structural defects.

The physical form of an epitaxial layer is largely attributed to the principal growth

mode and the atomic processes occurring along the surface. Figure 1.1 illustrates

the various processes that may take place on the surface during epitaxial growth:

deposition, evaporation, diffusion, nucleation of islands, attachment to an island,

diffusion along a step edge, diffusion to a lower terrace, and detachment from an

island.

Figure 1.1: Atomic processes during
growth: (a) deposition, (b) evaporation, (c)
diffusion, (d) nucleation of islands, (e)
attachment to an island, (f) diffusion along
a step edge, (g) diffusion to a lower terrace,
and (h) detachment from an island

Beginning in the late 1950s, experimental observations obtained through transmis-

sion electron microscopy led to the establishment of three distinct modes of epitaxial

growth: Frank van der Merwe, Volmer-Weber, and Stranski-Krastanov (Figure 1.2).

Determined through energy considerations of the film and substrate, the mode of

growth characterizes the nucleation of the deposit and influences the surface mor-

phology as growth proceeds, developments explored in detail by Pashley [8]. To
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express the criterion for each growth mode, define γS to be the surface energy of the

substrate, γF to be the surface energy of the film, and γI to be the interfacial energy

between the film and substrate.

Figure 1.2: Classical modes of epitaxial growth: (A) Frank van der Merwe, (B)
Volmer-Weber, (C) Stranski-Krastanov

In the Frank van der Merwe growth mode, each layer is formed by the nucleation

of islands which coalesce to create a continuous film. A complete monolayer must

be formed prior to the nucleation of a new layer. This growth mode occurs as the

result of adsorbed atoms, known as adatoms, having a stronger interaction with

the substrate than amongst themselves, a condition which can be described by the

following inequality:

γF + γI ≤ γS.

Complete wetting of the surface ensues as the growing layer reduces the surface energy.

With smaller misfits producing a lower γI , similar structures in parallel orientation

tend to result in this layer-by-layer growth method.

When the total surface energy of the film interfaces exceeds that of the substrate

(i.e. γF + γI > γS), the growth of the film is characterized by the formation of three-

dimensional clusters, or nuclei. This mechanism of growth is referred to as Volmer-

Weber growth. The growing layer balls up on the surface to minimize interaction with

the substrate. In order for the deposited atoms to migrate over the surface, a high

diffusion coefficient is required. Once the formation of new nuclei ceases, the adatom

clusters develop to form rough multi-layer features along the surface; thus, growth by

the Volmer-Weber mode typically results in many imperfections in the epitaxial film.
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Stranski-Krastanov growth is an intermediary mode of growth in which mono-

layer growth (Frank van der Merwe growth) is followed by the formation of clusters

(Volmer-Weber growth). This method of growth occurs when a significant lattice

misfit exists between the film and substrate. The mismatch creates a strain which

results in the elastic energy being much greater than that of the surface energies.

The initial layer of the film is strained to match the lattice of the substrate. The

adsorbed atoms then form smooth, continuous monolayers until a critical thickness

is achieved. Such a thickness is a function of the misfit of a system; a higher misfit

requires a smaller number of monolayers. Once the appropriate thickness is reached,

the accumulated elastic energy relaxes the strain and allows for the growth of three-

dimensional clusters to take place. The transition in the growth mode is believed

to occur in order to attain more energetically favorable conditions; the formation of

clusters demands less energy than the continued growth of monolayers.

As discussed in the structural details of the three classical modes of epitaxial

growth, the morphology of a film is largely dependent on the interaction of the de-

posited atoms and the lattice configurations of the film and substrate. Since the

deposit and the substrate are composed of different materials in heteroepitaxy, con-

sideration of the lattice spacings of the chosen materials is necessary to achieve a

desired form. Little to no misfit results in smooth, layer-by-layer growth whereas a

large misfit or a significant interfacial energy produces rough surface features. There-

fore, if structural perfection of the epitaxial growth is sought, homoepitaxy or a

substrate with zero misfit should be utilized.

To study the evolution in the surface morphology of a crystal, a model must ac-

count for how adatoms interact with each other and the substrate as well as the effects

of various environmental factors. The kinetic Monte Carlo method is a prevalent ap-

proach in exploring epitaxial growth. The premise of this method is that adatoms

occupy a position on a lattice and may only interact with neighboring atoms. The po-
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tential energy of each adatom is determined by examining the number of bonds shared

with neighbors and is incorporated into probabilistic rules which govern deposition,

diffusion, and other atomistic processes. The kinetic Monte Carlo method simulates

the growth of a crystal by using the transition rates depending on the energy barrier

between states and by progressing time in relation to the chemical kinetics of the

system.

In Chapter 2, we will discuss the selection of stochastic modeling to simulate chem-

ical kinetics and introduce the terminology that will be utilized in the development

of algorithms. In Chapter 3, we will present the history of the kinetic Monte Carlo

method and formulate algorithmic tools to model chemical reactions. In Chapter 4,

we will apply these tools to a simple model of epitaxial growth.
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Chapter 2

Stochastic Formulation

2.1 Introduction

The time evolution of a broad range of systems in biology, chemistry, and physics

can be modeled in two fundamental ways: deterministically and stochastically. In

a deterministic approach, time evolution is treated as a continuous process which is

represented by a set of ordinary differential equations. In a stochastic approach, time

evolution takes the form of a Markovian random walk which can be described by a

differential-difference equation. As the algorithms presented in Chapter 3 simulate

the evolution of chemical systems, we will discuss the two approaches in this context.

Consider a system of chemical reactions in which the number of each chemical

species is represented by Xi, i = 1, . . . , N . Although molecular populations in a

chemical system change only by discrete integer amounts, the traditional approach

to simulating a reaction network involves constructing a set of coupled ordinary dif-

ferential equations of the form

dXi

dt
= fi(X1, . . . , XN), i = 1, . . . , N (2.1)

where the functions fi result from the stoichiometric forms and rate constants of

each reaction. Solving the system of differential equations produces the molecular

population levels as a function of time. Furthermore, solution of

0 = fi(X1, . . . , XN), i = 1, . . . , N (2.2)

provides the equilibrium concentrations of the chemical system.
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For instance, consider a chemical system posed by Paulsson et al. [9] that is given

by the following reactions

∅ k1−→ I
k2−→ P

k3−→ ∅ (2.3)

I + S
k4−→ S (2.4)

∅
k5

k6

S. (2.5)

In this system, ∅ acts as a source to the molecule I and a sink to the molecule P .

