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Abstract

In this thesis, we use the Clebsch map to construct cubic surfaces with twenty-seven

lines in PG(3, q) from 6 points in general position in PG(2, q) for q = 17, 19, 23, 29, 31.

We classify the cubic surfaces with twenty-seven lines in three dimensions (up to e-

invariants) by introducing computational and geometrical procedures for the classi-

fication. All elliptic and hyperbolic lines on a non-singular cubic surface in PG(3, q)

for q = 17, 19, 23, 29, 31 are calculated. We define an operation on triples of lines on a

non-singular cubic surface with 27 lines which help us to determine the exact value of

the number of Eckardt point on a cubic surface. Moreover, we discuss the irreducibil-

ity of classes of smooth cubic surfaces in PG(19,C), and we give the corresponding

codimension of each class as a subvariety of PG(19,C).
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Chapter 1

Introduction

The intensive study of a cubic surface started in 1849, when the British mathemati-

cians Salmon and Cayley published the results of their correspondence on the number

of lines on a non-singular cubic surface (see [6], Pages 118-132 and [26], Pages 252-

260). Moreover, Cayley and Salmon show that a non-singular cubic surface over the

complex field contains exactly twenty-seven lines. In 1858, Schläfli ([27]) found the

helpful notation for the complete figure formed by these 27 lines. Clebsch constructed

the famous Diagonal surface in ([7], Pages 284-345) and showed that it contained 27

real lines. In 21st century, mathematicians can do even more in addition to making

static models, they can use computers to manipulate them interactively. For this

purpose, we have the following important theorem of Clebsch ([7], Pages 359-380).

Theorem: Every non-singular cubic surface can be represented in the plane using

4 plane cubic curves through six points in general position and vice versa.

In 1849, Cayley and Salmon showed that a general cubic surface over the com-

plex field contains exactly 27 lines [6]. However Cayley observed that through each

line of a non-singular cubic surface, there are 5 planes meeting it in two other lines

and these planes are called tritangent planes. Further he showed that the equa-

tion of a non-singular cubic surface can be written as L1L2L3 + L′1L
′
2L
′
3 = 0 where

L1, L2, L3, L
′
1, L

′
2, L

′
3 are certain homogeneous linear polynomials in 4 variables. These

homogeneous linear polynomials are associated to objects called trihedral pairs (see

Section 3.2). In 1858 Schläfli introduced the double-six theorem, namely

Theorem: (Schläfli [27]) Given five skew lines a1, a2, a3, a4, a5 with a single

1



transversal b6 such that each set of four ai omitting aj has a unique further transver-

sal bj, then the five lines b1, b2, b3, b4, b5 also have a transversal a6. These twelve lines

form a double-six.

A double-six in PG(3, k) is a set of 12 lines, namely

D :
a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6

such that each line only meets the five lines which are not in the same row or column.

The main property of a double-six is that it determines a unique cubic surface

with 27 lines.

There are three main related problems stated in [17], namely

1. Characterize when a double-six exists over GF (q).

2. Determine the particular properties of cubic surfaces over GF (q). For exam-

ple, the number of Eckardt points on a line of the cubic surface, arithmetical

properties of cubic surface and configuration of Eckardt points.

3. Classify the cubic surfaces with twenty-seven lines over GF (q).

Problem (1) has been solved, Problem (2) has seen much progress in [18]. In this

thesis, we will discuss the Problem (2) in more detail when q > 6 and q is prime by

defining an operation on the triples of lines on a non-singular cubic surface with 27

lines. Furthermore, we will discuss the Problem (3) by classifying the non-singular

cubic surfaces with 27 lines in PG(3, q) up to e-invariants. In fact, every non-singular

cubic surface with 27 lines in PG(3, q) is a blow-up of PG(2, q) at six points in general

position (such a configuration of points is a 6-arc not on a conic). In general, an r-arc

(r > 3) in PG(2, q) is a set of r points no three of them on the same line. The

e-invariants of a non-singular cubic surface S with 27 lines are e0, e1, e2, e3, where

er denotes the number of points of S that lie on exactly r lines of S . So e3 is the

number of Eckardt points of S .
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A non-singular cubic surface S with 27 lines is said to be of type [e0, e1, e2, e3] if

e0, e1, e2, e3 are the e-invariants of S . Two non-singular cubic surfaces with 27 lines,

namely S and S ′ are said to be equivalent if they have the same type.

For an r-arc K in PG(2, q), we define the isotropy subgroup of K as follows:

G(K) := PGL3(q)K =
{
γ ∈ PGL3(q) : γ(K) = K

}
,

where PGL3(q) is the projective general linear group over GF (q). Moreover, two

r-arcs K and K′ in PG(2, q) are said to be projectively equivalent if

PGL3(q)K ∼= PGL3(q)
K′
.

In this case, two 5-arcs, namely F and F ′, are projectively distinct if they have

different isotropy groups. Similarly, two 6-arcs, namely S and S ′, are projectively

distinct if they have different isotropy groups.

To find the equation of a non-singular cubic surface S with 27 lines, we consider

a 6-arcs not on a conic S, where

S = {P1, P2, P3, P4, P5, P6}.

There exists one half of a double-six on the corresponding non-singular cubic surface

S with 27 lines, namely

a1, a2, a3, a4, a5, a6,

such that if S∗ is the set of points on the lines ai then the restriction of the Clebsch

map (see Section 3.1, Section 3.6) is a bijection

s : S \S∗ → PG(2, q)\S.

If we find all 15 bisecants of S and the six conics Cj, where Cj is a conic through

the 5 points of S except Pj, then we get 30 plane cubic curves of the form V(Cj ·PiPj),

and 15 plane cubic curves of the form V(PiPj · PkPl · PmPn).
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Among the 45 plane cubics above we choose four base cubic curves through S

ω1 = V(W1),

ω2 = V(W2),

ω3 = V(W3),

ω4 = V(W4).

The corresponding tritangent planes on S are chosen as

πω1 = V(ΠW1),

πω2 = V(ΠW2),

πω3 = V(ΠW3),

πω4 = V(ΠW4),

where ΠWj
is a linear form defining πωj

and corresponds to the cubic form Wj defin-

ing ωj. Every tritangent plane on S can be written as a linear combination of

ΠW1 ,ΠW2 ,ΠW3 and ΠW4 .

We choose one trihedral pair among the 120 trihedral pairs, namely

T123 : c23 b3 a2  πω1 = V(ΠW1)

a3 c13 b1  πω2 = V(ΠW2)

b2 a1 c12  πωi
= V(ΠWi

)

   

πω3 πω4 πωj

q q q

V(ΠW3) V(ΠW3) V(ΠWj
)

where πω1 , πω2 , πω3 , πω4 are the 4 tritangent planes on S corresponding to the six

plane cubics ω1, ω2, ω3, ω4 which pass through S. The tritangent planes on S , which

correspond to the third row and third column, are respectively πωi
= V(ΠWi

) and

πωj
= V(ΠWj

). Consequently, the equation of the non-singular cubic surface S is

S = V
(

ΠW1ΠW2ΠWi
+ λΠW2ΠW4ΠWj

)
,
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where the plane cubicsWi,Wj can be written as a linear combination of the four base

cubics W1,W2,W3,W4 and λ is some non-zero element in GF (q).

The classification of 5-arcs and 6-arcs (up to the group of projectivities), and

the classification of the non-singular cubic surfaces with twenty-seven lines (up to

e-invariants) over the finite fields of seventeen, nineteen, twenty-three, twenty-nine,

and thirty-one elements are the main theme of this work. In fact, the later theme

helps me to discuss the non-singular cubic surface with 27 lines andm Eckardt points.

Among the k-arcs with interesting properties are the 5-arcs and 6-arcs. In the be-

ginning of our work, we prove that there are 2, 4, 2, 4 and 4 projectively distinct 5-arcs

in the projective planes PG(2, q) for q = 17, 19, 23, 29, 31 respectively. Furthermore,

we prove that there are 9, 10, 8, 10 and 11 projectively distinct 6-arcs in the projective

planes PG(2, q) for q = 17, 19, 23, 29, 31 respectively. Amongst the 9, 10, 8, 10 and 11

projectively distinct 6-arcs, in PG(2, q) for q = 17, 19, 23, 29, 31, there are 6,8,6,7 and

9 of which do not lie on a conic respectively.

The projectively distinct 6-arcs not on a conic in the projective planes PG(2, q) for

q = 17, 19, 23, 29, 31 all correspond to non-singular cubic surfaces with twenty-seven

lines in PG(3, q) for q = 17, 19, 23, 29, 31. These surfaces fall into equivalence classes

up to e-invariants which will be defined in Section 3.3.

In Hirschfeld [17], the existence of a cubic surface which arises from a double-six

over the finite field of order four was considered. In Hirschfeld [18], the existence and

the properties of the cubic surfaces over the finite field of odd and even order was

discussed and classified over the fields of order seven, eight, nine. Cubic surfaces with

twenty-seven lines over the finite field of thirteen elements are classified in [2]. In this

thesis, a non-singular cubic surfaces with twenty-seven lines over the finite field of

seventeen, nineteen, twenty-three, twenty-nine, and thirty-one elements are classified

up to e-invariants, and hence they are classified up to the number of Eckardt points.

For q ≤ 16, an upper and lower bound for the number of Eckardt points on a
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non-singular cubic surface over GF (q) are given in [16]. The exact value of maximum

number of Eckardt points over GF (13) is discussed in [2]. However, in our work,

we count the exact value of maximum and minimum number of Eckardt points on a

non-singular cubic surface in PG(3, q) for q = 17, 19, 23, 29, 31.

When all 27 lines on a non-singular cubic surface are defined over GF (q), the

total number of elliptic lines on cubic surface is always even [21]. In our work,

we determined which even number of elliptic lines can occur depending on some

conditions related to the number of Eckardt points on cubic surface. The arithmetic

of all elliptic and hyperbolic lines on a non-singular cubic surface in PG(3, q) for

q = 17, 19, 23, 29, 31 are indicated in Section 3.6.

In Chapter 4 of the thesis, we classify classes of smooth cubic surfaces with 27 lines

in PG(19, k) up to Eckardt points where k = C or k = GF (q) for q > 7 and q is prime.

By considering configurations of 6 points in general position in the projective plane

PG(2, k), we can describe subsets of projective space PG(19, k) that correspond to

non-singular cubic surfaces with m Eckardt points. Recall that a non-singular cubic

surface, namely X, can be viewed as the blow up of PG(2, k) at 6 points in general

position. Furthermore, there are 45 tritangent planes on X. Classification of cubic

surfaces with m Eckardt points, have been studied by Segre 1946 [28]. However, we

give another way to classify cubic surfaces and give the possible number of Eckardt

points on them. Moreover, we discuss the irreducibility of classes of smooth cubic

surfaces in PG(19,C), and we give the codimension of each class as a subvariety of

PG(19,C).

The main results in our work are

Theorem 2.3. There are respectively 2,4,2,4 and 4 projectively distinct 5-arcs

in PG(2, q) for q = 17, 19, 23, 29, 31.

Theorem 2.4. There are respectively 9,10,8,10 and 11 projectively distinct 6-arcs

in PG(2, q) for q = 17, 19, 23, 29, 31.
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Theorem 3.5. Let S be a non-singular cubic surface with 27 lines. Then for

q = 17, 19, 23, 29, 31, the minimal and maximum value for e3 are given in Table 3.3.

Theorem 3.6. For q = 17, 19, 23, 29, 31, the possible number of elliptic lines on

a non-singular cubic surface with 27 lines over GF (q) are represented by the entries

of Table 3.4.

Let S (j)(q) denotes the smooth cubic surface with j Eckardt points over GF (q)

that corresponds to the 6-arcs S not on a conic in PG(2, q). Then we get the following

facts.

Theorem 3.7. There are 4, 7, 5, 7, 9 distinct non-singular cubic surfaces with 27

lines (up to e-invariants) in PG(3, q) for q = 17, 19, 23, 29, 31 respectively, namely,

S (m)(17),m = 1, 3, 4, 6.

S (m)(19),m = 2, 3, 4, 6, 9, 10, 18.

S (m)(23),m = 1, 2, 3, 4, 6.

S (m)(29),m = 0, 1, 2, 3, 4, 6, 10.

S (m)(31),m = 0, 1, 2, 3, 4, 6, 9, 10, 18.

Corollary 3.1. The maximal number of Eckardt points on a non-singular cubic

surfaces with 27 lines in PG(3, q) for q = 17, 19, 23, 29, 31, are 6, 18, 6, 10, 18 respec-

tively. Moreover, the minimal number of Eckardt points on a non-singular cubic

surfaces with 27 lines in PG(3, q) for q = 17, 19, 23, 29, 31, are 1, 2, 1, 0, 0 respectively.

Corollary 3.2. The number of elliptic lines on a non-singular cubic surfaces with

27 lines in PG(3, q) for q = 17, 19, 23, 29, 31 is either 0 or 12 or 16.

Corollary 3.3. For q odd prime, the number of elliptic lines on a non-singular

cubic surfaces S (3)(q) with 27 lines in PG(3, q) is 12.

Corollary 3.4. For q odd prime, the number of elliptic lines on a non-singular

cubic surfaces S (4)(q) with 27 lines in PG(3, q) is 12.

Corollary 3.5. For q odd prime, all the 27 lines on a non-singular cubic surfaces

S (18)(q) with 27 lines in PG(3, q); q = 1(mod 3) are hyperbolic.
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Corollary 3.6. For q odd prime, the number of elliptic lines on a non-singular

cubic surfaces with 27 lines, S (0)(q) in PG(3, q), is 16.

Theorem 4.1. For q > 7 and q prime, any non-singular cubic surface with 27

lines S (0)(q) is of type [(q − 10)2 + 9, 27(q − 9), 135, 0].

Theorem 4.2. For q > 7 and q prime, any non-singular cubic surface with 27

lines S (1)(q) is of type [(q − 10)2 + 8, 27(q − 9) + 3, 132, 1].

Theorem 4.3. For q ≥ 7 and q prime, the only non-singular cubic surfaces

with 27 lines and all points lying on those lines, i.e, surfaces of type [0, e1, e2, e3], are

S (18)(7),S (10)(11) and S (18)(13).

Let T be the set of all triples of lines on a non-singular cubic surface S . Define

c(S ) := (c1 : . . . : c20) ∈ P19
k

= class of coefficients of g as a point in P19
k

= {λ(c1, . . . , c20) : λ ∈ k∗},

Ssm := {c(S ) ∈ P19
k : S is a smooth cubic surface in P3

k},

T(3) := {t ∈ T : lines of t form an Eckardt point},

S(m) := {c(S ) ∈ Ssm : S has at least m Eckardt points},

E(m,k) := {c(S ) ∈ S(k) : S has m Eckardt points}

E(2) := {c(S ) ∈ E(2,2) : S has t1, t2 ∈ T(3) with one common line},

E(3) := {c(S ) ∈ E(2,2) : S has t1, t2 ∈ T(3) with no common line}.

Then we get

Lemma 4.2.2. Let T = {t1, t2, t3}, T ′ = {t′1, t′2, t′3} be two triads constructed

by some lines on S where c(S ) ∈ Ssm. Then T can transformed to T ′ via some

permutations and quadratic transformations.

Proposition 4.1. Let t1 = (l1l2l3), t2 = (l′1l′2l′3) and t3 = (l′′1 l′′2 l′′3) be three triples

in T. Then
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1. if t1 ∩ t2 = l, t1 ∩ t3 = l′ and t2 ∩ t3 = l′′. Then l, l′, l′′ have common point.

Furthermore, if (l1l′1l′′1) forms an Eckardt point, namely E, then E ∈ l ∩ l′ ∩ l′′.

2. if t1 and t2 form 2 Eckardt points, namely E1, E2 respectively, then t3 forms

another Eckardt points, namely E3 so that E1, E2, E3 are collinear.

Proposition 4.2. Let S be the non-singular cubic surface that corresponds to

c(S ) ∈ S(2). Then

1. If c(S ) ∈ E(2) then S has two Eckardt points of one of the following kinds:

(a) (aαbβcαβ), (aα∗bβcα∗β),

(b) (arbscrs), (arbs∗crs∗),

(c) (aibjcij), (ckhcmncij),

(d) (cxyczwcpq), (cxycwqcpz),

where α, β, α∗, β∗, r, s, r∗, s∗, i, j,m, n, k, h, x, y, z, w, p, q ∈ {1, . . . , 6}. Further-

more, {(a)} ∼ {(b)} ∼ {(c)} ∼ {(d)}.

2. If c(S ) ∈ E(3) then S has two Eckardt points of one of the following kinds:

(a) (cikcjmcnh), (aibjcij),

(b) (cxyczwcpq), (cwpcyqcxz),

where i, j,m, n, k, h, x, y, z, w, p, q ∈ {1, . . . , 6}. Furthermore, {(a)} ∼ {(b)}.

Proposition 4.3.

1. Any non-singular cubic surface S that corresponds to c(S ) ∈ E(3) has exactly

three Eckardt points.

2. Any non-singular cubic surface S that corresponds to c(S ) ∈ E(2) has exactly

two Eckardt points.
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Corollary 4.2. For q > 7 and q prime, every non-singular cubic surface S (2)(q)

that corresponds to c(S (2)) ∈ E(2) is of type [(q − 10)2 + 7, 27(q − 9) + 6, 129, 2].

Corollary 4.3. For q > 7 and q prime, every non-singular cubic surface S (3)(q)

that corresponds to c(S (3)) ∈ E(3) is of type [(q − 10)2 + 6, 27(q − 9) + 9, 126, 3].

Define the following classes of Ssm

E(4) :=


c(S ) ∈ E(4,4) : S has T ∨ t ⊂ T(3) such that

t has three common line with T

 ,

E(6) :=


c(S ) ∈ E(6,4) : S has T ∨ t ⊂ T(3) such that

t has one common line with T

 ,

E(9) :=


c(S ) ∈ E(4,4) : S has T ∨ t ⊂ T(3) such that

t has no common line with T

 .

Then we get

Proposition 4.4. Let S be the non-singular cubic surface that corresponds to

c(S ) ∈ E(4). There are two possible kinds for the set T ∨ t (as in Definition 3.6).

Corollary 4.4. Any non-singular cubic surface S that corresponds to c(S ) ∈

E(4) has exactly 4 Eckardt points and one triad.

Corollary 4.5. For q > 7 and q prime, every non-singular cubic surface S (4)(q)

that corresponds to c(S (4)) ∈ E(4) is of type [(q − 10)2 + 5, 27(q − 9) + 12, 123, 4].

Proposition 4.5. Let S be the non-singular cubic surface that corresponds to

c(S ) ∈ E(6). There are 3 possible kinds for the set T ∨ t (as in Definition 4.6).

Corollary 4.6. Let S be a non-singular cubic surface that corresponds to c(S ) ∈

E(6). Then S has exactly 6 Eckardt points and 4 triads which contain 15 lines among

the 27 lines on cubic surface.

Corollary 4.7. For q > 7 and q prime, every non-singular cubic surface S (6)(q)

that corresponds to c(S (6)) ∈ E(6) is of type [(q − 10)2 + 3, 27(q − 9) + 18, 117, 6].
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Proposition 4.6. Let S be a non-singular cubic surface that corresponds to

c(S ) ∈ E(9). There is one possible kind for the set T ∨ t (as in Definition 4.6).

Corollary 4.8. Let S be a non-singular cubic surface that corresponds to c(S ) ∈

E(9). Then S has exactly nine Eckardt points and 12 triads.

Corollary 4.9. For q > 7 and q prime, every non-singular cubic surface S (9)(q)

that corresponds to c(S (9)) ∈ E(9) is of type [(q − 10)2, 27(q − 8), 108, 9].

Theorem 4.4. Let S be a non-singular cubic surface with the six triples

{t1, t2, t3, t4, t5, t6} mentioned in the proof of Corollary 4.6, and let t7 be another

triple on S , that is t7 ∈ T(3)\{ti : i ∈ {1, . . . , 6}}. Then

I. S has at least 10 Eckardt points and at least 10 triads if all lines of t7 are in

common with one of the 4 triads generated by t1, . . . , t6.

II. Otherwise, S has at least 18 Eckardt points and at least 42 triads.

Let E(10) and E(18) denote the subsets of E(10,10) and E(18,10) respectively that corre-

spond to the non-singular cubic surfaces of kind I and II of Theorem 4.4 respectively.

Note that according to Theorem 4.4, the two sets E(10,10) and E(18,10) are subsets of

E(6,4). Then we get

Corollary 4.10. The non-singular cubic surfaces that corresponds to members

in E(10) and E(18) have exactly 10 and 18 Eckardt points respectively.

Corollary 4.11. For q > 7 and q prime, every non-singular cubic surface S (10)(q)

that corresponds to c(S (10)) ∈ E(10) is of type [(q − 10)2 − 1, 27(q − 8) + 3, 105, 10].

Corollary 4.12. For q > 7 and q prime, every non-singular cubic surface S (18)(q)

that corresponds to c(S (18)) ∈ E(18) is of type [(q − 10)2 − 9, 27(q − 7), 81, 18].

Proposition 4.7. Let S be a cubic surface that corresponds to c(S ) ∈ S(4) with

4 triples, namely the set T ∨ t mentioned in Corollary 4.4. Let t′ ∈ T(3) be another

triple on S whose all lines in common with T . Then c(S ) ∈ E(9).

Proposition 4.8. E(6,4) ∪ E(9,4) = S(6) = S(5).
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Proposition 4.9. E(9,4) ∪ E(10,10) ∪ E(18,10) = S(7) = S(8) = S(9).

Proposition 4.10. S(10) = E(10,10) ∪ E(18,10).

Proposition 4.11.

S(11) = S(12) = S(13) = S(14) = S(15) = S(16) = S(17) = S(18) = E(18,10).

Corollary 4.13. For every k > 18, we have S(k) = ∅.

Proposition 4.12. Let s = κ123456 ∈ S6 and

t = {Q1, Q2, Q3, ϕ123(P4), ϕ123(P5), ϕ123(P6)}.

Then

blws P2
X
∼= blwt P2

Y .

In particular, if s′ ∈ S6 is obtained from s via quadratic transformation, then

blws P2
X
∼= blws′ P2

X .

Lemma 4.3.1. Let K(1) :=
{
s = κ123456 ∈ S6 : ∧(12, 34, 56) 6= ∅

}
. Then K(1) is

an irreducible subset of S6 and codimK(1) = 1.

Theorem 4.8. S(1) is an irreducible subset of Ssm with codimension 1.

Lemma 4.3.2. Let

K(2) :=
{
s = κ123456 ∈ S6 : ∧(12, 34, 56) = {P7} and ∧ (12, 35, 46) = {P8}

}
.

Then K(2) is an irreducible subset of S6 and codimK(2) = 2.

Theorem 4.9. E(2) is an irreducible subset of Ssm with codimension 2.

Lemma 4.3.3. Let

K(3) :=
{
s = κ123456 ∈ S6 : ∧(12, 34, 56) = {P7} and ∧ (13, 45, 26) = {P8}

}
.

Then K(3) is an irreducible subset of S6 and codimK(3) = 2.

Theorem 4.10. E(3) is an irreducible subset of Ssm with codimension 2.
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Corollary 4.14. S(1) and S(2) are closed subset of Ssm. Moreover, S(2) has two

irreducible components E(2) and E(3) in Ssm with codimension 2.

Lemma 4.3.4. Let

K(4) :=
{
s = κ123456 ∈ S6 : ∧(13, 24, 56) = {P7} and l12, l13 tangents to C1

}
.

Then K(4) is an irreducible subset of S6 and codimK(4) = 3.

Theorem 4.11. E(4) is an irreducible subset of Ssm with codimension 3.

Lemma 4.3.5. Let

K(6) :=
{
s = κ123456 ∈ S6 : ∧(14, 23, 56) = {P7} and l12, l13 tangents to C1

}
.

Then K(6) is an irreducible subset of S6 with codimK(6) = 3.

Theorem 4.12. E(6) is an irreducible subset of Ssm with codimension 3.

Lemma 4.3.6. Let s = κ123456 ∈ S6 and define

K(9) :=


s ∈ S6 : ∧(12, 34, 56) = {P8},∧(15, 24, 36) = {P7} and

l14 tangent to C1 at P4

 .
Then K(9) is an irreducible subset of S6 with codimension equal 3.

Theorem 4.13. E(9) is an irreducible subset of Ssm with codimension 3.

Corollary 4.15. E(4),E(6) and E(9) are closed subset of Ssm.

Lemma 4.3.7. Let s = κ123456 ∈ S6 and define

K(10) :=


s ∈ S6 : ∧(12, 34, 56) = {P7}; ∧(14, 23, 56) = {P8} and

l12, l13 tangents to C1

 .
Then K(10) is an irreducible subset of S6 with codimension equal 4.

Theorem 4.14. E(10) is an irreducible subset of Ssm with codimension 4.

Lemma 4.3.8. Let s = κ123456 ∈ S6 and define

K(18) :=


s ∈ S6 : ∧(15, 24, 36) = {P7}; ∧(14, 23, 56) = {P8} and

l12, l13 tangents to C1

 .
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Then K(18) is an irreducible subset of S6 with codimension equal 4.

Theorem 4.15. E(18) is an irreducible subset of Ssm with codimension 4.
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Chapter 2

Classification of 6-arcs over some finite fields

The principal aim of this chapter is to classify all the projectively distinct 6-arcs in

the projective plane, namely PG(2, q) for q = 17, 19, 23, 29, 31. A great deal of work

has been done on classifying the 6-arcs in the projective plane over the Galois field

of order q for q = 2, . . . , 9. A detailed account of these results can be found in ([15],

Pages 389-413).

This chapter is subdivided into 7 sections as follows: Section 2.1 consists of some

preliminary results on Galois fields, projective plane and projective space, and pro-

jectivities. Section 2.2 and Section 2.3 deal with some aspects of k-arcs and conics in

PG(2, q) for later reference.

Section 2.4, Section 2.5 and Section 2.6 proceeds from the projectively distinct

5-arcs to the construction of the projectively distinct 6-arcs and their group of pro-

jectivities with the help of a computer program. In Section 2.7 we will give some

facts about the blow up of the plane at six points in general position.

2.1 The fundamental theorem of projective geometry

A Galois field is a finite field with q = ph elements, where p is a prime number and

h is a natural number. This field is denoted by GF (q) or Fq. The prime number p

is called the characteristic of this field and it is also the smallest integer such that

px = 0 for all x in this field.

Let f(x) be an irreducible polynomial of degree h over Fp, then

GF (ph) = Fph = Fp[x]/〈f(x)〉.

15



So

Fph = {α0 + α0t+ . . .+ αh−1t
h−1 : αi ∈ Fp}.

If q is a prime then the elements of Fq can be represented as the residue classes

(mod q). Therefore,

Fq = {0, 1, . . . , q − 1}.

As an example,

F17 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}

= {0,±1,±2,±3,±4,±5,±6,±7,±8}.

Here the operations addition and multiplication are performed (mod 17).

The elements of Fq, q = ph, satisfy,

xq − x = 0,

and there exists β in Fq such that

Fq = {0, 1, β, . . . , βq−2}

where β is called a primitive element or primitive root of Fq.

The (n + 1)-dimensional vector space F⊕n+1 over an arbitrary field F and with

origin 0 is denoted by V = V (n + 1,F). We define an equivalent relation on V \{0}

as follows: Let X, Y ∈ V \{0} and for some basis X = (x0, . . . , xn), Y = (y0, . . . , yn).

Then we say that X is equivalent to Y and we write X ∼ Y if there is t ∈ F\{0}

such that Y = tX. The equivalence classes of previous relation are just the one-

dimensional subspaces of V with the origin deleted. The set of equivalence classes

is the n-dimensional projective space over F which is denoted by PG(n,F) or, if

F = GF (q), by PG(n, q) = Pnq . That is

PG(n, q) = V (n+ 1, q)\{0}
∼

.
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A subspace of dimension m, or m-space, of PG(n,F) is a set of points all of whose

representing vectors form (together with the origin) a subspace of dimension m+1 of

V (n+ 1,F). Subspaces of dimension zero, one, two and three are respectively called

a point, a line, a plane, and a solid. A subspace of dimension n− 1 is called a prime

or a hyperplane. So a prime is the set of points P (X) whose vectors X = (x0, . . . , xn)

satisfy an equation α0x0 + α1x1 + . . . + αnxn = 0 where αi ∈ F. Let Πr denote an

r-space and let F = GF (q). If S and S ′ are two n-dimensional projective spaces,

then a collineation Σ : S → S ′ is a bijection which preserves incidence; that is, if

Πr ⊆ Πs ⊆ S then Σ(Πr) ⊆ Σ(Πs) ⊆ S ′.

For example, consider the projective plane PG(2, 7), and let

Σ : PG(2, 7)→ PG(2, 7) defined by (x0, x1, x2) 7→ (3x2, x0 + 3x2, x1 + 3x2).

Then Σ is a collineation which preserves incidence. In fact, Σ is a bijection. Fur-

thermore, Σ maps the line L := V(x0 − x2) to the line V(x0 + x1). Note that

P := (0 : 1 : 0) ∈ V(x0 − x2) and Σ(P ) = (0 : 0 : 1) ∈ Σ(L) = V(x0 + x1).

If the point P (X) is the equivalence class of the vector X, then we will say that

X is a vector representing P (X). Then, a projectivity Σ : S → S ′ is a bijection given

by a non-singular matrix T ; if P (X ′) = Σ(P (X)), then tX ′ = XT where X ′ and

X are coordinate vectors for P (X ′) and P (X) respectively, and t ∈ F\{0}. Write

Σ = M(T ), then Σ = M(λT ) for any λ ∈ F\{0}.

For instance, the collineation in previous example, namely Σ, is a projectivity and

Σ = M(λT ) where

T =


0 1 0

0 0 1

3 3 3

 .

Recall that the projective linear group PGL(n, q) is the group of projectivities

of PG(n − 1, q). The general linear group GL(n, q) is the group of all non-singular

matrices of V (n, q) = V (n,F) where F = GF (q). Write Z(G) for the center of the
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group G. Let Z = Z(GL(n, q)). Then Z =
{
tIn : t ∈ F\{0}

}
, In is the identity of

GL(n, q). Then PGL(n, q) is isomorphic to GL(n, q)/Z.

Theorem 2.1. ([15], Pages 30-31)[The fundamental theorem of projective geometry]

Let S be a projective subspace of PG(n, q), then

1. If Σ′ : S → S is a collineation, then Σ′ = σΣ where σ is an automorphism of the

field and Σ is a projectivity. In particular if F = GF (ph) and P (X ′) = Σ′(P (X))

then there exists m in {1, 2, . . . , h}, tij in F such that for i, j in {0, 1, 2, . . . , n},

and t in F0 we have

tX ′ = Xpm

T

where Xpm = (xp
m

0 , . . . , xp
m

n )

and T = (tij), i, j ∈ {0, 1, 2, . . . , n};

that is, tx′i = xp
m

0 t0i + . . .+ xp
m

n tni.

2. If {P1, . . . , Pn+2}, {P ′1, . . . , P ′n+2} are sets of n+ 2 points of PG(n,F) such that

no n+ 1 points chosen from the same set lie in a prime (or, in the language of

k-arcs, the two sets form an (n+ 2)-arc), then there exists a unique projectivity

Σ such that P ′i = Σ(Pi), for all i in {1, 2, . . . , n+ 2}.

For example, consider the points

P1 := (1 : 0 : 0), P2 := (0 : 1 : 0), P3 := (0 : 0 : 1) and P4 := (1 : 1 : 1),

in PG(2, 7). The unique projectivity Σi which respectively maps the points P1, P2,

P3 and P4 into the points P ′1 := Σi(P1), P ′2 := Σi(P2), P ′3 := Σi(P3) and P ′4 := Σi(P4)

is shown in Table 2.1.

2.2 Projective plane and k-arcs

Recall from Section 2.1, PG(n, q) is defined as the n-dimensional projective space

over GF (q). In PG(n, q) there is principle of duality, that is, there is a dual space

18



Table 2.1: The unique projectivity Σi

i Σi((x0 : x1 : x2)) = P1, P2, P3, P4 7→
1 (x0 : x1 : x2) P1, P2, P3, P4
2 (x2 : x2 − x0 : x2 − x1) P2, P3, P4, P1
3 (x1 − x2 : x1 : x1 − x0) P3, P4, P1, P2
4 (x0 − x1 : x0 − x2 : x0) P4, P1, P2, P3
5 (x1 : x0 : x2) P2, P1, P3, P4
6 (x2 − x0 : x2 : x2 − x1) P1, P3, P4, P2
7 (x1 : x1 − x2 : x2 − x0) P3, P4, P2, P1
8 (x0 − x2 : x0 − x1 : x0) P4, P2, P1, P3
9 (x2 : x1 : x0) P3, P2, P1, P4
10 (x2 − x1 : x2 − x0 : x2) P2, P1, P4, P3
11 (x1 − x0 : x1 : x1 − x2) P1, P4, P3, P2
12 (x0 : x0 − x2 : x0 − x1) P4, P3, P2, P1
13 (x0 : x0 − x1 : x0 − x2) P4, P2, P3, P1
14 (x2 : x0 : x1) P2, P3, P1, P4
15 (x2 − x1 : x2 : x2 − x0) P3, P1, P4, P2
16 (x1 − x0 : x1 − x2 : x1) P1, P4, P2, P3
17 (x0 : x2 : x1) P1, P3, P2, P4
18 (x2 : x2 − x1 : x2 − x0) P3, P2, P4, P1
19 (x1 − x2 : x1 − x0 : x1) P2, P4, P1, P3
20 (x0 − x1 : x0 : x0 − x2) P4, P1, P3, P2
21 (x2 − x0 : x2 − x1 : x2) P1, P2, P4, P3
22 (x1 : x1 − x0 : x1 − x2) P2, P4, P3, P1
23 (x0 − x2 : x0 : x0 − x1) P4, P3, P1, P2
24 (x1 : x2 : x0) P3, P1, P2, P4

PG(n, q)∗ whose points and primes are respectively the primes and points of PG(n, q).

For any theorem true in PG(n, q), there is an equivalent theorem true in PG(n, q)∗.

In particular, if T is a theorem in PG(n, q) stated in terms of points, primes, and

incidence, the same theorem is true in PG(n, q)∗ and gives a dual theorem T∗ in

PG(n, q) by interchanging (point) and (prime) whenever they occur. Thus (join) and

(meet) are dual. Hence the dual of an r-space in PG(n, q) is an (n− r − 1)-space.

In particular, in PG(2, q), point and line are dual; in the projective space PG(3, q)

point and plane are dual, whereas the dual of a line is a line in 3-dimensional projective

space ([15], Page 31).

In the projective plane PG(2, q), each point P is joined to the remaining points
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by a pencil which consists of q + 1 lines; each of these lines contains P and q other

points. Hence the plane contains

q(q + 1) + 1 = q2 + q + 1

points, and by duality a plane contains q2 + q + 1 lines. The integer q is called the

order of the plane.

A set K of r > 3 points in a finite projective plane such that no three of them

are collinear is called an r-arc. A line containing exactly one point of K is called a

tangent or a unisecant of K. A line containing two points of K is called a bisecant of

K, and a line that does not contain any points of K will be called an exterior line of

K.

For example, in PG(2, 7), the bisecants, the tangents and the exterior lines of a

4-arc, namely

K := {(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), (1 : 1 : 1)},

are shown in Table2.2.

An r-arc containing q + 1 points for q odd and q + 2 points for q even, is called

an oval.

A subset V of PG(n, q) is a variety over GF (q) if there exist homogenous poly-

nomials F1, . . . , Fm in GF (q)[x0, . . . , xn] such that

V = {P (A) ∈ PG(n, q) : F1(A) = . . . = Fm(A) = 0}

:= V(F1, . . . , Fm),

where GF (q)[x0, . . . , xn] is the polynomial ring in x0, . . . , xn over GF (q) and the

points P (A) are the points of V .

A variety V(F ) determined by one homogenous polynomial is called a hypersur-

face. A hypersurface in PG(2, q) is called a curve, and hypersurface in PG(3, q) is

called a surface. The degree of a hypersurface is the degree of F .
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Table 2.2: The bisecants, tangents and exterior lines of a 4-arc K

lines of K tangents of K bisecants of K
V(x0 + x1 + x2) V(x0 − x1 − 3x2) V(x0 + 3x1) V(x0)
V(x0 − x1 − x2) V(x0 − 3x1 − 2x2) V(x1 + 3x2) V(x1)
V(x0 + 3x1 − x2) V(x0 + 2x1 − 2x2) V(x0 + x1 − 2x2) V(x2)
V(x0 + 2x1 + 2x2) V(x0 + 2x1 + 3x2) V(x0 + 2x2) V(x0 − x2)
V(x0 + 3x1 + x2) V(x0 − 2x1 + 2x2) V(x0 − 3x1 + 2x2) V(x0 − x1)
V(x1 − x2) V(x0 − x1 − 2x2) V(x0 − 3x2) V(x0 + x1 + x2)
V(x0 − x1 + x2) V(x0 + x1 − x2) V(x0 + 2x1 − 3x2)
V(x0 − x1 + 3x2) V(x0 − 2x1 − x2) V(x0 − 3x1)
V(x0 − 2x1 − 3x2) V(x0 + 3x1 − 3x2) V(x1 − 3x2)
V(x0 − 3x1 + x2) V(x0 − 3x1 + 3x2) V(x0 − 2x2)
V(x0 + x1 + 3x2) V(x0 − 2x1 + 3x2) V(x0 + 3x2)
V(x0 − 2x1 − 2x2) V(x0 + x1 + 2x2) V(x0 − 2x1 + x2)
V(x0 + 2x1 − x2) V(x0 + 2x1)
V(x0 + 3x1 − 2x2) V(x1 + 2x2)
V(x0 + x1 − 3x2) V(x0 + x1)
V(x0 − 3x1 − 3x2) V(x1 + x2)
V(x0 − 3x1 − x2) V(x0 + 3x1 + 3x2)
V(x0 + 3x1 + 2x2) V(x0 − 2x1)
V(x0 + 2x1 + x2) V(x1 − 2x2)

2.3 Quadrics and conics

A hypersurface of degree two in PG(n, q) is called a quadric. Let Q be a quadric.

Then Q = V(Q) where Q is a quadratic form; that is,

Q =
n∑

i,j=0
aijxixj

= a00x
2
0 + a01x0x1 + . . . .

When p 6= 2, write tij = tji = (aij + aji)/2. Therefore

Q =
n∑

i,j=0
tijxixj

= XTX∗ where T = (tij).

If there is a change of coordinate system which reduces the form into a form of fewer

variables, then the form is called degenerate. So a quadric is degenerate if and only

if it is singular.
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Theorem 2.2. ([15], Pages 106-107) In PG(n, q), the number of projectively distinct

non-singular quadrics is one or two as n is even or odd. They have the following

canonical forms.

1. n = 2m,m ≥ 0 :

P2m = V(x2
0 + x1x2 + x3x4 + . . .+ x2m−1x2m);

2. n = 2m− 1,m ≥ 1 :

H2m−1 = V(x0x1 + x2x3 + . . .+ x2m−2x2m−1),

E2m−1 = V
(
f(x0, x1) + x2x3 + x4x5 + . . .+ x2m−2x2m−1

)
,

where f is any irreducible binary quadratic form. The quadrics P2m, H2m−1

and E2m−1 are called parabolic, hyperbolic and elliptic respectively.

When m = 1 in the above theorem, P2 is a conic.

Let Q := Q(2, q) be the set of quadrics in PG(2, q). Then

Q =
{
V(F ) : F = a00x

2
0 + a11x

2
1 + a22x

2
2 + a01x0x1 + a02x0x2 + a12x1x2; aij ∈ Fq

}
.

So the number of quadrics in PG(2, q) is

|Q(2, q)| := θ(5, q) = q6 − 1
q − 1 = q5 + q4 + q3 + q2 + q + 1.

The quadric V(F ) is a conic when it is non-singular. The θ(5, q) quadrics of Q(2, q)

fall into four orbits under the projective general linear group, PGL(3, q) as follows:

1. Singular F :

a) V(F ) = V(x2
0),

b) V(F ) = V(x0x1),

c) V(F ) = V(x2
0 + αx0x1 + βx2

1);

2. Non-singular, V(F ) = V(x2
0 + x1x2).
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Case (a) is a double line, the number of which is q2 + q + 1. Case (b) is a pair

of distinct lines defined over GF (q), the number of which is q(q + 1)(q2 + q + 1)/2.

Case (c) is a pair of lines defined over GF (q2) whose point of intersection is defined

over GF (q), the number of which is q(q − 1)(q2 + q + 1)/2. So the total number of

reducible conics is (q2 + q + 1)(q2 + 1). Hence the number of irreducible conics is
(
q5 + q4 + q3 + q2 + q + 1

)
−
(
(q2 + q + 1)(q2 + 1)

)
= q5 − q2,

which is the number of conics in orbit (2). Each conic contains q + 1 points. Note

that no 3 points of these q + 1 points are collinear.

A conic is determined by the ratios of the coefficients (a00, a11, a22, a01, a02, a12).

Here is some important results on conics which can be found in ([15], Pages 140-143):

1. Denote the number of n-arcs by L(n, q), and let N be the number of conics

which are (q + 1)-arcs, then

N = L(5, q)/
(
q + 1

5

)
= q5 − q2.

So all irreducible conics comprise q + 1 points.

2. The number of 6-arcs in PG(2, q) which do not lie on a conic is equal to

L(5, q)
(
`∗(5, q)− (q − 4)

)
/6,

where `∗(n, q) denotes the number points which are not on any bisecants of

n-arcs in PG(2, q).

3. If F = V(F ) = V(a00x
2
0 + a11x

2
1 + a22x

2
2 + a01x0x1 + a02x0x2 + a12x1x2), then

F is singular if and only if ∆ = 0, where

∆ = 4a00a11a22 + a01a02a12 − a00a
2
12 − a11a

2
02 − a22a

2
01.

F is singular at Q = P (y0, y1, y2) if

∂F

∂x0
= ∂F

∂x1
= ∂F

∂x2
= 0 at Q.
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4. In PG(2, q) with q ≥ 4 there is a unique conic through a 5-arc.

5. If a conic contains at least one point, it contains exactly q + 1.

6. Every conic in PG(2, q) is a (q + 1)-arc.

2.4 Construction of 6-arcs

By the definition of a r-arc, given a 5-arc F , a 6-arc is constructed by adding a

point to F which is not on any bisecant of F . The 6-arcs constructed in this way

are not necessarily all projectively distinct. However, in this chapter we give all

the projectively distinct 6-arcs and their groups of projectivities. Moreover, we will

distinguish between the ones that lie on a conic and the ones that do not lie on a

conic.

Let S = {P1, P2, P3, P4, P5, P6} be a 6-arc in PG(2, q). If the three lines PiPj, PkPl

and PmPn, i 6= j 6= k 6= l 6= m 6= n, meet at a point B, then B is called a Brianchon

point, or a B-point for short. We write

(ij, kl,mn) = PiPj ∩ PkPl ∩ PmPn

for a B-point. Thus there are the following 15 possibilities for the Brianchon point

B, namely:
1. (12, 34, 56) 6. (13, 26, 45) 11. (15, 24, 36)

2. (12, 35, 46) 7. (14, 23, 56) 12. (15, 26, 34)

3. (12, 36, 45) 8. (14, 25, 36) 13. (16, 23, 45)

4. (13, 24, 56) 9. (14, 26, 35) 14. (16, 24, 35)

5. (13, 25, 46) 10. (15, 23, 46) 15. (16, 25, 34).

Definition 2.1. For an k-arc K in PG(2, q) we define the isotropy subgroup of K as

follows:

G(K) := PGL3(q)K =
{
γ ∈ PGL3(q) : γ(K) = K

}
.
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Moreover, two n-arcs K and K′ in PG(2, q) are said to be projectively equivalent if

PGL3(q)K ∼= PGL3(q)
K′
.

Now, let F be a 5-arc in PG(2, q). According to our computer program (see

Algorithm 2 in appendix), we have the set of c0 pointsQi, i = 1, . . . , c0 which are on no

bisecant of the 5-arc F . Note that the set S =
{
Si := F∪{Qi} : i = 1, . . . , c0

}
forms a

collection of 6-arcs in PG(2, q). Let Si,Sj ∈ S, and let G(Si) := PGL3(q)Si
, G(Sj) :=

PGL3(q)Sj
. Then Si,Sj are projectively equivalent if G(Si) ∼= G(Si), otherwise we

say Si,Sj are projectively distinct.

Henceforth, we write 1,2,3, and 4 to denote the points, namely (1 : 0 : 0), (0 :

1 : 0), (0 : 0 : 1), and (1 : 1 : 1) respectively. By using our computer program (see

Algorithm 1 in appendix), we get all the projectively distinct 5-arcs in PG(2, q) for

q = 17, 19, 23, 29, 31, as shown in tables, namely Table 2.1, Table 2.2, Table 2.3, Table

2.4, and Table 2.5.

For example, let us consider the 4-arc A = {1,2,3,4} in PG(2, 17). The number

of points which do not lie on any bisecant of A is `∗(4, q) = (q−2)(q−3) = 210. These

points partitioned into two sets, namely B and B′ such that G(A ∪ {Q}) ∼= Z/(2)

for any Q ∈ B and G(A ∪ {Q′}) ∼= Z/(4) for any Q′ ∈ B′ where the points of B′ are

shown Table2.3.

Table 2.3: Points of B′

(1:7:9) (1:11:4) (1:16:13) (1:14:2) (1:14:13) (1:4:16) (1:13:7) (1:2:14)
(1:4:13) (1:13:4) (1:7:14) (1:9:7) (1:5:4) (1:11:9) (1:14:5) (1:13:16)
(1:9:11) (1:16:4) (1:7:11) (1:5:11) (1:2:5) (1:11:5) (1:13:14) (1:7:13)
(1:11:7) (1:14:7) (1:5:2) (1:5:14) (1:4:11) (1:4:5)

and the points the of B are shown Table2.4.

If we denote to the points (1 : 7 : 10) and (1 : 7 : 9) by 6 and 7 respectively, we
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Table 2.4: Points of B

(1:7:10) (1:2:8) (1:10:14) (1:15:5) (1:13:11) (1:8:7) (1:12:4) (1:16:11) (1:8:11)
(1:11:13) (1:3:6) (1:11:14) (1:15:2) (1:14:9) (1:2:15) (1:5:9) (1:2:6) (1:3:16)
(1:10:2) (1:14:12) (1:6:3) (1:4:2) (1:3:12) (1:6:16) (1:9:15) (1:9:16) (1:9:5)
(1:10:15) (1:5:7) (1:12:5) (1:13:9) (1:15:12) (1:6:8) (1:10:4) (1:16:15) (1:15:3)
(1:6:4) (1:16:6) (1:11:8) (1:10:7) (1:12:9) (1:2:13) (1:3:5) (1:13:3) (1:4:6)
(1:4:3) (1:3:9) (1:2:4) (1:16:14) (1:15:4) (1:16:5) (1:13:6) (1:11:12) (1:6:5)
(1:16:9) (1:5:10) (1:15:14) (1:15:7) (1:12:13) (1:3:8) (1:10:12) (1:10:13) (1:3:4)
(1:6:13) (1:3:13) (1:3:7) (1:8:10) (1:7:15) (1:5:12) (1:6:9) (1:2:7) (1:12:6)
(1:14:8) (1:10:9) (1:2:11) (1:8:15) (1:5:16) (1:12:15) (1:5:15) (1:16:8) (1:10:8)
(1:11:16) (1:9:4) (1:14:10) (1:11:10) (1:7:16) (1:9:6) (1:11:6) (1:2:12) (1:6:11)
(1:2:9) (1:2:3) (1:4:7) (1:12:11) (1:12:10) (1:7:5) (1:16:10) (1:7:12) (1:6:2)
(1:8:14) (1:15:11) (1:8:4) (1:16:2) (1:9:3) (1:8:12) (1:6:7) (1:12:16) (1:9:12)
(1:6:14) (1:3:10) (1:7:2) (1:12:2) (1:14:4) (1:16:7) (1:12:7) (1:12:14) (1:15:16)
(1:14:16) (1:8:13) (1:9:10) (1:7:4) (1:16:3) (1:4:15) (1:4:10) (1:7:8) (1:10:5)
(1:13:10) (1:8:16) (1:9:14) (1:15:8) (1:10:3) (1:4:14) (1:15:6) (1:11:15) (1:8:2)
(1:4:9) (1:13:8) (1:10:16) (1:9:13) (1:3:2) (1:14:6) (1:15:13) (1:3:14) (1:15:9)
(1:15:10) (1:7:6) (1:11:3) (1:2:10) (1:3:15) (1:5:13) (1:3:11) (1:8:5) (1:13:12)
(1:5:8) (1:10:11) (1:8:3) (1:4:8) (1:6:10) (1:7:3) (1:13:15) (1:14:15) (1:5:6)
(1:8:6) (1:9:8) (1:12:8) (1:4:12) (1:12:3) (1:13:5) (1:16:12) (1:11:2) (1:10:6)
(1:8:9) (1:14:11) (1:6:12) (1:9:2) (1:13:2) (1:14:3) (1:2:16) (1:6:15) (1:5:3)

get the projectively distinct 5-arcs, namely

F1 = {1,2,3,4,6}

F2 = {1,2,3,4,7}.

The group of projectivities of F1 consists of two elements, namely
1 0 0

0 1 0

0 0 1

 and


−3 −8 −6

0 −8 −8

0 −8 8

 .

The group of projectivities of F2 consists of 4 elements, namely
1 0 0

0 1 0

0 0 1

 ,


2 0 −2

−3 3 0

1 0 0

 ,


−1 0 2

−1 4 −3

−1 0 1

 and


0 0 1

0 6 1

8 0 1

 .

Thus we have two projectively distinct 5-arcs (see Table 2.5).

A 6-arc is constructed by adding a point to a 5-arc Fi which is not on any bisecant

of Fi. In fact, the 6-arcs constructed in this manner are not necessarily all projectively

distinct. However, we will give all projectively distinct 6-arcs in the next section.
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Table 2.5: Projectively distinct 5-arcs in PG(2, 17)

Fi in PG(2, 17) |G(Fi)| G(Fi)
F1 = {1,2,3,4,6} 2 Z/(2)
F2 = {1,2,3,4,7} 4 Z/(4)

where 6 = (1 : 7 : −7), and 7 = (1 : 7 : −8).

Table 2.6: Projectively distinct 5-arcs in PG(2, 19)

Fi in PG(2, 19) |G(Fi)| G(Fi)
F1 = {1,2,3,4,6} 2 Z/(2)
F2 = {1,2,3,4,7} 1 Trivial
F3 = {1,2,3,4,13} 10 D5
F4 = {1,2,3,4,48} 6 S3

where 6 = (1 : −5 : −8),7 = (1 : −5 : −7),13 = (1 : −5 : 6), and 48 = (1 : 8 : 7).

Table 2.7: Projectively distinct 5-arcs in PG(2, 23)

Fi in PG(2, 23) |G(Fi)| G(Fi)
F1 = {1,2,3,4,6} 2 Z/(2)
F2 = {1,2,3,4,11} 1 Trivial

where 6 = (1 : 9 : −10),11 = (1 : −1 : −5).

