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Abstract

In recent years, digraph induced generators of quantum dynamical semigroups

have been introduced and studied, particularly in the context of unique relaxation

and invariance. We define the class of pair block diagonal generators, which allows

for additional interaction coefficients but preserves the main structural properties.

Namely, when the basis of the underlying Hilbert space is given by the eigenbasis

of the Hamiltonian (for example the generic semigroups), then the action of the

semigroup leaves invariant the diagonal and off-diagonal matrix spaces. In this case,

we explicitly compute all invariant states of the semigroup.

In order to define this class we provide a characterization of when the Gorini-

Kossakowski-Sudarshan-Lindblad (GKSL) equation defines a proper generator when

arbitrary Lindblad operators are allowed (in particular, they do not need to be trace-

less as demanded by the GKSL Theorem). Moreover, we consider the converse con-

struction to show that every generator naturally gives rise to a digraph, and that

under certain assumptions the properties of this digraph can be exploited to gain

knowledge of both the number and the structure of the invariant states of the corre-

sponding semigroup.

We also consider more general constructions on the von Neumann algebra of all

bounded linear operators on a Hilbert space, perhaps infinite dimensional. In partic-

ular, we prove that for every semigroup of Schwarz maps on such an algebra which

has a subinvariant faithful normal state there exists an associated semigroup of con-

tractions on the space of Hilbert-Schmidt operators of the Hilbert space. Moreover,

we show that if the original semigroup is weak∗ continuous then the associated semi-
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group is strongly continuous. We introduce the notion of the extended generator

of a semigroup on the bounded operators of a Hilbert space with respect to an or-

thonormal basis of the Hilbert space. We describe this form of the generator of a

quantum Markov semigroup on the von Neumann algebra of all bounded linear op-

erators on a Hilbert space which has an invariant faithful normal state under the

assumption that the generator of the associated semigroup has compact resolvent, or

under the assumption that the minimal unitary dilation of the associated semigroup

of contractions is compact.
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Preface

The principle objects of study in this work are the generators of semigroups acting

on operator spaces. For topological reasons, there is a clear distinction between those

generators which act on finite dimensional spaces and those which act on infinite

dimensional spaces. This work is thus presented in two Parts, each of which is inde-

pendent of the other. The details of what is proved in each Part is summarized in

the appropriate introduction.
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Chapter 1

Introduction to Part I

The Schrödinger picture time evolution of an open quantum system with finitely

many degrees of freedom is, under certain limiting conditions, described in terms of

a quantum dynamical semigroup (QDS) (Tt)t≥0 : MN(C)→ MN(C) (see e.g. [5, 6]),

where MN(C) denotes the N × N matrices with complex entries. Each such QDS

can be written as Tt = etL = ∑∞
k=0 t

nLn/n! for some L called the generator of the

QDS. Famously, simultaneous results of Gorini-Kossakowski-Sudarshan in [42] and

Lindblad in [53] show that every QDS generator can be written as L(ρ) = −ı[H, ρ] +
1
2
∑
cij([Fi, ρF ∗j ] + [Fiρ, F ∗j ]), the now-called GKSL form (see Theorem 2.1). We call

H the Hamiltonian of the QDS.

Of particular interest are the digraph induced generators (where digraph means

directed, positively weighted graph; see Section 4.2), which we define as those of the

form

L(ρ) = −ı[H, ρ] + 1
2
∑
i 6=j

γij
([
Eij, ρE

∗
ij

]
+
[
Eijρ, E

∗
ij

])
, (1.1)

where Eij are the standard basis elements ofMN(C) which have entry 1 in the ith row

and jth column and all other entries are zero. We choose this terminology as given an

digraph G on N vertices with weights γij one can consider the induced generator act-

ing on MN(C) given by (1.1) for some appropriately chosen Hamiltonian H. Indeed,

Rodríguez-Rosario, Whitfield, and Aspuru-Guzik in [70] introduced such an example

in the graph case (i.e. γij = γji) with H = 0 to recover the classical random walk on

G. Liu and Balu in [54], also in the graph case, set H to be the corresponding graph

Laplacian (defined in Section 4.1) to give an alternate definition for a continuous-time

1



open quantum random walk on G (the original owing to Pellegrini in [58], and yet

another by Sinayskiy and Petruccione in [62]); further, they show connected graphs

induce uniquely relaxing semigroups. Glos, Miszczak, and Ostaszewski in [41] extend

this definition to digraphs by allowing γij 6= γji, and show L generates a uniquely

relaxing semigroup for arbitrary H if the digraph has strictly one terminal strongly

connected component (defined in Section 4.2).

In the caseH = ∑N
n=1 hnEnn in (1.1) we recover the generic generators, which were

introduced (in the infinite dimensional case) by Accardi and Kozyrev in [2] as the

stochastic limit of a discrete system with generic free Hamiltonian interacting with a

mean zero, gauge invariant, 0-temperature, Gaussian field (and later generalized to

positive temperature in [1]). The finite-dimensional class of generic generators contain

many well known and physically important models, such as coherent quantum control

of a three-level atom in Λ-configuration interacting with two laser fields [3]. Though

the physical models require relations between the coefficients beyond what we write

here, e.g. that H is generic (hence the name), we ignore such restrictions and consider

more generally any generator of form (1.1) with H = ∑N
n=1 hnEnn a generic generator.

The generic generators are well studied and, though typically parsed in the lan-

guage of Markov chains, some relations to digraph theory are known. Notably, from

Accardi, Fagnola, and Hachica in [1] it is known that given any matrix its diagonal

and off-diagonal evolve independently of each other under the QDS arising from a

generic generator, and in fact the action on diagonal operators describes the evolu-

tion of a classical continuous time Markov chain (with rates γij) and the action on

off-diagonal operators is given by conjugation with a contraction semigroup and its

adjoint. With this relationship to Markov chains, Carbone, Sasso, and Umanita in

[17] find the general structure of the states fixed by the QDS, which can be computed

given the kernel of the generator of the associated Markov chain. In that paper,

these authors also examine the related problem of fixed points for the dual semigroup
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(Heisenberg picture) in context of the decoherence-free subalgebra (see also [31, 25,

16, 14] and references therein).

The purpose of this work is twofold: First, we generalize the digraph induced

generators given by (1.1) in such a way that the results mentioned above remain true.

We accomplish this generalization by allowing additional interaction coefficients, such

as γii, which preserve the main structural properties (notably, that if the Hamiltonian

is diagonal then the diagonal and off-diagonal of a matrix evolve independently). We

call such generators ‘pair block diagonal’ generators, for reasons which will be made

clear, and compute explicitly all invariant states in the diagonal Hamiltonian case.

Second, we consider the converse construction to show that every QDS generator

naturally gives rise to a digraph, and that under certain assumptions the properties

of this digraph can be exploited to gain knowledge of both the number and the

structure of the invariant states of the corresponding semigroup.

1.1 Structure of Part I

The structure of this Part is as follows:

• In Section 2.1 we establish formal definitions and notation for QDSs, and then

provide a characterization of when the GKSL form defines a proper generator when

allowed arbitrary orthonormal Lindblad operators. A physical three-level system is

discussed to highlight some differences between the forms. In Section 2.2 we note

the equivalence between identity preservation and contractivity of a QDS in some,

equivalently all Schatten p-norms for p > 1.

• In Section 3.1 we establish the bulk of our notation and examine the structural

properties of a generator when written with respect to the standard basis, which

allows us to motivate and define the class of pair block diagonal generators (which

contains the aforementioned digraph induced generators). Whereas the digraph in-

duced generators can be used to model jumps between vector states, we remark that

3



the pair block diagonal generators can be used to model jumps between superposi-

tions of states. In Section 3.2 we rephrase this notation and definition in terms of the

Gell-Mann basis.

• In Sections 4.1 and 4.2 we establish the necessary graph and digraph terminology,

as well as recall the necessary results.

• In Chapter 5 we define our main digraph of interest and show explicitly that every

generator is naturally associated to a digraph through restriction to the diagonal

subalgebra of MN(C). We explicitly give the kernel of such restrictions.

• In Section 6.1 we consider the action of pair block diagonal generators on the

off-diagonal subspace, and compute explicitly the eigenvalues and eigenmatrices of

such. In Section 6.2 we combine these kernel representations of the diagonal and off-

diagonal restrictions to give an explicit formula for the kernel of a pair block diagonal

generator, and thereby an explicit formula for all invariant states of the corresponding

QDS.

• In Section 7.1 we examine QDSs which are contractive for Schatten norms p > 1

and show all invariant states of such QDSs are invariant for a naturally associated

graph induced QDS. In Section 7.2 we define the notion of consistent generators as

those which have Hamiltonian consistent with the naturally associated digraph, and

show such generators have a lower bound on the number of invariant states for the

corresponding QDS based on the connectedness of the digraph.
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Chapter 2

General Properties of QDSs

2.1 The Form of L

Formally, a QDS (in the Schrödinger picture) on MN(C) is a one-parameter family

of linear operators (Tt)t≥0 of MN(C) satisfying:

• T0 is the identity on MN(C),

• Tt+s = TtTs for all t, s ≥ 0,

• t 7→ Tt(A) is (weakly) continuous for all A ∈MN(C),

• Tr(Tt(A)) = Tr(A) for all A ∈MN(C) and all t ≥ 0, and

• Tt is completely positive for all t ≥ 0.

Let DN(C) denote the set of N ×N states (i.e. positive semidefinite matrices of unit

trace). When restricted to DN(C) the QDS describes the Schrödinger dynamics of

a quantum system with finitely many degrees of freedom. Every QDS on MN(C)

can be written in the form Tt = etL := ∑∞
k=0 t

kLk/k!, where L(x) = limt↓0
1
t
(Tt(x) −

x) is called the generator of the QDS. Let SN2 denote MN(C) endowed with the

norm ||A||2 = (Tr(|A|2))1/2, which is induced by the Hilbert-Schmidt inner product

〈A,B〉 = Tr(A∗B). The following characterization of such L is the renowned GKSL

form:

Theorem 2.1 ([42, 53]). Let {Fi|1 ≤ i ≤ N2 − 1} be a set of N × N traceless

orthonormal matrices (w.r.t. the Hilbert-Schmidt inner product). An operator L :

5



MN(C) → MN(C) is the generator of a QDS on MN(C) if and only if it can be

expressed in the form

L(ρ) = −ı[H, ρ] + 1
2

N2−1∑
i,j=1

cij([Fi, ρF ∗j ] + [Fiρ, F ∗j ]), (2.1)

with H Hermitian and C = (cij) an (N2 − 1) × (N2 − 1) positive semidefinite ma-

trix. Given L the Hamiltonian H is uniquely determined by Tr(H) = 0; given L the

coefficient matrix C is uniquely determined by the choice of Fi’s.

If H = 0 we say L is Hamiltonian-free. We note that H describes the reversible

dynamics of the system, and that all physically important information pertaining to

the irreversible dynamics is contained in the positive semidefinite matrix C.

We are particularly interested in characterizing invariant states of a given QDS

(Tt)≥0; that is, states ρ ∈ DN(C) satisfying Tt(ρ) = ρ for all t ≥ 0. To this end, notice

that if Tt(x) = x for all t ≥ 0 then L(x) = limt↓0
1
t
(Tt(x) − x) = 0, and if L(x) = 0

then certainly Tt(x) = ∑∞
k=0 t

kLk(x)/k! = x. Hence a Tt(x) = x for all t ≥ 0 if and

only if L(x) = 0. Recalling Lemma 17 of [9], which states that kerL is spanned by

states, we have

kerL = Span{ρ ∈ DN(C) : Tt(ρ) = ρ for all t ≥ 0}. (2.2)

Note that dim kerL ≥ 1 since L has traceless range, and so every QDS possesses

at least one invariant state.

Let M0
N(C) denote the set of N × N traceless matrices. Given two orthonormal

bases {Fi|1 ≤ i ≤ N2 − 1} and {Gi|1 ≤ i ≤ N2 − 1} of M0
N(C) there is an (N2 −

1)× (N2−1) unitary matrix U such that [G1, G2, . . . , GN2−1] = [F1, F2, . . . , FN2−1]U ,

representing the change of basis from Gi’s to Fi’s; that is, for U = (uij), we have

Gi = ∑N2−1
k=1 ukiFk and contrariwise Fi = ∑N2−1

k=1 uikGk for all 1 ≤ i ≤ N2 − 1.

6



Considering (2.1), we have L(ρ) + i[H, ρ] =

= 1
2

N2−1∑
i,j=1

cij([Fi, ρF ∗j ] + [Fiρ, F ∗j ])

= 1
2

N2−1∑
i,j=1

cij

N2−1∑
k=1

uikGk, ρ

N2−1∑
`=1

uj`G`

∗+
N2−1∑
k=1

uikGkρ,

N2−1∑
`=1

uj`G`

∗
= 1

2

N2−1∑
i,j,k,`=1

uikcijuj` ([Gk, ρG
∗
` ] + [Gkρ,G

∗
` ])

= 1
2

N2−1∑
k,`=1

c̃k` ([Gk, ρG
∗
` ] + [Gkρ,G

∗
` ]) ,

where c̃k` = ∑N2−1
i,j=1 uikcijuj` are the entries of C̃ = U∗CU . Thus, the (N2−1)×(N2−1)

matrix C when viewed as an operator C : M0
N(C)→ M0

N(C) is uniquely determined

by L, with the choice of Fi’s being nothing but a choice of which orthonormal basis

of M0
N(C) for the matrix form of C to be represented in.

This operator viewpoint allows us to view every QDS generator L as the pair H

and C uniquely determined by Theorem 2.1. If we drop the traceless requirement

from Theorem 2.1 so that the coefficient matrix acts on all of MN(C) instead of just

M0
N(C), then we need to require stronger operator level properties (i.e., properties

that do not rely on the choice of basis) to guarantee L is a QDS generator.

Theorem 2.2. Let {Fi|1 ≤ i ≤ N2} be a set of N ×N orthonormal matrices (w.r.t.

the Hilbert-Schmidt inner product). An operator L : MN(C)→ MN(C) is the gener-

ator of a QDS on MN(C) if and only if it can be expressed in the form

L(ρ) = −ı[H̃, ρ] + 1
2

N2∑
i,j=1

γij([Fi, ρF ∗j ] + [Fiρ, F ∗j ]), (2.3)

with H̃ Hermitian and Γ = (γij) an N2 × N2 matrix, regarded as acting on MN(C)

equipped with basis {Fi}, satisfying

• PΓ|M0
N (C) ≥ 0, where P is the orthogonal projection from MN(C) onto M0

N(C),

and

7



• Re Tr(Γ(A)) = Re Tr(Γ(IN)A) for all Hermitian A ∈MN(C).

The operator PΓ|M0
N (C) is uniquely determined by L. These conditions are satisfied if

Γ ≥ 0.

We remark that Theorem 2.2 is a natural extension of Theorem 2.1, in that the

latter can be recovered by defining operator Γ : MN(C) → MN(C) by Γ|M0
N (C) = C

and Γ(IN) = 0. Indeed, in this case PΓ|M0
N (C) = C ≥ 0 and Tr(Γ(A)) = 0 for all

A ∈MN(C) simply because C has traceless range.

Proof. As (2.1) is a special case of (2.3), it suffices to prove that (2.3) always defines

as QDS generator. Since the preceding argument for converting bases did not rely on

any properties of the Fi’s or Gi’s beyond orthonormality, it will suffice to prove this

for a fixed orthonormal basis {Fi}. To this end, we assume without loss of generality

that FN2 = IN/
√
N and that each Fi is Hermitian (e.g., the Gell-Mann basis defined

in Section 3.2). First note that the value of γN2N2 has no effect on the action of

L, since γN2N2([IN/
√
N, ρIN/

√
N ] + [IN/

√
Nρ, IN/

√
N ]) = 0. We thus assume that

γN2N2 = 0. Next, we compute

γiN2

([
Fi, ρ

IN√
N

]
+
[
Fiρ,

IN√
N

])
+ γN2i

([
IN√
N
, ρFi

]
+
[
IN√
N
ρFi

])
=

= γiN2√
N

[Fi, ρ] + γN2i√
N

[ρ, Fi] = γiN2 − γN2i√
N

[Fi, ρ] = −ı
[

Im(γN2i − γiN2)√
N

Fi, ρ

]

where the last equality follows since

Re γiN2 = Re Tr
(
FiΓ

(
IN√
N

))
= Re Tr

(
Γ (Fi)

IN√
N

)
= Re γN2i

by assumption. Thus the real parts of these coefficients have no effect on the action

of L, so we may assume Re γiN2 = Re γN2i = 0 for all i = 1, . . . , N2 − 1. Further,

since the imaginary parts act as a commutator, we may write

L = −ı
H̃ +

N2−1∑
i=1

Im(γN2i − γiN2)
2
√
N

Fi, ρ

+ 1
2

N2−1∑
i,j=1

γij([Fi, ρF ∗j ] + [Fiρ, F ∗j ]), (2.4)

8



which is of GKSL form (2.1) since PΓ|M0
N (C) = (γij)N

2−1
i,j=1 ≥ 0 and each Fi Hermitian

implies H = H̃ + ∑N2−1
i=1

Im(γN2i−γiN2 )
2
√
N

Fi is Hermitian. Uniqueness of the operator

PΓ|M0
N (C) also follows from Theorem 2.1.

It remains to show that these conditions are satisfied if Γ ≥ 0. That PΓ|M0
N (C) ≥ 0

follows immediately since every principal submatrix of a positive semidefinite matrix

is positive semidefinite (consider the quadratic form Tr(A∗Γ(A)) ≥ 0 restricted to

traceless A). That Re Tr(Γ(A)) = Re Tr(Γ(IN)A) for A Hermitian (in SN2 ) follows

since Γ is Hermitian (on SN2 ). Explicitly,

Tr(Γ(IN)A) = Tr(AΓ(IN)) = 〈A,Γ(IN)〉 = 〈Γ(A), IN〉 = 〈IN ,Γ(A)〉 = Tr(Γ(A)),

and so Re Tr(Γ(IN)A) = Re Tr(Γ(A)) = Re Tr(Γ(A)).

We ward here against the thought that allowing the matrices Fi to have trace in

GKSL form (2.1) equates to ‘shifting’ some of the action of −ı[H, ·] to the dissipative

part (i.e., L+ ı[H, ·]). That indeed is the case in the previous proof, but this relied on

our choice of Fi’s being both traceless and Hermitian. For general Fi’s the interaction

is more subtle, and indeed it is easy to construct examples of Hamiltonian-free L

written in GKSL form (2.1) which are equivalent to Hamiltonian-free form (2.3)

with only Fi’s of unit trace appearing (Ld defined in Example 2.4 at the end of this

subsection is one such example).

What is true, however, is that one can disallow any ‘shifting’ of the action of

−ı[H, ·] to the dissipative part by choosing H̃ to be H uniquely determined by The-

orem 2.1, and Γ to be the natural dilation of the operator C uniquely determined by

Theorem 2.1.

Theorem 2.3. Let {Fi|1 ≤ i ≤ N2} be a set of N ×N orthonormal matrices (w.r.t.

the Hilbert-Schmidt inner product). An operator L : MN(C)→ MN(C) is the gener-

ator of a QDS on MN(C) if and only if it can be expressed in the form

L(ρ) = −ı[H, ρ] + 1
2

N2∑
i,j=1

γij([Fi, ρF ∗j ] + [Fiρ, F ∗j ]), (2.5)

9



with H traceless and Hermitian, and Γ = (γij) an N2×N2 matrix, regarded as acting

on the basis {Fi}, satisfying

• Γ ≥ 0,

• Γ(IN) = 0, and

• Tr(Γ(A)) = 0 for all A ∈MN(C).

Given L the Hamiltonian H is uniquely determined by Tr(H) = 0 (and is the same

as H as Theorem 2.1); given L the coefficient matrix Γ is uniquely determined by the

choice of Fi’s.

Proof. As before, given QDS generator L we may write it it form (2.1) with any

traceless orthonormal basis {F̃i} and define Γ : MN(C) → MN(C) by Γ|M0
N (C) = C

and Γ(IN) = 0. Changing the basis from {F̃i} to the desired {Fi} preserves the

operator properties Γ ≥ 0, Γ(IN) = 0, and Tr(Γ(A)) = 0, and the coefficients of

the resulting matrix are uniquely determined by this basis change. The converse is a

special case of Theorem 2.2.

Though easier to check as compared to Theorem 2.2, the disadvantage of Theo-

rem 2.3 is that one may fail to detect if a given equation represents a QDS generator in

the case Γ fails to satisfy these stronger properties. The following example illustrates

this, as well as the importance of allowing the Fi’s to have trace when considering

phenomenological operators.

Example 2.4. We follow [40, 60, 44], and consider a single three-level atom with

ground, excited, and Rydberg states

|g〉 =
( 1

0
0

)
, |e〉 =

( 0
1
0

)
, |r〉 =

( 0
0
1

)
,

interacting with two laser fields: a probe laser field which drives the transition from

the ground to the excited state, and a coupling laser field which drives the transition
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from the excited to the Rydberg state. In this regime there are two decay modes: one

from |e〉 to |g〉 at rate Γeg, and another from |r〉 to |e〉 at rate Γre. The spontaneous

emission from |a〉 to |b〉 is described by setting Fi = Fj =
√

Γab|b〉〈a| in (2.1); that is,

by the GKSL operator

Lab(ρ) = Γab([ |b〉〈a|ρ, |a〉〈b| ] + [ |b〉〈a|, ρ|a〉〈b| ]).

Due to the finite linewidths of the laser fields, there are additional dephasing mech-

anisms which lead to additional decay of the coherences between states. The line

width of the laser driving a transition from |a〉 to |b〉 can be taken into account by

phenomenological operator

Ldab(ρ) = −Γdab
2 (|a〉〈a|ρ|b〉〈b|+ |b〉〈b|ρ|a〉〈a|),

where Γdab is the full width of the spectral laser profile. Note that such operators

are not of GKSL type, but they can be written as a linear combination of GKSL

operators via

Ldab = Γdab
2 (Laa + Lbb − Lcc),

where (a, b, c) are permutations of (g, e, r) and Γaa = Γbb = Γcc = 1. In total, the

master equation describing the system is given by

∂tρ = L(ρ) = −ı[H, ρ] + Leg(ρ) + Lre(ρ) + Ldge(ρ) + Lder(ρ) + Ldgr(ρ),

where H describes the time evolution in the absence of decoherence. We focus on the

extra dephasing terms, and define

Ld = Ldge + Lder + Ldgr

= 1
2
(
(Γdge + Γdgr − Γder)Lgg + (Γdge + Γder − Γdgr)Lee + (Γdgr + Γder − Γdge)Lrr

)
.

Consider the diagonal subalgebra D = Span(|g〉〈g|, |e〉〈e|, |r〉〈r|) of MN(C). Since

Ld|D = 0 it is tempting to write that Ld cannot be written in GKSL form (2.1)
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(see e.g. section 4.1.1 of [60]). Regarding the coefficient matrix Γ of Ld as acting of

MN(C), however, we have that Γ|D⊥ = 0 and Γ|D : D → D acts by

Γ|D = 1
2


Γdge + Γdgr − Γder

Γdge + Γder − Γdgr

Γdgr + Γder − Γdge

 .

This matrix is Hermitian and under mild conditions positive semidefinite (e.g. con-

sider independent lasers, so that Γgr = Γge + Γer). In such a case it is immediate that

Γ satisfies the conditions of Theorem 2.2, and so Ld is indeed a GKSL generator.

Because the summation of operators of form (2.1) returns another operator of that

form, this implies L itself is a GKSL operator.