Equation (2.3) describes how I is produced with rate k1 and how P arises from I

with rate k2 but degrades with rate k3. This reaction is coupled with equation (2.4)

in which the degradation of I is catalyzed by a signal molecule S with rate k4. The

production and degradation of S with rates k5 and k6 respectively is provided in

equation (2.5). By the law of mass action, the time evolution of the concentrations

of I, P , and S can be described by the system of ordinary differential equations

dI

dt
= k1 − k2I − k4SI, (2.6)

dP

dt
= k2I − k3P, (2.7)

dS

dt
= k5 − k6S. (2.8)

To determine the equilibrium points of the system, we set equations (2.6)–(2.8) equal

to zero and solve for I, S, and P ; this yields the number of each species in terms of

the rate constants of the reactions:

I = k1k6

k2k6 + k4k5
, S = k5

k6
, P = k1k2k6

k3(k2k6 + k4k5) .

Although a deterministic formulation such as this is sufficient for some chemically

reacting systems, there are many cases in which the differential reaction-rate equa-

tions fail to accurately describe the fluctuations in the molecular species. Collisions

in a system of molecules occur in a seemingly random manner, a behavior which is

more appropriately accounted for in a stochastic formulation. In this approach, the
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reaction constants are viewed as probabilities per unit time and the time evolution

of the system is governed by a single differential-difference equation constructed ac-

cording to the laws of probability. Details of the stochastic framework are made clear

following the introduction of necessary terminology.

2.2 Definitions and Notation for Stochastic Formulation

Consider a chemical system with N species Xj, j = 1, . . . , N and denote the popu-

lation levels of Xj molecules at time t as Xj(t). Suppose the molecular species may

interact through a set of M chemical reactions and let Ri refer to the ith reaction

where 1 ≤ i ≤ M . The occurrence of a chemical reaction in a system effects change

in the molecular population values. For a given reaction R, define the set of reactant

molecules as Depends(R) and the set of all species that have their copy numbers

changed when the reaction is executed as Affects(R). To update the molecular popu-

lation values following a reaction, let νννi ∈ RN be a vector of coefficients that adjusts

the copy numbers of each species with respect to the reaction Ri. Furthermore, define

the state vector v to contain the number of molecules of each species present in the

system at a given time t.

The reaction Ri is also characterized by its propensity ai, which is determined by

the mesoscopic rate constant of the reaction and the state of the system. Assuming

the system is in thermal equilibrium, the molecules are uniformly distributed and

collisions between molecules occur at random. A collision takes place, however, only

if the center-to-center distance between two molecules is no greater than the sum

of their radii. The propensity of a reaction thus involves the probability of reactant

molecules colliding as well as the probability that a reaction occurs upon this collision.

We therefore define the propensity function ai(v) such that aidt is the probability

that an Ri reaction will occur in the infinitesimal time interval (t, t+dt) given that the

system was in state v at time t. This definition is often regarded as the fundamental
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hypothesis of stochastic chemical kinetics [4,5,7].

To provide an example of the definitions highlighted above, consider the chemical

system presented in equations (2.3) through (2.5). We have that the state vector is

given by the population of each molecular species, v = (I(t), S(t), P (t)). The table

below gives the propensity and state-change vector ννν for each reaction.

Table 2.1: Application of definitions to a chemical reaction system

Reaction Propensity Depends Affects ννν = (∆I,∆S,∆P )
∅ k1−→ I k1 – {I} (1, 0, 0)
I

k2−→ P k2I(t) {I} {I, P} (−1, 0, 1)
P

k3−→ ∅ k3P (t) {P} {P} (0, 0,−1)
I + S

k4−→ S k4I(t)S(t) {I, S} {I} (−1, 0, 0)
∅ k5−→ S k5 – {S} (0, 1, 0)
S

k6−→ ∅ k6S(t) {S} {S} (0,−1, 0)

2.3 Chemical Master Equation

Traditionally, the time evolution of a chemical system is constructed through the

solution of a differential-difference equation. Termed the master equation, the equa-

tion concerns the function P (v, t|v0, 0), which is the probability that the system is in

state v at time t given that it was in state v0 at time t = 0. To derive the equation,

we consider the number of ways in which the system can arrive at state v in the

time interval (t, t + dt). The possible routes from state v0 to v include no reaction

occurring in (t, t + dt), exactly one reaction occurring, and more than one reaction

occurring. All of these events are mutually exclusive and so the probability that any

of them occur can be calculated by summing their individual probabilities [6], which

gives

P (v, t+ dt|v0, 0) = P (v, t|v0, 0)
[
1−

M∑
i=1

ai(v)dt+ o(dt)
]

+
M∑
i=1

P (v− νννi, t|v0, 0)[ai(v− νννi)dt+ o(dt)] + o(dt).
(2.9)
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By subtracting P (v, t|v0, 0) from both sides of equation (2.9), dividing throughout by

dt, and taking the limit as dt approaches 0, we obtain the chemical master equation:

∂

∂t
P (v, t|v0, 0) =

M∑
i=1

[ai(v− νννi)P (v− νννi, t|v0, 0)− ai(v)P (v, t|v0, 0)]. (2.10)

For the Paulsson system in equations (2.3)–(2.5), the chemical master equation is

given by

∂p(I, S, P )
∂t

= k1p(I − 1, S, P )− k1p(I, S, P ) + k2(I + 1)p(I + 1, S, P − 1)

− k2Ip(I, S, P ) + k3(P + 1)p(I, S, P + 1)− k3Pp(I, S, P )

+ k4(I + 1)Sp(I + 1, S, P )− k4ISp(I, S, P ) + k5p(I, S − 1, P )

− k5p(I, S, P ) + k6(S + 1)p(I, S + 1, P )− k6Sp(I, S, P ).

Although the master equation exactly describes the time evolution of a system,

its formulation and solution is not always plausible. For example, a model of the

virus lambda phage contains 75 equations in 57 species [3]; writing down the master

equation for such a large system, let alone solving it, would be a tremendous under-

taking. Stochastic simulation algorithms, which will be discussed in Chapter 3, offer

a more feasible approach; these algorithms generate the exact probability of a system

following a given trajectory as predicted by the master equation without the need for

such an equation to be explicitly expressed.
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Chapter 3

Kinetic Monte Carlo Methods

3.1 History of KMC

Named after the district of Monaco renowned for gambling, the Monte Carlo method

refers to a technique through which random numbers are used to solve problems.

The inception of the method emerged in a game of solitaire in which Stan Ulam

considered the use of successive random operations to estimate the probability of a

successful outcome. With new advancements in electronic computing occurring at

the time, Ulam envisioned the application of such a statistical sampling approach

to a variety of problems in mathematical physics and proposed the method to John

von Neumann in a 1946 correspondence. The method initially boasted the appeal

of being an efficient means to approximate integrals which are unable to be solved

analytically. With the establishment of several variations, the Monte Carlo method

has since progressed to form a class of algorithms with the ability to address complex

problems in a wide range of disciplines [1,13].

Beginning in the 1960s, the Monte Carlo method developed to study systems that

evolve dynamically from state to state, a behavior which coincides with the kinetics of

a Markov random walk. Through examining stochastic sequences of the fundamental

physical transitions of a process, the approach precisely models the time evolution of

a system, achieving longer time scales than previously attainable by other methods.

