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ABSTRACT

The appearance of dynamic distributed networks in early eighties of the last century has

evoked technologies like pervasive systems, ubiquitous computing, ambient intelligence,

and more recently, Internet of Things (IoT) to be developed. Moreover, sensing capabil-

ities embedded in computing devices offer users the ability to share, retrieve, and update

resources on anytime and anywhere basis. These resources (or data) constitute what is

widely known as contextual information. In these systems, there is an association between

a system and its environment and the system should always adapt to its ever-changing en-

vironment. This situation makes the Context-Based Access Control (CBAC) the method of

choice for such environments. However, most traditional policy models do not address the

issue of dynamic nature of dynamic distributed systems and are limited in addressing issues

like adaptability, extensibility, and reasoning over security policies. We propose a security

framework for dynamic distributed network domain that is based on semantic technologies.

This framework presents a flexible and adaptable context-based access control authoriza-

tion model for protecting dynamic distributed networks’ resources. We extend our secu-

rity model to incorporate context delegation in context-based access control environments.

We show that security mechanisms provided by the framework are sound and adhere to

the least-privilege principle. We develop a prototype implementation of our framework

and present the results to show that our framework correctly derives Context-Based au-

thorization decision. Furthermore, we provide complexity analysis for the authorization

framework in its response to the requests and contrast the complexity against possible op-

timization that can be applied on the framework. Finally, we incorporate semantic-based

obligation into our security framework.
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In phase I of our research, we design two lightweight Web Ontology Language (OWL)

ontologies CTX-Lite and CBAC. CTX-Lite ontology serves as a core ontology for context

handling, while CBAC ontology is used for modeling access control policy requirements.

Based on the two OWL ontologies, we develop access authorization approach in which

access decision is solely made based on the context of the request. We separate context

operations from access authorization operations to reduce processing time for distributed

networks’ devices. In phase II, we present two novel ontology-based context delegation ap-

proaches. Monotonic context delegation, which adopts GRANT version of delegation, and

non-monotonic for TRANSFER version of delegation. Our goal is to present context del-

egation mechanisms that can be adopted by existing CBAC systems which do not provide

delegation services. Phase III has two sub-phases, the first is to provide complexity anal-

ysis of the authorization framework. The second sub-phase is dedicated to incorporating

semantic-based obligation.
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CHAPTER 1

INTRODUCTION

Dynamic distributed networks are a class of distributed computing architectures in which

heterogeneous and mobile devices are connected in such a way that intelligence can be

embedded in the devices themselves [71]. This can further enhance the power of the net-

work by developing information processing capabilities to the nodes of the network. Such

architectures are the basis of "smart" context-aware and self-adapting systems, often sum-

marized by terms like pervasive systems, ubiquitous computing, ambient intelligence, or

the Internet of Things (IoT). However, most traditional policy models do not take into ac-

count the dynamic nature of dynamic distributed systems and are limited in addressing

issues like adaptability, extensibility, and reasoning over security policies. To illustrate

these advancements in network world and link them to incompetence of the traditional

security policy models, consider the following motivating example, Figure 1.1.

Figure 1.1: Dynamic distributed network.
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Example 1.1. Martha is a 55-year old woman and she has health problems, such as hy-

pertension and heart arrhythmia. She uses a wearable smart device with heartbeat and

blood pressure monitors embedded in it. The device transmits its data along with the time

of sampling and the device’s geo-spatial coordinates as continuous streams to a nearby

smart phone. The health monitoring application running on Martha’s smart phone trans-

mits the received data to the health agency’s server. The health agency server uses these

data items to continually monitor Martha’s health status. In case of a situation that may

be an emergency, the health agency will 1.) Alerts 911 and transmits Martha’s location

and status; and 2.) Contacts Martha to verify her condition. Assume that Martha has a

severe drop in her heartbeat (below 55 beats per minute). If she would have been resting,

this drop of the heart beat could have been normal. However, in the context of aerobic

exercise at the location of the gym room, this is an emergency situation. In an emergency,

a first responder, Bob, after getting notified by the health agency server, should be able to

log into Martha’s health data so that he can provide her the necessary first aid care until

she is transferred to emergency room.

Example 1.1 illustrates the need for context in life-threatening situations and it also

show inability of the traditional access control model to cope with advancements happening

in networking technologies.

1.1 MOTIVATION AND RESEARCH QUESTIONS

The advent of dynamic distributed networks accompanied with heterogeneous devices and

connection interfaces, mobile users, devices and services and the variability of interaction

conditions such as location and user preferences, has introduced new security challenges.

These security challenges are due to the variety and mobility of the network devices and

the changing context of the requests. In addition, there are unique end-user preferences

and needs which should be reflected on the access control system. Contextual information

2



is dynamic during communication sessions. In such dynamic environments, an effective

Access Control (AC) solution for network devices should be context-aware.

Access control policy should be adaptable to the changes of individual and the environ-

ment contextual attributes and should consider not only the identity of the entity requesting

an access to sensitive resources, but the context of the request. The scope of our work is

centered around answering three main questions:

• How semantic-based technologies can be used to formally model domain knowledge

of dynamic distributed networks?

• How ontologies, combined with logic programming rules, can be used to support

adaptive and flexible access control decisions?

• What is the impact of the increasing number of rules on the performance of the

authorization framework?

• How semantic-based mechanisms can be applied to provide more specialized security-

based mechanisms such as delegation and obligation in dynamic networks?

1.2 RESEARCH TASKS

In this dissertation, we address the following three major research tasks that contributes to

the research area of semantic context-based access control policy in highly dynamic and

distributed networks:

1. Constructing a Semantic Context-Based Authorization Framework (SCBAF): The

goal of this task is to use ontologies and logic programming rules to support flex-

ible and adaptive access authorization decisions for dynamic distributed network’s

resources. For this task, we:

(i) explore publications and best practices related to semantic context-based autho-

rization, domain knowledge ontologies, and authorization policies.

3



(ii) develop a formal specification for the SCBAF. We establish the formal framework

of the context and the access authorization model using Description Logic (DL) and

Logic Programming (LP) standards.

(iii) develop a software application that supports access authorization based on se-

mantic reasoning over the domain knowledge.

(iv) present the complexity analysis of the authorization framework

- M. AL-Wahah and C. Farkas. "Context-Aware IoT Authorization: A Dynamic and

Adaptive Approach." In 13th International Conference for Internet Technology and

Secured Transactions. (ICITST-2018), pp. 64-72. Infonomics Society. London, UK

(2018).

- M. AL-Wahah and C. Farkas. "Semantic-Based Authorization: The Need for The

Context." Submitted to International Journal for Digital Society (IJDS).

2. Context Delegation: The goal of this task is to develop a semantic-based context

delegation approach for environments that use CBAC authorization presented in task

(1) above. For this task, we:

(i) present the formal specification of monotonic context delegation approach. The

approach provides a dynamic and adaptive context delegation that does not modify

the original policy rules.

(ii) develop a software application that supports monotonic context delegation based

on semantic reasoning over the domain knowledge.

(iii) extend the monotonic context delegation to encompass non-monotonic delega-

tion for CBAC.

- M. AL-Wahah and C. Farkas: "Context Delegation for Context-Based Access Con-

trol." Published in: Proceedings of 2nd International Workshop on A.I. in Security

(IWAISe-2018), pp. 70-79. Dublin, Ireland (2018).

- M. AL-Wahah and C. Farkas: "Monotonic and Non-Monotonic Context Delega-

tion." Published in: Proceedings of the 5th International Conference on Information

4



Systems Security and Privacy, Volume 1: (ICISSP-2019), pp. 449-460. Prague,

Czech Republic (2019).

3. Obligation: The goal of this task is to add a semantic-based obligation mechanism

via extending the framework presented in task (1) above. For this task, we:

(i) present the formal specification of obligation approach. The approach provides a

dynamic and adaptive verification of security obligation policies.

(ii) develop a software application that supports obligation based on semantic rea-

soning over the domain knowledge.

- M. AL-Wahah and C. Farkas: "Semantic-based obligation for Context-Based Ac-

cess Control". To be submitted.

1.3 DISSERTATION OUTLINES

This dissertation is organized as follows:

• Chapter 2 introduces the background information required for understanding this

proposal. It provides information on semantic web technologies in general, and De-

scription Logics (DL) and Web Ontology Language (OWL), in particular.

• Chapter 3 reviews existing works related to this proposal.

• In Chapter 4, we present our dynamic and adaptive semantic-based context-based

authorization model.

• Chapter 5 presents, based on the work of the previous chapter, the challenge of con-

text delegation within Context-Based Access Control environments and how our ap-

proach solves this issue.

• Chapter 6 extends our semantic-based model by including obligation.

• Chapter 7 provides conclusions and future research directions.