Table 2.8: Projectively distinct 5-arcs in PG(2, 29)

Fi in PG(2, 29) |G(Fi)| G(Fi)
F1 = {1,2,3,4,6} 2 Z/(2)
F2 = {1,2,3,4,7} 1 Trivial
F3 = {1,2,3,4,25} 4 Z/(4)
F4 = {1,2,3,4,185} 10 D5

where 6 = (1 : 11 : −13),7 = (1 : 11 : −5),25 = (1 : −1 : −12),185 = (1 : 5 : −4).

Table 2.9: Projectively distinct 5-arcs in PG(2, 31)

Fi in PG(2, 31) |G(Fi)| G(Fi)
F1 = {1,2,3,4,6} 2 Z/(2)
F2 = {1,2,3,4,7} 1 Trivial
F3 = {1,2,3,4,88} 10 D10
F4 = {1,2,3,4,121} 6 S3

where 6 = (1 : 9 : −9),7 = (1 : 9 : 11),88 = (1 : −12 : −11),121 = (1 : 5 : −6).
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Theorem 2.3. There are respectively 2,4,2,4 and 4 projectively distinct 5-arcs in

PG(2, q) for q = 17, 19, 23, 29, 31.

Proof. Our program used in this section have been used to prove the theorem. The

projectively distinct 5-arcs in PG(2, q) with their automorphism groups, where q =

17, 19, 23, 29 and 31, are shown in Table 2.5, Table 2.6, Table 2.7, Table 2.8 and Table

2.9 respectively.

2.5 The projectively distinct 6-arcs

In this section, we will give the arithmetic method used in the computer program for

determining the projectively distinct 6-arcs in PG(2, q) for q = 17, 19, 23, 29, 31, and

their groups of projectivities (see Algorithm 2 in appendix).

Let PG(2, q) be the 2-dimensional projective space over a field GF (q) where q

odd. We consider 6-arcs with the same number of B-points since any two 6-arcs with

different numbers of B-points are projectively distinct.

Let S = {X1, X2, X3, X4, X5, X6} and S ′ = {Y1, Y2, Y3, Y4, Y5, Y6} be two 6-arcs,

where the coordinates of the points Xi and Yi are

Xi =
(
xi(0), xi(1), xi(2)

)
and Yi =

(
yi(0), yi(1), yi(2)

)
.

Let S and S ′ have the same number of B-points. Then according to the fundamental

theorem of projective geometry, there exists a unique projectivity which takes any

set of four points of the 6-arc S to a set of four points of S ′. Let the 3 × 3 matrix

be A = (aij), i, j = 1, 2, 3, take a fixed set of four points of the 6-arcs S, namely

{X1, X2, X3, X4} to any set of four points of S ′, namely {Y1, Y2, Y3, Y4}. The 6-arcs

S and S ′ are said to be projectively equivalent if AXi = Yj, i, j = 5, 6; that is if the

3 × 3 projectivity matrix A takes the fifth point X5 and sixth point X6 of S to the
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corresponding points of S ′, namely the points Y5, and Y6. The following conditions

must be satisfied for S and S ′ to be projectively equivalent:

1. if A(X5) = Y5, then we must have A(X6) = Y6;

2. if A(X5) = Y6, then we must have A(X6) = Y5.

To determine A, we fix a set of four points of S. Then we work out the projectivity

matrix A′ that takes the fixed set of four points of S to one of
(

6
4

)
· (4!) set of four

points of S ′. Note that there are
(

6
4

)
= 15 sets of four points, each of which has 4!

unordered sets of four points. Therefore there are 360 matrices A′ to be checked.

Now A′ is the projectivity matrix A if the conditions (1) and (2) above are satisfied

for the two remaining points of S and S ′.

At this stage of our research the help of a computer was needed. For this a program

was written in Fortran to classify all 6-arcs in PG(2, q) for q = 17, 19, 23, 29, 31.

The following is the matrix arithmetic to determine the matrix A′.

Let

X =


x1(0) x2(0) x3(0)

x1(1) x2(1) x3(1)

x1(2) x2(2) x3(2)

 and Y =


y1(0) y2(0) y3(0)

y1(1) y2(1) y3(1)

y1(2) y2(2) y3(2)


Now the (3×3) matrix A′ is such that it takes three points Xi of S to three points

Yi of S ′, when i = 1, 2, 3. So

A′X = Y(λ1 λ2 λ3)t.

Thus

A′ = Y(λ1 λ2 λ3)tX−1 (2.5.1)

where λ1, λ2, λ3 ∈ GF (q)\{0}. The matrix A′ also has to take the fourth points

A′(X4) = Y4. So Equation (2.5.1) gives

Y(λ1 λ2 λ3)tX−1X4 = Y4 (2.5.2)
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Let

X−1X4 = (γ1 γ2 γ3)t,

where γ1, γ2, γ3 ∈ GF (q)\{0}, and let

Γ =


γ1 0 0

0 γ2 0

0 0 γ3

 .

Thus Equation (2.5.2) can be written as

YΓ(λ1 λ2 λ3)t = Y4.

So

(λ1 λ2 λ3)t = Γ−1Y−1Y4.

Substituting the values of λi in Equation (2.5.1), we will have the matrix A′.

There is also a program that checks whether or not the two remaining points of

each 6-arc are mapped to each other under the matrix A′.

Let L(6, q) denotes the number of 6-arcs in PG(2, q), and let G(Si) denotes the

group of projectivities of the corresponding 6-arc Si.

In the tables, namely Table 2.17, Table 2.18, Table 2.19, Table 2.20, and Table

2.21, all the 6-arcs S in PG(2, q) for q = 17, 19, 23, 29, 31 are classified up to their

groups of projectivities, and the number of 6-arcs, L(6, q) for q = 17, 19, 23, 29, 31,

are indicated.

For example, let us consider the 5-arc F1 = {1,2,3,4,6} in PG(2, 17). The

number of points which do not lie on any bisecant of F1 is `∗(5, q) = (q−4)(q−5)+1 =

157. These points partitioned into seven sets, namely B1,B2,B3,B4,B5,B6 and B7

such that

G(F1 ∪ {Q}) ∼= I for every Q ∈ B1,

G(F1 ∪ {Q}) ∼= Z/(2) for every Q ∈ B2,
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G(F1 ∪ {Q}) ∼= Z/(2)× Z/(2) for every Q ∈ B3,

G(F1 ∪ {Q}) ∼= Z/(3) for every Q ∈ B4,

G(F1 ∪ {Q}) ∼= Z/(4) for every Q ∈ B5,

G(F1 ∪ {Q}) ∼= S3 for every Q ∈ B6,

G(F1 ∪ {Q}) ∼= A3 for every Q ∈ B7,

where S3 denotes the symmetric group on 3 letters, and A3 denotes the alternating

group on 3 letters. In fact, the points of B2 are shown in Table 2.10.

Table 2.10: Points of B2

(1:13:11) (1:12:4) (1:16:13) (1:3:16) (1:14:2) (1:9:15) (1:9:5) (1:13:7) (1:4:6)
(1:15:14) (1:15:7) (1:10:12) (1:10:13) (1:16:12) (1:8:12) (1:6:14) (1:14:4) (1:15:16)
(1:9:11) (1:16:3) (1:10:5) (1:13:8) (1:11:5) (1:4:8) (1:3:9) (1:14:16).

The points of B3 are shown in Table 2.11.

Table 2.11: Points of B3

(1:8:11) (1:6:8) (1:2:3).

The points of B4 are shown in Table 2.12.

Table 2.12: Points of B4

(1:8:6) (1:6:16) (1:6:13) (1:10:9) (1:16:8) (1:10:8) (1:16:2) (1:13:16) (1:6:7)
(1:10:16) (1:5:8) (1:12:7).

The points of B5 are shown in Table 2.13.

Table 2.13: Points of B5

(1:6:3) (1:3:13) (1:4:7).

The points of B6 are shown in Table 2.14.

Table 2.14: Points of B6

(1:10:15) (1:11:8) (1:6:9) (1:5:16).
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Table 2.15: Points of B7

(1:16:7).

The points of B7 are shown in Table 2.15.

The points of B1 are shown in Table 2.16.

Table 2.16: Points of B1

(1:2:8) (1:10:14) (1:8:7) (1:16:11) (1:11:13) (1:3:6) (1:11:14) (1:14:9) (1:5:9)
(1:11:4) (1:10:2) (1:4:2) (1:14:13) (1:3:12) (1:5:3) (1:4:16) (1:9:16) (1:12:8)
(1:2:14) (1:15:12) (1:10:4) (1:5:14) (1:15:3) (1:4:12) (1:6:4) (1:16:6) (1:2:13)
(1:13:3) (1:11:7) (1:12:3) (1:4:3) (1:2:4) (1:16:14) (1:15:4) (1:16:5) (1:13:6)
(1:6:5) (1:13:5) (1:16:9) (1:12:13) (1:3:8) (1:3:7) (1:2:7) (1:12:6) (1:11:2)
(1:8:15) (1:9:7) (1:12:15) (1:5:15) (1:5:4) (1:9:4) (1:9:6) (1:11:9) (1:2:12)
(1:12:11) (1:6:2) (1:14:11) (1:8:14) (1:15:11) (1:8:4) (1:14:5) (1:9:3) (1:4:11)
(1:9:12) (1:6:12) (1:14:7) (1:12:2) (1:12:14) (1:9:2) (1:8:13) (1:16:4) (1:4:15)
(1:9:14) (1:15:8) (1:10:3) (1:15:6) (1:11:15) (1:5:11) (1:8:2) (1:4:9) (1:2:5)
(1:14:6) (1:13:14) (1:15:13) (1:15:9) (1:2:16) (1:11:3) (1:3:15) (1:5:13) (1:3:11)
(1:13:12) (1:6:15) (1:10:11) (1:4:5) (1:13:15) (1:5:2) (1:14:15) (1:5:6) (1:2:6)
(1:13:9) (1:3:5) (1:11:12) (1:14:8) (1:2:9) (1:12:16) (1:8:16) (1:3:2) (1:8:5).

If we denoted to the points

(1 : 2 : 8), (1 : 13 : 11), (1 : 8 : 11), (1 : 8 : 6), (1 : 6 : 3), (1 : 10 : 15) and (1 : 16 : 7)

by 8,13,17,18,35,50 and 207 respectively, we get the projectively distinct 6-arcs

which are construct from the 5-arc F1, namely

S1 = {1,2,3,4,6,8},

S2 = {1,2,3,4,6,13},

S3 = {1,2,3,4,6,17},

S4 = {1,2,3,4,6,18},

S5 = {1,2,3,4,6,35},

S6 = {1,2,3,4,6,50},

S7 = {1,2,3,4,6,207}.
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The group of projectivities of S1 consists of one element, while the group of projec-

tivities of S2 consists of two elements, namely
1 0 0

0 1 0

0 0 1

 and


−3 −8 −6

0 −8 −8

0 −8 8

 .

The group of projectivities of S3 consists of 4 elements, namely
1 0 0

0 1 0

0 0 1

 ,


1 0 0

1 0 −1

1 −1 0

 ,


1 0 0

8 −1 0

−6 0 −1

 and


1 0 0

7 0 1

−7 1 0

 .

The group of projectivities of S4 consists of 3 elements, namely
1 0 0

0 1 0

0 0 1

 ,


8 0 −7

5 0 −5

−5 −4 −8

 and


6 −5 0

6 −6 7

6 4 0

 .

The group of projectivities of S5 consists of 4 elements, namely
1 0 0

0 1 0

0 0 1

 ,


−1 0 1

0 −1 1

0 0 1

 ,


0 −1 2

−8 0 −3

0 0 3

 and


0 −8 −8

4 0 3

0 0 −7

 .

The group of projectivities of S6 consists of 6 elements, namely
1 0 0

0 1 0

0 0 1

 ,


0 0 1

0 −7 0

−2 0 0

 ,


−3 −8 −6

0 −8 −8

0 −8 8

 ,


−4 4 1

6 4 0

−6 4 0

 ,


0 6 −6

0 −8 −8

4 5 8

 and


3 −2 0

4 −3 0

−4 4 1

 .

The group of projectivities of S7 consists of 12 elements, namely
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1 0 0

0 1 0

0 0 1

 ,


0 0 1

7 0 0

0 −7 0

 ,


0 1 0

0 0 −1

7 0 0

 ,

−3 −8 −6

0 −8 −8

0 −8 8

 ,


−8 −8 0

−5 8 −3

5 −5 0

 ,

−8 6 2

−8 8 0

−8 −8 0

 ,


0 −8 −8

0 8 −8

−4 −5 −8

 ,

−3 1 3

−4 0 3

4 0 3

 ,


8 −8 0

−8 −8 0

5 −8 3

 ,


0 6 −6

3 8 6

0 −8 −8

 ,


3 0 −2

−3 1 3

4 0 −3

 ,


4 0 −3

4 0 3

4 −7 −4

 .

See Table 2.17. for the projectively distinct 6-arcs in PG(2, 17).

Table 2.17: Projectively distinct 6-arcs in PG(2, 17)

L(6, 17) = 318261467328
Si |G(Si)| G(Si)
S1 = {1,2,3,4,6,8} 1 Trivial
S2 = {1,2,3,4,6,13} 2 Z/(2)
S3 = {1,2,3,4,6,17} 4 Z/(2)× Z/(2)
S4 = {1,2,3,4,6,18} 3 Z/(3)
S5 = {1,2,3,4,6,35} 4 Z/(4)
S6 = {1,2,3,4,6,50} 6 S3
S7 = {1,2,3,4,6,207} 12 A4
S8 = {1,2,3,4,7,213} 24 S4
S9 = {1,2,3,4,24,29} 12 D6

where

8 = (1 : 2 : 8), 13 = (1 : −4 : −6), 17 = (1 : 8 : −6),
35 = (1 : 6 : 3), 50 = (1 : −7 : −2), 207 = (1 : −1 : 7),
18 = (1 : 8 : 6), 213 = (1 : 9 : −6),

24 = (1 : 2 : −2), and 29 = (1 : 3 : −1).
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Table 2.18: Projectively distinct 6-arcs in PG(2, 19)

L(6, 19) = 1349831775312
Si |G(Si)| G(Si)
S1 = {1,2,3,4,6,14} 1 Trivial
S2 = {1,2,3,4,6,32} 2 Z/(2)
S3 = {1,2,3,4,6,33} 6 S3
S4 = {1,2,3,4,6,50} 3 Z/(3)
S5 = {1,2,3,4,6,84} 4 Z/(2)× Z/(2)
S6 = {1,2,3,4,6,137} 4 Z/(4)
S7 = {1,2,3,4,6,285} 12 A4
S8 = {1,2,3,4,13,137} 60 A5
S9 = {1,2,3,4,48,260} 36 9 elements of order 2

8 elements of order 3
S10 = {1,2,3,4,16,38} 12 D6 = Z2 ×S3

where

14 = (1 : 9 : −1), 32 = (1 : −6 : 2), 33 = (1 : 6 : 9),
84 = (1 : 2 : 3), 137 = (1 : 6 : −5), 285 = (1 : 3 : −5),

50 = (1 : −3 : −6), 260 = (1 : 9 : 8), 38 = (1 : 5 : 9),
48 = (1 : 8 : 7) and 16 = (1 : 9 : 5).

Table 2.19: Projectively distinct 6-arcs in PG(2, 23)

L(6, 23) = 15637818086968
Si |G(Si)| G(Si)
S1 = {1,2,3,4,6,8} 1 Trivial
S2 = {1,2,3,4,6,9} 3 Z/(3)
S3 = {1,2,3,4,6,30} 2 Z/(2)
S4 = {1,2,3,4,6,33} 6 S3
S5 = {1,2,3,4,6,102} 4 Z/(4)
S6 = {1,2,3,4,6,136} 12 A4
S7 = {1,2,3,4,6,386} 4 Z/(2)× Z/(2)
S8 = {1,2,3,4,80,114} 12 D6 = Z/(2)× A3

where

8 = (1 : 4 : 5), 9 = (1 : 8 : 6), 30 = (1 : 4 : 11),
102 = (1 : −4 : −5), 136 = (1 : 6 : 9), 386 = (1 : −8 : −11),
33 = (1 : −10 : 11), 80 = (1 : −1 : −8), 114 = (1 : −11 : 8).
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Table 2.20: Projectively distinct 6-arcs in PG(2, 29)

L(6, 29) = 292771335510108
Si |G(Si)| G(Si)
S1 = {1,2,3,4,6,8} 2 Z/(2)
S2 = {1,2,3,4,6,9} 1 Trivial
S3 = {1,2,3,4,6,117} 3 Z/(3)
S4 = {1,2,3,4,6,183} 4 Z2 × Z2
S5 = {1,2,3,4,6,342} 6 S3
S6 = {1,2,3,4,6,562} 4 Z/(4)
S7 = {1,2,3,4,6,589} 12 A4
S8 = {1,2,3,4,25,700} 24 S4
S9 = {1,2,3,4,185,758} 60 A5
S10 = {1,2,3,4,57,100} 12 D6 = Z2 ×S3

where

57 = (1 : −1 : −3), 8 = (1 : −2 : −3), 9 = (1 : −4 : 11),
183 = (1 : 2 : 3), 342 = (1 : −13 : −5), 562 = (1 : 14 : −8),

700 = (1 : −12 : 9) 758 = (1 : −4 : 5) 117 = (1 : −12 : −7),
589 = (1 : −12 : 11), and 100 = (1 : 14 : −1).

Theorem 2.4. There are respectively 9,10,8,10 and 11 projectively distinct 6-arcs in

PG(2, q) for q = 17, 19, 23, 29, 31.

Proof. Our program used in this section has been used to prove the theorem. The

projectively distinct 6-arcs in PG(2, q) with their automorphism groups, where q =

17, 19, 23, 29 and 31, are respectively shown in Table 2.17, Table 2.18, Table 2.19,

Table 2.20 and Table 2.21.

2.6 The 6-arcs not on a conic in PG(2, q)

In this section, we give an arithmetic method for determining the equation of the

conic through a set of five points of a 6-arc not on a conic. Our program is based on

the following general algebraic method of solving n− 1 equations with n unknowns.

Recall if we have n− 1 equations (see Equation(2.6.1))
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Table 2.21: Projectively distinct 6-arcs in PG(2, 31)

L(6, 31) = 675469393962720
Si |G(Si)| G(Si)
S1 = {1,2,3,4,6,8} 1 Trivial
S2 = {1,2,3,4,6,21} 2 Z/(2)
S3 = {1,2,3,4,6,259} 4 Z/(4)
S4 = {1,2,3,4,6,315} 6 S3
S5 = {1,2,3,4,6,383} 3 Z/(3)
S6 = {1,2,3,4,6,605} 4 Z2 × Z2
S7 = {1,2,3,4,6,954} 12 A4
S8 = {1,2,3,4,7,290} 5 Z/(5)
S9 = {1,2,3,4,88,576} 60 A5
S10 = {1,2,3,4,121,553} 36 9 elements of order 2

8 elements of order 3
S11 = {1,2,3,4,202,271} 12 D6 = Z2 ×S3

where

202 = (1 : 15 : −15), 121 = (1 : 5 : −6), 8 = (1 : −14 : −10),
259 = (1 : 3 : 4), 315 = (1 : 8 : −10), 383 = (1 : −1 : 10),

954 = (1 : −1 : 9), 290 = (1 : 13 : 14), 576 = (1 : −13 : −12),
271 = (1 : −15 : −14), 21 = (1 : 14 : −2), 88 = (1 : −12 : −11)

605 = (1 : 2 : 13), and 553 = (1 : −6 : 5).

a11x1 + a12x2 + . . .+ a1nxn = 0

a21x1 + a22x2 + . . .+ a1nxn = 0
... ... ...

an−1,1x1 + an−1,2x1 + . . .+ an−1,nxn = 0,

(2.6.1)

and A = (aij) is the (n− 1)× n matrix representing the system (2.6.1), then we

have

xi = (−1)i−1 detAi,

where Ak is an (n− 1× n− 1) matrix obtained from A by omitting the k-th column.
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Now consider a conic C in PG(2, q) of the form

C = V(a00x
2
0 + a11x

2
1 + a22x

2
2 + 2a01x0x1 + 2a02x0x2 + 2a12x1x2).

If C passes through a five points Pi = P (xi1, xi2, xi3) for i ∈ {1, 2, 3, 4, 5}, then we

have the following five equations:

a00x
2
11 + a11x

2
12 + a22x

2
13 + 2a01x11x12 + 2a02x11x13 + 2a12x12x13 = 0,

... ... ... ...

a00x
2
51 + a11x

2
52 + a22x

2
53 + 2a01x51x52 + 2a02x51x53 + 2a12x52x53 = 0.

Consider the 5×6 matrix X which is the same as matrix A above with n = 6, namely

X =



x2
11 x2

12 x2
13 2x11x12 2x11x13 2x12x13

x2
21 x2

22 x2
23 2x21x22 2x21x23 2x22x23

... ... ... ... ... ...

x2
51 x2

52 x2
53 2x51x52 2x51x53 2x52x53


.

Let Xk be a 5× 5 matrix obtained from X by omitting the k-th column. So we have:

αi = (−1)i−1 detXi,

where α1 = a00, α2 = a11, α3 = a22, α4 = 2a01, α5 = 2a02 and α6 = 2a12.

All the conics Cj passing through set of five points of the projectively distinct

6-arcs Sk in PG(2, q) for q = 17, 19, 23, 29, 31, are given in tables, namely Table 2.11,

Table 2.12, Table 2.13, Table 2.14, and Table 2.15. The conics Cj in PG(2, q) passing

through five points of a 6-arc Sk, namely Sk\{Pj}(q), are given in the form

V
( 2∑
i,j=0

aijxixj

)
= V(XTX∗).

Let us consider the 6-arc S1 = {1,2,3,4,6,8} in PG(2, 17). Let C1 be a conic

passing through the five points {2,3,4,6,8} of S1. Then we have
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X =



0 1 0 0 0 0

0 0 1 0 0 0

1 1 1 2 2 2

1 −2 −2 −3 3 4

1 4 −4 4 −1 −2


and

detX1 = −2

detX2 = X3 = 0

detX4 = 2

detX5 = −1

detX6 = −4.

Hence C1 = V(x2
0 + 2x0x1 + x0x2 − 4x1x2).

Let C2 be a conic passing through the five points {1,3,4,6,8} of S1. Then we

have

X =



1 0 0 0 0 0

0 0 1 0 0 0

1 1 1 2 2 2

1 −2 −2 −3 3 4

1 4 −4 4 −1 −2


and

detX1 = X3 = 0

detX2 = −2

detX4 = −2

detX5 = −5

detX6 = −2.

Hence C2 = V(x2
1 + 2x0x1 − 5x0x2 + 2x1x2).

By the similar argument used previously, we can find the equations of the conics

C3,C4,C5 and C6 (see Table 2.22).

2.7 Blowing-up the plane in six points

First let us construct the blowing-up of the affine plane A2
R at the origin O = (0, 0)

(see [19],[23] and [30], Pages 47-50). Let (x0, x1) be the affine coordinates of A2
R and

let (y0 : y1) be the projective coordinates of P1
R. The blowing-up of A2

R at the origin

O is the closed subset Ã2
R of A2

R × P1
R which is defined by the equation x0y1 = x1y0.

In fact, we have a natural morphism β : Ã2
R → A2

R which is obtained by restricting
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Table 2.22: Conics through Sk\{Pj}(17)

Sj Cm := conic through Sj\{Pm}
S1 C1 = V(x2

0 + 2x0x1 + x0x2 − 4x1x2)
C2 = V(x2

1 + 2x0x1 − 5x0x2 + 2x1x2)
C3 = V(x2

2 + 3x0x1 + 5x0x2 + 8x1x2)
C4 = V(x0x1 − 5x0x2 − 4x1x2)
C5 = V(x0x1 − 6x0x2 + 5x1x2)
C6 = V(x0x1 − 7x0x2 + 6x1x2)

S2 C1 = V(x2
0 + 4x0x1 + 4x0x2 + 8x1x2)

C2 = V(x2
1 − 8x0x1 − 3x0x2 − 7x1x2)

C3 = V(x2
2 − 4x0x1 + 3x0x2)

C4 = V(x0x1 + 2x0x2 − 5x1x2)
C5 = V(x0x1 + 7x0x2 − 8x1x2)
C6 = V(x0x1 − 7x0x2 + 6x1x2)

S4 C1 = V(x2
0 + 3x0x1 − 6x0x2 + 2x1x2)

C2 = V(x2
1 − 5x0x1 − 7x0x2 − 6x1x2)

C3 = V(x2
2 + x0x1 + 2x0x2 − 4x1x2)

C4 = V(x0x1 + 6x0x2 − 8x1x2)
C5 = V(x0x1 − 5x0x2 + 4x1x2)
C6 = V(x0x1 − 7x0x2 + 6x1x2)

Sj Cm := conic through Sj\{Pm}
S5 C1 = V(x2

0 − 8x0x1 + 3x0x2 + 4x1x2)
C2 = V(x2

1 + 4x0x1 − 2x0x2 − 3x1x2)
C3 = V(x2

2 + x0x1 + 2x0x2 − 4x1x2)
C4 = V(x0x1 − 3x0x2 + 3x1x2)
C5 = V(x0x1 + 6x0x2 − 7x1x2)
C6 = V(x0x1 − 7x0x2 + 6x1x2)

S6 C1 = V(x2
0 − 6x0x1 + 6x0x2 − x1x2)

C2 = V(x2
1 + 4x0x1 − 2x0x2 − 3x1x2)

C3 = V(x2
2 + 3x0x1 + 5x0x2 + 8x1x2)

C4 = V(x0x1 + 3x0x2 + 7x1x2)
C5 = V(x0x1 + 4x0x2 − 5x1x2)
C6 = V(x0x1 − 7x0x2 + 6x1x2)

S7 C1 = V(x2
0 + 2x0x1 + x0x2 − 4x1x2)

C2 = V(x2
1 + 7x0x1 − 6x0x2 − 2x1x2)

C3 = V(x2
2 − 8x0x1 − 3x0x2 − 7x1x2)

C4 = V(x0x1 − 4x0x2 + 8x1x2)
C5 = V(x0x1 + 2x0x2 − 3x1x2)
C6 = V(x0x1 − 7x0x2 + 6x1x2)

Table 2.23: Conics through Sk\{Pj}(19)

Sj Cm := conic through Sj\{Pm}
S1 C1 = V(x2

0 + 6x0x1 + 9x0x2 + 3x1x2)
C2 = V(x2

1 − 2x0x1 − 2x0x2 + 3x1x2)
C3 = V(x2

2 + 5x0x1 − 3x0x2 − 3x1x2)
C4 = V(x0x1 + 4x0x2 + 9x1x2)
C5 = V(x0x1 − 7x0x2 + 6x1x2)
C6 = V(x0x1 + 5x0x2 − 6x1x2)

S3 C1 = V(x2
0 + 8x0x1 − 9x1x2)

C2 = V(x2
1 + 3x0x1 + 4x0x2 − 8x1x2)

C3 = V(x2
2 + 2x0x1 + x0x2 − 4x1x2)

C4 = V(x0x1 + 9x0x2 − 9x1x2)
C5 = V(x0x1 + 4x0x2 − 5x1x2)
C6 = V(x0x1 + 5x0x2 − 6x1x2)

S4 C1 = V(x2
0 − 8x0x1 − 4x0x2 − 8x1x2)

C2 = V(x2
1 + x0x1 − 6x0x2 + 4x1x2)

C3 = V(x2
2 − 4x0x1 + 9x0x2 − 6x1x2)

C4 = V(x0x1 + 8x0x2 + 6x1x2)
C5 = V(x0x1 − 8x0x2 + 7x1x2)
C6 = V(x0x1 + 5x0x2 − 6x1x2)

S6 C1 = V(x2
0 − 2x0x2 + x1x2)

C2 = V(x2
1 + 8x0x2 − 9x1x2)

C3 = V(x2
2 + 2x0x1 + x0x2 − 4x1x2)

C4 = V(x0x1 − 8x0x2 − x1x2)
C5 = V(x0x1 − 6x0x2 + 5x1x2)
C6 = V(x0x1 + 5x0x2 − 6x1x2)

Sj Cm := conic through Sj\{Pm}
S7 C1 = V(x2

0 + 9x0x1 + 5x0x2 + 4x1x2)
C2 = V(x2

1 − 6x0x1 − 3x0x2 + 8x1x2)
C3 = V(x2

2 + 8x0x1 − 7x0x2 − 2x1x2)
C4 = V(x0x1 + 4x0x2 + 9x1x2)
C5 = V(x0x1 + 2x0x2 − 3x1x2)
C6 = V(x0x1 + 5x0x2 − 6x1x2)

S8 C1 = V(x2
0 − 3x0x1 − 3x0x2 + 5x1x2)

C2 = V(x2
1 + x0x1 + 2x0x2 − 4x1x2)

C3 = V(x2
2 + 2x0x1 + x0x2 − 4x1x2)

C4 = V(x0x1 + x0x2 + 7x1x2)
C5 = V(x0x1 − 6x0x2 + 5x1x2)
C6 = V(x0x1 + 3x0x2 − 4x1x2)

S9 C1 = V(x2
0 + 4x0x1 − 5x1x2)

C2 = V(x2
1 − 6x0x1 + x0x2 + 4x1x2)

C3 = V(x2
2 + 5x0x1 − 6x1x2)

C4 = V(x0x1 − 4x0x2 − x1x2)
C5 = V(x0x1 − 9x0x2 + 8x1x2)
C6 = V(x0x1 + 6x0x2 − 7x1x2)
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Table 2.24: Conics through Sk\{Pj}(23)

Sj Cm := conic through Sj\{Pm}
S1 C1 = V(x2

0 + 3x0x1 − 6x0x2 + 2x1x2)
C2 = V(x2

1 + 7x0x1 + 3x0x2 − 11x1x2)
C3 = V(x2

2 − 8x0x1 − 8x0x2 − 8x1x2)
C4 = V(x0x1 − 4x0x2 + 10x1x2)
C5 = V(x0x1 + 2x0x2 − 3x1x2)
C6 = V(x0x1 − 9x0x2 + 8x1x2)

S2 C1 = V(x2
0 + 2x0x1 + 3x0x2 − 6x1x2)

C2 = V(x2
1 − 6x0x1 + 5x0x2)

C3 = V(x2
2 − 8x0x1 − 8x0x2 − 8x1x2)

C4 = V(x0x1 − 10x0x2 + 3x1x2)
C5 = V(x0x1 + 10x0x2 − 11x1x2)
C6 = V(x0x1 − 9x0x2 + 8x1x2)

S3 C1 = V(x2
0 − 2x0x2 + x1x2)

C2 = V(x2
1 + 11x0x1 − 10x0x2 − 2x1x2)

C3 = V(x2
2 + 5x0x1 − 10x0x2 + 11x1x2)

C4 = V(x0x1 + 10x0x2 + 11x1x2)
C5 = V(x0x1 − 4x0x2 + 3x1x2)
C6 = V(x0x1 − 9x0x2 + 8x1x2)

Sj Cm := conic through Sj\{Pm}
S5 C1 = V(x2

0 − 5x0x1 − 3x0x2 + x1x2)
C2 = V(x2

1 − 3x0x1 + x0x2 + x1x2)
C3 = V(x2

2 + 6x0x1 + 4x0x2 − 11x1x2)
C4 = V(x0x1 + 3x0x2 − x1x2)
C5 = V(x0x1 − 4x0x2 + 3x1x2)
C6 = V(x0x1 − 9x0x2 + 8x1x2)

S6 C1 = V(x2
0 − 5x0x1 − 3x0x2 + 7x1x2)

C2 = V(x2
1 − 3x0x1 + x0x2 + x1x2)

C3 = V(x2
2 + 6x0x1 + 4x0x2 − 11x1x2)

C4 = V(x0x1 + 3x0x2 − x1x2)
C5 = V(x0x1 − 4x0x2 + 3x1x2)
C6 = V(x0x1 − 9x0x2 + 8x1x2)

S7 C1 = V(x2
0 − 5x0x1 − 3x0x2 + 7x1x2)

C2 = V(x2
1 + 2x0x1 + 2x0x2 − 5x1x2)

C3 = V(x2
2 + 11x0x1 + 5x0x2 + 6x1x2)

C4 = V(x0x1 + 7x0x2 − 4x1x2)
C5 = V(x0x1 + 6x0x2 − 7x1x2)
C6 = V(x0x1 − 9x0x2 + 8x1x2)

Table 2.25: Conics through Sk\{Pj}(29)

Sj Cm := conic through Sj\{Pm}
S1 C1 = V(x2

0 + 4x0x1 + 12x0x2 + 12x1x2)
C2 = V(x2

1 + 14x0x1 − 3x0x2 − 12x1x2)
C3 = V(x2

2 + 4x0x1 − 5x1x2)
C4 = V(x0x1 + 5x0x2 − 2x1x2)
C5 = V(x0x1 + 12x0x2 − 13x1x2)
C6 = V(x0x1 − 11x0x2 + 10x1x2)

S2 C1 = V(x2
0 + 14x0x1 − 11x0x2 − 4x1x2)

C2 = V(x2
1 + 3x0x1 + 2x0x2 − 6x1x2)

C3 = V(x2
2 − 8x0x1 − 13x0x2 − 9x1x2)

C4 = V(x0x1 − 12x0x2 − 11x1x2)
C5 = V(x0x1 − 6x0x2 + 5x1x2)
C6 = V(x0x1 − 11x0x2 + 10x1x2)

S3 C1 = V(x2
0 − 2x0x1 − 9x0x2 + 10x1x2)

C2 = V(x2
1 − 6x0x1 + 14x0x2 − 9x1x2)

C3 = V(x2
2 + 11x0x1 + 10x0x2 + 7x1x2)

C4 = V(x0x1 + 4x0x2 + 6x1x2)
C5 = V(x0x1 + 5x0x2 + 23x1x2)
C6 = V(x0x1 − 11x0x2 + 10x1x2)

S5 C1 = V(x2
0 − 10x0x1 − 8x0x2 − 12x1x2)

C2 = V(x2
1 + 8x0x1 + 5x0x2 − 14x1x2)

C3 = V(x2
2 + 3x0x1 + 11x0x2 + 14x1x2)

C4 = V(x0x1 + 7x0x2 + 11x1x2)
C5 = V(x0x1 + 8x0x2 − 9x1x2)
C6 = V(x0x1 − 11x0x2 + 10x1x2)

Sj Cm := conic through Sj\{Pm}
S6 C1 = V(x2

0 + 7x0x1 + 8x0x2 + 13x1x2)
C2 = V(x2

1 + 11x0x1 + x0x2 − 13x1x2)
C3 = V(x2

2 − 11x0x1 − 9x0x2 − 10x1x2)
C4 = V(x0x1 − 6x0x2 − x1x2)
C5 = V(x0x1 − 4x0x2 + 3x1x2)
C6 = V(x0x1 − 11x0x2 + 10x1x2)

S7 C1 = V(x2
0 + 7x0x1 + 8x0x2 + 13x1x2)

C2 = V(x2
1 + x0x1 − 5x0x2 + 3x1x2)

C3 = V(x2
2 − 3x0x1 − 10x0x2 + 12x1x2)

C4 = V(x0x1 + 3x0x2 + 14x1x2)
C5 = V(x0x1 + 2x0x2 − 3x1x2)
C6 = V(x0x1 − 11x0x2 + 10x1x2)

S9 C1 = V(x2
0 − 9x0x1 − 9x0x2 − 12x1x2)

C2 = V(x2
1 + 7x0x1 + 8x0x2 + 13x1x2)

C3 = V(x2
2 + 8x0x1 + 7x0x2 + 13x1x2)

C4 = V(x0x1 + x0x2 − 13x1x2)
C5 = V(x0x1 + 4x0x2 − 5x1x2)
C6 = V(x0x1 − 7x0x2 + 6x1x2)
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Table 2.26: Conics through Sk\{Pj}(31)

Sj Cm := conic through Sj\{Pm}
S1 C1 = V(x2

0 + 10x0x1 + x0x2 − 12x1x2)
C2 = V(x2

1 + 10x0x1 − 7x0x2 − 4x1x2)
C3 = V(x2

2 + 5x0x1 + 5x0x2 − 13x1x2)
C4 = V(x0x1 + 13x0x2 + 9x1x2)
C5 = V(x0x1 + 6x0x2 − 7x1x2)
C6 = V(x0x1 − 9x0x2 + 8x1x2)

S2 C1 = V(x2
0 − 9x0x1 − 14x0x2 − 9x1x2)

C2 = V(x2
1 − 6x0x1 + 13x0x2 − 8x1x2)

C3 = V(x2
2 − 7x0x1 − 9x0x2 + 15x1x2)

C4 = V(x0x1 + 15x0x2 − 5x1x2)
C5 = V(x0x1 − 4x0x2 + 3x1x2)
C6 = V(x0x1 − 9x0x2 + 8x1x2)

S3 C1 = V(x2
0 − 5x0x1 + 12x0x2 − 8x1x2)

C2 = V(x2
1 − 15x0x1 + x0x2 + 13x1x2)

C3 = V(x2
2 + 9x0x1 + 2x0x2 − 12x1x2)

C4 = V(x0x1 + 10x0x2 − x1x2)
C5 = V(x0x1 − 5x0x2 + 4x1x2)
C6 = V(x0x1 − 9x0x2 + 8x1x2)

S4 C1 = V(x2
0 − 6x0x1 − 10x0x2 + 15x1x2)

C2 = V(x2
1 − 4x0x1 − 5x0x2 + 8x1x2)

C3 = V(x2
2 − 14x0x1 − 8x0x2 − 10x1x2)

C4 = V(x0x1 − 7x0x2 − 6x1x2)
C5 = V(x0x1 − 11x0x2 + 10x1x2)
C6 = V(x0x1 − 9x0x2 + 8x1x2)

Sj Cm := conic through Sj\{Pm}
S5 C1 = V(x2

0 + 4x0x1 − 7x0x2 + 2x1x2)
C2 = V(x2

1 − 6x0x1 + 13x0x2 − 8x1x2)
C3 = V(x2

2 + 6x0x1 − 2x0x2 − 5x1x2)
C4 = V(x0x1 − 15x0x2 − 12x1x2)
C5 = V(x0x1 − 2x0x2 + x1x2)
C6 = V(x0x1 − 9x0x2 + 8x1x2)

S7 C1 = V(x2
0 − 5x0x1 + 12x0x2 − 8x1x2)

C2 = V(x2
1 + 15x0x1 + 10x0x2 + 5x1x2)

C3 = V(x2
2 − 3x0x1 − 14x0x2 − 15x1x2)

C4 = V(x0x1 − 6x0x2 − 13x1x2)
C5 = V(x0x1 + 3x0x2 − 4x1x2)
C6 = V(x0x1 − 9x0x2 + 8x1x2)

S9 C1 = V(x2
0 + 10x0x1 − 6x0x2 − 5x1x2)

C2 = V(x2
1 + 10x0x1 − 5x0x2 − 6x1x2)

C3 = V(x2
2 − 9x0x1 + 4x0x2 + 4x1x2)

C4 = V(x0x1 − 4x0x2 − 4x1x2)
C5 = V(x0x1 − 13x0x2 + 12x1x2)
C6 = V(x0x1 + 12x0x2 − 13x1x2)

S10 C1 = V(x2
0 − x1x2)

C2 = V(x2
1 − x0x2)

C3 = V(x2
2 − x0x1)

C4 = V(x0x1 + x0x2 + x1x2)
C5 = V(x0x1 − 6x0x2 + 5x1x2)
C6 = V(x0x1 + 5x0x2 − 6x1x2)

the projection A2
R × P1

R to the first factor as we shown in the following diagram (see

Figure 2.1).

Ã2
R A2

R × P1
R

A2
R

ϕ̃

β

Figure 2.1: Blowing-up the plane.

In ([13], Pages 28,400,401), there are many facts demonstrate properties of the

blowing-up:

Fact 2.1. With the previous notations, we have

• The restriction of β to the set Ã2
R\β−1(O) is bijection.
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• β−1(O) ∼= P1
R.

• The points of β−1(O) are in 1 − 1 correspondence with set of lines through O

in A2
R.

If C ⊆ A2
R is a curve in A2

R, we will call C̃ := β−1
∣∣∣
A2
R\O

(C\{O}) the strict transform

of C (see [31]). The generalization of the above notions can be found in ([13], Pages

14,136-171 or [11].

Fact 2.2. Let S := {P1, . . . , P6} ⊆ P2 be a six points in the plane, such that no three

are collinear and not all the six points are on a common conic. Then the blowing-up

P̃2 of the projective plane P2 in S can be embedded as a smooth cubic surface in

projective three-space P3.

According to the embedding ϕ : P2 ↪→ P3 and the projection as in the figure

above, we have:

Fact 2.3. Let S := {P1, . . . , P6} ⊆ P2 be a six points in the plane, such that no three

are collinear and not all the six points are on a common conic. Let Ci ⊆ P2 denote

the unique conic through the five points S\{Pi} for i = 1, 2, . . . , 6, and let lij ⊆ P2

denote the line through the points Pi and Pj for i, j = 1, 2, . . . , 6, i 6= j. Then the 27

lines lying on the cubic surface are as follows:

• The 6 exceptional lines over the 6 base points Pi:

ai := ϕ̃(β−1(Pi)) ⊆ P3, i = 1, 2, . . . , 6.

• The 6 strict transforms of the 6 plane conics Ci:

bi := ϕ̃(C̃i) ⊆ P3, i = 1, 2, . . . , 6.

• The 15 strict transforms of the
(

6
2

)
= 15 lines lij joining the Pi:

cij := ϕ̃(l̃ij) ⊆ P3, i, j = 1, 2, . . . , 6, i 6= j.
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Moreover, the lines ai and bi, i = 1, 2, . . . , 6 form a double six, and cij, i 6= j are the

remaining 15 lines on the smooth cubic surface.

An Eckardt point on a non-singular cubic surface is a smooth point, where three

of its lines meet. Next we will discuss the problem of number of Eckardt points on a

non-singular cubic surface with 27 lines in more detail.

Fact 2.4. Let S := {P1, . . . , P6} ⊆ P2 be a six points in the plane, such that no three

are collinear and not all the six points are on a common conic. Denote by lij the 15

lines through the points Pi and Pj, i 6= j and by Ci ⊆ P2 the unique conic through

the five points S\{Pi} for i = 1, 2, . . . , 6. Then

• If three of lij meet in a point E ∈ P2\S, then the corresponding lines l̃ij on the

cubic surface meet in an Eckardt point.

• If lij touches the conic Ci in Pj for some i, j = 1, 2, . . . , 6, i 6= j, then the

corresponding lines aj := (β−1 ◦ ϕ̃)((Pj), bi := C̃i and cij := l̃ij on the cubic

surface meet in an Eckardt point.

• The application β−1 ◦ ϕ̃ is bijection on P2\S.

• Both Ci and lij have the same tangent direction in Pj, so the corresponding

lines bi := C̃i and cij := l̃ij meet the line aj := P̃j in the same point.
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Chapter 3

Classification of non-singular cubic surfaces up

to e-invariants

The main result of this chapter is the classification of non-singular cubic surfaces with

twenty-seven lines up to e-invariants over the finite fields Fq where q = 17, 19, 23, 29, 31.

Some structures on cubic surfaces with 27 lines, in PG(2, q) with q = 17, 19, 23, 29, 31,

are discussed. Furthermore, the classification of these cubic surfaces is done by clas-

sifying the 6-arcs not lying on a conic (6 points in general position) in the projective

planes PG(2, q) for q = 17, 19, 23, 29, 31.

3.1 Double-sixes and Eckardt points on a non-singular cubic

surface

Let PG(3, q) be the 3-dimensional projective space over the Galois field GF (q). The

space PG(3, q) contains q3 +q2 +q+1 points and planes, as well as (q2 +q+1)(q2 +1)

lines. There are q2 + q+ 1 lines through every point, and q+ 1 planes through a line.

In PG(3, q), planes and lines are characterized as follows: a subset Π2 is a plane

if and only if it has q2 + q+ 1 points and meets every line; a subset Π1 is a line if and

only if it has q + 1 points and meets every plane ([16], Pages 3,4).

A point P (X) = P (x0, x1, x2, x3) in PG(3, q), where x0, x1, x2, x3 ∈ GF (q) and

not all zero, is denoted by (x0 : x1 : x2 : x3).

45



In PG(3, q), a cubic surface S , is the zero set of a homogeneous cubic polynomial

in four variables over GF (q), that is

S = V
(∑

aijklx
i
0x

j
1x

k
2x

l
3

)
,

where i, j, k, l ∈ {0, 1, 2, 3}, i + j + k + l = 3, and aijkl ∈ GF (q). Therefore, to

determine a cubic surface S , 19 conditions are required since there are 20 monomials

of degree 3 in four variables.

A double-six D in PG(3, q) is a set of 12 lines

D :
a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6

(3.1.1)

such that each line only meets the five lines which are not in the same row or column.

The intensive study of the cubic surfaces started in 1849, when the British math-

ematicians Salmon and Cayley published the results of their correspondence on the

number of lines on a non-singular cubic surface (see [6], pages 118-132 and [26], Pages

252-60). Moreover, Cayley and Salmon showed that a non-singular cubic surface over

the complex field contains exactly twenty-seven lines. In 1858, Schläfli ([27]) found

the required notation for the complete figure formed by these 27 lines. In fact, Cleb-

sch constructed the famous Diagonal surface in ([7], Pages 284-345) and showed that

it contained 27 real lines. The computer programs allow mathematicians of the 21st

century not only to make static models of surfaces and curves, but also to manipu-

late them interactively. For this purpose, we have the following important theorem

of Clebsch ([7], Pages 359-380).

Theorem 3.1. Every non-singular cubic surface can be represented in the plane

using 4 plane cubic curves through six points in general position and vice versa.

The construction and existences of a double-six are described by the following

main facts in ([16], Pages 182,187,188).
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1. Given five skew lines a1, a2, a3, a4, a5 with a single transversal b6 such that each

set of four ai omitting aj has a unique further transversal bj, then the five lines

b1, b2, b3, b4, b5 also have a transversal a6. These twelve lines form a double-six.

2. A double-six lies on a unique cubic surface S with 15 further lines cij given

by the intersection of [ai, bj] (sometimes denoted by ai ∨ bj) and [aj, bi], where

[ai, bj] is the plane containing ai and bj.

3. A necessary and sufficient condition for the existence of a double-six, and so of

a cubic surface with 27 lines in PG(3, q), is the existence over the same field of

a plane 6-arc not on a conic. This occurs when q 6= 2, 3, 5.

Given a double-six D

D :
a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6

then the incidence diagram of a double-six D is shown in Table 3.1.

Table 3.1: Incidence diagram

a1 a2 a3 a4 a5 a6

b1 X X X X X
b2 X X X X X
b3 X X X X X
b4 X X X X X
b5 X X X X X
b6 X X X X X

where X indicates that the two lines intersect.

The following are some results on skew lines in PG(3, q):

(a) If five skew lines a1, a2, a3, a4, a5 have a transversal b, then each set of four ai

has a unique, distinct second transversal if and only if each set of five of the six

lines is linearly independent.
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(b) The configuration in part (a) exists if and only if a plane 6-arc not on a conic

exists in PG(2, q). This occurs for q 6= 2, 3 or 5.

(c) Given five skew lines a1, a2, a3, a4, a5 with a transversal b6 such that each five of

the six lines are linearly independent, the second transversals b1, b2, b3, b4, b5 of

sets of four of the ai have themselves a transversal a6.

(d) A double-six lies on a unique cubic surface S , which contains a further 15 lines.

A cubic surface is determined by 19 conditions. According to Bézout’s Theorem,

if four points of a line l lie on a cubic surface, then the whole line lies on it.

Let D be the double-six above. Then, to put a1, b2, b3, b4, b5, b6 on a cubic

surface requires 4 + 5 · 3 = 19 conditions. So there exists a cubic surface S

containing these lines. Then, each of a2, a3, a4, a5, a6 meets four of these lines

and therefore lies on S . Now S is unique, since if there was another cubic

surface S ′ containing these lines, then S and S ′ would intersect in a curve of

degree at least 12 (number of points on that curve), which is impossible unless

S and S ′ have a common component of lower order, but the definition of

double-six does not allow this. So S = S ′. Note that S also contains the 15

lines

cij = [ai, bj] ∩ [aj, bi], i, j = 1, . . . , 6 and i 6= j.

In PG(2, q), consider a 6-arc S = {Pi : i = 1, . . . , 6} not on a conic (sometimes these

points are called six points in general position). Then a set of plane cubic curves

through all six Pi is called the web W of cubic curves. The lines P1P2, P3P4, P5P6

compose a curve of W .

Given a line ` in PG(3, q), two of whose points are P (Y ) and P (Y ′), where

Y = (y0 : y1 : y2 : y3) and Y ′ = (y′0 : y′1 : y′2 : y′3). The Plücker coordinates of ` is

defined as

L := (`01, `02, `03, `12, `13, `23)
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where `ij = yiy
′
j − y′iyj. Note that L ∈ PG(5, q).

Define a map from the set of all of lines L (as points of PG(5, q)) to the set of

points of the hyperbolic quadric H5 = V(z0z1 + z2z3 + z4z5) in PG(5, q) as

K : L →H5, L = (`01, `02, `03, `12, `13, `23) 7→ (`01, `23,−`02, `13, `03, `12).

The map K is bijective and its image is the simplest, non-trivial example of a Grass-

mannian. In fact, H5 = G2,4

Now, Let `1 and `′1 be two lines in PG(3, q) with Plücker coordinates

L = (`01, `02, `03, `12, `13, `23),

L′ = (`′01, `
′
02, `

′
03, `

′
12, `

′
13, `

′
23),

then `1 and `′1 intersect if and only if $(K (`1),K (`2)) = 0 (mod q), where

$(K (`1),K (`′1)) = `01`
′
23 + `23`

′
01 − `02`

′
13 − `13`

′
02 + `03`

′
12 + `12`

′
03.

It follows that `1 and `′1 are skew if $(K (`1),K (`′1)) 6= 0 (mod q) (see [8], Pages

4,28).

Let us give an example. Consider the non-singular cubic surface with 27 lines in

PG(3, 13), namely

S = V(y3
3 − y2

0y3 − y2
1y3 − y2

2y3 − 4y0y1y2).

Let us consider the following twelve lines on S :

a1 = {(λ : 2λ : µ : µ) : (λ : µ) ∈ PG(1, 13)},

a2 = {(λ : −2λ : µ : −µ) : (λ : µ) ∈ PG(1, 13)},

a3 = {(λ : µ : 6λ : −µ) : (λ : µ) ∈ PG(1, 13)},

a4 = {(λ : µ : −6λ : µ) : (λ : µ) ∈ PG(1, 13)},
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a5 = {(λ : µ : −2µ : −λ) : (λ : µ) ∈ PG(1, 13)},

a6 = {(λ : µ : 2µ : λ) : (λ : µ) ∈ PG(1, 13)},

b1 = {(λ : 6λ : µ : −µ) : (λ : µ) ∈ PG(1, 13)},

b2 = {(λ : −6λ : µ : µ) : (λ : µ) ∈ PG(1, 13)},

b3 = {(λ : µ : 2λ : µ) : (λ : µ) ∈ PG(1, 13)},

b4 = {(λ : µ : −2λ : −µ) : (λ : µ) ∈ PG(1, 13)},

b5 = {(λ : µ : −6µ : λ) : (λ : µ) ∈ PG(1, 13)},

b6 = {(λ : µ : 6µ : −λ) : (λ : µ) ∈ PG(1, 13)}.