Since being coined the kinetic Monte Carlo (KMC) method in the 1990s, the approach

has garnered widespread use in simulating processes of a stochastic nature, including
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those found in statistical physics, atomic diffusion, chemical reactions, biochemical

networks, cellular growth, and irradiation [1,13]. The foundation of the kinetic Monte

Carlo method arises from the consideration that the modeled system transitions from

one state to another in a way which can be determined probabilistically. Random

variate generation from a dynamic probability distribution allows the kinetic Monte

Carlo method to choose an event and its associated timestep to advance the system

accordingly. With the transition rates tied to the underlying state space of the system,

kinetic Monte Carlo simulations produce a temporal evolution that corresponds to

the solution of the space-time partial differential equation [10].

In 1976, Daniel T. Gillespie devised an algorithm that provides an exact solution

to the chemical master equation using Monte Carlo methods. Named the stochastic

simulation algorithm, the formulation is equivalent to the classical KMC algorithm

referred to as the Bortz-Kalos-Lebowitiz (BKL) algorithm, or n-fold way, although

it was discovered independently. Gillespie proposed two variants of his stochastic

simulation algorithm, the direct method and the first reaction method [4,5,7]; these

developments of the kinetic Monte Carlo method are presented in sections 3.2 and 3.3

respectively. Improving upon the computational cost associated with Gillespie’s algo-

rithms, Michael A. Gibson and Jehoshua Bruck published the next-reaction method

in 2000 [3]. The algorithm more efficiently selects a reaction in each iteration of the

simulation by using an indexed priority queue or binary tree; the details of this ap-

proach are provided in section 2.4. In 2008, Alexander Slepoy, Aidan P. Thompson,

and Steven J. Plimpton offered a further refinement to the stochastic simulation al-

gorithm, achieving a computational cost independent of the number of reactions [11].

This constant-time algorithm, which institutes a composition and rejection scheme, is

discussed in section 2.5. To conclude the chapter, we explore how the kinetic Monte

Carlo method may be implemented to study the evolution of a crystalline structure.
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3.2 Gillespie’s Algorithm

Suppose we have a spatially homogeneous system of N different chemical species

which are subject to the reactions Ri, i = 1, . . . ,M . Assume that the system is

restricted to a volume V in which the molecular species are in thermal equilibrium.

Under this assumption, the molecules are uniformly distributed in V and their veloci-

ties follow a Boltzmann distribution; these characteristics permit the model to ignore

nonreactive molecular collisions and simply be concerned with those that are reactive

[7]. Let Xj(t) denote the number of molecules of species j in the system at time

t. To describe the change in the molecular populations at a given time, Gillespie’s

algorithm seeks to answer two questions: at what time does the next reaction occur

and which reaction will it be?

The aforementioned questions may be resolved by determining the probability

density P (τ, µ) that the next reaction is Rµ and will occur in the time interval (t +

τ, t + τ + dτ). This function is a joint probability density function on the space of

two random variables, the time until the next reaction τ and the index of the next

reaction µ. To derive an exact formula for P (τ, µ), we apply the laws of probability

to the fundamental hypothesis of chemical kinetics. Considering that a reaction’s

propensity ai depends on the physical properties of the involved molecules and the

temperature of the system, we define the probability that an Rµ reaction will take

place in the next infinitesimal time interval as aµdτ . Furthermore, define P0(τ) to

be the probability that given that the system is in state v at time t, no reaction will

occur in the time interval (t, t+ τ). Using these definitions, we may write P (τ, µ)dτ

as the product of the probability that no reaction occurs within τ time units and the

probability that an Rµ reaction occurs in the next dτ time units:

P (τ, µ)dτ = P0(τ)aµdτ. (3.1)

To derive an analytical expression for P0(τ), we divide the time interval (t, t+ τ)

13



into K subintervals of length ε = τ/K. By the fundamental hypothesis and the

multiplication theorem of probability, the probability that no reaction occurs in the

time interval (t, t+ ε) is given by

M∏
i=1

(1− aiε+ o(ε)) = 1−
M∑
i=1

aiε+ o(ε).

As this also provides the probability that no reaction occurs in subsequent subinter-

vals, P0(τ) can be expressed as

P0(τ) =
[
1−

M∑
i=1

aiε+ o(ε)
]K

=
[
1−

M∑
i=1

aiτK
−1 + o(K−1)

]K
.

Taking the limit as K approaches infinity, we obtain the probability that none of the

M reactions occur in any of the K subintervals:

P0(τ) = lim
K→∞

[
1−K−1

(
M∑
i=1

aiτ + o(K−1)/K−1
)]K

= exp
[
−

M∑
i=1

aiτ

]
.

By inserting this expression into equation (3.1), we find that the reaction probability

density function is given by

P (τ, µ) = aµ exp [−aτ ] , (3.2)

where a is the sum of the individual reaction propensities

a =
M∑
i=1

ai.

Note that equation (3.2) is defined for the continuous variable τ , 0 ≤ τ < ∞, and

the discrete variable µ, µ = 1, . . . ,M ; for all other values of τ and µ, we define

P (τ, µ) = 0.

Providing the foundation for the stochastic simulation algorithm, P (τ, µ) is a

dynamic probability distribution based on the propensities and molecular populations
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of all reactant species in a chemical system. In order to specify when the next reaction

occurs and what reaction it will be, we need to establish a method for generating a

sample of τ and µ according to the distribution. The Monte Carlo method offers a

framework through which this can be accomplished. As the system takes the form of

a continuous-time Markov chain, it exhibits a memoryless property; specifically, the

transition probability depends only on the current configuration of the system and

not on past history [13]. Through conditioning the probability density function, we

obtain

P (τ, µ) = P1(τ) · P2(µ|τ). (3.3)

In this formulation, P1(τ)dτ is the probability that the next reaction (of any type)

takes place in the interval (t + τ, t + τ + dτ) and P2(µ|τ) is the probability that the

reaction is Rµ provided that it occurs in the given time interval. We find P1(τ) by

summing the probabilities of each reaction, yielding

P1(τ) =
M∑
µ=1

P (τ, µ). (3.4)

Through solving for P2(µ|τ) in equation (3.3) and substituting in (3.4), we arrive at

P2(µ|τ) = P (τ, µ)∑M
i=1 P (τ, i)

. (3.5)

In the notation of equation (3.2), the distributions can be expressed as

P1(τ) = a exp[−aτ ],

P2(µ|τ) = aµ
a
.

Through this representation, it becomes evident that the next reaction µ is chosen

with probability aµ/a and the time τ until this next reaction happens is exponentially

distributed with mean 1/a.

