
University of South Carolina University of South Carolina 

Scholar Commons Scholar Commons 

Theses and Dissertations 

Spring 2019 

Friction Stir Additive Manufacturing(FSAM) of 2050 Al-Cu-Li Alloy Friction Stir Additive Manufacturing(FSAM) of 2050 Al-Cu-Li Alloy 

Ilana Lu 

Follow this and additional works at: https://scholarcommons.sc.edu/etd 

 Part of the Mechanical Engineering Commons 

Recommended Citation Recommended Citation 
Lu, I.(2019). Friction Stir Additive Manufacturing(FSAM) of 2050 Al-Cu-Li Alloy. (Master's thesis). 
Retrieved from https://scholarcommons.sc.edu/etd/5237 

This Open Access Thesis is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and 
Dissertations by an authorized administrator of Scholar Commons. For more information, please contact 
digres@mailbox.sc.edu. 

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/etd
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F5237&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=scholarcommons.sc.edu%2Fetd%2F5237&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/5237?utm_source=scholarcommons.sc.edu%2Fetd%2F5237&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digres@mailbox.sc.edu


FRICTION STIR ADDITIVE MANUFACTURING (FSAM) OF 2050 AL-CU-LI ALLOY 

 

by 

 

Ilana Lu 

 

Bachelor of Science 

University of South Carolina, 2017 

 

 

 

 

Submitted in Partial Fulfillment of the Requirements 

 

For the Degree of Master of Science in 

 

Mechanical Engineering 

 

College of Engineering and Computing  

 

University of South Carolina 

 

2019 

 

Accepted by: 

 

Anthony Reynolds, Director of Thesis 

 

Addis Kidane, Reader 

 

Cheryl L. Addy, Vice Provost and Dean of the Graduate School



ii 

© Copyright by Ilana Lu, 2019 

All Rights Reserved.



iii 

DEDICATION

 This work is dedicated to my mom and brother. I could not have made it this far 

without your unwavering support. 



iv 

ACKNOWLEDGEMENTS

 Firstly, I’d like to acknowledge my faculty advisor Dr. Tony Reynolds for the 

opportunity to conduct this research and his guidance during the process. Suffice to say, 

the education and experience from working with Dr. Reynolds has been transformative. 

Special thanks to Dr. Mike Sutton, Dr. Xiao Li, Dr. Dario Baffari, and Mr. Dan 

Wilhelm for their mentorship and assistance before and during graduate school. I would 

also like to acknowledge the help of Mr. Addis Tessema for guidance with digital image 

correlation.  

I would finally like to recognize the financial support of the Center for Friction Stir 

Processing which is a National Science Foundation I/UCRC supported by Grant No. EEC-

0437341.



v 

ABSTRACT 

As a solid state process, friction stir welding (FSW) is an advantageous joining 

method for higher strength aluminum alloys such as 2050 Al-Cu-Li which are not readily 

fusion welded. This study explores the potential of friction stir lap welding (FSLW) as an 

additive manufacturing process for this aluminum-lithium alloy. To accomplish this, lap 

weld joints were performed so that each additional layer would penetrate the preceding 

weld pass which creates a large, stacked build. Excess material is machined away leaving 

only weld. Cast AA2050 is explored in this study as a more cost-efficient feedstock for this 

process as compared to wrought plate. 

Three builds of 2050 aluminum alloy were studied for weld response variables, and 

properties. These variations included: (i) 25mm length pin and cast 2050 aluminum alloy 

in three layers including 2050-T3 substrate and top layers, (ii) 12.85mm length pin and cast 

2050 in seven total layers with a 2050-T3 substrate/top, and (iii) 12.85mm length pin and 

2050-T3 in all seven layers. A finite element analysis (FEA) was also performed to 

compare beams made from the AM process and from monolithic 2050 plate. 

All builds exhibited inhomogeneous hardness distributions with minimums in the 

overlapping heat affected zones. In addition to the hardness results, transverse tensile tests 

of two of the builds showed that strain tended to concentrate in the soft, heat affected zones 

but overall the builds possess moderately good ductility and weld efficiency. Fracture tests 

of weld material demonstrated complex behavior—fracture resistance of the welds was 

higher than that of the parent material; however, the presence
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of inhomogeneous hardness and process-created distributions added a level of irregularity. 