Note that Ld is a Hamiltonian-free QDS generator in form (2.3) with only Fi’s of

unit trace appearing. The given representation is not of form (2.5), however, as Γ

has not been chosen properly to satisfy the stronger conditions of Theorem 2.3. To

write L in form (2.5) we replace Γ|D above by

Γ̃|D = 1
18


4Γge + 4Γgr − 2Γer Γgr − 5Γge + Γer Γge − 5Γgr + Γer

Γgr − 5Γge + Γer 4Γge − 2Γgr + 4Γer Γge + Γgr − 5Γer

Γge − 5Γgr + Γer Γge + Γgr − 5Γer 4Γgr − 2Γge + 4Γer

 ,

which can be found by writing Γ in terms of a Hermitian orthonormal basis {Fi|1 ≤

i ≤ 9} with F1, . . . , F8 traceless and F9 = I3/
√

3 as in the proof of Theorem 2.2,

setting equal to zero the non-contributing terms (i.e., setting γ99 = Re Γi9 = Re γ9i =

0 for all i = 1, . . . , 8), and then rewriting Γ again back in terms of the original

basis. Because H = 0, and forms (2.1) and (2.5) use the same Hamiltonian, any

representation of Ld in form (2.1) is Hamiltonian-free. In particular, allowing the

matrices Fi to have trace in GKSL form (2.1) is not equivalent to ‘shifting’ some of

the action of −ı[H, ·] to the dissipative part (i.e., L+ ı[H, ·]).
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2.2 Contractivity of Tt

For 1 ≤ p ≤ ∞, we call MN(C) endowed with the Schatten p-norm ||A||p =

(Tr(|A|p))1/p for p < ∞ and ||A||∞ = sup||v||=1 ||Av|| the p-Schatten space SNp . In

particular, SN2 is the Hilbert-Schmidt space defined previously and SN1 is the usual

trace class space. For T : MN(C) → MN(C), let ||T ||p→p denote the operator norm

||T ||p→p = supx∈MN (C)
||T (A)||p
||A||p .

It is well known that every QDS (Tt)t≥0 is a contraction semigroup on SN1 (i.e.,

satisfies ||Tt||1→1 ≤ 1 for all t ≥ 0). Indeed, if T is trace preserving and positive

then its trace-dual T † is unital and positive, and hence achieves its norm at the

identity. Thus, ||T ||1→1 = ||T †||∞→∞ = ||T †(IN)||∞ = ||IN ||∞ = 1 (actually, if T is

trace preserving then ||T ||1→1 ≤ 1 if and only if T is positive; see Proposition 2.11

of [57]). We wish to take advantage of the Hilbert space properties of SN2 , however,

so we seek QDSs which are contractions on SN2 . The Lumer-Phillips Theorem states

that ||Tt||2→2 ≤ 1 for all t if and only if the generator L satisfies Re Tr(x∗L(x)) ≤ 0

for all x ∈ MN(C) (see e.g. Corollary II.3.20 of [27]). We particularize a result of

Pérez-García, Wolf, Petz, and Ruskai [59] to offer the following characterization, and

compare it to this well known Lumer-Phillips result:

Corollary 2.5. Suppose (Tt)t≥0 is a QDS with generator L. The following are equiv-

alent:

• ||Tt||p→p ≤ 1 for some 1 < p ≤ ∞ and all t ≥ 0,

• ||Tt||p→p ≤ 1 for all 1 ≤ p ≤ ∞ and all t ≥ 0,

• L(IN) = 0.

In this case Tr(xL(x)) ≤ 0 for all Hermitian matrices x ∈MN(C).
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Proof. Considering fixed t, we have that ||Tt||p→p ≤ 1 for some, equivalently all

1 < p ≤ ∞ if and only if Tt(IN) = IN by Theorem II.4 of [59]. The result then follow

from (2.2), which shows Tt(IN) = IN for all t ≥ 0 if and only if L(IN) = 0, as desired.

For the second statement, since the Lumer-Phillips Theorem gives that

Re Tr(x∗L(x)) ≤ 0 for all x ∈ MN(C), it suffices to prove that Tr(xL(x)) ∈ R

for Hermitian x. This follows immediately from

Tr(xLx) = Tr((xL(x))∗) = Tr(L(x)∗x∗) = Tr(x∗L(x)∗) = Tr(x∗L(x∗)) = Tr(xL(x)),

where we use that L(x)∗ = L(x∗) since T (x)∗ = T (x∗) (as a positive linear map).

One may read the previous Corollary as saying a QDS is contractive for all Schat-

ten p-norms if and only if the maximally mixed state IN/N is invariant. Calling

an operator T : MN(C) → MN(C) Hermitian if it is Hermitian when regarded as

T : SN2 → SN2 , the next result describes potential invariant states of such a QDS

given a Hermitian ‘part’ of its generator.

Lemma 2.6. Suppose L is a QDS generator satisfying L(IN) = 0 which can be

written L = A + B with A and B each a QDS generator. If A is Hermitian and

A(IN) = 0 then kerL ⊆ kerA.

Proof. Since (2.2) shows that kerL is spanned by states, it suffices to show that if

L(ρ) = 0 for some state ρ then A(ρ) = 0. To this end, notice that A(IN) = L(IN) = 0

implies B(IN) = 0, and so Tr(xA(x)) ≤ 0 and Tr(xB(x)) ≤ 0 for all Hermitian x by

Corollary 2.5. Fixing state ρ such that L(ρ) = 0, equivalently A(ρ) = −B(ρ), we

must then have Tr(ρA(ρ)) = 0. Thus,

−Tr(ρA(ρ)) = 〈ρ,−Aρ〉 = 〈(−A)1/2ρ, (−A)1/2ρ〉 = 0

implies (−A)1/2ρ = 0, and hence Aρ = 0.
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Chapter 3

The Matrix Representation of L

3.1 The Standard Basis

Our proofs rely on exact calculations and the ability to move between two well-

known bases of MN(C): the standard basis and the (generalized) Gell-Mann basis

(introduced in Section 3.2). Recall that the standard basis consists of the N × N

matrices Eij that have entry 1 in the ith row and jth column and all other entries

are zero. It is easy to see that the standard basis satisfies EijEk` = δjkEi`, where δjk

is the standard Kronecker delta.

By way of Theorem 2.2, every QDS generator L can be written with respect to

the standard basis; that is,

L(ρ) = −ı[H̃, ρ] + 1
2

N∑
i,j,k,`=1

γijk` ([Eij, ρE∗k`] + [Eijρ, E∗k`]) . (3.1)

We henceforth reserve Γ to denote the N2×N2 coefficient matrix Γ := (γijk`) for

L written with respect to the standard basis, and so always assume Γ satisfies the

criteria of Theorem 2.2. We use

Dijk` := [Eij, ·E`k] + [Eij·, E`k]

to denote the individual Lindblad operators written with respect to the standard

basis. For (i, j) = (k, `), the so-called diagonal Lindblad operators, we use the

simplified notation

Dij := [Eij, ·Eji] + [Eij·, Eji].
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We are interested in matrix representations for Γ and L with respect to the stan-

dard basis, and to this end we order the standard basis ofMN(C) by pairing together

Eij and Eji for i 6= j, then adjoining the diagonal Enn. For example, for N = 3 we

may take the natural ordering E12, E21, E13, E31, E23, E32, E11, E22, E33, but the exact

ordering of the Eij, Eji pairs or the Enn is immaterial.

With this ordering, consider Γ : MN(C)→MN(C) written as an N2×N2 matrix.

Denote by ΓO the N(N − 1) order leading principal submatrix of Γ; that is, ΓO :

O → O is the submatrix formed by the rows and columns corresponding to the off-

diagonal subspaceO := Span{Eij}Ni,j=1;i 6=j ofMN(C). Further, denote by ΓD : D →

D the complementary submatrix formed by the rows and columns corresponding to

the diagonal subalgebra D := Span{Enn}Nn=1 of MN(C). Then

Γ =

ΓO ∗

∗ ΓD

 .
Since Γ satisfies PΓ|M0

N (C) ≥ 0 we have ΓO ≥ 0, as every principal submatrix of

a positive semidefinite matrix is itself positive semidefinite. For each fixed pair i, j,

with i < j, we call the 2 × 2 sub-matrix of ΓO consisting of the rows and columns

corresponding to Eij and Eji the ij block. Note that each ij block is positive

semidefinite. Similar to the language used when referring to the diagonal of a matrix

or when a matrix is diagonal, we refer to the collection of all ij blocks of ΓO as the

pair block diagonal of ΓO, and if ΓO has no nonzero entries outside of its pair

block diagonal we say ΓO is pair block diagonal. We denote the upper-right entry

of the ij block by γijji =: αij + ıβij (and thus the lower-left by γjiij =: αij − ıβij),

where αij, βij ∈ R. Denote the diagonal entries of Γ by γijij =: γij, γjiji =: γji, and

γnnnn =: γnn in the natural way, noting γij, γji ≥ 0 since ΓO ≥ 0.

To illustrate these notations, the following is an example of a matrix Γ in dimen-
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sion N = 3 for which ΓO is pair block diagonal and ΓD is diagonal:

Γ =



γ12 α12+ıβ12
α12−ıβ12 γ21

γ13 α13+ıβ13
α13−ıβ13 γ31

γ23 α23+ıβ23
α23−ıβ23 γ32

γ11
γ22

γ33


Remark 3.1. Fix orthogonal vector states |i〉 and |j〉 and consider a system which

transfers superposition state |ψ〉 = a|i〉+ b|j〉 to superposition state |φ〉 = c|i〉+ d|j〉

with probability γ over a very short evolution time dt. To construct a model for

such a system we make use of a short time expansion of the Kraus operator sum

representation ρ′ = ∑
αKα(dt)ρK∗α(dt) (see e.g. section IX of [52]). Setting

Fij := c

b
Eij + d

a
Eji

so that Fij|ψ〉 = |φ〉, we take Kraus operator

K1(dt) =
√
γdtFij

to represent the transition. Normalization ∑αK
∗
α(dt)Kα(dt) = IN up to order O(dt)

(to ensure the evolution is trace preserving) requires a second Kraus operator

K2(dt) = IN −
1
2K

∗
1(dt)K1(dt).

Thus, we have that

ρ′ = K1(dt)ρK∗1(dt) +K2(dt)ρK∗2(dt) = ρ+ γdt([Fij, ρF ∗ij] + [Fijρ, F ∗ij]).

Assuming the same Kraus representation works over all time, we arrive at the GKSL

equation

L(ρ) = lim
dt→0

ρ′ − ρ
dt

= γ([Fij, ρF ∗ij] + [Fijρ, F ∗ij]).

Rewriting L in terms of the standard basis (3.1), the coefficient matrix Γ has nonzero

entries only in the ij block, which is given by

Γij = γ

(
cc

bb

cd
ab

cd

ab

dd
aa

)
.
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Thus, while diagonal coefficient matrices can be interpreted as describing jumps be-

tween states |i〉 and |j〉 (as with the graph induced generators (1.1)), the pair block

diagonal coefficient matrices can describe jumps between two superpositions of states

|i〉 and |j〉. A main result of this work is to characterize invariant states of QDS

generators with such coefficient matrices (see Theorem 6.9 and Example 6.13).

Extending the submatrix notations to L : MN(C) → MN(C) in the natural way,

we write

L =

LO ∗

∗ LD

 . (3.2)

We note that Havel considered the entries of L when written as such an N2 × N2

matrix to recover the coefficients of Γ in terms of Choi matrices (Proposition 12 of

[43]). We are interested in the other direction, however: how the coefficients of Γ

affect the action of L.

Per the introduction, we seek generators L which gives rise to QDSs which evolve

independently on D and O in the sense that

Tt(A) = TOt (diag(A)) + TDt (A− diag(A))

for all A ∈MN(C). Since exponentiation preserves block diagonal structure, if D and

O are each invariant for L (equivalently ∗ = 0 in (3.2)), then etL = Tt =
(
TOt 0
0 TDt

)
,

where TOt := etL
O and TDt := etL

D . Conversely, if (Tt)t≥0 evolves independently on D

and O, then necessarily D and O are each invariant for Tt for all t ≥ 0, and hence

invariant for L. We are thus seeking generators for which ∗ = 0 in (3.2).

As each entry of L’s matrix representation is a linear combination of entries of

H̃ and Γ as determined by (3.1), we can consider how each entry of Γ contributes to

various entries of L. Explicitly, we compute
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Dijk`(Est) = [Eij, EstE`k] + [EijEst, E`k]

= 2EijEstE`k − EstE`kEij − E`kEijEst (3.3)

= 2δjsδ`tEik − δ`tδikEsj − δikδjsE`t.

In particular,

Dij(Ek`) = −(δjk + δj`)Ek`, Dijji(Ek`) = 2δjkδi`E`k

and

Diijj(Ek`) = (2δikδj` − δijδik − δijδj`)Ek`.

Notably, entries of ΓD and of the pair block diagonal of ΓO contribute only to LD and

to the pair block diagonal of LO. If we assume the Hamiltonian is diagonal, that is

H̃ = ∑N
n=1 hnEnn, then we compute

−ı[H̃, Ek`] = −ı
N∑
n=1

hn[Enn, Ek`] = −ı(hk − h`)Ek`,

and see that entries of H̃ contribute only to the diagonal of LD. This gives us the

following:

Remark 3.2. Let L be a QDS generator written with respect to the standard ba-

sis (3.1) with Hamiltonian H̃ = ∑N
n=1 hnEnn. If Γ =

(
ΓO 0
0 ΓD

)
with ΓO pair block

diagonal, then

L =

LO 0

0 LD

 (3.4)

with LO pair block diagonal; in this case, if ΓO is diagonal then LO is diagonal.

A partial converses are also true: no entry of H̃ outside its diagonal and no entry

of Γ outside both ΓD and the pair block diagonal of ΓO contributes to the pair block

diagonal of LO or to LD.
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Definition 3.3. We call QDS generator L pair block diagonal with respect to

the standard basis if L is of form (3.1) with

Γ =

ΓO 0

0 ΓD


and ΓO pair block diagonal.

Note that a generator which is pair block diagonal with respect to the standard

basis with H̃ = ∑N
n=1 hnEnn satisfies (3.4), with LO diagonal if ΓO is. Also note

that every digraph induced generator (1.1) is pair block diagonal with respect to the

standard basis with ΓO diagonal and ΓD = 0.

As noted before, γij ≥ 0 since these are diagonal entries of positive semidefinite

ΓO. It is not true in general, however, that γii ≥ 0, or that γii is even real. Indeed,

considering the simple case of Γ =
(

0 0
0 ΓD

)
, the criteria of Theorem 2.2 are satisfied

for both ΓD =
( −1 0 0

0 2 0
0 0 2

)
and ΓD =

( −ı −ı −ı
ı ı ı
0 0 0

)
.

Some things can still be said in our case of interest, though, as Γ =
(

ΓO 0
0 ΓD

)
satisfies the conditions of Theorem 2.2 if and only if Γ =

(
ΓO 0
0 0

)
and Γ =

(
0 0
0 ΓD

)
do.

In particular, since Eii − Ejj is traceless it follows that

〈Eii − Ekk,ΓD(Eii − Ejj)〉 = Tr
(

(Eii − Ejj)
(

N∑
k=1

(γki − γkj)Ekk
))

= γii + γjj − γiijj − γjjii ≥ 0.

We will recall this later as the following:

Remark 3.4. If Γ =
(

ΓO 0
0 ΓD

)
then γii + γjj − γiijj − γjjii ≥ 0 for all 1 ≤ i, j ≤ N .

3.2 The Gell-Mann Basis

By the Gell-Mann basis we mean the collection consisting of the normalized N ×N

identity matrix 1√
N
IN and three other sets of matrices:

20



1) The N(N−1)
2 many symmetric matrices defined by

λij := 1√
2

(Eij + Eji) for 1 ≤ i < j ≤ N,

2) the N(N−1)
2 many antisymmetric matrices defined by

λji := −ı√
2

(Eij − Eji) for 1 ≤ i < j ≤ N,

3) and the N − 1 many diagonal matrices defined by

λnn := 1√
n(n+ 1)

(
n∑

m=1
Emm − nEn+1,n+1

)
for 1 ≤ n ≤ N − 1.

Each λij is Hermitian and traceless by construction, and they are orthonormal and

orthogonal to 1√
N
IN in the Hilbert-Schmidt inner product [10]. By dimension count,

we see that Span(λij, 1√
N
IN) = MN(C).

Given a matrix written in the Gell-Mann basis, it is immediate how to write it in

the standard basis. For the opposite direction, we use the formula given in [10]:

Eij =



1√
2(λij + ıλji) for i < j

1√
2(λij − ıλji) for j < i

−
√

j−1
j
λj−1,j−1 +

N−1∑
m=j

1√
m(m+1)

λmm + 1
N
IN for i = j

(3.5)

where the summation is interpreted as vacuously zero for j = N and we take λ00 := 0.

Since the Gell-Mann basis without IN/
√
N is a complete set of traceless orthonor-

mal matrices, given any QDS Tt we may use Theorem 2.1 to write its generator L

with respect to the Gell-Mann basis:

L(ρ) = −ı[H, ρ] + 1
2
∑

cijk` ([λij, ρλk`] + [λijρ, λk`]) (3.6)

Note that no adjoints appear since each λij is Hermitian, and the sum is over all valid

choices of i, j, k, `; specifically, i, j ∈ {1, . . . , N} for i 6= j and i, j ∈ {1, . . . , N − 1}

for i = j, and similarly k, ` ∈ {1, . . . , N} for k 6= ` and k, ` ∈ {1, . . . , N − 1} for
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k = `. We henceforth reserve C to denote the (N2 − 1)× (N2 − 1) coefficient matrix

C := (cijk`) for L written with respect to the Gell-Mann basis, and

Dλ
ijk` := [λij, ·λk`] + [λij·, λk`]

to denote the individual Gell-Mann basis Lindblad operators.

Order the Gell-Mann basis as we did the standard basis, by pairing together λij

and λji for i 6= j, then adjoining the diagonal λnn, and finally IN/
√
N . Define CO and

CD0 analogously as well, where now D0 := Span(λii)N−1
i=1 is the traceless diagonal

subspace of MN(C), so that CD0 : D0 → D0 is an (N − 1)× (N − 1) matrix. We use

aij, bij and cij for entries of C as we used the notations αij, βij and γij for entries of

Γ.

To illustrate these notations, the following is an example of a matrix C in dimen-

sion N = 3 for which CO is pair block diagonal and CD0 is diagonal:

C =


c12 a12+ıb12

a12−ıb12 c21
c13 a13+ıb13

a13−ıb13 c31
c23 α23+ıb23

a23−ıb23 c32
c11

c22


Motivated by the distinction between D and D0, let us denote by LD0 the sub-

matrix of L formed by the rows and columns corresponding to diagonal λnn for

1 ≤ n ≤ N − 1. Explicitly,

LD =

LD0 ∗

0 0

 ,
where the last row is zero since L has traceless range.

Under certain restrictions the matrix representations for C and L with respect to

the Gell-Mann basis (3.6) are unsurprisingly similar to those of Γ and L with respect

to the standard basis (3.1). Indeed, consider the basis change from the standard

basis to the Gell-Mann basis represented by unitary matrix U , so that Γ = U∗C̃U ,

where C̃ is the matrix C extended to act on all of MN(C) by setting C̃(IN) = 0 (i.e.,

C̃ = ( C 0
0 0 )). Then (3.5) implies U =

(
UO 0
0 UD

)
where UO is pair block diagonal with
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each ij block given by 1√
2 ( 1 1

ı −ı ) by (3.5). We have general ij blocks of the two forms

are related via cij aij + ıbij

aij − ıbij cji


C

≡ 1
2

 cij + cji − 2bij cij − cji − 2ıaij

cij − cji + 2ıaij cij + cji + 2bij


Γ

 γij αij + ıβij

αij − ıβij γji


Γ

≡ 1
2

 γij + γji + 2αij −2βij − ı(γij − γji)

−2βij + ı(γij − γji) γij + γji − 2αij


C
, (3.7)

where ≡ denotes equal contribution to L. This shows that for every C =
(
CO 0
0 CD0

)
with CO pair block diagonal there is some Γ =

(
ΓO 0
0 ΓD

)
with ΓO pair block di-

agonal such that C ≡ Γ (and vice-versa, up to Hamiltonian). Thus, assuming

H = ∑N
n=1 hnEnn, so that for k < ` we have

−ı[H,λk`] = −ı√
2

N∑
n=1

hn[Enn, Ek` + E`k] = (hk − h`)λ`k

and similarly −ı[H,λ`k] = −(hk − h`)λk`, from Remark 3.2 we have the following:

Remark 3.5. Let L be a QDS generator written with respect to the Gell-Mann

basis (3.6) with Hamiltonian H = ∑N
n=1 hnEnn. If C =

(
CO 0
0 CD0

)
with CO pair block

diagonal then

L =


LO 0 0

0 LD0 ∗

0 0 0

 =

LO 0

0 LD

 , (3.8)

with LO pair block diagonal; in this case, if CO is diagonal and H = 0 then LO

diagonal.

A partial converse is also true, in the sense that no entry of H outside its diagonal

and no entry of C outside both CD0 and the pair block diagonal of CO contributes

to the pair block diagonal of LO, to LD0 , or to the portion of the L marked by ∗ in

(3.8). We also note that if CO is diagonal and CD0 is arbitrary then L(IN) = 0 (and

hence ∗ = 0) is easily verified.
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Definition 3.6. We call QDS generator L pair block diagonal with respect to

the Gell-Mann basis if L is of form (3.6) with

C =

CO 0

0 CD0


and CO pair block diagonal.

Note that a QDS generator can be written as pair block diagonal with respect

to the Gell-Mann basis if and only if it can be written as pair block diagonal with

respect to the standard basis.

For basis-free definitions one may define LD := PDL|D, where PD is orthogonal

projection onto D, and similarly LD0 := PD0L|D0 . In the case L is of the form (3.8), it

follows from (2.2) that kerLD is nonempty, spanned by diagonal states (i.e., diagonal

as N ×N matrices), and it is natural to view kerLD0 ⊆ kerLD. It turns out this is

true for arbitrary generators.

Proposition 3.7. Let L be a QDS generator. Then kerLD is nonempty, spanned by

diagonal states, and

kerLD = kerLD0 ⊕ C{ρ}

for any ρ ∈ kerLD with nonzero trace. In particular, dim kerLD = dim kerLD0 + 1.

Proof. Without loss of generality assume L is written in Gell-Mann form (3.6), and

consider the matrix C obtained by setting equal to zero all entries of C except those

in the pair block diagonal of CO. Then the operator L defined via (3.6) (with H = 0)

is a QDS generator, since C is positive semidefinite as each ij block of C is. Further,

Remark 3.5 and the partial converse thereof imply LD = LD, and so we may assume

without loss of generality that C = C. From (2.2) we conclude kerL is nonempty

and spanned by states. The block form (3.8) of L then implies kerLD is nonempty

and spanned by diagonal states. We now only need remark that given diagonal states
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ρ1, ρ2 ∈ kerLD we have that ρ1 − ρ2 is diagonal, traceless, and in kerL, and hence

ρ1− ρ2 ∈ kerLD0 ; that is, given fixed diagonal state ρ0 ∈ kerLD we have that for any

diagonal state ρ ∈ kerLD there exists some diagonal traceless A ∈ kerLD0 such that

ρ = ρ0 + A. The dimensionality statement follows since every element in kerLD0 is

traceless but ρ0 ∈ kerLD has unit trace.
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Chapter 4

Graph Theory Background

In this chapter we establish notation and background for the needed graph theoretical

notions; see [22] or any comparable text on elementary graph theory.