5



CHAPTER 2

PRELIMINARIES

In this chapter, the reader is introduced to the logic formalisms necessary to understand

the technical contributions of this work. It is divided into three sections. The first section,

section 2.1, is dedicated to semantic knowledge representation using description logics.

Section 2.2 discusses reasoning process in Description Logic (DL) and Logic Programming

(LP). In section 2.3, we introduce a brief explanation of Semantic Web Technologies.

2.1 KNOWLEDGE REPRESENTATION USING DESCRIPTION LOGICS

Knowledge Representation (KR) is a branch of Artificial Intelligence (AI) with the goal

of representing knowledge in such a way that computers can process and use it efficiently.

Several formalisms with different expressiveness and reasoning capabilities and of different

complexities are available. This includes propositional logic, First-Order Logic (FOL),

Semantic Networks, conceptual graphs, Semantic Web Standards RDF, RDFS, OWL, etc.

[74].

Description Logics (DLs) are a family of knowledge representation languages that have

been introduced in late seventies and began to gain popularity due to its adoption in the

semantic web, biomedical informatics, ontology-driven data access, data integration and

other several application domains [4, 29, 37, 74]. Each description logic describes a lan-

guage, and each language differs in expressivity versus reasoning complexity. This is due

to allowing or disallowing different constructors. Description logics languages share three

main properties:

6



• They are decidable fragments of First-Order Logic (FOL),

• They depend what is called an Open-World-Assumption (OWA),

• They don not depend Unique-Name-Assumption (UNA).

The Knowledge Base (KB) in DL comprises two components (some references divide the

KB in DL into three components: TBox, ABox, and RBox for relational box, especially

when they refer to DL SROIQ(D) [39], the Terminological Box (TBox) and Assertional

Box (ABox). TBox defines the vocabulary of an application domain. ABox contains asser-

tions about named individuals in terms of TBox vocabulary. Basically, the TBox is a FOL

theory and the ABox is a set of ground facts.

The vocabulary of a DL language consists of concepts NC , which denote sets of indi-

viduals NI (instances), and roles NR that denote binary relationships between individuals.

Each member of DL family is determined by a set of constructors. Every constructor is

named by a single letter and a specific language dialect can be named by the concatenation

of all supported constructors.

A core description logic that serves as a basis for other DLs is the Attributive Language

with Complements (ALC) [63].

Definition 2.1. (ALC Syntax). Let NC , NI , NR be disjoint sets of concept names, individ-

ual names and role names, respectively. Each C, D ∈ NC are concept names (or concepts

only). Each a ∈ NI is an individual. Each R ∈ NR is a role name. Concept descriptions in

ALC are inductively defined as:

• Each C ∈ NC , > (top) and ⊥ (bottom) are concepts.

• For C, D ∈ NC , and R ∈ NR, then ¬C (complement), C uD (intersection), C tD

(union), ∀R.C (value restriction), ∃R.C (existential quantification) are also concepts.

ALC is limited in its expressivity and hence it is often extended by adding additional

constructors to the ALC language. For example, Table 2.1 lists the constructors supported
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by the DL SROIQ(D). We should note that it is common to shortenALC (extended with

transitive roles) to just S for more advanced languages. The semantics of DL ontology is

Table 2.1: DL constructors.

Concept Constructor Constructor Symbol

Atomic concept C → A AL
Universal concept >
Bottom concept ⊥

Intersection u
Union t

Value restriction ∀R.C
Limited existential quantification ∃R.>

Complement ¬C
Nominals {a} O

Qualified number restrictions (Cardinalities) ≥ R.C Q
≤ R.C
= R.C

Role Constructor

Role inclusion R ◦ S v R R
S ◦R v S

Role inverse R− I

Datatypes

Data type value, data type exists Data types used
are n (integer), s (string), f (float) ∀R.d D
ALC with transitive roles ∃R.d S

defined in terms of first-order interpretations, which are defined as follows:

Definition 2.2. (Interpretation). An interpretation I is given by ∆I and .I where ∆I is

called the domain, and .I is called the interpretation function. The domain is a non-empty

set and the interpretation function maps each concept name C ∈ NC to a set CI ⊆ ∆I ,

each constant (individual) a ∈ NI to an object aI ⊆ ∆I , and each role name R ∈ NR to a

binary relation RI ⊆ ∆I ×∆I .

Hence individuals are mapped to elements of ∆I , concepts to subsets of ∆I , and roles

to subsets of ∆I ×∆I . Figure 2.1 depicts interpretation in DL.
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Figure 2.1: Interpretation in DL.

Table 2.2: Semantic Interpretations of DL SROIQ Constructors.

Constructor Semantics

> ∆I

⊥ ∅
¬C ∆I\CI

u CI ∩DI

t CI ∪DI

{a} {aI}
∀R.C {x ∈ ∆I | < x, y >∈ RI =⇒ y ∈ CI}
∃R.C {x ∈ ∆I | for some y ∈ ∆I , < x, y >∈ RI =⇒ y ∈ CI}
∃S.Self {x ∈ ∆I | < x, x >∈ SI}
≥ nR.C {x ∈ ∆I |#{y ∈ ∆I < x, y >∈ RI and y ∈ CI} ≥ n}
≤ nR.C {x ∈ ∆I |#{y ∈ ∆I < x, y >∈ RI and y ∈ CI} ≤ n}
= nR.C {x ∈ ∆I |#{y ∈ ∆I < x, y >∈ RI and y ∈ CI} = n}

R− {(x, y) ∈ RI =⇒ (y, x) ∈ RI}
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Definition 2.3. (GCI) A general concept inclusion axiom (GCI) is an expression of the

form C1 v C2 where C1, C2 ∈ NC .

Definition 2.4. (CER) A concept equivalence relation (CER) is an expression of the form

C1 ≡ C2 where C1, C2 ∈ NC .

A TBox T is a finite set of GCIs and CERs.

2.2 REASONING IN DESCRIPTION LOGIC AND LOGIC PROGRAMMING

Reasoning in DL provides the following major tasks:

• Satisfiability: A concept C is satisfiable with respect to T if there exists a model I of

T such that CI is nonempty. In this case we say also that I is a model of C.

• Subsumption: A concept C is subsumed by a concept D with respect to T if CI ⊆ DI

for every model I of T . In this case we write C vT D or T |= C v D.

• Equivalence: Two concepts C and D are equivalent with respect to T if CI = DI for

every model I of T . In this case we write C ≡> D or T |= C ≡ D.

• Disjointness: Two concepts C and D are disjoint with respect to T if CI ∩DI = ∅

for every model I of T .

Definition 2.5. (Monotonic reasoning). Let O1 and O2 two DL ontologies, and c is a DL

axiom. O1 entails c (equivalently, c is a logical consequence of O1), written as O1 |= c if

we have O2 ⊆ O1 and O2 |= c. In secure authorization terms, monotonic authorization

reasoning means that positive (and negative) authorizations will not be altered when new

facts are added into the knowledge base. Hence, what is previously inferred as a permitted

action still holds even after new facts are asserted (or inferred) into the knowledge base.

Definition 2.6. (Open World Assumption (OWA)) [37]). The Open World Assumption

is the assumption that what is not known to be true, is unknown. In OWA, absence of
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information is interpreted as unknown information that may be added later. OWA assumes

incomplete information about a given state of affairs, which is useful for extending infor-

mation in an application such as ontology-based applications and Semantic Web.

Reasoning in DL is a monotonic process and it is strongly connected to the OWA.

Definition 2.7. (Closed World Assumption (CWA) [56]). Closed World Assumption is

the assumption that what is not known to be true is false. In CWA, absence of informa-

tion is interpreted as negative information. CWA assumes complete information about a

given state of affairs, which is useful for constraining information and validating data in an

application such as a relational database and Logic Programming.

Definition 2.8. (Non-Monotonic reasoning). Let KB1 and KB2 be two knowledge bases,

and c is a consequence. We may have that KB2 ⊆ KB1 and KB2 |=d c, but KB1 2d c.

In secure authorization terms, non-monotonic authorization reasoning means that positive

(and negative) authorizations may be altered when new facts are added into the knowledge

base. Hence, what is previously inferred as a permitted action may not hold when new facts

are asserted (or inferred) into the knowledge base.

Logic programming, as it depends on First-Order Logic (FOL) which is a form of Non-

Monotonic reasoning and it is strongly connected to the CWA.

For the sake of this dissertation, CWA is better suited for situation need this kind as-

sumptions since we need to capture who has access permission to a certain resource and

not the reverse. For example, the access authorization algorithm needs to know who has the

permission to access a certain resource but not all those who have not the access permission

to that resource. For this reason, we have used Jena forward chaining rules to assert access

authorization decisions and also for blocking delegation-based access permissions. Jena

rules are used to enforce the CWA after all semantic inferences are made.
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2.3 SEMANTIC WEB TECHNOLOGIES

Semantic Web Technologies are a set of tools, algorithms and solutions, see Figure 2.2,

that adhere to a specific set of W3C open technology standards. The Semantic Web is an

extension of the World Wide Web (WWW) that allows computers to intelligently search,

combine, and process Web content based on the semantic (meaning) [9]. The insight of Se-

mantic Web Technologies is to provide global integrating services via making information

computer-interpretable. This insight allows realizing the vision of autonomous comput-

ing [49], particularly in dynamic distributed networks where devices are expected to enter

and leave the environment constantly, mobile users (and their devices) are changing their

locations, and autonomous processes are executed.