To choose τ and µ according to the distributions in (3.4) and (3.5), we will draw

two uniformly distributed random numbers from the unit interval and employ the
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Monte Carlo inversion technique [4]. In this method, x is said to be randomly drawn

from a probability density function P (x) if x = F−1(r), where r is a uniformly

distributed random number number in the unit interval and F (x) is the cumulative

distribution function defined by F (x) =
∫ x
−∞ P (y)dy. To derive the expressions by

which τ and µ will be determined, define F1(τ) to be the cumulative distribution

function of P1(τ) and F2(µ) to be the cumulative distribution function of P2(µ|τ).

Then, we have

F1(τ) =
τ∫

−∞

P1(γ)dγ

=
τ∫

0

∑
i

P (γ, i)dγ

=
τ∫

0

∑
i

ai exp[−γ
∑
i

ai]dγ

= − exp[−γ
∑
i

ai]
∣∣∣∣τ
0

= 1− exp
[
−τ

∑
i

ai

]
.

Drawing a random number r from the uniform distribution in the unit interval, we

obtain

F−1
1 (r) = 1∑

i ai
log

( 1
1− r

)
= 1
a

log
( 1
r1

)
,

(3.6)

where a is the sum of the reaction propensities and r1 = 1 − r is a random number

in the unit interval.

Since the reactions partition the unit interval according to the size of their propen-

sity function, we can select the reaction by generating a second random number r2

from the unit interval and taking µ to be the value which satisfies

F (µ− 1) < r2 ≤ F (µ).
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Utilizing equations (3.2) and (3.5), we have

F2(µ) =
µ∫

−∞

P2(η|τ)dη

=
µ∫

−∞

P (τ, η)∑
i P (τ, i)dη

=
µ∫

−∞

aη∑
i ai

dη

= 1∑
i ai

µ∫
−∞

aηdη

= 1
a

µ∫
−∞

aηdη.

Since µ is an integer random variable, the cumulative distribution function takes the

form

F2(µ) = 1
a

µ∑
i=1

ai.

Therefore, the reaction to occur at time t+ τ is chosen by selecting the integer µ for

which
µ−1∑
i=1

ai < ar2 ≤
µ∑
i=1

ai. (3.7)

With a method now established for selecting τ and µ from the correct probability

distributions, Gillespie’s direct method for simulating the time evolution of a chemical

system can be provided. The stochastic simulation algorithm, outlined in Figure 3.1,

generates trajectories of the molecular populations in exact correspondence with the

chemical master equation (2.10). The calculations of the evolution cease when the

number of iterations of the algorithm, n, first exceeds the predetermined stopping

time, denoted tmax.
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Step 0 : Specify N initial molecular popula-
tion values, set time t and reaction counter
n to 0, initialize random number generator

Step 1 : Compute the propensity ai for
each reaction and find a = ∑M

i=1 ai

Step 2 : Generate two uniform
random numbers r1 and r2

Step 3 : Determine the time τ until
the next reaction using equation (3.6)

Step 4 : Choose µ ac-
cording to equation (3.7)

Step 5 : Set t ← t + τ , carry out selected
reaction, update molecular population
levels, increase reaction counter n by 1

if n < tmax

Figure 3.1: Gillespie’s stochastic simulation algorithm

Although repeated execution of Gillespie’s algorithm produces an average trajec-

tory indicative of a system’s behavior, the computational time is dependent upon the

number of reactions, resulting in the algorithm being inefficient for large systems.

To understand the overall computational cost, consider each step of the algorithm

and recall that M provides the total number of different reactions that the system

can undergo. In step 1, the calculation of the propensity for each reaction as well

as computing the sum over all reactions takes O(M) operations. The generation of

the random number r1 in step 2 allows for the computation of τ in step 3; utilizing

equation (3.6), this occurs in O(1) time. The second random number r2 is used to

determine the reaction µ to take place in the time step; as this selection occurs by

searching the partitions created by the propensities of the reactions, the inequality

given in (3.7) may not be satisfied until µ = M . Finally, performing the selected re-
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action in step 5 scales as O(1) as it is assumed that each reaction has a small bounded

number of products. Through exploring the generation and update times, it is thus

evident that the computational cost of Gillespie’s algorithm scales linearly with the

number of reactions in the system. As this limits the size of systems that can be

efficiently simulated, improvements to the stochastic simulation algorithm have since

been made to reduce the computational time.

3.3 Gillespie’s First Reaction Method

A variant on Gillespie’s direct method, the first reaction method provides the founda-

tion for Gibson and Bruck’s logarithmic scaling of the stochastic simulation algorithm.

Gillespie’s first reaction method differs from the algorithm in the previous section

only in the implementation of the Monte Carlo step. Although utilizing the same

probability distributions for τ and µ, the method proposes an alternate approach for

determining which reaction occurs next, the details of which are to follow.

The foundation for the first reaction method lies in the consideration of P (τ, Ri)dτ ,

the probability that the reaction Ri occurs in the time interval (t + τ, t + τ + dτ)

provided that no other reaction takes place first. In a derivation mirroring that of

equation (3.2), the probability density function is given by

P (τ, Ri)dτ = ai exp[−aiτ ]dτ. (3.8)

Drawing M uniformly distributed random numbers r1, . . . , rM from the unit interval,

we can sample from this distribution by computing

τi = 1
ai

log
( 1
ri

)
, i = 1, . . . ,M. (3.9)

The values of τi provide the relative time to the next occurrence of each reaction; it is

these putative times that are the defining characteristic of the first reaction method.

As the name alludes, the method selects µ to be the reaction that occurs first, that
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is the reaction that has the least putative time. The time until the next reaction τ is

then assigned to be τµ. Figure 3.2 presents the framework for the algorithm.

Step 0 : Specify N initial molecular popula-
tion values, set time t and reaction counter
n to 0, initialize random number generator

Step 1 : Compute the propensity ai
for each reaction, i = 1, . . . ,M

Step 2 : For each i, generate a puta-
tive time τi according to equation (3.9)

Step 3 : Let µ be the reaction
with the least τi, i = 1, . . . ,M

Step 4 : Set t ← t + τµ, carry out selected
reaction, update molecular population
levels, increase reaction counter n by 1

if n < tmax

Figure 3.2: Gillespie’s first reaction algorithm

The procedure for choosing τ and µ in the first reaction method is found to be an

equivalent approach to generating a pair (τ, µ) from the probability density function

(3.2). Utilizing M random numbers for the realization of a single chemical reaction,

the method, however, does not improve upon the limitations of Gillespie’s direct

method. In fact, it not only takes time proportional to M to compute a putative

time for each reaction but also to determine the smallest putative time; as a result,

the first reaction method also scales as O(M).

3.4 Gibson-Bruck Algorithm

The inefficiencies in Gillespie’s first reaction method stem from the need in each iter-

ation to update the reaction propensities, calculate a putative time for each reaction,

and identify the smallest reaction time. Gibson and Bruck proposed an algorithm,
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which they designated the next reaction method, to significantly diminish the compu-

tational costs associated with these operations. To more efficiently update propensi-

ties following the occurrence of a reaction and establish the time to the next reaction,

the method employs two data structures: a dependency graph and an indexed priority

queue.