4.1 Graphs

A graph consists of a set of vertices, labeled 1, . . . , N , together with a set of weighted

edges, which are 2-element sets ij := {i, j} of vertices each with an associated weight

wij > 0. A graph is called connected if there is a path between every pair of

vertices, and called a tree if there is a unique path between every pair of vertices.

Each maximal connected subgraph is called a connected component. If G is a

graph on N vertices, by its graph Laplacian L(G) we mean the N × N matrix

whose (i, j) entry is given by

(L(G))ij =


wij i 6= j

−∑k 6=j wkj i = j
,

where we take wij = 0 if ij is not an edge of G.

It is easy to see that x∗L(G)x = −1
2
∑N
i,j=1wij|xi−xj|2 ≤ 0 for all vectors x ∈ CN ,

and so L(G) is negative semidefinte. Notice that this quadratic form is zero if and

only if wij = 0 whenever xi 6= xj. Hence, if G is connected the only vectors satisfying

x∗L(G)x = 0 are multiples of ~1, the all ones vector, and so kerL(G) = C~1. If G is

not connected, then given connected components G1, . . . , Gk of G one may permute
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the underlying basis so that L(G) is block diagonal of the form

L(G) =



L(G1) 0 · · · 0

0 L(G2) · · · 0
... ... . . . ...

0 0 · · · L(Gk)


,

from which we establish the following well-known fact:

Remark 4.1. For each connected component Gn of a graph G let γGn be the vector

with one at each entry corresponding to a vertex in Gn and zero elsewhere. Then

Span(γGn)kn=1 = ker(L(G)).

4.2 Digraphs

A digraph G consists of a set V (G) of vertices, labeled 1, . . . , N , together with a

set E(G) of weighted edges, which are ordered pairs ij := (i, j) of vertices each with

an associated weight wji > 0 (note the reversal of the indices). We regard edges ij

as the arrow from vertex i to vertex j. A digraph is called a directed tree if the

graph obtained by ignoring the directedness of the edges is a tree. The weight of

a directed tree T is is given by ∏k`∈E(T ) w`k. We say T is a directed spanning

subtree if T is a subdigraph of G which is a directed tree and V (T ) = V (G); we say

further that T is rooted at i ∈ V (T ) if i is the only vertex of T with no out-edges

(in T ). Denote by Ti(G) the collection of all directed spanning subtrees of G rooted

at i. If G is a digraph on N vertices, by digraph Laplacian L(G) we mean the

N ×N matrix whose (i, j) entry is given by

(L(G))ij =


wij i 6= j

−∑k 6=j wkj i = j
,

where we take wji = 0 if ij is not an edge ofG. By Lk(G) we mean the (N−1)×(N−1)

matrix obtained by deleting row k and column k from L(G).
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Theorem 4.2 ([68]). Let G be a weighted digraph on N vertices and let L(G) be

the corresponding digraph Laplacian. Then the total weight of all directed spanning

subtrees of G rooted at i is given by
∑

T∈Ti(G)

∏
k`∈E(T )

w`k = (−1)N−1 det(Li(G)).

A digraph is called strongly connected if between any two distinct vertices i and

j there is a path from i to j and a path from j to i. Each maximal strongly connected

subdigraph is called a strongly connected component (SCC). Following Mirzaev

and Gunawardena in [55], we denote the SCC containing vertex i as [i], and write

[i] � [j] if there is a path from i′ to j′ for some i′ ∈ [i] and j′ ∈ [j]. If [i] � [j] implies

[i] = [j] for any [j], we say [i] is a terminal SCC (TSCC).

For each TSCC Gn of G define vector ρ̃Gn ∈ RN (where N = |V (G)|) by setting

ρ̃G
n

i to be the total weight of directed spanning subtrees of Gn rooted at i; that is,

ρ̃G
n

i =
∑

T∈Ti(Gn)

∏
k`∈E(T )

w`k = (−1)N−1 det(Li(Gn)),

where this quantity is taken to be zero if i 6∈ Gn. We define

ρG
n = 1

λ
ρ̃G

n

,

where the normalization factor λ > 0 is chosen so that ∑N
i=1 ρ

Gn

i = 1 (explicitly,

λ = (−1)N−1∑
i det(Li(Gn))).

Proposition 4.3 ([55]). Let G be a digraph (with all positive weights). Then

kerL(G) = Span(ρGn)kn=1,

where G1, . . . , Gk are the TSCCs of G.

By a sink of a digraph we mean a single vertex which forms a TSCC; i.e., a vertex

from which no edges originate. In a similar fashion, we call a pair of vertices k and

` a 2-sink if they form a TSCC; that is, there is an edge from k to ` and vice versa,

but no other edges originate from k or `. If the context is clear, we denote a 2-sink

on vertices k and ` simply by the edge notation k`.
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Chapter 5

Relating Generators to Digraphs

Given a QDS generator L, we define our main digraph of interest GL to be the

weighted digraph on N vertices (labeled 1, 2, . . . , N) with weight of edge from j to i

(with i 6= j) given by γij, where γij are the (uniquely determined by Theorem 2.2)

entries of ΓO when L is written with respect to standard basis (3.1). Equivalently,

(3.7) reveals that one may write L with respect to the Gell-Mann basis (3.6) and

define GL to be the weighted digraph on N vertices (labeled 1, 2, . . . , N) with weight

of edge from j to i given by

γij = 1
2


cij + cji − 2bij i < j

cji + cij + 2bji i > j
.

We note that
cij + cji

2 ≥ √cijcij ≥
√
a2
ij + b2

ij ≥ |bij|, (5.1)

where the first inequality is a comparison of arithmetic and geometric means, and the

second follows since the ij block of C is positive semidefinite (as C itself is). Further,

these inequalities are equality only in the case cij = cji = |bij| and aij = 0. Hence the

following:

Remark 5.1. The weights of graph GL are nonnegative. Fix i < j. Then γij = 0 if

and only if the ij block of C is given by cij

 1 ı

−ı 1

, and γji = 0 if and only if the

ij block of C is given by cij

1 −ı

ı 1

.
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The following proposition shows that every QDS is naturally associated to a di-

graph.

Theorem 5.2. Let L be a QDS generator written in matrix form with respect to the

standard basis (3.2). Then LD = L(GL).

Proof. Consider L given by form (3.1). The Hamiltonian part i[H, ·] does not con-

tribute to LD since evaluating [H,Enn] yields a matrix with null diagonal (explicitly,

the nth column of H minus the nth row of H). To find the contribution of the

dissipative part, from (3.3) we find

Dijk`(Enn) = 2δjnδ`nEik − δ`nδikEnj − δikδjnE`n.

Hence, Dijk`(Enn) has diagonal output if and only if j = ` = n and i = k, in

which case Dijij(Ejj) = 2Eii − 2Ejj. We have that L(Ejj) has diagonal given by∑
i 6=j γij(Eii − Ejj), and thus LD is given by

(LD)iijj =


γij i 6= j

−∑k 6=j γkj i = j
.

Remark 5.3. IfGL satisfies γij = γji for all pairs i, j, then LD is negative semidefinite

(since undirected graph Laplacians are always negative semidefinite, as shown in

Section 4.1).

Recall Proposition 4.3, which states that vectors ρGn
L give rise to a natural basis of

kerL(GL). Considering TSCCs G1
L, . . . , G

k
L of GL, we write these vectors as matrices

by defining

dG
n
L :=

N∑
i=1

ρ
Gn
L

i Eii =
N−1∑
i=1

 i∑
j=1

ρ
Gn
L

j − iρ
Gn
L

i+1

 λii√
i(i+ 1)

+ IN
N

1 ≤ n ≤ k, (5.2)

where the second equality can be checked using (3.5). From Proposition 5.2 and

Proposition 4.3 follows the analogous result:
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Corollary 5.4. Let L be a QDS generator. Let G1
L, . . . , G

k
L denote the TSCCs of GL.

Then

kerLD = Span
(
dG

n
L
)k
n=1

.

In the case γij = γji for all pairs i, j (for example, if L arises from diagonal C),

then a basis for kerLD is easier to compute. Indeed, considering the digraph GL as

an undirected graph HL, for each connected component H1
L, . . . , H

k
L of HL we may

use the simpler vectors γHn
L given in Remark 4.1 to define

dH
n
L =

N∑
i=1

γ
Hn
L

i Eii =
N−1∑
i=1

 i∑
j=1

γ
Hn
L

j − iγH
n
L

i+1

 λii√
i(i+ 1)

1 ≤ n ≤ k, (5.3)

and establish the following result:

Proposition 5.5. Let L be a QDS generator such that γij = γji for all pairs i 6= j.

Let H1
L, . . . , H

k
L denote the connected components of HL. Then

kerLD = Span(dHn
L)kn=1.

31



Chapter 6

Pair Block Diagonal L

6.1 The LO part of L

The previous chapter revealed that kerLD is characterized by the TSCCs of GL. The

aim of this section is to establish a similar result for LO when L is pair block diagonal.

The type of TSCCs we require here is more precise, however, and we must begin by

establishing a few definitions.

We call a 2-sink k` of GL a singular 2-sink if γk` = γ`k and the k` block of

ΓO is singular. Rephrased in terms of C, a 2-sink k` of GL is a singular 2-sink if

ck`c`k − a2
k` = 0, as this equality implies bk` = 0 (equivalently γk` = γ`k) by (5.1). We

use SGL to denote the set of sinks of GL and S2
GL

to denote the set of singular 2-sinks

of GL.

Notably, in the definition of singular 2-sinks we require information beyond the

weights of GL, namely αk` and βk`. It follows that graph induced generators (1.1)

satisfy S2
GL

= ∅, as in this case the k` block of ΓO is always nonsingular unless it

is identically zero, precluding the possibility of k` to be a 2-sink. The next lemma

shows further coefficients which are not graph induced, such as the entries of ΓD, also

affect kerLO. Here we assume for simplicity that Γ ≥ 0 as in Theorem 2.3, but we

note after Theorem 6.3 how one may produce the statement for Γ 6≥ 0.

Lemma 6.1. Let L be a QDS generator which is pair block diagonal with respect to

the standard basis (3.1) with H̃ = ∑N
n=1 hnEnn and Γ ≥ 0. Then the k` block Lk` of

LO is singular if and only if hk = h`, γkk = γ`` = γkk``, and either

32



• k, ` ∈ SGL, in which case kerLk` = Span(Ek`, E`k), or

• k` ∈ S2
GL

, in which case

kerLk` = C {(γk` + αk` + ıβk`)Ek` + (γk` + αk` − ıβk`)E`k} .

Proof. We fix k < ` and calculate the exact matrix form of Lk` by evaluating L at

Ek` and E`k. From (3.3) we have

N∑
n,m=1

γnnmmDnnmm(Ek`) = (2γkk`` − γkk − γ``)Ek`

and
N∑

n,m=1
γnnmmDnnmm(E`k) = (2γ``kk − γkk − γ``)E`k,

which is to say ΓD contributes to Lk` the 2× 2 matrix

D := 1
2

2γkk`` − γkk − γ`` 0

0 2γ``kk − γkk − γ``

 =

dk` 0

0 dk`

 ,
where we define dk` := γkk`` − 1

2(γkk + γ``) for future notational convenience (and

hence dk` = γ``kk − 1
2(γkk + γ``) since Γ ≥ 0). Remark 3.4 gives that Re dk` ≤ 0, and

so D has eigenvalues in the closed right hand plane.

Considering ΓO, from (3.3) we have, for i 6= j,

Dij(Ek`) = −(δjk + δj`)Ek`, Dij(E`k) = −(δj` + δjk)E`k

and

Dijji(Ek`) = 2δjkδi`E`k, Dijji(E`k) = 2δj`δikEk`.

Thus, an ij block of ΓO for which |{i, j}∩{k, `}| = 0 contributes nothing to Lk`, and

an ij block of ΓO for which |{i, j} ∩ {k, `}| = 1 contributes to Lk` the 2× 2 matrix

IJ := 1
2


−γjiI2 i ∈ {k, `} 63 j

−γijI2 i 6∈ {k, `} 3 j
.
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Note that IJ is negative semidefinite since γij, γji ≥ 0 (see Remark 5.1). Note also

that IJ is singular if and only if γji = 0 when i ∈ {k, `} or γij = 0 when j ∈ {k, `},

in which case IJ = 0.

Similarly, the above equations show that the k` block
(

γk` αk`+ıβk`
αk`−ıβk` γ`k

)
of ΓO

contributes to Lk` the 2× 2 matrix

KL := 1
2

 −γk` − γ`k 2(αk` + ıβk`)

2(αk` − ıβk`) −γk` − γ`k

 .
Note that the k` of ΓO block is positive semidefinite, as it is a principal submatrix

of positive semidefinite ΓO. Thus KL is negative semidefinite, as it is the negated

sum of the k` block of ΓO and its anti-diagonal transpose, both positive semidefinite

matrices. Also note that KL is singular if and only if det(KL) = 0.

Finally, we compute

−ı[H̃, Ek`] = −ı
N∑
n=1

hn[Enn, Ek`] = −ı(hk − h`)Ek`

and similarly −ı[H̃, E`k] = −ı(h` − hk)E`k, which is to say H̃ contributes to Lk` the

2× 2 matrix

H :=

−ı(hk − h`) 0

0 ı(hk − h`)

 .
In total, we now have that

Lk` = KL+H +D +
∑

|{i,j}∩{k`}|=1
IJ.

We claim that KL+H +D has eigenvalues all in the closed left-hand plane. Indeed,

if we consider the matrix C̃ obtained by setting equal to zero all entries of Γ except

those in ΓD and the k` block of ΓO, then Γ̃ ≥ 0 and so L̃ is a QDS generator

by Theorem 2.2. Moreover, this has the affect of setting IJ = 0 for all IJ but

leaving the other calculations unchanged above, and so we have L̃k` = KL+H +D.

The block form (3.4) implies every eigenvalue of L̃k` is an eigenvalue of L̃ and so
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must lie in the closed left-hand plane (if L̃(x) = λx then T̃t(x) = etλx, and so

||Tt(x)||1 = |etλ|Tr(|x|) ≤ Tr(|x|) = ||x||1 implies Reλ ≤ 0 since ||Tt||1→1 ≤ 1 as

remarked in Section 2.2).

Since KL + H + D and all IJ pairwise commute (every IJ is a multiple of I2),

every eigenvalue of Lk` is the sum of eigenvalues KL+H+D and each IJ . Since each

IJ is negative semidefinite and KL+H +D has eigenvalues in the closed left-hand

plane, Lk` is singular (has eigenvalue 0) if and only if KL + H + D and each of the

IJ are singular; that is, Lk` is singular if and only if each of the following hold:

(i) det(KL+H +D) = 0

(ii) γji = 0 for all i < j with i ∈ {k, `} 63 j

(iii) γij = 0 for all i < j with i 6∈ {k, `} 3 j

We claim that condition (i) can be rewritten as

(i) γk` = γ`k, the k` block of ΓO is singular, γkk = γ`` = γkk``, and hk = h`.

Indeed, using dk` = γkk`` − 1
2(γkk + γ``), hk` = hk − h`, and yk` = 1

2(γk` + γ`k) for

notational convenience, we have det(KL+H +D) =

= (−yk` + dk` − ıhk`)(−yk` + dk` + ıhk`)− (αk` + ıβk`)(αk` − ıβk`)

= y2
k` + (dk` − ıhk`)(dk` + ıhk`)− yk`(dk` + dk`)− α2

k` − β2
k`.

We understand this equation as three nonnegative parts:

First, since the k` block of C is positive semidefinite, we have that

P1 := y2
k` − α2

k` − β2
k` = (yk` + αij)(yk` − αij)− (−βij)2

= ck`c`k − a2
k` ≥ 0

using conversion (3.7). It follows that P1 = 0 if and only if γk` = γ`k and the k` block

of ΓO is singular, as remarked in the equivalent definitions of singular 2-sinks in the

preamble of this section.
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Second,

P2 := (dk` − ıhk`)(dk` + ıhk`) = (dk` − ıhk`)(dk` − ıhk`) ≥ 0.

Since Γ is positive semidefinite the submatrix ( γkk γkk``
γ``kk γ`` ) is as well, from which it

follows that

−2 Re(dk` − ıhk`) = −2 Re(dk`) = −(dk` + dk`) = γkk + γ`` − 2 Re(γkk``) ≥ 0,

with equality if and only if γkk = γ`` = γkk`` (this follows identically as (5.1)). In

particular, Re(dk`) = 0 implies Im(dk`) = 0, so we have that P2 = 0 if and only if

γkk = γ`` = γkk`` and hk` = 0.

Finally,

P3 := −yk`(dk` + dk`) = 1
2(γk` + γ`k)(γkk + γ`` − 2 Re(γkk``)) ≥ 0,

with P3 = 0 if and only if γkk = γ`` = γkk`` or γk` = γ`k = 0, with similar reasoning

as above.

Thus, we have that det(KL+H+D) = P1 +P2 +P3 = 0 if and only if P1 = P2 =

P3 = 0. By the arguments above, this happens if and only if the rephrased (i) holds.

The next two conditions (ii) and (iii) simply say that vertices k and ` have no out

edges, except possibly to each other. Thus, if (i) holds, this means either γk` = γ`k 6= 0

and k` is a singular 2-sink of GL, or γk` = γ`k = 0 and k and ` are sinks of GL.

It remains to note that if Lk` is singular, and hence (i), (ii), and (iii) hold, then

Lk` = KL, as H, D, and all IJ are necessarily zero. Thus, if Lk` is singular then

kerLk` =


C{(γk` + αk` + ıβk`)Ek` + (γk` + αk` − ıβk`)E`k} if k` ∈ S2

GL

Span(Ek`, E`k) if k, ` ∈ SGL
, (6.1)

as can either be directly verified or obtained as a corollary of Theorem 6.3 (see

Remark 6.4).
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Corollary 6.2. Let L be a Hamiltonian-free QDS generator which is pair block diag-

onal with respect to the standard basis (3.1) with ΓD diagonal. Then LO is negative

semidefinite.

Proof. Considering a k` block Lk` of L computed as in the proof of Lemma 6.1,

we have Lk` = KL + D + ∑
|{i,j}∩{k`}|=1 IJ . As before, KL and each IJ is negative

semidefinite, so it suffices to show that D is negative semidefinite if ΓD diagonal. This

is indeed the case, sinceD = 1
2

(
−γkk−γ`` 0

0 −γkk−γ``

)
and γkk+γ`` ≥ 0 by Remark 3.4.

Theorem 6.3. Let L be a QDS generator which is pair block diagonal with respect

to the standard basis (3.1) with H̃ = ∑N
n=1 hnEnn. Then, setting

λ =
√
α2
k` + β2

k` +
(
γkk`` − γ``kk

2 − ı(hk − h`)
)2
,

the k` block Lk` of LO has eigenmatrices

A± =
[
αk` + ıβk` + γkk`` − γ``kk

2 − ı(hk − h`)± λ
]
Ek`

+
[
αk` − ıβk` −

γkk`` − γ``kk
2 + ı(hk − h`)± λ

]
E`k

corresponding to eigenvalues

µ± =− 1
2

γk` + γ`k + γkk + γ`` − γkk`` − γ``kk +
∑

i 6∈{k,`}3j
γij +

∑
i∈{k,`}63j

γji

± λ.
In particular, Ek` and E`k are eigenmatrices of LO if and only if αk` = βk` = 0, in which

case they have eigenvalues γkk`` − ı(hk − h`) − µ and γ``kk − ı(hk − h`) − µ, respectively,

where

µ = 1
2

γk` + γ`k + γkk + γ`` +
∑

i 6∈{k,`}3j
γij +

∑
i∈{k,`}63j

γji

 .
Proof. It is well known that given a 2×2 matrixM = ( a bc d ) its eigenvectors are given

by
(
µ±+b−d
µ±+c−a

)
, where µ± = Tr(M)/2± (Tr2(M)/4− det(M))1/2 are the corresponding

eigenvalues, as can be verified by simply evaluating M at the proposed eigenvectors.

This fact applied to KL+H+D (as compute in the proof of Lemma 6.1), along with

the shift from adding ∑ IJ (multiple of I2) immediately gives the above formula.
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Remark 6.4. If k` ∈ S2
GL

then γ2
k` − α2

k` − β2
k` = 0 since the k` block of ΓO is

singular. Hence, γk` = γ`k =
√
α2
k` + β2

k` in this case. If we further assume hk = h`

and γkk = γ`` = γkk``, then we have thatA+ = (γk`+αk`+ıβk`)Ek`+(γk`+αk`−ıβk`)E`k

corresponding to µ+ = 0 generates kerLk`, as given before in (6.1).

We note two facts: First, Γ ≥ 0 was not assumed in Theorem 6.3, as the calcula-

tions needed did not rely on this fact. Hence, one may set µ± = 0 to write Lemma 6.1

without the Γ ≥ 0 assumption. Second, Theorem 6.3 provides an explicit formula

for N2 − N of L’s N2 many eigenpairs, but since the digraph Laplacian LD is not

diagonalizable in general the entire matrix L may not be diagonalizable. Finding

the eigenvalues of a digraph Laplacian is historically difficult, but much work has

been done on finding the spectral gap, as this controls the rate of convergence of

etL. Though we do not explore such applications in this work, we note that, together

with the eigenvalues given by Theorem 6.3, the spectral gap of LD gives the rate of

convergence for Tt = etL. We refer the interested reader to the seminal work of Wu

[71] for more on the eigenvalues of digraph Laplacians.

Having established results for the standard basis, we now consider the Gell-Mann

basis. Certainly one may use (3.7) and the corresponding equivalence for converting

CD0 into ΓD to translate Theorem 6.3 immediately into the corresponding general

statement for the Gell-Mann basis. As we will only consider the Gell-Mann basis in

specialized cases, we avoid writing this tedious conversion here and instead prove the

needed statement directly.

Lemma 6.5. Let L be a QDS generator which is pair block diagonal with respect

to the Gell-Mann basis (3.6) with H = ∑N
n=1 hnEnn and CD0 diagonal. Then the k`

block Lk` of L is singular if and only if hk = h`, cnn = 0 for all k − 1 ≤ n ≤ ` − 1,

and

• k, ` ∈ SGL, in which case kerLk` = Span(λk`, λ`k), or
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• k` ∈ S2
GL

, in which case kerLk` = C{(ck` + ak`)λk` + (c`k + ak`)λ`k}.

Proof. As in the proof of Lemma 6.1, we calculate Lk` explicitly. Indeed, the only

difference here is the contribution of CD0 , since the contribution of H and CO can be

recovered from the formula for H, IJ , and KL calculated there. Using the same basis

change as in the derivation of (3.7), these matrices are represented in the Gell-Mann

basis as

H =
(

0 h`−hk
hk−h` 0

)
, KL =

(
−c`k ak`
ak` −ck`

)
,

and IJ = −1
4


(cij + cji + 2bij)I2 i ∈ {k, `} 63 j

(cij + cji − 2bij)I2 i 6∈ {k, `} 3 j
.