The values of K (ai),K (bi) for i, j = 1, . . . , 6 are:

K (a1) = (0, 0,−1, 2, 1, 2),

K (a2) = (0, 0,−1, 2,−1,−2),

K (a3) = (1,−6, 0, 0,−1,−6),

K (a4) = (1,−6, 0, 0, 1, 6),

K (a5) = (1,−2, 2, 1, 0, 0),

K (a6) = (1,−2,−2,−1, 0, 0),

K (b1) = (0, 0,−1,−6,−1, 6),

K (b2) = (0, 0,−1,−6, 1,−6),

K (b3) = (1, 2, 0, 0, 1,−2),

K (b4) = (1, 2, 0, 0,−1, 2),

K (b5) = (1, 6, 6,−1, 0, 0),

K (b6) = (1, 6,−6, 1, 0, 0).

Consequently, we have the symmetric table (see Table 3.2)
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Table 3.2: The values of $(K (`1),K (`′1)) (mod 13)

a1 a2 a3 a4 a5 a6 b1 b2 b3 b4 b5 b6

a1 0 5 5 8 3 10 8 0 0 0 0 0
a2 5 0 8 5 3 10 0 8 0 0 0 0
a3 5 8 0 2 5 5 0 0 5 0 0 0
a4 8 5 2 0 5 5 0 0 0 5 0 0
a5 3 3 5 5 0 5 0 0 0 0 8 0
a6 10 10 5 5 5 0 0 0 0 0 0 8
b1 8 0 0 0 0 0 0 11 8 5 4 9
b2 0 8 0 0 0 0 11 0 5 8 4 9
b3 0 0 5 0 0 0 8 5 0 8 8 8
b4 0 0 0 0 0 0 5 8 8 0 8 8
b5 0 0 0 8 8 0 4 4 8 8 0 11
b6 0 0 0 0 0 8 9 9 8 8 11 0

where the entries of table represent the values of $(K (`1),K (`′1)) (mod 13) for

`1, `
′
1 ∈ {a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6}.

It follows that the above six lines form a double-six (see Figure 3.1).

The 15 further lines cij on S are given by the intersection of the plane [ai, bj] and

the plane [aj, bi] (see Table 3.3). For instant,

c12 = [a1, b2]∩[a2, b1] = V(y2−y3)∩V(y2+y3) = {(λ : µ : 0 : 0) : (λ : µ) ∈ PG(1, 13)}.

A Clebsch mapping s : S 99K PG(2, q) is a special birational map that we will

describe in more detail later. Such a map s induces a bijection

S \
6⋃
i=1

ai → PG(2, q)\S.

The lines ai form one half of the double-six D; any five of them have a unique

transversal and these six transversals bi form the other half of D. Let S = {Pi : i =

1, . . . , 6} be a 6-arc not on any conic in PG(2, q). Every point of PG(2, q) other than

the Pi ∈ S is the image of a single point of S . Every curve in PG(2, q) is the image

of a curve on S . An intersection of two curves in PG(2, q) that is not equal to Pi is

also the image of an intersection of the corresponding curves on S . Two curves in
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: 0

: 0
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)

Figure 3.1: Configuration of a double-six on S

PG(2, q) through Pi ∈ S correspond to two curves on S meeting ai. Two curves in

PG(2, q) touching at Pi ∈ S also correspond to two curves on S meeting at ai. The

plane sections of S (sometimes called plane cubic curves) are mapped to the web

W of cubic curves through all six Pi. Every plane section is mapped to such a cubic

curve and every such plane cubic curve is the image a plane section. If the cubic of

W is composite, then so is the plane section of S . The number of intersections of

a curve on S with a plane is called the order of that curve. This is the number of

intersections of the image curve in PG(2, q) with a cubic of W such that the points

Pi are excluded from this number of intersections. If the order of a curve on S is

one then it is a line on S . For example, a line PiPj meets a cubic curve in PG(2, q)

in three points and if the cubic belongs to W , there is a single point of intersection
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Table 3.3: The 15 lines cij on S

[i, j] cij = [ai, bj] ∩ [aj, bi]
[1, 2] c12 = V(y2 − y3) ∩ V(y2 + y3)
[1, 3] c13 = V(y0 + 6y1 + 6y2 − 6y3) ∩ V(y0 + 2y1 + 2y2 + 2y3)
[1, 4] c14 = V(y0 + 6y1 − 6y2 + 6y3) ∩ V(y0 + 2y1 − 2y2 − 2y3)
[1, 5] c15 = V(y0 + 6y1 + y2 − 12y3) ∩ V(y0 + 2y1 + y2 + y3)
[1, 6] c16 = V(y0 + 6y1 − y2 + y3) ∩ V(y0 + 2y1 − y3)
[2, 3] c23 = V(y0 − 6y1 + 6y2 + 6y3) ∩ V(y0 − 2y1 + 2y2 − 2y3)
[2, 4] c24 = V(y0 − 6y1 − 6y2 − 6y3) ∩ V(y0 − 2y1 − 2y2 + 2y3)
[2, 5] c25 = V(y0 − 6y1 − y2 − y3) ∩ V(y0 − 2y1 − y2 + y3)
[2, 6] c26 = V(y0 − 6y1 + y2 + y3) ∩ V(y0 − 2y1 + y2 − y3)
[3, 4] c34 = V(y1 + y3) ∩ V(y1 − y3)
[3, 5] c35 = V(y0 − y1 + 2y2 − y3) ∩ V(y0 − y1 + 6y2 + y3)
[3, 6] c36 = V(y0 + y1 + 2y2 + y3) ∩ V(y0 + y1 + 6y2 − y3)
[4, 5] c45 = V(y0 + y1 − 2y2 − y3) ∩ V(y0 + y1 − 6y2 + y3)
[4, 6] c46 = V(y0 − y1 − 2y2 + y3) ∩ V(y0 − y1 − 6y2 − y3)
[5, 6] c56 = V(y0 + y3) ∩ V(y0 − y3)

with the cubic apart from the points Pi and Pj. The line PiPj is the image of a line

cij , a transversal to ai and aj, and there are 15 bisecants PiPj of a 6-arc K as there

are 15 cij. Two of cij intersect when they do not share a suffix, and they are skew if

they have a suffix in common. That is, the lines c12, c34, c56 intersect each other and

the lines c12, c23 are skew.

Let Ci be the conic through the five points of S\{Pi} for i = 1, . . . , 6. A conic

and a cubic in PG(2, q) have six points of intersection; so the conic Ci has one free

intersection with a cubic of W . Therefore, a Ci maps a line bi on S , where bi is the

transversal to five ai, i 6= j. The line cij of S is the line of intersection of two planes,

one containing the two intersecting lines ai and bj and the other containing the two

intersecting lines aj and bi.

The cubic surface S has a tangent plane TPS at every point P ∈ S . Note that

S has to be non-singular. If the point P lies on the line l of S , then the tangent

plane TPS contains l.

We know that the lines P1P2, P3P4, P5P6 compose a cubic curve of the web W ,
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and we also know that a curve of W maps a plane section of the cubic surface S . So

the curve composed of the bisecants P1P2, P3P4, P5P6, of the 6-arc S maps a plane

section of S composed of c12, c34, c56. This plane section meeting S in three lines is

called a tritangent plane. Note that a tritangent plane can meet S in three lines

ai, bj and cij, i 6= j = 1, . . . , 6.

Theorem 3.2. ([16], Page 191) Let S be a non-singular cubic surface and let P be

a point of S . Then

1. If a point P is on no line of S , then TPS ∩S is an irreducible cubic with a

double point at P .

2. If a point P is on exactly one line l of S , then TPS ∩S consists of l and a

conic through P .

3. If a point P is on exactly two lines l1 and l2 of S , then TPS ∩S consists of

l1, l2 and a third line forming a triangle.

4. If a point P is on exactly three lines l1, l2 and l3 of S , then TPS ∩S consists

of these three lines.

We note here that, in cases (3) and (4) above, TPS is a tritangent plane. In Case (4),

the point P at which three lines of a cubic surface S are meet is called an Eckardt

point or an E-point.

Let these three concurrent lines of S be c12, c34 and c56. We denote this E-point

as E12,34,56. The image of E12,34,56 in the plane PG(2, q) is the Brianchon point

(12, 34, 56) of the 6-arc S = {Pi : i = 1, . . . , 6} not on a conic. Thus, a possible type

of an E-point is Eij,kl,mn = cij ∩ ckl ∩ cmn. Also another possible type of an E-point

is Eij = ai ∩ bj ∩ cij. The image of Eij in the projective plane PG(2, q) is a conic Cj

having a tangent PiPj where Pi ∈ Cj and Pj 6∈ Cj.
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Theorem 3.3. ([27], Pages 192,193) Let S be a non-singular cubic surface in

PG(3, q) containing at least one line. Then the following are equivalent:

1. The q + 1 residual intersections with S of the planes through any line of S

contain exactly five line pairs;

2. S has 27 lines;

3. S has q2 + 7q + 1 points.

3.2 Some classical structures on cubic surfaces

Consider a set of six tritangent planes divided into two triads, such that the three

planes of each triad contain the same set of nine distinct lines of the cubic surface

S . This set is called a trihedral pair (See [14], Page 11).

Let S be a cubic surface with 27 lines ai, bj, cij, i, j ∈ {1, 2, 3, 4, 5, 6}, where

cij = cji. Then they are as follows:

a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6

c12 c13 c14 c15 c16

c23 c24 c25 c26

c34 c35 c36

c45 c46

c56

Each line meets 10 others, namely

ai meets bj, cij with i 6= j

bj meets ai, cij with i 6= j

cij meets ai, aj, bi, bj, crs with r, s 6= i, j.
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For example,
a1 meets b2, b3, b4, b5, b6, c12, c13, c14, c15, c16;

b2 meets a1, a3, a4, a5, a6, c12, c23, c24, c25, c26;

c12 meets a1, a2, b1, b2, c34, c35, c36, c45, c46, c56.

A tritangent plane meets S in three lines of the form cijcklcmn or aibjcij with

i, j, k, l,m, n ∈ {1, 2, 3, 4, 5, 6}. Thus, there are 45 tritangent planes, namely,

30 of the kind aibjcij;

15 of the kind cijcklcmn.

The 27 lines form 36 double-sixes: D,Dij, Dijk, namely,

D :
a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6

D12 :
a1 b1 c23 c24 c25 c26

a2 b2 c13 c14 c15 c16

D123 :
a1 a2 a3 c56 c46 c45

c23 c13 c12 b4 b5 b6

There is one double-six of type D, 15 of type Dij, and 20 of type Dijk. From

the definitions of the tritangent planes and trihedral pair, the 45 tritangent planes

form 120 trihedral pairs. Let the six planes of a trihedral pair be given the rows and

columns of a 3× 3 array. Then the 120 trihedral pairs are the following arrays:

c23 a3 b2

T123 : b3 c13 a1

a2 b1 c12

a1 b4 c14

T12,43 : b3 a2 c23

c13 c24 c56

c14 c25 c36

T123,456 : c26 c34 c15

c35 c16 c24
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There are 20, 90 and 10 trihedral pairs of kind T123, T12,34 and T123,456 respectively.

Now consider a trihedral pair, namely T123

c23 a3 b2 → V(L1)

T123 : b3 c13 a1 → V(L2)

a2 b1 c12 → V(L3)

↓ ↓ ↓

V(L′1) V(L′2) V(L′3)

Let the three planes sections c23a3b2, b3c13a1, a2b1c12 be given by V(L1), V(L2),

V(L3) for L1, L2, L3 linear polynomials, and let the three planes sections c23b3a2,

a3c13b1, b2a1c12 be given by V(L′1), V(L′2), V(L′3) for L′1, L′2,L′3 linear polynomials.

Then the equation of a cubic surface S is given by

S = V(L1L2L3 + λL′1L
′
2L
′
3), (3.2.1)

for some λ ∈ GF (q)\{0} (See [27], Page 196 and [4], pages 4,7). Note that the nine

lines each being the intersection of two cubic plane sections of a trihedral pair, are:

V(Li, L′j), i, j ∈ {1, 2, 3}. More precisely, for a trihedral pair T123 we have:

V(L1, L
′
1) = V(L1) ∩ V(L′1) = c23,

V(L1, L
′
2) = V(L1) ∩ V(L′2) = a3,

V(L1, L
′
3) = V(L1) ∩ V(L′3) = b2,

V(L2, L
′
1) = V(L2) ∩ V(L′1) = b3,

V(L2, L
′
2) = V(L2) ∩ V(L′2) = c13,

V(L2, L
′
3) = V(L2) ∩ V(L′3) = a1,

V(L3, L
′
1) = V(L3) ∩ V(L′1) = a2,

V(L3, L
′
2) = V(L3) ∩ V(L′2) = b1,

V(L3, L
′
3) = V(L3) ∩ V(L′3) = c12.

Let S be a non-singular cubic surface with 27 lines. Then we have the following

facts in ([27], Pages 198,199):
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1. If S contains exactly 6 E-points, they form 6 vertices of a plane quadrilateral.

2. If S contains exactly 10 E-points, they form the 10 vertices of a pentahedron

P , lying 2 on each of the 15 lines residual to a double-six and whose collinear

triples lie on the 10 edges of P ; that is, a non-planar Desargues configuration.

A cubic surface S with 27 lines in PG(3, q) for q = 17, 19, 23, 29, 31, exist and

have q2 + 7q + 1 points. The possible two types of E-point, namely, Eij,kl,mn and Est

which correspond to (ij, kl,mn) := PiPj ∩ PkPl ∩ PmPn and Ct ∩ PsPt respectively

are found, as we will show in the following example:

Let us consider the 6-arc S1 = {1,2,3,4,6,8} in PG(2, 17). From Table 2.11, we

have

C1 = V(x2
0 + 2x0x1 + x0x2 − 4x1x2),

C2 = V(x2
1 + 2x0x1 − 5x0x2 + 2x1x2),

C3 = V(x2
2 + 3x0x1 + 5x0x2 + 8x1x2),

C4 = V(x0x1 − 5x0x2 − 4x1x2),

C5 = V(x0x1 − 6x0x2 + 5x1x2),

C6 = V(x0x1 − 7x0x2 + 6x1x2),

where Cj is a conic passing through the points of S1\{Pj}. The 15 bisecants of S1

are:

P1P2 = V(x2),

P1P3 = V(x1),

P1P4 = V(x1 − x2),

P1P5 = V(x1 + x2),
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P1P6 = V(x1 + 4x2),

P2P3 = V(x0),

P2P4 = V(x0 − x2),

P2P5 = V(x0 + 5x2),

P2P6 = V(x0 + 2x2),

P3P4 = V(x0 − x1),

P3P5 = V(x0 − 5x1),

P3P6 = V(x0 + 8x1),

P4P5 = V(x0 − 3x1 + 2x2),

P4P6 = V(x0 − 4x1 + 3x2),

P5P6 = V(x0 + x1 + 6x2).

Consequently, there is only E-point of type Eij,kl,mn which corresponds to Brian-

chon point, namely

(13, 26, 45) = P1P3 ∩ P2P6 ∩ P4P5 = (1 : 0 : 8).

However, there are two E-points of type Eij, namely E25 and E46 which correspond

to

C5 ∩ P2P5 = (0 : 1 : 0),

C6 ∩ P4P6 = (1 : 1 : 1).

Over the Galois field GF (q) with q = 17, 19, we have the Table 3.4 and Table 3.5

which illustrate the Brianchon points of 6-arcs over GF (17), GF (19) respectively.

Let S (j)(q) denotes the smooth cubic surface corresponding to the 6-arcs S not

on a conic, with j Eckardt points. Then from Theorem 2.3, such non-singular cubic
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Table 3.4: The Brianchon points of Sj over GF (17)

PG(2, 17)
Sj Ct Est Eij,kl,mn
S1 C1 - E13,26,45

C2 -
C3 -
C4 -
C5 E25
C6 E46

S2 C1 - E16,23,45
C2 - E16,25,34
C3 E23
C4 -
C5 E45
C6 -

S4 C1 - E12,34,56
C2 E52 E13,25,46
C3 E43 E16,24,35
C4 -
C5 -
C6 E16

PG(2, 17)
Sj Ct Est Eij,kl,mn
S5 C1 - E12,35,46

C2 -
C3 E43 E12,36,45
C4 E34
C5 E65
C6 E56

S6 C1 - E12,34,56
C2 - E14,25,36
C3 - E16,23,45
C4 - E16,25,34
C5 -
C6 -

S7 C1 - E12,35,46
C2 - E13,24,56
C3 - E14,26,35
C4 - E15,24,36
C5 - E16,23,45
C6 - E16,25,34

surfaces S (j)(q) exist and have 409, 495, 691, 1045 and 1179 points in PG(3, q) for

q = 17, 19, 23, 29, 31 respectively.

3.3 e-invariants and a non-singular cubic surfaces with 27 lines

A cubic surface S always has 27 lines in this section. Recall a point E is said to be

an Eckardt point if it lies on exactly three lines of the non-singular cubic surface S

in PG(3, q). Let us define er = er(S ) to be the number of points of S on exactly r

lines of S . So e3 is the number of Eckardt points of S . The numbers er have been

computed for any non-singular cubic surface over GF (q) for q = 17, 19, 23, 29, 31, as

we will show later in Section 3.6.

Let nq be the total number of points on the lines of S over GF (q). Then

nq = e3 + e2 + e1.

60



Table 3.5: The Brianchon points of Sj over GF (19)

PG(2, 19)
Sj Ct Est Eij,kl,mn
S1 C1 - -

C2 -
C3 -
C4 -
C5 -
C6 E46, E56

S3 C1 E31, E51 E13,26,45
C2 E52, E62 E15,23,46
C3 - E16,23,45
C4 E34, E64 E16,25,34
C5 -
C6 -

S4 C1 - E12,35,46
C2 - E14,23,56
C3 - E15,26,34
C4 -
C5 -
C6 -

S6 C1 E21, E41 E14,26,35
C2 E12, E62 E16,24,35
C3 -
C4 E24, E64
C5 -
C6 E16, E46

PG(2, 19)
Sj Ct Est Eij,kl,mn
S7 C1 - E12,35,46

C2 - E13,24,56
C3 - E14,26,35
C4 - E15,24,36
C5 - E16,23,45
C6 - E16,25,34

S8 C1 - E12,34,56, E12,36,45
C2 - E13,24,56, E13,25,46
C3 - E14,25,36, E14,26,35
C4 - E15,23,46, E15,26,34
C5 - E16,23,45, E16,24,35
C6 -

S9 C1 E31, E61 E12,34,56
C2 E42, E52 E12,35,46
C3 E13, E63 E14,23,56
C4 E24, E54 E14,26,35
C5 E25, E45 E15,23,46
C6 E16, E36 E15,26,34

Now let li, i = 1, . . . , 27, be the 27 lines of S and let e(i)
r be the number of points of

li on exactly r lines of S . then
27∑
i=1

e
(i)
3 = 3e3,

27∑
i=1

e
(i)
2 = 2e2,

27∑
i=1

e
(i)
1 = e1.

Also we know that each line meets ten others. So we have

2e(i)
3 + e

(i)
2 = 10,

e
(i)
3 + e

(i)
2 + e

(i)
1 = q + 1.
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So when we take sum over all i = 1, . . . , 27, we get

6e3 + 2e2 = 270,

3e3 + 2e2 + e1 = 27(q + 1).

More precisely, we obtain

e2 + e1 = 27(q − 4),

nq = 27(q − 4) + e3.

From Section 2.1, we have #(S ) = q2 + 7q + 1. Hence

e3 + e2 + e1 + e0 = q2 + 7q + 1,

or

nq = 27(q − 4) + e3,

e3 + e0 = q2 + 7q + 1− 27(q − 4) = (q − 10)2 + 9.

So

#(S ) = nq + e0.

We define the e-invariants that correspond to a non-singular cubic surface with

27 lines, S , as the set {e0, e1, e2, e3}. Our classifications over GF (q) for q = 17, 19,

23, 29, 31 of non-singular cubic surfaces with 27 lines (up to e-invariants), are given

in Section 3.6.

Theorem 3.4. ([27], Page 194) Let S be a non-singular cubic surface with 27 lines.

Then for q ≤ 16, upper and lower bounds for e3 are given by the Table 3.6.

Table 3.6: Lower and upper bound for e3

q 4 5 7 8 9 11 13 16
Upper bound for e3 45 34 18 13 10 10 18 16
Lower bound for e3 45 36 18 9 0 0 0 45

Table 3.6 does not give exactly the minimal and maximal value of e3 over GF (q)

for q ≤ 16. Furthermore, in Table 3.6 we can see that for the case q = 5 the upper
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bound for e3 is 34 while the lower bound is 36. This is impossible. Thus there is no

cubic surface with 27 lines for q = 5. In fact, if there is such cubic surface, we get

e3 ≤ e3 + e0 = (q − 10)2 + 9 = 34

which is contradiction.

The exact value of minimal and maximal value of e3 over GF (13), is given by [2].

In our work, we completed the above table and give the exact value of minimal and

maximal value of e3 over GF (q) for q = 17, 19, 23, 29, 31, and we have the following

theorem.

Theorem 3.5. Let S be a non-singular cubic surface with 27 lines. Then for q =

17, 19, 23, 29, 31, the minimal and maximum value for e3 are given in Table 3.7

Table 3.7: Minimal and maximal value of e3

q 17 19 23 29 31
Maximal value of e3 6 18 6 10 18
Minimal value of e3 1 2 1 0 0

Proof. All the detail of the above table are given in our work in Section 3.6.

In the next three sections of this chapter, we will discuss the geometrical configu-

ration formed by six E-points in PG(3, q) for q = 17, 19, 23, 29, 31. Furthermore, we

will determine the equations of all the correspond non-singular cubic surfaces with 27

lines. The maximal number of Eckardt points on a non-singular cubic surface will be

indicated. Additionally, we will find all elliptic and hyperbolic lines on a non-singular

cubic surface with 27 lines in PG(3, q) for q = 17, 19, 23, 29, 31.

3.4 The geometrical configuration formed by six and ten E-points

in PG(3, q)

In this section, we will give some examples to explain the geometrical configuration

formed by six, ten and eighteen E-points in PG(3, q) for q = 17, 19, 23, 29, 31.
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From previous chapter, and by using our program, we know that a six E-points

of a non-singular cubic surface are the 6 vertices of a plane quadrilateral. The non-

singular cubic surface correspond to the 6-arc S7 in PG(2, 19), has 6 E-points, which

correspond to E12,35,46, E13,24,56, E14,26,35, E15,24,36, E16,23,45 and E16,25,34, is denoted by

S (6)(19). Also, the 10 E-points of a non-singular cubic surface S (10)(19), which

correspond to

E31, E51, E52, E62, E34, E64, E13,26,45, E15,23,46, E16,23,45 and E16,25,34

of S3 in PG(2, 19), are the 10 vertices of a pentahedron P lying 2 on each of the 15

lines residual to a double-six and whose collinear triples lie on the 10 edges of P . In

fact, such configuration of the E-points exists since x2 − x − 1 = 0 has two roots

in GF (19), namely 5 and −4 ([16], Page 201). A cubic surface whose 10 E-points

form such a configuration is called a diagonal surface, and we have that, in a suitable

coordinate system, the diagonal surface can be written in the form

S = V(x3
0 + x3

1 + x3
2 + x3

3 + x3
4) for p 6= 3

where x0 + x1 + x2 + x3 + x4 = 0.

Furthermore, in PG(2, 19), we have the configuration of 18 E-points, two on

each of the 27 lines lying by threes on the six axes of a triad of trihedral pairs

T123, T456, T123,456. In fact, such configuration exists in PG(2, 19) since 19 ≡ 1 mod 3,

that is, the equation x2 + x+ 1 = 0 has two roots in GF (19), namely 7 and −8 ([27],

Page 200). For the later case and in a suitable coordinate system, the cubic surfaces

can be written in the form

S = V(x3
0 + x3

1 + x3
2 + x3

3).

The following configurations, namely Q(6)(19) which is the plane quadrilateral formed

by the 6 E-points of S (6)(19), and Q(10)(19) which is pentahedron formed by the 10

E-points of S (10)(19), are shown in Figure 3.2 and Figure 3.3 respectively.
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• • •

•

•
•

E12,35,46 E13,24,56 E16,25,34

E15,24,36

E16,23,45

E14,26,35

c35
c24

c16

Figure 3.2: The configuration Q(6)(19).

E64 E16,25,34

E16,23,45

E15,23,46

E31

E51

E62

b4
a5

c16

c23c23

E52

E34

E13,26,45

Figure 3.3: The configuration Q(10)(19).

3.5 Elliptic and hyperbolic lines on a non-singular cubic surfaces

In this section, we introduce the concepts of resultant and involution. Furthermore,

we define the concepts of elliptic and hyperbolic lines on a non-singular cubic surface,

and then we demonstrate these concepts by giving some examples.

Let f(x) = anx
n + . . . + a0 and g(x) = bmx

m + . . . + b0 be two polynomials

of degrees n and m respectively, with coefficients in an arbitrary field F. Their

resultant R(f, g) = Rn,m(f, g) is the element of F given by the determinant of the
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(m+ n)× (m+ n) Sylvester matrix Syl(f, g) = Syln,m(f, g) defined as

Syln,m(f, g) =



an an−1 an−2 . . . 0 0 0

0 an an−1 . . . 0 0 0
... ... ... ... ... ...

0 0 0 . . . a1 a0 0

0 0 0 . . . a2 a1 a0

bm bm−1 bm−2 . . . 0 0 0

0 bm bm−1 . . . 0 0 0
... ... ... ... ... ...

0 0 0 . . . b1 b0 0

0 0 0 . . . b2 b1 b0


where them first rows contain the coefficients an, an−1, . . . , a0 of f shifted 0, 1, . . . ,m−

1 steps and padded with zeros, and the n last rows contain the coefficients bm, bm−1,

. . ., b0 of g shifted 0, 1, . . . , n − 1 steps and padded with zeros. The following facts

are taken from ([8], Pages 162,163 and [20]):

1. Let f(x) = anx
n + . . . + a0 and g(x) = bmx

m + . . . + b0 be two polynomials of

degrees n and m respectively, with coefficients in an arbitrary field F. Suppose

that, in some extension field of F (for example in an algebraically closed ex-

tension), f has n roots ξ1, . . . , ξn and g has m roots η1, . . . , ηm (not necessarily

distinct). Then

R(f, g) = amn b
n
m

n∏
i=1

m∏
j=1

(ξi − ηj)

= amn

n∏
i=1

g(ξi)

= (−1)nmbnm
m∏
j=1

f(ηj).
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2. Let f and g be two non-zero polynomials of degrees n and m respectively with

coefficients in an arbitrary field F. Then f and g have a common root in some

extension of F if and only if R(f, g) = 0.

3. If f and g are polynomials of degrees n and m ≥ 1, then

∆(fg) = ∆(f)∆(g)R(f, g)2

where ∆(f) is the discriminant of f , which is given by

∆(f) = an
2n−2 ∏

1≤i<j≤n
(ξi − ξj).

For the special case, say n = m = 2, we have

R(f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a2 a1 a0 0

0 a2 a1 a0

b2 b1 b0 0

0 b2 b1 b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (a2b0 − b2a0)2 − (a2b1 − b2a1)(a1b0 − b1a0).

Segre divided the lines on cubic surfaces into two species called hyperbolic and

elliptic. Consider a real line on the cubic surface. The tangent plane to any point

on this line will intersect the surface in the line itself and a further residual conic

(perhaps another pair of lines). This residual conic will intersect the line in two

points, one of which being the point where we took the tangent plane from. We

define an involution on the line by exchanging these two points of intersection. The

fixed points of this involution are called parabolic points [28]. It is possible that the

parabolic points only exist in the complexification. The real line is called a hyperbolic

line if the involution has two real parabolic points. The real line is called an elliptic

line if it has a pair of complex conjugate parabolic points.

More concretely, choose projective coordinates x0, x1, x2, x3 on P3
R so that the line

l is given by x0 = x1 = 0. Then the defining polynomial of the surface S has the
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form

f = x2
2l11 + 2x2x3l12 + x2

3l22 + x2q1 + x3q2 + c,

where lij ,qi and c are of degree one, two, and three homogeneous polynomial in

x0, x1. Any plane containing l is given by the equation bx0 − ax1 = 0 for projective

coordinates a, b. The pairs of conjugate points (the intersection of l and residual

conic) are given by the roots of the projective quadratic in x2, x3

x2
2l11 + 2x2x3l12 + x2

3l22, (3.5.1)

with lij being evaluated at x0 = a, x1 = b. A parabolic point is given by the unique

root of this quadratic when its discriminant l212 − l11l22 is zero. This discriminant is

a quadratic form in x0 = a and x1 = b. Let us call it Q. If Q is indefinite, there

are two real values of [a : b] which make Q zero, and each of these values gives a

real parabolic point by plugging it into Equation 3.3 and finding the root. If Q is

definite, there are two complex conjugate values of [a : b] making Q zero, which give

the complex conjugate parabolic points. If we let lij = lijx0 + mijx1, then the Q is

explicitly

(l212 − l11l22)x2
0 + (2l12m12 − l11m22 − l22m11)x0x1 + (m2

12 −m11l22)x2
1.

Write this as Q = Ax2
0 + Bx0x1 + Cx2

1. Then Q is definite (l is elliptic) if

B2 − 4AC < 0 and indefinite (l hyperbolic) if B2 − 4AC > 0.

In [12], Finashin–Kharlamov and Okonek–Teleman observed that the equality

# real hyperbolic lines on S −# real elliptic lines on S = 3

can be deduced from Segre’s work.

We discussed these results over some finite fields, namely GF (q) for q = 17, 19,

23, 29, 31. Just as in the real case, a line l ⊂ S admits a distinguished involution,

and we classify l as either hyperbolic or elliptic using Proposition 14 in [21].

68



When all 27 lines on S are defined over GF (q), we have

# elliptic lines on S = 0 mod 2.

In [21], we see that if S is any smooth cubic surface over GF (q) and e denoted

to the total number of elliptic lines on S with field of definition GF (qα) for α odd,

and h denoted to the total number of hyperbolic lines on S with field of definition

GF (qα) for α even, then we have

e + h = 0 mod 2.

In our work, we used an arithmetic method to determine the hyperbolic and elliptic

lines on a non-singular cubic surface by using Proposition 14 in [21]. The residual

intersections of a non-singular cubic surface S with the hyperplanes containing l

are conic curves that determine an involution of l, defined so that two points are

exchanged if they lie on a common conic. Lines are classified as either hyperbolic or

elliptic according to whether the involution is hyperbolic or elliptic as an element of

PGL(2, q) (i.e. whether the fixed points are defined over GF (q) or not).

Let l be any line among the 27 lines on a non-singular cubic surface S = V(f)

over GF (q). Let (a0 : a1 : a2 : a3), (b0 : b1 : b2 : b3) be any points on l, then we can

parameterize l by

l =
{

(a0λ+ b0µ : a1λ+ b1µ : a2λ+ b2µ : a3λ+ a3µ) : (λ : µ) ∈ PG(1, q)
}
.

On the other hand, we can pick a basis β3, β2, β1, β0 for GF (q)⊕4 so that β3 =

(a0, a1, a2, a3) and β2 = (b0, b1, b2, b3).

According to Proposition 14 ([21], Page 9) if we compute the resultant of the

partial derivative of homogeneous polynomial defining S with respect to β0 and β1

and then restrict the result to the line l, then we get

69



∂f

∂β0

∣∣∣∣∣
l

= aλ2 + bλµ+ cµ2,

∂f

∂β1

∣∣∣∣∣
l

= a′λ2 + b′λµ+ c′µ2,

where a, b, c, a′, b′, c′ ∈ GF (q). Hence

R

 ∂f

∂β0

∣∣∣∣∣
l

,
∂f

∂β1

∣∣∣∣∣
l

 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a b c 0

0 a b c

a′ b′ c′ 0

0 a′ b′ c′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The line l is elliptic (hyperbolic) if R
 ∂f
∂β0

∣∣∣
l
, ∂f
∂β1

∣∣∣
l

 is non-square (square) as an

element of GF (q).

Let us first give an example for the real case: The Clebsch diagonal surface,

namely

S = V
(
x3

0 + x3
1 + x3

2 + x3
3 − (x0 + x1 + x2 + x3)3

)
,

has 27 lines on it. The following are some lines on S which are given parametrically

in PG(3,R) by:

1. (µ : −µ : λ : 0), 2. (µ : λ : −µ : 0),

3. (µ : λ : −λ : 0), 4. (λ : µ : −µ : 0),

5. (−µ : λ : µ : 0), 6. (λ : −λ : µ : µ),

7. (λ : −λ : 0 : µ), 8. (λ : −µ : −λ : µ),

9. (λ : 0 : −λ : µ), 10. (−µ : λ : −λ : µ),

11. (λ : −λ+ aµ : aλ− µ : µ), 12. (λ : −λ+ bµ : bλ− µ : µ),

13. (λ : −λ+ aµ : −aλ− aµ : µ), 14. (λ : −λ+ bµ : −bλ− bµ : µ),
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15. (λ : aλ− µ : −λ+ aµ : µ), 16. (λ : bλ− µ : −λ+ bµ : µ),

17. (λ : −aλ− aµ : −λ+ aµ : µ), 18. (λ : −bλ− bµ : −λ+ bµ : µ),

19. (λ : −aλ− µ : aλ+ aµ : µ), 20. (λ : −bλ− µ : bλ+ bµ : µ),

21. (λ : aλ+ aµ : −aλ− µ : µ), 22. (λ : bλ+ bµ : −bλ− µ : µ),

where a = 1+
√

5
2 and b = 1−

√
5

2 ([[3], Page 25). Let l := (µ : −µ : λ : 0).

For l, picking the basis β3 = (0, 0, 1, 0), β2 = (1,−1, 0, 0), β1 = (0, 0, 0, 1), and

β0 = (0, 0, 0, 1) for R⊕4, we get

R

 ∂f

∂β0

∣∣∣∣∣
l

,
∂f

∂β1

∣∣∣∣∣
l

 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−3 0 3 0

0 −3 0 3

−3 0 0 0

0 −3 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 81 square .

Hence l is hyperbolic line. In fact, all the first 10 lines are hyperbolic.

Now let us work over the Galois field GF (q): consider the non-singular cubic

surface S = V(f) over GF (17), where

f(y0, y1, y2, y3) = y2
0y1 + 4y2

1y0 + y2
2y3 + 2y2

3y2 − 8y0y1y2 − 4y0y2y3 − 5y1y2y3.

Let us determine the kind of the following two lines l and m on S , namely

l = {(λ : 0 : µ : 0) : (λ : µ) ∈ PG(1, 17)},

m = {(0 : λ : µ : 0) : (λ : µ) ∈ PG(1, 17)}.

For l, picking the basis β3 = (0, 0, 1, 0), β2 = (1, 0, 0, 0), β1 = (0, 0, 0, 1), and β0 =

(0, 1, 0, 0), we get

R

 ∂f

∂β0

∣∣∣∣∣
l

,
∂f

∂β1

∣∣∣∣∣
l

 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −8 0 0

0 1 −8 0

0 −4 1 0

0 0 −4 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 3 non-square (mod 17).
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Hence l is an elliptic line.

For m, picking the basis β3 = (0, 0, 1, 0), β2 = (0, 1, 0, 0), β1 = (0, 0, 0, 1), and

β0 = (1, 0, 0, 0), we get

R

 ∂f

∂β0

∣∣∣∣∣
m

,
∂f

∂β1

∣∣∣∣∣
m

 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

8 −8 0 0

0 8 −8 0

0 −5 1 0

0 0 −5 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 16 square (mod 17).

Hence m is hyperbolic line.

All the hyperbolic and elliptic lines on a non-singular cubic surface with 27 lines

over GF (q) for q = 17, 19, 23, 29, 31 are indicated in tables for the next section.

3.6 The equation of a non-singular cubic surface

In this section, we will give the equation of a non-singular cubic surface with 27

lines in PG(3, q) for q = 17, 19, 23, 29, 31. Furthermore, we will find the lines and

Eckardt points on each of them, and we will determine whether the line is elliptic or

hyperbolic.

Recall that a cubic surface S with 27 lines in PG(3, q) can be mapped onto the

plane in the following way. Let S = V (F ) be given, as in Equation 3.2, by

F = L1L2L3 + L′1L
′
2L
′
3 =

∣∣∣∣∣∣∣∣∣∣∣∣

0 L1 L′3

L′1 0 L2

L3 L′2 0

∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

where L1, L2, L3, L
′
1, L

′
2 and L′3 are homogeneous linear polynomials in 4 variables,

namely y0, y1, y2 and y3. The above homogeneous linear polynomials can be written
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as

L1 = α00y0 + α01y1 + α02y2 + α03y3,

L2 = α10y0 + α11y1 + α12y2 + α13y3,

L3 = α30y0 + α31y1 + α32y2 + α33y3,

L′1 = β00y0 + β01y1 + β02y2 + β03y3,

L′2 = β10y0 + β11y1 + β12y2 + β13y3,

L′3 = β30y0 + β31y1 + β32y2 + β33y3,

where αij and βij are elements in GF (q). Let P (Y ) := P (y0, y1, y2, y3) be a point in

the projective space PG(3, q) such that P (Y ) 6∈ V(L1) ∪ V(L2) ∪ V(L3) ∪ V(L′1) ∪

V(L′2) ∪ V(L′3). A point P (Y ) is on S if and only if∣∣∣∣∣∣∣∣∣∣∣∣

0 L1 L′3

L′1 0 L2

L3 L′2 0

∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Consequently, there exists a point P (X) = (x0, x1, x2) ∈ PG(2, q) such that the

following system has a non-trivial unique solution:

L′1(Y )x1 + L3(Y )x2 = 0,

L1(Y )x0 + L′2(Y )x2 = 0,

L′3(Y )x0 + L2(Y )x1 = 0.

(3.6.1)

Let us illustrate the Clebsch map, namely s : S 99K PG(2, q), in more detail: This

map takes P (Y ) := P (y0, y1, y2, y3) to P (X) = (x0, x1, x2), where

x0

x1
= −L2(Y )

L′3(Y ) ,

x0

x2
= −L

′
2(Y )

L1(Y ) ,

x1

x2
= −L3(Y )

L′1(Y ) = −L
′
2(Y )L′3(Y )

L1(Y )L2(Y ) .
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It follows that

x0 = L2(Y )L3(Y )L′2(Y ),

x1 = −L3(Y )L′2(Y )L′3(Y ),

x2 = −L1(Y )L2(Y )L3(Y ).

Moreover, if we assume that x2 = 1 then

x0 = x0

x1

x1

x2
= L2(Y )L3(Y )
L′1(Y )L′3(Y ) ,

x1 = x1

x2
= −L3(Y )

L′1(Y ) ,

x2 = x1

x2
· x2

x0
· x0

x1
= −L1(Y )L2(Y )L3(Y )

L′1(Y )L′2(Y )L′3(Y ) = 1.

At this stage, we find rational functions, namely

x0 = ρ0(y0, y1, y2, y3) = L2(Y )L3(Y )
L′1(Y )L′3(Y ) ,

x1 = ρ1(y0, y1, y2, y3) = −L3(Y )
L′1(Y ) ,

x2 = ρ1(y0, y1, y2, y3) = 1.

Hence the Clebsch map, namely s, is a rational map. In order to prove that s is a

birational map, it is enough to show there ia a map s−1 : PG(2, q) 99K S such that

ss−1 = I. Rewrite the system in Equation 3.6.1 as

L11(x0, x1, x2)y0 + L12(x0, x1, x2)y1 + L13(x0, x1, x2)y2 + L14(x0, x1, x2)y3 = 0,

L21(x0, x1, x2)y0 + L22(x0, x1, x2)y1 + L23(x0, x1, x2)y2 + L24(x0, x1, x2)y3 = 0,

L31(x0, x1, x2)y0 + L32(x0, x1, x2)y1 + L33(x0, x1, x2)y2 + L34(x0, x1, x2)y3 = 0,

where Lij; i, j ∈ {1, 2, 3, 4} are linear forms in the variables x0, x1 and x2. Hence, we

have the system LY t = 0 where

L =


L11 L12 L13 L14

L21 L22 L23 L24

L31 L32 L33 L34

 .
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Let

L′ =


L11 L12 L13

L21 L22 L23

L31 L32 L33

 .

Then 
y0

y1

y2

 = Adj(L′)


L14

L24

L34

 and y3 = − det(L′),

where Adj(L′) is the adjoint of L′. In other words, we get

y0 = γ01x
2
0x1 + γ02x

2
0x2 + γ03x

2
1x0 + γ04x

2
1x2 + γ05x

2
2x0 + γ06x

2
2x1 + γ07x0x1x2

:= W0(X),

y1 = γ11x
2
0x1 + γ12x

2
0x2 + γ13x

2
1x0 + γ14x

2
1x2 + γ15x

2
2x0 + γ16x

2
2x1 + γ17x0x1x2

:= W1(X),

y2 = γ21x
2
0x1 + γ22x

2
0x2 + γ23x

2
1x0 + γ24x

2
1x2 + γ25x

2
2x0 + γ26x

2
2x1 + γ27x0x1x2

:= W2(X),

y3 = γ31x
2
0x1 + γ32x

2
0x2 + γ33x

2
1x0 + γ34x

2
1x2 + γ35x

2
2x0 + γ36x

2
2x1 + γ37x0x1x2

:= W3(X),

where γij is in GF (q) and each Wi is plane cubic curve. So There is a map s−1

such that s−1 : PG(2, q) 99K S , and s−1 maps P (X) = P (x0, x1, x2) to P (Y ) =

P (y0, y1, y2, y3) where yi = Wi(X), i = 0, 1, 2, 3. Note that s−1 is again a rational

map and ss−1 = I. It follows that s is a birational map.

Since the Li and L′i are linear, solving for the yi gives

(y0 : y1 : y2 : y3) =
(
W0(X) : W1(X) : W2(X) : W3(X)

)
,

where each Wi is plane cubic curve. So we have a birational map

s : S 99K PG(2, q)
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given by s(P (Y )) = P (X) which is the Clebsch mapping mentioned in Section 3.1.

Recall that s maps plane sections of S to cubic curves through the set B of base

points, where

B = V(W0,W1,W2,W3).

In fact, B = {P1, P2, P3, P4, P5, P6} is a 6-arc not on a conic. Then there exists one

half of a double-six on S , namely a1 a2 a3 a4 a5 a6, such that if A is the set of points

on the lines ai then the restriction of s is a bijection

s : S \A → PG(2, q)\B.

Let Cj be the conic through the 5 points of B other than Pj. Then we have

s(ai) = Pi,

s(bj) = Cj,

s(cij) = PiPj.

Let us give some examples: consider the 6-arc not on a conic in PG(2, 13), namely

S := {P1, P2, P3, P4, P5, P6},

where

P1 = (1 : 7 : 0),

P2 = (1 : 6 : 0),

P3 = (1 : 0 : 6),

P4 = (1 : 0 : 7),

P5 = (0 : 1 : 11),

P6 = (0 : 1 : 2).

In fact, the six points form a 6-arc, and C1 := V(x2
0 + 3x2

1 − 4x2
2 − 3x0x1) is a conic

through S\{P1}. The corresponding non-singular cubic surface with 27 lines, namely

S in PG(3, 13) can be determined in 5 stages as follows:

Stage(1): We find all bisecants PiPj of the 6-arc S. The 15 bisecants of S are
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P1P2 = V(x2),

P1P3 = V(x0 − 2x1 + 2x2),

P1P4 = V(x0 − 2x1 − 2x2),

P1P5 = V(x0 − 2x1 − x2),

P1P6 = V(x0 − 2x1 + x2),

P2P3 = V(x0 + 2x1 + 2x2),

P2P4 = V(x0 + 2x1 − 2x2),

P2P5 = V(x0 + 2x1 + x2),

P2P6 = V(x0 + 2x1 − x2),

P3P4 = V(x1),

P3P5 = V(x0 + 4x1 + 2x2),

P3P6 = V(x0 − 3x1 + 2x2),

P4P5 = V(x0 − 3x1 − 2x2),

P4P6 = V(x0 + 4x1 − 2x2),

P5P6 = V(x0).

Stage(2): We find all the conics Ci through S\{Pi}; i = 1, 2, 3, 4, 5, 6. The conics

Ci are

C1 = V(x2
0 + 3x2

1 − 4x2
2 − 3x0x1),

C2 = V(x2
0 + 3x2

1 − 4x2
2 + 3x0x1),

C3 = V(x2
0 − 4x2

1 + x2
2 + 4x0x1),

C4 = V(x2
0 − 4x2

1 + x2
2 − 4x0x1),

C5 = V(x2
0 − 4x2

1 − 4x2
2 − 3x0x1),

C6 = V(x2
0 − 4x2

1 − 4x2
2 + 3x0x1).

Stage(3): We find all the plane cubics ωi := V(Wi) through S. The 30 cubic

curves of the form V(Cj · PiPj) are

ω1 = V(x3
0 + 5x3

1 + 2x3
2 + 2x2

0x1 + 6x2
0x2 − 4x2

1x0 + 5x2
1x2 − 4x2

2x0 + 2x2
2x1

− 5x0x1x2),

ω2 = V(x3
0 − 6x3

1 + 5x3
2 − 5x2

0x1 + 2x2
0x2 − 4x2

1x0 + 6x2
1x2 − 4x2

2x0 − 5x2
2x1

− 6x0x1x2),
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ω3 = V(x3
0 + 6x3

1 + 5x3
2 + 5x2

0x1 + 2x2
0x2 − 4x2

1x0 + 6x2
1x2 − 4x2

2x0 + 5x2
2x1

+ 6x0x1x2),

ω4 = V(x3
0 − 5x3

1 + 2x3
2 − 2x2

0x1 + 6x2
0x2 − 4x2

1x0 + 5x2
1x2 − 4x2

2x0 − 2x2
2x1

+ 5x0x1x2),

ω5 = V(x3
0 − 5x3

1 − 2x3
2 − 2x2

0x1 − 6x2
0x2 − 4x2

1x0 − 5x2
1x2 − 4x2

2x0 − 2x2
2x1

− 5x0x1x2),

ω6 = V(x3
0 − 6x3

1 − 5x3
2 − 5x2

0x1 − 2x2
0x2 − 4x2

1x0 − 6x2
1x2 − 4x2

2x0 − 5x2
2x1

+ 6x0x1x2),

ω7 = V(x3
0 − 5x3

1 + 4x3
2 − 2x2

0x1 − x2
0x2 − 4x2

1x0 − 3x2
1x2 − 4x2

2x0 − 2x2
2x1

− 3x0x1x2),

ω8 = V(x3
0 − 6x3

1 + 4x3
2 − 5x2

0x1 − x2
0x2 − 4x2

1x0 − 3x2
1x2 − 4x2

2x0 − 5x2
2x1

+ 3x0x1x2),

ω9 = V(x3
0 − 5x3

1 − 4x3
2 − 2x2

0x1 + x2
0x2 − 4x2

1x0 + 3x2
1x2 − 4x2

2x0 − 2x2
2x1

+ 3x0x1x2),

ω10 = V(x3
0 − 6x3

1 − 4x3
2 − 5x2

0x1 + x2
0x2 − 4x2

1x0 + 3x2
1x2 − 4x2

2x0 − 5x2
2x1

− 3x0x1x2),

ω11 = V(x3
0 + 5x3

1 − 2x3
2 + 2x2

0x1 − 6x2
0x2 − 4x2

1x0 − 5x2
1x2 − 4x2

2x0 + 2x2
2x1

+ 5x0x1x2),

ω12 = V(x3
0 + 6x3

1 − 5x3
2 + 5x2

0x1 − 2x2
0x2 − 4x2

1x0 − 6x2
1x2 − 4x2

2x0 + 5x2
2x1

− 6x0x1x2),

ω13 = V(x3
0 + 5x3

1 − 4x3
2 + 2x2

0x1 + x2
0x2 − 4x2

1x0 + 3x2
1x2 − 4x2

2x0 + 2x2
2x1

− 3x0x1x2),
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ω14 = V(x3
0 + 6x3

1 − 4x3
2 + 5x2

0x1 + x2
0x2 − 4x2

1x0 + 3x2
1x2 − 4x2

2x0 + 5x2
2x1

+ 3x0x1x2),

ω15 = V(x3
0 + 5x3

1 + 4x3
2 + 2x2

0x1 − x2
0x2 − 4x2

1x0 − 3x2
1x2 − 4x2

2x0 + 2x2
2x1

+ 3x0x1x2),

ω16 = V(x3
0 + 6x3

1 + 4x3
2 + 5x2

0x1 − x2
0x2 − 4x2

1x0 − 3x2
1x2 − 4x2

2x0 + 5x2
2x1

− 3x0x1x2),

ω17 = V(x3
0 − 3x3

1 + 5x3
2 + 4x2

0x1 + 2x2
0x2 − 4x2

1x0 + 6x2
1x2 − 4x2

2x0 + 4x2
2x1

− 3x0x1x2),

ω18 = V(x3
0 − 3x3

1 + 2x3
2 + 4x2

0x1 + 6x2
0x2 − 4x2

1x0 + 5x2
1x2 − 4x2

2x0 + 4x2
2x1

+ 3x0x1x2),

ω19 = V(x3
0 + 3x3

1 + 5x3
2 − 4x2

0x1 + 2x2
0x2 − 4x2

1x0 + 6x2
1x2 − 4x2

2x0 − 4x2
2x1

+ 3x0x1x2),

ω20 = V(x3
0 + 3x3

1 + 2x3
2 − 4x2

0x1 + 6x2
0x2 − 4x2

1x0 + 5x2
1x2 − 4x2

2x0 − 4x2
2x1

− 3x0x1x2),

ω21 = V(x3
0 + 3x3

1 − 5x3
2 − 4x2

0x1 − 2x2
0x2 − 4x2

1x0 − 6x2
1x2 − 4x2

2x0 − 4x2
2x1

− 3x0x1x2),

ω22 = V(x3
0 + 3x3

1 − 2x3
2 − 4x2

0x1 − 6x2
0x2 − 4x2

1x0 − 5x2
1x2 − 4x2

2x0 − 4x2
2x1

+ 3x0x1x2),

ω23 = V(x3
0 − 3x3

1 − 5x3
2 + 4x2

0x1 − 2x2
0x2 − 4x2

1x0 − 6x2
1x2 − 4x2

2x0 + 4x2
2x1

+ 3x0x1x2),

ω24 = V(x3
0 − 3x3

1 − 2x3
2 + 4x2

0x1 − 6x2
0x2 − 4x2

1x0 − 5x2
1x2 − 4x2

2x0 + 4x2
2x1

− 3x0x1x2),

ω25 = V(x3
0 − 4x2

1x0 − 4x2
2x0 + 3x0x1x2),
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ω26 = V(x3
1 + 3x2

0x1 + 3x2
2x1 + x0x1x2),

ω27 = V(x3
2 + 3x2

0x2 − 4x2
1x2 − 4x0x1x2),

ω28 = V(x3
0 − 4x2

1x0 − 4x2
2x0 − 3x0x1x2),

ω29 = V(x3
1 + 3x2

0x1 + 3x2
2x1 − x0x1x2),

ω30 = V(x3
2 + 3x2

0x2 − 4x2
1x2 + 4x0x1x2).