Overall, it was found that there is not a disadvantage to using cast material in friction stir 

additive manufacturing (FSAM) however the practicality of this process is not ideal at the 

current technology level. 
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CHAPTER 1 

INTRODUCTION

1.1 Motivation for Study 

Additive manufacturing is a presently growing industry with applications now 

focusing on metallic materials and processes intended to reduce waste and cost of 

fabricated parts. Friction stir welding is a well-established method of solid state material 

joining which additionally can also be applied to process materials microstructurally. An 

amalgamation of these different technologies, the governing motivation for this study 

includes examining the method of friction stir lap welds for their potential as an additive 

manufacturing process for high strength aluminum alloys such as AA2050. In addition, it 

will be determined if cast AA2050 can be used for friction stir additive manufacturing as a 

less costly alternative to its wrought counterpart.  

 

1.2 Friction Stir Welding Overview 

As it was only developed within the last few decades, friction stir welding (FSW) 

is considered a relatively new technology but extensive testing proves its maturity and 

effectiveness of joining materials [1-2]. It is a solid state process, meaning material should 

never reaches bulk melting temperature but instead is joined through intense plastic 

deformation and pressure from the tooling. This is especially useful for heat treatable 

aluminum alloys that are not typically fusion welded due to a loss in strength from the 

dissolution of precipitates—Particularly high strength es from the 2XXX and  7XXX
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aluminum alloy families [2].  Shown in the schematic of Fig. 1.1 below, this process 

involves a nonconsumable rotating pin which is applied to the work piece with forging 

force and then travels on a designated path. 

 

 

 

 

 

 

 

 

Complex material flow occurs as the stirring action induces a vortex of softened 

material around the probe itself and an elliptical extrusional motion as it attempts to escape 

and is pushed back into the material from the tool shoulder. As thermal energy is mostly 

generated from the contact from shoulder tooling and work material, a temperature gradient 

exists which can lead to microstructural differences throughout the weld [1, 3]. 

The areas of a friction stir weld are typically divided into several sections to 

differentiate the properties or thermal/mechanical history as shown in Fig. 1.2. This 

includes the mechanically unaffected parent material, heat affected zone (HAZ), and the 

thermo-mechanically affected zone (TMAZ) also known as the stir zone (SZ) or nugget 

material. Equiaxed grains are formed within the nugget through dynamic recrystallization 

(DRX) resulting from high strain rates and temperature. These recrystallized grains 

contribute to optimized mechanical properties [1-2, 4]. 

Figure 1.1 Illustration of the FSW process [1] 
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1.3 Friction Stir Additive Manufacturing 

Similar to fusion welding, industry-relevant additive manufacturing methods such 

as direct energy deposition (DED) are prone to cracking, porosity, anisotropy, and residual 

stress due to the temperature of the processes [5]. In addition, materials that are difficult to 

weld with fusion methods such as 2XXX series aluminum alloys are also obviously not 

ideal for DED additive processes.  

Applications of friction stir processing are used in several additive manufacturing 

technologies such as the introduction and processing of powder through the tooling, 

bonding of layers of cladding or feedstock, and functionally gradient materials (FGM) 

among other concepts. An immediate benefit of the additive manufacturing concept is a 

reduced buy-to-fly ratio of components such as those used in the aerospace industry—

current methods of producing complex geometry include machining of large wrought 

billets which results in a large amount of wasted material [6]. FSAM also offers the benefits 

of additively manufacturing the aluminum alloys difficult to weld traditionally. 

The aforementioned FSW through layers of cladding can be implemented with a 

conventional gantry friction stir welding machine needing no additional modifications. It 

Figure 1.2 Cross-sectional view of a friction stir weld and its zones: (A) 

Unaffected parent material, (B) the heat affected zone (HAZ), and (C) 

thermomechanically affected zone (TMAZ) with weld nugget encircled [2] 
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also has potential for thicker layers and complex geometry depending on the CNC 

capability of the machine. A demonstrator using FSAM lap weld cladding technique can 

be seen in Figures 1.3 and 1.4 courtesy of the Edison Welding Institute (EWI) [7]. 