A dependency graph is a directed graph with the vertex set consisting of all the

reactions in the network. An edge exists between two reactionsR1 andR2 if and only if

the intersection of Affects(R1) and Depends(R2) is not empty. With this construction,

a given reaction Ri has only edges oriented towards the reactions whose propensities

would be impacted by the execution of Ri. Therefore, the recalculation of propensity

functions is only necessary for the reactions contained in the set corresponding to the

implemented reaction, leading to this step in the algorithm being of O(1). Figure 3.3

depicts the dependency graph for the Paulsson system in equations (2.3)–(2.5), with

the vertices labeled according to the index of the reaction’s rate constant.

1 3

2 4

5 6

Figure 3.3: Dependency graph of
Paulsson system

An indexed priority queue is a tree structure designed to minimize the computa-

tional cost associated with identifying the reaction with the lowest putative time. The
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nodes of the tree contain the index of a reaction and the time when the next reaction

of that type is expected to occur. The tree is then assembled so that the putative

time of each parent node is lower than either of its children. As a result, the root of

the queue holds the minimum reaction time, thereby supplying the index of the next

reaction. Identification of the minimum putative time thus scales as O(1). Updating

the queue following the fulfillment of the reaction involves changing the value of the

corresponding node and then percolating up or down the structure according to its

value. This update procedure avoids the disposal of M − 1 reaction times as seen in

the first reaction method and can be accomplished in logarithmic time.

The next reaction method differs further from the first reaction method in the use

of absolute times rather than relative times. The transformation from exponentially

distributed relative times to exponentially distributed absolute times merely arises

by adding the elapsed time t to the putative time. Following the execution of the

reaction µ, the putative time τµ is updated according to

τµ = 1
aµ

log
(1
r

)
, (3.10)

where r is a uniformly distributed random number in the unit interval. For those

reactions affected by performing Rµ, the absolute times may be transformed to new

values without the need of generating random numbers, a procedure formally justified

by Gibson and Bruck [3]. Through consideration of the distributions of the impacted

relative times, they propose the following transformation for the absolute time of an

affected reaction Rα:

τα,new = aα,old
aα,new

(τα,old − t) + t. (3.11)

In the above computation, aα,old corresponds to the propensity of Rα prior to amend-

ing the molecular population levels and aα,new is the propensity afterwards. For the

reactions unaffected by the occurrence of Rµ, modification to the absolute reaction

time is not necessary.
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With the foundation for updating reaction times and propensities established, the

formulation of the stochastic simulation algorithm by Gibson and Bruck may now be

provided (Figure 3.4).

Step 0 : Construct dependency
graph and indexed priority queue

Step 1 : Specify N initial molecular popula-
tion values, set time t and reaction counter
n to 0, initialize random number generator

Step 2 : Compute the propensity ai
for each reaction, i = 1, . . . ,M

Step 3 : Generate a putative time τi
according to equation (3.9), store
the τi in an indexed priority queue

Step 4 : Let µ be the reaction
with the least τi, i = 1, . . . ,M

Step 5 : Update molecular pop-
ulation levels, set t ← τµ, in-
crease reaction counter n by 1

Step 6 : For each edge in dependency graph
leaving Rµ, update the ai that changed as
result of Rµ. For Rµ, generate a random
number, compute τµ, and set τµ ← t + τµ.

Step 7 : For reactions connected to µ
by an edge from Rµ, update times in
queue according to equation (3.11)

if n < tmax

Figure 3.4: Gibson-Bruck next reaction algorithm

Through the addition of a dependency graph and an indexed priority queue, Gibson

and Bruck’s algorithm achieves a runtime preferable to that of Gillespie’s first reaction

method. Although the algorithm requires the use of M random numbers in the

initialization of reaction times, it only generates one random number per iteration,

an improvement upon both of Gillespie’s algorithms. The single random number
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is used in the computation of the absolute time until the selected reaction is next

performed; this operation along with carrying out the reaction scales as O(1). The

inclusion of the dependency graph permits the update of propensities following the

reaction to also occur in constant time. The algorithm then proceeds by instituting

changes to the indexed priority queue in response to the executed reaction. In this

tree structure, the number of nodes corresponds to the number of reactions M ; since

the dependency graph allowed for the recalculation of only the minimal number of

propensities, percolating changes through the tree takes at most log2(M) operations.

The resulting structure contains the minimum τ as the top node, which enables the

next reaction µ to be identified in constant time. While producing the same reaction

as would result from Gillespie’s algorithm, Gibson and Bruck’s next reaction method

improves the simulation of a single realization of the chemical process to logarithmic

time.

3.5 Constant-time KMC

Offering a further enhancement to the stochastic simulation algorithm, Slepoy, Thom-

pson, and Plimpton developed a composition and rejection algorithm with constant-

time performance. With scaling independent of the number of reactions, the algo-

rithm allows for efficient modeling of very large networks. The method accomplishes

its computational efficiency through the use of a rejection scheme. The foundational

data structure for the rejection idea is a bar graph in which the set of M reactions

are listed along the x-axis and the y-axis designates the corresponding propensity for

each reaction. An example of such a propensity graph is provided in Figure 3.5.

To randomly select a reaction, a rectangle of height amax is first drawn to bound the

M reaction propensities. Two uniform random numbers are then generated: a random

integer k from the set {1, . . . ,M} and a random number r from the interval [0, amax].

Consider the coordinate (k, r). If the coordinate falls within the bar representing
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Figure 3.5: Illustration of reaction
propensity bar graph

reaction Rk, then the given reaction is selected to be carried out. If the random point

(k, r) instead falls outside a vertical bar, then the attempt is rejected. The process

is then instituted until a point is obtained inside one of the bars, thereby specifying

the reaction to be performed. If the set of bars does not cover a large fraction of

the bounding rectangle’s area, it is possible that this procedure would require several

iterations before an attempt is successful. To limit the number of rejected points, a

composition scheme is introduced.

The composition procedure involves grouping the reactions by their propensi-

ties. Define amin to be the minimum propensity value and amax to be the maximum

propensity value of all reactions in the system. Let G be the number of groups. A

reaction Ri is assigned to group j if the reaction’s propensity ai falls in the interval

[2j−1amin, 2jamin). Denote ag as the sum of all reaction propensities in the group g.

In order to choose a group of reactions, draw a random number r2 from the interval

[0,∑i ai] and determine the integer ĝ for which

ĝ−1∑
g=1

ag < r2 ≤
ĝ∑
g=1

ag. (3.12)

With the group ĝ chosen, a reaction is then selected from the group using the rejection

algorithm with the height of the bounding rectangle given by 2ĝamin. Figure 3.6
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illustrates the idea of the composition and rejection scheme for a system of 9 reactions.