Figure 2.2: Semantic Web Technologies.

Definition 2.9. (Uniform Resource Identifiers (URI)) URIs are used to identify resources

on the Web, for example, in http://en.wikipedia.org/wiki/ABBA the identifier of the docu-

ment containing a textual description of music group ABBA. A URI starts with a scheme

name (e.g., http, ftp, tel, mailto) followed by additional information [77]. The URI is based

on ASCII character set and hence is limited to be used in Semantic Web.
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Figure 2.3: RDF graph example.

Definition 2.10. (Internationalized Resource Identifier (IRI)) An IRI within an RDF

graph is a Unicode string [UNICODE] that conforms to the syntax defined in RRFC 3987

[40] [IRI]. IRIs are a generalization of URIs. Every absolute URI and URL is an IRI.

2.3.1 RDF

The Resource Description Framework (RDF) is an XML language for representing meta-

data about Web resources [50]. RDF is used for situations in which this information needs

to be processed by machines rather than humans. RDF provides a common framework for

expressing this information so it can be exchanged between applications without loss of

meaning.

The idea behind using RDF is that Web resources are identified using URIs and those

URIs describe resources in terms of simple properties and property values. RDF properties

may be thought of as attributes of resources and in this sense correspond to traditional

attribute-value pairs. Attribute-value pairs can be represented as a graph of nodes and

edges representing the resources, their properties, and property values.

Example 2.11. Figure 2.2 shows an example of RDF graph.

The RDF is a set resulted from the union of three pairwise disjoint infinite sets of
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components: the set U of URI references, the set L of literals, and the set B of blanks. The

set U ∪ L is called the vocabulary.

Definition 2.12. (RDF Triple). Let U be the infinite set of URIs, B the infinite set of

blank nodes, and L the infinite set of literals. The RDF triple is defined as t = (s, p, o)∈

(U ∪B) ×U × (U ∪B× L), where s is a subject, p is a property and o is an object. An

RDF graph is a finite set of RDF triples.

Definition 2.13. (Triple Pattern). Let V be the infinite set of variables, then the triple

pattern, tp is defined as tp = (sp, pp, op)∈ (U ∪B ∪V) × (U ∪V) × (U ∪B× L ∪V).

The graph pattern is a set of triple patterns.

. We should note that RDF has no ability to describe the properties between resources

nor does it provide the means to describe the relationships between properties. Hence, RDF

is very limited in representing diverse knowledge bases and new knowledge representation

models are introduced.

2.3.2 SPARQL

SPARQL, Protocol and RDF Query Language, is a language used to query RDF graph pat-

tern (RDF databases or RDF dataset). SPARQL is designed for evaluating queries against

RDF graph patterns and is designed to handle complex-structured queries, typically over

data stored in RDF repositories.

2.3.2.1 SPARQL QUERIES

SPARQL Queries are defined, according to Pérez et. al [55] as follows: First, A SPARQL

graph pattern is recursively defined as:

• a triple pattern is a graph pattern;

• a graph pattern is a graph pattern;
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• if P and P ′ are graph patterns, then (P.P ′), (P OPTIONAL P ′) and (P UNION

P ′) are graph patterns;

• if P is a graph pattern and F is a FILTER expression, then (P FILTER F ) is a

graph pattern;

• if P is a graph pattern and G ∈ (U ∪ V ), then (GRAPH G P ) is a graph pattern;

• For any pattern P , vars(P ) is the set of variables occurring in P .

The SPARQL query syntax consists of Select clause identifying the variables to be bound,

a Where clause which is used to match a subgraph and, optional From and From Named

clauses that are used to target a specific graph (or more graphs).

Example 2.14. The following SPARQL query is used to find all the people in Tim Berners-

Lee’s FOAF1 file that have names and email addresses. Return each person’s name and

email address (http://www.w3.org/2009/Talks/0615-qbe):

Prefix foaf : < http : //xmlns.com/foaf/0.1/ >

Select ?name, ?email

Where {

?person foaf : name ?name.

?person foaf : mbox ?email.

}

The results returned by this query are shown in Table 2.3. We should note that we can

use multiple triple patterns to retrieve multiple properties about a particular resource. In

the above SPARQL query example Select ?name, ?email selects the variables ?name and

1Friend-Of-A Friend is very well known
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Table 2.3: Results of SPARQL query.

name email

"Karl Dubost" <mailto:karl@w3.org>
"Amy van der Hiel" <mailto:amy@w3.org>

"Edd Dumbill" <mailto:edd@xmlhack.com>
"Dean Jackson" <mailto:dean@w3.org>
"Edd Dumbill" <mailto:edd@usefulinc.com>
"Aaron Swartz" <mailto:me@aaronsw.com>

"Timothy Berners-Lee" <mailto:timbl@w3.org>
"Eric Miller" <mailto:em@w3.org>

"Edd Dumbill" <mailto:edd@xml.com>
"Dean Jackson" <mailto:dino@grorg.org>
"Libby Miller" <mailto:libby.miller@bristol.ac.uk>

"Dan Connolly" <mailto:connolly@w3.org>

?email mentioned in the query where the prefix http : //www.w3.org/People/Berners−

Lee/card represents the dataset over which the query is applied.

2.3.3 RDFS

The Resource Description Framework Schema (RDFS) provides a data-modeling vocab-

ulary for RDF data. RDF Schema is an extension of the basic RDF vocabulary. RDFS

presents mechanisms for describing groups of related resources and the relationships be-

tween these resources. RDF Schema is written in RDF using the terms described in this

document. These resources are used to determine characteristics of other resources, such

as the domains and ranges of properties.

Like RDF, the expressivity of RDFS is restricted to simple class and property definitions

and class and property subsumption. For instance, it does not allow us to define a class as

the complement of another class or the union or intersection of other classes. This is why

more expressive languages, based on Description Logics, have been developed.
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2.3.4 WEB ONTOLOGY LANGUAGE (OWL)

The World Wide Web Consortium (W3C) developed and recommended the Web Ontology

Language (OWL) as the standard ontology language for the Semantic Web. OWL is based

on DL which provides the formal background, specifically for OWL-DL and OWL Lite.

2.3.4.1 OWL FULL

OWL Full also uses all the OWL language primitives, but has the fewest restrictions. It

allows arbitrary combination of OWL primitives with RDF and RDFS which means that

every RDFS ontology is an OWL-Full ontology. However, this level of expressiveness is

at the expense of decidability.

2.3.4.2 OWL-DL

OWL DL is short for OWL Description Logic. It is a sub-language of OWL Full and has

restrictions about how the constructs from OWL and RDF can be used. The restrictions are

as follows:

• No arbitrary combination is allowed: Any resource can be only a class, a data type, a

data type property, an object property, an instance, or a data value, and not more than

one of these. In other words, a class cannot be at the same time a member of another

class.

• Restrictions on functional property and inverse functional property: These two prop-

erties are subclasses of rdf:Property; therefore, they can connect resource to resource

or resource to value. However, in OWL DL, they can only be used with the object

property, and not with the datatype property.

• Restriction on transitive property: You cannot use owl:cardinality with the transi-

tive property, or their sub-properties; these sub-properties are transitive properties by

implication.
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• Restriction on owl:imports: If we are developing an OWL DL ontology but are also

using owl:imports to import an OWL Full ontology, our ontology will not be qualified

as an OWL DL.

• The advantage of OWL DL is that it permits a quicker response from the reasoning

engine and, also, the reasoning engine itself is easier to build. The disadvantage is

that we do not have the expressiveness or the convenience provided by OWL Full.

2.3.4.3 OWL LITE

OWL Lite is a further restricted subset of OWL DL. For example, the following constructs

are not allowed in OWL Lite: owl:hasValue, owl:disjointWith, owl:unionOf, owl:complem-

-entOf, and owl:oneOf. Also, cardinality constraints are more restricted, because we cannot

use owl:minCardinality or owl:maxCardinality. However, we can still use owl:cardinality,

but the value is restricted to either 0 or 1. Moreover, owl:equivalentClass statement can

no longer be used to relate anonymous classes, but only to connect class identifiers. The

advantage is again efficiency on the reasoning side, both for the users and the tool builders.

The disadvantage is, of course, the loss of even more expressive power.

2.3.5 SEMANTIC WEB RULE LANGUAGE (SWRL)

SWRL is essentially based on OWL rule languages which adds the power to write down

Horn like rules in terms of OWL concepts, roles and datatypes to OWL ontologies. It has

a sound reasoning capability with the OWL.