 

 

 

A similar practical application of this process is shown in Figure 1.5 on the next 

page where feedstock material is placed on a substrate and lap welded, penetrating through 

the plate thickness. This process is continued until the user has completed the build with a 

top layer of the chosen temper of material. Excess material is machined from the lap weld 

builds leaving mostly processed weld nugget with sections of HAZ interspersed 

throughout. The dimension of the final design is dependent on the weld width, W, and plate 

thickness T. Preliminary studies regarding this method of AM identify integrally stiffened 

panels and stringers as the target industry geometry for this process [8]. 

Figure 1.3 EWI FSAM 

demonstrator with the cladding 

method [7] 

Figure 1.4 Cross-sectional view of 

FSAM [7] 
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This friction stir additive manufacturing method method implements lap weld joints 

instead of a more traditional butt joint, the difference illustrated in Figure 1.6.  The main 

distinction between the two configurations is the direction of the interface relative to the 

weld tool rotation axis: butt joints have vertical interfaces which align with the rotational 

axis. However, lap joints implement a horizontal interface which is perpendicular to the 

tool rotational axis [9]. Characteristics relevant to this configuration are discussed in the 

succeeding section.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6 Comparison between butt and lap joints 

with FSW 

Figure 1.5 Schematic of FSAM with lap welds 
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1.4 Lap Welding Overview 

1.4.1 Lap Weld Defects 

Widely found in studies of this weld configuration, metallographical analysis of lap 

weld cross sections may exhibit unbonded, crack-like characteristics related to the 

ineffective destruction of the original interface. The profiles of the features can be of a 

variety of shapes, depending on parameters or other conditions. These defects appear 

differently on either side perpendicular to the weld travel line as the material flow is 

asymmetrical in nature [10-12]. Referred to as hooking and cold lap defect, an illustration 

of these is in a lap weld is shown in Figure 1.7.  

 

 

 

On the advancing side, the hook defect (HD) tends to flare upwards. On the 

retreating side, the residual undestroyed interface can stretch into the stir zone itself while 

also shifting upwards from the nominal interface and has been referred to as “plate 

thinning”, “cold lap defect (CLD)”, or even “remnant joint line” [9, 12-15]. The CLD has 

been shown to exhibit anywhere from a smooth contour to that of a jagged sawtooth profile. 

The vertical displacement of the CLD is attributed to extrusional action from the tooling 

Figure 1.7 Hooking shown on advancing side 

and retreating CLD [13] 
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combined with thermal conditions [12]. Cederqvist et al. defined the phrase “effective sheet 

thickness (EST)” which assists in quantifying the severity of the CLD defect, as the height 

deviation from the nominal interface location determines the amount of weld nugget 

available to be burdened mechanically and has noticeable effects on the failure load 

especially when sheared. The consensus among studies in this area concluded that when 

considering shear-tensile tests, hook orientation affects the potential strength as the defect 

can act as an existing crack from which to propagate [9, 12, 14, 16].  

 

1.4.2 Tool Geometry 

As compared to a cylindrical pin, a tapered tool was shown to provide better vertical 

flow for lap welds [9]. Babu et al. also established that well-performing lap welds were 

performed with a threaded tapered pin when compared to a triangular tool and the 

traditional joining method of riveting [11]. The pin geometry induced a downward vertical 

material flow to increase the EST of the cold lap defect. It was also observed by Aldanondo 

et al. that a threaded tool containing three flats offered better consolidation and nugget size 

for lap welds [17]. 

Regarding probe length, Cederqvist et al. demonstrated that out of three tools of 

different length the longer pin contributed to a vertical displacement of the residual 

interface while the shortest one caused a downwards vertical feature. The mid-length pin 

generated a close to nominal interface height [18]. Shoulder and pin tip designs have not 

been regarded to noticeably affect the weld nugget width, however minimum hardness is 

found to be in the HAZ near the outer diameter of the shoulder, as has been generally seen 

with most FSW [18-20]. Welding tools specifically for the lap configuration have been 
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developed, most notably the trademarked Triflute, Trivex, A-Skew among others [1, 21]. 

These tools were designed to mitigate lap welding problems but require skilled machining 

due to the complex geometry and are also trademarked, making their use more expensive 

due to licensing costs. 

 

1.4.3 Process Parameters 

It has been observed that the increase of rotational speed led to the increase of 

vertical flow, therefore reducing the EST [13]. However, the increase of weld travel speed 

in many different metallic alloys was shown to reduce defect features and decrease the 

retreating side interface height as the upwards vertical flow was lessened [13,16,20, 23]. 