The 15 cubic curves of the form V(PiPj · PkPl · PmPn) are

ω31 = V(x3
0 − 3x3

1 − 4x3
2 + 4x2

0x1 + x2
0x2 − 4x2

1x0 + 3x2
1x2 − 4x2

2x0 + 4x2
2x1

+ x0x1x2),

ω32 = V(x3
0 + 3x3

1 + 4x3
2 − 4x2

0x1 − x2
0x2 − 4x2

1x0 − 3x2
1x2 − 4x2

2x0 − 4x2
2x1

+ 2x0x1x2),

ω33 = V(x3
0 + 3x3

1 − 4x3
2 − 4x2

0x1 + x2
0x2 − 4x2

1x0 + 3x2
1x2 − 4x2

2x0 − 4x2
2x1

− x0x1x2),

ω34 = V(x3
0 − 3x3

1 − 4x3
2 + 4x2

0x1 + x2
0x2 − 4x2

1x0 + 3x2
1x2 − 4x2

2x0 + 4x2
2x1

+ 2x0x1x2),

ω35 = V(x3
0 + 3x3

1 − 4x3
2 − 4x2

0x1 + x2
0x2 − 4x2

1x0 + 3x2
1x2 − 4x2

2x0 − 4x2
2x1

− 2x0x1x2),

ω36 = V(x3
0 − 3x3

1 + 4x3
2 + 4x2

0x1 − x2
0x2 − 4x2

1x0 − 3x2
1x2 − 4x2

2x0 + 4x2
2x1

− 2x0x1x2),

ω37 = V(x3
0 − 3x3

1 + 4x3
2 + 4x2

0x1 − x2
0x2 − 4x2

1x0 − 3x2
1x2 − 4x2

2x0 + 4x2
2x1

− x0x1x2),

ω38 = V(x3
0 + 3x3

1 + 4x3
2 − 4x2

0x1 − x2
0x2 − 4x2

1x0 − 3x2
1x2 − 4x2

2x0 − 4x2
2x1

+ x0x1x2),
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ω39 = V(x3
1 + 3x2

0x1 + 3x2
2x1 + 6x0x1x2),

ω40 = V(x3
1 + 3x2

0x1 + 3x2
2x1 − 6x0x1x2),

ω41 = V(x3
0 − 4x2

1x0 − 4x2
2x0 + 5x0x1x2),

ω42 = V(x3
0 − 4x2

1x0 − 4x2
2x0 − 5x0x1x2),

ω43 = V(x3
2 + 3x2

0x1 − 4x2
1x2 − 2x0x1x2),

ω44 = V(x3
2 + 3x2

0x1 − 4x2
1x2 + 2x0x1x2),

ω45 = V(x0x1x2).

Stage(4): We choose four base cubic curves through S, namely ω1, ω2, ω3, ω4.

The corresponding tritangent planes on S (called base tritangent planes) are chosen

as

πω1 = V(ΠW1) := V(y0),

πω2 = V(ΠW2) := V(y1),

πω3 = V(ΠW3) := V(y2),

πω4 = V(ΠW4) := V(y3),

where ΠWj
is a linear form defining πωj

and correspond to the cubic form Wj defining

ωj. Every tritangent plane on S can be written as a linear combination of y0, y1, y2, y3.

For instance, the plane cubic curve ω27 is a linear combination of the 4 base cubic

curves:

ω27 = V(W27) = V(x3
2 + 3x2

0x2 − 4x2
1x2 − 4x0x1x2)

W27 := s(ΠW27) = λ1W1 + λ2W2 + λ3W3 + λ4W4; λi ∈ GF (13)

= (λ1 + λ2 + λ3 + λ4)x3
0 + (5λ1 − 6λ2 + 6λ3 − 5λ4)x3

1

+ (2λ1 + 5λ2 + 5λ3 + 2λ4)x3
2 + (2λ1 − 5λ2 + 5λ3 − 2λ4)x2

0x1
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+ (6λ1 + 2λ2 + 2λ3 + 6λ4)x2
0x2 + (−4λ1 − 4λ2 − 4λ3 − 4λ4)x2

1x0

+ (5λ1 + 6λ2 + 6λ3 + 5λ4)x2
1x2 + (−4λ1 − 4λ2 − 4λ3 − 4λ4)x2

2x0

+ (2λ1 − 5λ2 + 5λ3 − 2λ4)x2
2x1 + (−5λ1 − 6λ2 + 6λ3 + 5λ4)x0x1x2.

By some calculations, we get λ1 = −6, λ2 = 5, λ3 = 0 and λ4 = 1. It follows that

s(ΠW27) = −6W1 + 5W2 +W4

= −6s(ΠW1) + 5s(ΠW2) + s(ΠW4)

= s(−6ΠW1 + 5ΠW2 + ΠW4)

= s(−6y0 + 5y1 + y3).

So

ΠW27 = −6y0 + 5y1 + y3 and πω27 = V(−6y0 + 5y1 + y3).

By using similar augment as above, we get all the 45 tritangent planes on S , namely

πω1 = V(y0),

πω2 = V(y1),

πω3 = V(y2),

πω4 = V(y3),

πω5 = V(y0 − 3y1 + y3),

πω6 = V(y0 + 5y1 + 5y2 − 6y3),

πω7 = V(y0 − 3y1 + 4y3),

πω8 = V(y0 − 2y1 + 5y2 − 6y3),

πω9 = V(y0 − 3y1 − 3y3),

πω10 = V(y0 − 6y1 + 5y2 − 6y3),

πω11 = V(y0 − 3y2 + y3),
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πω12 = V(y0 − 3y1 − 3y2 + 2y3),

πω13 = V(y0 + y2 + 4y3),

πω14 = V(y0 − 3y1 + y2 + 2y3),

πω15 = V(y0 − 4y2 − 3y3),

πω16 = V(y0 − 3y1 − 4y2 + 2y3),

πω17 = V(y1 − 4y2),

πω18 = V(y0 + 4y3),

πω19 = V(y1 + 3y2),

πω20 = V(y0 − 3y3),

πω21 = V(y0 − 5y1 − 5y2 + 4y3),

πω22 = V(y0 + 2y1 − 5y2 + y3),

πω23 = V(y0 − 5y1 + 2y2 + y3),

πω24 = V(y0 + 2y1 + 2y2 − 3y3),

πω25 = V(y0 − 4y1 − 3y2 − 3y3),

πω26 = V(y1 − y2),

πω27 = V(y0 − 3y1 + 2y3),

πω28 = V(y0 + y1 − 3y2 + 4y3),

πω29 = V(y0 − y3),

πω30 = V(y0 + 5y2 − 6y3).

πω31 = V(y1 + 5y3),

πω32 = V(y1 − 6y3),

πω33 = V(y0 − 4y1 + y2 − 3y3),
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πω34 = V(y0 + 4y1 − 3y2 + 4y3),

πω35 = V(y0 − 5y2),

πω36 = V(y0 + y1 − 4y2 + 4y3),

πω37 = V(y0 − y1 − 3y2 − 3y3),

πω38 = V(y1 − 6y3),

πω39 = V(y0 − y1 + y2 − y3),

πω40 = V(y0 + 4y1 − 4y2 − y3),

πω41 = V(y0 − 3y2),

πω42 = V(y1 + 4y3),

πω43 = V(y0 + y1 + 2y2 + 4y3),

πω44 = V(y0 − 6y1 − 5y2 − 3y3),

πω45 = V(y0 + 3y1 − 3y2 − y3).

Stage(5): We choose one trihedral pairs among the 120 trihedral pairs, namely

T123 : c23 b3 a2  πω1 = V (y0)

a3 c13 b1  πω2 = V(y1)

b2 a1 c12

  

πω3 πω4

q q

V(y2) V(y3)

where πω1 , πω2 , πω3 , πω4 are the 4 tritangent planes on S corresponding to the six

plane cubics ω1, ω2, ω3, ω4 which passing through S. From Stage 4, the tritangent

planes on S , which correspond to the third row and third column, are respectively
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πω27 and πω30 . Consequently, the equation of the non-singular cubic surface S is

S = V
(
y0y1(y0 − 3y1 + 2y3) + λy2y3(y0 + 5y2 − 6y3)

)
.

To find the non-zero value λ ∈ GF (13), we pick a point P (x0 : x1 : x2) ∈ PG(2, 13)

which is not on any of the basic plane cubics ω1, ω2, ω3 and ω4. Let us choose the

point P (1 : 1 : 1). Then according to Clebsch map, we have

P 7→ (W1(P ) : W2(P ) : W3(P ) : W4(P )) = (1 : 1 : −5− 5) ∈ S .

Therefore, we find λ = −2. It follows that

S = V(y2
0y1 − 3y2

1y0 + 3y2
2y3 − y2

3y2 + 2y0y1y3 − 2y0y2y3).

The 27 lines on S are

`1 = {(λ : 0 : 0 : µ)},

`2 = {(µ : −4µ : λ : 0)},

`3 = {(µ : 0 : λ+ µ : 3λ+ µ)},

`4 = {(µ : λ : λ : 3λ− µ)},

`5 = {(λ : µ : −3µ : 3λ)},

`6 = {(λ : µ : 4µ : −4λ)},

`7 = {(λ+ µ : −4λ : 0 : 6µ)},

`8 = {(µ : λ : λ− 4µ : 3λ)},

`9 = {(µ : λ : 3λ+ 6µ : 3µ)},

`10 = {(0 : λ : 0 : µ)},

`11 = {(µ : λ : 6µ : 4λ+ 3µ)},

`12 = {(µ : λ : 6λ− µ : 5λ)},

`13 = {(µ : λ : −3λ : 4λ+ 3µ)},
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`14 = {(µ : λ+ 2µ : −4λ : −4µ)},

`15 = {(µ : λ− 4µ : −4µ : 3λ)},

`16 = {(λ : µ : 6λ : 5µ)},

`17 = {(λ : 0µ : 0)},

`18 = {(λ : µ : −5λ : −2µ)},

`19 = {(λ+ µ : 2λ : −3µ : −4λ)},

`20 = {(µ : λ : 4λ : −λ− 4µ)},

`21 = {(0 : λ : µ : 3µ)},

`22 = {(µ : λ : −5µ : −λ− 4µ)},

`23 = {(0 : λ : µ : 0)},

`24 = {(λ+ µ : λ : µ : λ+ µ)},

`25 = {(λ+ µ : −4µ : −6λ+ 5µ : 6λ)},

`26 = {(µ : λ : λ : µ)},

`27 = {(µ : λ : −4µ : 3λ)}.

where (λ : µ) ∈ PG(1, 13). Furthermore, S has 18 Eckardt points which are

Q1 = (0 : 1 : 0 : 0),

Q2 = (0 : 0 : 1 : 0),

Q3 = (0 : 1 : 1 : 3),

Q4 = (0 : 1 : 0 : 3),

Q5 = (1 : 0 : 0 : 3),

Q6 = (1 : 2 : 0 : −4),
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Q7 = (1 : −4 : −4 : 0),

Q8 = (1 : 0 : 6 : 3),

Q9 = (1 : −5 : 6 : 1),

Q10 = (1 : 6 : 6 : 1),

Q11 = (1 : 0 : 0 : −4),

Q12 = (1 : 0 : −5 : −4),

Q13 = (1 : −5 : −5 : 1),

Q14 = (1 : 0 : −4 : 0),

Q15 = (1 : −2 : 0 : 3),

Q16 = (1 : 6 : −5 : 1),

Q17 = (1 : 2 : −5 : −4),

Q18 = (1 : −2 : 6 : 3).

As another example: consider the plane quadrilaterals Q(6)(19) and the configu-

ration Q(10)(19) in Section 3.4.

For the plane quadrilaterals Q(6)(19), we are able to determine the equation of

the correspond non-singular cubic surface, namely S (6)(19). From Section 3.4, the

lines c16, c24, c35 lie on the cubic surface S (6)(19). The trihedral pairs containing the

plane section consisting the c16, c24, and c35 are T123,654, T124,635, T123,645 and T124,653.

To determine the equation of S (6)(19), we consider only one of the four trihedral

pairs, namely
T123,654 : c16 c25 c34

c24 c13 c56

c35 c46 c12

Let the three faces of one triad, namely the row plane sections c16c25c34, c24c13c56

and c35c46c12, be p1, p2 and p3 respectively. The three faces of the second triad (the
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conjugate triad), namely the column planes sections c16c24c35, c25c13c46 and c34c56c12,

are denoted by p′1, p
′
2 and p′3 respectively. From Section 3.2, we know that the six

plane sections of T123,654 in PG(3, 19) corresponds to 6 cubic curves of the web W ,

through the 6 points in general position Pi ∈ S7, where S7 is a 6-arc not on a conic

in PG(2, 19), namely

S7 = {1,2,3,4,6,285}.

Let the planes p1 = V(L1), p2 = V(L2), p′2 = V(L′2) and p′3 = V(L′3) correspond to the

cubic curves ω1 = V(W1), ω2 = V(W2), ω′2 = V(W ′
2) and ω′3 = V(W ′

3) respectively,

where

ω1 = V(P1P6) ∪ V(P2P5) ∪ V(P3P4)

= V(x2
0x1 − 7x2

0x2 − x2
1x0 + 7x2

1x2 − 8x2
2x0 + 8x2

2x1);

ω2 = V(P1P6) ∪ V(P2P5) ∪ V(P3P4)

= V(x2
0x1 − 2x2

1x0 + 2x2
1x2 + x2

2x1 − 2x0x1x2);

ω′2 = V(P1P6) ∪ V(P2P5) ∪ V(P3P4)

= V(x2
0x1 + 4x2

1x0 − 9x2
1x2 − 3x2

2x1 + 7x0x1x2);

ω′3 = V(P1P6) ∪ V(P2P5) ∪ V(P3P4)

= V(x2
0x2 + 2x2

1x2 − x2
2x0 + x2

2x1 − 3x0x1x2).

From above argument, we have the following configuration

T123,654 : c16 c25 c34 → p1 = V(y0) ! ω1 = V(W1)

c24 c13 c56 → p2 = V(y1) ! ω2 = V(W2)

c35 c46 c12 → p3 = V(L3) ! ω3 = V(W3)

↓ ↓ ↓

p′1 p′2 p′3
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where

p′1 = V(L′1)! ω′1 = V(W ′
1),

p′2 = V(y2)! ω′2 = V(W ′
2),

p′3 = V(y3)! ω′3 = V(W ′
3),

and L3, L
′
1 are homogeneous linear forms in y0, y1, y2, y3, and W1 , W2, W3, W ′

1,

W ′
2, W ′

3 are homogeneous cubic forms in x0, x1, x2. By some algebraic calculations,

we get W1,W2,W
′
2 and W ′

3, are linearly independent. The plane cubics W3 and W ′
1,

where

ω3 = V(W3) = V(P3P5) ∪ V(P4P6) ∪ V(P1P1),

ω′1 = V(W ′
1) = V(P1P6) ∪ V(P2P4) ∪ V(P3P5),

can be written in terms of W1,W2,W
′
2 and W ′

3 as

W3 = −W1 + 4W2 + 2W ′
2 − 4W ′

3,

W ′
1 = W ′

2 − 7W ′
3.

It follows that

L3 = −y0 + 4y1 + 2y2 − 4y3,

L′1 = y2 − 7y3.

Consequently, the the equation of the non-singular cubic surface S (6)(19) with

λ = −1 is of the form:

S (6)(19) = V(L1L2L3 − λL′1L′2L′3)

= V(y0y1(−y0 + 4y1 − 3y2 − 6y3)− y2y3(y2 − 7y3)

= V(y2
0y1 − 4y2

1y0 + y2
2y3 − 7y2

3y2 + 3y0y1y2 + 6y0y1y3).
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Again from Section 3.4, the lines c16, c23, c45 lie on the cubic surface S (10)(19).

The trihedral pairs containing the plane section consisting the c16, c23, and c45 are

T12,36, T13,26, T34,52 and T14,56.

To determine the equation of S (10)(19), we consider only one of the four trihedral

pairs, namely

T12,36 : a1 b3 c13 → p1 = V(y0) ! ω1 = V(W1)

b6 a2 c26 → p2 = V(y1) ! ω2 = V(W2)

c16 c23 c45 → p3 = V(L3) ! ω3 = V(W3)

↓ ↓ ↓

p′1 p′2 p′3

q q q

V(L′1) V(y2) V(y3)

! ! !

ω′1 ω′2 ω′3

q q q

V(W ′
1) V(W ′

2) V(W ′
3)

where L3, L
′
1 are homogeneous linear forms in y0, y1, y2, y3, and W1, W2, W3, W ′

1, W ′
2,

W ′
3 are homogeneous cubic forms in x0, x1, x2.

From Section 3.2, we know that the six plane sections of T12,36 in PG(3, 19) cor-

responds to 6 cubic curves of the web W , through the 6 points in general position

Pi ∈ S3, where S3 is a 6-arc not on a conic in PG(2, 19), namely

S3 = {1,2,3,4,6,33}.

Let the planes p1 = V(L1) = V(y0), p2 = V(L2) = V(y1), p′2 = V(L′2) = V(y2)

and p′3 = V(L′3) = V(y3) correspond to the plane cubic curves ω1 = V(W1), ω2 =

V(W2), ω′2 = V(W ′
2) and ω′3 = V(W ′

3) respectively, where

90



ω1 = V(P1P3) ∪ V(C3)

= V(P1P3) ∪ V(x2
2 + 2x0x1 + x0x2 − 4x1x2)

= V(x2
1x0 − 2x2

1x2 − 9x2
2x1 − 9x0x1x2);

ω2 = V(P2P6) ∪ V(C6)

= V(P2P6) ∪ V(x0x1 + 5x0x2 − 6x1x2)

= V(x2
0x1 + 5x2

0x2 − 9x2
2x0 + 7x2

2x1 − 4x0x1x2);

ω′2 = V(P2P3) ∪ V(C3)

= V(P2P3) ∪ V(x2
2 + 2x0x1 + x0x2 − 4x1x2)

= V(x2
0x1 − 9x2

0x2 − 9x2
2x0 − 2x0x1x2);

ω′3 = V(P1P3) ∪ V(P2P6) ∪ V(P4P5)

= V(x2
0x1 − 3x2

1x0 − 6x2
1x2 + 4x2

2x1 + 4x0x1x2).

These four plane cubics, namely W1, W2, W ′
2 and W ′

3, are linearly independent.

Furthermore, the plane cubics W3 and W ′
1 where

ω3 = V(W3) = V(P1P6) ∪ V(P2P3) ∪ V(P4P5),

ω′1 = V(W ′
1) = V(P1P6) ∪ V(C6),

can be written in terms of W1,W2,W
′
2 and W ′

3 as

W3 = 8W1 − 9W2 − 9W ′
3,

W ′
1 = 2W1 − 7W2 − 6W ′

2 − 6W ′
3.

It follows that

L3 = 8y0 − 9y1 − 9y2,

L′1 = 2y0 − 7y1 − 6y2 − 6y3.
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Consequently, the the equation of the non-singular cubic surface S (6)(19) with

λ = −1 has the form:

S (10)(19) = V(L1L2L3 − λL′1L′2L′3)

= V(y0y1(8y0 − 9y1 − 9y3)− y2y3(2y0 − 7y1 − 6y2 − 6y3)

= V(y2
0y1 + 6y2

1y0 − 4y2
2y3 − 4y2

3y2 + 6y0y1y3 − 5y0y2y3 + 8y1y2y3).

Let
{

(a0λ+ b0µ : a1λ+ b1µ : a2λ+ b2µ : a3λ+ b3µ)
}
H
denote the hyperbolic line

on cubic surface passing through the points (a0 : a1 : a2 : a3) and (b0 : b1 : b2 : b3),

and let
{

(c0λ + d0µ : c1λ + d1µ : c2λ + d2µ : c3λ + d3µ)
}
E
denotes the elliptic line

on cubic surface passing through the points (c0 : c1 : c2 : c3) and (d0 : d1 : d2 : d3).

Then all distinct non-singular cubic surfaces (up to e-invariants) in PG(3, q) for

q = 17, 19, 23, 29, 31 with their 27 lines are shown in the tables: Table 3.8, Table 3.9,

Table 3.10, Table 3.11, Table 3.12, Table 3.13, Table 3.14, Table 3.15, Table 3.16,

Table 3.18, Table 3.19, Table 3.20, Table 3.21, Table 3.22, Table 3.23, Table 3.24,

Table 3.25, Table 3.26, Table 3.27, Table 3.28, Table 3.29, Table 3.30, Table 3.31,

Table 3.32, Table 3.33, Table 3.34, Table 3.35, Table 3.36, Table 3.37, Table 3.38,

Table 3.39 and Table 3.40.

Theorem 3.6. For q = 17, 19, 23, 29, 31, the possible number of elliptic lines on a

non-singular cubic surface with 27 lines over GF (q) are represented by the entries of

Table 3.41.

Proof. All the detail are shown in the tables of Section 3.6.

Let l be a line on a non-singular cubic surface S with 27 lines over GF (q) where

q is odd number, namely

S = V(f) = V(L1L2L3 + λL′1L
′
2L
′
3),
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Table 3.8: The non-singular cubic surface S (1)(17)

S (1)(17) = V(y2
0y1 + y2

1y0 + 4y2
2y3 − 3y2

3y2 + y0y1y2 + y0y1y3 + y0y2y3 + 2y1y2y3)
e3 = 1, e2 = 132, e1 = 219, e0 = 57 and |S (1)(17)| = 409

27 Lines on S (1)(17) : (λ : µ) ∈ P(F17); τ = λ+ µ Eckardt points
{(λ : 0 : µ : 0)}E {(λ : 5λ+ µ : −5µ : −6λ)}E (0 : 1 : 6 : 3)
{(λ : 0 : 0 : µ)}E {(λ : µ : −7λ+ 3µ : 8λ)}E
{(0 : λ : µ : 0)}H {(τ : −8µ : −5λ : 7µ)}H
{(0 : λ : 0 : µ)}H {(0 : µ : λ+ 8µ : 7λ)}H
{(λ : µ : −3µ : 8λ)}E {(λ : µ : −3λ− 8µ : 2λ+ 7µ)}H
{(λ : µ : 2λ : −3µ)}E {(λ : 7λ+ µ : −7µ : −8λ)}E
{(λ : µ : λ : 3µ)}E {(λ : µ : λ : −4λ− 2µ)}E
{(τ : −λ : 0 : −µ)}E {(λ : µ : 6µ : −2λ+ 3µ)}H
{(λ : µ : 6µ : −8λ)}E {(τ : 4µ : −7λ : −5µ)}H
{(τ : 8λ : 8λ : µ)}H {(λ : 3λ+ µ : −4λ : −4µ)}E
{(λ : µ : 2λ : 3λ+ µ)}E {(τ : −8µ : 7µ : −4λ)}H
{(λ : 0 : µ : 6λ+ 7µ)}H {(λ : −λ+ µ : −µ : 0)}E
{(λ : µ : µ : −6λ)}E {(λ : µ : 3λ+ 4µ : 6µ)}H
{(λ : µ : −4λ : 6µ)}E

# Elliptic lines= 16 #Hyperbolic lines= 11

Table 3.9: The non-singular cubic surface S (3)(17)

S (3)(17) = V(y2
0y1 + 4y2

1y0 + y2
2y3 + 2y2

3y2 − 8y0y1y2 − 4y0y2y3 − 5y1y2y3)
e3 = 3, e2 = 126, e1 = 225, e0 = 55 and |S (3)(17)| = 409

27 Lines on S (3)(17) : (λ : µ) ∈ P(F17); τ = λ+ µ Eckardt points
{(λ : 0 : µ : 0)}E {(λ : µ : −6λ : 5λ+ 7µ)}H (0 : 0 : 0 : 1)
{(λ : 0 : 0 : µ)}H {(λ : 4λ+ µ : −3µ : −4λ)}E (0 : 1 : 3 : 1)
{(0 : λ : µ : 0)}H {(λ : µ : 2λ : λ+ 2µ)}E (0 : 1 : 3 : 0)
{(0 : λ : 0 : µ)}H {(λ : µ : λ+ 4µ : −7λ)}H
{(λ : µ : 7λ : µ)}H {(λ : µ : −5µ : −7λ)}H
{(0 : τ : 5µ : −6λ)}H {(τ : 4µ : −5λ : −µ)}E
{(λ : µ : 3µ : 8λ)}H {(λ : µ : 6µ : 6λ+ 8µ)}E
{(τ : 6λ : λ : −6µ)}H {(λ : 0 : µ : 2λ+ 8µ)}E
{(λ : µ : −6λ : 4µ)}H {(λ : 4λ+ µ : 3µ : 8λ)}H
{(λ : 4λ : 0 : µ)}H {(λ : µ : 2λ : −8µ)}E
{(τ : 4λ : 5µ : 4λ)}H {(τ : 4µ : −2λ : 3λ− 5µ)}E
{(λ : µ : 6µ : −4λ)}E {(τ : 4µ : −2λ : 0)}E
{(λ : τ : 7λ : −7µ)}E {(τ : 5µ : −8µ : −8λ)}H
{(τ : 4µ : λ : 2µ)}H

# Elliptic lines= 12 #Hyperbolic lines= 15

and let Sλ denote the residual plane section, namely

Sλ = f
∣∣∣
l
.

Then we have the following facts ([27], Pages 196,197):

1. The residual plane sections Sλ define an involution on l.
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Table 3.10: The non-singular cubic surface S (4)(17)

S (4)(17) = V(y2
0y1 − y2

1y0 + 5y2
2y3 + y2

3y2 + 4y0y1y2 − 5y0y1y3 − y0y2y3 − y1y2y3)
e3 = 4, e2 = 123, e1 = 228, e0 = 54 and |S (4)(17)| = 409

27 Lines on S (4)(17) : (λ : µ) ∈ P(F17); τ = λ+ µ Eckardt points
{(λ : 0 : µ : 0)}E {(λ : µ : 8λ+ µ : −5λ)}E (0 : −8 : 5 : −4)
{(λ : 0 : 0 : µ)}H {(λ : 4λ+ µ : 5λ : 6µ)}H (1 : 6 : 5 : −5)
{(0 : λ : µ : 0)}E {(λ : µ : 3λ : 3λ+ 5µ)}E (1 : 0 : 0 : −5)
{(0 : λ : 0 : µ)}H {(λ : µ : λ+ 4µ : −4λ)}H (0 : 1 : −7 : 2)
{(λ : µ : 3λ : −8µ)}E {(λ : µ : −3λ : −λ+ 3µ)}E
{(τ : µ : 0 : 7λ)}H {(τ : −2µ : −5µ : −6λ)}E
{(τ : 0 : 7µ : λ)}H {(λ : µ : −7µ : −3λ+ 2µ)}H
{(τ : µ : 4µ : 0)}H {(λ : µ : −7µ : −4λ)}E
{(λ : µ : 5λ : −4µ)}E {(λ : µ : −4λ− 7µ : 2µ)}E
{(λ : µ : −6µ : −8λ)}E {(τ : 5λ : 6µ : 6λ+ 5µ)}H
{(τ : 2λ : −4λ : −5µ)}H {(τ : 8λ : −8µ : 2λ)}E
{(λ : µ : −3λ : 2µ)}H {(λ : 7λ+ µ : 8µ : −8λ)}H
{(λ : µ : −2µ : −5λ)}H {(τ : −7µ : −λ : 5µ)}H
{(0 : τ : 7µ : λ)}H

# Elliptic lines= 12 #Hyperbolic lines= 15

Table 3.11: The non-singular cubic surface S (6)(17)

S (6)(17) = V(y2
0y1 − 6y2

1y0 − 8y2
2y3 + 7y2

3y2 + 5y0y1y2 + 6y0y1y3 + 5y0y2y3 + 5y1y2y3)
e3 = 6, e2 = 117, e1 = 234, e0 = 52 and |S (6)(17)| = 409

27 Lines on S (6)(17) : (λ : µ) ∈ P(F17); τ = λ+ µ Eckardt points
{(λ : 0 : µ : 0)}H {(λ : µ : 5λ− 7µ : 5λ)}H (0 : 1 : −4 : 0)
{(λ : 0 : 0 : µ)}H {(λ : µ : 5λ : 5λ+ 8µ)}H (1 : −2 : 0 : −5)
{(0 : λ : µ : 0)}H {(λ : 4λ+ µ : 0 : τ)}H (1 : 0 : 6 : −6)
{(0 : λ : 0 : µ)}H {(λ : µ : −5λ+ 6µ : −6µ)}H (1 : 0 : 5 : 5)
{(λ : µ : 5λ : −5µ)}H {(λ : µ : −5µ : 5λ)}H (1 : −5 : 8 : 5)
{(τ : 3µ : −7λ : 0)}H {(τ : 2µ : −8µ : −4λ)}H (1 : 8 : 8 : −6)
{(τ : 0 : 7µ : −8λ)}H {(λ : µ : 6λ+ 2µ : −6λ)}H
{(τ : µ : µ : 2λ)}H {(λ : −2λ+ µ : −4µ : −5λ)}H
{(λ : µ : µ : −6λ)}H {(λ : 8λ+ µ : 6λ : 5µ)}H
{(λ : µ : −4µ : −5λ)}H {(λ : µ : 8λ : 6λ+ 7µ)}H
{(τ : −7µ : −6λ : 7µ)}H {(τ : 7µ : −3λ : 8λ+ 4µ)}H
{(λ : µ : 8λ : −6µ)}H {(0 : µ : λ+ 7µ : 6λ)}H
{(λ : µ : 6λ : −µ)}H {(τ : −6λ : −4λ : −7µ)}H
{(τ : −8λ : 4µ : 6λ)}H

# Elliptic lines= 0 #Hyperbolic lines= 27

2. Since Sλ is either a line pair or a conic, there are five possible configurations

for (l,Sλ) as in Figure 3.4.

3. The line l contains 0, 1, or 2 Eckardt points and S has at most 18 Eckardt

points.

4. The number of the type I and type II of the configurations (l,Sλ) for the

94



Table 3.12: The non-singular cubic surface S (2)(19)

S (2)(19) = V(y2
0y1 + y2

1y0 + 2y2
2y3 − 4y2

3y2 + y0y1y2 + y0y1y3 + y0y2y3 + y1y2y3)
e3 = 2, e2 = 129, e1 = 276, e0 = 88 and |S (2)(19)| = 495

27 Lines on S (2)(19) : (λ : µ) ∈ P(F19); τ = λ+ µ Eckardt points
{(λ : 0 : µ : 0)}E {(λ : µ : −2λ : 4λ− 4µ)}H (1 : −1 : 0 : 0)
{(λ : 0 : 0 : µ)}H {(λ : 6λ+ µ : 4µ : −7λ)}E (1 : 1 : −2 : 0)
{(0 : λ : µ : 0)}E {(λ : µ : −2µ : −4λ+ 4µ)}H
{(0 : λ : 0 : µ)}H {(λ : µ : −3λ+ 8µ : 9µ)}H
{(τ : 5λ : 9λ : −3τ)}H {(λ : µ : −6λ : 2λ− 8µ)}E
{(τ : 0 : 9λ : 5µ)}E {(τ : 9µ : 9µ : −2λ)}H
{(λ : −λ+ µ : −µ : 0)}H {(λ : µ : −6µ : −8λ+ 2µ)}E
{(0 : λ : µ : 5λ− 9µ)}E {(λ : 2λ+ µ : 8µ : −3λ)}E
{(τ : 8λ : 2λ+ 4µ : λ)}E {(λ : −λ+ µ : −4µ : 3µ)}H
{(λ : µ : −6λ : 9µ)}E {(τ : −9λ : 8µ : 8λ)}E
{(λ : µ : −2λ : −3µ)}H {(λ : −2λ+ µ : λ : −2µ)}H
{(λ : µ : 0 : −τ)}H {(λ : µ : 8λ− 3µ : 9λ)}H
{(λ : µ : µ : −7λ)}H {(τ : 5λ : 8λ : 9τ)}E
{(λ : µ : λ : −7µ)}H

# Elliptic lines= 12 #Hyperbolic lines= 17

Table 3.13: The non-singular cubic surface S (3)(19)

S (3)(19) = V(y2
0y1 + y2

1y0 + 4y2
2y3 − 7y2

3y2 + y0y1y2 + y0y1y3 + y0y2y3 + y1y2y3)
e3 = 3, e2 = 126, e1 = 279, e0 = 87 and |S (3)(19)| = 495

27 Lines on S (3)(19) : (λ : µ) ∈ P(F19); τ = λ+ µ Eckardt points
{(λ : 0 : µ : 0)}E {(0 : λ : µ : −8λ+ 6µ)}H (1 : −5 : −6 : −5)
{(λ : 0 : 0 : µ)}E {(λ : µ : 5λ : 3λ− 9µ)}H (1 : −1 : 0 : 0)
{(0 : λ : µ : 0)}E {(λ : 0 : µ : −8λ+ 6µ)}H (1 : −4 : 5 : 1)
{(0 : λ : 0 : µ)}E {(λ : 5λ+ µ : −6λ : 5µ)}E
{(τ : −λ : −µ : 0)}H {(λ : −8λ+ µ : −8µ : 7λ)}H
{(τ : 9µ : −4λ : 9µ)}E {(λ : µ : 7λ− 9µ : −5µ)}H
{(τ : 4µ : −5µ : 5λ)}E {(τ : 2µ : −3µ : −4λ)}H
{(λ : µ : −6λ : µ)}H {(λ : −2λ+ µ : −4µ : λ)}E
{(λ : µ : 0 : −τ)}H {(λ : 4λ+ µ : 7µ : −5λ)}H
{(λ : µ : 5λ : 7µ)}E {(λ : µ : 8µ : −5λ)}E
{(λ : µ : 8λ : −5µ)}E {(λ : µ : 8λ : 2λ− 4µ)}H
{(τ : −µ : λ : −2λ)}H {(τ : 7µ : −8λ : −8µ)}H
{(λ : µ : −6µ : λ)}H {(λ : µ : 5µ : −9λ+ 3µ)}H
{(λ : µ : 5µ : 7λ)}E

# Elliptic lines= 12 #Hyperbolic lines= 17

different involutions on l are given by Table 3.42.

Theorem 3.7. There are 4, 7, 5, 7, 9 distinct non-singular cubic surfaces with 27 lines
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Table 3.14: The non-singular cubic surface S (4)(19)

S (4)(19) = V(y2
0y1 + y2

1y0 + 8y2
2y3 − 9y2

3y2 + y0y1y2 + y0y1y3 + y0y2y3 + y1y2y3)
e3 = 4, e2 = 123, e1 = 282, e0 = 86 and |S (4)(19)| = 495

27 Lines on S (4)(19) : (λ : µ) ∈ P(F19); τ = λ+ µ Eckardt points
{(λ : 0 : µ : 0)}E {(λ : µ : −5µ : 9λ+ 2µ)}H (1 : 1 : −9 : 7)
{(λ : 0 : 0 : µ)}E {(τ : 7λ− µ : 2λ : 9λ)}H (1 : 9 : −5 : 7)
{(0 : λ : µ : 0)}E {(λ : 0 : 7λ+ µ : 3µ)}H (1 : −2 : −9 : 5)
{(0 : λ : 0 : µ)}E {(λ : µ : 3λ− 2µ : 7λ)}E (1 : −1 : 0 : 0)
{(λ : µ : 0 : −τ)}H {(λ : −6λ+ µ : −7µ : 5λ)}H
{(λ : −λ+ µ : −µ : 0)}H {(λ : µ : −5λ : 2λ+ 9µ)}H
{(τ : 7λ : −2µ : −8λ)}E {(λ : µ : −7λ− 4µ : 5µ)}H
{(λ : µ : −5µ : −3λ)}E {(0 : µ : λ : 3λ− 2µ)}H
{(λ : µ : −9µ : 7λ)}H {(λ : µ : 4λ : −9λ+ 2µ)}H
{(λ : µ : −9λ : 7µ)}H {(λ : µ : −3λ+ 6µ : −3µ)}H
{(λ : µ : −5λ : −3µ)}E {(λ : µ : −9λ : 9λ+ 6µ)}E
{(τ : −4λ : 3λ : 2µ)}H {(τ : 2µ : µ : 6λ+ 5µ)}E
{(λ : µ : 4µ : 5λ)}E {(λ : µ : 6λ− 3µ : −3λ)}H
{(λ : µ : 4λ : 5µ)}E

# Elliptic lines= 12 #Hyperbolic lines= 17

Table 3.15: The non-singular cubic surface S (6)(19)

S (6)(19) = V(y2
0y1 − 4y2

1y0 + y2
2y3 − 7y2

3y2 + 3y0y1y2 + 6y0y1y3)
e3 = 6, e2 = 117, e1 = 288, e0 = 84 and |S (6)(19)| = 495

27 Lines on S (6)(19) : (λ : µ) ∈ P(F19); τ = λ+ µ Eckardt points
{(λ : 0 : µ : 0)}H {(λ : −8λ+µ : −3λ−9µ : −6λ−4µ)}H (1 : 0 : 0 : 0)
{(λ : 0 : 0 : µ)}H {(τ : −6λ+4µ : −6λ+4µ : −λ−5µ)}H (0 : 1 : 0 : 0)
{(0 : λ : µ : 0)}H {(τ : 5λ− 8µ : −3λ+ µ : −5λ+ µ)}H (1 : 0 : 3 : −5)
{(0 : λ : 0 : µ)}H {(τ : 3λ+ 2µ : −7λ− µ : −λ+ 8µ)}H (1 : 5 : 0 : 0)
{(0 : τ : −9µ : −4µ)}H {(λ : 2λ+ µ : 3λ+ 6µ : −λ+ 9µ)}H (0 : 1 : 7 : 1)
{(τ : −2λ− 8µ : −4λ+ µ : τ)}H {(τ : 8λ− 6µ : −5τ : −7λ+ 4µ)}H (1 : −5 : 3 : −5)
{(λ : −λ+ µ : 0 : −4λ+ 7µ)}H {(τ : −5λ+ 6µ : −3λ− 5µ : −5τ)}H
{(τ : 9λ+ 7µ : 3τ : 9λ+ 7µ)}H {(τ : λ− 5µ : λ− 3µ : λ− 5µ)}H
{(τ : 8λ− 5µ : 3τ : −8λ+ 4µ)}H {(τ : 5λ− 6µ : −3λ− 4µ : −5τ)}H
{(τ : 0 : 9µ : 4µ)}H {(τ : 8λ− 6µ : −5λ− µ : 6λ− 7µ)}H
{(τ : λ+ 5µ : λ+ 5µ : τ)}H {(τ : 8λ+ 5µ : −5λ+ 4µ : −7τ)}H
{(τ : −2λ−8µ : −4τ : λ+4µ)}H {(τ : −9λ+ 9µ : −4τ : 5λ+ 2µ)}H
{(λ : −9λ+µ : 7λ−2µ : −5λ)}H {(τ : 8λ− 5µ : −5τ : 6λ+ µ)}H
{(τ : 7λ+ 6µ : 9λ− 5µ : 0)}H

# Elliptic lines= 0 #Hyperbolic lines= 27

(up to e-invariants) in PG(3, q) for q = 17, 19, 23, 29, 31 respectively, namely,

S (m)(17),m = 1, 3, 4, 6.

S (m)(19),m = 2, 3, 4, 6, 9, 10, 18.

S (m)(23),m = 1, 2, 3, 4, 6.

S (m)(29),m = 0, 1, 2, 3, 4, 6, 10.

S (m)(31),m = 0, 1, 2, 3, 4, 6, 9, 10, 18.
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Table 3.16: The non-singular cubic surface S (9)(19)

S (9)(19) = V(y2
0y1 + y2

1y0 + 3y2
2y3 − 6y2

3y2 + y0y1y2 + y0y1y3 + y0y2y3 + y1y2y3)
e3 = 9, e2 = 108, e1 = 297, e0 = 81 and |S (9)(19)| = 495

27 Lines on S (9)(19) : (λ : µ) ∈ P(F19); τ = λ+ µ Eckardt points
{(λ : 0 : µ : 0)}H {(0 : τ : 6λ+ µ : 7µ)}H (1 : 8 : 7 : 1)
{(λ : 0 : 0 : µ)}H {(λ : −λ+ µ : −5µ : 4µ)}H (1 : 0 : 7 : 0)
{(0 : λ : µ : 0)}H {(λ : 6λ+ µ : −5µ : −7λ)}H (1 : 0 : 8 : 1)
{(0 : λ : 0 : µ)}H {(λ : µ : 2λ : −2λ− 7µ)}H (1 : 0 : 0 : −7)
{(τ : 7µ : −8µ : 6λ)}H {(λ : µ : 4λ+ 8µ : µ)}H (1 : −1 : 0 : 0)
{(λ : µ : 7λ : −4µ)}H {(λ : −2λ+ µ : 4µ : λ)}H (0 : 1 : 8 : 1)
{(τ : −µ : −λ : 0)}H {(λ : µ : 2µ : −7λ− 2µ)}H (1 : −7 : 8 : −7)
{(τ : 0 : 6λ : −3µ)}H {(λ : µ : 7λ : −9λ+ 6µ)}H (0 : 1 : 0 : −7)
{(λ : µ : 2µ : −7λ)}H {(λ : µ : 7λ− 2µ : −4µ)}H (0 : 1 : 7 : 0)
{(λ : µ : 8λ : µ)}H {(λ : µ : 8µ : −2λ+ µ)}H
{(λ : µ : 0 : −τ)}H {(λ : µ : −2λ+ 7µ : −4λ)}H
{(λ : µ : 8µ : λ)}H {(λ : µ : 8λ : λ− 2µ)}H
{(λ : µ : 2λ : −7µ)}H {(λ : µ : −5λ− 8µ : −7µ)}H
{(λ : µ : 7µ : −4λ)}H

# Elliptic lines= 0 #Hyperbolic lines= 27

Table 3.17: The non-singular cubic surface S (10)(19)

S (10)(19) = V(y2
0y1 + 6y2

1y0 − 4y2
2y3 − 4y2

3y2 + 6y0y1y3 − 5y0y2y3 + 8y1y2y3)
e3 = 10, e2 = 105, e1 = 300, e0 = 80 and |S (10)(19)| = 495

27 Lines on S (10)(19) : (λ : µ) ∈ P(F19); τ = λ+ µ Eckardt points
{(λ : 0 : µ : 0)}H {(τ : −6λ+ 5µ : −4τ : −λ+ 4µ)}E (0 : 0 : 1 : 0)
{(λ : 0 : 0 : µ)}E {(τ : 4λ+ 7µ : 5λ+ 4µ : −4λ+ 3µ)}E (1 : −7 : −4 : 6)
{(0 : λ : µ : 0)}H {(τ : 4λ+ 7µ : 9λ+ 2µ : −8λ+ 5µ)}H (1 : −4 : 1 : 8)
{(0 : λ : 0 : µ)}E {(λ : 8λ+ µ : −9λ+ 6µ : 6λ)}H (1 : 3 : 0 : 0)
{(µ : 3µ : λ− 7µ : 0)}H {(0 : τ : −7λ+ 8µ : 9λ− 6µ)}E (1 : −7 : −3 : 6)
{(τ : 7λ+ 3µ : 3λ+ 4µ : 9λ)}H {(τ : 4λ− 7µ : τ : −8λ− 5µ)}H (1 : −3 : 0 : 6)
{(λ : −8λ+ µ : −3λ : 8λ+ µ)}E {(τ : −8λ− 7µ : −8λ− 7µ : 8λ+ 9µ)}E (1 : −3 : 1 : 6)
{(τ : −8λ− µ : −8λ− µ : 8τ)}H {(τ : −8λ+ 6µ : −3λ− 8µ : 8τ)}H (1 : −4 : −4 : 8)
{(τ : 4λ− 5µ : τ : −4λ− 6µ)}E {(τ : −6λ− 5µ : 7λ− µ : −3λ+ 7µ)}H (1 : 0 : −3 : 0)
{(τ : 5λ− 6µ : 6λ− 7µ : 6τ)}H {(τ : λ− 3µ : −5λ− 4µ : 9τ)}E (0 : 1 : 1 : 0)
{(τ : −7λ−3µ : −7λ+2µ : 9τ)}E {(τ : 7λ+ µ : −7λ− 6µ : −4λ+ 2µ)}H
{(τ : 0 : 9λ− 6µ : 4λ)}E {(τ : λ− 3µ : 3λ+ 2µ : −3λ+ 9µ)}E
{(µ : λ− 5µ : −4µ : 7λ+ µ)}H {(τ : −6λ+ 6µ : −3τ : −3λ+ 3µ)}H
{(τ : 7λ− 8µ : 0 : −4λ− 8µ)}H

# Elliptic lines= 12 #Hyperbolic lines= 15

Proof. By the argument introduced in previous section, and our computer programs,

the distinct non-singular cubic surfaces with 27 lines (up to e-invariants) that corre-

sponding to 6-arcs not on a conic in PG(2, q) for q = 17, 19, 23, 29, 31 are shown in

Section 3.6. More precisely, if T (q)
i represents the type of a non-singular cubic surface

with 27 lines over GF (q), and e0,i, e1,i, e2,i, e3,i denote the e-invariants correspond to

T
(q)
i , then we have the Table 3.43 which illustrates the distinct non-singular cubic
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Table 3.18: The non-singular cubic surface S (18)(19)

S (18)(19) = V(y2
0y1 + 8y2

1y0 + 9y2
2y3 − 9y2

3y2 + 3y0y1y2 − 5y0y1y3)
e3 = 18, e2 = 81, e1 = 324, e0 = 72 and |S (18)(19)| = 495

27 Lines on S (18)(19) : (λ : µ) ∈ P(F19); τ = λ+ µ Eckardt points
{(λ : 0 : µ : 0)}H {(τ : 5λ− 4µ : 0 : −7λ+ 9µ)}H (0 : 1 : 0 : 0)
{(λ : 0 : 0 : µ)}H {(τ : 2λ− 6µ : 6λ+ µ : −5λ+ 9µ)}H (1 : 0 : 0 : 0)
{(0 : λ : µ : 0)}H {(τ : −8λ−2µ : −3λ+2µ : −3λ+2µ)}H (1 : 0 : 0 : 8)
{(0 : λ : 0 : µ)}H {(τ : −3λ− 2µ : −9λ− 6µ : 8τ)}H (1 : −6 : 1 : 8)
{(0 : τ : −5µ : −5µ)}H {(τ : −6λ+ 2µ : 7λ+ 6µ : −4λ− 5µ)}H (0 : 1 : 8 : 8)
{(τ : −5λ : −5λ : 2λ+ 7µ)}H {(τ : −7λ+ 4µ : −7λ+ 4µ : 3τ)}H (1 : 7 : 0 : 0)
{(λ : τ : 8τ : −6λ+ 8µ)}H {(τ : −3λ+ 3µ : −3λ+ 8µ : 4λ− 4µ)}H (1 : −8 : −7 : 1)
{(τ : λ+ 4µ : −λ− 7µ : τ)}H {(τ : −3λ− 8µ : −9λ+ 7µ : 8τ)}H (0 : 1 : 0 : 7)
{(τ : 9µ : −7τ : −7λ+ 3µ)}H {(τ : 6λ+ 7µ : −2τ : 4λ− 8µ)}H (1 : 0 : 1 : 1)
{(τ : 6λ+ 2µ : 9λ+ 7µ : 0)}H {(τ : −5λ+ 8µ : −2λ+ 7µ : τ)}H (1 : −5 : −2 : 3)
{(τ : 7λ− 2µ : τ : −4λ− 3µ)}H {(τ : 2λ−3µ : −8λ+ 9µ : −3λ−5µ)}H (1 : 0 : −7 : 0)
{(τ : 2λ+ 9µ : 5λ− 7µ : 3τ)}H {(τ : 7λ+ 3µ : τ : −λ+ 5µ)}H (1 : −7 : 1 : 1)
{(λ : −7λ+µ : −7λ : 3λ+5µ)}H {(λ : −5λ+ µ : −2λ : λ+ 7µ)}H (1 : −7 : 0 : 8)
{(τ : 0 : −7µ : −7µ)}H (0 : 1 : 1 : 0)

(1 : 4 : −7 : 1)
(1 : −2 : −2 : 3)
(1 : 1 : 1 : 8)
(1 : −7 : −7 : 0)

# Elliptic lines= 0 #Hyperbolic lines= 27

Table 3.19: The non-singular cubic surface S (1)(23)

S (1)(23) = V(y2
0y1 + y2

1y0 + 2y2
2y3 + 8y2

3y2 + y0y1y2 + y0y1y3 + y0y2y3 + y1y2y3)
e3 = 1, e2 = 132, e1 = 381, e0 = 177 and |S (1)(23)| = 691

27 Lines on S (1)(23) : (λ : µ) ∈ P(F23); τ = λ+ µ Eckardt points
{(λ : 0 : µ : 0)}H {(λ : 5λ+ µ : −7µ : −6λ)}E (1 : −1 : 0 : 0)
{(λ : 0 : 0 : µ)}E {(τ : 9µ : −10µ : −10λ)}H
{(0 : λ : µ : 0)}H {(τ : 2λ : −11µ : −3λ)}E
{(0 : λ : 0 : µ)}E {(λ : µ : 4λ : −4λ− 10µ)}H
{(λ : −λ+ µ : −µ : 0)}H {(τ : −11µ : 10µ : 4λ)}H
{(λ : µ : 7λ : 10µ)}E {(λ : µ : −6λ− 11µ : 10λ)}E
{(λ : µ : 7λ : λ+ 3µ)}H {(λ : 10λ+ µ : 6µ : −11λ)}E
{(λ : µ : 4µ : −11λ)}E {(λ : µ : 7µ : 3λ+ µ)}H
{(λ : −λ+ µ : 0 : −µ)}H {(τ : −λ+ 5µ : −7µ : µ)}H
{(0 : τ : 11µ : −3λ)}E {(λ : µ : −3λ : −6µ)}E
{(τ : 0 : 11µ : −3λ)}E {(τ : −9µ : −7λ : 8µ)}E
{(λ : µ : 4λ : −11µ)}E {(τ : 7λ : 6µ : −8λ)}E
{(λ : µ : −3µ : −6λ)}E {(λ : 2λ+ µ : −3λ : 4µ)}H
{(τ : 10µ : µ : 10τ)}E

# Elliptic lines= 16 #Hyperbolic lines= 11

surfaces with 27 lines (up to e-invariants) over GF (q) for q = 17, 19, 23, 29, 31:

Corollary 3.1. The maximal number of Eckardt points on a non-singular cubic

surfaces with 27 lines in PG(3, q) for q = 17, 19, 23, 29, 31, are 6, 18, 6, 10, 18 respec-
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Table 3.20: The non-singular cubic surface S (2)(23)

S (2)(23) = V(y2
0y1 + y2

1y0 + 3y2
2y3 − 6y2

3y2 + y0y1y2 + y0y1y3 + y0y2y3 + y1y2y3)
e3 = 2, e2 = 129, e1 = 384, e0 = 176 and |S (2)(23)| = 691

27 Lines on S (2)(23) : (λ : µ) ∈ P(F23); τ = λ+ µ Eckardt points
{(λ : 0 : µ : 0)}E {(τ : 3µ : −4µ : 8λ)}E (1 : −1 : 0 : 0)
{(λ : 0 : 0 : µ)}E {(λ : 8λ+ µ : 8µ : −9λ)}E (0 : 0 : 1 : −1)
{(0 : λ : µ : 0)}E {(τ : −9λ : 8λ : −5µ)}E
{(0 : λ : 0 : µ)}E {(λ : µ : 2λ− 5µ : −6λ)}E
{(λ : µ : 0 : −τ)}H {(λ : µ : 11µ : −7λ+ 8µ)}E
{(λ : µ : −τ : 0)}H {(τ : 11λ : 11τ : 8µ)}E
{(λ : µ : −6µ : −6λ)}H {(λ : 0 : µ : −4λ− µ)}H
{(λ : µ : −9µ : −9λ)}H {(0 : λ : µ : −4λ− µ)}H
{(λ : −λ : µ : −µ)}H {(λ : 8λ+ µ : −9λ : 8µ)}E
{(λ : µ : 11λ : 11µ)}H {(λ : µ : −9λ : −9µ)}H
{(τ : −2λ : −7µ : λ)}E {(τ : 3µ : 8λ : −4µ)}E
{(τ : 11µ : 8λ : 11τ)}E {(λ : µ : −6λ : 2λ− 5µ)}E
{(λ : µ : 11µ : 11λ)}H {(τ : −9µ : −5λ : 8µ)}E
{(λ : µ : −6λ : −6µ)}H

# Elliptic lines= 16 #Hyperbolic lines= 11

Table 3.21: The non-singular cubic surface S (3)(23)

S (3)(23) = V(y2
0y1 + y2

1y0 + 7y2
2y3 + 8y2

3y2 + y0y1y2 + y0y1y3 + y0y2y3 + 3y1y2y3)
e3 = 3, e2 = 126, e1 = 387, e0 = 175 and |S (3)(23)| = 691

27 Lines on S (3)(23) : (λ : µ) ∈ P(F23); τ = λ+ µ Eckardt points
{(λ : 0 : µ : 0)}E {(λ : µ : 5λ : 7λ+ 5µ)}H (0 : 1 : 1 : −7)
{(λ : 0 : 0 : µ)}E {(λ : µ : −4λ+ µ : −7λ)}H (1 : −9 : 2 : −2)
{(0 : λ : µ : 0)}E {(λ : 8λ+ µ : 9µ : −9λ)}H (1 : −6 : 5 : 0)
{(0 : λ : 0 : µ)}E {(τ : 7λ : λ : 9λ+ µ)}E
{(τ : λ : λ : λ+ 8µ)}H {(λ : µ : 11λ+ 2µ : −5µ)}E
{(λ : µ : 0 : −τ)}H {(τ : −10λ : 6µ : 9τ)}H
{(λ : µ : 5λ : −10µ)}E {(λ : µ : 2λ : λ+ 8µ)}H
{(λ : µ : 10µ : −2λ)}H {(λ : −6λ+ µ : −5µ : 5λ+ 4µ)}H
{(λ : µ : 4λ : −5µ)}H {(0 : µ : λ : 2λ− 9µ)}H
{(λ : µ : −τ : 0)}H {(τ : −5µ : 9λ : 4µ)}H
{(λ : µ : 3µ : −9λ)}E {(λ : τ : 11µ : −2λ)}E
{(λ : µ : µ : 9λ)}E {(λ : µ : 4λ : 5λ+ µ)}E
{(λ : µ : 2λ : −7µ)}E {(τ : 0 : 2λ : λ− 3µ)}H
{(τ : −6λ : 5λ : 5µ)}H

# Elliptic lines= 12 #Hyperbolic lines= 17

tively. Moreover, the minimal number of Eckardt points on a non-singular cubic

surfaces with 27 lines in PG(3, q) for q = 17, 19, 23, 29, 31, are 1, 2, 1, 0, 0 respectively.