Use δi≤j to denote the indicator

δi≤j =


1 if i ≤ j

0 otherwise
,

and similarly for δi≤j≤k. For k < `, we have

Dλ
nn(λk`) = [λnn, λk`λnn] + [λnnλk`, λnn] = 2λnnλk`λnn − λk`λnnλnn − λnnλnnλk`,

where 2λnnλk`λnn =

= 2√
2n(n+1)

(
n∑

m=1
Emm − nEn+1,n+1

)
(Ek` + E`k)

(
n∑

m=1
Emm − nEn+1,n+1

)

= 2√
2n(n+1)(δk≤nEk`+δ`≤nE`k−nδk,n+1Ek`−nδ`,n+1E`k)

(
n∑

m=1
Emm−nEn+1,n+1

)

= 2√
2n(n+1)

(
δk≤nδ`≤nEk` + δ`≤nδk≤nE`k − nδk,n+1δ`≤nEk` − nδ`,n+1δk≤nE`k

− nδk≤nδ`,n+1Ek` − nδ`≤nδk,n+1E`k + n2δk,n+1δ`,n+1Ek` + n2δ`,n+1δk,n+1E`k

)
= 2√

2n(n+1)(δ`≤nEk` + δ`≤nE`k − nδ`,n+1E`k − nδ`,n+1Ek`) using that k < `

= 2
n(n+1)(δ`≤nλk` − nδ`,n+1λk`)

= 2
n(n+1)(δ`≤n − nδ`,n+1)λk`
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and λk`λnnλnn + λnnλnnλk` =

= 1√
2n(n+1)

(
(Ek` + E`k)

(
n∑

m=1
Emm + n2En+1,n+1

)

+
(

n∑
m=1

Emm + n2En+1,n+1

)
(Ek` + E`k)

)

= 1√
2n(n+1)

(
(δ`≤nEk` + δk≤nE`k + n2δ`,n+1Ek` + n2δk,n+1E`k)

+ (δk≤nEk` + δ`≤nE`k + n2δk,n+1Ek` + n2δ`,n+1E`k)
)

= 1
n(n+1)(δ`≤nλk` + δk≤nλk` + n2δ`,n+1λk` + n2δk,n+1λk`)

= 1
n(n+1)(δ`≤n + δk≤n + n2δ`,n+1 + n2δk,n+1)λk`.

Thus,

Dλ
nn(λk`) = 1

n(n+1)

(
2(δ`≤n − nδ`,n+1)− (δ`≤n + δk≤n + n2δ`,n+1 + n2δk,n+1)

)
λk`

= 1
n(n+1)(−n

2δk,n+1 − δk≤n≤`−2 − (n+ 1)2δ`,n+1)λk`

=



−n
(n+1)λk` n = k − 1
−1

n(n+1)λk` k ≤ n ≤ `− 2
−(n+1)

n
λk` n = `− 1

0 otherwise

.

Similarly,

Dλ
nn(λ`k) = 1

n(n+1)(−n
2δk,n+1 − δk≤n≤`−2 − (n+ 1)2δ`,n+1)λ`k

=



−n
(n+1)λ`k n = k − 1
−1

n(n+1)λ`k k ≤ n ≤ `− 2
−(n+1)

n
λ`k n = `− 1

0 otherwise

.

Thus,
N−1∑
n=1

cnnD
λ
nn(λk`) = −

(
k − 1
k

ck−1,k−1 +
`−2∑
m=k

1
m(m+ 1)cmm + `

(`− 1)c`−1,`−1

)
λk`,
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N−1∑
n=1

cnnD
λ
nn(λ`k) = −

(
k − 1
k

ck−1,k−1 +
`−2∑
m=k

1
m(m+ 1)cmm + `

(`− 1)c`−1,`−1

)
λ`k,

which is to say CD0 contributes to Lk` the 2× 2 matrix

DC := −1
2

(
k − 1
k

ck−1,k−1 +
`−2∑
m=k

1
m(m+ 1)cmm + `

`− 1c`−1,`−1

)
I2.

Note that DC is negative semidefinite (each cnn ≥ 0 since C ≥ 0). Furthermore, DC

is singular if and only if cnn = 0 for all k − 1 ≤ n ≤ `− 1, in which case DC = 0.

In total, we now have that

Lk` = KL+H +DC +
∑

|{i,j}∩{k`}|=1
IJ,

so Lk` is singular if and only if KL+H is singular and DC = ∑
IJ = 0, as KL+H

has eigenvalues in the closed left-hand plane (by the same argument as before) and

DC and each IJ is negative semidefinite. The same logic as before shows this happens

if and only if hk = h`, cnn = 0 for all k − 1 ≤ n ≤ ` − 1, and either k` ∈ S2
GL

or

k, ` ∈ SGL , in which case

kerLk` = kerKL =


C{(ck` + ak`)λk` + (c`k + ak`)λ`k} if k` ∈ S2

GL

Span(λk`, λ`k) if k, ` ∈ SGL
.

The next two statements follow similarly to Corollary 6.2 and Theorem 6.3.

Corollary 6.6. Let L be a Hamiltonian-free QDS generator which is pair block diago-

nal with respect to the Gell-Mann basis (3.6) with CD0 diagonal. Then LO is negative

semidefinite.

Remark 6.7. If L is a QDS generator which is pair block diagonal with respect to

the Gell-Mann basis (3.6) with H = ∑N
n=1 hnEnn and CD0 diagonal, then the k` block
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Lk` of L has eigenmatrices

A± =
ak` + ck` − c`k

2 − (hk − h`)±
√(

ck` − c`k
2

)2
+ a2

k` − (hk − h`)2

λk`
+
ak` − ck` − c`k

2 + (hk − h`)±
√(

ck` − c`k
2

)2
+ a2

k` − (hk − h`)2

λ`k
corresponding to eigenvalues µ± =

− 1
2

(
ck` + c`k + k − 1

k
ck−1,k−1 +

`−2∑
m=k

1
m(m+ 1)cmm + `

`− 1c`−1,`−1

+1
2

∑
i 6∈{k,`}3j

(cij + cji − 2bij) + 1
2

∑
i∈{k,`}63j

(cij + +cji + 2bij)


±
√(

ck` − c`k
2

)2
+ a2

k` − (hk − h`)2.

In particular, both of λk` and λ`k are eigenmatrices of LO if and only if hk − h` =

ak` = 0, in which case they have eigenvalues −c`k − µ and −ck` − µ, respectively,

where

2µ = 1
2

∑
i 6∈{k,`}3j

(cij + cji − 2bij) + 1
2

∑
i∈{k,`}63j

(cij + cji + 2bij) + k − 1
k

ck−1,k−1

+
`−2∑
m=k

1
m(m+ 1)cmm + `

`− 1c`−1,`−1.

One might compare this last remark to Theorem 5 of [64], where Siudzińska

determines the eigenvalues of a QDS generator L which is written in Gell-Mann form

(3.6) with H = 0 and C diagonal, and for which every λij (including i = j) is an

eigenmatrix of L.

In the case CO is diagonal the digraph GL satisfies γij = γji for all vertices i and

j, and hence GL may be regarded as an (undirected) graph HL. Let IHL denote the

set of isolated vertices of HL, and let I2
HL

denote the set of isolated edges k` of HL

for which ck`c`k = 0 (i.e., the set singular 2-sinks ignoring direction). The statement

of Lemma 6.5 is simplified to the following:
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Corollary 6.8. Let L be a QDS generator written with respect to the Gell-Mann

basis (3.6) such that H = ∑N
n=1 hnEnn and C is diagonal. Then the k` block Lk` of

L is singular if and only if hk = h`, cnn = 0 for k − 1 ≤ n ≤ `− 1, and

• k, ` ∈ IHL, in which case kerLk` = Span(λk`, λ`k), or

• k` ∈ I2
HL

, in which case

– kerLk` = C{λk`} if c`k = 0,

– kerLk` = C{λ`k} if ck` = 0.

6.2 Examining the Full Generator L

To establish the final kernel results for this section, we need only recall that pair

block diagonal generators are of form (3.4). From Corollary 5.4 and Lemma 6.1, we

have the following:

Theorem 6.9. Let L be a QDS generator which is pair block diagonal with respect

to the standard basis (3.1) with H̃ = ∑N
n=1 hnEnn and Γ ≥ 0. Then

kerL =
⊕
k,`

kerLk` ⊕ Span
(
dG

n
L
)k
n=1

,

where dGn
L are given by (5.2) and kerLk` are as in Lemma 6.1.

Theorem 6.10. Let L be a QDS generator which is pair block diagonal with respect

to the Gell-Mann basis (3.6) with H = ∑N
n=1 hnEnn and CD0 diagonal. Then

kerL =
⊕
k,`

kerLk` ⊕ Span
(
dG

n
L
)k
n=1

,

where dGn
L are given by (5.2) and kerLk` are as in Lemma 6.5.

Corollary 6.11. Let L be a QDS generator written with respect to the Gell-Mann

basis (3.6) such that H = ∑N
n=1 hnEnn and C is diagonal. Then

kerL =
⊕
k,`

kerLk` ⊕ Span
(
dH

n
L
)k
n=1

,
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where dHn
L are given by (5.3) and kerLk` are as in Corollary 6.8.

Recalling (2.2), these Theorems allow us to compute exactly the invariant states

for pair block diagonal generators with diagonal Hamiltonian from statistics of the

underlying graph. Namely, the diagonal entries are computed from the total weight

of spanning trees rooted at each vertex, and the off-diagonal entries arise from the

presence of sinks and singular 2-sinks. Examples 6.12 and 6.13 below illustrate how

these various structures in the associated digraph GL affect the structure of the

invariant states.

Example 6.12. In dimension N = 8, consider QDS generator L given by (3.1) with

Hamiltonian H = ∑8
i=1 hiEii with h2 = h3 and h4 = h5, and coefficient matrix Γ

whose entries are all zero except the 45 block given by ( 1 ı
−ı 1 ) and the 67, 68, and 78

blocks given by ( 1 0
0 2 ), ( 3 0

0 3 ), and ( 4 0
0 1 ) respectively. The graph GL is drawn below,

where the dashed edge is a singular 2-sink.

1

2

3

4

5

6

7

8



x1 ∗ ∗

∗ x2 y1

∗ y2 x3

x4 y3(1 + i)

y3(1− i) x4

5x5

13x5

4x5


The kernel of L can be computed via Theorem 6.9, where each pair of (k, `)

and (`, k) entries are given by kerLk`. The displayed matrix represents an arbitrary

element in kerL where missing entries are zero. Specifically, the five xn’s represent

multiples of dGn
L for each of the five TSCCs, computed as in (5.2), and the yn’s

represent multiples of the off-diagonal kernel elements described in Lemma 6.1. The
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entries denoted by ∗ represent zero if h1 6= h2, h3, or additional free variables if

h1 = h2 = h3. Notice that one may create both non-faithful and/or non-diagonal

invariant states. Notice also that the presence of a singular 2-sink puts relations on

the real and imaginary parts of certain off-diagonal coordinates of the kernel elements,

a phenomenon that does not happen in the graph induced case (1.1).

Example 6.13. Consider a system with three states: |1〉, |2〉, and |3〉. Consider the

jump between 1√
2(|1〉 + ı|2〉) 7→ 1√

2(ı|1〉 + |2〉) at rate a > 0 together with the jumps

|3〉 7→ |1〉 at rate b > 0 and |3〉 7→ |2〉 at rate c > 0. Following Remark 3.1, we

model this by setting the entries of coefficient matrix Γ all zero except the 12 block

given by ( a aa a ), 13 block given by ( b 0
0 0 ), and the 23 block given by ( c 0

0 0 ). Applying

Theorem 6.9, we have that

kerL = Span
(( 1 0 0

0 1 0
0 0 0

)
,
( 0 1 0

1 0 0
0 0 0

))
,

and so the invariant states of this system are given by

1
2


1 x 0

x 1 0

0 0 0


for any −1 ≤ x ≤ 1. In particular, 1√

2(|1〉 + |2〉) is an invariant state. In the

graph induced case (1.1), i.e. if only jumps between vector states |i〉 7→ |j〉 had been

allowed, this could only happen in the trivial case that the jump rates for |1〉 7→ |i〉

and |2〉 7→ |i〉 were identically zero for all i. Allowing jumps between superpositions

thus enables the system to maintain coherence despite nontrivial evolution.
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Chapter 7

Other Generators

7.1 Identity Preserving QDSs

In this section we examine QDSs whose generators satisfy L(IN) = 0; that is, QDSs for

which the maximally mixed state IN/N is invariant, or, equivalently by Corollary 2.5,

QDSs which are contractive for some/all p-Schatten norm with p > 1. We prove that

the kernel of such a QDS generator is contained in the kernel of a second, naturally

induced QDS generator which is characterized by Corollary 6.11. To define this

second generator we first consider the kernel of the coefficient matrix C for L written

in Gell-Mann form (3.6).

Lemma 7.1. Let C : M0
N(C) → M0

N(C) with C ≥ 0, and let x1, . . . , xn ∈ M0
N(C)

be orthonormal in SN2 . Then C − ε∑n
i=1 |xi〉〈xi| ≥ 0 for some ε > 0 if and only if

{x1, . . . , xn} ⊆ (kerC)⊥.

Proof. Let ε = infy∈(kerC)⊥,||y||=1〈y, Cy〉. That ε ≥ 0 is clear since C ≥ 0. We claim

that ε > 0. Indeed, the unit ball of (kerC)⊥ is compact (being finite dimensional) and

so the infimum is achieved at some y0 ∈ (kerC)⊥. Since Cy0 6= 0 we have
√
Cy0 6= 0,

and hence 〈y0, Cy0〉 = 〈
√
Cy0,

√
Cy0〉 = ||

√
Cy0||2 6= 0.

Now, suppose {x1, . . . , xn} is an orthonormal subset of (kerC)⊥ and let

{k1 . . . , km} be an orthonormal basis of kerC. Then there exist xn+1, . . . , x` ∈

M0
N(C) such that {k1, . . . , km, x1, . . . , x`} is an orthonormal basis of MN(C). Let-

ting z ∈ M0
N(C) we aim to show 〈z, (C − ε∑n

i=1 |xi〉〈xi|)z〉 ≥ 0. Indeed, writing z =∑m
s=1 asks +∑`

t=1 btxt we may define z̃ := ∑`
t=1 btxt and assume ||z̃||2 = ∑`

t=1 |bt|2 = 1
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without loss of generality. Then C = C∗ and Cz = Cz̃ imply

〈z, Cz〉 = 〈z, Cz̃〉 = 〈Cz, z̃〉 = 〈Cz̃, z̃〉 = 〈z̃, Cz̃〉 ≥ ε,

and so

〈z, (C − ε
n∑
i=1
|xi〉〈xi|)z〉 = 〈z, Cz〉 − ε

n∑
i=1
〈z, |xi〉〈xi|z〉

= 〈z, Cz〉 − ε
∑̀
t=1
|bt|2 = 〈z, Cz〉 − ε ≥ 0.

Conversely, suppose {x1, . . . , xn} 6⊆ (kerC)⊥ so there is some k ∈ kerC such that

k 6⊥ xj for some 1 ≤ j ≤ n. Then |〈k, xj〉|2 > 0, and so for all ε > 0 we have

〈k, (C − ε
n∑
i=1
|xi〉〈xi|)k〉 = 〈k, Ck〉 − ε

n∑
i=1
〈k, |xi〉〈xi|k〉 = −ε

n∑
i=1
|〈k, xi〉|2 < 0.

Remark 7.2. Let L be a QDS generator written in Gell-Mann form (3.6) with

coefficient matrix C, and define K : M0
N → M0

N by K = ∑ |λij〉〈λij|, where the sum

is over all λij perpendicular to kerC. Then C − εK ≥ 0 for some ε > 0. Further,

K ≥ 0 and so taking K to be the coefficient matrix in Gell-Mann form (3.6) defines

a QDS generator K by Theorem 2.1. Since K is diagonal we have K is of form (3.8),

K(IN) = 0, and further K is negative semidefinite by Remark 5.3 and Corollary 6.6.

Proposition 7.3. Let L be a QDS generator satisfying L(IN) = 0. Then

kerL ⊆ kerK,

where kerK is given by Corollary 6.11.

Proof. Fix ε > 0 such that C − εK ≥ 0. It is easy to see that using C − εK as the

coefficient matrix in Gell-Mann form (3.6) gives rise to the QDS generator L − εK,

and that L = (L − εK) +K. The result then follows from Lemma 2.6.
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We note that L does not need to be written in Gell-Mann form (3.6) to define K,

as our definition relies only on the kernel of the coefficient matrix C. Recalling that

Theorem 2.1 uniquely defines C (as an operator), or more generally that Theorem 2.3

uniquely defines Γ, this kernel is uniquely defined regardless of basis {Fi}.

7.2 Consistent Generators.

In this section we examine those generators for which the Hamiltonian H is ‘well-

behaved’. More precisely, let HL denote the graph obtained from GL by ignoring

weights and directedness of the edges, and for each connected component Hk
L of HL

let Pk be the orthogonal projection onto Span(Eij)i,j∈V (Hk
L). We call H consistent if

PkHP` = 0 for all ` 6= k. We provide a lower bound for the dimension of the kernel

of a QDS generator for which H is consistent.

Recall that the definition of a QDS immediately implies Tr(L(A)) = 0 for all

A ∈MN(C). The next result says that certain submatrices of L(A) are also traceless

if we assume the Hamiltonian H is consistent.

Theorem 7.4. Let L be a QDS generator. Considering fixed k, if PkHP` = 0 for all

` 6= k, then Tr(PkL(A)) = 0 for all A ∈MN(C).

Proof. Consider L written with respect to the standard basis (3.1) such that Γ satisfies

the conditions of Theorem 2.3. If HL is connected then the statement is obvious since

L has traceless range, so assume that HL is not connected and Hn
L, Hm

L are distinct

connected components. Then for any i ∈ V (Hn
L) and j ∈ V (Hm

L ) we have that

weights γij = γji = 0. Further, positive semidefiniteness of Γ implies that each

entry of Γ which shares a row or column with γijij or γjiji is also zero (for if not the

2× 2 submatrix formed by removing all other rows and columns would have negative
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determinant, contradicting positive semidefiniteness). Hence

L = −ı[H, ·] +
∑
n,m

∑
i,j∈V (Hn

L)
k,`∈V (Hm

L )

γijk`Dijk`. (7.1)

By linearity of L it suffices to show Tr(PkL(Est)) = 0 for arbitrary 1 ≤ s, t ≤ N . To

this end, we claim that every output L(Est) which has nonzero diagonal is traceless

with its nonzero diagonal in Span(Enn)n∈V (Hm
L ) for some m. Since each output of L is

a linear combination of outputs of [H, ·] and of the Dijk` appearing in (7.1), it suffices

to show this for [H, ·] and those Dijk` separately.

For the Hamiltonian part we write H = ∑
hijEij so that [H, ·] = ∑

hij[Eij, ·].

Note that if PkHP` = 0 for k 6= ` then for any i ∈ V (Hk
L) and j ∈ V (H`

L) we have

hij = 0. That is, if hij 6= 0 then i, j ∈ V (Hm
L ) for some m. From this the claim is

clear, as [Eij, Est] has nonzero diagonal output if and only if i = t and j = s, in which

case [Eij, Est] = Eii − Ejj.

For the operators Dijk` we recall (3.3), which reads

Dijk`(Est) = 2δjsδ`tEik − δikδjsE`t − δ`tδikEsj.

Thus, Dijk`(Est) has nonzero diagonal if and only if i = k, j = s, and ` = t, in which

case Dijk`(Est) = 2Eii − Ejj − E``. If Dijk` appears in (7.1), then these equalities

imply i, j, ` ∈ V (Hm
L ) for some m.

Corollary 7.5. Let L be a QDS generator such that H is consistent. Then

cc(HL) ≤ dim kerL,

where cc(HL) is the number of connected components of HL.

Proof. Consider the connected components H1
L, . . . , H

`
L of HL ordered so that

|V (Hn
L)| ≥ 2 for n ≤ m and |V (Hn

L)| = 1 for n > m for some m ≥ 0. It
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suffices to find ` many pairwise orthogonal matrices not in Range(L). Since H

is consistent, by Theorem 7.4 we have Tr(PkL(A)) = 0 for all A ∈ MN(C) and

all 1 ≤ k ≤ `. In the boundary case of m = 0 we have that Eii 6∈ Range(L)

for all 1 ≤ i ≤ N and so ` = N ≤ dim kerL. Otherwise, if m > 1, fixing

i1 ∈ V (H1
L) and j2 ∈ V (H2

L) we have Ei1i1 − Ej2j2 6∈ Range(L). Similarly, fixing

some i2 ∈ V (H2
L) \ {j2} and j3 ∈ V (H3

L) we have Ei2i2 − Ej3j3 6∈ Range(L). We con-

tinue until we find Eimim −Ejm+1jm+1 6∈ Range(L), for a total of m simple differences

Eii−Ejj not in Range(L). Further, writing V (Hn
L) = {in} for all n ≥ m+ 2 we have

Einin 6∈ Range(L), for a total of ` − m − 1 distinct Eii not in Range(L). Because

these chosen matrices are all diagonal and we have no repeated indices, we have a set

of `− 1 pairwise orthogonal matrices. It is clear that IN −
∑
m+2≤n≤`Einin is nonzero

and orthogonal to the above matrices, and is not in Range(L) since L has traceless

range, and so we have found a set of ` many orthogonal matrices not in Range(L),

as desired.

Since certainly a QDS is not uniquely relaxing if it has multiple invariant states,

we immediately have the following.

Corollary 7.6. Let L be a QDS generator such that H is consistent. If Tt is uniquely

relaxing then HL is connected.

We note that it is not true that the number of TSCCs ofGL lower bounds dim kerL

in general, even with consistent H; for example, see the example of section 2 of

aforementioned [41] for which GL has two TSCCs yet the QDS has a single invariant

state.
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Chapter 8

Conclusion to Part I

We began this Part by determining when the famed GKSL form (2.1) would define

a QDS generator when allowed not necessarily traceless operators Fi (Theorem 2.2).

Along the way, we identified that the coefficient matrix C of the classical GKSL

form (2.1) is uniquely determined by L when viewed as an operator (discussion above

Theorem 2.2), but this is not necessarily true for the coefficient matrix Γ of the more

general form (2.3) unless stronger assumptions are met (Theorem 2.3). In any case,

these theorems offer criteria for when L written with respect to the standard basis

(3.1) defines a QDS generator, a form whose simplicity is advantageous for both

calculation and understanding.

With this easy to work with form, we established the class of pair block diagonal

generators (Definition 3.3) to generalize the graph induced generators given by (1.1)

while preserving the important properties, such as leaving the diagonal subalgebra

D and off-diagonal subspace O invariant in the case of diagonal Hamiltonian H. We

also established the synonymous definition in terms of the Gell-Mann basis (Defini-

tion 3.6), which is often used due to its traceless construction when dealing with the

GKSL form (2.1).

For the class of pair block diagonal generators, we found explicit formula for all

invariant states when the Hamiltonian is diagonal (Theorem 6.9), and furthermore all

eigenmatrices which belong to the off-diagonal subspace O and their corresponding

eigenvalues (Theorem 6.3). In particular, the invariant states depend on the structure

of a naturally induced digraph. Though we do not explore such applications in this
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work, we note that these results allow for exact computation of rates of convergence

of such QDSs, given the Laplacian spectral gap of the induced digraph.