Definition 2.15. (Horn Clause) A Horn clause H is a rule of the form:

H ← B1 ∧B2 ∧ ... ∧Bn (2.1)

where atom H is called the "Head" of the rule and the atoms B1 ∧ ... ∧ Bn are called the

body of the rule. Variables that occur in the head must also occur in the body.
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The atoms within a SWRL rule can be of the form C(x), P (x, y), sameAs(x, y) or

differentFrom(x, y), where C is an OWL class, P is an OWL property, and x, y are

either variables, OWL individuals or OWL data values. The H atom will be true if all

atoms B1 ∧ ... ∧Bn are true.
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CHAPTER 3

RELATED WORKS

In this chapter, we investigate the existing access control, privilege delegation, provision-

ing and obligations approaches. In section 3.1, we briefly present the traditional access

control models because most modern Context-Based Access Control are basing their for-

mal representation on them. Section 3.3 presents related works on Context-Based Access

Control and section 3.4 is dedicated for privilege delegation approaches in access control,

while section 3.5 introduces obligation policies and obligation mechanisms.

Access policy is defined by Bellavista et al. [7] as the choices that are used for ruling

system behavior, in terms of the actions subjects can/must operate upon resources. These

choices can be either a permission, which is a prescription that a particular behavior is

allowed to occur, a prohibition, a prescription that a particular behavior must not occur, or

an obligation, which is a prescription that a particular behavior is required [14].

3.1 TRADITIONAL ACCESS CONTROL

Several access control models have been proposed in the last four decades. Among the

widely-adopted models in information security field, the Discretionary [48] and the Manda-

tory [22] Access Control models (DAC and MAC, respectively), and Role Based Access

Control model (RBAC) [60] were the dominant ones.

3.1.1 DISCRETIONARY ACCESS CONTROL

Discretionary access control (DAC) was proposed in early 1970s. The DAC model is based

on an access matrix, which was proposed by Lampson [48] and then it was formalized by
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Harrison et al. [33]. It declares for each combination of a subject and an object the set of

allowed actions. The access rights can be stored in a matrix with the columns representing

objects, rows representing subjects, and the entries being the granted privileges. That is,

when a system receives an access request, the authorization mechanism checks the subject’s

identity and the granted permissions on the requested object.

However, DAC has some limitations. DAC policies are susceptible to a Trojan Horse

in which the content of files is maliciously copied from one file to another because there

is no control on copies of objects. Also, correctness of DAC policies is complicated due

to unrestricted ownership of objects’ permissions. Absence of constraints on the propaga-

tion of rights and copying information expose underlying policies to serious safety issues.

Moreover, with the large number of subjects and objects makes it very complicated to adopt

DAC for managing access rights.

3.1.2 MANDATORY ACCESS CONTROL

Mandatory Access Control (MAC) [22] has its roots in the military and intelligence com-

munities, where restrict access rules need to be active in place. MAC bases its access

control on hierarchical classification levels. MAC-based systems can provide protection of

either the confidentiality or integrity of data. We should emphasize; however, MAC cannot

provide both confidentiality and integrity at the same time (simultaneously). The subject

used by MAC-based system has a different meaning than that considered in DAC-based

systems. In DAC-based systems, subjects correspond to users or groups. In MAC-based

systems, subjects can refer to the processes (i.e., programs in execution) operating on behalf

of users. This distinction allows the MAC-based systems to control the indirect accesses

caused by the execution of processes, which is the main security problem of DAC-based

solutions.

In MAC, a subject s is allowed to access a resource r (or object o) only if its access

class is greater or equal to the access class of the resource. For example, a subject s with
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access class Secret S is able to read and write Secret (S), Confidential (C), and Unclassified

(U) resources, but not Top Secret (TP) resources.

3.1.3 ROLE BASED ACCESS CONTROL MODEL

Role-Based Access Control (RBAC) was first proposed by Ferraiolo et al. [25]. The orig-

inal RBAC model was known as RBAC92 and this model has been extended by Sandhu

et al. [61] in 1994. In RBAC, roles are assigned to users (to subjects) and each role is

associated with a set of permissions. The subjects activate the assigned roles to get the

permissions associated with these roles. The RBAC framework introduced by Sandhu et

al. [61] consists of a set of four RBAC models. The base model is called RBAC0 (also

known as RBAC core or RBAC flat). The RBAC1 includes the RBAC0, but it adds the

support of Roles Hierarchy. In RBAC2, constraints are added to the RBAC0. RBAC3

includes RBAC0, RBAC1 and RBAC2 via transitivity. The user-role and permission-role

assignment can be many-to-many.

In the RBAC0 model, user-to-roles mapping is called user assignment (UA) and per-

missions to roles mapping is called permissions assignment(PA). This model is formally

defined below:

• U,R, P, and S for users, roles, permissions and sessions, respectively,

• PA⊆ P× R, a many-to-many permission to role assignment relation,

• UA⊆ U× R, a many-to-many user to role assignment relation,

• user: S→ U, a function mapping each session sei to the single user user(sei), and

• roles: S→ 2R, a function mapping each session sei to a set of roles roles(sei) ⊆

{r|(user(sei), r) ∈ UA} and session sei has the permissions Ur∈roles(sei){p|(p, r) ∈

PA}.
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In RBAC1, role hierarchies is introduced. RBAC1 is based on the concept of role hier-

archies as a means to reflect organizational hierarchies. The senior role has more privilege

than a junior role and inherits all the permissions of its juniors in the hierarchy. The formal

presentation of hierarchical RBAC is presented as follows:

• U,R, P, S, PA,UA, and user are unchanged from the basic RBAC model,

• RH→ R× R is a partial order on R called the role hierarchy relation, also written as

≥, and

• roles: S→ 2R is from the RBAC0 model to requires that roles(sei)⊆{r|(user(sei), r

) ∈ UA} and session sei has the permissions Ur∈roles(sei){p|(p, r) ∈ PA}.

RBAC2 model is used to model the natural constraints in organizational roles. For

example, in an organization a purchase manager who makes purchase decisions is different

from a finance manager who makes the payment. Another disjoint role is a finance auditor

who audits the accounts. No single individual should be able to activate two or more of

these roles, which is an essential constraint on these roles. These roles are also referred

to as mutually exclusive roles. Another type of role in this model is the prerequisite role

where a user has to be a member of a prerequisite role before he can become a member

of the desired role. For example, in health systems, before a user can be mapped to a

’Consultant’ or ’Surgeon’ role in a hospital (s)he works in, (s)he should be a member of

the role ’Doctor’ in that hospital.

The main difficulty with RBAC systems is that role management is a huge task in a large

system. Even if de-centralized administration is used, role management is an administrator

function and hence relies on an administrator to manage and administer roles. Another

problem with RBAC systems is that for each new composition of users, a new role must

be defined. In a large system with large combinations of roles, the RBAC model results in

a problem called ’role explosion’ where the number of roles increases exponentially and

ultimately becomes unmanageable.
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Our framework provides a solution that makes Context-Based Access Control (CBAC)

more flexible than RBAC systems and addresses the mobility issue through using semantic

information.

3.2 ATTRIBUTE-BASED ACCESS CONTROL

In Attribute-Based Access Control (ABAC) [75], the access privileges (permissions) are

associated with attributes and not roles. Thus, subject’s attributes are very important in

ABAC-based models because they specify the properties of the active entity that tries to

access the protected resources.

The attributes are determined according to the domain in which ABAC is applied. Usu-

ally, some of the attributes are related to the information fed by the user or system security

officer, but most of these are elements in the system and do not need to be manually entered

by administration (e.g., many of the attributes about an object come from its meta-data).

Attributes can be grouped into the following four categories:

• Subject attributes: attributes that describe the user attempting the access e.g. age,

clearance, department, role, job title.

• Action attributes: attributes that describe the action being attempted such as read,

delete, write, append.

• Resource (or object) attributes: attributes that describe the object being accessed e.g.

the object type (medical record, bank account...), the department, the classification

or sensitivity, the location.

• Contextual (environment) attributes: attributes that deal with time, physical location

or dynamic aspects of the access control scenario such as session start date/time,

current session length, host name, number of access requests made, and so forth.
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In ABAC, access policies can be created using policy languages, limiting access to cer-

tain resources or objects, based on the result of a Boolean statement comparing attributes,

for example "subject.age≤ 20 OR resource.owner == user.id" or "TIME > 8 : 00AM

AND TIME < 5 : 00PM". This allows for flexible enforcement of real world policies,

while only requiring knowledge of some subset of attributes about a given subject (user)

[68].

3.3 CONTEXT-BASED ACCESS CONTROL

Existing approaches for Context-Based Access Control (CBAC) can be divided into three

categories depending on how the context is used. In the first category, the context is asso-

ciated with roles in RBAC. The second category uses the context as a set of attributes for

ABAC. The third category does not depend any preexisting access control model, rather, it

concentrates on the context itself and its contextual components.