Proof. See Table 3.41.

Corollary 3.2. The number of elliptic lines on a non-singular cubic surfaces with 27

lines in PG(3, q) for q = 17, 19, 23, 29, 31 is either 0 or 12 or 16.
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Table 3.22: The non-singular cubic surface S (4)(23)

S (4)(23) = V(y2
0y1 + y2

1y0 + 9y2
2y3 + 9y2

3y2 + y0y1y2 + y0y1y3 + y0y2y3 + y1y2y3)
e3 = 4, e2 = 123, e1 = 390, e0 = 174 and |S (4)(23)| = 691

27 Lines on S (4)(23) : (λ : µ) ∈ P(F23); τ = λ+ µ Eckardt points
{(λ : 0 : µ : 0)}H {(λ : 10λ+ µ : −11λ : 3µ)}E (1 : −1 : 0 : 0)
{(λ : 0 : 0 : µ)}H {(λ : µ : −11µ : −11λ)}E (0 : 0 : 1 : −1)
{(0 : λ : µ : 0)}H {(τ : −7µ : 9λ+ 8µ : −11µ)}E (1 : 1 : −2 : 0)
{(0 : λ : 0 : µ)}H {(λ : µ : −5µ : 9λ+ 10µ)}E (1 : 1 : 0 : −2)
{(0 : τ : 5λ : 5µ)}H {(λ : µ : −2λ : 7λ− 7µ)}H
{(τ : µ : −7λ : −2µ)}H {(λ : µ : −7λ+ 3µ : −11λ)}E
{(λ : µ : 0 : −τ)}H {(λ : µ : −2µ : −7λ+ 7µ)}H
{(λ : µ : −τ : 0)}H {(λ : 4λ+ µ : −5λ : 9µ)}E
{(λ : −λ : µ : −µ)}H {(λ : µ : −2µ : −2λ)}H
{(λ : µ : −2λ : −2µ)}H {(λ : µ : 3λ− 7µ : −11µ)}E
{(λ : µ : −11λ : −11µ)}E {(λ : τ : −7µ : −2λ)}H
{(τ : 0 : 5λ : 5µ)}H {(τ : 7λ : −8λ : 3µ)}E
{(λ : µ : −5λ : −5µ)}E {(λ : 4λ+ µ : 9µ : −5λ)}E
{(λ : µ : −5µ : −5λ)}E

# Elliptic lines= 12 #Hyperbolic lines= 17

Table 3.23: The non-singular cubic surface S (6)(23)

S (6)(23) = V(y2
0y1 − 10y2

1y0 − 10y2
2y3 + 5y2

3y2 − 3y0y1y2 + 4y0y1y3 − 10y0y2y3)
e3 = 6, e2 = 117, e1 = 396, e0 = 172 and |S (6)(23)| = 691

27 Lines on S (6)(23) : (λ : µ) ∈ P(F23); τ = λ+ µ Eckardt points
{(λ : 0 : µ : 0)}H {(λ : µ : −8λ : 9λ+ µ)}H (0 : 1 : 0 : 0)
{(λ : 0 : 0 : µ)}H {(λ : µ : λ : 4λ− 3µ)}H (1 : 0 : −8 : 0)
{(0 : λ : µ : 0)}H {(λ : µ : 11λ+ µ : λ)}H (1 : −9 : −8 : 0)
{(0 : λ : 0 : µ)}H {(λ : 0 : µ : 2τ)}H (0 : 1 : 1 : 0)
{(λ : µ : µ : λ)}H {(λ : 6λ+ µ : λ+ 2µ : 4τ)}H (1 : 9 : 1 : 0)
{(τ : 9λ : λ : −2µ)}H {(τ : 3µ : λ+ 2µ : 2µ)}H (1 : 0 : 1 : 0)
{(τ : 7µ : 8λ : 0)}H {(λ : µ : µ : −9λ+ 2µ)}H
{(τ : 7µ : 0 : −6λ)}H {(λ : µ : 2λ− 10µ : 6λ)}H
{(λ : µ : −8λ : 6µ)}H {(λ : µ : −5λ+ 11µ : −8λ)}H
{(λ : µ : 6µ : −8λ)}H {(λ : µ : 6µ : −7λ− 11µ)}H
{(τ : 8λ : −7µ : −9λ)}H {(λ : µ : −8λ+ 3µ : 6µ)}H
{(λ : µ : λ : −7µ)}H {(λ : µ : −6λ : −4µ)}H
{(λ : µ : −5µ : 6λ)}H {(λ : µ : −6λ : −10λ− 2µ)}H
{(0 : τ : 2µ : 4µ)}H

# Elliptic lines= 0 #Hyperbolic lines= 27

Proof. See Table 3.41.

Corollary 3.3. For q odd prime, the number of elliptic lines on a non-singular cubic

surfaces S (3)(q) with 27 lines in PG(3, q) is 12.

Proof. Let l1, l2, and l3 be any three lines on the non-singular cubic surface S (3)(q).
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Table 3.24: The non-singular cubic surface S (0)(29)

S (0)(29) = V(y2
0y1 + y2

1y0 + 5y2
2y3 + 6y2

3y2 + y0y1y2 + y0y1y3 + y0y2y3 + 3y1y2y3)
e3 = 0, e2 = 135, e1 = 540, e0 = 370 and |S (0)(29)| = 1045

27 Lines on S (0)(29) : (λ : µ) ∈ P(F29); τ = λ+ µ Eckardt points
{(λ : 0 : µ : 0)}H {(λ : µ : −11λ+ 6µ : 9µ)}E
{(λ : 0 : 0 : µ)}H {(λ : µ : 10λ− 11µ : 6λ)}H
{(0 : λ : µ : 0)}E {(λ : µ : 14λ : −7λ− 14µ)}H
{(0 : λ : 0 : µ)}E {(λ : 8λ+ µ : −3µ : −9λ+ 2µ)}H
{(λ : µ : −5µ : 9λ)}E {(λ : −10λ+ µ : −4µ : 9λ)}H
{(λ : µ : −9λ : 5µ)}E {(λ : 8λ+ µ : −9λ : −13µ)}H
{(τ : −µ : 0 : −λ)}E {(τ : 3λ : −3µ : −4λ)}E
{(τ : 0 : −6λ : −5µ)}H {(τ : −4λ : 3λ : −14µ)}E
{(λ : µ : 14λ : 9µ)}E {(λ : µ : −4λ+ 5µ : 5λ)}E
{(λ : µ : −τ : 0)}E {(τ : −7λ : 6λ : −13µ)}E
{(λ : µ : −8µ : 6λ)}E {(λ : 7λ+ µ : −3µ : −8λ)}H
{(0 : τ : 11λ : 14µ)}H {(λ : µ : −13λ : −11µ)}E
{(τ : 5λ : −6λ : 12µ)}E {(λ : µ : −13λ : λ+ 12µ)}H
{(λ : µ : −7µ : −8λ)}E

# Elliptic lines= 16 #Hyperbolic lines= 11

Table 3.25: The non-singular cubic surface S (1)(29)

S (1)(29) = V(y2
0y1 + y2

1y0 + 4y2
2y3 + 6y2

3y2 + y0y1y2 + y0y1y3 + y0y2y3 + y1y2y3)
e3 = 1, e2 = 132, e1 = 543, e0 = 369 and |S (1)(29)| = 1045

27 Lines on S (1)(29) : (λ : µ) ∈ P(F29); τ = λ+ µ Eckardt points
{(λ : 0 : µ : 0)}E {(λ : µ : −4λ+ 3µ : −12λ)}H (1 : −1 : 0 : 0)
{(λ : 0 : 0 : µ)}H {(τ : −9λ : −12µ : 8λ)}H
{(0 : λ : µ : 0)}E {(λ : µ : −13λ− 3µ : −3µ)}H
{(0 : λ : 0 : µ)}H {(0 : λ : µ : −5λ+ 9µ)}E
{(τ : 14µ : 14µ : 2λ)}E {(λ : µ : 8λ : 9λ+ µ)}E
{(λ : µ : λ : 4λ+ 2µ)}E {(λ : 2λ+ µ : −13µ : −3λ)}H
{(λ : µ : µ : −12λ)}E {(λ : µ : −11λ− 12µ : 12λ)}H
{(λ : µ : −7λ : 12µ)}E {(λ : µ : 8λ : −3µ)}E
{(λ : µ : 0 : −τ)}H {(λ : µ : 8µ : −3λ)}E
{(λ : µ : λ : −12µ)}E {(τ : −µ : 12λ : −13λ)}H
{(τ : 8λ : 3µ : −9λ)}H {(λ : µ : −7µ : 12λ)}E
{(λ : µ : 8µ : λ+ 9µ)}E {(λ : 6λ+ µ : −7λ : −8µ)}E
{(τ : 0 : 7µ : −5λ)}E {(τ : 5λ : −6λ : −8µ)}E
{(λ : µ : −τ : 0)}H

# Elliptic lines= 16 #Hyperbolic lines= 11

Consider the following three configurations, namely

(l1,S (3)
λ (q)), (l2,S (3)

λ (q)), and (l3,S (3)
λ (q)).

Then according to the previous facts mentioned in Table 3.42, each configuration has

1 hyperbolic involutions of type I, and 4 hyperbolic involutions of type II. So the

total number of hyperbolic involutions corresponding to each configuration is 5. This
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Table 3.26: The non-singular cubic surface S (2)(29)

S (2)(29) = V(y2
0y1 + 9y2

1y0 − 2y2
2y3 + 4y2

3y2 + 5y0y1y2 + 12y0y1y3 + 12y0y2y3 − 12y1y2y3)
e3 = 2, e2 = 129, e1 = 546, e0 = 368 and |S (2)(29)| = 1045

27 Lines on S (2)(29) : (λ : µ) ∈ P(F29); τ = λ+ µ Eckardt points
{(λ : 0 : µ : 0)}E {(λ : 5λ+ µ : 10µ : λ)}E (1 : 0 : 0 : 4)
{(λ : 0 : 0 : µ)}H {(τ : 6µ : µ : 4λ+ 8µ)}H (1 : 3 : −14 : 4)
{(0 : λ : µ : 0)}E {(τ : λ : 3λ− 8µ : −6λ)}E
{(0 : λ : 0 : µ)}H {(τ : 4λ : 6λ+ 14µ : 8λ)}E
{(λ : µ : µ : λ)}H {(τ : 6λ : 5λ− 4µ : 8λ)}H
{(λ : µ : λ : 11µ)}E {(λ : µ : −6λ− 7µ : −6λ)}H
{(λ : µ : 3µ : −6λ)}E {(τ : −13λ+ 5µ : 0 : µ)}H
{(λ : τ : λ : λ− 11µ)}E {(τ : 4µ : −10λ : −8λ+ 9µ)}H
{(τ : 0 : 6λ : −3µ)}E {(λ : 2λ+ µ : 2λ+ 4µ : 0)}H
{(0 : τ : −6µ : 3λ)}E {(λ : µ : −14λ : −10λ− 5µ)}H
{(τ : 2µ : 2µ : −7λ)}H {(λ : 4λ+ µ : −13λ : 4λ+ 7µ)}H
{(λ : µ : −14λ : 2µ)}H {(λ : µ : −13λ : −6µ)}H
{(λ : µ : 5µ : 4λ)}H {(τ : 3λ : 9λ : λ+ 2µ)}E
{(λ : τ : −14µ : 4λ)}E

# Elliptic lines= 12 #Hyperbolic lines= 15

Table 3.27: The non-singular cubic surface S (2)∗(29)

S (2)(29) = V(y2
0y1 − 9y2

1y0 − 8y2
2y3 + 14y2

3y2 + 11y0y1y2 − 12y0y1y3 − 3y0y2y3 + 6y1y2y3)
e3 = 2, e2 = 129, e1 = 546, e0 = 368 and |S (2)(29)| = 1045

27 Lines on S (2)(29) : (λ : µ) ∈ P(F29); τ = λ+ µ Eckardt points
{(λ : 0 : µ : 0)}E {(τ : −8µ : µ : −λ+ 3µ)}E (0 : 0 : 1 : 13)
{(λ : 0 : 0 : µ)}E {(λ : 0 : µ : −6λ+ 13µ)}H (1 : −9 : −9 : 1)
{(0 : λ : µ : 0)}E {(λ : −14λ+ µ : −λ : 9µ)}E
{(0 : λ : 0 : µ)}E {(λ : µ : −9µ : 11λ)}H
{(λ : µ : µ : λ)}H {(λ : 8λ+ µ : −12λ : 13µ)}E
{(τ : 14µ : 14µ : −2λ)}E {(λ : µ : 8λ− µ : 11λ)}E
{(λ : 13λ+ µ : 14µ : 0)}H {(λ : 2λ+ µ : −9λ : −11µ)}E
{(λ : 2λ+ µ : 12µ : λ)}E {(λ : µ : −9µ : 5λ+ 11µ)}E
{(λ : µ : −12λ : µ)}H {(λ : µ : 13λ− 12µ : µ)}E
{(λ : µ : −λ : −2µ)}H {(0 : µ : λ : 13λ+ 12µ)}H
{(λ : µ : −11µ : 13λ)}H {(λ : −9λ : µ : 2λ+ 13µ)}H
{(λ : µ : −9λ : −13µ)}H {(λ : µ : −11λ+ 7µ : −13µ)}E
{(λ : 13λ+ µ : 0 : −8µ)}H {(λ : −14λ+ µ : 6µ : 13λ)}E
{(τ : −2λ : 9µ : 4λ)}E

# Elliptic lines= 16 #Hyperbolic lines= 11

means we have 15 = 5·3 hyperbolic involutions corresponding to the all configurations.

Hence the number of hyperbolic lines on a non-singular cubic surfaces is 15 (see Figure

3.5).

So

#(Elliptic lines) = 27− 15 = 12.
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Table 3.28: The non-singular cubic surface S (3)(29)

S (3)(29) = V(y2
0y1 + y2

1y0 + 3y2
2y3 + 5y2

3y2 + y0y1y2 + y0y1y3 + y0y2y3 + y1y2y3)
e3 = 3, e2 = 126, e1 = 549, e0 = 367 and |S (3)(29)| = 1045

27 Lines on S (3)(29) : (λ : µ) ∈ P(F29); τ = λ+ µ Eckardt points
{(λ : 0 : µ : 0)}H {(τ : 3λ : 7λ : 4λ+ 3µ)}E (0 : 1 : −12 : 7)
{(λ : 0 : 0 : µ)}H {(λ : −6λ+ µ : 5µ : 5λ)}E (1 : −1 : 0 : 0)
{(0 : λ : µ : 0)}H {(λ : −λ+ µ : −2µ : µ)}H (1 : 0 : −12 : 7)
{(0 : λ : 0 : µ)}H {(λ : µ : 9λ : 14µ)}E
{(λ : µ : 5λ+ µ : 5µ)}E {(λ : µ : 13λ− 12µ : 7µ)}H
{(τ : 0 : −10µ : −6λ)}H {(λ : µ : 9λ : 6λ− 11µ)}E
{(λ : µ : −12µ : 7λ)}H {(λ : µ : 12λ : 10λ+ 3µ)}E
{(τ : −µ : 0 : −λ)}H {(0 : λ : µ : −6λ+ 11µ)}H
{(λ : µ : −τ : 0)}H {(λ : µ : −14λ+ µ : 14λ)}E
{(λ : µ : −12λ : 7µ)}H {(τ : −3λ : 2λ : −11µ)}E
{(λ : µ : 9µ : 14λ)}E {(λ : µ : −12λ+ 13µ : 7λ)}H
{(τ : 8λ : −9λ : 2µ)}H {(τ : −2µ : λ : µ)}E
{(λ : µ : 12λ : 5µ)}E {(λ : µ : −12λ : 7λ+ 2µ)}H
{(λ : µ : 12µ : 5λ)}E

# Elliptic lines= 12 #Hyperbolic lines= 17

Table 3.29: The non-singular cubic surface S (4)(29)

S (4)(29) = V(y2
0y1 + y2

1y0 + 4y2
2y3 + 8y2

3y2 + y0y1y2 + y0y1y3 + 3y0y2y3 + 3y1y2y3)
e3 = 4, e2 = 123, e1 = 552, e0 = 366 and |S (4)(29)| = 1045

27 Lines on S (4)(29) : (λ : µ) ∈ P(F29); τ = λ+ µ Eckardt points
{(λ : 0 : µ : 0)}H {(λ : µ : 5µ : 11λ+ 8µ)}H (1 : −1 : 0 : 0)
{(λ : 0 : 0 : µ)}E {(λ : 13λ+ µ : −6µ : −14λ)}H (1 : 14 : 12 : 7)
{(0 : λ : µ : 0)}H {(λ : µ : −7λ+ 9µ : 6µ)}E (1 : 1 : 12 : −14)
{(0 : λ : 0 : µ)}E {(λ : −4λ+ µ : 3λ : −5µ)}E (1 : −2 : 5 : −14)
{(λ : µ : 3µ : 7λ)}H {(λ : µ : 12λ : −10λ− 3µ)}E
{(λ : µ : −τ : 0)}H {(λ : 0 : −8λ+ µ : 14µ)}E
{(0 : τ : −8λ : −4µ)}E {(λ : µ : 5λ : 8λ+ 11µ)}H
{(λ : µ : 12µ : −14λ)}H {(λ : µ : −6λ− 9µ : −14µ)}H
{(τ : −µ : 0 : −λ)}H {(λ : −8λ+ µ : −10µ : 7λ)}H
{(λ : µ : 5µ : 6λ)}E {(τ : −11λ : −10µ : 10λ)}H
{(λ : µ : 5λ : 6µ)}E {(λ : −λ+ µ : 6µ : −7µ)}H
{(λ : µ : 12λ : −14µ)}H {(τ : −9µ : 8µ : −3λ)}E
{(τ : 7µ : −8µ : −5λ)}E {(τ : −7λ : 9µ : 6τ)}E
{(λ : µ : 3λ : 7µ)}H

# Elliptic lines= 12 #Hyperbolic lines= 17

Corollary 3.4. For q odd prime, the number of elliptic lines on a non-singular cubic

surfaces S (4)(q) with 27 lines in PG(3, q) is 12.

Proof. Let l1, l2, and l3 be any three lines on the non-singular cubic surface S (3)(q).

Consider the following three configurations, namely

(l1,S (4)
λ (q)), (l2,S (4)

λ (q)), and (l3,S (4)
λ (q)).
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Table 3.30: The non-singular cubic surface S (6)(29)

S (6)(29) = V(y2
0y1 − y2

1y0 − y2
2y3 + 12y2

3y2 + 13y0y1y3 − 11y1y2y3)
e3 = 6, e2 = 117, e1 = 558, e0 = 364 and |S (6)(29)| = 1045

27 Lines on S (6)(29) : (λ : µ) ∈ P(F29); τ = λ+ µ Eckardt points
{(λ : 0 : µ : 0)}H {(τ : 5λ+ µ : −11µ : 7λ)}H (1 : 0 : 0 : 0)
{(λ : 0 : 0 : µ)}H {(τ : −6µ : −6λ : −5µ)}H (0 : 0 : 1 : 0)
{(0 : λ : µ : 0)}H {(0 : τ : µ : 13λ+ µ)}H (1 : −1 : −12 : 1)
{(0 : λ : 0 : µ)}H {(τ : λ : 12λ : −14µ)}H (1 : 2 : −5 : −2)
{(λ : µ : µ : 12λ)}H {(λ : µ : 5λ+ 6µ : −2λ)}H (1 : −1 : 6 : 1)
{(λ : τ : 0 : 9µ)}H {(λ : τ : 7λ− 5µ : λ)}H (1 : 2 : −12 : −2)
{(τ : −2λ : 12µ : 2λ)}H {(λ : µ : −12λ : −µ)}H
{(λ : τ : 6λ : 14µ)}H {(τ : −10λ : 5µ : −12λ)}H
{(λ : µ : −5λ : 7µ)}H {(τ : λ : 12λ : −2τ)}H
{(λ : τ : −5λ : −2µ)}H {(λ : µ : 6λ : −4µ)}H
{(λ : 0 : µ : −12µ)}H {(λ : µ : −λ− 12µ : 12λ)}H
{(λ : τ : τ : µ)}H {(λ : µ : −6µ : λ)}H
{(λ : λ : µ : 0)}H {(λ : µ : −6µ : 2λ− 2µ)}H
{(λ : τ : −12λ : µ)}H

# Elliptic lines= 0 #Hyperbolic lines= 27

Table 3.31: The non-singular cubic surface S (10)(29)

S (10)(29) = V(y2
0y1 − y2

1y0 + 6y2
2y3 − 5y2

3y2 − 10y0y1y3)
e3 = 10, e2 = 105, e1 = 570, e0 = 360 and |S (10)(29)| = 1045

27 Lines on S (10)(29) : (λ : µ) ∈ P(F29); τ = λ+ µ Eckardt points
{(λ : 0 : µ : 0)}H {(λ : 9λ+ µ : −µ : 5λ)}E (1 : 0 : 0 : 0)
{(λ : 0 : 0 : µ)}H {(τ : −µ : −5λ : 6µ)}H (0 : 1 : 0 : 0)
{(0 : λ : µ : 0)}H {(τ : 4µ : 4λ+ 9µ : 6µ)}E (0 : 0 : 1 : 0)
{(0 : λ : 0 : µ)}H {(λ : µ : −4λ : −13µ)}E (1 : 0 : 5 : 6)
{(τ : λ : −12µ : 3µ)}H {(τ : 3µ : λ+ 3µ : 14µ)}E (1 : −1 : 5 : 6)
{(λ : µ : 4µ : 13λ)}E {(λ : τ : −4λ : −µ)}E (0 : 1 : 0 : −6)
{(λ : τ : −λ : 7µ)}E {(λ : µ : −5µ : 6λ)}H (1 : 1 : 0 : 0)
{(τ : µ : 0 : 3λ)}H {(τ : µ : µ : −7λ)}E (1 : 0 : 0 : 6)
{(τ : µ : 4µ : λ)}E {(λ : µ : 5λ : −6µ)}H (1 : −1 : 0 : 6)
{(λ : µ : −λ : −5µ)}E {(λ : −13λ+ µ : −4µ : 13λ)}E (0 : 1 : −5 : −6)
{(λ : µ : 5τ : 6λ)}H {(λ : 0 : µ : 7µ)}H
{(λ : µ : µ : 5λ)}E {(λ : τ : 5λ : −6µ)}H
{(0 : λ : µ : 7µ)}H {(τ : λ : −5λ : 6µ)}H
{(λ : λ : µ : 0)}H

# Elliptic lines= 12 #Hyperbolic lines= 15

Each configuration has 1 hyperbolic involutions of type I and 4 hyperbolic involutions

of type II via the previous facts mentioned in Table 3.42. It follows that the number

of hyperbolic involutions corresponding to each configuration, is 5. Consequently, we

have 15 = 5 · 3 hyperbolic involutions corresponding to the all configurations. Hence

the number of hyperbolic lines on a non-singular cubic surfaces is 15 (see Figure 3.6).
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Table 3.32: The non-singular cubic surface S (0)(31)

S (0)(31) = V(y2
0y1 + 2y2

1y0 + 6y2
2y3 + 6y2

3y2 + 2y0y1y2 + 5y0y1y3 + 5y0y2y3 + 5y1y2y3)
e3 = 0, e2 = 135, e1 = 594, e0 = 450 and |S (0)(31)| = 1179

27 Lines on S (0)(31) : (λ : µ) ∈ P(F31); τ = λ+ µ Eckardt points
{(λ : 0 : µ : 0)}H {(λ : 8λ+ µ : −2µ : 9λ)}H
{(λ : 0 : 0 : µ)}H {(τ : −10µ : 12λ : 10µ)}E
{(0 : λ : µ : 0)}E {(λ : µ : 2λ : −8λ+ 3µ)}H
{(0 : λ : 0 : µ)}E {(λ : 12λ+ µ : 3λ : −7µ)}H
{(τ : 15µ : 0 : 6λ)}E {(τ : −13λ : −3λ : 12µ)}E
{(λ : τ : −7µ : −13λ)}H {(λ : µ : 4λ+ 3µ : −10λ)}H
{(λ : µ : 3λ : −µ)}E {(λ : 2λ+ µ : 13λ+ µ : −7µ)}H
{(λ : µ : 2λ : −12µ)}E {(λ : µ : −10µ : −10λ)}E
{(λ : µ : 4µ : 9λ)}E {(τ : 8λ : 5λ− µ : 8λ)}E
{(λ : µ : 5µ : −13λ)}E {(τ : 3µ : 12µ : −λ)}E
{(τ : 0 : −6µ : −6λ)}H {(τ : 15µ : 15λ : 0)}E
{(λ : µ : 5λ : µ)}E {(λ : 10λ+ µ : 5λ : −2µ)}H
{(0 : τ : −6λ : −6µ)}H {(τ : −12λ : −4λ : −14µ)}E
{(τ : −8λ : −14µ : 3λ)}E

# Elliptic lines= 16 #Hyperbolic lines= 11

Table 3.33: The non-singular cubic surface S (1)(31)

S (1)(31) = V(y2
0y1 + y2

1y0 + 4y2
2y3 + 6y2

3y2 + y0y1y2 + y0y1y3 + y0y2y3 + y1y2y3)
e3 = 1, e2 = 132, e1 = 597, e0 = 449 and |S (1)(31)| = 1179

27 Lines on S (1)(31) : (λ : µ) ∈ P(F31); τ = λ+ µ Eckardt points
{(λ : 0 : µ : 0)}E {(τ : −6λ : 5λ : −8µ)}E (1 : −1 : 0 : 0)
{(λ : 0 : 0 : µ)}E {(λ : µ : 12λ : −3λ− 5µ)}H
{(0 : λ : µ : 0)}E {(τ : −λ : 13µ : −14µ)}H
{(0 : λ : 0 : µ)}E {(λ : µ : 2λ− 4µ : 14λ)}H
{(λ : µ : 12λ : 13µ)}E {(λ : 8λ+ µ : −9λ : −13µ)}H
{(λ : −λ+ µ : −µ : 0)}H {(τ : −4λ : −12µ : 3λ)}E
{(τ : −12µ : 11µ : −5λ)}H {(λ : −8λ+ µ : −13µ : 7λ)}E
{(τ : 0 : −8µ : 5λ)}H {(λ : µ : 8λ− 12µ : 13µ)}H
{(λ : µ : 12µ : 13λ)}E {(0 : λ : µ : 5λ− 11µ)}H
{(λ : µ : −9λ : 14µ)}E {(λ : µ : −4λ+ 2µ : 14λ)}H
{(λ : µ : −6µ : 7λ)}H {(λ : 5λ+ µ : −6λ : −8µ)}E
{(λ : µ : −9µ : 14λ)}E {(λ : −13λ+ µ : 8τ : 13λ)}H
{(τ : −λ : 0 : −µ)}H {(τ : 4λ : −5λ : −13µ)}H
{(λ : µ : −6λ : 7µ)}H

# Elliptic lines= 12 #Hyperbolic lines= 17

Thus

#(Elliptic lines) = 27− 15 = 12.

Corollary 3.5. For q odd prime, all the 27 lines on a non-singular cubic surfaces

S (18)(q) with 27 lines in PG(3, q); q = 1(mod 3) are hyperbolic.
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Table 3.34: The non-singular cubic surface S (2)(31)

S (2)(31) = V(y2
0y1 + y2

1y0 + 6y2
2y3 + 6y2

3y2 + y0y1y2 + y0y1y3 + y0y2y3 + y1y2y3)
e3 = 2, e2 = 129, e1 = 600, e0 = 448 and |S (2)(31)| = 1179

27 Lines on S (2)(31) : (λ : µ) ∈ P(F31); τ = λ+ µ Eckardt points
{(λ : 0 : µ : 0)}E {(λ : µ : −10λ+ 11µ : 15λ)}H (1 : −1 : 0 : 0)
{(λ : 0 : 0 : µ)}E {(λ : 2λ+ µ : −4µ : −3λ)}E (0 : 0 : 1 : −1)
{(0 : λ : µ : 0)}E {(λ : µ : 15µ : 15λ)}E
{(0 : λ : 0 : µ)}E {(τ : −5µ : −2λ : 4µ)}H
{(λ : −λ : µ : −µ)}H {(λ : 6λ+ µ : −2µ : −7λ)}H
{(λ : µ : −3µ : −3λ)}H {(λ : 6λ+ µ : −7λ : −2µ)}H
{(τ : −λ : 0 : −µ)}H {(τ : −15λ : −4µ : 14λ)}E
{(τ : −2µ : 11λ : µ)}H {(λ : µ : 15λ : −10λ+ 11µ)}H
{(λ : µ : −7λ : −7µ)}E {(λ : µ : −7µ : −7λ)}E
{(λ : µ : −3λ : −3µ)}H {(τ : −5µ : 4µ : −2λ)}H
{(τ : −2λ : λ : 11µ)}H {(λ : µ : −3λ : 8λ− 4µ)}E
{(0 : τ : 5λ : 5µ)}H {(λ : µ : −3µ : −4λ+ 8µ)}E
{(λ : µ : 15λ : 15µ)}E {(λ : −λ+ µ : −µ : 0)}H
{(τ : 0 : 5λ : 5µ)}H

# Elliptic lines= 12 #Hyperbolic lines= 17

Table 3.35: The non-singular cubic surface S (3)(31)

S (3)(31) = V(y2
0y1 + y2

1y0 + 2y2
2y3 + 3y2

3y2 + y0y1y2 + y0y1y3 + y0y2y3 + y1y2y3)
e3 = 3, e2 = 126, e1 = 603, e0 = 447 and |S (3)(31)| = 1179

27 Lines on S (3)(31) : (λ : µ) ∈ P(F31); τ = λ+ µ Eckardt points
{(λ : 0 : µ : 0)}H {(τ : 6λ : 10λ : 5λ− 7µ)}E (1 : −1 : 0 : 0)
{(λ : 0 : 0 : µ)}E {(τ : 4λ : 9λ : 8λ+ 5µ)}E (1 : 9 : 10 : −8)
{(0 : λ : µ : 0)}H {(λ : µ : 8λ : 15λ+ 12µ)}H (1 : 7 : 8 : 6)
{(0 : λ : 0 : µ)}E {(λ : −λ+ µ : −2µ : µ)}H
{(λ : −λ+ µ : −µ : 0)}H {(λ : −8λ+ µ : −13µ : 7µ)}E
{(λ : µ : 8λ : 7µ)}E {(λ : µ : 12λ : 2λ− 7µ)}E
{(τ : −9λ : −8µ : 8λ)}H {(λ : 0 : 15λ+ µ : −11µ)}E
{(λ : µ : 6λ− 8µ : 6λ)}H {(λ : 7λ+ µ : 5µ : −8λ)}H
{(λ : µ : 10µ : 6λ)}H {(τ : µ : 5λ+ µ : −8λ)}H
{(λ : µ : 8µ : 7λ)}E {(τ : −7µ : 6µ : 12λ)}H
{(0 : τ : 15µ : 10λ)}E {(λ : µ : 10λ : −7λ+ 5µ)}E
{(τ : −λ : 0 : −µ)}H {(λ : µ : 12µ : −8λ)}H
{(λ : µ : 12λ : −8µ)}H {(τ : −4λ : −13µ : 3λ)}E
{(λ : µ : 10λ : 6µ)}H

# Elliptic lines= 12 #Hyperbolic lines= 17

Proof. Let S (18)(q) = V(F ) be a non-singular cubic surfaces with 18 Eckardt points

then, in a suitable coordinate system, the cubic surfaces can be written in the form

S (18)(q) = V(y3
0 + y3

1 + y3
2 + y3

3).

In fact, such cubic surface exists in PG(3, q) if and only if q = 1(mod 3).
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Table 3.36: The non-singular cubic surface S (4)(31)

S (4)(31) = V(y2
0y1 + y2

1y0 + 5y2
2y3 + 5y2

3y2 + 3y0y1y2 + 3y0y1y3 + 3y0y2y3 + 3y1y2y3)
e3 = 4, e2 = 123, e1 = 606, e0 = 446 and |S (4)(31)| = 1179

27 Lines on S (4)(31) : (λ : µ) ∈ P(F31); τ = λ+ µ Eckardt points
{(λ : 0 : µ : 0)}E {(λ : µ : 13µ : 4λ+ 5µ)}H (1 : 1 : −11 : 0)
{(λ : 0 : 0 : µ)}E {(λ : µ : −11λ : 2λ− 2µ)}H (1 : −1 : 0 : 0)
{(0 : λ : µ : 0)}E {(λ : 13λ+ µ : 7µ : −15λ)}E (0 : 0 : 1 : −1)
{(0 : λ : 0 : µ)}E {(τ : −λ+ 3µ : 0 : 9µ)}H (1 : 1 : 0 : −11)
{(τ : 0 : −13λ : −13µ)}H {(λ : µ : 5λ+ 4µ : 13λ)}H
{(0 : τ : −13λ : −13µ)}H {(λ : µ : −11λ : −11µ)}E
{(λ : µ : 13λ : 13µ)}E {(λ : −9λ+ µ : 13λ : 4µ)}H
{(λ : µ : −15µ : −15λ)}H {(λ : µ : 7λ+ 2µ : −15µ)}E
{(λ : µ : −15λ : −15µ)}H {(λ : µ : 10τ : 0)}H
{(λ : µ : 13µ : 13λ)}E {(τ : 14λ : 7λ : 4λ+ 7µ)}E
{(λ : −λ : µ : −µ)}H {(τ : −7λ : 4µ : 2λ)}H
{(λ : τ : 2µ : −11λ)}H {(λ : µ : −15λ : 2λ+ 7µ)}E
{(λ : τ : −11λ : 2µ)}H {(λ : µ : −11µ : −11λ)}E
{(τ : λ : 2µ : −11λ)}H

# Elliptic lines= 12 #Hyperbolic lines= 17

Table 3.37: The non-singular cubic surface S (6)(31)

S (6)(31) = V(y2
0y1 − 13y2

1y0 − 8y2
2y3 + 11y2

3y2 − 10y0y1y2 − 12y0y2y3)
e3 = 6, e2 = 117, e1 = 612, e0 = 444 and |S (6)(31)| = 1179

27 Lines on S (6)(31) : (λ : µ) ∈ P(F31); τ = λ+ µ Eckardt points
{(λ : 0 : µ : 0)}H {(λ : µ : 10µ : −6λ− 4µ)}H (0 : 1 : 0 : 0)
{(λ : 0 : 0 : µ)}H {(λ : µ : −15λ : −7λ− 15µ)}H (0 : 0 : 0 : 1)
{(0 : λ : µ : 0)}H {(λ : µ : 4λ− 10µ : 4µ)}H (1 : 14 : −15 : 0)
{(0 : λ : 0 : µ)}H {(τ : λ : λ : −2λ− 14µ)}H (1 : 0 : −15 : 0)
{(λ : µ : µ : λ)}H {(λ : µ : −3λ+ 8µ : 0)}H (1 : 14 : −15 : −7)
{(0 : λ : µ : 12µ)}H {(λ : µ : −15λ+ 9µ : −7λ)}H (1 : 0 : −15 : −7)
{(λ : µ : 8λ : 4µ)}H {(λ : µ : −15λ+ 9µ : 15µ)}H
{(λ : 12λ : 0 : µ)}H {(τ : −11µ : 2µ : 7λ)}H
{(λ : µ : 2λ+ 5µ : 11λ)}H {(λ : µ : 2λ+ 5µ : −2µ)}H
{(λ : τ : λ : λ+ 2µ)}H {(τ : 0 : 14λ : −13µ)}H
{(λ : µ : −15λ : 15µ)}H {(λ : µ : −4λ− 10µ : λ)}H
{(λ : µ : 10µ : −7λ)}H {(λ : µ : 8λ : −10λ− 4µ)}H
{(λ : µ : −3µ : 11λ)}H {(λ : τ : 5λ+ 8µ : −15λ+ 3µ)}H
{(λ : µ : λ : −2µ)}H

# Elliptic lines= 0 #Hyperbolic lines= 27

Assume that l is any line on S (18)(q) and

l =
{

(a0λ+ b0µ : a1λ+ b1µ : a2λ+ b2µ : a3λ+ b3µ) : (λ : µ) ∈ PG(1, q)
}

Let β2 = (a0, a1, a2, a3), β3 = (b0, b1, b2, b3). Pick β0, β1 ∈ GF (q)⊕4 so that
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Table 3.38: The non-singular cubic surface S (9)(31)

S (9)(31) = V(y2
0y1 + 2y2

1y0 + 5y2
2y3 + 5y2

3y2 + 2y0y1y2 + 2y0y1y3 + 2y0y2y3 + 3y1y2y3)
e3 = 9, e2 = 108, e1 = 621, e0 = 441 and |S (9)(31))| = 1179

27 Lines on S (9)(31) : (λ : µ) ∈ P(F31); τ = λ+ µ Eckardt points
{(λ : 0 : µ : 0)}H {(λ : µ : −3λ : 15λ− 6µ)}H (0 : 0 : 1 : −1)
{(λ : 0 : 0 : µ)}H {(τ : −8τ : −8λ : −8µ)}H (1 : 2 : 0 : 13)
{(0 : λ : µ : 0)}H {(λ : −13λ+ µ : −6µ : −3λ)}H (0 : 1 : 0 : 8)
{(0 : λ : 0 : µ)}H {(λ : µ : −λ− 15µ : 13λ)}H (1 : 0 : −3 : 0)
{(τ : 14µ : µ : −3λ)}H {(λ : 2λ+ µ : 13λ : −15µ)}H (1 : 2 : 13 : 0)
{(λ : µ : 8µ : −6λ)}H {(τ : 14µ : −3λ : µ)}H (1 : −10 : 13 : −3)
{(λ : µ : −11λ : −3λ)}H {(λ : µ : −3λ : −11µ)}H (1 : −10 : −3 : 13)
{(0 : τ : −13λ : −13µ)}H {(λ : µ : −9µ : 13λ)}H (1 : 0 : 0 : −3)
{(λ : µ : 13λ : −9µ)}H {(λ : µ : 4λ+ 10µ : 8µ)}H (0 : 1 : 8 : 0)
{(τ : 15µ : 0 : 15λ)}H {(λ : µ : −6λ : 8µ)}H
{(τ : 2λ : 8µ : 13λ)}H {(λ : −10λ+ µ : −6λ : 8µ)}H
{(τ : 15µ : 15λ : 0)}H {(τ : 0 : 12µ : 12λ)}H
{(τ : 12λ : 3λ : 4µ)}H {(λ : µ : −13λ+ 8µ : −6λ)}H
{(τ : 2λ : 13λ : 8µ)}H

# Elliptic lines= 0 #Hyperbolic lines= 27

Table 3.39: The non-singular cubic surface S (10)(31)

S (10)(31) = V(y2
0y1 − y2

1y0 − 11y2
2y3 − 14y2

3y2 + 0y0y1y2 + 0y0y1y3 + 0y0y2y3 − 2y1y2y3)
e3 = 10, e2 = 105, e1 = 624, e0 = 440 and |S (10)(31)| = 1179

27 Lines on S (10)(31) : (λ : µ) ∈ P(F31); τ = λ+ µ Eckardt points
{(λ : 0 : µ : 0)}H {(λ : µ : 10µ : 8λ− 8µ)}H (1 : 0 : 0 : 0)
{(λ : 0 : 0 : µ)}H {(λ : τ : −4λ : −12µ)}H (0 : 0 : 1 : 0)
{(0 : λ : µ : 0)}H {(λ : τ : −4µ : −12λ)}H (0 : 0 : 0 : 1)
{(0 : λ : 0 : µ)}H {(τ : µ : 14µ : −11λ)}H (1 : 1 : 14 : 11)
{(λ : λ : µ : 0)}H {(0 : λ : −3λ+ µ : −3µ)}H (1 : 1 : 14 : 0)
{(λ : 0 : µ : −3µ)}H {(λ : τ : −13µ : −8λ)}H (0 : 1 : 14 : 11)
{(λ : µ : −13λ : −µ)}H {(λ : µ : 10µ : −8λ)}H (0 : 1 : 0 : 11)
{(τ : µ : 13λ : −µ)}H {(λ : τ : −13λ : −8µ)}H (1 : 1 : 0 : 11)
{(λ : λ : 0 : µ)}H {(τ : λ : −14µ : 11λ)}H (0 : 0 : 1 : −3)
{(λ : µ : 14λ : 11µ)}H {(λ : µ : µ : −12λ)}H (0 : 1 : 14 : 0)
{(τ : λ : λ : 12µ)}H {(λ : λ : −3λ+ µ : −3µ)}H
{(τ : λ : 4µ : 3λ)}H {(λ : µ : −4λ : 3µ)}H
{(λ : τ : 14λ : 11µ)}H {(λ : µ : 14µ : 11λ)}H
{(λ : τ : 14µ : 11λ)}H

# Elliptic lines= 0 #Hyperbolic lines= 27

β0, β1, β2 and β3 form a basis of GF (q)⊕4. Note that

q(λ, µ) = ∂F

∂β0

∣∣∣∣∣
l

= 3y2
0

∣∣∣
l
= 3a2

0λ
2 + 6a0b0λµ+ 3b2

0µ
2

= α2λ
2 + α1λ+ α0,
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Table 3.40: The non-singular cubic surface S (18)(31)

S (18)(31) = V(y2
0y1 − y2

1y0 + 14y2
2y3 + y2

3y2 + 0y0y1y2 − 13y0y1y3 + 15y0y2y3 − 15y1y2y3)
e3 = 18, e2 = 81, e1 = 648, e0 = 432 and |S (18)(31)| = 1179

27 Lines on S (18)(31) : (λ : µ) ∈ P(F31); τ = λ+ µ Eckardt points
{(λ : 0 : µ : 0)}H {(λ : µ : −6µ : −6λ)}H (0 : 0 : 1 : 0)
{(λ : 0 : 0 : µ)}H {(0 : τ : −10µ : −16λ)}H (1 : 0 : 0 : 25)
{(0 : λ : µ : 0)}H {(τ : λ : −5λ : 8µ)}H (0 : 1 : 1 : 1)
{(0 : λ : 0 : µ)}H {(λ : −λ+ µ : −5µ : −7λ)}H (1 : −6 : 5 : −6)
{(λ : τ : 0 : −12µ)}H {(τ : µ : −6µ : −6λ)}H (0 : 1 : 0 : 1)
{(τ : 11λ : 4µ : 4λ)}H {(λ : µ : 6λ− 4µ : −6λ)}H (1 : 0 : 0 : −1)
{(λ : µ : 5τ : 7µ)}H {(λ : µ : −λ− 11µ : −λ)}H (1 : −1 : 5 : −7)
{(λ : τ : 6λ : 6µ)}H {(λ : 0 : µ : −15λ− 14µ)}H (1 : −1 : 0 : −7)
{(λ : τ : 6λ : 6τ)}H {(λ : τ : −λ : µ)}H (1 : 0 : 6 : −6)
{(λ : τ : τ : µ)}H {(τ : −11λ : 11µ : −11λ)}H (1 : −6 : −1 : −6)
{(λ : µ : −5µ : −7λ)}H {(λ : µ : µ : −λ)}H (0 : 1 : −5 : 0)
{(λ : τ : 5λ : −8µ)}H {(λ : µ : −λ : µ)}H (1 : 5 : 6 : −1)
{(λ : µ : 5λ : 7µ)}H {(τ : µ : −13λ : 12λ)}H (1 : 5 : 5 : −1)
{(λ : λ : µ : 0)}H (0 : 1 : −6 : 6)

(1 : 0 : 5 : 0)
(1 : 0 : −1 : −1)
(0 : 1 : 0 : 6)
(1 : 1 : 0 : 0)

# Elliptic lines= 0 #Hyperbolic lines= 27

Table 3.41: Number of elliptic lines

q/e3 0 1 2 3 4 5 6 7 8 9 10 11 17 18
17 16 12 12 0
19 12 12 12 0 0 12 0
23 16 16 12 12 0
29 16 16 16/12 12 12 0 12
31 16 12 12 12 12 0 0 0 0

Table 3.42: Type of involutions

Type of involution I II
Elliptic 0 5
Hyperbolic 2 3
Hyperbolic 1 4
Hyperbolic 0 5

q′(λ, µ) = ∂F

∂β1

∣∣∣∣∣
l

= 3y2
1

∣∣∣
l
= 3a2

1λ
2 + 6a1b1λµ+ 3b2

1µ
2

= γ2λ
2 + γ1λ+ γ0,

where α2 = 3a2
0, α1 = 6a0b0µ, α0 = 3b2

0µ
2, γ2 = 3a2

1, γ1 = 6a1b1µ and γ0 =
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l

I

l

II

l

III

l

IV

l

V

Figure 3.4: Configurations of (l,Sλ).

• •

• l1

l2 l3

Figure 3.5: The configuration (l,S (3)
λ (q)).

3b2
1µ

2. Assume that ξ1, ξ1 roots of q in some extension field of GF (q). Then by using

properties or resultant which was introduced in Section 3.5, we have
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Table 3.43: The distinct non-singular cubic surfaces with 27 lines (up to
e-invariants) over GF (q) for q = 17, 19, 23, 29, 31

Over GF (17)
T

(17)
i e0,i e1,i e2,i e3,i

i = 1 57 219 132 1
i = 2 55 255 126 3
i = 3 54 228 123 4
i = 4 52 234 117 6

Over GF (19)
T

(19)
i e0,i e1,i e2,i e3,i

i = 1 88 276 129 2
i = 2 87 279 126 3
i = 3 86 282 123 4
i = 4 84 288 117 6
i = 5 81 297 108 9
i = 6 80 300 105 10
i = 7 72 324 81 18

Over GF (23)
T

(23)
i e0,i e1,i e2,i e3,i

i = 1 177 381 132 1
i = 2 176 384 129 2
i = 3 175 387 126 3
i = 4 174 390 123 4
i = 5 172 396 117 6

Over GF (29)
T

(29)
i e0,i e1,i e2,i e3,i

i = 1 370 540 135 0
i = 2 369 543 132 1
i = 3 368 546 129 2
i = 4 367 549 126 3
i = 5 366 552 123 4
i = 6 364 558 117 6
i = 7 360 570 105 10

Over GF (31)
T

(31)
i e0,i e1,i e2,i e3,i

i = 1 450 594 135 0
i = 2 449 597 132 1
i = 3 448 600 129 2
i = 4 447 603 126 3
i = 5 446 606 123 4
i = 6 444 612 117 6
i = 7 441 621 108 9
i = 8 440 624 105 10
i = 9 432 648 81 18

• •

• l1

l2 l3

•

Figure 3.6: The configuration (l,S (4)
λ (q)).