We have also shown explicitly that, when written in matrix form, every QDS

generator contains as a submatrix a naturally associated digraph Laplacian (Theo-

rem 5.2). In the case the Hamiltonian is consistent with this digraph, connectedness

properties of the digraph identify submatrices of elements in the range of L as trace-

less (Theorem 7.4), and hence we have established lower bounds on the number of

invariant states of the QDS based on the connectedness properties of the digraph

(Corollary 7.5). In the case the maximally mixed state is invariant, which happens if

and only if the QDS is contraction in some/all p-Schatten norms with p > 1 (Corol-

lary 2.5), we have shown that the structure of the invariant states can be inferred

from the digraph naturally associated to the kernel of the coefficient matrix (Propo-

sition 7.3).
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Chapter 9

Introduction to Part II

It is known that, under certain assumptions, semigroups on von Neumann algebras or

their preduals give rise to associated semigroups on Hilbert spaces. Moreover, these

associated semigroups often have stronger continuity properties than the original

semigroups. For example, in [51, Equation (2.1)] it is stated that if (Tt)t≥0 is a

quantum Markov semigroup on a von Neumann algebra A which has an invariant

faithful normal state, and if (K, π,Ω) is the GNS triple associated to that state, then

there exists a strongly continuous semigroup (Tt)t≥0 of contractions on K such that

Tt(π(A)Ω) = π(Tt(A))Ω for all A ∈ A and t ≥ 0. (9.1)

Since the proof of this statement is not included in [51] we provide a proof here (see

Remarks 11.6 and 12.15). Other results which give rise to semigroups on Hilbert

spaces starting from semigroups defined on spaces of operators can be found in liter-

ature. For example, in [50, Footnote of Theorem 6] it is proved that every strongly

continuous semigroup (Tt)t≥0 of positive isometries on the real Banach space of self-

adjoint trace-class operators on a Hilbert space gives rise to a strongly continuous

semigroup (Vt)t≥0 of isometries on the Hilbert space such that Tt is given as a conju-

gation by Vt for all t ≥ 0. In [32, Theorem 3] dilation theory is used to prove that

under appropriate assumptions weakly continuous semigroups on B(H) (where H is

a separable Hilbert space) give rise to corresponding semigroups of unitaries on some

associated Hilbert space. Dilation theory has also been used in [47, Theorem 3.3.7]

in order to produce a strongly continuous group of unitaries associated with a norm

continuous semigroup on the space of trace-class operators on a related Hilbert space.
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In this Part we prove a result similar to the result stated above in Equation (9.1)

(Theorem 12.14). More precisely, we prove that every semigroup of Schwarz maps on

B(H) (whereH is a Hilbert space) which has an invariant faithful state gives rise to an

associated semigroup (T̃t)t≥0 of contractions on the space of Hilbert-Schmidt operators

on H. Our map is “more symmetric" than the one provided by Equation (9.1) (see

the comments following Remark 11.6). Moreover, we explicitly describe how the

generators of (Tt)t≥0 and (T̃t)t≥0 are related. Further, we use the dilation theory

by Foias and Sz.-Nagy in order to obtain a minimal unitary dilation of (T̃t)t≥0. We

introduce the notion of the extended generator of a semigroup on bounded operators

on a Hilbert space with respect to an orthonormal basis of the Hilbert space. Finally,

under the assumption that the semigroup (Tt)t≥0 is a quantum Markov semigroup

having an invariant faithful normal state and that either the generator of the minimal

unitary dilation of (T̃t)t≥0 is compact or the generator of (T̃t)t≥0 itself has compact

resolvent, we describe the form of the extended generator of the semigroup (Tt)t≥0

with respect to an orthonormal basis (see Theorems 13.9and 13.14).

Acknowledgments: I would like to thank Franco Fagnola and Matthew Ziemke.

Their contributions to the results in this Part were vital from its conception to the

final touches. Without their help the existence of this Part would not be possible.

9.1 Structure of Part II

• In Chapter 10 we establish the formal notation and definitions required for this

Part, and give some historical notes on the terminology.

• In Chapter 11 we consider several constructions arising from faithful, positive,

normal functionals. In particular, in Section 11.1 we prove that every faithful positive

normal functional on B(H) induces a canonical bounded linear map from B(H) to

S2(H). This map is used in Theorem 11.5 to prove that for every bounded linear

Schwarz map on B(H), which has a subinvariant faithful positive functional, there
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exists a corresponding contraction on S2(H). In Section 11.2 we consider an alternate

construction for such induced maps using the GNS construction, and then compare

and contrast the two methods.

• In Chapter 12 we recall the basic notions of continuity for semigroups, as well

as formalize the definition of a semigroup’s generator and its generator’s domain.

In Section 12.1 we introduce the notion of an extended generator, which can be

defined on a larger domain while still agreeing with the usual generator on all finite

subspaces. Theorem 12.14 relates the domains and actions of the generator, the

extended generator, and the generator of the semigroup induced on S2(H) (from

Section 11.1). Section 12.2 we apply the dilation theory of Foias and Sz.-Nagy to the

semigroup induced on S2(H) in order to obtain a minimal semigroup of unitaries on

a larger Hilbert space, as well as Stone’s Theorem in order to give a description of its

generator.

• In Chapter 13 we investigate the applications of Theorem 12.14 in the study of

Quantum Markov semigroups (QMSs), for which the exact form of the generator is

known that if the generator is bounded (see [42] and [53]). In section 13.1, we describe

the generator of the QMS under the assumption that the generator of the minimal

semigroup of unitary dilations of the associated semigroup of contractions is compact.

In section 13.2, we describe the generator of the QMS under the assumption that the

generator of the semigroup induced on S2(H) has compact resolvent.
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Chapter 10

Preliminaries

We first fix some notation. If H is a Hilbert space, let (B(H), ‖ · ‖∞) denote the

space of all bounded linear operators on H. For 1 ≤ p <∞, let (Sp(H), ‖ · ‖p) denote

the Schatten-p space of operators. In particular, (S2(H), ‖ · ‖2) denotes the space of

Hilbert-Schmidt operators on H and (S1(H), ‖ · ‖1) denotes the space of trace-class

operators on H. Let 〈·, ·〉S2(H) denote the inner product in S2(H). If L is a linear

operator which is not necessarily bounded, then D(L) will denote the domain of L.

We adopt the convention that functional will always mean bounded linear func-

tional. Usually the functionals that we will consider will be faithful, positive, and

normal, so this convention will help us to cut down the number of adjectives.

We would like to recall the Schwarz inequality and define the Schwarz maps. The

classical Cauchy-Schwarz inequality states that |〈y, x〉| ≤ ‖y‖‖x‖ for all vectors x, y

in a Hilbert space. This inequality is extended to |φ(y∗x)| ≤
√
φ(y∗y)

√
φ(x∗x) for all

x, y in a C∗-algebra A, where φ is a positive functional on A (see [49, Theorem 4.3.1]).

The last inequality can be further extended to (T (y∗x))∗T (y∗x) ≤ ‖T (y∗y)‖T (x∗x)

if T is a completely positive map from a C∗-algebra A to the C∗-algebra B(H) of

all bounded operators on a Hilbert space H (see [11, Lemma 2.6]). If in the last

inequality one assumes that A is unital and T is unital, then by replacing y by the

unit we obtain

T (x)∗T (x) ≤ T (x∗x) for all x ∈ A. (10.1)

A similar inequality was proved by Choi [20, Corollary 2.8] who proved that if A is

a unital C∗-algebra and T is a 2-positive unital map from A to A then T (x∗)T (x) ≤
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T (x∗x) for all x ∈ A. Choi calls the last inequality “Schwarz inequality”. Similar

inequalities appear in [48, Theorem 1] and [65, Theorem 7.4]. Since a positive linear

map T on a C∗-algebra A satisfies T (x∗) = T (x)∗ for all x ∈ A, the last inequality is

equivalent to (10.1). Following [66, page 14], we say that a bounded linear operator T

on a C∗-algebra A is a Schwarz map if Inequality (10.1) is satisfied. The advantage

of Inequality (10.1) versus the inequality proved by Choi, is that Inequality (10.1)

implies that T is positive. Be warned that Inequality (10.1) is not homogeneous for

T , and therefore by scaling the operator T by a positive constant the above inequality

is affected.

Next we recall the definition of invariant functionals and we define the notion of

subinvariant positive functionals on a C∗-algebra. If X is a Banach space, T : X → X

is a bounded linear operator, and ω is a functional on X, then ω is called invariant

for T if

ω(Tx) = ω(x) for all x ∈ X.

If A is a C∗-algebra, T : A → A is a positive bounded linear operator, and ω is a

positive functional on A, then we will say that ω is subinvariant for T if

ω(Ta) ≤ ω(a) for all a ∈ A with a ≥ 0.

If H is a Hilbert space, then a functional ω on B(H) is called normal if and only if it

is continuous in the weak operator topology. This is equivalent to the fact that there

exists a unique positive operator ρ ∈ S1(H) such that

ω(x) = Tr(ρx) for all x ∈ B(H) (10.2)

where Tr denotes the trace. The positive functional ω associated to the positive

trace-class operator ρ via Equation (10.2) is denoted by ωρ. If ω is a state (i.e. unital

positive functional) on B(H) then ω is normal if and only if the positive trace-class

operator ρ which satisfies Equation (10.2) has trace equal to 1. Note that if H is a
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Hilbert space and T : B(H) → B(H) is a bounded linear operator, then a normal

positive functional ωρ (for some positive trace-class operator ρ) is invariant for T if

and only if

T †(ρ) = ρ,

where T † denotes the Banach dual operator of T restricted to S1(H) (viewed as a

subspace of the dual of B(H)). Also, if H is a Hilbert space and T : B(H) → B(H)

is a positive bounded linear operator, then a normal positive functional ωρ (for some

positive trace-class operator ρ) is subinvariant for T if and only if

T †(ρ) ≤ ρ.

If H is a Hilbert space, recall that a positive functional ω on B(H) is faithful

provided that ω(x) > 0 for all x > 0. It is worth noting that B(H) has a faithful

normal functional if and only if H is separable (see [12, Example 2.5.5]).
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Chapter 11

Constructions using faithful, positive, normal

functionals

We extensively use the next proposition so we want to give it along with a proof.

Proposition 11.1. Let H be a Hilbert space and ρ ∈ S1(H) be positive. Then the

following are equivalent:

(i) the positive normal functional ωρ is faithful,

(ii) the operator ρ is injective,

(iii) the operator ρ has dense range.

Proof. [(i) ⇒ (ii)]. Suppose ωρ is faithful. Let h be a nonzero element of H and

Ph be the orthogonal projection onto the span of h. Then Ph is a positive non-zero

operator on H. Hence, since ωρ is faithful,

0 < ωρ(Ph) = Tr(ρPh) = Tr(ρ1/2PhPhρ
1/2) = ‖Phρ1/2‖2

2 = 1
‖h‖2‖ρ

1/2h‖2

and so ρ1/2h 6= 0 and hence, by using the same argument with h replaced by ρ1/2h,

we have that ρh 6= 0. Therefore ρ is injective.

[(i) ⇒ (iii)]. If we assume that ρ does not have dense range then if we let P be

the orthogonal projection to Range(ρ)⊥ then P is a positive non-zero operator on H

and so ωρ(P ) > 0. However, Pρ = 0 and so

ωρ(P ) = Tr(ρP ) = Tr(Pρ) = Tr(0) = 0
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which is a contradiction, so ρ has dense range.

[(iii)⇒ (i)]. Let A ∈ B(H) and suppose ωρ(A∗A) = 0. Then

0 = ωρ(A∗A) = Tr(ρA∗A) = Tr(ρ1/2A∗Aρ1/2) = ‖Aρ1/2‖2
2. (11.1)

So we have that Aρ1/2 = 0 and therefore Aρ = 0. Since ρ has dense range, we then

have that A = 0 and so ωρ is faithful.

[(ii)⇒ (i)]. Assume that ρ is injective and let A ∈ B(H) such that ωρ(A∗A) = 0.

Equation (11.1) implies that Aρ1/2 = 0 and so ρ1/2A∗ = 0 which gives that ρA∗ = 0.

Hence, for any x ∈ H, we have that ρA∗x = 0 and since ρ is injective we have that

A∗x = 0 for all x ∈ H and therefore A = 0 and so ρ is faithful.

Remark 11.2. Note that in the proof of [(i) ⇒ (ii)] of the above proposition, we

proved that (i) implies that ρ1/2 is injective. Since ρ1/2 = ρ1/4ρ1/4 we immediately

obtain that ρ1/4 is injective. Since ρ3/4 = ρ1/2ρ1/4 we obtain that ρ3/4 is injective as it

is a composition of two injective maps. Further, since an operator is injective if and

only if its adjoint has dense range, and ρ1/4, ρ1/2, and ρ3/4 are self-adjoint, we have

that ρ1/4, ρ1/2, and ρ3/4 have dense range.

11.1 Inducing Maps on S2(H)

Let H be a Hilbert space and fix ρ ∈ S1(H) which is positive. Define

iρ : B(H)→ B(H) by iρ(x) = ρ1/4xρ1/4.

The next proposition summarizes the properties of the map iρ. First recall that

for any Hilbert space H, we have the following set inclusions

S1(H) ⊆ S2(H) ⊆ B(H).

Proposition 11.3. Let ρ ∈ S1(H) be positive such that ωρ is a faithful positive

functional. Then the following statements are valid:
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(a) The map iρ is injective.

(b) The map iρ preserves positivity.

(c) The restriction iρ|S2(H) of iρ to S2(H), maps S2(H) into S1(H) and ‖iρ|S2(H) :

S2(H)→ S1(H)‖ ≤ 1.

(d) The map iρ maps B(H) onto a dense subset of S2(H) and ‖iρ : B(H) →

S2(H)‖ ≤ 1.

Proof. In order to see part (a), let x ∈ B(H) and suppose iρ(x) = 0. By Remark 11.2

we have that ρ1/4 is injective. Therefore, since ρ1/4xρ1/4 = 0, we obtain that xρ1/4 = 0.

Further, since ρ1/4 has dense range, (by Remark 11.2 again), we obtain that x = 0.

Thus iρ is injective.

In order to see (b), let x ∈ B(H) where x ≥ 0. Let h ∈ H. Then

〈h, iρ(x)h〉 = 〈h, ρ1/4xρ1/4h〉 = 〈ρ1/4h, xρ1/4h〉 ≥ 0

since x ≥ 0. Thus iρ maps positive operators to positive operators.

In order to see (c), first note that for p, q, r ≥ 1 where 1
p

+ 1
q

+ 1
r

= 1 and for

x ∈ Sp(H), y ∈ Sq(H), and z ∈ Sr(H), two applications of Holder’s inequality give

that ‖xyz‖1 ≤ ‖x‖p‖y‖q‖z‖r. From this we obtain that for y ∈ S2(H) with ‖y‖2 ≤ 1

we have that

‖iρ(y)‖1 = ‖ρ1/4yρ1/4‖1 ≤ ‖ρ1/4‖4‖y‖2‖ρ1/4‖4 = ‖ρ‖1/4
1 ‖y‖2‖ρ‖1/4

1 ≤ ‖ρ‖1/4
1 ,

which finishes the proof of (c).

For the proof of (d), first notice that iρ(x) ∈ S2(H) for all x ∈ B(H) since

‖iρ(x)‖2
2 = ‖ρ1/4xρ1/4‖2

2 = Tr
(
ρ1/2x∗ρ1/2x

)
≤ ‖ρ1/2x∗ρ1/2x‖1 ≤ ‖ρ1/2x∗‖2‖ρ1/2x‖2

= Tr
(
(ρ1/2x∗)∗(ρ1/2x∗)

)1/2
Tr
(
(ρ1/2x)∗(ρ1/2x)

)1/2

= Tr (xρx∗)1/2 Tr (x∗ρx)1/2 <∞.
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Let y ∈ S2(H) such that y ⊥ iρ(x) for all x ∈ B(H), (where the orthogonality is

taken with respect to the Hilbert-Schmidt inner product). Then, for all x ∈ B(H),

we have

0 = 〈iρ(x), y〉S2(H) = 〈ρ1/4xρ1/4, y〉S2(H) = Tr(ρ1/4x∗ρ1/4y) = 〈x, ρ1/4yρ1/4〉S2(H).

Therefore ρ1/4yρ1/4 = 0. Since ρ1/4 is injective, we have that yρ1/4 = 0 and, since ρ1/4

has dense range, we have that y = 0. Therefore iρ has dense range.

To see that ‖iρ : B(H)→ S2(H)‖ ≤ 1, let x ∈ B(H) and notice that

‖iρ(x)‖2 = sup
y∈S2(H)
‖y‖2≤1

|〈iρ(x), y〉S2(H)| = sup
y∈S2(H)
‖y‖2≤1

|Tr(iρ(x)∗y)|

= sup
y∈S2(H)
‖y‖2≤1

|Tr(ρ1/4yρ1/4x∗)| ≤ sup
y∈S2(H)
‖y‖2≤1

‖ρ1/4yρ1/4‖1‖x‖∞

= ‖iρ|S2(H) : S2(H)→ S1(H)‖‖x‖∞ ≤ ‖x‖∞,

where we used part (c) for the last inequality.

Definition 11.4. Let H be a Hilbert space and ρ ∈ S1(H) be a positive operator.

If T : B(H) → B(H) is a bounded linear operator, we define the operator T̃ :

iρ(B(H))→ iρ(B(H)) by

T̃ (ρ1/4xρ1/4) = ρ1/4T (x)ρ1/4 for all x ∈ B(H).

Note that T̃ depends on ρ but, for simplicity, we chose notation which does not

reflect this dependence.

The following theorem was first proven in [13]. For the convenience of the reader

we provide a proof of it here.

Theorem 11.5. Suppose H is a Hilbert space and ρ ∈ S1(H) be a positive operator

such that ωρ is a faithful positive functional on B(H). Let T : B(H) → B(H) is

a bounded linear operator which is a Schwarz map such that ωρ is a subinvariant
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functional for T . Then the corresponding operator T̃ can be extended to all of S2(H)

as a contraction from S2(H) to S2(H).

Proof. Since ωρ is a faithful normal functional on B(H), we have that H must be

separable (see the comment above Proposition 11.1), so let (ek)k≥0 be an orthonormal

basis for H which diagonalizes ρ and let Pn = ∑n
k=0 |ek〉〈ek|. Note that ρ and its

positive powers commute with each Pn. Define the linear subspace A = {xρ1/2 : x ∈

B(H)} and the map T̂ : A → A by T̂ (xρ1/2) = T (x)ρ1/2. Further, for n ∈ N, define

the map ∆n : S2(H)→ S2(H) by

∆n(x) = Pnρ
1/2xρ−1/2Pn for all x ∈ S2(H)

(note that ρ1/2 is not invertible but ρ−1/2Pn is a bounded operator). Then, for any

x ∈ B(H), we have

‖T̃ (iρ(x))‖2
2 = ‖ρ1/4T (x)ρ1/4‖2

2 = Tr
(
ρ1/4T (x)∗ρ1/2T (x)ρ1/4

)
= lim

n→∞
Tr
(
ρ1/2T (x)∗Pnρ1/2T (x)ρ1/2ρ−1/2Pn

)
= lim

n→∞

〈
T (x)ρ1/2,∆n(T (x)ρ1/2)

〉
S2(H)

= lim
n→∞

〈
T̂ (xρ1/2),∆nT̂ (xρ1/2)

〉
S2(H)

= lim
n→∞

〈
xρ1/2, T̂ ∗∆nT̂ (xρ1/2)

〉
S2(H)

(11.2)

where we will see later on why T̂ ∗ is well-defined.

Define ∆ : A → A by ∆(xρ1/2) = ρ1/2x, which is well-defined since ρ1/2 has dense

range (hence, for x, y ∈ B(H), xρ1/2 = yρ1/2 implies x = y). Let B = {xρ : x ∈

B(H)}. We make the following three claims:

(i) T̂ is a contraction on A. Therefore T̂ can be extended to a contraction on S2(H)

since A is dense in S2(H)).

(ii) ∆2
n is positive. Therefore, by [56, Lemma 1.2], we have

T̂ ∗∆nT̂ ≤
(
T̂ ∗∆2

nT̂
)1/2

. (11.3)
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(iii) T̂ ∗∆2
nT̂ ≤ ∆2 on B. Thus,

(
T̂ ∗∆2

nT̂
)1/2
≤ (∆2)1/2 = ∆. (11.4)

Hence, by combining (11.3) and (11.4), we obtain T̂ ∗∆nT̂ ≤ ∆ on B.

Assume for the moment that the above claims (i), (ii), and (iii) are true in order to

finish the proof and we will prove the claims afterwards. By replacing x by xρ1/2, in

Equation (11.2) we obtain that

‖T̃ (iρ(xρ1/2))‖2
2 = lim

n→∞

〈
xρ, T̂ ∗∆nT̂ (xρ)

〉
S2(H)

≤ 〈xρ,∆(xρ)〉S2(H) =
〈
xρ, ρ1/2xρ1/2

〉
S2(H)

= Tr
(
ρx∗ρ1/2xρ1/2

)
= Tr

(
ρ3/4x∗ρ1/4ρ1/4xρ3/4

)
=
〈
ρ1/4xρ3/4, ρ1/4xρ3/4

〉
S2(H)

= ‖iρ(xρ1/2)‖2
2

and so T̃ is a contraction on iρ(B(H)ρ1/2). We now show that iρ(B(H)ρ1/2) is dense

in S2(H). Let y ∈ S2(H) such that y ⊥ iρ(B(H)ρ1/2). Then, for any x ∈ B(H) we

have that

0 = 〈iρ(xρ1/2), y〉S2(H) = Tr(iρ(xρ1/2)∗y) = Tr(ρ1/4ρ1/2x∗ρ1/4y) = 〈x, ρ1/4yρ3/4〉S2(H)

and hence ρ1/4yρ3/4 = 0. Since ρ1/4 is injective, we then have that yρ3/4 = 0 and,

since ρ3/4 has dense range, we obtain that y = 0. Therefore iρ(B(H)ρ1/2) is dense in

S2(H). Since T̃ is a contraction on iρ(B(H)ρ1/2), we can extend it to a contraction

on S2(H). This finishes the proof of the theorem as long as we verify above claims

(i), (ii), and (iii) as well as the fact that T̂ ∗ is well-defined which was used above.

First, we need to prove claim (i), i.e., that T̂ is a contraction on A. Let x ∈ B(H).

Then

‖T̂ (xρ1/2)‖2
2 = ‖T (x)ρ1/2‖2

2 = 〈T (x)ρ1/2, T (x)ρ1/2〉S2(H) = Tr(ρ1/2T (x)∗T (x)ρ1/2)

≤ Tr(ρ1/2T (x∗x)ρ1/2)
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since T is a Schwarz map. Further

Tr(ρ1/2T (x∗x)ρ1/2) = Tr(ρT (x∗x)) ≤ Tr(ρx∗x) = Tr(ρ1/2x∗xρ1/2)

= 〈xρ1/2, xρ1/2〉S2(H) = ‖xρ1/2‖2
2.

Therefore ‖T̂ (xρ1/2)‖2
2 ≤ ‖xρ1/2‖2

2 and so T̂ is a contraction on A. Hence, T̂ can be

extended to a contraction on S2(H), since A is dense in S2(H) (which also shows that

T̂ ∗ is well-defined).

For claim (ii), i.e., that ∆2
n is positive, first note that since ρ commutes with Pn

we have that

∆2
nx = PnρxPnρ

−1Pn for all x ∈ S2(H)

(note that ρ is not invertible but ρ−1Pn is a bounded operator). Indeed, if x ∈ S2(H)

then

〈
x,∆2

nx
〉
S2(H)

=
〈
x, PnρxPnρ

−1Pn
〉
S2(H)

= Tr
(
x∗PnρxPnρ

−1Pn
)

= Tr
(
ρ1/2PnxPnρ

−1/2PnPnρ
−1/2Pnx

∗Pnρ
1/2
)

= Tr
(
(ρ1/2PnxPnρ

−1/2Pn)(ρ1/2PnxPnρ
−1/2Pn)∗

)
≥ 0

and so ∆2
n is positive. Then by [56, Lemma 1.2], we have that

T̂ ∗∆nT̂ ≤ (T̂ ∗∆2
nT̂ )1/2. (11.5)
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It is left to prove claim (iii), i.e., that T̂ ∗∆2
nT̂ ≤ ∆2 on B. Indeed,

〈
xρ, T̂ ∗∆2

nT̂ (xρ)
〉
S2(H)

=
〈
T (xρ1/2)ρ1/2,∆2

nT (xρ1/2)ρ1/2
〉
S2(H)

=
〈
T (xρ1/2)ρ1/2, PnρT (xρ1/2)ρ1/2Pnρ

−1Pn
〉
S2(H)

= Tr
(
ρ1/2T (xρ1/2)∗PnρT (xρ1/2)ρ1/2Pnρ

−1Pn
)

= Tr
(
ρT (xρ1/2)PnT (xρ1/2)∗Pn

)
≤ Tr

(
ρT (xρ1/2)T (xρ1/2)∗

)
(see below) (11.6)

≤ Tr
(
ρT

(
(xρ1/2)(xρ1/2)∗

))
(since T is a Schwarz map)

≤ Tr
(
ρ(xρ1/2)(xρ1/2)∗

)
(since ωρ is subinvariant for T )

= Tr (ρxρx∗) = Tr (ρx(xρ)∗) = Tr ((xρ)∗ρx) (11.7)

= Tr
(
(xρ)∗∆2(xρ)

)
(since ∆2(xρ) = ρx) (11.8)

=
〈
xρ,∆2(xρ)

〉
S2(H)

.