Likely due to this mitigation of the cold lap internal defect, increase of weld travel speed 

was also shown to directly improve shear-tensile results of lap welds [12-13]. At a certain 

point of increased travel speed, however, advancing side cavity defects were noted to 

appear in aluminum alloy studies as the material required additional heat generation to 

plastically deform. Considering combinations of process parameters, a “colder” weld, or 

one that has a higher ratio of welding travel speed to tool rotational speed, has been shown 

to increase the effective sheet thickness [12, 16, 18]. 

 

1.4.4 Weld Strategy 

Demonstrated by Cederqvist et al., an effective plan to control lap weld sheet 

thickness was to implement a double pass welding strategy. This was done by performing 

a second weld at the opposing weld direction of the first but indexed on the advancing side 

of the first weld. The resulting weld contained two retreating sides and both advancing 
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sides encapsulated in the stir zone. This was subsequently verified by Dubourg et al. who 

observed that the double pass method indeed resulted in a much stronger weld when 

compared to that of a single pass [22]. In both of the major studies, welds performed with 

a double pass showed higher load strength likely due to the elimination of sharp stress areas 

like the advancing side hook as compared to similar single weld counterparts. The double 

pass strategy is beneficial when considering an additive manufacturing model with lap 

joints—elimination of the insufficiently bonded interface results in usable nugget. 

 

1.4.5 Kissing Bond 

Authors of previous investigations found these defects at the locations in the 

retreating side of the stir zone, which resulted from remnants of surface oxides from the 

welding process [13, 16]. It was observed that a faster advancing speed resulted in a kissing 

bond in lap welds, which correlates to previous findings with butt weld kissing bond 

formation [2]. This is due an overall lower welding temperature and the orientation of the 

interface with respect to the pin, resulting in an inadequately disrupted oxide from the 

faying surfaces—so in this instance, a hotter weld is more appropriate to eliminate this 

defect [13, 15-16].  

 

1.4.6 Lap Welding Summary  

From accounts of previous studies with lap welding, the defects common to this 

configuration have been shown to be reduced by taking precautionary process development 

steps. These include the tool geometry, process parameters, and a weld strategy. Defects 

such as the crack-like cold lap on the retreating side, severe advancing side hooking, or 
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near-invisible kissing bonds reduce the strength of the welds and steps should be taken to 

prevent them from forming.  An ideal lap weld for FSAM is one that has a large nugget 

width achieved from the management of CLD. However, from the many previous studies, 

there is shown a balance between process parameters and tool geometry needed to achieve 

a weld that is not only fully consolidated but also has minimized lap defects. It has been 

recommended to consider the design allowables depending on the application of FSLW to 

prepare for the possibility of defects [24]. With FSAM, the excess material is intended to 

be machined away so the major concerning defect is that of the cold lap of the retreating 

side. 

In general, much has been studied about friction stir lap welding characteristics, but 

little is known about the application of it for additive manufacturing. The succeeding 

sections will explore the use of FSLW as an additive manufacturing process through 

examining the mechanical properties of large-scale builds. Tensile testing using digital 

image correlation (DIC) and fracture testing with CT specimens has not been done for 

FSLW studies in the past, and can reveal more about the potential for this technology 

process.  

 

1.5 AA2050 Metallurgy 

The third-generation aluminum alloy of 2050 Airware© was designed relatively 

recently for structural aerospace applications. Its chemical composition is displayed in 

Table 1.1 on the next page. 
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  Table 1.1 Chemical composition of AA2050 [25]  

Wt % Si Fe Cu Mn Mg Zn Li Ag Zr 

Min   3.2 0.20 0.20  0.70 0.20 0.06 

Max 0.08 0.10 3.9 0.50 0.60 0.25 1.3 0.7 0.14 

 

As lithium is the lightest of the metallic elements, an immediate benefit of this alloy 

includes reduced density—up to 5% when compared to legacy alloy 7050-T7 [25, 26].  

Beneficial characteristics of this alloy include high strength, resistance to stress corrosion 

cracking and good toughness. This Al-Cu-Li alloy’s mechanical performance compares 

easily to current industry alloys 7050 and 2024, overtaking the latter. However, the price 

to develop 2050 is not insignificant due to additions of elements such as lithium and silver 

which are highly reactive and precious metal respectively.  