R

 ∂f

∂β0

∣∣∣∣∣
l

,
∂f

∂β1

∣∣∣∣∣
l

 = α2
2(γ2ξ

2
1 + γ1ξ1 + γ0)(γ2ξ

2
2 + γ1ξ2 + γ0)

= α2
2γ

2
2(ξ2

1 + 2cξ1µ+ c2µ2)(ξ2
2 + 2cξ2µ+ c2µ2); c = b1/a1

= α2
2γ

2
2(ξ1 + cµ)2(ξ2 + cµ)2.
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If a1 = 0, then q′(λ, µ) = 3b2
1µ

2 and

R

 ∂f

∂β0

∣∣∣∣∣
l

,
∂f

∂β1

∣∣∣∣∣
l

 = (9a2
0b

2
1µ)2.

So l is hyperbolic line. Since l is an arbitrary line on the cubic surface S (18)(q), all

the 27 lines on S (18)(q) are hyperbolic.

Corollary 3.6. For q odd prime, the number of elliptic lines on a non-singular cubic

surfaces with 27 lines, S (0)(q) in PG(3, q), is 16.

Proof. Let l be any line on the non-singular cubic surface S (0)(q). Then we have the

configuration, namely (l,S (0)
λ (q)).

The later configuration has 0 hyperbolic involutions of type I, and 5 hyperbolic

involutions of type II depending on the previous facts (see Table 3.42). It follows

that the number of hyperbolic involutions corresponding to this configuration, is

5 · 2 + 1 = 11 hyperbolic involutions corresponding to the configuration (l,S (0)
λ (q)).

Hence the number of hyperbolic lines on a non-singular cubic surfaces S (0)(q) is 11.

Thus

#(Elliptic lines) = 27− 11 = 16.
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Chapter 4

Classification of classes of smooth cubic

surfaces in PG(19, k)

In this chapter of the thesis, we classify classes of smooth cubic surfaces with 27 lines in

PG(19, k) (or equivalently P19
k ) up to Eckardt points where k = C or k = GF (q); q > 7

and q prime. By considering the configurations of 6 points in general position in the

projective plane PG(2, k) (or equivalently P2
k), we can describe subsets of projective

space P19
k that correspond to non-singular cubic surfaces with m Eckardt points.

Recall that a non-singular cubic surface, namely X, can be viewed as the blow up

of P2
k at 6 points in general position. Furthermore, there are 45 tritangent planes on

X. Henceforth, we will denote the set of all triples of lines, which correspond to the

45 tritangent planes on X, by T. The classification of such cubic surfaces with m

Eckardt points has been studied by Segre in 1946. However, we give another way to

classify cubic surfaces and give the possibilities for the number of Eckardt points on

them. Moreover, we will discuss the irreducibility of classes of smooth cubic surfaces

in P19
C , and we will give the codimension of each class as a subvariety of P19

C .

First of all, we give some notations and terminologies that we will be used later in

this chapter. Recall the equation of a cubic surface S in P3
k is S := V(g) = {g = 0}

where

g = c1y
3
0 + c2y

3
1 + c3y

3
2 + c4y

3
3 + c5y

2
0y1 + c6y

2
0y2 + c7y

2
0y3

+ c8y
2
1y0 + c9y

2
1y2 + c10y

2
1y3
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+ c11y
2
2y0 + c12y

2
2y1 + c13y

2
2y3 + c14y

2
3y0 + c15y

2
3y1 + c16y

2
3y2

+ c17y0y1y2 + c18y0y1y3 + c19y0y2y3 + c20y1y2y3 = 0.
(4.0.1)

The equation of a conic C in P2
k is C := V(h) = {h = 0} where

h = c1y
2
0 + c2y

2
1 + c3y

2
2 + c4y0y1 + c5y0y2 + c6y1y2. (4.0.2)

Definition 4.1. Let S be a cubic surface in P3
k. Then S := V(g) = {g = 0} where

g is defined by Equation (4.0.1) above. Let C be a conic in P2
k. Then C := V(h) =

{h = 0} where h is defined by Equation (4.0.2) above. We define:

c(S ) := (c1 : . . . : c20) ∈ P19
k

= class of coefficients of g as a point in P19
k

= {λ(c1, . . . , c20) : λ ∈ k∗},

c(C ) := (c1 : . . . : c6) ∈ P5
k

:= class of coefficients of h as a point in P5
k

= {λ(c1, . . . , c6) : λ ∈ k∗},

Ssm := {c(S ) ∈ P19
k : S is a smooth cubic surface in P3

k},

Ssn := {c(S ) ∈ P19
k : S is a singular cubic surface in P3

k},

Csm := {c(C ) ∈ P5
k : C is a smooth conic in P2

k},

Csn := {c(C ) ∈ P5
k : C is a singular conic in P2

k},

T(3) := {t ∈ T : lines of t form an Eckardt point},

S(m) := {c(S ) ∈ Ssm : S has at least m Eckardt points},

E(m,k) := {c(S ) ∈ S(k) : S has m Eckardt points}.

Recall from ([22], Pages 5,6 ) that if V is a vector space of dimension n ≥ 2 over

the field k and d is any integer such that 1 ≤ d ≤ n, then the Grassmannian G(d, n)

or Gd,n is the set of all d-dimensional subspaces of V , i.e.

G(d, n) = {W : W subspace of V of dimension d}.
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Alternately, it is the set of all (d− 1)-dimensional linear subspaces of the projective

space Pn−1
k . If we think of the Grassmannian this way, we denote it by GP(d−1, n−1).

The simplest example of the Grassmannian could be G(1, n) which is the set of all

1-dimensional subspaces of the vector space V which is nothing but the projective

space on V .

The GrassmannianG(d, n), as an algebraic variety, is a projective algebraic variety

defined by quadratic polynomials called Plücker relations. The Grassmannian G(d, n)

can be covered by open sets isomorphic to the affine space Ad(n−d) (see [22] and [1]),

and so we have

dim(G(d, n)) = d(n− d).

The simplest Grassmannian that is not a projective space is G(2, 4), which may be

parameterized via Plücker coordinates. Furthermore, dimG(2, 4) = 2(4− 2) = 4.

Assume that κi1...im := (Pi1 , . . . , Pim) represents an order of m points in (P2
k)m

such that no three collinear. We will write κ̂i1...im to denote to the set {Pi1 , . . . , Pim}.

In this case, we say κ̂i1...im forms an m-arc in P2
k. Moreover, we define

S6 := {s = κi1...i6 ∈ (P2
k)6 : Pi1 , . . . , Pi6 form a 6− arc not on a conic},

Ws := the space of all plane cubic passing through the six points of s ∈ S6,

blws P2
k := blow-up P2

k at the six points of s = κi1...i6 ∈ S6.

Let li1 , . . . , lim be distinct lines in P2
k (or in P3

k) and wi1 , . . . , wim ∈Ws. We define

λi1...im := (li1 , . . . , lim),

λ̂i1...im := {li1 , . . . , lim},

ωi1...im := (wi1 , . . . , wim) ∈Wm
s ,

ω̂i1...im := {wi1 , . . . , wim} ⊂Ws,

∧(λi1...im) := ∧(i1, . . . , im) := li1 ∩ . . . ∩ lim .

Definition 4.2. A non-singular cubic surface with 27 lines, and e-invariants e0, e1,

e2, e3 is called a cubic surface of type [e0, e1, e2, e3].
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As an example, the cubic surface S (4)(17) is of type [54, 228, 123, 4] (see Section

3.6). More precisely, the points on S (4)(17) that do not lie on a line of the cubic

surface are shown in Table 4.1.

Table 4.1: Points belong to S (4)(17)\{lines of S (4)(17)}

(1:8:11:14) (1:8:11:7) (1:10:12:10) (1:12:6:1) (1:8:15:6) (1:2:9:16) (1:13:13:3) (1:10:2:15)
(1:4:8:11) (1:2:6:2) (1:2:11:11) (1:1:4:15) (1:7:1:1) (1:3:7:2) (1:4:12:14) (1:7:4:11)
(1:10:1:10) (1:8:6:14) (1:2:16:11) (1:4:2:14) (1:10:12:16) (1:2:10:10) (1:4:11:6) (1:3:7:8)
(1:15:13:4) (1:13:13:2) (1:8:15:10) (1:3:1:4) (1:12:4:5) (1:12:15:14) (1:3:2:1) (1:5:12:16)
(1:2:7:16) (1:1:9:6) (1:13:16:1) (1:4:11:3) (1:7:4:7) (1:11:10:8) (1:15:8:15) (1:3:12:4)
(1:15:14:10) (1:12:12:5) (1:9:2:14) (1:14:13:8) (1:15:9:3) (1:5:8:7) (1:11:10:2) (1:0:6:0)
(1:13:16:4) (1:15:10:3) (1:14:9:3) (1:12:5:14) (1:14:16:1) (1:7:10:4)

The points on S (4)(17) that lie on exactly one line of the cubic surface are shown

in Table 4.2.

Table 4.2: Points lie on exactly one line of S (4)(17)

(1:0:8:0) (0:1:0:8) (1:6:3:16) (1:6:0:16) (0:1:12:0) (1:13:3:15) (1:15:13:9) (1:10:3:2)
(1:1:6:2) (1:12:12:4) (0:1:3:3) (1:0: 0:3) (1:11:5:8) (1:0:1:0) (1:15:12:9) (1:3:1:10)
(1:0:10:0) (1:0:0:8) (1:10:5:2) (1:5:7:12) (1:11:14:15) (1:12:1:13) (1:4:6:13) (0:1:16:0)
(1:13:8:12) (1:4:3:6) (1:16:6:14) (1:13:4:12) (1:7:1:3) (1:11:8:2) (1:7:14:3) (1:4:5:1)
(1:8:10:10) (1:5:16:7) (1:4:13:2) (1:7:9:7) (1:3:14:8) (1:12:0:8) (0:1:3:0) (0:1:6:0)
(1:0:0:15) (1:10:7:13) (1:14:13:1) (1:12:10:12) (1:8:14:6) (1:13:0:1) (1:2:14:4) (1:11:4:5)
(1:0:2:8) (1:0:12:0) (0:1:0:12) (1:3:16:2) (1:0:11:14) (1:12:6:9) (1:13:11:6) (1:16:8:0)
(1:11:14:5) (1:8:16:13) (1:0:15:11) (1:3:11:11) (1:14:1:9) (1:2:7:2) (1:3:5:11) (1:0:11:0)
(1:16:7:13) (1:12:4:3) (0:1:13:4) (1:13:4:11) (1:16:8:4) (1:11:8:13) (1:7:15:14) (1:10:8:15)
(1:5:13:12) (1:15:5:15) (1:10:15:13) (1:13:2:15) (1:10:8:9) (1:4:14:8) (1:10:1:12) (1:3:9:0)
(1:15:6:12) (1:10:11:7) (1:4:10:16) (1:15:0:4) (1:7:16:6) (0:1:2:8) (1:9:0:12) (1:7:10:0)
(1:7:5:1) (1:1:11:8) (1:2:0:10) (1:15:3:16) (1:0:0:10) (1:8:14:16) (1:7:2:11) (1:5:16:13)
(1:15:4:7) (0:1:5:10) (1:11:11:0) (1:3:14:6) (1:0:0:2) (1:15:9:16) (1:12:7:6) (1:7:2:13)
(1:12:5:14) (1:0:6:0) (1:8:6:0) (1:5:1:9) (1:0:10:2) (0:1:2:0) (0:1:16:6) (1:12:14:1)
(1:2:9:13) (1:0:0:6) (0:1:15:0) (1:3:9:6) (1:14:4:8) (1:4:6:5) (1:8:10:4) (1:5:14:10)
(1:4:14:11) (1:16:4:8) (1:3:3:1) (1:12:10:8) (1:0:0:5) (1:9:1:1) (1:4:9:5) (0:1:0:4)
(0:1:0:7) (1:0:0:4) (1:2:10:12) (1:0:13:4) (0:1:6:5) (1:8:5:2) (1:4:8:16) (1:11:2:9)
(1:6:8:13) (0:1:14:0) (1:0:0:16) (1:0:16:6) (1:8:8:16) (1:15:7:8) (1:4:2:8) (1:0:2:0)
(1:11:0:15) (1:8:1:12) (1:12:15:13) (1:13:7:6) (1:3:5:5) (0:1:8:12) (1:0:4:15) (1:4:3:2)
(1:4:9:12) (1:0:1:13) (1:14:16:0) (0:1:14:16) (1:0:15:0) (0:1:0:15) (1:9:3:14) (1:1:3:8)
(1:10:2:11) (1:12:1:4) (1:16:6:9) (1:13:2:13) (1:12:5:3) (1:13:11:13) (1:5:8:11) (1:2:13:12)
(1:9:16:12) (1:1:5:16) (1:1:10:16) (1:16:0:14) (1:3:12:5) (1:13:14:4) (1:10:11:3) (1:7:5:6)
(0:1:9:0) (1:15:4:12) (1:6:15:9) (1:8:5:7) (1:0:9:7) (0:1:0:14) (1:16:2:1) (1:7:12:13)
(1:2:6:1) (1:14:14:11) (1:13:8:2) (1:5:12:10) (1:2:16:4) (1:16:4:9) (1:11:11:13) (1:2:14:5)

(1:11:12:12) (1:12:7:0) (1:5:1:0) (1:8:8: 9) (1:4 :13:1) (0:1:0:11) (1:7:9:9) (1:3:13:3)
(1:10:3:5) (1:3:3:10) (1:14:1:3) (1:4:12:12) (1:5:5:6) (1:14:3:5) (1:1:9:12) (1:16:3:8)
(1:11:15:9) (0:1:4:15) (1:1:15:6) (1:3:2:9) (1:16:2:12) (1:7:14:14) (1:10:5:11) (1:9:1:15)
(1:8:16:12) (1:5:5:14) (1:5:7:16) (0:1:5:0) (1:14:3:7) (1:14:4:13) (1:3:0:3) (1:8:1:15)
(1:13:5:3) (1:11:5:7) (1:10:7:9) (0:1:0:16)

The points on S (4)(17) that lie on exactly two lines of the cubic surface are shown

in Table 4.3.
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Table 4.3: Points lie on exactly two lines of S (4)(17)

(1:0:0:0) (0:1:0:0) (0:0:1:0) (0:0:0:1) (1:16:14:13) (1:0:0:9) (1:11:2:12) (0:0:1:12)
(1:5:0:6) (1:0:16:0) (1:2:11:9) (1:7:15:12) (1:2:3:13) (1:2:5:9) (1:12:13:9) (0:1:0:1)
(0:1:0:10) (1:5:4:13) (1:1:3:9) (1:6:5:10) (1:0:0:13) (1:1:11:9) (1:14:0:11) (1:4:10:9)
(1:10:14:12) (1:0:0:1) (1:1:10:13) (1:0:3:0) (0:1:0:3) (1:5:3:11) (0:1:12:9) (1:6:3:3)
(1:7:0:9) (1:14:5:12) (1:3:16:9) (1:15:14:13) (1:10:0:5) (1:0:13:0) (0:1:0:13) (1:1:14:2)
(1:4:0:13) (1:13:7:9) (1:8:3:9) (0:1:9:7) (1:9:14:9) (1:8:0:2) (1:16:3:15) (1:8:3:4)
(1:0:14:16) (1:6:15:10) (1:10:15:0) (1:14:5:9) (1:7:3:12) (1:16:14:15) (0:1:7:0) (1:13:5:16)
(1:8:12:13) (1:6:14:12) (1:5:14:14) (1:14:6:13) (0:1:11:0) (1:14:14:7) (1:6:14:0) (1:0:0:11)
(1:15:3:10) (1:0:12:9) (0:1:15:11) (1:1:15:12) (1:0:4:0) (0:1:11:14) (1:0:7:0) (1:6:9:13)
(1:16:5:4) (1:7:3:4) (1:11:3:14) (1:6:9:9) (0:1:0:2) (1:9:3:13) (1:9:16:9) (1:15:12:0)
(1:2:5:5) (1:12:14:7) (1:0:8:12) (1:0:9:0) (0:1:0:9) (1:15:14:10) (1:1:0:0) (0:1:1:0)
(1:9:2:0) (1:0:0:14) (0:1:1:13) (1:0:5:0) (0:1:0:5) (1:13:3:0) (1:10:14:3) (1:1:5:13)
(1:3:13:13) (1:0:14:0) (0:1:4:0) (1:9:14:1) (1:13:14:9) (0:1:13:0) (1:3:11:12) (1:0:3:3)
(1:2:13:0) (0:1:10:0) (1:0:0:7) (1:11:3:7) (1:0:5:10) (1:11:12:14) (1:14:6:12) (0:1:0:6)
(1:9:5:15) (1:5:4:9) (1:12:3:6) (0:1:8:0) (1:0:6:5) (1:2:3:1) (1:15:5:8) (1:4:5:0)
(1:15:10:13) (1:12:3:12) (1:16:7:12)

The points on S (4)(17) that lie on exactly three lines of the cubic surface are

shown in Table 4.4.

Table 4.4: Points lie on exactly three lines of S (4)(17)

(1:9:5:13) (1:6:5:12) (1:0:0:12) (0:1:10:2)

For other examples, see the proof of Theorem 3.7.

Theorem 4.1. For q > 7 and q prime, any non-singular cubic surface with 27 lines

S (0)(q) is of type [(q − 10)2 + 9, 27(q − 9), 135, 0].

Proof. Recall that S (0)(q) denotes a non-singular cubic surface with 27 lines that has

no Eckardt point over the Galois field GF (q). If nq be the total number of points on

the lines of S (0)(q), then

nq = e3 + e2 + e1.

Let li, i = 1, . . . , 27, be the 27 lines on S (0)(q). Let e(i)
r be the number of points of li

lying on exactly r lines of S (0)(q). Then
27∑
i=1

e
(i)
3 = 3e3,

27∑
i=1

e
(i)
2 = 2e2,

27∑
i=1

e
(i)
1 = e1.
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Also we know that each line meets ten others. So we have

2e(i)
3 + e

(i)
2 = 10.

Moreover, every line in P2
q has exactly q + 1 points. It follows that

e
(i)
3 + e

(i)
2 + e

(i)
1 = q + 1.

Taking the sum for both previous equations and over all i = 1, . . . , 27 will give

6e3 + 2e2 = 270,

3e3 + 2e2 + e1 = 27(q + 1).

More precisely, we obtain

e2 + e1 = 27(q − 4),

nq = 27(q − 4) + e3.

From Section 3.1, we have #(S (0)(q)) = q2 + 7q + 1. Hence

e3 + e2 + e1 + e0 = q2 + 7q + 1,

or

e3 + e0 = q2 + 7q + 1− 27(q − 4) = (q − 10)2 + 9.

Thus

#(S (0)(q)) = nq + e0.

and hence

e3 = 0,

e2 = 270/2 = 135,

e1 = 27(q − 4)− 135 = 27(q − 9),

e0 = (q − 10)2 + 9.
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Theorem 4.2. For q > 7 and q prime, any non-singular cubic surface with 27 lines

S (1)(q) is of type [(q − 10)2 + 8, 27(q − 9) + 3, 132, 1].

Proof. Recall that S (1)(q) denotes a non-singular cubic surface with 27 lines that

has exactly one Eckardt point over the Galois field GF (q). By the same argument

used in the proof of Theorem 4.1, we have

nq = e3 + e2 + e1,

and

27∑
i=1

e
(i)
3 = 3e3,

27∑
i=1

e
(i)
2 = 2e2,

27∑
i=1

e
(i)
1 = e1.

We know that

2e(i)
3 + e

(i)
2 = 10,

e
(i)
3 + e

(i)
2 + e

(i)
1 = q + 1.

So

6e3 + 2e2 = 270,

3e3 + 2e2 + e1 = 27(q + 1).

Consequently, we get

e2 + e1 = 27(q − 4),

nq = 27(q − 4) + e3.

From Section 3.1, we have #(S (1)(q)) = q2 + 7q + 1. Hence

e3 + e2 + e1 + e0 = q2 + 7q + 1,
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It follows that

e3 = 1,

e2 = 135− 3 = 132,

e1 = 27(q − 4)− 132 = 27(q − 9) + 3,

e0 = (q − 10)2 + 8.

Theorem 4.3. For q ≥ 7 and q prime, the only non-singular cubic surfaces with

27 lines and all points lying on those lines, i.e, surfaces of type [0, e1, e2, e3], are

S (18)(7),S (10)(11) and S (18)(13).

Proof. Recall that S (m)(q) denotes a non-singular cubic surface with 27 lines that

has exactly m Eckardt points over the Galois field GF (q). It is clear that for the case

q = 7, a non-singular cubic surface with 27 lines exists. In fact, S (18)(7) is such a

surface because 7 = 1 mod 3, and x2 + x+ 1 has two roots, namely x = 2 and x = 4

(see Section 3.4). In fact, the cubic surface S (18)(7) is of type [0, 0, 81, 18].

For the case q = 11, if

S (10)(11) := V(x3
0 + x3

1 + x3
2 + x3

3 − (x0 + x1 + x2 + x3)3),

then S (10)(11) is a non-singular cubic surface with 27 lines, and it has exactly 10

Eckardt points (see Table 4.5).

Table 4.5: Eckardt points of S (10)(11)

(1:0:0:0) (0:1:0:0) (0:0:1:0) (0:0:0:1) (1:-1:0:0)
(0:1:-1:0) (0:0:1:-1) (1:0:-1:0) (0:1:0:-1) (1:0:0:-1)

Moreover, S (10)(11) is of type [0, 64, 105, 10].

For the case q = 13, if

S (18)(13) := V(y2
0y1 + 4y2

1y0 + 6y2
2y3 + 3y2

3y2 + y0y1y2 + 5y0y1y3),
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then S (18)(13) a non-singular cubic surface with 27 lines, and it has exactly 18

Eckardt points (see Table 4.6)

Table 4.6: Eckardt points of S (18)(13)

(1:0:0:0) (0:1:0:0) (1:0:0:-3) (1:3:0:0) (1:-3:0:-3) (1:6:6:-3)
(1:0:-2:0) (1:-5:-3:8) (1:-3:-2:0) (1:0:6:1) (1:-4:6:-3) (1:-3:6:1)
(0:1:0:1) (1:1:-2:1) (0:1:-2:4) (1:2:-3:-5) (1:-2:-2:1) (0:1:5:0)

In fact, the cubic surface S (18)(13) is of type [0, 162, 81, 18]. It remain to show

that, if q > 13, then there is no non-singular cubic surface with 27 lines such that

all its points belong to the 27 lines, that is, every non-singular cubic surface with 27

lines, namely S (m)(q), q > 13 is of type [e0, e1, e2, e3] such that e0 6= 0. By the way of

contradiction, let us assume that there is such non-singular cubic surface, then from

Section 3.3, we have

nq = e3 + e2 + e1

where nq is the total number of points on the lines of S (m)(q) and

e2 + e1 = 27(q − 4),

nq = 27(q − 4) + e3.

Moreover, from Section 3.1, we have #(S (m)(q)) = q2 + 7q + 1. Hence

e3 + e0 = e3 = q2 + 7q + 1− 27(q − 4) = (q − 10)2 + 9.

Thus for q > 13 and q is prime, we get (q − 10)2 > 9 and hence e3 > 18 which is

impossible.

4.1 Quadratic transformations

Recall a smooth cubic surface with 27 lines, namely X, is the blow-up of P2
k at

six points in general position, namely s = κ123456 ∈ S6. In this case, we write

X = blws P2
k, and we have
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1. the exceptional curve P̃i := ai is defined to be the total transform of Pi in s,

2. the curve l̃ij := cij is the strict transform of lij = PiPj,

3. the curve C̃j := bj is the strict transform of the conic Cj passing through all

points of s except Pj.

Consider the rational map ϕ123 : P2
k 99K P2

k defined by:

ϕ123(x0 : x1 : x2) 7→ (x1x2 : x0x2 : x0x1)

which is called the quadratic elementary transformation. The points

P1 = (1 : 0 : 0), P2 = (0 : 1 : 0), P3 = (0 : 0 : 1)

are called the fundamental points of ϕ123, while the lines:

l23 = P2P3 = {x0 = 0},

l13 = P1P3 = {x1 = 0},

l12 = P1P2 = {x2 = 0},

are called the fundamental lines of ϕ123. From the definition of ϕ123 it follows that

ϕ123 is a morphism on P2
k\{P1, P2, P3} and an isomorphism on P2

k\l12 ∪ ll3 ∪ l23, on

which ϕ123 can be written:

ϕ123(x0 : x1 : x2) 7→
( 1
x0

: 1
x1

: 1
x2

)
. (4.1.1)

Note that ϕ123(P1) = ϕ123(P2) = ϕ123(P3) = (0 : 0 : 0) 6∈ P2
k. In this case, ϕ123 is

birational and ϕ2
123 = id. Moreover, on

P2
k\l12 ∪ ll3 ∪ l23 = P2

k\V(x0) ∪ V(x1) ∪ V(x2) = P2
k\V(x0x1x2)

we have x0x1x2 6= 0 and hence

ϕ123(x0 : x1 : x2) 7→ (x1x2 : x0x2 : x0x1) = x0x1x2

( 1
x0

: 1
x1

: 1
x2

)
=
( 1
x0

: 1
x1

: 1
x2

)
.
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The image under ϕ123 of a line not passing through the fundamental points is a

conic passing through P1, P2 and P3. More precisely, the net of lines of the domain

plane is transformed into the net of conics (on the codomain, i.e P2
k\V(x0x1x2)) pass-

ing through the P1, P2 and P3 and vice versa. This explains why the term “quadratic”

is used to indicate this Cremona transformation (see [10]). For example: Consider

the irreducible conic

C = {x1x2 + x0x2 + x0x1 = 0} = V(x1x2 + x0x2 + x0x1)

which passes through the fundamental points P1, P2 and P3. It follows that

ϕ123(C ) = 1
x1

1
x2

+ 1
x0

1
x2

+ 1
x0

1
x1

= x0x1x2

( 1
x1

1
x2

+ 1
x0

1
x2

+ 1
x0

1
x1

)
= x0 + x1 + x2

which is a line not passing through the fundamental points P1, P2 and P3. Conversely,

consider the line

l = V(x0 + x1 + x2) = {x0 + x1 + x2 = 0}

which is a line not passing through the fundamental points P1, P2 and P3. Conse-

quently, we have

ϕ123(l) = 1
x0

+ 1
x1

+ 1
x2

= x0x1x2

( 1
x0

+ 1
x1

+ 1
x2

)
= x1x2 + x0x2 + x0x1

which is an irreducible conic passing through the fundamental points P1, P2 and P3.

Now consider the line

l = V(x0 + x1) = {x0 + x1 = 0}

which passes through only one point of the fundamental points P1, P2 and P3, namely

P3. Then

ϕ123(l) = 1
x0

+ 1
x1

= x0x1

( 1
x0

+ 1
x1

)
= x1 + x0

which is again a line passing through only the fundamental point P3.

Consider the irreducible conic

C = {x2
0 + x1x2 = 0} = V(x2

0 + x1x2)
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which passes through the 2 fundamental points of {P1, P2, P3}, namely P2 and P3.

Note that

ϕ123(C ) = 1
x2

0
+ 1
x1

1
x2

= x2
0x1x2

( 1
x2

0
+ 1
x1

1
x2

)
= x1x2 + x2

0

which is again an irreducible conic passing through 2 of the fundamental points of

{P1, P2, P3}, namely P2 and P3.

The birational map ϕ123 associated with S(P ) = {P1, P2, P3} is called the elemen-

tary quadratic transformation with the fundamental points P1, P2 and P3, and we

write ϕ123 = c(P1, P2, P3) where c means “Cremonian”.

We observe that each elementary quadratic transformation c(P1, P2, P3) is of the

form (4.1.1), up to an automorphism of the plane. In fact, if ϕ : P2
k → P2

k is a

projectivity such that:

ϕ(P1) = (1 : 0 : 0), ϕ(P2) = (0 : 1 : 0), ϕ(P3) = (0 : 0 : 1),

then it immediately occurs that:

c(P1, P2, P3) = ϕ−1 ◦ ϕ123 ◦ ϕ.

Let ϕ123 = c(P1, P2, P3) be an elementary quadratic transformation. Now we see how

to interpret ϕ123 with blowing up. We consider the blowing up σ : S → P2
k of the

points P1, P2 and P3, and let σ′ : S ′ → P2 be a copy of σ : S → P2. Then there exists

an isomorphism ψ such that the diagram in Figure 4.1 commutes as we will explain.

In particular, indicate by l̃ij = cij the strict transforms of the line lij in S, and let

P̃i = ai. Then we have

ψ(ai) = c′jk, ψ(cjk) = a′i, i = 1, 2, 3; j, k ∈ {1, 2, 3}\{i},

where a′i and c′jk are the copies in S ′ respectively of ai and cjk (see Figure 4.2).

In other words, ϕ123 = c(P1, P2, P3) is the blowing up of P1, P2 and P3 and the

contraction τ = σ′ ◦ ψ of c12, c13 and c23 ([29], Page 260).
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S S ′

P2
k P2

k

ψ

σ σ′�
ϕ123

Figure 4.1: Elementary quadratic transformation ϕ123.

l12 l13

l23

P1

P2 P3

σ ψ

a1

c13

a2 a3

c23

S

c12
σ′

c′
23

a′
2

c′
13 c′

12

a′
1

S′

a′
3

l23

l13 l12

P3 P2

P1

Figure 4.2: Elementary quadratic transformation

More precisely, if

P1 = (1 : 0 : 0) = Q1, P2 = (0 : 1 : 0) = Q2, P3 = (0 : 0 : 1) = Q3,

and

πS(P ) represents the blowing up of P2
X at S(P ) := {P1, P2, P3},

πS(Q) represents the blowing up of P2
Y at S(Q) := {Q1, Q2, Q3},

V := blwS(P ) P2
X ,

then we have the following commutative diagram (see Figure 4.3).

Furthermore, we have the following correspondence via ϕ123:

irreducible conic containing P1, P2, P3 ↔ line not containing any Q1, Q2, Q3,

irreducible conic containing only ↔ irreducible conic containing only

the two points Pi, Pj, the two points Qi, Qj,

i, j ∈ {1, 2, 3} i, j ∈ {1, 2, 3}

line containing only one point ↔ line containing only one point.

Pi, i ∈ {1, 2, 3} Qi, i ∈ {1, 2, 3}.
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V

P2
X P2

Y

	
πS(P ) πS(Q)

ϕ123

Figure 4.3: ϕ123 = πS(Q) ◦ π−1
S(P ).

Remark 4.1. According to the above argument, if s, s′ ∈ S6 are such that s′ can be

obtained from s by a quadratic transformation, then

blws′ P2 = blws P2 (see Proposition 4.12).

4.2 Operation on triples of lines on a smooth cubic surface

Recall from ([10], Page 477) that a tritangent trio (trihedron) is a set of three excep-

tional lines which span a tritangent plane. A pair of tritangent planes intersecting

along a line not in the surface is classically known as a Cremona pair. A triad of

tritangent trios is a set of three tritangent trios such that no two share a common

exceptional line. Given a pair of tritangent trios with no common exceptional lines,

there is a unique third tritangent trio forming a triad with the first two. Every triad

of tritangent trios has a unique conjugate triad which contains the same 9 exceptional

lines. We call these a conjugate pair of triads of tritangent trios. A trihedral pair is

a triad with its conjugate triad. A representative example is the following set of 9
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exceptional lines:
T123,456 : c14 c25 c36  t′1

c26 c34 c15  t′2

c35 c16 c24  t′3

   

t1 t2 t3

where each row and column forms a tritangent trio, and the rows form one triad with

the columns its conjugate triad.

Lemma 4.2.1. ([9], Page 43) Let X be a smooth cubic surface. Consider a trihedral

pair T = {t1, t2, t3}, T ′ = {t′1, t′2, t′3}, where ti, t′i are tritangent trios (or trihedrons).

The following are equivalent:

1. t1 ∩ t2 ∩ t3 is a line,

2. t′1, t′2, t′3 corresponds to Eckardt points on a line, and

3. two of t′1, t′2, t′3 correspond to Eckardt points.

Proof. It suffices to assume the 9 exceptional lines are those from T123,456 above.

Assume (1). If t1 ∩ t2 ∩ t3 contain a line then t1 ∩ t2 = t1 ∩ t3. Thus

c14 ∩ c25 = t1 ∩ t2 ∩ t′1 = t1 ∩ t3 ∩ t′1 = c14 ∩ c36.

This means that c14 ∩ c25 ∩ c36 is nonempty and so t′1 has an Eckardt point contained

in t1∩ t2∩ t3. Similar arguments apply to t′2 and t′3 so (2) follows. Clearly, (2) implies

(3). So it remains to show (3) implies (1). Suppose t′1, t′2 correspond to Eckardt points

E1;E2. Then

E1 = c14 ∩ c25 ∩ c36,

E2 = c26 ∩ c34 ∩ c15.

Now t1 ∩ t2 contains both E1 and E2 and the same is true of t1 ∩ t3. Thus t1 ∩ t2 ∩ t3

contains both points and thus contains a line.
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Corollary 4.1. ([9], Page 44) Let X be a smooth cubic surface. If X contains two

Eckardt points lying on a line ` not contained in X then there is a unique third

Eckardt point such that ` is a trihedral line.

Recall a point P on a smooth cubic surface with 27 lines, namely X, is called an

Eckardt point (sometimes called E-point) if it is an intersection of 3 lines among the

27 lines on X. Also recall that the set of all triples of lines on X is denoted by T.

If t1, t2, t3 ∈ T, then the ordered triple T = (t1, t2, t3) is called a triad if t1, t2 have

no line in common and every line of t1 intersects exactly one line of t2, and for every

line l3 ∈ t3, we get (l1l2l3) ∈ T for some l1 ∈ t̂1 and l2 ∈ t̂2 where t̂ denotes the set of

lines that form t. In this case, we write t3 = t1,2.

Remark 4.2. Since the lines of t ∈ T(3) form an Eckardt point, it follows that every

t ∈ T(3) is either of the form (aibjcij) or (cijcmnckh) where i, j,m, n, k, h ∈ {1, . . . , 6}.

Let S be the blowing up P2
k at six points, namely s = κ123456 ∈ S6, that is

S = blws P2
k,

then any triad of S has one of the following forms

(1) Tijk : {(aibjcij), (ajbkcjk), (akbicik)},

(2) Tij,km : {(aibmcim), (ajbkcjk), (cikcjmcnh)},

(3) Tijk,mnh : {(cimcjnckh), (cjhckmcin), (ckncihcjm).

In fact, there are 20, 90 and 10 trihedral pairs of type Tijk, Tij,km and Tijk,mnh

respectively ([14], Pages 28,29). Furthermore, the 9 lines of a triad can form a triad

in exactly two ways as follow: Any triad, say {(ll′l′′), (mm′m′′), (nn′n′′)} can be

reordered and written in a 3 × 3-array so that the 3 rows of the array form a triad,

and the 3 columns of the array form another triad too. Such configurations are called

trihedral pairs.
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Clearly cij = cji = PiPj. Thus we have the following forms for trihedral pairs:

Tijk : cjk ak bj  t1

bk cik ai  t2

aj bi cij  t3

   

t′1 t′2 t′3

Tij,km : ai bm cim  t1

bk aj cjk  t2

cik cjm cnh  t3

   

t′1 t′2 t′3

Tijk,mnh : cim cjn ckh  t1

cjh ckm cin  t2

ckn cih cjm  t3

   

t′1 t′2 t′3

Remark 4.3. Recall that if t1, t2 ∈ T(3) have no line in common, then they determine

a third one, namely t3, so that for any line l in t3, we get (ll1l2) ∈ T(3) for some l1 ∈ t1

and l2 ∈ t2. Note that t1,2 = t2,1. Moreover, if t1, t2, t3 ∈ T(3) form a triad, then

t3 = t1,2, t1,3 = t2 and t2,3 = t1. Consequently, if we assume that

T(3) := T(3) ∪ {∅}

we can define an operation on T(3) as follow:

Definition 4.3. Let t1, t2 ∈ T(3). We define an operation on T(3) as follows:

T(3) × T(3) → T(3) : (ti, tj) 7→ titj
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where

titj :=



∅ if ti, tj have at least one common line,

ti if tj = ∅,

tj if ti = ∅,

ti,j otherwise.

For example: suppose that S is a non-singular cubic surface with 4 Eckardt

points, and three of its Eckardt points correspond to the following 3 triples in T(3):

t1 := (c13c24c56),

t2 := (a3b4c34),

t3 := (a2b1c12).

Note that the above 3 triples form a triad, namely T = {t1, t2, t3}. Since S has 4

Eckardt points, there must be another triple t ∈ T(3). Let t have 3 lines in common

with the triad T . Then, up to permutations, t ∈ T(3) has one of the following forms:

t := t4 = (a3b1c13),

t := t5 = (c12c34c56).

If t = t4, then we have the symmetric Table 4.7).

Table 4.7: The symmetric table 1

∅ t1 t2 t3 t4
∅ ∅ t1 t2 t3 t4
t1 t1 ∅ t3 t2 ∅
t2 t2 t3 ∅ t1 ∅
t3 t3 t2 t1 ∅ ∅
t4 t4 ∅ ∅ ∅ ∅

Similarly, if t = t5, then we have the symmetric Table 4.8).

Lemma 4.2.2. Let T = {t1, t2, t3}, T ′ = {t′1, t′2, t′3} be two triads constructed by some

lines on S where c(S ) ∈ Ssm. Then T can transformed to T ′ via some permutations

and quadratic transformations.
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Table 4.8: The symmetric table 2

∅ t1 t2 t3 t5
∅ ∅ t1 t2 t3 t5
t1 t1 ∅ t3 t2 ∅
t2 t2 t3 ∅ t1 ∅
t3 t3 t2 t1 ∅ ∅
t5 t5 ∅ ∅ ∅ ∅

Proof. Let ϕijk denote the quadratic transformation with respect to the fundamental

points Pi, Pj, Pk. Then, up to a permutation of the 9 lines of triad, we can assume

T = {(aibmcim), (ajbkcjk), (cikcjmcnh)}, where i, j, k,m, n, h ∈ {1, 2, 3, 4, 5, 6}.

More precisely, we consider the following trihedral pair:

T = Tij,km : ai bm cim  t1

bk aj cjk  t2

cik cjm cnh  t3

Now via the quadratic transformation ϕimk, the trihedral pair T is transformed to

{(akbmcmk), (ajbkcjk), (ambjcmj)}.

It follows that we have the trihedral pair:

Tjmk : cmk ak bm

bk cjk aj

am bj cmj

On the other hand and up to the quadratic transformation ϕijh, where h 6∈

{i, j, k,m}, the trihedral pair T can be transformed to

{(cjhckncim), (cmncihcjk), (cikcjmcnh)}.

More precisely, we have the following trihedral pair:
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Tjki,hnm : cjh ckn cim

cmn cih cjk

cik cjm cnh

where n 6∈ {i, j, k,m, h}. So we can transform from one triad to another via some

sequence of permutations and quadratic transformations, namely

Tjki,hnm
via ϕijh←−−−−→ T = Tij,km

via ϕimk←−−−−−→ Tjmk.

Definition 4.4. Let A,B are two subsets of triples in T. Then A,B are said to be

equivalent and we write A ∼ B if A can be obtained from B via some sequence of

permutations and quadratic transformations.

Henceforth, for A,B, T ⊆ T and t ∈ T , we write A ∨ B to represent the union of

A and B. In particular, T ∨ t represents T ∪ {t}.

Proposition 4.1. Let t1 = (l1l2l3), t2 = (l′1l′2l′3) and t3 = (l′′1 l′′2 l′′3) be three triples in

T. Then

1. if t1 ∩ t2 = l, t1 ∩ t3 = l′ and t2 ∩ t3 = l′′. Then l, l′, l′′ have common point.

Furthermore, if (l1l′1l′′1) forms an Eckardt point, namely E, then E ∈ l ∩ l′ ∩ l′′.

2. if t1 and t2 form 2 Eckardt points, namely E1, E2 respectively, then t3 forms

another Eckardt points, namely E3 so that E1, E2, E3 are collinear.

Proof. (1) Suppose that P1 is the tritangent plane formed by t1, then l, l′ ⊂ P1. So

l, l′ must intersect at some point. Similarly, if we assume that P2 is the tritangent

plane formed by t2, and P3 is the tritangent plane formed by t3, then l, l′′ ⊂ P2 and

l′, l′′ ⊂ P3 and hence they must intersect. Now if l = l′ then either l = l′′ and we are

done. Otherwise, l′′ * P1 and l, l′ ⊂ P1, that is, l, l′, l′′ must have common point.
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Let (l1l′1l′′1) form an Eckardt point, namely E, i.e l1∩l′1∩l′′1 = {E}. We can assume

l = l1, l
′ = l′1 and l′′ = l′′1 . But according to previous argument, l, l′, l′′ have common

point, that is l ∩ l′ ∩ l′′ 6= ∅. Thus E ∈ l1 ∩ l′1 ∩ l′′1 = l ∩ l′ ∩ l′′.

(2) Replace ti with t′i and apply Lemma 4.2.1.

Remark 4.4. Let c(S ) ∈ S(k). Then from now on, S represents a non-singular

cubic surface that is the blow up of P2 at six point in general position, and we write

S := blws P2 for some s = κ123456 ∈ S6.

It is clear that S(2) ⊆ S(1). Let c(S ) ∈ S(2). Then c(S ) ∈ S(1). So the corresponding

non-singular cubic surface S has at least one Eckardt point. Recall that any Eckardt

point on S is either of the form (aibjcik) or the form (cijckhcmn). However, c(S ) ∈

S(2) implies that there is at least one other Eckardt point on S . So assume that S

has 2 Eckardt points corresponding to the two triples t = (l1l2l3) and t′ = (l′1l′2l′3) in

T(3). Then either t, t′ have one line in common, or t, t′ have no line in common since

otherwise they coincide. Consequently, we have the following definition.

Definition 4.5. Let S be any non-singular cubic surface that corresponds to c(S ) ∈

S(2). We define

E(2) := {c(S ) ∈ E(2,2) : S has t1, t2 ∈ T(3) with one common line},

E(3) := {c(S ) ∈ E(2,2) : S has t1, t2 ∈ T(3) with no common line}.

Proposition 4.2. Let S be the non-singular cubic surface that corresponds to

c(S ) ∈ S(2). Then

1. If c(S ) ∈ E(2) then S has two Eckardt points of one of the following kinds:

(a) (aαbβcαβ), (aα∗bβcα∗β),

(b) (arbscrs), (arbs∗crs∗),

(c) (aibjcij), (ckhcmncij),
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(d) (cxyczwcpq), (cxycwqcpz),

where α, β, α∗, β∗, r, s, r∗, s∗, i, j,m, n, k, h, x, y, z, w, p, q ∈ {1, . . . , 6}. Further-

more, {(a)} ∼ {(b)} ∼ {(c)} ∼ {(d)}.

2. If c(S ) ∈ E(3) then S has two Eckardt points of one of the following kinds:

(a) (cikcjmcnh), (aibjcij),

(b) (cxyczwcpq), (cwpcyqcxz),

where i, j,m, n, k, h, x, y, z, w, p, q ∈ {1, . . . , 6}. Furthermore, {(a)} ∼ {(b)}.

Proof. Recall there are two kinds of Eckardt points on a non-singular cubic surface.

Up to permutations (see Lemma 4.2.2), there is no ambiguity in assuming that S

has two Eckardt points of one of the following kinds:

(a) (aαbβcαβ), (aα∗bβcα∗β),

(b) (arbscrs), (arbs∗crs∗),

(c) (aibjcij), (ckhcmncij),

(d) (cxyczwcpq), (cxycwqcpz).

Consider the first kind (a):

(aαbβcαβ), (aα∗bβcα∗β).

By renaming, say a := b, we have

(bαaβcαβ), (bα∗aβcα∗β)

Now via the permutation, namely τ := (βr)(αs)(α∗s∗), we get the kind (b), that is

(arbscrs), (arbs∗crs∗).
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Consequently, via the quadratic transformation ϕrs∗t, we have

(cts∗cuvcrs), (cts∗bs∗at).

Now, by using the permutation, namely σ := (ti)(s∗j)(uk)(vh)(rm)(sn), we get the

kind (c), that is

(aibjcij), (ckhcmncij).

Again via the quadratic transformation ϕikm, we have

(cijckhcmn), (ckmcnhcij).

Applying the permutation, namely µ := (ix)(jy)(mz)(nw)(kp)(hq), gives us the kind

(d), that is

(cxyczwcpq), (cxycwqcpz).

Thus we can transform from one kind to another. The diagram in Figure 4.4

illustrates the transformations between the kinds (a), (b), (c) and (d):

(a) (aαbβcαβ), (aα∗bβcα∗β) (b) (arbscrs), (arbs∗crs∗)

(d) (cxyczwcpq), (cxycwqcpz) (c) (aibjcij), (ckhcmncij)

a := b and via τ

via ϕrs∗t and σ

via ϕikm and µ

Figure 4.4: Types of Eckardt points for E(2).

(2) Let c(S ) ∈ E(3). Similarly, as in the previous argument used in (1), and up

to permutations, we can assume S has two Eckardt points of one of the following

kinds (see Lemma 4.2.2):

(a) (cikcjmcnh), (aibjcij),
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(b) (cxyczwcpq), (cwpcyqcxz).

Consider the first kind (a):

(cikcjmcnh), (aibjcij).

Then the quadratic transformation ϕimn transforms the two triples above into

(cikcjmcnh), (cmnckhcij),

because j 6∈ {m,n}. Again via the permutation σ := (ix)(ky)(jz)(mw)(np)(hq), we

get the kind (b), namely

(cxyczwcpq), (cwpcyqcxz).

The following diagram in Figure 4.5 illustrates the transformations between the kinds

(a) and (b):

(a) (cikcjmcnh), (aibjcij) (cikcjmcnh), (cmnckhcij)

(b) (cxyczwcpq), (cwpcyqcxz)

via ϕimn

via σ

Figure 4.5: Types of Eckardt points for E(3).

Remark 4.5. In S(2), every non-singular cubic surface S that corresponds to c(S ) ∈

E(2) has exactly 2 Eckardt points, and every non-singular cubic surface S that cor-

responds to c(S ) ∈ E(3) has exactly 3 Eckardt points. All the results will be shown

in the proof of the next proposition.

Proposition 4.3.

1. Any non-singular cubic surface S that corresponds to c(S ) ∈ E(3) has exactly

3 Eckardt points.
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2. Any non-singular cubic surface S that corresponds to c(S ) ∈ E(2) has exactly

2 Eckardt points.

Proof. (1) Let S be a non-singular cubic surface that corresponds to c(S ) ∈ E(3).

Then according to Proposition 4.2 and the definition of E(3), we can assume that

t1 = (c12c34c56) and t2 = (c13c26c45) are two triples on S . Applying our operation on

t1, t2 implies

t3 = t1t2 = (c15c24c36).

Let us construct the symmetric table for t1, t2 and t3 (see Table 4.9).

Table 4.9: The symmetric table 3

∅ t1 t2 t3
∅ ∅ t1 t2 t3
t1 t1 ∅ t3 t2
t2 t2 t3 ∅ t1
t3 t3 t2 t1 ∅

We see from the table above that there are no new possible triples in the table

which give us new Eckardt points. Therefore, for any element c(S ) ∈ E(3), the

corresponding non-singular cubic surface S has exactly 3 Eckardt points which are

associated to the triples t1, t2 and t3.

(2) By arguing as in part (1), one can show that if S be a non-singular cubic

surface that corresponds to c(S ) ∈ E(2) then according to Proposition 4.2 and the

definition of E(2), we can assume that t1 and t2 are two triples on S with one common

line. So by applying our operation on t1 and t2, we get t3 = t1t2 = ∅, and no new

possible triples can give us new Eckardt points. Hence for any element c(S ) ∈ E(2),

the corresponding cubic surface S has exactly 2 Eckardt points which are associated

to the triples t1, t2.

Corollary 4.2. For q > 7 and q prime, every non-singular cubic surface S (2)(q) that

corresponds to c(S (2)) ∈ E(2) is of type [(q − 10)2 + 7, 27(q − 9) + 6, 129, 2].
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Proof. Recall that S (2)(q) denotes a non-singular cubic surface with 27 lines that

has exactly two Eckardt points over the Galois field GF (q). By the same argument

used in the proof of Theorem 4.1, we have

nq = e3 + e2 + e1,

3e3 + e2 = 135,

3e3 + 2e2 + e1 = 27(q + 1),

and

e3 + e2 + e1 + e0 = q2 + 7q + 1.

Thus

e3 = 2,

e2 = 135− 6 = 129,

e1 = 27(q − 4)− 129 = 27(q − 9) + 6,

e0 = (q − 10)2 + 7.

Corollary 4.3. For q > 7 and q prime, every non-singular cubic surface S (3)(q) that

corresponds to c(S (3)) ∈ E(3) is of type [(q − 10)2 + 6, 27(q − 9) + 9, 126, 3].

Proof. Recall that S (3)(q) denotes a non-singular cubic surface with 27 lines that

has exactly three Eckardt points over the Galois field GF (q). By the same argument

used in the proof of Corollary 4.2, we have

nq = e3 + e2 + e1,

3e3 + e2 = 135,

3e3 + 2e2 + e1 = 27(q + 1),

138



and

e3 + e2 + e1 + e0 = q2 + 7q + 1.

Thus

e3 = 3,

e2 = 135− 9 = 126,

e1 = 27(q − 4)− 126 = 27(q − 9) + 9,

e0 = (q − 10)2 + 6.

Let us assume that c(S ) ∈ S(4). By the definition of S(4), the corresponding

non-singular cubic surface S has at least 4 trihedrons such that three of them form

a triad, namely

T = {t1, t2, t3} ⊂ T(3).

The other triple, namely t := t4 in T(3) has the following possibilities:

1. t has all lines in common with T ,

2. t has two lines in common with T ,

3. t has one line in common with T ,

4. t has zero line in common with T .

However, if t has 2 lines in common with T , then it has all lines in common with T

(see the proof of Proposition 4.1). Therefore, t has either zero, or one, or three lines

in common with T , and we can introduce the following definition.
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Definition 4.6. Let S be the non-singular cubic surface that corresponds to c(S ) ∈

S(4). We define

E(4) :=


c(S ) ∈ E(4,4) : S has T ∨ t ⊂ T(3) such that

t has three common line with T

 ,

E(6) :=


c(S ) ∈ E(6,4) : S has T ∨ t ⊂ T(3) such that

t has one common line with T

 ,

E(9) :=


c(S ) ∈ E(9,4) : S has T ∨ t ⊂ T(3) such that

t has no common line with T

 .
In fact, in S(4), every non-singular cubic surface S that corresponds to c(S ) ∈ E(4)

has exactly 4 Eckardt points. Every non-singular cubic surface S that corresponds

to c(S ) ∈ E(6) has exactly 6 Eckardt points, and every non-singular cubic surface S

that corresponds to c(S ) ∈ E(9) has exactly 9 Eckardt points. All the detail will be

shown later.

Proposition 4.4. Let S be the non-singular cubic surface that corresponds to

c(S ) ∈ E(4). There are two possible kinds for the set T ∨ t (as in the Definition

4.6).