This completes the proof as long as we justify the inequality (11.6). In general we

have that for any A ∈ S2(H), the inequality tr(PnA∗PnA) ≤ tr(A∗A) holds. Indeed,

if (ek)k≥1 is the orthonormal basis of H used to define each Pn, then

Tr(PnA∗PnA) =
∞∑
k=1

〈
ek, PnA

∗P 2
nAek

〉
=
∞∑
k=1
〈PnAPnek, PnAek〉 =

n∑
k=1
〈PnAek, PnAek〉 .

Further,

n∑
k=1
〈PnAek, PnAek〉 =

n∑
k=1
‖PnAek‖2 ≤

n∑
k=1
‖Pn‖2‖Aek‖2 ≤

∞∑
k=1
‖Aek‖2 = Tr(A∗A)

and so the proof of the inequality is complete.

11.2 An Alternate Construction

There is another situation where a bounded operator on a C∗-algebra gives rise to a

corresponding operator on a Hilbert space, and we would like to mention this in the

next remark.
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Remark 11.6. Let A be a unital C∗-algebra and ω be a faithful state on A. Consider

the GNS construction of A associated with ω. Let K be the Hilbert space associated

with the GNS construction, π : A → B(K) be the ∗-representation of A into the

C∗-algebra of all bounded operators on K, and Ω denote the cyclic element of the

Hilbert space K for the representation π, (i.e. the subspace {π(a)(Ω) : a ∈ A} is

norm dense in K) which is equal to the unit of A viewed as an element of K. Let T

be a bounded operator on A which is a Schwarz map. Assume that ω is subinvariant

for T . Define an operator T on the dense subspace {π(a)(Ω) : a ∈ A} of K with

values in K, by

T (π(a)(Ω)) = π(T (a))(Ω) for all a ∈ A.

Then T is a contraction (hence it extends to K).

Proof. Since ω is faithful, the quotient that is usually associated with the GNS con-

struction does not take place, and the elements of A belong to K. Let 〈·, ·〉ω denote

the inner product in K and ‖ · ‖ω denote the norm of K. Then since ω is faithful, we

have that for a, b ∈ A, 〈a, b〉ω = ω(a∗b) and hence ‖(π(a))(Ω)‖2
ω = ω(a∗a).

For every a ∈ A we have

‖T (π(a)(Ω))‖2
ω =‖π(T (a))(Ω)‖2

ω = ω(T (a)∗T (a)) ≤ ω(T (a∗a))

(since ω is positive and T is a Schwarz map)

≤ω(a∗a) (T ≥ 0 is a Schwarz map and ω is subinvariant for T )

=‖π(a)(Ω)‖2
ω,

which finishes the proof.

Notice the similarities between Theorem 11.5 and Remark 11.6. Both refer to a

bounded operator on some C∗-algebra where a positive linear functional is fixed, and

they conclude the existence of an associated contraction on some Hilbert space. There

are three differences between Theorem 11.5 and Remark 11.6. First, Theorem 11.5

67



refers to an operator on B(H) for some Hilbert spaceH (which is necessarily separable

since B(H) is assumed to admit a faithful normal state), while Remark 11.6 assumes

that the operator is defined on a general C∗-algebra. Second, the state ωρ which is

mentioned in Theorem 11.5 is normal since it is defined via the trace-class operator

ρ, while there is no such assumption in Remark 11.6 (the normality of the state ω

in Remark 11.6 does not make sense in general since A is simply assumed to be a

C∗-algebra and not a von Neumann algebra as it is assumed in [51, Equation (2.1)]).

Third, the Hilbert space that is used in Theorem 11.5 is the space S2(H) which does

not depend on the positive linear functional, while the map iρ which maps B(H) to

S2(H), does depend on the positive linear functional. On the other hand, the Hilbert

space that is used in Remark 11.6 (i.e. the GNS construction associated to the faithful

state ω of the C∗-algebra A), depends on the state, while the ∗-representation π of

the von Neumann algebra which is associated with the GNS construction does not

depend on the state. Notice that the combinations of the Hilbert spaces with the

representations in Theorem 11.5 and Remark 11.6 are very similar. More precisely,

for a, b ∈ B(H) we have that iρ(a), iρ(b) ∈ S2(H) hence

〈iρ(a), iρ(b)〉S2(H) = Tr(iρ(a)∗iρ(b)) = Tr(ρ1/4a∗ρ1/4ρ1/4bρ1/4) = Tr(a∗ρ1/2bρ1/2).

On the other hand, if we assume for the moment that the C∗-algebra A that appears

in Remark 11.6 is equal to B(H) for some Hilbert space H, and the faithful state ω

on the C∗-algebra A is given by ω(a) = Tr(ρa) for some positive trace-class operator

ρ on H, then the inner product of two elements a, b ∈ A via the GNS construction is

given by

〈a, b〉ω = ω(a∗b) = Tr(ρa∗b).

Thus the combination of the inner product with the representation that is used in

Theorem 11.5 is slightly more “symmetric" than the combination of the inner product

with the representation that is used in Remark 11.6. The reader of course will notice
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the difference between the complexity of the proof of Theorem 11.5 and that of

Remark 11.6. The extra intricacies in the proof of Theorem 11.5 is the price we pay

in order to achieve the extra symmetry in the combination of the inner product and

the representation as discussed above.

Remark 11.7. The assumption that “ω is subinvariant for T " cannot be omitted in

Remark 11.6.

Proof. We present an example where all the assumptions of Remark 11.6 are valid,

except ω is not a subinvariant functional for T . In this example, the operator T is not

bounded from {π(a)(Ω) : a ∈ A} to K. This shows that the assumption that “ω is

subinvariant for T " cannot be omitted. Consider the Hilbert spaceH = `2(N)⊗L2[0, 1]

(with the Lebesgue measure dλ used on [0, 1]). The elements of H can be represented

as column vectors (f1, f2, . . .)t where fn ∈ L2[0, 1] for every n ∈ N and

‖(f1, f2, . . .)t‖ =
( ∞∑
n=1

∫ 1

0
|fn|2dλ

)1/2

<∞.

Consider the von Neumann subalgebra A = B(`2(N)) ⊗ L∞[0, 1] of B(H) where we

view the von Neumann algebra L∞[0, 1] as multiplication operators on L2[0, 1]. A

generic element of A can be written as an infinite by infinite matrix x = (xi,j)i,j∈N

where xi,j ∈ L∞[0, 1] for every i, j ∈ N and in order to make sure that x repre-

sents a bounded operator on H, we assume that for every (f1, f2, . . .)t ∈ H we have

that (∑∞j=1 x1,jfj,
∑∞
j=1 x2,jfj, . . .)t ∈ H, where for every i ∈ N, the infinite series∑∞

j=1 xi,jfj converges λ-almost everywhere on [0, 1], (the boundedness of the oper-

ator x follows from the Uniform Boundedness Principle applied to the sequence of

bounded linear operators on H indexed by n ∈ N and represented by the infinite by

infinite matrices whose first n columns agree with the first n columns of x and the

rest of their columns are equal to zero). Let ω be a state on A defined by

ω(x) =
∞∑
m=1

1
2m

∫ 1

0
xm,mdλ for x = (xi,j)i,j∈N ∈ A.
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Obviously ω is a faithful state on A. If for every j ∈ N vectors bj = (b1,j, b2,j, . . .)t ∈ H

are chosen so that the sequence (bj)j∈N is an orthonormal sequence in H, then the

infinite by infinite matrix B = (bi,j)i,j∈N represents an isometry on H. In particular,

for i ∈ N let

bi,1 = 1
2i/2χ[0,1], bi,2 = 1

2i/2 (χ[0, 1
2 ) − χ[ 1

2 ,1]),

bi,3 = 1
2i/2 (χ[0, 1

22 ) − χ[ 1
22 ,

1
2 ) + χ[ 1

2 ,
3

22 ) − χ[ 3
22 ,1]), . . .

(where χA denotes the characteristic function of A ⊆ [0, 1]). Then the column vectors

bj = (bi,j)i∈N ∈ H form an orthonormal sequence in H and hence B = (bi,j)i,j∈N

represents an isometry on H. We have that the adjoint operator B∗ is represented

by the matrix (bj,i)j,i∈N. Define T : A → A by T (x) = BxB∗. Then T is written in

Kraus representation, so it is a completely positive map hence a bounded Schwarz

map. We claim that the map T is not bounded on {π(a)(Ω) : a ∈ A}. Indeed, let

the sequence an ∈ A for n ∈ N, such that each an is represented with the infinite by

infinite matrix an = (an,i,j)i,j∈N, where an,n,n = χ[0,1] and an,i,j = 0 if (i, j) 6= (n, n).

Then a∗n = an and a∗nan = ana
∗
n = an, hence

‖an‖2
ω = ω(a∗nan) = ω(an) = 1

2n → 0 as n→∞,

but on the other hand,

T (an) = BanB
∗ = Bana

∗
nB
∗ = (Ban)(Ban)∗ = |bn〉〈bn|

since Ban is the infinite by infinite matrix whose nth column is equal to bn (i.e. the

nth column of B) and the other columns are equal to zero. Thus

(T (an))∗T (an) = |bn〉〈bn||bn〉〈bn| = 〈bn, bn〉|bn〉〈bn| = |bn〉〈bn|.

Note that for m ∈ N, the mth entry of |bn〉〈bn| is equal to( 1
2m/2

(
χ[0, 1

2n−1 ) − χ[ 1
2n−1 ,

2
2n−1)

+ · · · − χ[ 2n−1−1
2n−1 ,1]

))2
= 1

2mχ[0,1].
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Thus

‖T (an)‖2
ω = ω((T (an))∗T (an)) =

∞∑
m=1

1
2m

∫ 1

0

1
2mχ[0,1]dλ =

∞∑
m=1

1
22m = 1

3

which is positive and independent of n, showing that T is not bounded.

Remark 11.8. Note that if H is a Hilbert space, T : B(H) → B(H) is a bounded

positive linear operator and ω is a subinvariant positive faithful functional for T ,

then ω/ω(1) is a subinvariant faithful state for T (here 1 denotes the identity oper-

ator on H). Thus from now on, instead of assuming the existence of subinvariant

positive faithful functionals, we simply assume the existence of subinvariant faithful

states. Hence our subsequent results remain valid if the assumptions of the existence

of subinvariant faithful states are replaced by the assumptions of the existence of

subinvariant positive faithful functionals.
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Chapter 12

Semigroups of Schwarz Maps

We first recall some basic definitions about semigroups.

Definition 12.1. Let X be a Banach space. A one-parameter family (Tt)t≥0 of

bounded operators on X is a semigroup on X if Tt+s = TtTs for all t, s ≥ 0, and

T0 = I where I is the identity operator on X. We say the semigroup (Tt)t≥0 on a

Banach space X is

• uniformly continuous if the map t 7→ Tt is continuous with respect to the

operator norm.

• strongly continuous provided that, for all x ∈ X, the map t 7→ Ttx is contin-

uous with respect to the norm on X.

• weakly continuous if, for all x ∈ X and all x∗ ∈ X∗, we have that the map

t 7→ x∗(Ttx) is continuous.

• weak∗ continuous if X is a dual Banach space X = Y ∗ and for all y ∈ Y and

x ∈ X we have that the map t 7→ (Tt(x))(y) is continuous.

If H is a Hilbert space and X = B(H) then the semigroup (Tt)t≥0 on the Banach

space X is WOT continuous (where this acronym stands as usually for the weak

operator topology) if for all h1, h2 ∈ H and x ∈ B(H) we have that the map t 7→

〈h1, (Tt(x))(h2)〉 is continuous.

It can be shown that a semigroup on a Banach space is strongly continuous if and

only if it is weakly continuous (see [8, Thm. 3.31]). Next, we would like to define the
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generator of a semigroup. If (Tt)t≥0 is a uniformly continuous semigroup on a Banach

space X then its generator is defined as the operator norm limit

L = lim
t→0

Tt − I
t

.

This limit exists and it defines a bounded operator on X. If we do not assume the

uniform continuity of the semigroup, then the definition of the generator is given

next:

Definition 12.2. Let (Tt)t≥0 be a strongly continuous semigroup (resp. weakly con-

tinuous, resp. weak∗ continuous), on a Banach space X (of course, when we assume

that the semigroup is weak∗ continuous we assume that X is a dual Banach space).

We say an element x ∈ X belongs to the domain D(L) of the generator L of (Tt)t≥0,

if

lim
t→0

Tt(x)− x
t

(12.1)

converges in norm (resp. weakly, resp. weak∗) and, in this case, define the generator

to be the generally unbounded operator L such that

L(x) = lim
t→0

Tt(x)− x
t

for all x ∈ D(L) (12.2)

where the last limit is taken in the norm (resp. weak, resp. weak∗) topology of X.

Since a semigroup on a Banach space is strongly continuous if and only if it is

weakly continuous, it is natural to ask whether the limits (12.1) and (12.2) can be

replaced by weak limits and end up with the same D(L) and L. It turns out that

this is indeed the case (see [8, Proposition 3.36]). We will make use of this fact in the

proof of Theorem 12.14.

12.1 The Extended Generator L(hn) of (Tt)t≥0

We now wish to extend the definition of the generator to include some cases where

the limit (12.2) does not exist.
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Definition 12.3. Let H be a Hilbert space and (hn)n∈N be a (countable or uncount-

able) orthonormal basis of H. We let M (hn)
∞ denote the set of all complex ∞ ×∞

matrices with rows and columns indexed by N . We view a matrix L ∈ M (hn)
∞ as a

linear map L : D(L) → CN acting on H as follows: denote L = (Ln,m)n,m∈ N , and

define D(L) ⊂ H as the set of all vectors h = ∑
m∈N〈hm, hn〉hm ∈ H such that the

series ∑m∈N Ln,m〈hm, h〉 converges for all n ∈ N . Then

L(h) =
(∑
m∈N

Ln,m〈hm, h〉
)
n∈N

.

This is in particular the natural of matrix multiplication of L against h written as a

column vector.

Definition 12.4. Let H be a Hilbert space and (hn)n∈N be a (countable or uncount-

able) orthonormal basis of H. Let (Tt)t≥0 be a semigroup of bounded operators on

B(H). We will define the extended generator L(hn) of (Tt)t≥0 with respect to the basis

(hn)n∈N , but first we must define its domain as the linear subspace of all x ∈ B(H)

such that the function

[0,∞) 3 t 7→ 〈hn, Tt(x)hm〉

is differentiable at 0 for every n,m ∈ N ; that is, D(L(hn)) is the linear subspace of all

x ∈ B(H) such that the limit

lim
t→0
〈hn,

Tt(x)− x
t

hm〉

exists for every n,m ∈ N . In general D(L(hn)) can be the zero subspace, but if the

semigroup is WOT continuous then D(L(hn)) is WOT dense in B(H). Define the

extended generator L(hn) of (Tt)t≥0 (with respect to the orthonormal basis

(hn)n∈N) to be the map with domain D(L(hn)) whose range elements are matrices

L(hi)(x) ∈M (hn)
∞ with entries given by

[L(hi)(x)]n,m = lim
t→0
〈hn,

Tt(x)− x
t

hm〉.
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Next we want to compare the generator of a semigroup on B(H) with respect to

an orthonormal basis of H to the usual generator. The following notation, which is

commonly used in dilation theory, will be helpful for that purpose.

Notation 12.5. Let H and K be Hilbert spaces with H ⊆ K and let A ∈ B(H) and

B ∈ B(K). We shall denote by

A = prH(B)

the fact that

A = PHB|H

where |H denotes the restriction to H and PH : K → H denotes the orthogonal

projection from K onto H. The operator B is called a dilation of the operator A

and the operator A is called compression of the operator B.

Notation 12.6. If N is a non empty set, then we denote by Pfin(N) the set of all

finite subsets of N .

Since the definition of the generator depends on the continuity of the semigroup,

in the next remark we will consider a weak∗ continuous semigroup on B(H) for some

Hilbert space H. The reason that we choose the weak∗ continuity versus any other

continuity assumption is because it is the weakest among all continuity assumptions

that appear in Definition 12.1.

Remark 12.7. Let H be a Hilbert space, (Tt)t≥0 be a weak∗ continuous semigroup

of bounded operators on B(H), and let L denote its generator. Let (hn)n∈N be a

(countable or uncountable) orthonormal basis of H and let L(hn) denote the generator

of (Tt)t≥0 with respect to (hn)n∈N . Then D(L) ⊆ D(L(hn)), and for every x ∈ D(L)

and any F ∈ Pfin(N) we have L(hn)(x)F = prSpan(hn)n∈F
(L(x)).

Indeed, for fixed x ∈ D(L) and every h, h′ ∈ H we have that

〈h, Tt(x)− x
t

h′〉 → 〈h, L(x)h′〉 as t→ 0. (12.3)
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In particular, the limit

lim
t→0
〈hn,

Tt(x)− x
t

hm〉

exists for every n,m ∈ N . Thus x ∈ D(L(hn)). Now fix F ∈ Pfin(N). From Defini-

tion 12.4, L(hn)(x)F is the operator L(hn)(x)F : Span(xn)n∈F → Span(xn)n∈F defined

by

[L(hi)(x)F ](h) =
∑

n,m∈F
lim
t→0
〈hn,

Tt(x)− x
t

hm〉〈hm, h〉hn if h =
∑
m∈F
〈hm, h〉hm

(12.4)

Remark 12.8. Let H be a Hilbert space with (countable or uncountable) dimen-

sion N , (hn)n∈N be an orthonormal basis of H, (Tt)t≥0 be a semigroup of bounded

operators on B(H), and let L(hn) denote its generator with respect to (hn)n∈N . For

x ∈ D(L(hn)) and F ∈ Pfin(N) we have that L(hn)(x)F is the unique operator

L(hn)(x)F : Span(hn)n∈F → Span(hn)n∈F

satisfying

lim
t→0
〈h, Tt(x)− x

t
h′〉 = 〈h, L(hn)(x)Fh′〉 for all h, h′ ∈ Span(hn)n∈F . (12.5)

or equivalently∥∥∥∥∥prSpan(hn)n∈F

(
Tt(x)− x

t

)
− L(hn)(x)F

∥∥∥∥∥
B(Span(hn)n∈F )

→ 0 as t→ 0. (12.6)

Indeed, (12.5) is obvious from Definition 12.4 and (12.4). The equivalence of

(12.5) and (12.6) this follows since for any finite subset F of N , all linear Hausdorff

topologies on the space of linear operators on Span(hn)n∈F are equivalent. Thus the

WOT on Span(hn)n∈F in (12.5) can be replaced by the B(Span(hn)n∈F ) topology.

Remark 12.9. Let H be a Hilbert space with (countable or uncountable) dimen-

sion N , (hn)n∈N be an orthonormal basis of H, (Tt)t≥0 be a semigroup of bounded

operators on B(H), and let L(hn)n denote its generator with respect to (hn)n∈N . Fix
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x ∈ D(L(hn)). Then the family (L(hn)(x)F )F∈Pfin(N) is compatible in the following

sense: If G ⊂ F are two finite subsets of N then prSpan(hn)n∈G
(L(hn)(x)F ) = L(hn)(x)G.

Indeed, this is obvious from (12.4).

Remark 12.10. The generator of a semigroup with respect to an orthonormal basis

that we defined above is related to the form generator which was defined by Davies

[24] and was further studied in [45, 19, 63, 46, 18, 33, 7, 61]. If (Tt)t≥0 is a weak∗

continuous semigroup on B(H) for some Hilbert space H, then a form generator is

the map φ : K×B(H)×K → C where K is a dense linear subspace of H, defined by

φ(h, x, h′) = 〈h, lim
t→0

Tt(x)− x
t

h′〉 for every h, h′ ∈ K and every x ∈ B(H).

Note that if (hn)n∈N is an orthonormal basis of H and K denotes the linear span of

(hn)n∈N then the form generator coincides with the generator with respect to (hn)n∈N

if the domain of the generator with respect to (hn)n∈N is equal to B(H). Here we

assume that the domain of the generator with respect to an orthonormal basis is a

linear subspace of B(H), not necessarily equal to B(H).

We require a few more definitions in order to state the next result.

Definition 12.11. Let H be a Hilbert space, ω be a state on B(H) and (Tt)t≥0 be a

semigroup of positive operators on B(H). We say that ω is a subinvariant state for

the semigroup (Tt)t≥0, if and only if ω is subinvariant for Tt for every t ≥ 0.

Definition 12.12. The Moore-Penrose inverse or pseudoinverse x(−1) of x ∈

B(H) is defined as the unique linear extension of (x|N (x)⊥)−1, the inverse as a function,

to

D(x(−1)) := R(x) +R(x)⊥

with N (x(−1)) = R(x)⊥, where N (x) and R(x) denote the nullspace and range of

x, respectively. Letting P and Q denote the orthogonal projections onto N (x) and
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R(x), respectively, it can be shown (see e.g. [28]) that x(−1) is uniquely determined

by the relations

x(−1)x = I − P and xx(−1) = Q|D(x(−1)).

Notation 12.13. By iρ(−1) we mean the map from B(H) to the space of linear maps

on H defined via

iρ(−1)(x) = (ρ1/4)(−1)x(ρ1/4)(−1).

Now we are ready to state the next result.

Theorem 12.14. Let H be a Hilbert space, (Tt)t≥0 be a semigroup of Schwarz maps

on B(H) and let ρ ∈ S1(H) be such that ωρ is a faithful state on B(H) which is

subinvariant for the semigroup (Tt)t≥0. Then there exists a unique semigroup (T̃t)t≥0

of contractions on S2(H) such that

T̃t(iρ(x)) = iρ(Tt(x)) for all x ∈ B(H). (12.7)

Moreover, if (Tt)t≥0 is weak∗-continuous then (T̃t)t≥0 is strongly continuous. Let L

denote the generator of (Tt)t≥0, let L̃ denote the generator of (T̃t)t≥0, and let L(hn)

denote the generator of (Tt)t≥0 with respect to (hn)n∈N, where (hn)n∈N is an orthonor-

mal basis of H consisting of eigenvectors of ρ (guaranteed by the Spectral Theorem).