In monolithic form, the best-performing AA2050 is that of T8 temper which is 

subject to solution heat treating, cold work, and artificial aging. Solution heat treating 

temperature for similar alloys is between 500 and 530˚C, while the artificial aging for peak 

performance is in the range between 130-170˚C for at least 15 hours [27-28]. Vickers 

pyramid hardness of AA2050-T8 material was measured in the range of 170-180 HV 

within previous studies and laboratory analysis [28-30]. Various investigations also 

attribute yield strength to be between 490-520 MPa. Ultimate tensile strength was 

experienced between 540 and 590 MPa with total elongation of 8-13 percent [29, 31-32]. 

The 2050-T3 temper is also solution heat treated and cold worked but allowed to 

age naturally. Sometimes referred to as the “underaged” state, the mechanical strength of 

this condition is less than that of the T8—Yield strength of this temper was found in the 

ranges of 243-295 MPa, while the UTS were shown to vary from 376-470 MPa [29, 33]. 
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However, maximum elongation of the underaged stage was established to be 14-22%. 

Hardness of T3 material has shown to range between 120-130 HV.  

Unlike wrought designations, the cast aluminum alloy of the 2050 composition 

referred to in succeeding sections as one of the feedstock materials has been subject to a 

homogenization treatment to improve the chill-casted dendritic structure. Recommended 

temperatures for these kinetics in similar alloys are held between 480˚C and 512˚C for 5 to 

60 hours [27-28]. Lab measured Vickers hardness of cast 2050 material is approximately 

80 HV. 

Containing lithium, AA2050 is primarily strengthened through the T1 phase 

(Al2CuLi) which precipitates as platelets, distributed homogeneously with an affinity for 

dislocation sites [25, 34]. Other observed phases within the base metal alloy are those of 

θ’ and S’. Microstructural characterization of a friction stir weld from T3 base material and 

subject to a post-welding aging showed reduction in the density of the T1 phase through 

the weld depth which accompanied a reduction in hardness from the near-shoulder top to 

pin bottom [35]. In addition, notable heterogeneity of microstructure has also been noticed 

in previous analyses of thick FSW joints involving this alloy [29-30, 37-38]. 
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CHAPTER 2 

EQUIPMENT AND PROCESS

2.1 Material Preparation 

Plates of cast and AA2050, AA2050-T8, and AA2050-T3 were received in large 

blocks and cut with a band saw to a size close to the final nominal size of 432 mm in length 

and 102 mm wide. For the large build, plates were milled to a thickness of 23 mm while 

the smaller pin required plate thicknesses of 12 mm.  It is important to note that as the three 

materials were received at different periods and from various distributors, the compositions 

may have varied from each other but are assumed to be within the acceptable range for this 

alloy. 

After a light flycut with a milling machine to ensure flatness, edges were deburred 

with a file. A hole was drilled at the plunge locations for each weld using bits that were 

close to the dimensions of the welding pins. 

 

2.2 Tool Geometry 

For the three separate builds, two tools and shoulder sets were used. Both pins were 

fabricated from MP159 material and their specifics for geometric features are displayed in 

Table 2.1 and also shown in Fig. 2.1. Detailed CAD drawings for the tools and shoulders 

are shown in Appendices A and B. For identification purposes within this study, the larger 

pin is referred to as the 25 mm pin, and the smaller tool as the 12.85 mm pin. The shoulder 

geometries for these corresponding pins are also given in the table. 
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Both shoulders were made from H13 tool steel with a 1.6 APR single lead scroll. 

The depth of the scroll was at 1 millimeter with the feature machined to a 3.18 mm ball 

end mill. 

Table 2.1 FSW pin tool geometric properties

Pin length, mm 25 12.85 

Thread pitch, thread/mm 1.75 1.5 

Largest diameter, mm 19.1 12.7 

Smallest diameter, mm 8.9 8.26 

Taper, degrees 8 10 

Number of flats 3 3 

Flat depth, mm 0.89 0.76 

Shoulder diameter, mm 35.6 28.6 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Both pins used for the FSLW builds 
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2.3 Thermal Management 

An O1 tool steel backing plate of 8 mm thickness was used under the builds, and 

trailing water spray applied to the welding as an active cooling method. The fluid was 

applied at a rate of 0.45 liters per minute. 