Proof. Suppose that S is a non-singular cubic surface that corresponds to c(S ) ∈

E(4). Then according to Lemma 4.2.2, we can assume T = {t1, t2, t3} where

t1 = (aibmcim),

t2 = (ajbkcjk),

t3 = t1,2 = (cikcjmcnh),

and i, j,m, n, k, h ∈ {1, . . . , 6}. Up to permutations and quadratic transformations,

we have the following two possibilities for triples t ∈ T(3):

(a) t := (ajbmcjm),

(b) t := t′ = (cimcjkcnh).
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Now via the permutation (ij) and the quadratic transformation ϕijk, we can transform

between the two kinds, namely (A) : T ∨ t and (B) : T ∨ t′. The diagram in Figure

4.6 illustrates the transformations between the two kinds.

(ajbmcjm), (aibkcik), (cimcjkcnh), (cikcjmcnh) (A) : T ∨ t

(B) : T ∨ t′

via ϕijk

via (ij)

Figure 4.6: Types of Eckardt points for S that corresponds to c(S ) ∈ E(4).

Corollary 4.4. Any non-singular cubic surface S that corresponds to c(S ) ∈ E(4)

has exactly 4 Eckardt points and one triad.

Proof. Assume that S is a non-singular cubic surface that corresponds to c(S ) ∈

E(4). Then according to the definition of E(4), the non-singular cubic surface S has

at least 4 Eckardt points. Furthermore, up to permutations and quadratic transfor-

mations, we can assume that S has T ∨ t where T = {t1, t2, t3} and

t1 = (a2b1c12),

t2 = (a3b4c34),

t3 = (c13c24c56),

t4 := t = (a3b1c13).

Consequently, we have the following symmetric table for t1, t2, t3 and t4 (see Table

4.10).

From the Table 4.10, it is obvious that there are no new possible triples which

give us new Eckardt points. Hence for any element c(S ) ∈ E(4), the corresponding

cubic surface S has exactly 4 Eckardt points which are associated to the triad T =

{t1, t2, t3} and the triple t4.
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Table 4.10: The symmetric table 4

∅ t1 t2 t3 t4
∅ ∅ t1 t2 t3 t4
t1 t1 ∅ t3 t2 ∅
t2 t2 t3 ∅ t1 ∅
t3 t3 t2 t1 ∅ ∅
t4 t4 ∅ ∅ ∅ ∅

Corollary 4.5. For q > 7 and q prime, every non-singular cubic surface S (4)(q) that

corresponds to c(S (4)) ∈ E(4) is of type [(q − 10)2 + 5, 27(q − 9) + 12, 123, 4].

Proof. Recall that S (4)(q) denotes a non-singular cubic surface with 27 lines that has

exactly 4 Eckardt points over the Galois field GF (q). By the same argument used in

the proof of Corollary 4.2, we have

nq = e3 + e2 + e1,

3e3 + e2 = 135,

3e3 + 2e2 + e1 = 27(q + 1),

and

e3 + e2 + e1 + e0 = q2 + 7q + 1.

Thus

e3 = 4,

e2 = 135− 12 = 123,

e1 = 27(q − 4)− 123 = 27(q − 9) + 12,

e0 = (q − 10)2 + 5.
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Proposition 4.5. Let S be the non-singular cubic surface that corresponds to

c(S ) ∈ E(6). There are 3 possible kinds for the set T ∨ t (as in the Definition

4.6).

Proof. Assume that S is a non-singular cubic surface that corresponds to c(S ) ∈

E(6). Then S has 4 Eckardt points which correspond to the 4 triples in T ∨ t, where

the triple t has one common line with T = {t1, t2, t3}. Then up to permutations and

quadratic transformations, we can assume

t1 = (a2b1c12),

t = (a3b1c13).

In this case, we have the following possibilities for t2 and hence for t3:

(a) t2 = (a4b3c34) and hence t3 = (c14c23c56),

(b) t2 := t′2 = (a1b4c14) and hence t3 := t′3 = (a4b2c24),

(c) t2 := t′′2 = (a4b5c45) and hence t3 := t′′3 = (c14c25c36).

First of all, assume t2 have the form (a4b2c24) or (cijckmcnh). Then up to permutations

and quadratic transformations, t3 has the form (b) or (c).

More precisely, we have the following three possibilities for the kinds of T ∨ t:

(A) T := {t1, t2, t3} and t4 := t,

(B) T := T ′ = {t′1, t′2, t′3}, t′1 := t1 and t′4 := t,

(C) T := T ′′ = {t′′1, t′′2, t′′3}, t′′1 := t1 and t′′4 := t.

Let us consider the case where the kind is (B). Applying our operation on T ′ ∨ t′4

gives us the symmetric Table 4.11.

So T ′ ∨ t′4 is equivalent to T ∨ t4, where

T = {t1, t′2t4, t′3t4} = {t1, t2, t3}
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Table 4.11: The symmetric table 5

∅ t1 t′2 t′3 t4
∅ ∅ t1 t′2 t′3 t4
t1 t1 ∅ t′3 t′2 ∅
t′2 t′2 t′3 ∅ t1 t2
t′3 t′3 t′2 t1 ∅ t3
t4 t4 ∅ t2 t3 ∅

which forms one of kind (A).

On the other hand, let us consider the case where the kind is (C). Applying our

operation on T ′′ ∨ t′′4 gives the symmetric Table 4.12.

Table 4.12: The symmetric table 6

∅ t1 t′′2 t′′3 t4
∅ ∅ t1 t′′2 t′′3 t4
t1 t1 ∅ t′′3 t′′2 ∅
t′′2 t′′2 t′′3 ∅ t1 t5
t′′3 t′′3 t′′2 t1 ∅ t6
t4 t4 ∅ t5 t6 ∅

where

t5 := (c14c35c26),

t6 := (a4b6c46).

Now via the quadratic transformation ϕ356, we have

t1 7−→ t′′′5 := t1,

t′′2 7−→ t′′′2 := t′′2,

t′′3 7−→ t′′′4 := (a5b2c25),

t4 7−→ t′′′3 := (c13c24c56),

t5 7−→ t′′′1 := (a6b2c26).

Thus applying the quadratic transformation ϕ356 gives us the new kind T ′′′ ∨ t′′′4

where T ′′′ := {t′′′1 , t′′′2 , t′′′3 }. Now via the permutation σ := (62)(12)(53), the kind

T ′′′ ∨ t′′′4 is transformed to one kind of (A).
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Moreover, if the triples of kind (A) have the form T̃ ∨ t̃ where

T̃ := {t̃1, t̃2, t̃3} = {(ajbicij), (akbhckh), (cikcjhcmn} and t̃ := (ahbicih).

Then the permutation σ = (i1)(j2)(h3)(k4)(m5)(n6) transforms T̃ ∨ t̃ to the triples

of kind (A). In summary, we have the diagram (see Figure 4.7).

One kind of (A) One kind of (B)

One kind of (C)

via ϕ356 and σ

t2 = t′2t
′
4 and t3 = t′3t

′
4

Figure 4.7: Types of Eckardt points for S that corresponds to c(S ) ∈ E(6).

Corollary 4.6. Let S be a non-singular cubic surface that corresponds to c(S ) ∈

E(6). Then S has exactly 6 Eckardt points and 4 triads which contain 15 lines among

the 27 lines on cubic surface.

Proof. We know that S has a 4 triples of the form T ∨ t as we shown in Proposition

4.5. Up to permutations and quadratic transformations, we can assume that T =

{t1, t2, t3}, where

t1 := (a2b1c12),

t2 := (a4b3c34),

t3 := (c14c23c56),

t4 := t = (a3b1c13).

Let us construct the symmetric table determined by t1, t2, t3, and t4 (see Table 4.13).
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Table 4.13: The symmetric table 7

∅ t1 t2 t3 t4
∅ ∅ t1 t2 t3 t4
t1 t1 ∅ t3 t2 ∅
t2 t2 t3 ∅ t1 t5
t3 t3 t2 t1 ∅ t6
t4 t4 ∅ t5 t6 ∅

where

t5 := (a1b4c14),

t6 := (a4b2c24).

Thus we have at least 6 Eckardt points generated by t1, t2, t3, t4, t5, and t6. Further-

more, we get the following 4 triads:

T1 = {t1, t2, t3},

T2 = {t2, t4, t5},

T3 = {t3, t4, t6},

T4 = {t1, t5, t6},

which contain 15 lines among the 27 lines on cubic surface, namely

a1, a2, a3, a4, b1, b2, b3, b4, c12, c13, c14, c23, c24, c34 and c56.

Again, applying our operation on the triples t1, t2, t3, t4, t5 and t6 will give us the

symmetric Table 4.14.

It follows that there are no new possible triples in the table which give us new

Eckardt points. Therefore, S has exactly 6 Eckardt points which correspond to the

triples t1, t2, t3, t4, t5 and t6.

Corollary 4.7. For q > 7 and q prime, every non-singular cubic surface S (6)(q) that

corresponds to c(S (6)) ∈ E(6) is of type [(q − 10)2 + 3, 27(q − 9) + 18, 117, 6].
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Table 4.14: The symmetric table 8

∅ t1 t2 t3 t4 t5 t6
∅ ∅ t1 t2 t3 t4 t5 t6
t1 t1 ∅ t3 t2 ∅ t6 t5
t2 t2 t3 ∅ t1 t5 t4 ∅
t3 t3 t2 t1 ∅ t6 ∅ t4
t4 t4 ∅ t5 t6 ∅ t2 t3
t5 t5 t6 t4 ∅ t2 ∅ t1
t6 t6 t5 ∅ t4 t3 t1 ∅

Proof. Recall that S (6)(q) denotes a non-singular cubic surface with 27 lines that has

exactly 6 Eckardt points over the Galois field GF (q). By the same argument used in

the proof of Corollary 4.2, we have

nq = e3 + e2 + e1,

3e3 + e2 = 135,

3e3 + 2e2 + e1 = 27(q + 1),

and

e3 + e2 + e1 + e0 = q2 + 7q + 1.

Thus

e3 = 6,

e2 = 135− 18 = 117,

e1 = 27(q − 4)− 117 = 27(q − 9) + 18,

e0 = (q − 10)2 + 3.

Proposition 4.6. Let S be a non-singular cubic surface that corresponds to c(S ) ∈

E(9). There is one possible kind for the set T ∨ t (as in Definition 4.6).
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Proof. Let us assume that S is a non-singular cubic surface that corresponds to

c(S ) ∈ E(9). Then S has 4 Eckardt points which correspond to the 4 triples in

T ∨ t where the triple t has no common line with triad T = {t1, t2, t3}. Then up to

permutations and quadratic transformations, we can assume

t1 = (c12c34c56),

t2 = (c15c24c36),

t3 = t1t2 = (c13c26c45).

Now if t ∈ T(3)\T has no common line with T , then t must be of the form (aibjcij)

where

(i, j) ∈ {(1, 4), (1, 6), (2, 3), (2, 5), (3, 2), (3, 5), (4, 1), (4, 6), (5, 2), (5, 3), (6, 1), (6, 4)}.

Again up to permutations and quadratic transformations, we have

as (i, j) = (1, 4) : t = (a1b4c14),

as (i, j) = (1, 6) : t = (a1b6c16) ϕ146−−→ t = (a4b6c46) (46)−−→ t = (a1b4c14),

as (i, j) = (2, 3) : t = (a2b3c23) (12)(34)−−−−→ t = (a1b4c14),

as (i, j) = (2, 5) : t = (a2b5c25) (12)(45)−−−−→ t = (a1b4c14),

as (i, j) = (3, 2) : t = (a3b2c23) (13)(24)−−−−→ t = (a1b4c14),

as (i, j) = (3, 5) : t = (a3b5c35) (13)(45)−−−−→ t = (a1b4c14),

as (i, j) = (4, 1) : t = (a4b1c14) (14)−−→ t = (a1b4c14),

as (i, j) = (4, 6) : t = (a4b6c46) ϕ146−−→ t = (a1b6c16) (46)−−→ t = (a1b4c14),

as (i, j) = (5, 2) : t = (a5b2c25) (15)(24)−−−−→ t = (a1b4c14),

as (i, j) = (5, 3) : t = (a5b3c35) (15)(34)−−−−→ t = (a1b4c14),

as (i, j) = (6, 1) : t = (a6b1c16) ϕ146−−→ t = (a4b1c14) (14)−−→ t = (a1b4c14),

as (i, j) = (6, 4) : t = (a6b4c46) ϕ146−−→ t = (a1b4c14).
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Thus we can assume that t = (a4b1c14) by applying the permutation (14). Therefore,

up to equivalence of triples T ∨ t = {(c12c34c56), (c15c24c36), (c13c26c45), (a4b1c14)}.

Corollary 4.8. Let S be a non-singular cubic surface that corresponds to c(S ) ∈

E(9). Then S has exactly nine Eckardt points and 12 triads.

Proof. Assume that S is a non-singular cubic surface that corresponds to c(S ) ∈

E(9). Then we can assume S has the triples in T ∨ t, where the triad T = {t1, t2, t3}

and t := t4 are as mentioned in Proposition 3.6, that is

t1 = (c12c34c56),

t2 = (c15c24c36),

t3 = t1t2 = (c13c26c45),

t4 = (a4b1c14).

By applying our operation on the triples t1, t2, t3 and t4, we have the symmetric Table

4.15.

Table 4.15: The symmetric table 9

∅ t1 t2 t3 t4
∅ ∅ t1 t2 t3 t4
t1 t1 ∅ t3 t2 t5
t2 t2 t3 ∅ t1 t6
t3 t3 t2 t1 ∅ t7
t4 t4 t5 t6 t7 ∅

where

t5 := (a2b3c23),

t6 := (a5b2c25),

t7 := (a3b5c35).

Again we can construct the following symmetric Table 4.16.

149



Table 4.16: The symmetric table 10

∅ t1 t2 t3 t4 t5 t6 t7
∅ ∅ t1 t2 t3 t4 t5 t6 t7
t1 t1 ∅ t3 t2 t5 t4 t8 t9
t2 t2 t3 ∅ t1 t6 t9 t4 t8
t3 t3 t2 t1 ∅ t7 t8 t9 t4
t4 t4 t5 t6 t7 ∅ t1 t2 t3
t5 t5 t4 t9 t8 t1 ∅ t7 t6
t6 t6 t8 t4 t9 t2 t7 ∅ t5
t7 t7 t9 t8 t4 t3 t6 t5 ∅

where

t8 := (a1b6c16),

t9 := (a6b4c46).

Therefore, there are at least nine Eckardt points on S which correspond to the nine

triples, namely

t1, t2, t3, t4, t5, t6, t7, t8, and t9.

Moreover, we get the following 12 triads:

T1 = {t1, t4, t5},

T2 = {t2, t4, t6},

T3 = {t3, t4, t7},

T4 = {t4, t8, t9},

T5 = {t1, t2, t3},

T6 = {t1, t6, t8},

T7 = {t1, t7, t9},

T8 = {t2, t7, t8},

T9 = {t2, t5, t9},
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T10 = {t3, t5, t8},

T11 = {t3, t6, t9},

T12 = {t5, t6, t7}.

Now by applying our operation on t1, t2, t3, t4, t5, t6, t7, t8 and t9, we have the sym-

metric Table 4.17.

Table 4.17: The symmetric table 11

∅ t1 t2 t3 t4 t5 t6 t7 t8 t9
∅ ∅ t1 t2 t3 t4 t5 t6 t7 t8 t9
t1 t1 ∅ t3 t2 t5 t4 t8 t9 t6 t7
t2 t2 t3 ∅ t1 t6 t9 t4 t8 t7 t5
t3 t3 t2 t1 ∅ t7 t8 t9 t4 t5 t6
t4 t4 t5 t6 t7 ∅ t1 t2 t3 t9 t8
t5 t5 t4 t9 t8 t1 ∅ t7 t6 t3 t2
t6 t6 t8 t4 t9 t2 t7 ∅ t5 t1 t3
t7 t7 t9 t8 t4 t3 t6 t5 ∅ t2 t1
t8 t8 t6 t7 t5 t9 t3 t1 t2 ∅ t4
t9 t9 t7 t3 t6 t8 t2 t3 t1 t4 ∅

It follows that there are no new possible triples in the table which give us new

Eckardt points. Therefore S has exactly 9 Eckardt points which correspond to the

triples t1, t2, t3, t4, t5, t6, t7, t8 and t9.

Remark 4.6. The nine triples t1, t2, t3, t4, t5, t6, t7, t8, and t9 in Corollary 4.8 contain

all the 27 lines on a non-singular cubic surface S . Furthermore, every triple in the

previous list occurs 4 times among the 12 triads Ti; i ∈ {1, . . . , 12}.

Corollary 4.9. For q > 7 and q prime, every non-singular cubic surface S (9)(q) that

corresponds to c(S (9)) ∈ E(9) is of type [(q − 10)2, 27(q − 8), 108, 9].

Proof. Recall that S (9)(q) denotes a non-singular cubic surface with 27 lines that has

exactly 9 Eckardt points over the Galois field GF (q). By the same argument used in
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the proof of Corollary 4.7, we have

nq = e3 + e2 + e1,

3e3 + e2 = 135,

3e3 + 2e2 + e1 = 27(q + 1),

and

e3 + e2 + e1 + e0 = q2 + 7q + 1.

Thus

e3 = 9,

e2 = 135− 27 = 108,

e1 = 27(q − 4)− 108 = 27(q − 8),

e0 = (q − 10)2.

Theorem 4.4. Let S be a non-singular cubic surface with the six triples t1, t2, t3,

t4, t5, t6 mentioned in the proof of Corollary 4.6, and let t7 be another triple on S ,

that is t7 ∈ T(3)\{ti : i ∈ {1, . . . , 6}}. Then

I. S has at least 10 Eckardt points and at least 10 triads if all lines of t7 are in

common with one of the 4 triads generated by t1, . . . , t6.

II. Otherwise, S has at least 18 Eckardt points and at least 42 triads.

Proof. I. According to the argument introduced in the proof of Corollary 4.6, we have

the following 4 triads:

T1 = {t1, t2, t3}, T2 = {t2, t4, t5}, T3 = {t3, t4, t6}, and T4 = {t1, t5, t6},
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where

t1 := (a2b1c12),

t2 := (a4b3c34),

t3 := (c14c23c56),

t4 := (a3b1c13),

t5 := (a1b4c14),

t6 := (a4b2c24).

Suppose that all lines of t7 are in common with the triad T1. Then there are three

choices for the triple t7:

(1) t7 := (a2b3c23),

(2) t7 := (a4b1c14),

(3) t7 := (c12c34c56).

However we can transform between the two choices (1) and (2) via the permutation

(13)(24). Thus up to permutations and quadratic transformations, there are two

cases for t7, namely

Case(1): t7 = (a2b3c23),

Case(2): t7 = (c12c34c56).

For case (1), we construct the symmetric table which is determined by t1, t2, t3,

t4, t5, t6 and t7 (see Table 4.18).

where

t8 := (a1b2c12),

t9 := (c13c24c56),

t10 := (a3b4c34).
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Table 4.18: The symmetric table 12

∅ t1 t2 t3 t4 t5 t6 t7
∅ ∅ t1 t2 t3 t4 t5 t6 t7
t1 t1 ∅ t3 t2 ∅ t6 t5 ∅
t2 t2 t3 ∅ t1 t5 t4 ∅ ∅
t3 t3 t2 t1 ∅ t6 ∅ t4 ∅
t4 t4 ∅ t5 t6 ∅ t2 t3 t8
t5 t5 t6 t4 ∅ t2 ∅ t1 t9
t6 t6 t5 ∅ t4 t3 t1 ∅ t10
t7 t7 ∅ ∅ ∅ t8 t9 t10 ∅

Thus we have at least 10 Eckardt points determined by

t1, t2, t3, t4, t5, t6, t7, t8, t9, and t10.

Furthermore, we have the following 10 triads:

T1 = {t1, t2, t3},

T2 = {t1, t5, t6},

T3 = {t1, t9, t10},

T4 = {t2, t4, t5},

T5 = {t2, t8, t9},

T6 = {t3, t4, t6},

T7 = {t3, t8, t10},

T8 = {t4, t7, t8},

T9 = {t5, t7, t9},

T10 = {t6, t7, t10}.

For the case (2), we have a table similar to the one in case (1) except some changes,

namely

t8 := (a2b4c24),

t9 := (a3b2c23),

t10 := (a1b3c13).
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Consequently, we have at least 10 Eckardt points determined by

t1, t2, t3, t4, t5, t6, t7, t8, t9, and t10.

In fact, we can transform from one case to another via some exchanges in triples so

that the two cases represent the same kind:

Form for the case (2) ←→ Form for the case (1)

T := {t3, t4, t6} ←→ T := {t1, t2, t3}

t := t1 ←→ t := t4

t7 := t9 = (c12c34c56) ←→ t7 := (a2b3c23)

Thus we have the same 10 trihedral pairs for the case (1).

II. If t7 has no line common in with one of the 4 triads, namely

T1 = {t1, t2, t3},

T2 = {t2, t4, t5},

T3 = {t3, t4, t6},

T4 = {t1, t5, t6},

then we can assume t7 has no line common in with triad T1. If t7 and t4 have a

common line, we can replace T1 by T3, t4 by t5, and t7 by t9 so that we can avoid this

case.

Now if t7 has no line common in with triad T1 and the triple t4, then we have the

following possibilities for t7:

1. (a5b2c25), (a5b4c45), (a1b5c15), and (c15c24c36),

2. (a6b2c26), (a6b4c46), (a1b6c16), and (c16c24c35).

However we can transform between the two cases, namely (1) and (2), via the per-

mutation (56) (see the diagram in Figure 4.8)
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(a5b2c25) (24)←−−→ (a5b4c45), (a1b5c15) ϕ124←−−→ (c15c24c36).

(a6b2c26) (24)←−−→ (a6b4c46), (a1b6c16) ϕ124←−−→ (c16c24c35).

via (56)

Figure 4.8: Cases of t7 on S .

Consequently, we get exactly the following two cases for t7

Case (i): t7 = (a5b2c25) or t7 = (a1b5c15),

Case (ii): t7 = (a5b4c45) or t7 = (c15c24c36).

Let us consider the case (i): t7 = (a5b2c25) or t7 = (a1b5c15). If t7 = (a5b2c25), then

we have the symmetric Table 4.19.

Table 4.19: The symmetric table 13

∅ t1 t2 t3 t4 t5 t6 t7
∅ ∅ t1 t2 t3 t4 t5 t6 t7
t1 t1 ∅ t3 t2 ∅ t6 t5 t8
t2 t2 t3 ∅ t1 t5 t4 ∅ t9
t3 t3 t2 t1 ∅ t6 ∅ t4 t10
t4 t4 ∅ t5 t6 ∅ t2 t3 t11
t5 t5 t6 t4 ∅ t2 ∅ t1 t12
t6 t6 t5 ∅ t4 t3 t1 ∅ ∅
t7 t7 t8 t9 t10 t11 t12 ∅ ∅

where

t8 = (a1b5c15),

t9 = (c16c24c35),

t10 = (a3b6c36),

t11 = (c15c23c46),

t12 = (c12c36c45).

156



Thus we have at least 18 Eckardt points determined by the triples tj, j = 1, . . . , 18

where

t13 = t2t8 = (c13c26c45), t14 = t3t8 = (a6b4c46),

t15 = t4t8 = (a5b3c35), t16 = t4t9 = (a6b5c56),

t17 = t5t9 = (a2b6c26), t18 = t5t10 = (c16c25c34).

Now if we assume that t7 = (a1b5c15), we get the symmetric Table 4.20.

Table 4.20: The symmetric table 14

∅ t1 t2 t3 t4 t5 t6 t7
∅ ∅ t1 t2 t3 t4 t5 t6 t7
t1 t1 ∅ t3 t2 ∅ t6 t5 t8
t2 t2 t3 ∅ t1 t5 t4 ∅ t9
t3 t3 t2 t1 ∅ t6 ∅ t4 t10
t4 t4 ∅ t5 t6 ∅ t2 t3 t11
t5 t5 t6 t4 ∅ t2 ∅ t1 ∅
t6 t6 t5 ∅ t4 t3 t1 ∅ t12
t7 t7 t8 t9 t10 t11 ∅ t12 ∅

where

t8 = (a5b2c25),

t9 = (c13c26c45),

t10 = (a6b4c46),

t11 = (a5b3c35),

t12 = (c12c36c45).

Therefore we have at least 18 Eckardt points determined by the triples tj, j = 1, . . . , 18

157



where

t13 = t2t8 = (c16c24c35), t14 = t3t8 = (a3b6c36),

t15 = t4t8 = (c15c23c46), t16 = t6t9 = (a6b5c56),

t17 = t5t13 = (a2b6c26), t18 = t5t14 = (c16c25c34).

Case (ii): t7 = (a5b4c45) or t7 = (c15c24c36). In the same argument for the case (i),

if we assume that t7 = (a5b4c45) then we get the symmetric Table 4.21.

Table 4.21: The symmetric table 15

∅ t1 t2 t3 t4 t5 t6 t7
∅ ∅ t1 t2 t3 t4 t5 t6 t7
t1 t1 ∅ t3 t2 ∅ t6 t5 t8
t2 t2 t3 ∅ t1 t5 t4 ∅ t9
t3 t3 t2 t1 ∅ t6 ∅ t4 t10
t4 t4 ∅ t5 t6 ∅ t2 t3 t11
t5 t5 t6 t4 ∅ t2 ∅ t1 t12
t6 t6 t5 ∅ t4 t3 t1 ∅ ∅
t7 t7 t8 t9 t10 t11 t12 ∅ ∅

where

t8 = (c15c24c36),

t9 = (a3b5c35),

t10 = (a1b6c16),

t11 = (c15c26c34),

t12 = (a2b5c25).

Again we have at least 18 Eckardt points that correspond to the triples tj, j =

1, . . . , 18 where
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t13 = t2t8 = (a6b2c26), t14 = t3t8 = (c13c25c46),

t15 = t4t8 = (a5b6c56), t16 = t6t9 = (c16c23c45),

t17 = t4t10 = (a6b3c36), t18 = t6t10 = (c12c35c46).

let us consider the case(ii) for t7 = (c15c24c36). In this case, we have the symmetric

Table 4.22.

Table 4.22: The symmetric table 16

∅ t1 t2 t3 t4 t5 t6 t7
∅ ∅ t1 t2 t3 t4 t5 t6 t7
t1 t1 ∅ t3 t2 ∅ t6 t5 t8
t2 t2 t3 ∅ t1 t5 t4 ∅ t9
t3 t3 t2 t1 ∅ t6 ∅ t4 t10
t4 t4 ∅ t5 t6 ∅ t2 t3 t11
t5 t5 t6 t4 ∅ t2 ∅ t1 t12
t6 t6 t5 ∅ t4 t3 t1 ∅ ∅
t7 t7 t8 t9 t10 t11 t12 ∅ ∅

where

t8 = (a5b4c45),

t9 = (a6b2c26),

t10 = (c13c25c46),

t11 = (a5b6c56),

t12 = (a2b5c25).

Again we have at least 18 Eckardt points determined by the triples tj, j = 1, . . . , 18

where
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t13 = t2t8 = (a3b5c35), t14 = t3t8 = (a1b6c16),

t15 = t4t8 = (c15c26c34), t16 = t6t13 = (c16c23c45),

t17 = t4t14 = (a6b3c36), t18 = t6t14 = (c12c35c46).

Note that we can transform from one case to another via some exchanges in triples

so that the two cases represent the same kind:

form for the case (i) T :=T1,t:=t4,t7:=t14−−−−−−−−−−−−→ form for the case (ii)

form for the case (i) T :=T1,t:=t4,t7:=t13←−−−−−−−−−−−− form for the case (ii)

Consequently, we also have 42 triads for case (ii). In fact, the 42 triads which corre-

spond to case (i) are:

T1 = {t1, t2, t3}, T2 = {t1, t5, t6}, T3 = {t1, t7, t8},

T4 = {t1, t9, t14}, T5 = {t1, t10, t13}, T6 = {t1, t11, t15},

T7 = {t1, t16, t18}, T8 = {t2, t4, t5}, T9 = {t2, t7, t9},

T10 = {t2, t8, t13}, T11 = {t2, t10, t14}, T12 = {t2, t11, t17},

T13 = {t2, t12, t16}, T14 = {t3, t4, t6}, T15 = {t3, t7, t10},

T16 = {t3, t8, t14}, T17 = {t3, t9, t13}, T18 = {t3, t12, t18},

T19 = {t3, t15, t17}, T20 = {t4, t7, t11}, T21 = {t4, t8, t15},

T22 = {t4, t9, t16}, T23 = {t4, t12, t17}, T24 = {t4, t14, t18},

T25 = {t5, t7, t12}, T26 = {t5, t9, t17}, T27 = {t5, t10, t18},
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T28 = {t5, t11, t16}, T29 = {t5, t13, t15}, T30 = {t6, t8, t12},

T31 = {t6, t10, t11}, T32 = {t6, t13, t16}, T33 = {t6, t14, t17},

T34 = {t6, t15, t18}, T35 = {t7, t13, t14}, T36 = {t7, t16, t17},

T37 = {t8, t9, t10}, T38 = {t8, t17, t18}, T39 = {t9, t11, t12},

T40 = {t10, t15, t16}, T41 = {t11, t13, t18}, T42 = {t12, t14, t15}.

Furthermore, the triads T5, T9, T16, T23, T28, and T34 contain all the 27 lines on S .

Remark 4.7. Let E(10) and E(18) denote respectively the subsets of E(10,10) and E(18,10)

that correspond to the non-singular cubic surfaces of kind I and II of Theorem 4.4

respectively. Note that according to Theorem 4.4, the two sets E(10,10) and E(18,10) are

subsets of E(6,4). A non-singular cubic surface S , which corresponds to c(S ) ∈ E(10),

has exactly 10 Eckardt points determined by the triples ti; i ∈ {1, . . . , 10} which

contain 15 lines among the 27 lines on cubic surface, namely

a1, a2, a3, a4, b1, b2, b2, b4, c12, c13, c14, c23, c24, c34, and c56,

and each ti belongs to exactly three triads. On the other hand, a non-singular cubic

surface S , which corresponds to c(S ) ∈ E(18), has exactly 18 Eckardt points deter-

mined by the triples ti; i ∈ {1, . . . , 18}. In fact, the triples ti; i ∈ {1, . . . , 18} contain

all the 27 lines on cubic surface, and each ti belongs to exactly seven triads. All the

detail are shown in the following corollary.

Corollary 4.10. The non-singular cubic surfaces that corresponds to members in

E(10) and E(18) have exactly 10 and 18 Eckardt points respectively.

Proof. According to Theorem 4.4 part I, a non-singular cubic surface S that cor-

responds to c(S ) ∈ E(10) has at least 10 Eckardt points. Up to permutations and
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quadratic transformations, the Eckardt points on S are precisely the points that are

associated to the triples ti for i ∈ {1, . . . , 10}, where

t1 = (a2b1c12),

t2 = (a4b3c34),

t3 = (c14c23c56),

t4 = (a3b1c13),

t5 = (a1b4c14),

t6 = (a4b2c24),

t7 = (a2b3c23),

t8 = (a1b2c12),

t9 = (c13c24c56),

t10 = (a3b4c34).

Consequently, we have the symmetric table for the triples ti; i ∈ {1, . . . , 10} (see

Table 4.23).

Table 4.23: The symmetric table 17

∅ t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
∅ ∅ t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
t1 t1 ∅ t3 t2 ∅ t6 t5 ∅ ∅ t10 t9
t2 t2 t3 ∅ t1 t5 t4 ∅ ∅ t9 t8 ∅
t3 t3 t2 t1 ∅ t6 ∅ t4 ∅ t10 ∅ t8
t4 t4 ∅ t5 t6 ∅ t2 t3 t8 t7 ∅ ∅
t5 t5 t6 t4 ∅ t2 ∅ t1 t9 ∅ t7 ∅
t6 t6 t5 ∅ t4 t3 t1 ∅ t10 ∅ ∅ t7
t7 t7 ∅ ∅ ∅ t8 t9 t10 ∅ t4 t5 t6
t8 t8 ∅ t9 t10 t7 ∅ ∅ t4 ∅ t10 t9
t9 t9 t10 t8 ∅ ∅ t7 ∅ t5 t10 ∅ t8
t10 t10 t9 ∅ t8 ∅ ∅ t7 t6 t9 t8 ∅

It follows that there are no new possible triples in the table which give us new

Eckardt points. Therefore, S has exactly 10 Eckardt points which correspond to the

triples t1, t2, t3, t4, t5, t6, t7, t8, t9 and t10.
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Similarly, according to Theorem 4.4 part II, a non-singular cubic surface S that

corresponds to c(S ) ∈ E(18) has at least 18 Eckardt points. Up to permutations and

quadratic transformations, the Eckardt points on S are precisely the points that are

associated to the triples ti; i ∈ {1, . . . , 18} where

t1 = (a2b1c12), t2 = (a4b3c34),

t3 = (c14c23c56), t4 = (a3b1c13),

t5 = (a1b4c14), t6 = (a4b2c24),

t7 = (a5b4c45), t8 = (c15c24c36),

t9 = (a3b5c35), t10 = (a1b6c16),

t11 = (c15c26c34), t12 = (a2b5c25),

t13 = t2t8 = (a6b2c26), t14 = t3t8 = (c13c25c46),

t15 = t4t8 = (a5b6c56), t16 = t6t9 = (c16c23c45),

t17 = t4t10 = (a6b3c36), t18 = t6t10 = (c12c35c46).

When we construct the symmetric table for the triples ti; i ∈ {1, . . . , 18}, we are not

have any new possible triples in the table. Consequently, there are no new Eckardt

points on the cubic surface S . Therefore, S has exactly 18 Eckardt points which

correspond to the triples ti; i ∈ {1, . . . , 18}.

Corollary 4.11. For q > 7 and q prime, every non-singular cubic surface S (10)(q)

corresponds to c(S (10)) ∈ E(10) is of type [(q − 10)2 − 1, 27(q − 8) + 3, 105, 10].

Proof. Recall that S (10)(q) denotes a non-singular cubic surface with 27 lines that

has exactly ten Eckardt points over the Galois field GF (q). By the same argument
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used in the proof of Corollary 4.2, we have

nq = e3 + e2 + e1,

3e3 + e2 = 135,

3e3 + 2e2 + e1 = 27(q + 1),

and

e3 + e2 + e1 + e0 = q2 + 7q + 1.

Thus

e3 = 10,

e2 = 135− 30 = 105,

e1 = 27(q − 4)− 105 = 27(q − 8) + 3,

e0 = (q − 10)2 − 1.

Corollary 4.12. For q > 7 and q prime, every non-singular cubic surface S (18)(q)

corresponds to c(S (18)) ∈ E(18) is of type [(q − 10)2 − 9, 27(q − 7), 81, 18].

Proof. Recall that S (18)(q) denotes a non-singular cubic surface with 27 lines that has

exactly eighteen Eckardt points over the Galois field GF (q). By the same argument

used in the proof of Corollary 4.2, we have

nq = e3 + e2 + e1,

3e3 + e2 = 135,

3e3 + 2e2 + e1 = 27(q + 1),

and

e3 + e2 + e1 + e0 = q2 + 7q + 1.
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Thus

e3 = 18,

e2 = 135− 54 = 81,

e1 = 27(q − 4)− 81 = 27(q − 7),

e0 = (q − 10)2 − 9.

Proposition 4.7. Let S be a cubic surface that corresponds to c(S ) ∈ S(4) with

4 triples, namely the set T ∨ t mentioned in Corollary 4.4. Let t′ ∈ T(3) be another

triple on S all of whose lines are in common with T . Then c(S ) ∈ E(9,4).

Proof. From Corollary 4.4, we have

t1 := (a2b1c12),

t2 := (a3b4c34),

t3 := (c13c24c56),

t4 := t = (a3b1c13).

Up to the permutation σ = (34), the triad T = {t1, t2, t3} transforms to

t1 := (a2b1c12),

t2 := (a4b3c34),

t3 := (c14c23c56),

and the triple t := t4 = (a3b1c13) transforms to t := t4 = (a4b1c14). Again, up

permutations and quadratic transformations, we can assume that t′ := (c12c34c56) =

t5. Let us construct the corresponding symmetric table for the triples t1, t2, t3, t4, t5

(see Table 4.24).
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Table 4.24: The symmetric table 18

∅ t1 t2 t3 t4 t5
∅ ∅ t1 t2 t3 t4 t5
t1 t1 ∅ t3 t2 ∅ ∅
t2 t2 t3 ∅ t1 ∅ ∅
t3 t3 t2 t1 ∅ ∅ ∅
t4 t4 ∅ ∅ ∅ ∅ t6
t5 t5 ∅ ∅ ∅ t6 ∅

where t6 = (a2b3c23). Now if there is another triple t′ ∈ T(3) on S whose all lines

in common with triad T then S has at least 6 Eckardt points that correspond to

the triples ti; i ∈ {1, . . . , 6}. However, c(S ) ∈ S(4) and has at least 6 Eckardt points.

This implies that c(S ) ∈ E(6,4) ∪ E(9,4) (see the argument before Definition 4.6)

If c(S ) ∈ E(9,4) then we are done. Otherwise, it is enough to show that there is

another triple t7 on S and hence c(S ) ∈ E(9,4). By change of coordinates system

over the complex field, we can assume that

P1 = (1 : 0 : 0), P2 = (0 : 1 : 0), P3 = (1 : 1 : 1) and P4 = (0 : 0 : 1).

A little algebraic computations shows that the conic, namely C1, which pass through

the points P2, P3, P4, has the form:

C1 = V(x2
0 − x1x2).

The above conic has two tangents at the points P2 and P4, namely

l12 = V(x2) and l14 = V(x1),

respectively. Now if the two points, namely P5 := (α5 : β5 : γ5) and P6 := (α6 : β6 :

γ6), belong to the conic C1 then α2
5 = β5γ5 and α2

6 = β6γ6. It follows that

P5 := (1 : ζ : ζ) and P6 := (1 : ζ : ζ),

or

P5 := (1 : ζ : ζ) and P6 := (1 : ζ : ζ),
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where ζ is a primitive cubic root of unity. Now consider the following lines:

l34 = V(x0 − x1), l23 = V(x0 − x2),

l16 = V(x1 − ζ̄x2), l35 = V(ζ − ζ̄)x0 − (ζ − 1)x1 + (ζ̄ − 1)x2),

l24 = V(x0).

Note that

P7 := (1 : 1 : 0) ∈ l12 ∩ l34 and P8 := (1 : 0 : 1) ∈ l14 ∩ l23.

Moreover, l78 = V(x0 − x1 − x2) and l16 ∩ l24 ∩ l35 = {P9} (see Figure 4.9).

P6

P5
P1

P7

P4P8

P3

P2

P9 C1 l16

l34

l12
l35

l24

l23

l14

l78

Figure 4.9: l16 ∩ l24 ∩ l35 = {P9}.

So we can take t7 := (c16c24c35) where c16 = l̃16, c24 = l̃24 and c35 = l̃35.

Proposition 4.8. E(6,4) ∪ E(9,4) = S(6) = S(5).

Proof. According to Corollary 4.6, every non-singular cubic surface S with 27 lines,

which corresponds to c(S ) ∈ E(6,4), has 6 Eckardt points. Also according to Propo-

sition 4.6, every non-singular cubic surface S with 27 lines, which corresponds to
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c(S ) ∈ E(9,4), has 9 Eckardt points. Moreover, S(6) ⊂ S(5) ⊆ S(4). Therefore, we have

E(6,4) ∪ E(9,4) ⊂ S(6) ⊂ S(5) ⊆ S(4).

If S is a non-singular cubic surface that corresponds to c(S ) ∈ S(5) ⊆ S(4), then

S has 4 triples T ∨ t on it (see Definition 4.6). On the other hand, S has another

triple, namely t′. Now if t′ has one or no common line with triad T then c(S ) ∈

E(6,4) ∪ E(9,4) and we are done. Otherwise, all lines of t′ are in common with T and

hence c(S ) ∈ E(9,4) ⊆ E(6,4) ∪ E(9,4) (see Proposition 4.7). Therefore

E(6,4) ∪ E(9,4) ⊆ S(6) ⊆ S(5) ⊆ E(6,4) ∪ E(9,4).

Proposition 4.9. E(9,4) ∪ E(10,10) ∪ E(18,10) = S(7) = S(8) = S(9).

Proof. It is clear that

S(9) ⊆ S(8) ⊆ S(7) ⊆ S(6).

Now according to Proposition 4.8, we have E(6,4) ∪ E(9,4) = S(6). It follows that

S(7) ⊆ E(6,4) ∪ E(9,4).

Consequently, we get

S(7) = S(7) ∩ (E(6,4) ∪ E(9,4))

= (S(7) ∩ E(6,4)) ∪ (S(7) ∩ E(9,4))

= (S(7) ∩ E(6,4)) ∪ E(9,4),

since E(9,4) ⊆ S(7). On the other hand, let S be any non-singular cubic sur-

face that corresponds to c(S ) ∈ S(7) ∩ E(6,4). Then c(S ) ∈ E(6,4) and has 6

triples t1, t2, t3, t4, t5, t6. Recall that Theorem 4.4 says that if S has a triple t7 ∈
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T(3)\{t1, t2, t3, t4, t5, t6}, then c(S ) ∈ E(10,10) or c(S ) ∈ E(18,10). So c(S ) ∈ E(10,10) ∪

E(18,10). It follows that

S(7) ∩ E(6,4) ⊆ E(10,10) ∪ E(18,10).

Consequently, we get

(S(7) ∩ E(6,4)) ∪ E(9,4) ⊆ E(9,4) ∪ E(10,10) ∪ E(18,10).

Thus

S(7) ⊆ (S(7) ∩ E(6,4)) ∪ E(9,4) ⊆ E(9,4) ∪ E(10,10) ∪ E(18,10)

⊆ S(9) ⊆ S(8) ⊆ S(7).

Proposition 4.10. S(10) = E(10,10) ∪ E(18,10).

Proof. Assume that c(S ) ∈ S(10). By the definition of S(9), we get c(S ) ∈ S(9). Now

according to Proposition 4.9, we have c(S ) ∈ E(9,4)∪E(10,10)∪E(18,10). It follows that

S(10) ⊆ E(9,4) ∪ E(10,10) ∪ E(18,10).

Consequently, we get

S(10) = S(10) ∩ (E(9,4) ∪ E(10,10) ∪ E(18,10))

= (S(10) ∩ E(9,4)) ∪ (S(10) ∩ E(10,10)) ∪ (S(10) ∩ E(18,10))

= (S(10) ∩ E(9,4)) ∪ (E(10,10) ∪ E(18,10)) since E(10,10),E(18,10) ⊆ S(10).

Now if c(S ) ∈ S(10) ∩ E(9,4) then the corresponding non-singular cubic surface

S has 9 Eckardt points which correspond to the triples ti; i ∈ {1, . . . , 9}. Up to

permutations and quadratic transformations, we can assume that (see Proposition

4.6)
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t1 = (c12c34c56),

t2 = (c15c24c36),

t3 = (c13c26c45),

t4 = (a4b1c14),

t5 = (a2b3c23),

t6 = (a5b2c25),

t7 = (a3b5c35),

t8 = (a1b6c16),

t9 = (a6b4c46).

Moreover, the previous 9 triples contain all the 27 lines on S (see Remark 4.6).

However, if c(S ) ∈ S(10) then there is another Eckardt point which corresponds to

some triple on S , namely t10 ∈ T(3)\{t1, . . . , t9}. So all lines of t10 must belong to

some triad among the 12 triads on S . Without loss of generality, we can assume all

the line of t10 are in common with the triad T5 = {t1, t2, t3} (see Proposition 4.6). Up

to permutations and quadratic transformations, we can take t10 = (c12c36c45). Now if

we consider the triad T1 = {t1, t4, t5} in Proposition 4.6, then we get that t10 has only

one common line with T1. Consequently, according to Corollary 4.6, the set T1 ∨ t10

will generate 6 Eckardt points on S and 4 triads so that T1 is one of them. Hence

c(S ) ∈ E(6,4). On the other hand, the lines of the triple t2 are not all in common

with T1. Therefore, according to Theorem 4.4(II), we deduce that the set of triples

T1∨t10∨t2 generate the 18 Eckardt points on S and hence c(S ) ∈ E(18,10). It follows

that

S(10) ⊆ E(18,10) ∪ E(10,10) ∪ E(18,10) = E(10,10) ∪ E(18,10) ⊆ S(10).
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Proposition 4.11. S(11) = S(12) = S(13) = S(14) = S(15) = S(16) = S(17) = S(18) =

E(18,10).

Proof. It obvious that

E(18,10) ⊆ S(18) ⊆ S(17) ⊆ S(16) ⊆ S(15) ⊆ S(14) ⊆ S(13) ⊆ S(12) ⊆ S(11) ⊆ S(10).

Now according to Proposition 4.10, we get

S(10) = E(10,10) ∪ E(18,10).

More precisely, we have S(11) ⊆ E(10,10) ∪ E(18,10). However, S(11) 6⊆ E(10,10) and

E(10,10) ∩ E(18,10) = ∅. It follows that S(11) ⊆ E(18,10). Thus

E(18,10) ⊆ S(18) ⊆ S(17) ⊆ S(16) ⊆ S(15) ⊆ S(14) ⊆ S(13) ⊆ S(12) ⊆ S(11) ⊆ E(18,10).

So we can replace the inclusion relation by equality.

Corollary 4.13. For every k > 18, we have S(k) = ∅.

Proof. Let S be a non-singular cubic surface that corresponds to c(S ) ∈ S(18).

We know that S has 18 Eckardt points which correspond to the 18 triples ti; i ∈

{1, . . . , 18} [see Theorem 4.4(II)]. Furthermore, applying our operation on the previ-

ous triples does not give any new triples.

Now if there is a non-singular cubic surface S that corresponds to c(S ) ∈ S(k)

for some k > 18, then

S(k) ⊆ S(k−1) ⊆ . . . ⊆ S(18) = E(18,10)

which is a contradiction.

The following diagram (see Figure 4.10) illustrates most properties of the classes

S(k) and E(m,k), where the end of dotted arrows is the union of their beginnings. The

hook line represents the inclusion relation while the double line refers to equality

relation.
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S(18)

S(17)

S(16)

S(15)

S(13) = S(12) = S(14)

S(11)

S(10)

S(9)

S(8)

S(7)

S(6)

S(5)

S(4)

S(3)

S(2)

S(1)

E(2,2) E(3,2)

E(6,4) E(9,4)

E(4,4)

E(18,10) E(10,10)

Figure 4.10: The main diagram for S(k) and E(m,k).
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4.3 Irreducibility and codimension of classes of smooth cubic

surfaces over the complex field

In this section, we discuss the irreducibility and codimension of classes of smooth

cubic surfaces as a subvarieties of P19
C . Let ϕ : X → Y be a morphism of affine

algebraic sets [see [25], Page 80], defined over an algebraically closed field k. For

y ∈ Y , the set ϕ−1(y) is called the fiber over y. Recall from ([13], Page 23) that X is

an affine variety if it is an irreducible closed subset of An, and a morphism ϕ : X → Y

between two varieties is said to be dominant if the image of ϕ is dense in Y .

Theorem 4.5. ([5], Page 62) Let ϕ : X → Y be a finite dominant morphism of affine

varieties. Then

1. ϕ is surjective.

2. If y ∈ Y , then the fiber ϕ−1(y) is finite.

3. Let Z ⊂ X be a closed subvariety. Then ϕ(Z) is closed, dim(Z) = dim(ϕ(Z))

and ϕ : Z → ϕ(Z) is finite.

Theorem 4.6. ([5], Page 64) Let ϕ : X → Y be a dominant morphism of affine

varieties. There exists a nonempty open set U ⊂ ϕ(X) such that for all y ∈ U and

any irreducible component Z of ϕ−1(y), dim(Z) = r := dim(X)− dim(Y ).

Theorem 4.7. ([29], Page 76) Let ϕ : X → Y be a regular map between irreducible

varieties. Suppose that ϕ is surjective, ϕ(X) = Y , and that dimX = n, dim Y = m.

Then m ≤ n, and

1. dimF ≥ n−m for any y ∈ Y and for any component F of the fibre ϕ−1(y);

2. there exists a nonempty open subset U ⊂ Y such that ϕ−1(y) = n − m for

y ∈ U .
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Recall that S(k) denotes the set of all smooth cubic surfaces with at least k Eckardt

points (as a subvariety of P19
C ). It is clear that S6 is an open subvariety of (P2)6 and

hence dim S6 = 12. Furthermore, dimWs = 4. Let s := κ123456 ∈ S6 and assume that

ŵ1234 forms a basis of Ws, where Ws is the space of all plane cubics passing through

the points of ŝ := {P1, P2, P3, P4, P5, P6}. Then we have the following birational map

P2 99K P3 : P 7→
(
w1(P ) : w2(P ) : w3(P ) : w4(P )

)
,

which induces a morphism

ψ : P2 − κ̂123456 −−−−−→ P3 : P 7→
(
w1(P ) : w2(P ) : w3(P ) : w4(P )

)
.

In this case, we get imψ := blws P2 = S which is a non-singular cubic surface with

27 lines. As we said previously, S corresponds to c(S ) ∈ Ssm. Moreover, the 27

lines are on S :

1. the exceptional curves P̃i := ai is defined to be the total transform of Pi in ŝ,

2. the curve l̃ij := cij is the strict transform of lij = PiPj,

3. the curve C̃j := bj is the strict transform of the conic Cj passing through all

points of ŝ except Pj.

Following ([24], Page 173), if S (c) := V(∑ cαx
α) represents a cubic surface with

coefficients c(S ) = (cα), then we can consider S as a subvariety of P19. It follows

that

H :=
⋃
c∈P19

S (c)× {c} ⊆ P3 × P19

is defined by the equation∑ zαx
α = 0 where zα denotes the homogeneous coordinates

of the projective space P19. Now if S ⊆ H is the set of points where p2 : H → P19
z

is not smooth or equivalently where the fiber S (c) is not smooth, then let Ssn :=

p2(S). Consequently, P19
z − Ssn parameterize the smooth cubics. In fact, there is a
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homogeneous polynomial d ∈ k[z0, . . . , z19] such that Ssn = V(d). Thus P19
z − Ssn is

an open subset of P19
z and hence it is irreducible and dense. Therefore, dim Ssm = 19.

Let P1 = (1 : 0 : 0) = Q1, P2 = (0 : 1 : 0) = Q2, P3 = (0 : 0 : 1) = Q3, and

πS(P ) represents the blowing up of P2
X at S(P ) := {P1, P2, P3},

πS(Q) represents the blowing up of P2
Y at S(Q) := {Q1, Q2, Q3},

V := blwS(P ) P2
X ,

then we have the following proposition.

Proposition 4.12. Let s = κ123456 ∈ S6 and

t = {Q1, Q2, Q3, ϕ123(P4), ϕ123(P5), ϕ123(P6)}.

Then

blws P2
X
∼= blwt P2

Y .

In particular, if s′ ∈ S6 is obtained from s via quadratic transformation, then

blws P2
X
∼= blws′ P2

X .