Then we have that for each x ∈ B(H), if x ∈ D(L) then iρ(x) ∈ D(L̃), and moreover

L̃(iρ(x)) = iρ(L(x));

conversely, if iρ(x) ∈ D(L̃) then x ∈ D(L(hn)), and moreover

L(hn)(x) = iρ(−1)(L̃(iρ(x))). (12.8)

Proof. The operators T̃t are well-defined by Theorem 11.5. Uniqueness comes from

Equation (12.7) and the fact that iρ(B(H)) is dense in S2(H). It is easy to see that

T̃t+s = T̃tT̃s and that T̃0 = 1 on iρ(B(H)) and the density of iρ(B(H)) imply they

hold on all of S2(H).
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It is now left to prove that if (Tt)t≥0 is weak∗-continuous then (T̃t)t≥0 is strongly

continuous. To this end, it suffices to show (T̃t)t≥0 is strongly continuous on iρ(B(H))

since iρ(B(H)) is dense in S2(H) and T̃t is a contraction on S2(H) for all t ≥ 0. Let

x ∈ B(H). Then we have

‖T̃t(iρ(x))− iρ(x)‖2
2 = ‖ρ1/4Tt(x)ρ1/4 − ρ1/4xρ1/4‖2

2 = ‖ρ1/4Tt(x)ρ1/4‖2
2 + ‖ρ1/4xρ1/4‖2

2

− 〈ρ1/4xρ1/4, ρ1/4Tt(x)ρ1/4〉S2(H) − 〈ρ1/4Tt(x)ρ1/4, ρ1/4xρ1/4〉S2(H)

= ‖T̃t(iρ(x))‖2
2 + ‖iρ(x)‖2

2 − 2<〈ρ1/4xρ1/4, ρ1/4Tt(x)ρ1/4〉S2(H)

≤ 2‖iρ(x)‖2
2 − 2<

(
tr(ρ1/4x∗ρ1/4ρ1/4Tt(x)ρ1/4)

)
= 2<

(
tr(ρ1/4x∗ρ1/4ρ1/4xρ1/4 − ρ1/4x∗ρ1/4ρ1/4Tt(x)ρ1/4)

)
= 2<

(
tr
(
ρ1/2x∗ρ1/2(x− Tt(x))

))
→ 0

since ρ1/2x∗ρ1/2 is trace-class. Therefore (T̃t)t≥0 is a strongly continuous semigroup

of contractions on S2(H).

Now, let x ∈ B(H) and we wish to show that if x ∈ D(L) then ρ1/4xρ1/4 ∈ D(L̃)

and ρ1/4L(x)ρ1/4 = L̃(ρ1/4xρ1/4). First, assume that x ∈ D(L). Then

weak∗ − lim
t→0

Tt(x)− x
t

= L(x). (12.9)

Notice that for every y ∈ S2(H) we obtain, by Proposition 11.3(c) that ρ1/4y∗ρ1/4 ∈

S1(H) and therefore the map B(H) 3 z 7→ tr(zρ1/4y∗ρ1/4) ∈ C is weak∗ continuous.

Thus Equation (12.9) implies

Tr
(
ρ1/4y∗ρ1/4Tt(x)− x

t

)
t→0−−→ Tr

(
ρ1/4y∗ρ1/4L(x)

)
,

that is, 〈
y, ρ1/4Tt(x)− x

t
ρ1/4

〉
S2(H)

t→0−−→
〈
y, ρ1/4L(x)ρ1/4

〉
S2(H)

,

and hence,〈
y,
T̃t(ρ1/4xρ1/4)− ρ1/4xρ1/4

t

〉
S2(H)

t→0−−→
〈
y, ρ1/4L(x)ρ1/4

〉
S2(H)

. (12.10)

79



By [8, Proposition 3.36], we obtain that ρ1/4xρ1/4 ∈ D(L̃) and L̃(ρ1/4xρ1/4) =

ρ1/4L(x)ρ1/4.

Conversely, by the Spectral Theorem there exists an orthonormal basis (hn)n∈N of

H formed by eigenvectors of ρ. Let L(hn) denote the generator of (Tt)t≥0 with respect

to (hn)n∈N. Let x ∈ B(H) and assume that ρ1/4xρ1/4 ∈ D(L̃). Then we have that

T̃t(ρ1/4xρ1/4)− ρ1/4xρ1/4

t
t→0−−→ L̃(ρ1/4xρ1/4) in S2(H).

Hence

ρ1/4Tt(x)− x
t

ρ1/4 t→0−−→ L̃(ρ1/4xρ1/4) in S2(H). (12.11)

We will prove that x ∈ D(L(hn)). Indeed, we have that

〈h, ρ1/4Tt(x)− x
t

ρ1/4h′〉 t→0−−→ 〈h, L̃(ρ1/4xρ1/4)h′〉

for all h, h′ ∈ H, so for any n,m ∈ N we may set h = (ρ1/4)(−1)hn and h′ = (ρ1/4)(−1)hm

to obtain

〈(ρ1/4)(−1)hn, ρ
1/4Tt(x)− x

t
ρ1/4(ρ1/4)(−1)hm〉

t→0−−→ 〈(ρ1/4)(−1)hn, L̃(ρ1/4xρ1/4)(ρ1/4)(−1)hm〉.

Noting that (ρ1/4)∗ = ρ1/4, ((ρ1/4)(−1))∗ = (ρ1/4)(−1), and ρ1/4(ρ1/4)(−1)hk = hk for all

k ∈ N, this implies

〈hn,
Tt(x)− x

t
hm〉

t→0−−→ 〈hn, (ρ1/4)(−1)L̃(ρ1/4xρ1/4)(ρ1/4)(−1)hm〉.

Because this limit exists for all n,m ∈ N we have x ∈ D(L(hn)), and moreover

L(hn)(x) = (ρ1/4)(−1)L̃(ρ1/4xρ1/4)(ρ1/4)(−1).

Remark 12.15. Since the proof of Equation (9.1) is not included in [51], we want to

mention that its proof follows from our Remark 11.6 in a similar way that our The-

orem 12.14 followed from our Theorem 11.5 (even the proof of the strong continuity
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of the semigroup (Tt)t≥0 follows the exact same argument as the proof of the strong

continuity of the semigroup (T̃t)t≥0 that appeared in Theorem 12.14). Moreover, the

assumptions that the faithful state is normal and invariant for the semigroup and

that the operators of the semigroup are completely positive that are mentioned in

[51] for Equation (9.1) are not needed for its proof, because such assumptions were

not used in Remark 11.6. Instead, for the validity of Equation (9.1), one merely needs

to assume that the faithful state is subinvariant for the semigroup of Schwarz maps.

Note also that, unlike Equation (9.1), Theorem 12.14 relates the generators of the

two semigroups.

12.2 Dilating Semigroups of Contractions to Semigroups of Unitary

Operators

Since Theorem 12.14 provides a semigroup of contractions on a Hilbert space, there is

a natural way to improve the contraction property to the unitary property. The trick

is to use the theory of dilations of contraction semigroups on Hilbert spaces given in

[67, Theorem 8.1 on page 31]. For other uses of the dilation theory to semigroups see

[32, 29, 26]. The theory of dilations of contraction semigroups on Hilbert spaces due

to Foias and Sz.-Nagy can be stated as follows:

Theorem 12.16. [67, Theorem 8.1 on page 31] For every strongly continuous semi-

group (Tt)t≥0 of contractions on a Hilbert space S, there exists a Hilbert space K which

contains S, and a strongly continuous semigroup (Ut)t∈R of unitary operators on K

such that

Tt = prS(Ut) for all t ≥ 0

and

K = Span
⋃
t∈R

Ut(S).

Further, these conditions determine (Ut)t≥0 up to an isomorphism.
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Since the dilation theory of Foias and Sz.-Nagy provides us with a semigroup

of unitaries, naturally Stone’s Theorem is applicable and gives information about

the generator of the semigroup. The next result does exactly that: it combines the

dilation theory with Stone’s Theorem.

Proposition 12.17. Let (Tt)t≥0 be a strongly continuous semigroup of contractions

on a Hilbert space S. Then there exists a (unique up to isomorphism) Hilbert space

K which contains S and a unique self-adjoint (not necessarily bounded) operator A

on K such that {eitA(s) : s ∈ S, t ≥ 0} is dense in K and

Tt(s) = PeitA(s) for all s ∈ S and t ≥ 0 (12.12)

where P is the orthogonal projection from K onto S. Further, if L is the generator

of (Tt)t≥0 then S ∩D(A) ⊆ D(L) and L(s) = iPA(s) for all s ∈ S ∩D(L).

Note that for the self-adjoint (not necessarily bounded) operator A with a dense

domain in K and t > 0, the operator eitA is defined via functional calculus on a dense

subspace of K. It turns out that the operator eitA is bounded, and in fact can be

extended to a unitary operator on K. Hence, Equation (12.12) is valid for all s ∈ S.

Proof. Let (Tt)t≥0 be a strongly continuous semigroup of contractions on a Hilbert

space S. From Theorem 12.16 there exists a strongly continuous semigroup (Ut)t≥0 of

unitary operators on a Hilbert space K ⊇ S such that Tt = prS(Ut) for all t ≥ 0. From

Stone’s Theorem, there exists a unique self-adjoint operator A on a dense domain in

K so that Ut = eitA for all t ≥ 0, where iA is the generator of (Ut)t≥0. So, we have

that Tt(s) = PeitA(s) for all s ∈ S and t ≥ 0 where P is the orthogonal projection

from K onto S.

For the second statement of the proposition, let L be the generator of (Tt)t≥0 and

let s ∈ S be in the domain of A. Since s ∈ D(A) we have that

1
t

(Ut(s)− s)→ iA(s) as t→ 0
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and so

P
(1
t

(Ut(s)− s)
)
→ iPA(s) as t→ 0.

Since P (s) = s, we then have that

1
t

(Tt(s)− s)→ iPA(s) as t→ 0

and so s ∈ D(L) and L(s) = iPA(s). Therefore L(s) = iPA(s) for all s ∈ S ∩D(A).

This completes the proof.

An easy consequence of Theorem 12.14 and Proposition 12.17 will be the following:

Corollary 12.18. Let H be a Hilbert space, (Tt)t≥0 be a weak∗-continuous semigroup

of Schwarz maps on B(H) and let ρ ∈ S1(H) be such that ωρ is a faithful state which

is subinvariant for (Tt)t≥0. By the Spectral Theorem there exists an orthonormal basis

(hn)n∈N of H formed by eigenvectors of ρ. Let L(hn) denote the generator of (Tt)t≥0

with respect to (hn)n∈N. Then there exists a Hilbert space K which contains S2(H),

and a self-adjoint (not necessarily bounded) operator A on K, so that if x ∈ B(H)

and ρ1/4xρ1/4 ∈ D(A) then x ∈ D(L(hn)) and

L(hn)(x)F = iρ(−1)(PA(iρ(x)))

where P is the orthogonal projection from K onto S2(H).

Proof. First apply Theorem 12.14 to obtain (T̃t)t≥0 and L̃ satisfying the conclusion

of Theorem 12.14. In particular, we obtain that if x ∈ B(H) and ρ1/4xρ1/4 ∈ D(L̃)

then x ∈ D(L(hn)), (where L(hn) denotes the generator of (Tt)t≥0 with respect to the

orthonormal sequence (hn)n∈N of the eigenvectors of ρ), equation (12.8) is satisfied.

Then apply Proposition 12.17 for Tt = T̃t, L = L̃, and S = S2(H), to obtain a

Hilbert space K which contains S2(H) and a unique self-adjoint (not necessarily

bounded) operator A on K satisfying the conclusion of Proposition 12.17. Thus we

have S2(H) ∩ D(A) ⊆ D(L̃) and L̃(s) = iPA(s) for all s ∈ S2(H) ∩ D(A) where
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P is the orthogonal projection from K onto S2(H). Thus for x ∈ B(H), if s =

ρ1/4xρ1/4 ∈ D(A) then s ∈ S2(H)∩D(A), hence s ∈ D(L̃) and L̃(s) = L̃(ρ1/4xρ1/4) =

iPA(ρ1/4xρ1/4). Therefore if ρ1/4xρ1/4 ∈ D(A), equation (12.8) finishes the proof of

Corollary 12.18.
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Chapter 13

Applications to Quantum Markov Semigroups

and their generators

Since Quantum Markov semigroups (QMSs) are semigroups of completely positive

maps on some von Neumann algebra, and hence 2-positive maps, and hence Schwarz

maps, we naturally obtain applications of Theorem 12.14 in the study of QMSs.

The existence of invariant normal states for QMSs has been discussed in [35] and

[36]. Sufficient conditions for a semigroup to be decomposable into a sequence of

irreducible semigroups each of them having an invariant normal state are given in

[69] (see top half of page 608, Theorem 5 on page 608, and Proposition 5 on page

609). There are many results in the literature of semigroups which depend on the

existence of invariant faithful normal states (for example, see [38], [39], [37], [34], and

[15]) and this assumption is often taken for granted as being physically reasonable.

QMSs have been extensively studied since the 1970s with the exact form for the

generators being one of the topics which has garnered a fair amount of attention. See

for example [53], [42], [21], [23], [46], [4], [7], and [61]. The generator of a QMS is a

generally unbounded operator defined on a weak∗ dense linear subspace of B(H). If

the generator is bounded then the semigroup is uniformly continuous and the exact

form of the generator was found in [42] and [53]. In this Chapter, given a Hilbert

space H and a QMS on B(H) having an invariant faithful normal state we study

the associated semigroup of contractions on S2(H). In particular, in Theorems 13.14

and 13.9 we describe the generator of the QMS on B(H) having an invariant faithful
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normal state, under the assumption that the minimal semigroup of unitary dilations of

the associated semigroup of contractions is compact, or under the assumption that the

generator of the associated semigroup on S2(H) has compact resolvent, respectively.

Definition 13.1. A quantum Markov semigroup (QMS) on B(H), (for some

Hilbert space H), is a weak∗-continuous one-parameter semigroup of bounded linear

operators acting on B(H), such that each member of the semigroup is completely

positive, weak∗-continuous, and preserves the identity.

Remark 13.2. If H is a Hilbert space and (Tt)t≥0 is a QMS on B(H), which has a

subinvariant normal state ωρ for some ρ ∈ S1(H) then ωρ is in fact an invariant state

for (Tt)t≥0. Indeed for every t ≥ 0,

Tr(T †t (ρ)) = Tr(T †t (ρ)1) = Tr(ρTt(1)) = Tr(ρ1) = Tr(ρ),

which together with T †t (ρ) ≤ ρ implies that T †t (ρ) = ρ.

If (Tt)t≥0 is a quantum Markov semigroup with an invariant faithful normal state

then Corollary 12.18 can be applied. This result however does not use the fact that

the semigroup (Tt)t≥0 is a QMS but merely that it is a semigroup of Schwarz maps.

Addressing this issue is the main goal of this section. Usually the notion of complete

positivity applies to maps on C∗-algebras. In particular, if the C∗-algebra is equal

to B(H) for some Hilbert space H, then the notion of complete positivity becomes

equivalent to the following: A map T : B(H) → B(H) is completely positive if and

only if for every n ∈ N, x1, . . . , xn ∈ B(H) and h1, . . . , hn ∈ H,

n∑
i,j=1
〈hi, T (x∗ixj)hj〉 ≥ 0. (13.1)

Note that Equation (13.1) makes perfect sense even if the map T is not defined on a

C∗-algebra, as long as T is defined on a Banach ∗-algebra S of operators on a Hilbert

space H. For example, S can be equal to S2(H) and T can be a bounded linear

86



operator from S to S. We make this extension of the notion of complete positivity

in the next definition.

Definition 13.3. Let H be a Hilbert space and S be a Banach ∗-algebra of bounded

linear operators on H. A bounded linear map T : S → S will be called completely

positive if for every n ∈ N, x1, . . . , xn ∈ S and h1, . . . , hn ∈ H, Equation (13.1)

holds.

This terminology will be used in the next result.

Proposition 13.4. Let (Tt)t≥0 be a QMS on B(H) for some Hilbert space H, having

an invariant faithful normal state ωρ for some ρ ∈ S1(H). Then the operators T̃t

constructed in Theorem 12.14 are completely positive for all t ≥ 0.

Proof. Let t ≥ 0, x1, x2, . . . , xn ∈ B(H) and h1, h2, . . . , hn ∈ H. Then,

n∑
i,j=1

〈
hi, T̃t

(
(ρ1/4xiρ

1/4)∗(ρ1/4xjρ
1/4)

)
hj
〉

=
n∑

i,j=1

〈
ρ1/4hi, Tt

(
(ρ1/4xi)∗(ρ1/4xj)

)
ρ1/4hj

〉

≥ 0

since Tt is completely positive. Further, since the map iρ from Proposition 11.3 has

dense range, T̃t is completely positive on S2(H). Therefore, T̃t is completely positive

for all t ≥ 0.

For the next result, recall the notion of conditionally completely positive maps

introduced by Lindblad in [53]. A linear operator L : D(L)(⊆ B(H))→ B(H) is called

conditionally completely positive if for all n ∈ N, for all a1, a2, . . . , an ∈ B(H)

such that a∗i aj ∈ D(L) for all i, j = 1, 2, . . . , n, that for all h1, h2, . . . hn ∈ H with∑n
i=1 ai(hi) = 0, we have that

n∑
i,j=1
〈hi, L(a∗i aj)hj〉 ≥ 0.
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The next result is known for uniformly continuous semigroups. For example, see [33,

Proposition 3.12 and Lemma 3.13], or see [30, Proposition 2.9]. In fact the known

proof works for a more general setting as the next result indicates.

Theorem 13.5. Let S be a Banach ∗-algebra of operators acting on a Hilbert space

H.

1. Let (Tt)t≥0 be a WOT continuous semigroup on S and let L be its generator. If

Tt is completely positive for all t ≥ 0 then L(a∗) = L(a)∗ for all a ∈ D(L) and

L is conditionally completely positive.

2. Let (Tt)t≥0 be a uniformly continuous semigroup on S with generator L. If

L(a∗) = L(a)∗ for all a ∈ S and L is conditionally completely positive, then Tt

is completely positive for all t ≥ 0.

Proof. The proof of (2) immediately follows from [33, Proposition 3.12 and Lemma

3.13]. To prove (1), suppose a1, a2, . . . , an ∈ S such that a∗i aj ∈ D(L) for all i, j =

1, . . . , n and h1, h2, . . . , hn ∈ H such that ∑n
i=1 ai(hi) = 0. Then,

n∑
i,j=1
〈hi,L(a∗i aj)hj〉 = lim

t→0+

n∑
i,j=1

1
t
〈hi, (Tt − 1)(a∗i aj)hj〉

= lim
t→0+

n∑
i,j=1

1
t
〈hi, Tt(a∗i aj)hj〉 (since

n∑
i=1

ai(hi) = 0)

≥ 0

since Tt is completely positive for all t ≥ 0.

Corollary 13.6. Let H be a Hilbert space and (Tt)t≥0 be a QMS on B(H) having an

invariant faithful normal state ωρ for some ρ ∈ S1(H). Let (T̃t)t≥0 be the strongly

continuous semigroup of contractions on S2(H) defined in Theorem 12.14 and let L̃ be

the generator of (T̃t)t≥0. Then L̃(a∗) = L̃(a)∗ for all a ∈ D(L̃) and L̃ is conditionally

completely positive.
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Proof. The proof follows immediately from Proposition 13.4 and Theorem 13.5(1).

Corollary 13.7. Let H be a Hilbert space and (Tt)t≥0 be a QMS on B(H) having an

invariant faithful normal state ωρ for some ρ ∈ S1(H). Let (T̃t)t≥0 be the strongly

continuous semigroup of contractions on S2(H) defined in Theorem 12.14 and let L̃

be its generator. Then there exists a Hilbert space K which contains S2(H) and a self-

adjoint (not necessarily bounded) operator A on K such that S2(H) ∩D(A) ⊆ D(L̃),

L̃
∣∣∣S2(H)∩D(A) = iPA

∣∣∣S2(H) (where P is the orthogonal projection from K to S2(H)),

iPA(a∗) = (iPA(a))∗ for all a ∈ S2(H) ∩ D(A), and the operator iPA
∣∣∣S2(H) is

conditionally completely positive.

Proof. First apply Proposition 12.17 for (Tt)t≥0 = T̃t)t≥0 and S = S2(H) to obtain

the existence of the Hilbert space K ⊇ S2(H), and the self-adjoint (not necessarily

bounded) operator A on K such that

T̃t(x) = PeitA(x) for all x ∈ S2(H) and t ≥ 0,

where P is the orthogonal projection from K onto S2(H). Moreover the generator L̃

of (T̃t)t≥0 satisfies S2(H) ∩D(A) ⊆ D(L̃) and

L̃(x) = iPA(x) for all x ∈ S2(H) ∩D(L̃).

Then apply Corollary 13.6 to obtain that L̃ respects adjoints and it is conditionally

completely positive.

Corollary 13.7 has two disadvantages: First, the intersection S2(H) ∩ D(A) can

potentially contain nothing but zero! Second, the conditional complete positivity of

iPA
∣∣∣S2(H) can be very hard to be recognized in practice! Indeed, the conditional

complete positivity of iPA
∣∣∣S2(H) means that for every n ∈ N, a1, . . . , an ∈ B(H) such

that a∗kaj ∈ S2(H) ∩ D(A) for k, j ∈ {1, . . . , n}, and for every h1, . . . , hn ∈ H such
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that ∑n
i=1 ai(hi) = 0, we have that

n∑
k,j=1
〈hk, iPA(a∗kaj)hj〉 ≥ 0, (13.2)

or
n∑

k,j=1

〈
hk, L̃(a∗kaj)hj

〉
≥ 0. (13.3)

The large number of arbitrary test sequences (hi)ni=1 and (ai)ni=1 satisfying∑n
i=1 ai(hi) = 0, makes the conditional complete positivity of L̃ hard to be recog-

nized. In the following sections we will get rid of both of these two disadvantages

of Corollary 13.7. This will be achieved by adding the additional assumption of

compactness of the generator of the minimal unitary dilation of Foias and Sz.-Nagy,

and by carefully analyzing the notion of conditional complete positivity under this

assumption.

13.1 The Form of L(hn) when the Generator of the Minimal Unitary

Dilation of (T̃t)t≥0 is Compact

In this section we consider the form of L(hn) when the generator of the minimal unitary

dilation of (T̃t)t≥0, as defined in the previous section, is compact. First, we establish

two notations:

Notation 13.8. Let H be a Hilbert space and w, z ∈ S2(H). Define Mw ⊗ z :

S2(H)⊗H → S2(H)⊗H by

Mw ⊗ z
(

k∑
i=1

xi ⊗ hi
)

=
k∑
i=1

xiw ⊗ z(hi).

Let e ∈ H such that ‖e‖ = 1. Define Te : S2(H)⊗H → S2(H)⊗H by

Te

(
k∑
i=1

xi ⊗ hi
)

=
k∑
i=1
|xi(hi)〉〈e| ⊗ e.

Theorem 13.9. Let H be a Hilbert space, (Tt)t≥0 be a QMS on B(H) having an

invariant faithful normal state ωρ for some ρ ∈ S1(H), and L be the generator of
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(Tt)t≥0. Let (T̃t)t≥0 be the strongly continuous semigroup of contractions on S2(H)

defined in Theorem 12.14 and let L̃ be its generator. Assume that the generator of

the minimal unitary dilation of (T̃t)t≥0 is compact. Then the following assertions are

valid:

(a) L̃ : S2(H)→ S2(H) is bounded.

(b) There exist families (an)n∈N and (bn)n∈N of self-adjoint elements in S2(H), and

sequence (λn)n∈N ⊆ R such that

L̃ =
∞∑
n=1

λn (|an〉〈bn|+ |bn〉〈an|) (13.4)

where the sums converge in the SOT (if it is infinite).

(c) By the Spectral Theorem there is an orthonormal basis (hn)n∈N of H which

consists of eigenvectors of ρ. Let L(hn) denote the generator of (Tt)t≥0 with

respect to (hn)n∈N. Then D(L(hn)) = B(H).

(d) We have

L(hn) =
∞∑
n=1

λn
(
|iρ(−1)(an)〉〈iρ(bn)|+ |iρ(−1)(bn)〉〈iρ(an)|

)
(13.5)

where the sums converge in the SOT (if it is infinite). We note that, despite

the Hilbert space notation, |iρ(−1)(an)〉〈iρ(bn)| has domain B(H) for all n, since

|iρ(−1)(an)〉〈iρ(bn)|x = 〈iρ(bn), x〉iρ(−1)(an) = 〈bn, iρ(x)〉iρ(−1)(an)

and bn, iρ(x) ∈ S2(H). Similarly |iρ(−1)(bn)〉〈iρ(an)| has domain B(H) for all n.