 

2.4 Welding Procedure 

The FSW Process Development System (PDS) machine used for this study was 

developed and fabricated by MTS Systems Corporation for the University of South 

Carolina. Shown in Figure 2.2, it is capable of up to 133 kN in the z-axis direction (plunge) 

and up to 67 kN in the x-direction (weld travel). The torque capacity is up to 678 N-m with 

a 5-to-1 gear reduction fitted to the system. 

 

Figure 2.2 Friction stir welding PDS  

+X 

+Y 

+Z 
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 Prior to welding, the substrate sheet was placed on the backing plate and then the 

first layer was added and clamped down on both sides of the weld travel line, demonstrated 

in Fig. 2.3. The first pass was then welded at the designated offset of tool center to build 

centerline. Manual alignment of the welds was performed to index them to the correct 

locations. The second weld pass of each layer was performed in the opposing travel direct 

of the first, however with the advancing sides overlapped at a specified amount using an 

“offset” metric, as defined in Fig. 2.4 with a cross sectional schematic. This is simply the 

distance of the tool center for each weld pass to the datum center line of the weld build.  

  

 

 

After the double weld pass was completed, the weld build was removed from the 

clamps and smoothed on a mill to ensure a flat interface for the succeeding layer. It would 

then be replaced in the weld machine and clamped again to the appropriate indexing 

locations. Welded layers could then be added with this iterative process until the desired 

height was reached. It is important to note that the final height of the builds within this 

study was equivalent. 

Fig 2.4 Defining offset of the double 

weld passes 
Fig 2.3 Plates clamped in fixture 
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All three builds were intended to be constructed in the above manner; however, 

they differ in the lapping sequence and configuration as shown in Table 2.2. It is important 

to note that the thinner, faster T3 build was welded incorrectly, as the plates were rotated 

in the wrong direction, resulting in two advancing sides on the outside of the welds instead 

of the retreating-retreating double pass. 

 

 

 

Build Slower/thicker/cast Faster/thinner/cast Faster/thinner/T3 

Pin length, mm 25 mm 12.85 mm 12.85 mm 

Plate thickness, mm 23 12 12 

Offset, mm 3.18 1.91 1.91 

Layer material Cast Cast T3 

Substrate and top material T3 T3 T3 

Number of lap layers 4 7 7 

Fig 2.5 First layer of FSAM process 
Fig 2.6 Layer iterations 

Table 2.2 Final builds: pin type, plate thicknesses, and lapping sequence 
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2.5 Weld Process Parameters 

Process parameters for the builds were determined after initial trials with pins and 

additional material. Basic criteria used to determine working parameters and operating 

window for each pin was to achieve a fully consolidated weld with a minimum of obvious 

defects such as excessive flash and wormholes. 

 

 

Build Slower/thicker cast Faster/thinner/cast Faster/thinner/T3 

Commanded RPM, counterclockwise 200 250 250 

Commanded travel speed, mm/min 

(in/min) 

152.4 (6) 203.2 (8) 203.2 (8) 

Commanded plunge force, kN (lbf) 53.38 (12,000) 31.14 (7,000) 33.36 (7,500) 

Tilt angle, degrees 1 1 1 

 

 

2.6 Data Acquisition and Response Variables 

K-type thermocouples were embedded at the midplane of both pins to collect data on 

the thermal conditions welds experienced during the process. Information was synced 

wirelessly to a standalone laptop through the use of a TC-Link® lossless thermocouple 

node. Torque information was noted through Datum Electronics torque transducer and, and 

documented to the Torquelog program. Weld response variables of the in-plane forces were 

automatically logged with the welding machine PDS. 

 

Table 2.3 Weld process parameters for all builds 
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2.7 Post-Weld Heat Treatment 

Builds were aged naturally for at least two weeks after the welding process. For the 

post-welding heat treatment, samples were treated in an oil bath at 160˚C for 15 hours as a 

treatment intended to age T3 material to mechanical performance of T8 temper as per 

recommendations for this alloy and other similar aluminum alloys [27-29, 33]. 