Proof. Let ρ1 : X → V represent the blowing up of V at π−1
S(P )(P4), π−1

S(P )(P5),

π−1
S(P )(P6) and let

ρ2 : Y → V

represent the blowing up of V at {π−1
S(Q)(ϕ123(P4)), π−1

S(Q)(ϕ123(P5), π−1
S(Q)(ϕ123(P6)}.

Since πS(Q) ◦ π−1
S(P ) = ϕ123, we have π−1

S(P )(Pk) = π−1
S(Q)(ϕ123(Pk)) for k ∈ {4, 5, 6}.

Thus

X = blws P2
X
∼= blwt P2

Y = Y .

See the diagram in Figure 4.11.
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X Y

P2
X P2

Y

V

∼=

ρ1 ρ2

πS(P ) πS(Q)

πs πt

ϕ123

Figure 4.11: blws P2
X
∼= blwt P2

Y .

Let s = κ123456 ∈ S6 and Es = (a1, . . . , a6) be the exceptional curves corresponding

to s. Let S = blws P2. Define

B1 := {(s, c(S ), Es) : s ∈ S6},

B2 := {(c(S ), λ123456) : li ∩ lj = ∅}.

Consider the following mappings:

B1

∪
(P2)6 × B2

(s, c(S ), Es)

B2

∪
P19 ×G6

2,4

(c(S ), λ123456)

S6

s

Ssm
c(S )

ΞΨ Γ

By David Mumford ([24], Page 174) we have B2 ⊂ P19 × G6
2,4. According to the

projection Γ we get the fiber Γ−1(c(S )) has 51840 elements which is a finite set, and

dimB2 = 19. In fact, dim Γ−1(c(S )) = 0 and hence

dimB2 = dim Ssm + dim Γ−1(c(S )) = 19 + 0 = 19.

Furthermore, the fiber

Ψ−1(s) ∼= Aut(P3) ∼= PGL(3, k) ∼= GL(4, k)/k∗

has dimension equal to 42 − 1 = 15. Similarly, the fiber

Ξ−1(c(S ), λ123456) ∼= Aut(P2) ∼= PGL(2, k) ∼= GL(3, k)/k∗
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has dimension equal to 32 − 1 = 8.

Assume that K is a closed subset of S6. Define the closed subset of K× (P9)4 as

follows:

W :=
{

(s, w1234) : s ∈ K, ŵ1234 ⊂Ws\{0}
}
.

Let us define an open subset W∗ of W as follows:

W∗ :=
{
w = (s, w1234) ∈ W : ŵ1234 forms a basis for Ws

}
,

Then we have the following maps:

W∗
∪

(P2)6 ×Ws

W
∪

(P2)6 ×Ws

K× (P9)4
∪

S6 × (P9)4

K
∪
S6

pKι1 ι2

Where pK is the projection to the first coordinate, and ι1,ι2 represent the embed-

ding maps. The following map, namely

ω :W −−−−−→ K : (s, w1234) ω7−→ s,

is surjective and ω = pK ◦ ι2. Furthermore, the fiber is ω−1(s) ∼= (P3)4 and has

dimension equal to 12. It follows that W is an irreducible closed subset of K× (P9)4

with

dimW = dimK + 12. (4.3.1)

Since W∗ is an irreducible open subset of W , it follows that W∗ is irreducible and

dense in W (i.e, W∗ =W) and hence

dimW∗ = dimW∗ = dimW .

Let B1 := ψ−1(K), and B2 := ξ(B1). Then γ(B2) is a closed subset of Ssm where

ξ := Ξ
∣∣∣
B1
, γ := Γ

∣∣∣
B2

and ψ := Ψ
∣∣∣
B1
.

Note that for any basis ŵ1234 of Ws; s ∈ S6 there exists an embedding in P3 of the

blow-up of P2 at six points in general position, namely the embedding coming from
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the birational map

P2 99K P3 : P 7→ (α1w1(P ) : α2w2(P ) : α3w3(P ) : α4w4(P ));αj ∈ k∗,

where {α1w1, α2w2, α3w3, α4w4} forms a basis of Ws. The above birational map

induces a morphism, namely

P2 − s→ P3 : P 7→ (w1(P ) : w2(P ) : w3(P ) : w4(P )),

Thus we deduced that B1 isomorphic to an open subset U of W∗ × P3 (see Figure

4.12). Hence B1 is irreducible with

dimB1 = dimU = dim(W∗ × P3) = dimW + 3.

According to Equation (4.4), we get

dimB1 = dimK + 15. (4.3.2)

All the above results are illustrated in the main diagram (Figure 4.12 ), where

ω :W −−−−−→ K : (s, w1234) ω7−→ s,

is the surjective map which is defined previously. In fact, ω = pK ◦ ι2.

Lemma 4.3.1. Let K(1) :=
{
s = κ123456 ∈ S6 : ∧(12, 34, 56) 6= ∅

}
. Then K(1) is an

irreducible subset of S6 and codimK(1) = 1.

Proof. Let L1 be a subset of P2 ×G3
2,3 defined by

L1 := {(Q;λ123) : ∧(λ123) = Q}.

Let L2 be the subset of L1 × (P2)6 defined by

L2 :=
{

(t; s) : s = κ123456 ∈ S6, t ∈ L1 such that λ123 = (l12, l34, l56)
}
.

Then we have the following projections:
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(s, c(S ), Es) ∈ B1
∪

(P2)6 × B2

B1 = ψ−1(K)
∪

(c(S ), λ123456) ∈ B2
∪

P19 ×G6
2,4

B2 = ξ−1(B1)
∪

s ∈ S6
∪

(P2)6

s ∈ K
closed ∪

c(S ) ∈ Ssm
∪
P19

γ(B2)
∪

K× (P9)4 ⊆ S6 × (P9)4

(s, w1234) ∈ W ⊆ (P2)6 ×Ws

(s, w1234)
ŵ1234 basis

∈ W∗ ⊆ (P2)6 ×Ws

W∗ × P3

ΞΨ Γ

ξψ γ

pK

ι1

ι2 open

p1

B
1
∼ =
U
⊆
o
p
en
W
∗
×

P3ω
−

1 (
•)
∼ =

(P
3 )

4

ω

Figure 4.12: Main diagram.

L2

∪
L1 × S6

(t; s)

L1

∪
P2 ×G3

2,3

t = (Q;λ123)
K(1)
∪
S6

s

P2

Q

p2p3 p1

Let us consider the fiber of each map (see Figure 4.13).

The fiber p−1
1 (Q) is an irreducible subset L1 with dim p−1

1 (Q) = 3. Hence L1 is an

irreducible subset of P2 ×G3
2,3 with dimension equal to 5.

The fiber p−1
2 (t) is an irreducible subset of L2 with dimension equal to 6. So L2

is an irreducible subset of L1 × (P2)6 with

dimL2 = dimL1 + 6 = 5 + 6 = 11.

If we assume l12 := l1, l34 := l2 and l56 := l3 so that ∧(12, 34, 56) = Q, we get the
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Q

p−1
1

Q

l1

l2

l3

p−1
2

K(1)

P1

P2

P3P4

P5

P6

Q

l1

l2

l3

∼=

p3

P1

P2

P3P4

P5

P6

Q

l1

l2

l3

Figure 4.13: K(1) and configurations of members of the fibers.

following isomorphism

L2
p3−→ K(1) : (t; s) 7→ s.

Thus K(1) is an irreducible subset of S6 with codimension equal to 1.

Theorem 4.8. S(1) is an irreducible subset of Ssm with codimension 1.

Proof. Assume that K := K(1), where K(1) is the set defined in Lemma 4.3.1. Let us

consider the following diagram (see Figure 4.14):

B1
∩
B1

B2

B2

∩
K(1)

S6

∩
S(1)

∩
Ssm

ξψ γ

Figure 4.14: S(1) = γ ◦ ξ(B1).
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where B1 := ψ−1(K(1)), and B2 := ξ(B1). Then S(1) = γ(B2) where

ξ := Ξ
∣∣∣
B1
, γ := Γ

∣∣∣
B2

and ψ := Ψ
∣∣∣
B1
.

Then according to Equation (4.3.2), we have:

dimB1 = dimK(1) + 15 = 11 + 15 = 26.

Consequently, S(1) = γ ◦ ξ(B1) is an irreducible subset of Ssm with

dim S(1) = dimB1 − dim ξ−1 ◦ γ−1(x) = dimB1 − dim ξ−1(b2)

= 26− 8 = 18, where b2 = γ−1(x) and x ∈ S(1).

Hence S(1) is an irreducible subset of Ssm with codimension 1.

Lemma 4.3.2. Let

K(2) :=
{
s = κ123456 ∈ S6 : ∧(12, 34, 56) = {P7} and ∧ (12, 35, 46) = {P8}

}
.

Then K(2) is an irreducible subset of S6 and codimK(2) = 2.

Proof. Let L1 be the subset of P2 × P2 defined by

L1 :=
{
x = (P7, P8) ∈ P2 × P2 : P7 6= P8

}
.

Let L2 be the subset of L1 ×G4
2,3 defined by

L2 :=
{

(x;λ1234) : x ∈ L1 and ∧ (1, 2) = {P7},∧(3, 4) = {P8}
}
.

Let L3 be the subset of L2 × P2 × P2 defined by

L3 :=
{

(y;P1, P2) : y ∈ L2 and P1, P2 ∈ l78

}
.

Then we have the following projections:

L3

∪
L2 × P2 × P2

(y;P1, P2)

L2

∪
L1 ×G4

2,3

y = (x;λ1234)

L1

∪
P2 × P2

x = (P7, P8)

p1 p2
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It is evident that the set L1 is an open subset of P2 × P2 and hence

dimL1 = dimL1 = dim(P2 × P2) = 4.

Let us consider the fiber of each map (see Figure 4.15).

P8P7

p−1
2

P8P7

l1

l2

l3

l4

p−1
1

K(2)

P2P1 P8P7

P3

P6

P4

P5

l1

l2

l3

l4

P2P1 P8P7

l1

l2

l3

l4

Figure 4.15: K(2) and configurations of members of the fibers.

The fiber p−1
2 (x) is an irreducible subset L2 with dim p−1

2 (x) = 4. Since p2 is

surjective with irreducible target of dimension 4, L2 is an irreducible with dimension

4 + 4 = 8. Furthermore, L3 is irreducible with dimL3 = 8 + 2 = 10 since p1 is

surjective and the fiber p−1
1 ((x;λ1234)) is irreducible with dim p−1

1 ((x;λ1234)) = 2. If

we assume that ∧(1, 3) = {P3}, ∧(1, 4) = {P4}, ∧(2, 3) = {P5} and ∧(2, 4) = {P6},

then K(2) becomes an open subset of L3. Thus K(2) is an irreducible subset of S6 with

dimension

dimK(2) = dimK(2) = dimL3 = 10.
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Theorem 4.9. E(2) is an irreducible subset of Ssm with codimension 2.

Proof. Let K := K(2), where K(2) is the set defined in Lemma 4.3.2. Assume that Ξ,Ψ,

and Γ are the maps defined in the main diagram (Figure 4.12). Let B1 := ψ−1(K(2)),

and B2 := ξ(B1). Then E(2) = γ(B2) where

ξ := Ξ
∣∣∣
B1
, γ := Γ

∣∣∣
B2

and ψ := Ψ
∣∣∣
B1
.

Then up to the diagram (see Figure 4.16), we have

B1
∩
B1

B2

B2

∩
K(2)

S6

∩
E(2)

∩
Ssm

ξψ γ

Figure 4.16: E(2) = γ ◦ ξ(B1).

E(2) = γ ◦ ξ(B1) which is a subset of Ssm. According to Equation (4.3.2), we have:

dimB1 = dimK(2) + 15 = 10 + 15 = 25.

Consequently, E(2) = γ ◦ ξ(B1) is an irreducible subset of Ssm with

dimE(2) = dimB1 − dim ξ−1 ◦ γ−1(x) = dimB1 − dim ξ−1(b2)

= 25− 8 = 17, where b2 = γ−1(x) and x ∈ E(2).

Therefore E(2) is an irreducible subset of Ssm with codimension 2.

Lemma 4.3.3. Let

K(3) :=
{
s = κ123456 ∈ S6 : ∧(12, 34, 56) = {P7} and ∧ (13, 45, 26) = {P8}

}
.

Then K(3) is an irreducible subset of S6 and codimK(3) = 2.

Proof. Let L1 be the subset of P2 × P2 defined by

L1 :=
{
x = (P7, P8) ∈ P2 × P2 : P7 6= P8

}
.
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Let L2 be the subset of L1 ×G4
2,3 defined by

L2 :=
{

(x;λ1234) : x ∈ L1 and ∧ (1, 2) = {P7},∧(3, 4) = {P8}
}
.

Let L3 be the subset of L2 × P2 × P2 defined by

L3 :=
{

(y;P1, P2) : y ∈ L2 and P7 ∈ P1P2, P8 ∈ P1P3

}
.

Then we have the following projections:

L3

∪
L2 × P2 × P2

(y;P1, P2)

L2

∪
L1 ×G4

2,3

y = (x;λ1234)

L1

∪
P2 × P2

x = (P7, P8)

p1 p2

Let us consider the fiber of each projection (see Figure 4.17).

P8

P7

p−1
2

P8

P7

l1

l2

l3

l4

p−1
1

K(3)

P8

P7
P3

P2P1
P6

P4

P5

l1

l2

l3

l4

P8

P7
P3

P2P1

l1

l2

l3

l4

Figure 4.17: K(3) and configurations of members of the fibers.

As we illustrated in Lemma 4.3.2, the set L1 is an open subset of P2 × P2 with

dimL1 = dimL1 = dimP2 × P2 = 4.
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Let us consider the following projections:

L3

∪
L2 × P2 × P2

(y;P1, P2)

L2

∪
L1 ×G4

2,3

y = (x;λ1234)

L1

∪
P2 × P2

x = (P7, P8)

p1 p2

By the same argument used in the proof of Lemma 4.3.2, the surjectivity of p2

implies the irreducibility of the fiber p−1
2 (x). Moreover, we have dim p−1

2 (x) = 4.

Since p2 is surjective with irreducible target of dimension 4, it follows that the set

L2 is an irreducible with dimension 4 + 4 = 8. Furthermore, L3 is an irreducible set

with dimL3 = 8+2 = 10 since p1 is surjective and the fiber p−1
1 (y) is irreducible with

dim p−1
1 ((x;λ1234)) = 2. If we assume that ∧(2, 4) = {P3},∧(2, 3) = {P4},∧(1, 3) =

{P5},∧(1, 2) = {P7},∧(3, 4) = {P8} and l1 ∩ P2P8 = {P6} (see Figure 4.17), we

conclude that K(3) is an open subset of L3. Thus K(3) becomes an irreducible subset

of S6 with dimension

dimK(3) = dimK(3) = dimL3 = 10.

Theorem 4.10. E(3) is an irreducible subset of Ssm with codimension 2.

Proof. Let K := K(3) be the set defined as in Lemma 4.3.3. Let us consider the

same procedure used in the proof of Theorem 4.9, and assume that Ξ,Ψ, and Γ are

the maps defined as in the main diagram (Figure 4.12). Let B1 := ψ−1(K(3)), and

B2 := ξ(B1). Then E(3) = γ(B2) where

ξ := Ξ
∣∣∣
B1
, γ := Γ

∣∣∣
B2

and ψ := Ψ
∣∣∣
B1
.

Then according to the following diagram (see Figure 4.18), we have

E(3) = γ ◦ ξ(B1) which is a subset of Ssm. According to Equation (4.3.2), we

obtain:

dimB1 = dimK(3) + 15 = 10 + 15 = 25.

185



B1
∩
B1

B2

B2

∩
K(3)

S6

∩
E(3)

∩
Ssm

ξψ γ

Figure 4.18: E(3) = γ ◦ ξ(B1).

Consequently, E(3) = γ ◦ ξ(B1) is an irreducible subset of Ssm with

dimE(3) = dimB1 − dim ξ−1 ◦ γ−1(x) = dimB1 − dim ξ−1(b2)

= 25− 8 = 17, where b2 = γ−1(x) and x ∈ E(3).

Therefore E(3) is an irreducible subset of Ssm with codimension 2.

Corollary 4.14. S(1) and S(2) are closed subset of Ssm. Moreover, S(2) has two

irreducible components E(2) and E(3) in Ssm with codimension 2.

Proof. Let LS := (l1, . . . , l27) be the 27 lines on the non-singular cubic surface S .

Define

G :=
{

(c(S ),LS ) : c(S ) ∈ Ssm
}
⊂ Ssm ×G27

2,4,

G1 :=
{

(c(S ),LS ) ∈ G : λ123 ∈ T(3)
}
⊆ G,

G2 :=
{

(c(S ),LS ) ∈ G : λ123, λ145 ∈ T(3)
}
⊆ G,

G3 :=
{

(c(S ),LS ) ∈ G : λ123, λ456 ∈ T(3)
}
⊆ G.

We know that T(3) ⊂ G3
2,4 and it is evident that the set

G∗ :=
{
λ12 ∈ G2,4 ×G2,4 : ∧(λ12) 6= ∅

}
,

is a closed subset of G2,4 ×G2,4 (see [2] and [24]). Let

G p−−−−→ Ssm : (c(S ),LS ) 7→ c(S )

be the projection map, and consider the mappings in Figure 4.19.

Note that

T(3) = η−1
12 (G∗) ∩ η−1

13 (G∗) ∩ η−1
23 (G∗) ⊂ G2,4 ×G2,4 ×G2,4.
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G

(c(S ),LS )

Ssm

c(S )

G3
2,4∈

G2
2,4 ∈

λmnλijk

p

ηijk (maps)

1
≤
i
<
j
<
k

≤
27

ηmn (maps)

i ≤ m < n ≤ k

Figure 4.19: Irreducible components of S(2).

Hence T(3) is a closed subset of G2,4 ×G2,4 ×G2,4. Furthermore, G1 = η−1
123(T(3)).

It follows that G1 is a closed subset of G. But we know that S(1) = p(G1). This

means that the set S(1) is a closed subset of Ssm. Moreover, the subsets

G2 = η−1
123(T(3)) ∩ η−1

145(T(3)),

G3 = η−1
123(T(3)) ∩ η−1

456(T(3)),

are both closed subsets of Ssm. Consequently, we get

E(2) = p(G2),

E(3) = p(G3),

are closed subsets of Ssm. Thus S(2) is a closed subset of Ssm with two irreducible

components, namely E(2) and E(3). According to Theorem 4.9 and Theorem 4.10,

we know that both E(2) and E(3) have codimension 2. Thus S(2) has two irreducible

components, namely E(2) and E(3) in Ssm with codimension 2.

Lemma 4.3.4. Let

K(4) :=
{
s = κ123456 ∈ S6 : ∧(13, 24, 56) = {P7} and l12, l13 tangents to C1

}
.
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Then K(4) is an irreducible subset of S6 and codimK(4) = 3.

Proof. Let L1 be the subset of Csm × (P2)3 defined by

L1 :=
{

(c(C1), κ123) : l12, l13 tangents to C1

}
.

Let L2 be the subset of L1 × P2 defined by

L2 :=
{

(x;P7) : x ∈ L1 and P7 ∈ l13\{P1, P3}
}
.

Let L3 be the subset of L2 × P2 × P2 × P2 defined by

L3 :=
{

(y;κ456) : y ∈ L2 and P4 ∈ C1 ∩ l27 and P5, P6 ∈ C1, l13 ∩ l56 = {P7}
}
.

Then we have the projection mapping as in Figure 4.20.

L3

(y;κ456)

L2

(x;P7)

L1

(c(C1), κ123)

Csm

c(C1)

K(4)s

p3 p2 p1

∼ = p4

Figure 4.20: Irreducibility of K(4).

Let us consider the fiber of each projection in previous diagram (see Figure 4.21).

The surjectivity of p1 implies to the irreducibility of the fiber p−1
1 (c(C1)) as a

subset of L1. Moreover, we have dim p−1
1 (c(C1)) = 2. Since p1 has an irreducible

target of dimension 5, L1 is irreducible with dimension 5 + 2 = 7. Furthermore, L2 is

an irreducible with dimL2 = 7+1 = 8 since every fiber p−1
2 (c(C1), κ123) has dimension

1 under the surjective map p2.

Note that the fiber p−1
3 (x;P7) is a subset of C1 × C1 and isomorphic to the set S,

where S := {(P5, P6) ∈ C1 × C1 : P7 ∈ l56}. Define the surjective map p5 as follows:

p5 : S −→ C1 by (P5, P6) 7→ P5.

We see that every fiber under the map p5 is a singleton set and hence dimS =

1. Therefore dimS = dim p−1
3 (x;P7) = 1. Consequently, L3 is irreducible with
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P1

C1
p−1

1

P1
l13

l12

C1
P2

P3

p−1
2

P1

P7

l24

l56

l13

l12

C1
P2

P5P6
P4

P3

P1

P7
l13

l12

C1
P2

P3

p−1
3

P1

P7

l24

l56

l13

l12

C1
P2

P5P6
P4

P3

∼ = p4

K(4)

Figure 4.21: K(4) and configurations of members of the fibers.

dimension 8 + 1 = 9. Finally, L3 isomorphic to K(4) via the projection map p4. So

K(4) is an irreducible subset of S6 with codimK(4) = 3.

Theorem 4.11. E(4) is an irreducible subset of Ssm with codimension 3.

Proof. Let K := K(4) be the set defined as in Lemma 4.3.4. Assume that B1 :=

ψ−1(K(4)), and B2 := ξ(B1). Then E(4) = γ(B2) where ξ := Ξ
∣∣∣
B1
, γ := Γ

∣∣∣
N
, and

ψ := Ψ
∣∣∣
M

(see Figure 4.12). Consequently, we have E(4) = γ ◦ ξ(B1) which is a subset

of Ssm (see Figure 4.22).

189



B1
∩
B1

B2

B2

∩
K(4)

S6

∩
E(4)

∩
Ssm

ξψ γ

Figure 4.22: E(4) = γ ◦ ξ(B1).

According to Equation (4.3.2), we have:

dimB1 = dimK(4) + 15 = 9 + 15 = 24.

It follows that E(4) = γ ◦ ξ(B1) is an irreducible subset of Ssm with

dimE(4) = dimB1 − dim ξ−1 ◦ γ−1(x) = dimB1 − dim ξ−1(b2)

= 24− 8 = 16, where b2 = γ−1(x) and x ∈ E(4).

Therefore we conclude that E(4) is an irreducible subset of Ssm with codimension

3.

Lemma 4.3.5. Let

K(6) :=
{
s = κ123456 ∈ S6 : ∧(14, 23, 56) = {P7} and l12, l13 tangents to C1

}
.

Then K(6) is an irreducible subset of S6 with codimK(6) = 3.

Proof. Let L1 be the subset of Csm × P2 × P2 × P2 defined by

L1 :=
{

(c(C1), κ123) : l12, l13 tangents to C1

}
.

Let L2 be the subset of L1 × P2 defined by

L2 :=
{

(x;P4) : x ∈ L1 and P4 ∈ C1\{P2, P3}
}
.

Let L3 be the subset of L2 × P2 × P2 defined by

L3 :=


(y;P5, P6) : κ123456 ∈ S6, y ∈ L2 and P5, P6 ∈ C1

and ∧ (14, 23, 56) = {P7}

 .
Then we have the projections as in Figure 4.23.
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L3

(y;P5, P6)

L2

(x;P4)

L1

(c(C1), κ123)

Csm

c(C1)

K(6)s

p3 p2 p1

∼ = p4

Figure 4.23: Irreducibility of K(6).
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p−1
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P3

P2

l13

l12
C1

p−1
2

P1

P7

P3

P2

P5

P4

P6

l13

l12

l56
l14

l23

C1

P1

P3

P2

P4

l13

l12
C1

p−1
3

P1

P7

P3

P2

P5

P4

P6

l13

l12

l56
l14

l23

C1

∼ = p4

K(6)

Figure 4.24: K(6) and configurations of members of the fibers.

Let us consider the fiber of each projection in previous diagram (see Figure 4.24).

As in Lemma 4.3.4, the surjectivity of p1 implies to the irreducibility of the fiber
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p−1
1 (c(C1)) as a subset of L1. Moreover, we have dim p−1

1 (c(C1)) = 2. Since p2 has

an irreducible target of dimension 5, L1 is an irreducible with dimension 5 + 2 =

7. Furthermore, L2 is irreducible with dimL2 = 7 + 1 = 8 because every fiber

p−1
2 (c(C1), κ123) has dimension 1 under the surjective map p2.

Note that the fiber p−1
3 (x;P4) consists of all points P5, P6 on the non-singular

conic C1, so that P7 ∈ l56. More precisely, the fiber p−1
3 (x;P4) is a subset of C1 × C1

isomorphic to the set S, where

S := {(P5, P6) ∈ C1 × C1 : P7 ∈ l56}.

Define the surjective map p5 as follows:

p5 : S −→ C1 by (P5, P6) 7→ P5.

Now the fiber under the map p5 consists of one point, and hence it has dimension

equal to 1. Thus dimS = dim p−1
3 (x;P4) = 1. Consequently, L3 is irreducible with

dimension 8 + 1 = 9. Finally, L3 is isomorphic to K(6) via the projection map p4. So

K(6) is an irreducible subset of S6 with codimK(6) = 3.

Theorem 4.12. E(6) is an irreducible subset of Ssm with codimension 3.

Proof. Let K := K(6) be the set defined as in Lemma 4.3.5. Let us assume B1 :=

ψ−1(K(6)), and B2 := ξ(B1). Then E(6) = γ(B2) where ξ := Ξ
∣∣∣
B1
, γ := Γ

∣∣∣
B2
, and ψ :=

Ψ
∣∣∣
B1

(see the main diagram in Figure 4.12). Consequently, we have E(6) = γ ◦ ξ(B1)

which is a subset of Ssm (see Figure 4.25).

B1
∩
B1

B2

B2

∩
K(6)

S6

∩
E(6)

∩
Ssm

ξψ γ

Figure 4.25: E(6) = γ ◦ ξ(B1).
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According to Equation (4.3.2), we have:

dimB1 = dimK(6) + 15 = 9 + 15 = 24.

Since E(6) = γ ◦ ξ(B1), it follows that E(6) is an irreducible subset of Ssm with

dimE(6) = dimB1 − dim ξ−1 ◦ γ−1(x) = dimB1 − dim ξ−1(n)

= 24− 8 = 16, where n = γ−1(x) and x ∈ E(6).

Therefore we conclude that E(6) is an irreducible subset of Ssm with codimension

3.

Lemma 4.3.6. Let s = κ123456 ∈ S6 and define

K(9) :=


s ∈ S6 : ∧(12, 34, 56) = {P8},∧(15, 24, 36) = {P7} and

l14 tangent to C1 at P4

 .
Then K(9) is an irreducible subset of S6 with codimension equal 3.

Proof. Let L1 be the subset of P2 × P2 × P2 × P2 defined by

L1 :=
{
κ1234 : there is no three points in κ̂1234 on the same line

}
.

Let L2 be the subset of L1 × P2 defined by

L2 :=
{

(x;P7) : x ∈ L1 and P7 ∈ l24\l23 ∪ l14 ∪ l13

}
.

Let L3 be the subset of L2 × P2 × P2 defined by

L3 :=


(y;P5, P6) : κ123456 ∈ S6, y ∈ L2, ∧(15, 24, 36) = {P7} and

l14 tangent to C1 at P4

 .
Then we have the following projections (see Figure 4.26).

Now let us consider the fiber of each projection in the diagram (see Figure 4.27).
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L3

(y;P5, P6)

L2

(x;P7)

L1

κ1234

K(9)s

p2 p1

∼ = p3

Figure 4.26: Irreducible components of K(9).

P4P1

P2

P3

p−1
1

P4P1

P7

P2

P3

l14

l24
p−1

2

P4P1

P7

P8

P5 P6
P2

P3

l14

l15 l24 l36

C1

K(9)

P4P1

P7

P5 P6
P2

P3

l14

l15 l24 l36

C1

∼=

p3

Figure 4.27: K(9) and configurations of members of the fibers.

It is evident that L1 is an open subset of P2 × P2 × P2 × P2. Thus dimL1 = 8.

Furthermore, the surjectivity of p1 implies the irreducibility of the fiber p−1
1 (κ1234)

as a subset of L2. Moreover, we have dim p−1
1 (κ1234) = 1. Consequently, L2 is an

irreducible with dimension equal to 8 + 1 = 9.
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More precisely, Let

P1 = (1 : 0 : 1), P2 = (1 : 1 : 0), P3 = (−1 : 1 : 0), and P4 = (0 : 0 : 1).

Then

l13 = V(x0 + x1 + x2),

l14 = V(x1),

l23 = V(x2),

l24 = V(x0 − x1).

Note that P7 = (α : α : 1) ∈ l24\l23 ∪ l14 ∪ l13 where α ∈ (k\{0}) ∪ {∞}. Therefore,

except for finite number of values of α, the fiber p−1
2 ((x;P7)) consists of two distinct

points. It follows that dim p−1
2 (x;P8) = 0, and the set L3 has dimension equal to 9.

More precisely, we have

dimL3 = dimL2 + 0 = 9.

But L3 isomorphic to K(9) via the projection map p3. It follows that K(9) is an

irreducible subset of S6 with codimension equal 3.

Theorem 4.13. E(9) is an irreducible subset of Ssm with codimension 3.

Proof. First, Let K := K(9) (see Lemma 4.3.6). Let us assume B1 := ψ−1(K(9)), and

B2 := ξ(B1). Then E(9) = γ(B2) where ξ := Ξ
∣∣∣
B1
, γ := Γ

∣∣∣
B2
, and ψ := Ψ

∣∣∣
B1

(see the

main diagram in Figure 4.12). Consider the diagram (see Figure 4.28).

B1
∩
B1

B2

B2

∩
K(9)

S6

∩
E(9)

∩
Ssm

ξψ γ

Figure 4.28: E(9) = γ ◦ ξ(B1).
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According to Equation (4.3.2), we have:

dimB1 = dimK(9) + 15 = 9 + 15 = 24.

Since E(9) = γ ◦ ξ(B1), it follows that E(9) is an irreducible subset of Ssm with

dimE(9) = dimB1 − dim ξ−1 ◦ γ−1(x) = dimB1 − dim ξ−1(n)

= 24− 8 = 16, where n = γ−1(x), x ∈ E(9).

Corollary 4.15. E(4),E(6) and E(9) are closed subset of Ssm.

Proof. Let LS := (l1, . . . , l27) be the 27 lines on a non-singular cubic surface S with

coefficients c(S ). Define

G :=
{

(c(S ),LS ) : c ∈ Ssm
}
⊂ Ssm × L27

27,

G1 :=
{

(c(S ),LS ) ∈ G : λ123, λ145, λ267 ∈ T(3)
}
⊂ G,

G2 :=
{

(c(S ),LS ) ∈ G : λ123, λ145, λ678 ∈ T(3)
}
⊂ G,

G3 :=
{

(c(S ),LS ) ∈ G : λ123, λ456, λ789 ∈ T(3)
}
⊂ G.

We know that T(3) ⊂ G2,4 ×G2,4 ×G2,4. Moreover, it is evident that the set

G∗ :=
{
λ12 ∈ G2,4 ×G2,4 : ∧(λ12) 6= ∅

}
,

is closed subset of G2,4 ×G2,4 (see [2] and [24]). Let

G p−−−−→ Ssm : (c(S ),LS ) 7→ c(S )

be the projection map, and consider the mappings in Figure 4.29.

Note that

T(3) = η−1
12 (G∗) ∩ η−1

13 (G∗) ∩ η−1
23 (G∗) ⊂ G2,4 ×G2,4 ×G2,4.

Hence T(3) is a closed subset of G2,4 ×G2,4 ×G2,4. Furthermore,

G1 = η−1
123(T(3)) ∩ η−1

145(T(3)) ∩ η−1
267(T(3)).
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G

(c(S ),LS )

Ssm

c(S )

G3
2,4∈

G2
2,4 ∈

λmnλijk

p

ηijk (maps)

1
≤
i
<
j
<
k

≤
27

ηmn (maps)

i ≤ m < n ≤ k

Figure 4.29: E(4),E(6) and E(9) are closed subsets of Ssm.

So G1 is closed subset of G. Moreover, we have

G2 = η−1
123(T(3)) ∩ η−1

145(T(3)) ∩ η−1
678(T(3)),

G3 = η−1
123(T(3)) ∩ η−1

456(T(3)) ∩ η−1
789(T(3)).

It follows that both G2 and G3 are closed subsets of G. Finally, since

E(4) = p(G1),E(6) = p(G2) and E(9) = p(G3),

we have E(4),E(6) and E(9) are closed subsets of Ssm.

Lemma 4.3.7. Let s = κ123456 ∈ S6 and define

K(10) :=


s ∈ S6 : ∧(12, 34, 56) = {P7}; ∧(14, 23, 56) = {P8} and

l12, l13 tangents to C1

 .
Then K(10) is an irreducible subset of S6 with codimension equal 4.

Proof. Let L1 be the subset of Csm × (P2)3 defined by

L1 :=
{
c(C1), κ123) : l12, l13 are tangents to C1 at P2, P3 respectively

}
.
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Let L2 be the subset of L1 × P2 defined by

L2 :=
{

(x;P8) : x ∈ L1 and P8 ∈ l23\{P2, P3}
}
.

Let L3 be the subset of L2 × (P2)3 defined by

L3 :=


(y;κ456) : κ123456 ∈ S6, y ∈ L2 and P5, P6 ∈ C1,∧(23, 56) = {P8},

∧(12, 34, 56) 6= ∅ and C1 ∩ l18 = {P4}

 .
Let us consider the following projections (Figure 4.30).

L3

(y;κ456)

L2

(x;P8)

L1

(c(C1), κ123)

Csm

c(C1)

K(10)s

p3 p2 p1

∼ = p4

Figure 4.30: Irreducible components of K(10).

The fibers of each projection are illustrated in Figure 4.31.

As in Lemma 4.3.5, the surjectivity of p1 implies to the irreducibility of the fiber

p−1
1 (c(C1)) as a subset of L1. Moreover, we have dim p−1

1 (c(C1)) = 2. Since p2 has

an irreducible target of dimension 5, L1 is irreducible with dimension 5 + 2 = 7.

Furthermore, L2 is an irreducible with dimL2 = 7 + 1 = 8 because every fiber

p−1
2 (c(C1), κ123) has dimension 1 under the surjective map p2.

Note that the fiber p−1
3 (x;P8) consists of all points P5, P6 on the non-singular

conic C1, so that P7 ∈ l56. More precisely, the fiber p−1
3 (x;P8) is a subset of C1 × C1

isomorphic to the set S, where

S :=
{

(P5, P6) ∈ C1 × C1 : P7 ∈ l56} = {(P5, P6), (P6, P5)
}
.
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P1

C1 p−1
1

P1 l12

l13

P3

P2

C1

p−1
2

P1

l34

l56

l12

l13

P3

P6
P5

P4

P2

P8

C1

P1 l12

l13

P3

P2

P8

C1
p−1

3

P1P7

l34

l56

l12

l13

P3

P6
P5

P4

P2

P8

C1

∼ = p4

K(10)

Figure 4.31: K(10) and configurations of members of the fibers.

Since S is finite, we get dimS = 0 = dim p−1
3 (x;P8). Consequently, L3 is irreducible

with dimension 8 + 0 = 8. Finally, L3 isomorphic to K(10) via the projection map p4.

So we conclude that K(10) is irreducible subset of S6 with codimK(10) = 4.

Theorem 4.14. E(10) is an irreducible subset of Ssm with codimension 4.

Proof. Let K := K(10) be the set defined as in Lemma 4.3.7. As in the proof of

Theorem 4.11. Let us assume B1 := ψ−1(K(10)), and B2 := ξ(B1). Then E(10) = γ(B2)

where ξ := Ξ
∣∣∣
B1
, γ := Γ

∣∣∣
B2
, and ψ := Ψ

∣∣∣
B1

(see the main diagram in Figure 4.12).
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Then we have E(10) = γ ◦ ξ(B1) which is a subset of Ssm (see Figure 4.32).

B1
∩
B1

B2

B2

∩
K(10)

S6

∩
E(10)

∩
Ssm

ξψ γ

Figure 4.32: E(10) = γ ◦ ξ(B1).

According to Equation (4.3.2), we have:

dimB1 = dimK(10) + 15 = 8 + 15 = 23.

Since E(10) = γ ◦ ξ(B1), it follows that E(10) is an irreducible subset of Ssm with

dimE(10) = dimB1 − dim ξ−1 ◦ γ−1(x) = dimB1 − dim ξ−1(n)

= 23− 8 = 15, where n = γ−1(x), x ∈ E(10).

Therefore we conclude that E(10) is an irreducible subset of Ssm with codimension

4.

Lemma 4.3.8. Let s = κ123456 ∈ S6 and define

K(18) :=


s ∈ S6 : ∧(15, 24, 36) = {P7}; ∧(14, 23, 56) = {P8} and

l12, l13 tangents to C1

 .
Then K(18) is an irreducible subset of S6 with codimension equal 4.

Proof. Let L1 be the subset of Csm × (P2)3 defined by

L1 :=
{
c(C1), κ123) : l12, l13 are tangents to C1 at P2, P3 respectively

}
.

Let L2 be the subset of L1 × P2 defined by

L2 :=
{

(x;P8) : x ∈ L1 and P8 ∈ l23\{P2, P3}
}
.

Let L3 be the subset of L2 × (P2)3 defined by
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L3

(y;κ456)

L2

(x;P8)

L1

(c(C1), κ123)

Csm

c(C1)

K(18)s

p3 p2 p1

∼ = p4

Figure 4.33: Irreducible components of K(18).

L3 :=


(y;κ456) : κ123456 ∈ S6, y ∈ L2 and P5, P6 ∈ C1,∧(23, 56) = {P8},

∧(15, 24, 36) 6= ∅ and C1 ∩ l18 = {P4}

 .
Let us consider the following projections (Figure 4.33):

As in Lemma 4.3.7, the surjectivity of p1 implies the irreducibility of the fiber

p−1
1 (c(C1)) as a subset of L1. Moreover, we have dim p−1

1 (c(C1)) = 2. Since p2

has an irreducible target of dimension 5, L1 is irreducible with dimension 5 + 2 =

7. Furthermore, L2 is irreducible with dimL2 = 7 + 1 = 8 because every fiber

p−1
2 (c(C1), κ123) has dimension 1 under the surjective map p2.

Note that the fiber p−1
3 (x;P8) consists of all points P5, P6 on the non-singular conic

C1 = V(α1x
2
0 + α2x

2
1 + α3x

2
2 + α4x0x1 + α5x0x2 + α6x1x2),

so that P5, P6 ∈ C1. First of all, we need to find the equation of the non-singular

conic C1 so that C1 passing through P2, P3, P4, P5, P6 and has two tangents l12, l13 at

P2, P3 respectively. Now by change of coordinates, we can assume

P1 = (0 : 1 : 0), P2 = (−1 : 0 : 1), P3 = (1 : 0 : 1), P4 = (0 : 1 : 1).

It is clear that l12 = V(x0 + x2) and l13 = V(x0 − x2). Being the curve C1 passing

through the points P2, P3, P4 implies α5 = 0 and α3 = −α1. Furthermore, l12 and l13

being tangents to C1 at P2, P3 respectively implies that α1 = −1
2 , α3 = 1

2 , α6−α4 = 0
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and α6 + α4 = 0. Thus α2 = −α3 = 1
2 and α6 = α4 = 0. It follows that

C1 = V(x2
0 + x2

1 − x2
2).

By some algebraic computations, if we assume ξ is a cubic root of −1 then we can

choose

P5 = (1− ξ2 : 2ξ : 1 + ξ2) and P6 = (ξ2 − 1 : −2ξ : 1 + ξ2)

or

P5 = (1 + ξ : −2ξ2 : 1− ξ) and P6 = (−1− ξ : 2ξ2 : 1− ξ).

The fiber p−1
3 (x;P8) consists of two distinct points. It follows that dim p−1

3 (x;P8) =

0, and the set L3 has dimension equal to 8.

More precisely, we have

dimL3 = dimL2 + 0 = 8.

But L3 isomorphic to K(18) via the projection map p4. It follows that K(18) has

dimension equal 8. Therefore we conclude that K(18) is an irreducible subset of S6

with codimension equal 4..

Theorem 4.15. E(18) is an irreducible subset of Ssm with codimension 4.

Proof. First, let K := K(18) (see Lemma 4.3.8). Let us assume B1 := ψ−1(K(18)), and

B2 := ξ(B1). Then E(18) = γ(B2) where ξ := Ξ
∣∣∣
B1
, γ := Γ

∣∣∣
B2
, and ψ := Ψ

∣∣∣
B1

(see the

main diagram in Figure 4.12). According to following diagram (see Figure 4.34) and

Equation (4.3.2), we have

B1
∩
B1

B2

B2

∩
K(18)

S6

∩
E(18)

∩
Ssm

ξψ γ

Figure 4.34: E(18) = γ ◦ ξ(B1).
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dimB1 = dimK(18) + 15 = 8 + 15 = 23.

Since E(18) = γ ◦ ξ(B1), it follows that E(18) is an irreducible subset of Ssm with

dimE(18) = dimB1 − dim ξ−1 ◦ γ−1(x) = dimB1 − dim ξ−1(n)

= 23− 8 = 15, where n = γ−1(x), x ∈ E(18).

Thus E(18) is an irreducible subset of Ssm with codimension 4.

Almost all the main results of this section are summarized in Table 4.25.

Table 4.25: Closed subsets of Ssm with their codimension

Closed subsets of Ssm Irreducible components Codimension
S(1) S(1) 1
S(2) E(2) 2

E(3) 2
E(4) E(4) 3
E(6) E(4) 3
E(9) E(9) 3
E(10) E(10) 4
E(18) E(18) 4
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Appendix A

Main Algorithms

Algorithm 1 The classification of 5-arcs in PG(2, q)

This algorithm is used for the classification of 5-arcs in PG(2, q). The algorithm’s

input is

projectively distinct 4-arcs K in PG(2, q)

and the algorithm’s output is

projectively distinct 5-arcs F in PG(2, q).

The algorithm proceeds in five stages.

Stage 1: For each 4-arc K, calculate all bisecants PiPj of K, where i, j = 1, 2, 3, 4.

Stage 2: For each 4-arc K, calculate all points not on any bisecants of K, namely

O(K).

Stage 3: For each 4-arc K, add one point from O(K)\K to K in order to get

5-arc. The number of 5-arcs F that produced in this stage is ∑ |O(K)| where the

sum is taken over all 4-arcs K.

Stage 4: For each 5-arc F , find the corresponding group of projectivities G(F)

(see the procedure used in Section 2.5).

Stage 5: Find the projectively distinct 5-arcs in PG(2, q). Two 5-arcs F1 and F2

are projectively equivalent if and only if G(F1) ∼= G(F2).

Algorithm 2 The classification of 6-arcs in PG(2, q)
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This algorithm is used for the classification of 6-arcs in PG(2, q). The algorithm’s

input is

projectively distinct 5-arcs F in PG(2, q)

and the algorithm’s output is

projectively distinct 6-arcs S in PG(2, q).

The algorithm proceeds in five stages.

Stage 1: For each 5-arc F , calculate all bisecants PiPj of F , where i, j =

1, 2, 3, 4, 5.

Stage 2: For each 5-arc F , calculate all points not on any bisecants of F , namely

O(F).

Stage 3: For each 5-arc F , add one point from O(F)\F to F in order to get

6-arc. The number of 6-arcs F that produced in this stage is ∑ |O(F)| where the

sum taken over all 5-arcs F .

Stage 4: For each 6-arc F , find the corresponding group of projectivities G(F)

(see the procedure used in Section 2.5).

Stage 5: Find the projectively distinct 6-arcs in PG(2, q). Two 6-arcs S1 and S2

are projectively equivalent if and only if G(S1) ∼= G(S2).

Algorithm 3 Blowing-up PG(2, q) at six points in general position

This algorithm is used for the construction of the cubic surface with twenty-

seven lines in PG(3, q) arising from a six points in general position in PG(2, q). The

algorithm’s input is

S = 6-arc not on a conic in PG(2, q)

and the algorithm’s output is

S = cubic surface with twenty-seven lines in PG(3, q) associated to the blowing-up

of S.
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The algorithm proceeds in eight stages.

Stage 1: For each 6-arc S, calculate six different conics Cj through S\Pj, where

j = 1, . . . , 6.

Stage 1: For each 6-arc S, calculate six different conics Cj through S\Pj, where

j = 1, . . . , 6.

Stage 2: For each 6-arc S, calculate 15 different bisecants PiPj of S.

Stage 3: For each 5-arc S, calculate 30 different cubic curves through S of the

form Cj × PiPj.

Stage 4: For each 6-arc S, calculate 15 different cubic curves through S of the

form PiPj × PkPl × PmPn.

Stage 5: For each 6-arc S, fix a four linearly independent plane cubic curves as

base curves. For example, for a 6-arc

S3 = {1,2,3,4,6,33} in PG(2, 19) we have

ω1 = V(P1P3 × C3),

ω2 = V(P2P6 × C6),

ω′1 = V(P2P3 × C3),

ω′2 = V(P1P3 × P2P6 × P4P5).

Stage 6: For each 6-arc S, find the tritangent planes of the corresponding S in

PG(3, q).

The tritangent plane (cijcklcmn) is the image of the cubic curve PiPj × PkPl × PmPn

and the tritangent plane (aibjcij) is the image of the cubic curve Cj ×PiPj. Consider

four base cubic plane curves, namely

ω1 = V(W1),

ω2 = V(W2),

ω3 = V(W3),

ω4 = V(W4),
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the four associated base tritangent planes can be written as follows:

πω1 = V(ΠW1),

πω2 = V(ΠW2),

πω3 = V(ΠW3),

πω4 = V(ΠW4),

where ΠWj
is a linear form defining πωj

and corresponding to the cubic form Wj

defining ωj. Every tritangent plane on S can be written as a linear combination of

ΠW1 ,ΠW2 ,ΠW3 and ΠW4 . In this stage, 45 tritangent planes have to be calculated as

the linear combination of ΠW1 ,ΠW2 ,ΠW3 and ΠW4.

Stage 7: For each 6-arc S, find the trihedral pairs of the corresponding non-

singular cubic surface S in PG(3, q).

Pick a trihedral pair related to four base tritangent planes V(y0), V(y1), V(y2), V(y3)

and four base cubic curves ω1, ω2, ω′1, ω′2. For example, for the non-singular cubic

surface S (10)(19) that corresponds to the 6-arc

S3 = {1,2,3,4,6,33}

in PG(2, 19) we have the following trihedral pairs

T12,36, T13,26, T34,52 and T14,56.

Pick one of them, namely

T12,36 : a1 b3 c13  ω1 = V(W1)↔ πω1 = V(ΠW1)

b6 a2 c26  ω2 = V(W2)↔ πω2 = V(ΠW2)

c16 c23 c45  ω3 = V(W3)↔ πω3 = V(ΠW3)

   

ω′3 ω′1 ω′2

where
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ω′3 = V(W ′
3)↔ πω′3 = V(ΠW ′3

)

ω′1 = V(W ′
1)↔ πω′1 = V(ΠW ′1

)

ω′2 = V(W ′
2)↔ πω′2 = V(ΠW ′2

)

Stage 8: For each 6-arc S, find the equation of the corresponding cubic surface

with 27 lines S where

S = V(ΠW1ΠW2ΠW3 − λΠW ′1
ΠW ′2

ΠW ′3
) and λ ∈ GF (q)\{0}. (A.0.1)

It is known that every cubic surface can be written in 120 ways in the form above.

The parameter λ can be found in the following way. The Clebsch map is surjective;

that is, every point in PG(2, q) is an image of points on the cubic surface S . Now,

pick any point not lying on any of the 4 base plane cubic, namely P ∗(x0, x1, x2). It

follows that

(
ω1(P ∗) : ω2(P ∗) : ω′1(P ∗) : ω′2(P ∗)

)
7→ (y0 : y1 : y2 : y3),

where ω1, ω2, ω
′
1, ω

′
2 are the base cubic curves in the plane passing through the 6-arc

S. Consequently, the parameter λ is found by evaluating (y0, y1, y2, y3) in Equation

(4.6)

Algorithm 4 e-invariants of a smooth cubic surface with 27 lines

This algorithm is used for the classification of cubic surfaces with twenty-seven

lines in PG(3, q) up to e-invariants. The algorithm’s input is

S = a cubic surface with twenty-seven lines in PG(3, q) associated to the

blowing-up of a 6-arcs S = {P1, P2, P3, P4, P5, P6} not on a conic in PG(2, q).

and the algorithm’s output is

e-invariants which correspond to S , namely e3, e2, e1, e0.

211



The algorithm proceeds in three stages.

Stage 1: For each a cubic surface S associated to the blowing-up of a 6-arcs

S = {P1, P2, P3, P4, P5, P6}

not on a conic in PG(2, q), find all possible Eckardt points.

If Cj ∩ PiPj = {Pi} then

print “Eij is an Eckardt point”;

if else PiPj ∩ PkPl ∩ PmPn = {P} where P ∈ PG(2, q) then

print “Eij,kl,mn is an Eckardt point”;

else print failed;

end

In this stage we get the number of Eckardt points, namely e3.

Stage 2: For each cubic surface S , calculate e-invariants which correspond to

S , namely e3, e2, e1, e0 where

e2 = 135− 3e3,

e1 = 27(q − 4)− e2,

e0 = (q − 10)2 − e3 + 9.

Stage 3: Calculate the distinct non-singular cubic surfaces with 27 lines up to

e-invariants in PG(3, q).

Two cubic surfaces S1 and S2 are equivalent if and only if they have the same

e-invariants.

Algorithm 5 Elliptic and hyperbolic lines on a non-singular cubic surface

This algorithm is used to determine the elliptic and hyperbolic lines on a non-

singular cubic surface with 27 lines in PG(3, q). The algorithm’s input is

S = a cubic surface with twenty-seven lines in PG(3, q).
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and the algorithm’s output is

elliptic and hyperbolic lines on S .

The algorithm proceeds in three stages.

Stage 1: Find all the 27 lines on S = V(f).

Stage 2: For each line l on S , namely

l =
{

(a0λ+ b0µ : a1λ+ b1µ : a2λ+ b2µ : a3λ+ a3µ) : (λ : µ) ∈ PG(2, q)
}
,

pick a basis β3, β2, β1, β0 for GF (q)⊕4 so that

β3 = (a0, a1, a2, a3),

β2 = (b0, b1, b2, b3).

Stage 3: For each line l on S , compute the resultant of the partial derivative of

the homogeneous polynomial defining S with respect to β0 and β1, and then restrict

the result to the line l:

R0,1 = R

 ∂f

∂β0

∣∣∣∣∣
l

,
∂f

∂β1

∣∣∣∣∣
l

.
If R0,1 = ζ2 (mod q) for some ζ ∈ GF (q) then

print “l is a hyperbolic line”;

else if R0,1 6= ζ2 (mod q) for all ζ ∈ GF (q) then

print “l is an elliptic line”;

end if
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