3.3.1 RBAC-BASED CBAC

In the first category, Covington et al. [16, 17] present a model which they call Generalized

Role-Based Access Control (GRBAC). GRBAC builds upon traditional Role-Based Access

Control (RBAC) with two new concepts: object roles and environment roles. They use an

elegant means for capturing and using a user’s context in access control. In particular,

similar to subject roles of RBAC, the environment roles, can be used to capture security-

relevant aspects of the environment in which an application executes.

Kulkarni et. al. [47] develop a Context-Aware RBAC, which allows roles to be granted

based on context but permitting a second layer of authorization architecture. This second

layer’s responsibility is to grant and revoke roles when the context changes. This way,

dynamic roles can be reflected onto the context. Sladić et. al. [70] have proposed a different

solution via engaging context into ontology-based RBAC model. Their model grants roles

to users after the authentication operation is completed based on context. Users can obtain
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new roles that reflect their contexts. The authors also define a context dependent constraint

on assignment relations and on a role activation. Thus, an assignment relation with such

constraint will be established only if the context dependent constraint is fulfilled. The same

thing is applied to a role activation.

However, solutions presented in [47] and [70] have a problem that they cannot be inte-

grated with traditional RBAC. Once the system starts assigning roles based on context, all

authorization rules are affected.

Kodali et al. [45] propose a DAML (DARPA Agent Markup Language, an ancestor of

OWL) ontology that combines DAC, MAC and RBAC models in one framework. Most

importantly, their model can be used to associate access control policies with roles. Wu et

al. [76] provide a basic modeling for RBAC concepts and constraints using OWL. User,

Role, Permission and Session entities are represented as classes. While, the following

properties are used to represent relationships:

• hasRole (assigns a user to a role),

• hasPermission (associates a role with a permission),

• belongTo (maps a session to a single user), and

• hasActiveRole (maps a set of roles to a session).

Two additional properties are used to model separation of duty and prerequisite constraints:

• conflictRole (indicates that there is a conflict between two roles), and

• prerequesiteRole (specifies that one role is dependent on another).

Finin et al. [26] build on the work proposed by Wu et al. [76] examine the advantages

and disadvantages of representing roles as classes and roles as instances. When roles are

represented as instances, the modeling is simple and more concise. Whereas, when roles

are represented as classes, it is possible to determine subsumption relationships according
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to a user’s active role and the role hierarchy, using standard description logic subsumption.

In order to have the ability to enforce role deactivation, it should be possible to temporarily

remove a user from a role.

Keyes et al. [43] developed a semantic-based authorization policy framework for defin-

ing and enforcing two sets of policies that use contexts: the context-aware user-role and

role-permission assignment policies. The first set of policies specifies that users can play

a particular role when a set of conditions are satisfied. The second set of policies speci-

fies that users having roles are allowed to carry out an operation on the resources when a

set of conditions are satisfied. When a user wants to access resources, policy enforcement

determines if an access request is granted or denied.

3.3.2 ABAC-BASED CBAC

This category uses the context as a set of attributes for ABAC. Dersingh et al. [23] have

proposed a policy system that separates context’s management from access control man-

agement, it is relatively similar to our approach in this concern. The policy system they

proposed extends the eXtensible Access Control Markup Language (XACML) by adding

the capability of using context vocabularies in the policy and designating subjects and re-

sources via semantic knowledge. Seitz et al. [66] described a framework for authorization

and access control on IoT, in the context of interconnected systems consisting of resource-

constrained devices not directly operated by humans. Their approach, however, does not

support context nor semantic-web technologies and works as an add-on for XACML which

makes it difficult to adopt for IoT because evaluating XACML policies is too heavyweight

for constrained devices and therefore the authors of [66] made the authorization decision

process external to XACML policies. Hilia et al. [35] present a semantic-based authoriza-

tion approach for controlling access in collaborative cloud environments. Their approach

is also based on the XACML architecture and makes access decision according to con-

textual situations. Authorization context is evaluated by XACML Engine. The contextual
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information is retrieved from several sources, i.e. by using attribute finders to dynami-

cally search, and perform dynamic queries for the environmental values of these attributes.

However, approaches in [23, 35, 66] highlight extending the well-known ABAC XACML

framework with semantic-based context.

Covington and Sastry [18] presented a contextual attribute-based access control (ABAC)

model which was realized in mobile applications. They used contexts as add-ons for the

ABAC.

Das et al. [21] They presented a method for context-sensitive access control for IoT

that uses reasoning over contextual ABAC. One of the main advantages of ABAC is that

requesters do not have to be known a priori by targets, providing a higher level of flexibility

for open environments, compared to RBAC models. Nevertheless, in ABAC everyone must

agree on a set of attributes and their meaning when using ABAC, which is not easy to

accomplish, particularly in dynamic environments.

However, in ABAC everyone must agree on a set of attributes and their meaning when

using ABAC, which is hard to achieve, especially in distributed environment.

3.3.3 INDEPENDENT CBAC

Corradi et al. [15] have presented the first well-developed approach that uses ontologies

to support context-based access control. The authors employed the context to be the main

principle for security policy specification and enforcement. They adopted an RDF-based

semantics for context representation to handle heterogeneity of data representation. How-

ever, the authors do not extend the RDF-based semantics to cope with large vocabulary of

the current environments and the developing status of sophisticated semantic-based tools.

This is a limitation because the approach they proposed cannot infer the semantic relation-

ships of entities represented by OWL, for example. Toninelli et al. [42] introduce the Pro-

teus framework. The framework uses the contexts represented as description logic (OWL

ontologies) and logical programming rules to enable the dynamic adaptation of policies by

28



linking the requests to the data and the context. The proposed framework aimed to work

in pervasive and ubiquitous environments. However, our approach differs from Proteus

in the underlying formalism and the semantics of requests. Based on Proteus framework,

Bellavista and Montanari [8] proposed an implementation for IoT adaptive context-based

access authorizations. However, using only OWL ontologies encounters some difficulties

with regard to the definition of policies, especially those policies that require the definition

of variables. For example, the use case of a "same location policy", that grants access to

files only when location(user) = location(file) is a good example that illustrates the need

for variables.

Shen and Cheng [69] use OWL ontologies to specify both positive and negative au-

thorizations and obligations. The context is used to provide a level of indirection between

subjects and permissions. An authorization permits/prohibits an action, based on sets of

contexts supplied by the user. Actions are used to represent operations that a specific sub-

ject wants to perform. Permission assignments are used to associate contexts with actions.

Rules are used to insert new authorizations, based on contextual information, into a knowl-

edge base.

Also, Schuster et al. [65] present a design and implementation for IoT access control.

They introduce "environmental situation oracles" (ESOs) as first-class objects in the IoT

ecosystem. The method they describe depends on a situation, that can only be tracked using

multiple devices. They use typical API-level operations that can possibly subdivided by

the input-parameter values if different values require different access right. However, their

approach does not use semantic technologies and can not provide inference over access

control policies.

Definition 3.1. (Least Privilege Principle [64]). The least privilege principle states that a

subject should be given only those privileges that it needs in order to complete its task.
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3.4 PRIVILEGE DELEGATION IN ACCESS CONTROL

The fundamental idea behind delegation is that some active entity in a system, the delegator,

delegates privileges to another active entity, the delegatee, to carry out some functions on

behalf of the former. Delegation in computer systems can be human to human, human

to machine, machine to machine, and perhaps even machine to human. Most delegation

models in the literature address human to machine and machine-to-machine delegation [6].

Delegation of the privileges is an important mechanism to support dynamic and adaptive

access control in real world applications. It is usually used for distributing responsibilities

of task management among entities.

Delegation comes in two forms [19], GRANT and TRANSFER. In GRANT delega-

tion, a successful delegation operation allows delegated permissions to be available to both

the delegator and delegatee. In TRANSFER delegation, the delegated permissions are no

longer available to the delegator.

There is a significant previous work on Context-Based Access Control (CBAC) [11,

15, 31, 41, 47, 69, 72, 73]. However, support to delegate CBAC privileges is limited.

For example, approaches described in [8, 11, 47, 72, 69] do not provide any delegation

services. Most of the existing delegation methods are based on traditional access control

models, such as Role-Based Access Control (RBAC) models [73, 78]. Methods such as

attribute-based delegation [54, 68] and capability-based delegation [31, 41] require that the

underlying access control policy is changed. Moreover, none of the methods address the

issue of context delegation when the access authorization is a context-dependent. Further-

more, only a few approaches have extensively studied TRANSFER delegation due to the

complexity of enforcing TRANSFER delegation mechanisms.