Figure 3.6: Scheme for grouping
reactions by propensity from:
Alexander Slepoy, Aidan P.
Thompson, and Steven J. Plimpton.
A constant-time kinetic Monte Carlo
algorithm for simulation of large
biochemical reaction networks. The
Journal of Chemical Physics,
128(20): 205101, 2008, Figure 3.

Through grouping the reactions as described, the set of bars in a given group

covers greater than half the area of the group’s bounding rectangle. As a result, the

selection of a reaction now arises from at most two iterations of the rejection scheme.

With the number of groups G independent of the number of reactionsM , the compo-

sition and rejection component enables reaction selection to scale as constant-time.

As in each previous algorithm, the update of reaction propensities follows the execu-

tion of a given reaction; however, this scheme additionally entails the consideration

of how performing the selected reaction impacts group assignments and each group

propensity sum. Those reactions with the potential to change groups may be eas-

ily identified through the use of a dependency graph for the reaction system. By

comparing the propensity of an affected reaction to its old value, it can be deter-

mined whether the reaction remains in the same group or changes groups. As the
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number of dependent reactions is bounded, the process of modifying group sums is a

constant-time operation.

Exactly equivalent to Gillespie’s stochastic simulation algorithm, the composition

and rejection algorithm as outlined in Figure 3.7 improves the generation and update

of a reaction network to constant-time.

Step 0 : Specify N initial molecular popula-
tion values, set time t and reaction counter
n to 0, initialize random number generator

Step 1 : Compute the propensity ai for each
reaction, i = 1, . . . ,M , group reactions
by propensities, calculate group sums

Step 2 : Generate random number r1
and determine τ using equation (3.6)

Step 3 : Generate random numbers r2, r3,
and r4. Use r2 to select group, then r3

and r4 to pick reaction µ within the group

Step 4 : Set t ← t + τ , carry out selected
reaction, update molecular population
levels, increase reaction counter n by 1

Step 5 : Recompute propensities for
dependent reactions, assign affected
reactions to new groups, update

group propensity sums and total sum

if n < tmax

Figure 3.7: Composition and rejection algorithm

Before the first iteration of the algorithm, the initialization for the system is per-

formed, the reactions are assigned to groups, and the group propensity sums are

computed. In step 2, it is evident that the computation of the time to the next

reaction τ remains unchanged from Gillespie’s original algorithm, scaling as O(1).

Selecting the reaction µ to carry out in step 3 is accomplished through the use of

three random numbers and is now independent of the number of reactions M . The
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step may require additional random numbers if rejection occurs; however, the inclu-

sion of the composition scheme enables selection of the reaction to take place in less

than two attempts. This composition and rejection aspect of the algorithm scales as

O(1). As in each previous algorithm, the execution of the reaction in step 4 also scales

as O(1). To update the system after conducting the selected reaction, the propensi-

ties of affected reactions are computed, group assignments are evaluated, and group

propensities sums are altered, each of which is done in O(1) time. With an overall

scaling of O(1), the composition and rejection algorithm thus presents an efficient

means for simulating the time evolution of large chemical networks.

3.6 Modifying KMC for Epitaxial Growth

Having established several variants of the stochastic simulation algorithm for chemi-

cally reacting systems, we now turn our attention to how kinetic Monte Carlo methods

may be applied to epitaxial systems. In order to describe the evolution of a crystalline

surface, we define the position of atoms according to a lattice structure and utilize a

height array to indicate the surface configuration at any given state. Furthermore, a

solid-on-solid approach is assumed in which the crystalline film grows such that one

atom can only be accommodated by another atom, thereby prohibiting structural

defects like overhangs and vacancies. The surface evolves from state-to-state through

the movement of a single atom with the transition dependent on the local crystal

configuration.

With state-to-state dynamics corresponding to a Markov walk, a stochastic proce-

dure aptly models the transitions characteristic of an epitaxial system and achieves an

efficiency that is orders of magnitude faster than molecular dynamics. The transition

rates between states are derived from the system’s energy in order to satisfy detailed

balance. As the system must overcome an energy barrier to move from one state to

another, the rate of the transition is established by the attempt frequency, activation
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energy, and temperature, chemical characteristics which are typically related via an

Arrhenius equation. According to the Arrhenius equation, a chemical reaction occurs

at the rate

κ = ω exp
[
− ED
kBT

]
, (3.13)

where ω is an exponential pre-factor, ED is the energy barrier for diffusion needed for

the reaction to take place, kB is the Boltzmann constant, and T is the temperature in

Kelvin [1]. The parameter ω reflects the thermal vibration frequency of the system;

specifically, it represents the number of collisions of atoms per second with the ability

to react. The Arrhenius relation, equation (3.13), forms the basis for constructing

the rates associated with the atomistic processes, such as deposition and diffusion,

that an epitaxial system is experiencing. Additional specifications, however, will

need to be introduced in order to precisely define the allowed movements and the

nearest-neighbor attractions in each process, or event, considered.

As in previous kinetic Monte Carlo algorithms, propagating an epitaxial system

forward in time requires event selection and updating of data structures in each

iteration of the algorithm. With the atoms of an epitaxial system defined to occupy

positions on a lattice, the KMC variant introduced by Bortz, Kalos, and Lebowitz [2],

termed the n-fold way, provides an appropriate scheme. The n-fold way algorithm

was formulated to simulate an Ising spin system, which is a d-dimensional lattice

where each site is assigned a spin variable assuming the value of +1 or −1 . A given

site moves to a new state by flipping its spin from one value to the other; this is

accomplished by either reversing its own spin or by interchanging its spin with the

unlike spin of a neighbor. In the case of an epitaxial system, the spin variables may

indicate the presence (+1) or absence (−1) of an atom in a given lattice site; a spin

interchange would, therefore, correspond to the diffusion of an atom.

The n-fold way algorithm is constructed by determining the M possible events

in the system and forming a list of the expected rates for the system to move from
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one state to another. Let ri denote the rate of event i, which coincides with the

probability of a spin flip. The lattice structure of the system permits the grouping of

events with the same probability to form n classes; it is this characteristic that lends

to the algorithm’s designation as the n-fold way. Suppose that nj denotes the number

of events in class j and Pj represents the probability of spin interchange shared by

each event in the class. Then, the total of all possible possible outcomes in the next

time interval is given by

R =
M∑
i=1

ri =
n∑
j=1

njPj. (3.14)

Drawing a random number ρ1 from the uniform distribution in the unit interval,

the class α is selected for which

α−1∑
j=1

njPj < ρ1R ≤
α∑
j=1

njPj. (3.15)

An event from the class α is then chosen by generating a random integer ρe from the

set {1, . . . , nα}.