(e) For all e ∈ H with ‖e‖ = 1 we have that the operator L̃⊗,e : S2(H) ⊗ H →

S2(H)⊗H is positive, where the operator L̃⊗,e is defined by

L̃⊗,e = (Id+ T ∗e )
( ∞∑
n=1

λn (Mbn ⊗ an −Man ⊗ bn)
)

(Id+ Te) (13.6)

where Id stands for the identity operator on S2(H)⊗H and the sum converges

in the SOT (if it is infinite).
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In order to prove Theorem 13.9, we need the following two lemmas:

Lemma 13.10. Let H be a Hilbert space, K be a Hilbert space containing S2(H) and

P : K → S2(H) be the orthogonal projection. Let A be a compact self-adjoint operator

on K and let L̃ : S2(H)→ S2(H) be given by L̃ = iPA
∣∣∣S2(H) . Then L̃(a∗) = (L̃(a))∗

for all a ∈ S2(H) if and only if L̃ has the form in Equation (13.4).

Lemma 13.11. Let H be a Hilbert space and L̃ be a bounded linear operator on S2(H)

which has the form (13.4). Then L̃ is conditionally completely positive if and only if

for some (equivalently all) normalized vector e ∈ H, the operator L̃⊗,e defined on the

Hilbert space S2(H)⊗H, by Equation (13.6), is positive.

Remark 13.12. Theorem 13.9 provides the form of the generator L(hn) of (Tt)t≥0

with respect to the orthonormal basis (hn)n∈N, but of course the assumption that the

generator of the minimal unitary dilation of the associated semigroup of contractions

is compact cannot be easily verified. Notice though, that if we restrict our attention

to quantum Markov semigroups which have an invariant faithful normal state, then

Theorem 13.5 and Lemmas 13.10 and 13.11 imply that the form of the generator

L(hn) of the semigroup (Tt)t≥0 with respect to the orthonormal basis (hn)n∈N, which

is provided by Theorem 13.9, is “almost" equivalent to the assumptions of Theo-

rem 13.9 (namely that the generator of the minimal unitary dilation of the associated

semigroup of contractions is compact).

Assume for the moment the validity of Lemmas 13.10 and 13.11 in order to see

the proof of Theorem 13.9.

Proof of Theorem 13.9. Since the generator iA of the unitary dilation of the semi-

group (T̃t)t≥0 of contractions is compact, we have that A is bounded and D(A) = K.

Corollary 13.7 implies that the generator L̃ of (T̃t)t≥0 satisfies

L̃ = iPA
∣∣∣S2(H) .
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Since A is bounded, we obtain that L̃ is bounded and hence D(L̃) = S2(H). By

Theorem 13.5(1) we have that L̃(a∗) = L̃(a)∗ for all a ∈ S2(H), and L̃ is conditionally

completely positive. Since L̃(a∗) = L̃(a)∗ for all a ∈ S2(H), Lemma 13.10 implies

that L̃ has the form of Equation (13.4). Then, since L̃ is conditionally completely

positive, Lemma 13.11 implies that L̃⊗,e ≥ 0 for all normalized vectors e ∈ H. Finally,

since D(L̃) = S2(H), we have that ρ1/4xρ1/4 ∈ D(L̃) for every x ∈ B(H). Thus if

(hn)n∈N is an orthonormal basis of H which consists of eigenvectors of ρ and L(hn)

denotes the generator of (Tt)t≥0, then Theorem 12.14 gives that D(L(hn)) = B(H)

and Equations (12.8) and (12.5) give Equation (13.5).

We now present the

Proof of Lemma 13.10. Since the generator iA of the unitary dilation of the semi-

group (T̃t)t≥0 of contractions is compact, we have that A is bounded, D(A) = K and

the spectrum σ(A) of A is discrete. Let σ(A) \ {0} = (λn)n ⊆ R listed according to

multiplicity, and for every n let xn be a normalized eigenvector of A corresponding to

λn. Then, by the Spectral Theorem for compact self-adjoint operators, we have that

A =
∑
n

λn|xn〉〈xn|,

where the series converges in the SOT on K. Since D(A) = K, Corollary 13.7 implies

that

L̃ = iPA
∣∣∣S2(H) = iP

∑
n

λn|xn〉〈xn|
∣∣∣S2(H) = i

∑
n

λn|Pxn〉〈xn|
∣∣∣S2(H) . (13.7)

Since xn ∈ K, the bra 〈xn| in Equation (13.7) uses the inner product of K. On the

other hand, L̃ is defined on S2(H) hence, without loss of generality, the bra 〈xn| in

Equation (13.7) can be replaced by 〈xn|P = 〈P ∗xn| = 〈Pxn|. Thus, we obtain

L̃ = i
∑
n

λn|Pxn〉〈Pxn|

where the bra 〈Pxn| uses the inner product of S2(H) instead of the inner product of

K.
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For every n decompose the operator Pxn ∈ S2(H) as Pxn = <(Pxn) + i=(Pxn)

where <(Pxn) and =(Pxn) stand for the real and the imaginary parts of Pxn respec-

tively. Then we obtain

L̃ =i
∑
n

λn|<(Pxn)〉〈<(Pxn)| − i
∑
n

λn|=(Pxn)〉〈=(Pxn)| (13.8)

−
∑
n

λn|<(Pxn)〉〈=(Pxn)| −
∑
n

λn|=(Pxn)〉〈<(Pxn)|.

Notice that if b is a self-adjoint operator in S2(H) and c ∈ S2(H) then for every

a ∈ S2(H) we have

(|b〉〈c|a∗)∗ =
(
〈c, a∗〉S2(H)b

)∗
= (Tr(c∗a∗)b)∗ =

(
Tr(ac)b

)∗
= Tr(ac)b = |b〉〈c|a.

Applying this to Equation (13.8) we obtain that for every a ∈ S2(H),
(
L̃(a∗)

)∗
=
{
−i
∑
n

λn|<(Pxn)〉〈<(Pxn)|+ i
∑
n

λn|=(Pxn)〉〈=(Pxn)| (13.9)

−
∑
n

λn|<(Pxn)〉〈=(Pxn)| −
∑
n

λn|=(Pxn)〉〈<(Pxn)|
}

(a).

By Corollary 13.6 we have that
(
L̃(a∗)

)∗
= L̃(a) for all a ∈ S2(H). Therefore, from

Equations (13.8) and (13.9) we obtain

− i
∑
n

λn|<(Pxn)〉〈<(Pxn)|+ i
∑
n

λn|=(Pxn)〉〈=(Pxn)|

−
∑
n

λn|<(Pxn)〉〈=(Pxn)| −
∑
n

λn|=(Pxn)〉〈<(Pxn)|

= i
∑
n

λn|<(Pxn)〉〈<(Pxn)| − i
∑
n

λn|=(Pxn)〉〈=(Pxn)|

−
∑
n

λn|<(Pxn)〉〈=(Pxn)| −
∑
n

λn|=(Pxn)〉〈<(Pxn)|.

Therefore,

i
∑
n

λn|<(Pxn)〉〈<(Pxn)| − i
∑
n

λn|=(Pxn)〉〈=(Pxn)| = 0. (13.10)

By replacing Equation (13.10) in Equation (13.8) we obtain

L̃ = −
∑
n

λn|<(Pxn)〉〈=(Pxn)| −
∑
n

λn|=(Pxn)〉〈<(Pxn)|.

This proves that L̃ is of form Equation (13.4).
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Finally we present the

Proof of Lemma 13.11. We will start with the forward direction so suppose L̃ is con-

ditionally completely positive. Let e ∈ H with ‖e‖ = 1. Since W = {∑k
i=1 yi ⊗ h′i :

yi ∈ S2(H), h′i ∈ H} is dense in S2(H) ⊗ H, in order to verify that L̃⊗,e ≥ 0 it is

enough to consider an element w = ∑k
i=1 yi⊗h′i ∈ W and verify that 〈w, L̃⊗,ew〉⊗ ≥ 0,

where 〈·, ·〉⊗ will denote the inner product of S2(H)⊗H. (The reason that we chose

h′i to denote a generic element of H is because we have used hn to denote the or-

thonormal eigenvectors of ρ in the statement of Theorem 13.9). We will denote the

inner product of H by 〈·, ·〉H. Fix w = ∑k
i=1 yi ⊗ h′i ∈ W and let v = −∑k

i=1 yi(h′i).

Define yk+1 = |v〉〈e| and h′k+1 = e. Then ∑k+1
i=1 yi(h′i) = 0 and, since L̃ is conditionally

completely positive, we have that

0 ≤
k+1∑
i,j=1
〈h′i, L̃(y∗i yj)h′j〉H

=
k+1∑
i,j=1

∞∑
n=1

(
tr(y∗i yjbn)〈h′i, an(h′j)〉H − tr(y∗i yjan)〈h′i, bn(h′j)〉H

)

=
k+1∑
i,j=1

∞∑
n=1

(
〈yi ⊗ h′i, yjbn ⊗ an(h′j)〉⊗ − 〈yi ⊗ h′i, yjan ⊗ bn(h′j)〉⊗

)

=
k+1∑
i,j=1

∞∑
n=1

(〈
yi ⊗ h′i,Mbn ⊗ an(yj ⊗ h′j)

〉
⊗
−
〈
yi ⊗ h′i,Man ⊗ bn(yj ⊗ h′j)

〉
⊗

)

=
〈
k+1∑
i=1

yi ⊗ h′i,
∞∑
n=1

(Mbn ⊗ an −Man ⊗ bn)
k+1∑
j=1

yj ⊗ h′j

〉
⊗

.

Notice that
k+1∑
i=1

yi ⊗ h′i =
k∑
i=1

yi ⊗ h′i + yk+1 ⊗ h′k+1 = w −
k∑
i=1
|yi(h′i)〉〈e| ⊗ e

= w − Te
(

k∑
i=1

yi ⊗ h′i

)
= (Id− Te)(w)

where Id denotes the identity operator on S2(H)⊗H, which finishes the proof of the

forward direction.

For the other direction, suppose that L̃⊗,e ≥ 0 for some e ∈ H with ‖e‖ = 1.

Let k ∈ N, y1, . . . , yk ∈ S2(H) and h′1, . . . , h
′
k ∈ H such that ∑k

i=1 yi(h′i) = 0. Let
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w = ∑k
i=1 yi ⊗ h′i ∈ S2(H)⊗H. Then,

0 ≤ 〈w, L̃⊗,e(w)〉⊗ (13.11)

=
〈
w, (Id− Te)∗

[∑
n∈N

(Mbn ⊗ an −Man ⊗ bn)
]

(Id− Te)(w)
〉
⊗

=
〈

(Id− Te)w,
∑
n∈N

(Mbn ⊗ an −Man ⊗ bn) (Id− Te)(w)
〉
⊗

. (13.12)

Notice that

Te(w) = Te

(
k∑
i=1

yi ⊗ h′i

)
=
∣∣∣∣∣
k∑
i=1

yi(h′i)
〉
〈e| ⊗ e = |0〉〈e| ⊗ e = 0.

Hence Inequality (13.11) gives

0 ≤
〈
Id(w),

∑
n∈N

(Mbn ⊗ an −Man ⊗ bn) Id(w)
〉
⊗

=
k∑

i,j=1

∑
n∈N

(〈
yi ⊗ h′i,Mbn ⊗ an(yj ⊗ h′j)

〉
⊗
−
〈
yi ⊗ h′i,Man ⊗ bn(yj ⊗ h′j)

〉
⊗

)

=
k∑

i,j=1

∑
n∈N

(
〈yi ⊗ h′i, yjbn ⊗ an(h′j)〉⊗ − 〈yi ⊗ h′i, yjan ⊗ bn(h′j)〉⊗

)

=
k∑

i,j=1

∑
n∈N

(
tr(y∗i yjbn)〈h′i, an(h′j)〉H − tr(y∗i yjan)〈h′i, bn(h′j)〉H

)

=
k+1∑
i,j=1
〈hi, L̃(y∗i yj)h′j〉H.

Therefore L̃ is conditionally completely positive. This completes the proof.

The proof of Lemma 13.11 reveals the following:

Remark 13.13. Let A = {∑k
i=1 yi ⊗ h′i ∈ B(H)⊗H : ∑k

i=1 yi(h′i) = 0}. Then

• For every w = ∑k
i=1 yi⊗h′i ∈ B(H)⊗H there exists yk+1 ∈ B(H) and h′k+1 ∈ H

such that ∑k+1
i=1 yi ⊗ h′i ∈ A and (Id− Th′

k+1
)(w) = ∑k+1

i=1 yi ⊗ h′i.

• If a bounded operator L̃ on H has form (13.4) then L̃ is completely positive if

and only if the operator∑∞n=1 λn(Mbn⊗an−Man⊗bn) : S2(H)⊗H → S2(H)⊗H

is positive.

• For every e ∈ H we have A ⊆ kerTe.
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13.2 The Form of L(hn) when the Resolvent of L̃ is Compact

Finally, we consider the form of extended generator L(hn) when the resolvent L̃ is

compact, by which we mean that (L̃ − λ)−1 is compact for some λ in the resolvent

set of L̃ (equivalently all λ in the resolvent set, by the resolvent identity):

Theorem 13.14. Let H be a Hilbert space, (Tt)t≥0 be a QMS on B(H) having an

invariant faithful normal state ωρ for some ρ ∈ S1(H), and L be the generator of

(Tt)t≥0. Let (T̃t)t≥0 be the strongly continuous semigroup of contractions on S2(H)

defined in Theorem 12.14 and let L̃ be its generator. Assume that the generator L̃

has compact resolvent. Then the following assertions are valid:

(a) There exist complete orthonormal families (an)n∈N and (bn)n∈N of self-adjoint

elements in S2(H) and a sequence of positive scalars (λn)n∈N with λn → ∞ as

n→∞ (if H is infinite dimensional) such that

L̃ = I +
∞∑
n=1

λn|an〉〈bn| (13.13)

where the sums converge in the SOT (if it is infinite).

(b) By the Spectral Theorem there is an orthonormal basis (hn)n∈N of H which

consists of eigenvectors of ρ. Let L(hn) denote the generator of (Tt)t≥0 with

respect to (hn)n∈N. Then

L(hn) = I +
∞∑
n=1

λn|iρ(−1)(an)〉〈iρ(bn)| (13.14)

where the sum converges in the SOT (if it is infinite). We note that |iρ(−1)(an)〉〈iρ(bn)|

has domain B(H) for all n, since

|iρ(−1)(an)〉〈iρ(bn)|x = 〈iρ(bn), x〉iρ(−1)(an) = 〈bn, iρ(x)〉iρ(−1)(an)

and bn, iρ(x) ∈ S2(H).
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(c) For all e ∈ H with ‖e‖ = 1 we have that the operator L̃⊗,e : S2(H) ⊗ H →

S2(H)⊗H is positive, where the operator L̃⊗,e is defined by

L̃⊗,e = (Id+ T ∗e )
( ∞∑
n=1

λnMbn ⊗ an
)

(Id+ Te) (13.15)

where Id stands for the identity operator on S2(H)⊗H and the sum converges

in the SOT (if it is infinite).

In order to prove Theorem 13.14, we need the following two results:

Lemma 13.15. Let H be a separable Hilbert space and A be an invertible linear

operator on S2(H) with dense domain which is closed under adjoints. If A satisfies

A(a∗) = (A(a))∗ for all a ∈ D(A), then D(A†) and D(A−1) are closed under adjoints,

A†(b∗) = (A†(b))∗ for all b ∈ D(A†), and A−1(c∗) = (A−1(c))∗ for all c ∈ D(A−1).

Proof. Let a ∈ D(A) and b ∈ D(A†). Then

|〈A(a), b∗〉| = |〈(A(a∗))∗, b∗〉| = |〈b, A(a∗)〉|

= |〈A†(b), a∗〉| = |〈a, (A†(b))∗〉| ≤ ||a||||(A†(b))∗||,

and so b∗ ∈ D(A†) by definition. As before,

〈a,A†(b∗)〉 = 〈A(a), b∗〉 = 〈a, (A†(b))∗〉,

and since D(A) is dense this implies A†(b∗) = (A†(b))∗ for all b ∈ D(A†). Further,

for every c ∈ D(A−1) there exists an a ∈ D(A) such that A(a) = c. Since A is

star-preserving we have that A(a∗) = c∗. Then, by definition, (A−1(c))∗ = a∗ =

A−1(c∗).

Lemma 13.16. Let H be a separable Hilbert space and A be an compact and self-

adjoint linear operator on S2(H) which satisfies A(a∗) = (A(a))∗ for all a ∈ S2(H).

Then

A =
∞∑
n=1

λn|xn〉〈xn|
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with (λn)∞n=1 ⊆ R and (xn)∞n=1 an orthonormal basis of S2(H) consisting of self-adjoint

operators.

Proof. If A is compact and self-adjoint, then the Spectral Theorem implies there is

an eigensystem decomposition

A =
∞∑
n=1

λn|yn〉〈yn|,

with (λn)∞n=1 ⊆ R and (xn)∞n=1 an orthonormal basis of S2(H). Because A is self-

adjoint and star-preserving, we have that A(yn) = λnyn implies A(y∗n) = λny
∗
n. Thus,

every eigenspace of A is self-adjoint. For eigenspace E of A, consider the orthonormal

basis (ynj
)Nj=1 ⊆ (yn)∞n=1 of E. Because E is self-adjoint, we also have that (y∗nj

)Nj=1 ⊆

(yn)∞n=1 is an orthonormal basis of E. Define self-adjoint operators aj = ynj
+ y∗nj

and aN+j = i(ynj
− y∗nj

) for each 1 ≤ j ≤ N so that E = Span(aj)2N
j=1. From

〈ynj
, ynk
〉 = 〈y∗nj

, y∗nk
〉 = δjk, straight forward calculation reveals that 〈aj, ak〉 is real

for every 1 ≤ j ≤ 2N . We follow the Gram-Schmidt process and set b1 = a1 and

recursively define

bk = ak −
k−1∑
j=1

〈bk, ak〉
〈bk, bk〉

bk

to produce a sequence of N many orthogonal operators which span E (the remaining

N many operators produced by the Gram-Schmidt process become zero). As a real

combination of self-adjoint operators, each bk is self-adjoint, and thus can be normal-

ized to a set of self-adjoint orthonormal operators (xj)Nj=1 which span E. Replacing

yn with xn in the original eigensystem decomposition for each eigenspace E, we have

A =
∞∑
n=1

λn|xn〉〈xn|,

as desired.

Finally, we present the

Proof of Theorem 13.14. Since L̃ generates a strongly continuous semigroup of con-

tractions, we have that λ ∈ ρ(L̃) for all λ > 0 by the Hille-Yosida Generation Theorem
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(e.g. Theorem 3.5 of [27]). Further, D(L̃) is dense in S2(H) by Theorem 3.1.16 of [12]

and L̃ is star-preserving by Corollary 13.6, and soK := (L̃−I)−1 is star-preserving by

Lemma 13.15 as the inverse of a star-preserving map with dense domain. Because L̃

has compact resolvent by assumption, we have that K is furthermore compact. Thus,

K†K is compact, self-adjoint, and star-preserving, and so Lemma 13.16 implies

K†K =
∞∑
n=1

σ2
n|vn〉〈vn|,

where {σ2
n}n∈N are the nonzero eigenvalues of K†K corresponding to the system

{vn}n∈N of self-adjoint orthonormal eigenoperators. This notation is chosen so that,

following Section 2.2 of [28], the singular value expansion of K can be written

K =
∞∑
n=1

σn|un〉〈vn|,

where {un}n∈N are self-adjoint orthonormal eigenoperators of KK† given by the re-

lation σnun := Kvn. By Theorem 2.8 of [28] we have that

L̃− I = K(−1) =
∞∑
n=1

1
σn
|vn〉〈un|,

and hence

L̃ = I +
∞∑
n=1

1
σn
|vn〉〈un|,

proving (13.13). Equation (13.14) follows from (13.13) and (12.8). Part (c) follows

similarly as the proof of Lemma 13.11, with the note that I + A is conditionally

completely positive if and only if A is (as is easily verified).
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Chapter 14

Conclusion to Part II

We began this Part by considering several constructions arising from faithful, positive,

normal functionals, such as how every such functional on B(H) induces a contraction

from B(H) to S2(H). This allowed us to prove in Theorem 11.5 that bounded linear

Schwarz maps on B(H) which have a subinvariant faithful positive functionals nat-

urally induce contractions on S2(H). In Section 11.2 we considered alternate GNS

construction which can be used to induce a contraction from a Schwarz map which

has a subinvariant faithful state acting on a general C∗-algebra. We remarked that

while both constructions induce a contraction on a Hilbert space using a Schwarz

map on a C∗-algebra, the former construction works only for the C∗-algebra B(H)

but is more symmetric and always induces a contraction on the Hilbert space S2(H),

whereas the latter works on general C∗ algebras but induces a contraction on a Hilbert

space which depends on the subinvariant functional of the original map.

In Chapter 12 we recalled the basic notions of semigroup generators and their

domains. In particular, the domain of a generator is defined via an appropriate limit

which may not always exist. In Section 12.1 we introduced the notion of an extended

generator using weaker limits, and the so extended generator is defined on a larger

domain. True to its name, we showed that the extended generator agrees with the

usual generator on all finite subspaces. This new definition was useful in stating one

of the main theorems of this work, Theorem 12.14, which states that every semigroup

of Schwarz maps on B(H) with a subinvariant faithful state induces a semigroup of

contractions on S2(H). Moreover, if the original semigroup is w∗-continuous then the
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induced semigroup is strongly continuous. The domains and actions of the generator,

the extended generator, and the generator of the semigroup induced on S2(H) are

related explicitly, and in particular the image of the domain of the generator under

natural contraction is contained in the domain of the induced generator, whereas the

preimage of the domain of the induced generator under that natural contraction is

contained in the domain of the extended generator. Because the induced semigroup

acts on a Hilbert space, in Section 12.2 we were able to apply the dilation theory of

Foias and Sz.-Nagy to obtain a minimal semigroup of unitaries on a larger Hilbert

space. From there we applied Stone’s Theorem to give a description of its generator

in terms of the extended generator of the original semigroup.

In Chapter 13 we applied Theorem 12.14 in the study of Quantum Markov semi-

groups (QMSs), which are dual to the QDSs examined in the finite dimensional case of

Part I. The exact form of a QMS generator is known that if the generator is bounded

(see [42] and [53]), so we were particularly interested in the unbounded case. To this

end, we show that many properties of a QMS generator are inherited by the generator

of the contraction semigroup it induces on S2(H), such as conditional complete posi-

tivity (Corollary 13.6). We then examined two particular instances of compactness to

provide a form of the induced generator and the extended generator, because it agrees

with the original generator on all finite subspaces, in the unbounded case: First, in

Theorem 13.9 we assumed that the generator of the minimal semigroup of unitary

dilations of the induced semigroup of contractions is compact. This assumption al-

lowed for an explicit eigensystem decomposition of the compact generator, which was

traced back to a form for the extended generator. In Theorem 13.14, we described

the generator of the QMS under the assumption that the generator of the semigroup

induced on S2(H) has compact resolvent. In this case, compactness of the resolvent

operator allows for an explicit singular value decomposition, which can then be traced

back to a form for the extended generator using Moore-Penrose inverses. This we view
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as a weaker assumption, since in particular it does not imply the induced semigroup

generator is bounded (as the former case did).
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