In Chapter 5, we present an approach that overcomes these limitations and introduces

a novel model for semantic-based context delegation.
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3.5 OBLIGATIONS IN ACCESS CONTROL

Obligation policies define the actions that must be performed by subjects on resources when

certain triggering events occur in a response to changing circumstances. The triggering

events can be simple, such as an internal timer event, or an external event notified by

monitoring service components e.g. a temperature exceeding a threshold or a component

failing [20].

Obligation in access control has been extensively studied by researchers. For exam-

ple, Hilty et al. [36] propose a formal framework for enforcing obligation policies through

using Distributed Temporal Logic (DTL) to classify data protection requirements. Bettini

et al. [10] propose an approach for specifying and evaluating provisions and obligations

in Access Control (AC). Their method is based on the expression of Datalog Rules and

reasoning for evaluating authorization and obligation decisions. They use the term "provi-

sion" to refer to the conditions that must be met before data is released after a request is

received. We should note that provisions are encoded within our semantic-based authoriza-

tion model. Authors in [67] provide OWL-Polar, a framework for the semantic definition

and enforcement of permission, prohibition and obligation statements. Their definition of

an obligation involves activation conditions and contents. OWL-Polar uses SPARQL-DL

[55] queries for checking the fulfillment of consumer obligations using reasoning, where

activation conditions are translated into standard SPARQL queries [51]. Chen et al. [12]

define a model that engages obligations in the environment of risk-aware access control.

Obligations are combined with a specific measure of how much risk is incurred by allowing

or denying access to specific resources. Obligations are enforced effectively if and only if

the measured risk for enforcing them is lower than a specified threshold.
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CHAPTER 4

CONTEXT-BASED AUTHORIZATION FRAMEWORK

The goal of this chapter is to show how ontologies, combined with logic programming

rules, are used to support adaptive and flexible access control decisions. The main con-

tribution of this chapter is to provide a flexible and adaptive context-based authorization

model. Our framework uses contextual information to derive access decisions. We have

developed two OWL ontologies. The first one, CTX-Lite ontology, is used for representing

and reasoning over the contextual information. The second ontology, CBAC, is used to

represent and reason over the Knowledge Base (KB) to derive the access control decisions.

More specifically, CTX-Lite ontology is used to annotate the raw contextual data. The

annotation is then used by CTX-Lite to derive inferred high-level context from the raw ob-

servations. This high-level context is then used by the CBAC engine to derive a decision.

Hence, CTX-Lite ontology serves as a core ontology for context handling operations. The

approach described in this chapter is grounded in Semantic Web technologies, specifically

OWL ontologies, Pellet reasoner, Jena inference rules, and SPARQL (SPARQL Protocol

And RDF Query Language) queries.

The architectural view of the proposed system includes two components is shown in

Figure 4.1. The context manger and CBAC engine. The context manager receives requests

from the CBAC engine asking for a specific context. In its response to these requests,

the context manager gathers, annotates, processes, and reasons over the gathered data to

produce the context. Then it sends the resulted context to the CBAC engine. Based on the

received context and its own KB (represented as ontologies and rules), the CBAC engine

reasons over this KB to derive an access control decision.
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Figure 4.1: CBAC Architectural View of The Proposed System.

We use description logic (DL) and Logic programming (LP) technologies for modeling

contexts and Context-Based Access Control (CBAC) rules. In our approach, access autho-

rization decision is solely made based on the inferred context. We have separated context

operations from access authorization operations to:

• reduce processing time burden for Dynamic Distributed Networks (DDNs) devices,

and

• offer modularity through managing the complexity of the problem by breaking it

down to smaller manageable modules.

We validate the work presented in this chapter by a proof of concept implementation.

4.1 FORMAL REPRESENTATION OF THE CONTEXTS

Our model is formally specified using description logic DL. We have separated context

operations from access authorization operations to reduce processing time burden for net-

work devices. The complex context handling process is taken care by a dedicated server
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that hosts the context manager. This will release the CBAC engine, which is usually hosted

by an intermediate node that controls the network device or by a network device (this is

very rare since network devices, like IoT devices, have too limited resources to host such a

big application).

Our context model is built around the concept of contextual attribute, information which

models contextual attributes of the physical/logical environment such as location and tem-

perature, as presented in definition 4.3.

Definition 4.1. (Ontology). Let rdfi = ( C`1, ri, C`2 ) be an RDF triple, where C`1 and C`2

are concepts, and ri is a relationship from C`1 to C`2. An ontology Ont is represented by

({rdf1, ..., rdfm}, Cs), where Cs is the set of constraints imposed on rdfi and C`j
definition.

Definition 4.2. (Instance relation). Let Ont be an ontology and I = {i1, ..., im} be a set

of instances, such that for every ij ∈ I, there is an ISA relation from ij to a concept C`1 in

Ont, and for every ik ∈ I, there is an ISA relation from ik to a concept C`2 in Ont, i.e., (ij ,

ISA, C`1) and (ik, ISA, C`2). The instance relation is any relation of the form (ij , rp, ik).

Definition 4.3. (Contextual Attribute). Let A = {an1, ..., ann} be a set of attribute names

and V = {av1, ..., avn} be a set of attribute values. A contextual attribute, denoted as ai, is

a pair (ani, avi), such that ani ∈ A and avi ∈ dom(ani), (i = 1, ..., n), where dom(ani) is

the domain of ani.

Specific context subclasses can be represented under Generic Concept Context. Each

sub-context class consists of attribute values and constants. In our model, the generic

context of the subject is given by the DL axiom 4.1. For example, A reference context

of OnDutyDoctor is represented as it is shown in DL axiom 4.2. Note that the con-

cept OnDutyDoctor includes all the characteristics specifications of the generic concept

SContext. We call this context a reference context. It holds the high-level context of an

entity which will be used later as a reference when we need to instantiate the active context

of that entity.
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SContext ≡ Context u (User u ∃hasID.IDentity

u ∃hasRole.Role u ∃hasGroup.Group)

u (Environment u ∃hasLocation.Location)u

(TElement u ∃hasT ime.T ime_Interval) u ∃

hasID.Identifier (4.1)

OnDutyDoctor ≡ Context u (User u ∃hasID.IDentity

u ∃hasRole.Role{Doctor} u ∃hasGroup.Group

{InShiftDoctors}) u (Environment{WorkingEnvrnt}

u ∃hasLocation.Location{Hospital}) u (TElement

{WorkingT ime} u ∃hasT ime{xsd : dateT ime

[≥ 2018− 04− 06T09 : 00 : 00,≤ 2018− 04− 06

T17 : 00 : 00]}) u ∃hasID.{0} (4.2)

The active context holds the entity context at a specific instant of time. For example,

when an entity requests an access to a resource. Active contexts are like their reference

contexts counterparts. However, they differ in that they do not have range values in their

definitions. Active context reflects a real snapshot of an entity’s context at a specific time

instant. For example, the following DL axiom describes a certain user context at 2018-04-

06T14:23:00, which represents 2:23 pm on April 6, 2018:
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monitor. Also, an obligation is associated with an Action that is requested by the subject

through the object property isRelatedTo. The reason behind this relevance relation is that

each obligation has a relatedness with action. For example, if a subject request to access a

resource and the related obligation with that action is to provide a valid driver license num-

ber, then the CBAC engine asks (as obligation) the subject to provide his/her bank account

information, then in this case, the system violates the relevance relation.

Figure 6.4: Core Concepts of the Extended CBAC Ontology.

We should note that the authorization decision in presence of obligation may be differ-

ent than the authorization decision alone. This is because CBAC engine does not follow

the same decision procedure. The obligation is given by the tuple Oblig(s,sc,ac,r,OblP ),

where s ∈ Subject, sc is the subject’s context (SContext), r ∈ Resource, ac ∈ Action,

OblP is obligation parameters, which include [ts,te] to refer to the time interval at which

the obligation must be satisfied, TFrame, ps ∈ OPState and tss ∈ TState.

We represent obligation policies in a predicate form as follows:

is_obliged(CBAC, p): To check if the decision is associated with an obligation to be

enforced. The first parameter is CBAC ontology and the second parameter is the decision
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previously returned by evaluate(s, sc, r, CBAC, RS) function (it is the same function of

Chapters 4 and 5. This function is called after Permit decision is made.

is_committed(CBAC, p): This predicate, if returns True, means that the request is

associated with an obligation and that obligation must be enforced before granting ac-

cess. Same as is_obliged(CBAC, p) function, except that this function is called before the

Permit decision is made.

deactivate(OBL, CBAC, oblig_ID): Deactivate the obligation by deallocating its in-

stances from OBL and CBAC ontologies.

oblig_ID ← get_oblig_ID(s, CBAC): Gets the obligation identifier.

enforce_oblig(oblig_ID, CBAC, OBL, s, sc, ac, r, OblP ): Enforces the obligation for

the request in hand. This predicate reads as follows: subject s working under context sc

should take the action ac on the resource r only when (s)he fulfills the obligation which is

recognized by an identifier oblig_ID and parameters OblP .