Choosing an event in this manner mirrors the method used to select a reaction

in previous algorithms and guarantees that faster events are chosen with greater

probability. After the event is selected and the system is modified to reflect the

execution of the given event, the rate list must be updated. Since the change in the

state of the system is limited to only the flipped site and the nearest neighbors, we

can exploit the locality of rates to perform updates, requiring modification of only

the minimal number of rates. The time for the chosen event to transpire following the

previous event is determined by generating a random number ρ2 in the unit interval

and computing

τ = 1
R

log
(

1
ρ2

)
. (3.16)

The overall simulation time is then advanced by the increment τ . The process of

generating an event and the time for the event to occur as well as instituting the

30



appropriate changes to the data structures comprises one iteration of the n-fold way

algorithm, which is presented in detail in Figure 3.8.

Step 0 : Specify spin for each lattice point,
set time t and iteration counter iter to
0, initialize random number generator

Step 1 : Compute the event rates ri for i =
1, . . . ,M and group events by probability

Step 2 : Generate random number
ρ1 and determine class α accord-

ing to (3.15), generate random inte-
ger ρe to select event µ within class

Step 3 : Compute τ using equation (3.16)

Step 4 : Set t ← t + τ , carry out se-
lected event, update affected spins,
increase event counter iter by 1

Step 5 : Recompute event rates
for affected sites, assign to new
groups, update group sums

if iter < tmax

Figure 3.8: n-fold way for Ising spin systems

The n-fold way algorithm is said to be rejection-free as each iteration advances

the system to a new state. In the case of epitaxial growth, repeated iteration of

the algorithm produces a time evolution in the surface morphology of the modeled

crystalline structure. The algorithm, as it appears in Figure 3.8, scales as O(M).

This computational cost results from the method by which the event class α is chosen;

as this occurs through a probability weighted selection by partial sums (3.15), the

operation scales as the uppermost limit of sums, which is the total number of events

M . Selecting the particular event, computing τ , conducting the event, and updating

the data structures each scale as O(1).

The procedure detailed in this section offers a foundation for simulating the growth
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of a crystalline film. As such, the framework will need to be built upon in order to

incorporate the atomistic processes, dimensions, and materials one desires to model.

Consideration should be provided, however, to the computational cost associated with

realizing a given model; for instance, simulating a strained epitaxial system presents

greater computational difficulty than a system without strain. In the next chapter,

we will develop and implement a 1+1 dimensional model of homoepitaxial growth.
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Chapter 4

Implementing a Model of Epitaxial Growth

4.1 Construction of Model

Using the foundation discussed in the last section of the preceding chapter, we will

now implement the kinetic Monte Carlo method for a 1+1 dimensional model of

epitaxial growth. We utilize a solid-on-solid bound counting scheme in which the

atoms occupy positions on a simple cubic lattice and interact with nearest neighbors.

The crystalline surface evolves through the execution of the atomistic processes of

hopping, evaporation, and condensation. The rates of these processes are derived

from transition state theory and thereby satisfy detailed balance. The kinetic Monte

Carlo method provides a probabilisitic structure for selecting the lattice site and the

event type that results in a change to the surface configuration of the crystal in the

neighborhood of the chosen site.

To form the basis of the model, consider the cross-section of a homoepitaxial

film which contains N atoms distributed across M active sites. Each lattice site is

occupied by multiple atoms which is interpreted as layers on top of the substrate.

The profile of the film is described by an array of heights h = (h0, h1, . . . , hM), where

hi is the height at site i defined as the number of atoms exceeding the baseline height

h0 = 0 of the ghost site i = 0. Figure 4.1 provides a visual of the manner in which the

heights of the structure are configured. The atoms which occupy the highest position

at a given lattice site are surface atoms; it is these atoms which have the ability to

move and change the surface configuration of the crystal. As the rates for hopping
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and evaporation depend on the number of bonds that each surface atom possesses,

the construction of heights permits the number of lateral bonds ni and the number of

surface bonds nsi at each site i to be easily determined. Each surface atom contains at

minimum one surface bond due to the connection with an atom below; surface atoms,

however, may be without any lateral bonds, in which they are termed adatoms. The

lattice site i = 2 in Figure 4.1 provides an example of a surface atom which has no

neighbors with which it shares bonds.

Figure 4.1: Diagram of lattice structure and
height configuration

Surface atoms in the described system may undergo one of three events: hopping,

evaporation, or condensation. The Arrhenius relation, equation (3.13), provides the

foundation for the rates at which these transitions occur. Hopping refers to the lateral

movement, or diffusion, of a surface atom. Without a boundary, a surface atom hops

to the left or to the right with equal probability. In order to diffuse to a neighboring

site, a surface atom must surmount the energy dividing the current state from the

transition state. Let EB denote the difference in energy between the current and

transition states and ∆E denote the difference in energy between the current and

final states. Then EB = −∆E −E0, where E0 arises from considering the additional

energy needed for the atom to be completely dismissed from the system [12]. Since
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hopping requires the breaking and then the formation of bonds, the rate at site i is

dependent on the number of surface bonds held by the atom. Defining γ to be the

energy per unit area released by the formation of a bond, it follows that ∆E = −γnsi .

With surface atoms at sites i = 2, . . . ,M − 1 having the ability to hop to the left or

to the right, the hopping rate is scaled by a factor of 2. Incorporating each of these

considerations, the hopping rate of the ith surface atom for i = 1, . . . ,M is given by

ri = 2ω exp
[
− EB
kBT

]
= 2ω exp

[
E0 − γnsi
kBT

]
. (4.1)

Recognizing that E0 = −ED + γ and that the number of lateral bonds is one less

than the number of surface bonds (ni = nsi −1), the hopping rate can be more simply

expressed as

ri = 2ω exp [−β(ED + γni)] , (4.2)

where β = 1
kBT

. If the surface atom at site i is an adatom, the hopping rate further

reduces to ri = 2ω exp[−βED] .

Evaporation results from a surface atom breaking bonds with neighboring atoms

and withdrawing from the surface to enter a reservoir of atoms. The rate at which

evaporation of the ith surface atom occurs is given by

vi = ωE exp[−βγni], (4.3)

in which the pre-factor ωE incorporates activation energy. Condensation involves the

deposition of atoms from the reservoir onto the crystalline surface. As atoms in the

reservoir have not yet formed bonds with atoms on the surface, the parameter γ and

term ni are absent from the condensation rate. To describe the chemical potential

between the reservoir and the crystalline surface, we define the parameter µ; an atom

must overcome this potential in order to deposit onto the surface. The condensation

rate for lattice site i, i = 1, . . . ,M , is thus provided by

ci = ωE exp[−βµ]. (4.4)
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To model the surface evolution of a crystalline structure based on the prescribed

atomistic processes, each iteration of the kinetic Monte Carlo algorithm requires event

selection. For the model presented, this includes the selection of one of the M lattice

sites as well as the process to occur at the given site. Consider the sum of all rate

processes across all sites:

Z =
M∑
i=1

(ri + vi + ci). (4.5)

Drawing a random number ρ1 from the uniform distribution in the unit interval,

choose the site α which satisfies
α−1∑
i=1

(ri + vi + ci) < ρ1Z ≤
α∑
i=1

(ri + vi + ci). (4.6)

The event type is then randomly selected with probability proportional to the rates

at the indicated site.