Assume now we have a reference context that represents student’s context when in

campus as is shown in DL axiom 6.1. Also assume that Larsa has an active context at the

time a request is made and it is shown in DL axiom 6.2.

AtCampusStudent ≡ Context u (User u ∃hasID.IDentity

u ∃hasRole.Role{Student} u ∃hasGroup.Group

{ActiveStudents}) u (Environment{WorkingEnvrnt}

u ∃hasLocation.Location{UnivCampus}) u (TElement

{WorkingT ime} u ∃hasT ime{xsd : dateT ime

[≥ 2019− 09− 06T08 : 00 : 00,≤ 2019− 09− 06

T17 : 00 : 00]}) u ∃hasID.ID (6.1)
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AtCampusStudent ≡ Context u (User{Larsa}) u ∃hasID.IDentity

{Student563} u ∃hasRole.Role{Student} u ∃hasGroup.Group

{ActiveStudents}) u (Environment{WorkingEnvrnt}

u ∃hasLocation.Location{UnivCampus}) u (TElement

{WorkingT ime} u ∃hasT ime{xsd : dateT ime

[2019− 09− 06T11 : 34 : 00]}) u ∃hasID.ID{0} (6.2)

The obligations are specified using DL axioms. For example, the obligation that is used

to obligate a subject to finalize submitting TA itemized receipts is represented using the DL

axiom shown in 6.3.

GenTAOblig ≡ ∃hasObligID.ObligID u ∃hasTState.TState

u ∃hasTFrame.(TimeFrame u ∃withST ime.xsd : dateT ime

u ∃withETime.xsd : dateT ime) u ∃isUserOblig.xsd : boolean

u ∃obligedOn.(Subject u AtCampusStudent u ∃obligedToDo.Action)

(6.3)

This is only a generic obligation axiom. Based on this generic obligation, we will

specify another obligation to represent a reference obligation. For example, the reference

obligation for our example is given by the DL axiom shown below (axiom 6.4):

RefTAOblig ≡ ∃hasObligID.ObligID u ∃hasTState.TState{transient}

u ∃hasTFrame.(tframe1 u ∃withST ime.{xsd : dateT ime[2019− 09− 05T08 :

00 : 00]} u ∃withETime.{xsd : dateT ime[2019− 09− 19T17 : 00 : 00]})

u ∃isUserOblig.{xsd : boolean[True]} u ∃obligedOn.(Subject u AtCampusStudent

u ∃obligedToDo.Action{submit_TA_receipts}) (6.4)

91



Algorithm 7 is used to compute the obligation within CBAC framework.

Algorithm 7 Obligation-Supported Access Authorization.
Input: CBAC, CBAC ontology, OBL is a obligation ontology, RQ is an Access Request,
RS is access control rule-set.
OblP is obligation parameters
Output: Access decision, either "Deny" or "Permit".

1: RT←parse(RQ) . RT = 〈s, r, ac〉
2: if RT = access then
3: sc←getContext(s);
4: p←evaluate(s, sc, r, CBAC, RS);
5: if p = ”Permit” AND noConflict(p, s, sc, r, CBAC, RS) then
6: if is_committed(CBAC, p) then
7: oblig_ID ← get_oblig_ID(s, CBAC)
8: enforce_oblig(oblig_ID, CBAC, OBL, s, sc, ac, r, OblP )
9: Permit_Access;

10: exit();
11: end if
12: if is_obliged(CBAC, p) then
13: enforce_oblig(oblig_ID, CBAC, OBL, s, sc, ac, r, OblP )
14: Permit_Access;
15: exit();
16: end if
17: else
18: Deny_Access;
19: exit();
20: end if
21: else
22: return(”Not access request”);
23: end if

Let’s return to our motivating example. Assume now Larsa needs to finalize her TA and

she already submitted the TA application. At the moment of trying to finalize the TA ap-

plication, the CBAC engine instantiate the following obligation instance (active obligation)

of Larsa:
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TAOblig ≡ ∃hasObligID.ObligID{ObligAA563} u ∃hasTState.TState{transient}

u ∃hasTFrame.(tframe1 u ∃withST ime.{xsd : dateT ime[2019− 09− 05T08 : 00

: 00]} u ∃withETime.{xsd : dateT ime[2019− 09− 19T17 : 00 : 00]})

u ∃isUserOblig.{xsd : boolean[True]} u ∃obligedOn.(Subject{Larsa}

u AtCampusStudent{Larsa} u ∃obligedToDo.Action{submit_TA_receipts})

(6.5)

To grant Larsa a permit to finalize her TA, the CBAC engine creates an obligation

context (oc), based on Larsa’s AtCampusStudent. Let’s call this FinalizingTAStudent,

and is given as follows:

FinalizingTAStudent ≡ Context u (User u ∃hasID.IDentity

u ∃hasRole.Role{Student} u ∃hasGroup.Group

{ActiveStudents}) u (Environment{WorkingEnvrnt}

u ∃hasLocation.Location{UnivCampus}) u (TElement

{WorkingT ime} u ∃hasT ime{xsd : dateT ime

[≥ 2019− 09− 01T08 : 00 : 00,≤ 2018− 09− 14

T17 : 00 : 00]}) u ∃hasObligation.(Obligation u ∃hasObligID.ObligID) (6.6)

This axiom represents the reference obligation context. We should note that this context

can be written as:

FinalizingTAStudent ≡ Context u ∃hasObligation.(Obligation u ∃hasObligID.

ObligID) (6.7)

The active context of this reference oc is given as:
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FinalizingTAStudent{Larsa} ≡ Context u (User{Larsa} u ∃

hasID.IDentity{Srudent563} u ∃hasRole.Role

{Student} u ∃hasGroup.Group{ActiveStudents})u

(Environment{WorkingEnvrnt} u ∃hasLocation

.Location{UnivCampus}) u (TElement{WorkingT ime}

u hasT ime.T ime_Instance{xsd : dateT ime

[2019− 09− 05T14 : 23 : 00]}) u ∃hasObligation.({obl1}

hasObligID.ObligID{ObligAAA569}) (6.8)

This concept states that Larsa is under FinalizingTAStudent at time 2:23 pm on

September 5, 2019, if she is under the AtCampusStudent context and has an obligation

obl1 with an ID ObligAAA569. One distinguishing property of our obligation approach is

that it partially depends on the context of the user. This is because the obligation specifi-

cation depends on the user’s context, i.e., the obligation axiom has one important element

which is user context. Using the obligation axiom and the context under which the user

operates, a new context is automatically derived to serve as a new context which we already

call the obligation context (oc) to recognize it from ordinary context. Figure 6.5 illustrates

this dependency. Now assume we have following obligation business rule: The policy rule

Table 6.1: Obligation rule for the running example.

No. Rule

Rule: A student who is with con-
text FinalizingTAStudent
can finalize the on-line TA ap-
plication.
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Figure 6.5: Context-Obligation Dependency.

for this business rule is specified using Jena rule as follow (rule 6.9):

[rule :

(?r rdf : type cbac : Request)

(?r ctx : hasType oblig : TA finalize)

(?r cbac : hasSubject ?s)

(?s rdf : type oblig : FinalizingTAStudent)

(?r cbac : hasResource ?rs)

(?r cbac : hasDecision ?d)

− > (?d cbac : hasEffect cbac : Permit)]

(6.9)

6.4 CHECKING OBLIGATION STATES

One of the crucial tasks in obligation is how to define and track its states. For temporal

states (transient or persistent), we let the system determine these states. In our implemen-

tation, we assign random values to them during program execution. For operational states,

however, it is important to specify these states precisely and be able to devise a method
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for monitoring their transitions. We have three major operational states (some researchers

might add to these three states). We use SWRL (Semantic Web Rule Language) to specify

and trigger operational state transitions. These are as follows:

• Fulfilled: An obligation is Fulfilled when its satisfaction conditions are met by the

subject. For example, when the credit card holder submits a monthly fee in full

before the due date, there will be no additional charge on her/his card. The SWRL

rule below specifies a fulfillment condition for a fulfilled obligation:

Obligation(?x) ∧ hasTFrame(?x, ?g) ∧ withST ime(?g, ?g1)

∧ withETime(?g, ?g2) ∧ isReletedTo(?x, ?z) ∧ obligedOn(?x, ?y)

∧ obligedToDo(?y, ?z) ∧ ofType(?z, ?s) ∧ swrlb :

stringEqualIgnoreCase(?s, ”submit_TA_receipt”) ∧ AtCampusStudent(?y)

∧ hasTElement(?y, ?y1) ∧ hasT ime(?y1, ?t) ∧ swrlb :

lessThanOrEqual(?t, ?g2) ∧ swrlb : greaterThanOrEqual(?t, ?g1)

− > Fulfilled(?x)

• Pending: Obligation can be in Pending state in two situations: The action requested

by a subject is issued in before the start time of the obligation. For example, if the

current date is September 2 2019, and the policy says that starting from September

5 2019, 10:00 am, a tenant should pay a service fee of $45. The SWRL rule below

specifies a pending condition for a pending obligation, where t2 is a variable that

holds current time. Also, the action requested by a subject may not related to the
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obligation, but the due date/time of the obligation is still valid (does not elapse yet).