The selected event determines the changes required to the surface configuration

at site α. If the chosen event is evaporation, the surface atom at site α is simply

removed, and if the chosen event is condensation, an atom is added at the site. If

the selected event is hopping, the following scheme is used to randomly determine

whether the atom hops to the left, to the right, or remains in place:

1. If 2 ≤ α ≤M − 1, then the atom hops with probability 0.5 to either site α+ 1

or site α− 1.
2. If α = 1, then the atom hops to the right with probability 0.5 or does not hop

with probability 0.5.
3. If α = M , then the atom hops to the left with probability 0.5 or does not hop

with probability 0.5.

If a hopping event is executed, an atom is removed from site α and one is added to

the chosen neighboring site. After updating the height array to reflect the selected

event, the crystal’s energy is computed as

E(h1, . . . , hM) = γN − γ
M∑
i=1

min
i

(hi, hi−1). (4.7)
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The change in the crystal’s energy is indicative of the process that the surface under-

went. Energy is embodied by the number of bonds within the crystal; forming new

bonds releases energy whereas breaking bonds requires added energy.

4.2 Model Algorithm

Given an initial configuration of N atoms distributed across M sites, the evolution

in the surface structure of an epitaxial film can be modeled through the repeated

implementation of the algorithm presented in Figure 4.2.

Step 0 : Specify initial atom configuration,
set time t and iteration counter iter to
0, initialize random number generator

Step 1 : At each site, count number of
lateral bonds associated with surface

atom and compute hopping, evaporation,
and condensation rates, ri, vi, and ci

Step 2 : Choose site α according to (4.6)

Step 3 : Select event type with prob-
ability proportional to rα, vα, and cα

Step 4 : Institute change to configuration according to event type

If evaporation,
remove atom at site α

If hopping, randomly
determine movement

If condensation,
add atom at site α

Step 5 : Determine τ using equation (3.16),
set t ← t + τ , increase counter iter by 1

Step 6 : Compute energy of crystal,
update bond counts and rates asso-
ciated with affected surface atoms,
if iter < tmax, return to Step 2

Figure 4.2: KMC algorithm for modeling 1+1 dimensional epitaxial
growth with the events of hopping, evaporation, and condensation
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The computational cost of the update stage (step 6) can be reduced by exploiting the

locality of rates. The events of evaporation and condensation impact only the bond

counts and event rates of the selected site α and the two neighboring sites, α− 1 and

α + 1. The execution of a hop, however, can influence the rates of up to four sites:

the site α, the site α− 1, the site α+ 1, and either the site α− 2 or α+ 2 depending

on the direction of the hop. If the selected site α was either site 1 or site M , then

hopping to the interior site requires updates to only three sites and failure to hop

yields no changes.

4.3 Results of Model

To illustrate the execution of the aforementioned algorithm, the parameter values in

Table 4.1 were utilized in the rate expressions. Aside from the Boltzmann constant,

these values represent the chemical characteristics of silicon, an element widely used

in the computer and microelectronic industries. The model can be altered to simulate

the growth of a different material by updating the appropriate parameter values.

Table 4.1: Parameter values for use in model implementation [14]

Parameter Symbol Value
Number of collisions per second ω 1 s−1

Energy barrier for diffusion ED 1.2 eV
Bond energy γ 2.22 eV

Boltzmann constant kB 8.6173303× 10−5 eV/K
ω with activation energy ωE 1 s−1

Chemical potential µ 2γ eV

As the form of an epitaxial layer is dependent on growth temperature, we ex-

plore such an influence in simulations of the model by varying the value of T , the

temperature parameter which contributes to each of the rate processes. To allow for

comparison in the resulting surface morphology, we perform the simulations using
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the same beginning configuration of atoms. This initial configuration, Figure 4.3,

was obtained by randomly distributing 700 atoms across 50 lattice sites.

Figure 4.3: Initial configuration of atoms in simulation

Through the implementation of the algorithm outlined in Figure 4.2, we simulate

the evolution of this initial crystal surface and the change in the system’s energy

brought about by each individual event. Ordered by decreasing temperature, Figures

4.4 – 4.6 display the atom configuration resulting after 500 iterations of the algorithm

as well as a visual of the transformation in the structure’s energy levels over the course

of the simulation. With the computation of time determined by a random number

and independent of the event chosen, the iterations of the algorithm do not represent

equal spacings of time; the duration of the simulation may therefore correspond to

time periods that vary according to growth temperature.

The initial configuration of atoms in Figure 4.3 resembles a rough, jagged crys-

talline surface. Implementing the kinetic Monte Carlo scheme at the melting point of

silicon, the crystalline surface achieves a smooth, rounded appearance by the end of

the simulation (Figure 4.4). At high temperatures, the hopping rate is elevated and

atoms diffuse to more stable positions in order to reduce the system’s energy, lead-

ing to the development of flatter surfaces with less structural defects. The resulting
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Figure 4.4: Configuration and energy levels for simulation at melting point

Figure 4.5: Configuration and energy levels for simulation at room temperature

Figure 4.6: Configuration and energy levels for simulation at very low temperature
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configuration and decreasing energy levels in Figure 4.4 mirror this behavior. The

simulation producing Figure 4.5 was carried out at room temperature. The surface

structure assumes a rounded orientation but with more frequent changes in height at

the edges. Analyzing the energy levels over the course of the simulation, a decrease

in energy is again realized; the leveling of the energy at the final iterations indi-

cates the stabilization of the crystalline surface. By drastically reducing the growth

temperature, a rounded surface structure is no longer obtained (Figure 4.6). Low

temperatures inhibit the mobility of atoms, which results in little to no diffusion and

gives rise to a rough surface. The plot of energy levels reflects the limited mobility

of atoms as after approximately 75 iterations of the algorithm, the occurring kinetic

processes are unable to further reduce the energy of system. The energy for the re-

mainder of the simulation remains rather stagnant and at a value higher than that

of the previous realizations.

The implementation of the kinetic Monte Carlo method in this section demon-

strates the dependence of surface morphology on growth temperature. Considering

the prevailing use of silicon as a semiconductor material, the exploration of the effect

of various temperatures on the resulting structure offers an important application.

Examining the growth conditions of other materials can easily be accomplished in a

similar manner. The framework of the presented model can also be built upon to

incorporate additional atomistic properties and rules for movement. Extending the

model to include heteroepitaxial growth, however, poses greater difficulty; the lattice

mismatch presented by the use of differing materials for film and substrate requires

the incorporation of an elastic energy into the hopping rate. The computational cost

associated with realizing such a model is orders of magnitude larger than any of the

algorithms discussed herein.
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