Obligation(?x) ∧ hasTFrame(?x, ?g) ∧ withST ime(?g, ?g1)

∧ withETime(?g, ?g2) ∧ isRelatedTo(?x, ?z) ∧ obligedOn(?x, ?y)

∧ obligedToDo(?y, ?z) ∧ ofType(?z, ?s) ∧ swrlb :

stringEqualIgnoreCase(?s, ”submit_TA_receipt”)∧

AtCampusStudent(?y) ∧ hasTElement(?y, ?y1) ∧ hasT ime(?y1, ?t)∧

swrlb : lessThanOrEqual(?t, ?g2) ∧ swrlb : greaterThanOrEqual(?t, ?g1)

CurrentT ime(?t2) ∧ ctx− lite : hasT ime(?t2, ?t3)

∧ swrlb : lessThan(?t3, ?g2)− > Pending(?x)

The SWRL rule below recognizes this case:

Obligation(?x) ∧ hasTFrame(?x, ?g) ∧ withST ime(?g, ?g1)

∧ withETime(?g, ?g2) ∧ isRelatedTo(?x, ?z) ∧ obligedOn(?x, ?y)

∧ obligedToDo(?y, ?z) ∧ ofType(?z, ?s) ∧ swrlb :

stringEqualIgnoreCase(?s, ”submit_TA_receipt”) ∧ AtCampusStudent(?y)

∧ hasTElement(?y, ?y1) ∧ hasT ime(?y1, ?t) ∧ swrlb :

lessThanOrEqual(?t, ?g2) ∧ swrlb : greaterThanOrEqual(?t, ?g1)

CurrentT ime(?t2) ∧ ctx− lite : hasT ime(?t2, ?t3)

∧ swrlb : lessThan(?t3, ?g2)− > Pending(?x)

• Violated: The action requested by a subject is related to the obligation, but the due
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date/time of the obligation is invalid (already elapsed).

Obligation(?x) ∧ hasTFrame(?x, ?g) ∧ withST ime(?g, ?g1)

∧ withETime(?g, ?g2) ∧ isReletedTo(?x, ?z) ∧ obligedOn(?x, ?y)

∧ obligedToDo(?y, ?z) ∧ ofType(?z, ?s) ∧ swrlb :

stringEqualIgnoreCase(?s, ”submit_TA_receipt”) ∧ AtCampusStudent(?y)

∧ hasTElement(?y, ?y1) ∧ hasT ime(?y1, ?t) ∧ swrlb :

lessThanOrEqual(?t, ?g2) ∧ swrlb : greater(?t, ?g1)

− > V iolated(?x)

We should note that for all situations that need to delete instance from the knowledge

base, we use Java-based API’s to achieve them. This is due to the inability of Semantic-

Web technologies to do that alone.

6.5 IMPLEMENTATION

Our obligation implementation is carried out on Windows 8.1 machine with 1.9 GHz CPU,

4 GB RAM and 500 GB HDD. After designing our system ontologies, we use the on-line

Freedatagenerator to generate unduplicated data instances in the form of excel sheets. Then

we use Cellfie plug-in for Protègè to assert these instances to the model ontologies. The

rules used for this purpose are based on Java Script Object Notation (JSON) [28]. For

example, we use the following JSON rule to assert instances and set their type to Thing

OWL class (most general class in OWL language). Then this rule links those instances

with other instances using the object properties obligedOn, hasObligID, hasTStatus,

withDuration, and hasTFrame, in addition to a data property isUserOblig.

{"Collections":[{"sheetName":"Sheet1","startColumn":"A","endColumn":"A",

"startRow":"2","endRow":"+","comment":"","rule": Individual: @H*

Types: owl:Thing
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Facts: obligedOn @N*,

hasObligID @M*,

hasTStatus @A*,

withDuration @L*,

hasTFrame @O*,

isUserOblig @E* (xsd:boolean)}]}

The obligation’s state checking and transition are implemented using SWRL rules as

described above. When executed, these rules transit the obligation operational status from

state to state if the conditions of the transition are met. Because obligation express future

conditions that may not exist in the present time (the time of a request), we randomly

generate events (actions-based or temporal) that trigger obligation policies. These events

are generated using our Java application and fed into the model ontologies. After DL-

reasoning is complete, the execution of SWRL rules follows. These two steps derive all

the deductions needed to make the authorization decision. Figure 6.6 shows the results of

our obligation approach simulation. It displays the time needed for different number of

obligations’ enforcement. In Figure 6.7, we display the number of DL axioms required to

encode the different number of obligations.

Figure 6.6: Obligation Enforcement Time for Different Obligation Numbers.
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Figure 6.7: Number of Obligations versus Number of Axioms Processing Time.

We should note that our obligation enforcement does not change the CBAC authoriza-

tion framework we present in Chapter 4. One note about obligation enforcement is that any

access granted before activating the obligation can not be tracked back and be obligated

(there is no means to impose obligations on the already granted privileges).
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

Several researchers have proposed access control strategies for protecting resources on the

networks. However, in dynamic environments, where subjects and resources are dynami-

cally changing their conditions, in addition to the changes in time and sensors’ updates, an

adaptable access control is needed.

We have shown that implementing a context-based authorization using semantic-based

techniques can provide an adaptable mechanism that satisfies the heterogeneity, dynamicity

and variability properties of dynamic environments. We also have shown that designing

context delegation mechanisms is feasible using semantic-based techniques. Furthermore,

we have shown that engaging obligation-based access policies into context-based access

control systems can be achieved using the same semantic-based techniques and we show

that involving obligation with CBAC does not change the basic design of the context-based

authorization framework. We also showed that these mechanisms can be developed to be

sound and adhere to the Least-Privilege principle.

In brief, we develop an authorization Context-Based Access Control framework to sat-

isfy the requirements inherently exist in dynamic environments. We also devise mecha-

nisms that provide delegation and obligation services. Our contribution can be summarized

in the following points:

• We develop specifications for a Context-Based Access Control policy language us-

ing OWL-DL and Jena rules. This specification is used to develop the authorization

framework that satisfies the dynamic environment requirements. In our framework,

we separate context operations from access authorization operations to reduce pro-
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cessing time for distributed networks’ devices and to gain modularity and flexibility.

• We develop a prototype implementation for our framework and show the results of

the implementation. We provide complexity analysis for the authorization framework

in its response to the requests and contrast the complexity against possible optimiza-

tion that can be applied on the framework. In Brief, we conclude this dissertation in

the following:

• We develop two context delegation mechanisms, GRANT and TRANSFER. In GR-

ANT delegation, a successful delegation operation allows delegated privileges to be

available to both the delegator and delegatee. In TRANSFER delegation, delegated

privileges are no longer available to the delegator.

• We build a semantic-based obligation mechanism and engage it within our authoriza-

tion framework. The mechanism associates the obligations with contexts depending

on the relatedness of the obligation to the request.

Future work can extend on the authorization, delegation and obligation mechanisms, using

the following directions:

• An interesting future direction is to incorporate trust management into our frame-

work. We plan to study the impact of honesty, trust level and trust negotiation con-

cepts on obligation and delegation mechanisms. For example, we can measure the

trust level of both the delegator and the delegatee. If they are equal or the trust level

of the delegatee is bigger than that of the delegator, delegation process proceeds,

otherwise, delegation request is denied.

• In our current work, we use the full context delegation to assign complete authoriza-

tion privilege to a delegatee. A promising future work will be to delegate a subcon-

text to assign sub-privilege to a delegatee. For example, assume that the context C

consists of subcontexts C1, C2 and C3 such that C is the full context and is given
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as C=C1uC2uC3. Assume that a holder of context C1 can access resources r1,r2,

holder of context C2 can access resource r3, and a holder of context C31 can access

resource r4,r5. Hence, holder of context C can access resources r1, r2, r3, r4 and r5.

If a delegator wants to delegate her/his privilege to access r3 to a delegatee, then (s)he

needs only to delegate subcontext C2 and not the full context C. This approach prop-

agates access privileges within one domain or across multiple domains. Delegating

subcontexts will also support recognition of the most frequently used subcontexts

and we can materialize them so that they will be available for use without the need

to redo the reasoning process.

• Investigating deployment options for our framework is also another future direction.

CBAC engine can be deployed on the same machine as context manager if they are

to be used within a small domain. If they are to be deployed separately for multiple

domains or for large domain, then an authentication service is needed between the

CBAC engine and the context manger. The responsibility of this service is to pro-

vide identity checking via authentication service between the CBAC engine and the

context manager to prevent impersonation attacks.
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