 

2.8 Metallographic Samples and Analysis 

Samples from the builds were sliced with a vertical bandsaw at least halfway into 

the weld length for a steady-state analysis. They were then hand ground with silicon carbide 

sand paper from 120 - 1200 grit. Once the finish was evenly smooth at the final grinding 

stage, a polish was applied with alumina powder of 5 micron diameter and then 3 micron 

using a soft polishing cloth. Colloidal silica suspension of 0.06 μm was finally used as a 

final chemical polishing step. To visibly reveal microstructure, Keller’s reagent was mixed 

using 190 mL water (H2O), 5 mL nitric acid (HNO3), 3 mL hydrochloric acid (HCl), and 2 

mL hydrofluoric acid (HF) in the stated order from least reactive to most reactive. Samples 

were placed into the solution for 10 seconds then rinsed with fresh water and thoroughly 

dried with compressed air. Removal of debris, dust, and oil on samples used denatured 

alcohol and a cotton swab. 

Macrographical observation and image capture was performed on a VHX-5000 

series digital microscope. Samples were examined for any obvious flaws and lap welding 

features. Cross-sectional images too large to be stitched with microscopy were taken with 

a Canon LiDE 110 digital scanner. 
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2.9 Hardness Testing 

A Buehler Micromet 1 hardness testing machine was used to perform Vicker’s 

microhardness analysis. A load of 200 grams-force was used for all samples with a dwell 

time of 10 seconds. Indents were spaced apart at either a distance of 317.5 microns or 

double of 635 microns depending on the density needed in the sample. The amount of 

hardness indents for each sample varies, as the analysis is performed from the welded areas 

until parent material hardness is reached. 

 

Vickers hardness analysis was performed on all base metal samples to quantify the 

parent material properties. For welds, testing was conducted in the as-welded condition 

then again after the applied heat treatment. Hardness measurements were taken at pin 

midplanes of the top (A), bottom (C), and centermost (B) layers of each build as indicated 

Fig. 2.7 Hardness testing positions within lap weld layers 
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in the cross-sectional weld illustration of Figure 2.7. However, build 4771 did not have this 

performed on segment (C). The analysis was also performed at (D) at the weld centerline 

through the layer thicknesses for all builds.  

The formula used to calculate the resulting Vickers Pyramid Hardness Number 

(VHN) for the analysis is given in Equation 2.1.  

𝐻𝑉 = 1854 (
𝐹

𝑑2
) 

Where the hardness number, HV (kgf/mm2) depends on the indentation force, F 

(g), and mean diameter of the diamond-shaped indentation, d (μm). 

 

2.10 Digital Image Correlation Tensile Testing 

Transverse tensile test specimens were machined from the weld material in the 

layout shown in Fig. 2.8 on the next page. Sample geometry is given in Appendix C.  

Tensile specimens were cute to extend the height of the builds to include as many layers 

as possible. The uniaxial tester used for these specimens was a MTS Exceed E43 with a 

capacity of 30 kN. For all specimens, the strain rate was set to 0.0254 millimeters per 

second (0.001 inches per second). Where possible, heat treated samples from each build 

were also tested to compare with their as-welded counterparts. 

Digital image correlation (DIC) was performed by initially speckling the samples 

with a uniformly fine and random pattern using a black spray paint on a white base. An 

example of the dogbone tensile specimens with this sprayed pattern is shown in Figure 2.9 

on the next page. High resolution pictures were taken every second while axially loaded to 

capture deformation with a 5-megapixel camera equipped with a 100 mm lens. The 

complete setup is shown in Figure 2.10. Corresponding load voltage was logged for every 

( Eq.2.1) 
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image through an analog output from the testing system. Given the capacity of the machine, 

the conversion factor of 3kN per 1V of load was established and used to analyze the load 

data. Post processing of the DIC tensile data was performed using Correlated Solutions 

VIC 2-D 2009 software.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

.  

 

 

 

 

Fig. 2.9 Speckled pattern on DIC tensile samples 

Fig. 2.8 Orientation of tensile specimens 

within the weld material  
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The Extensometer feature of VIC 2-D was used on the area of interest (AOI) of 

samples to determine values for the stress-strain curve. This feature allows the average 

strain for this area to be calculated like that of a conventional extensometer applied to a 

tensile sample. Local strain values were also calculated for samples with the correlation 

software. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.11 Fracture Testing 

Compact tension (CT) specimens for fracture testing were machined as per the ASTM 

E1820 standard for fracture toughness [38]. The specimen dimensions are given in 

Appendix D. In order to test purely weld material, samples were machined to a thickness 

of 7 millimeters. Samples of monolithic 2050-T8 material in the S-T rolling direction were 

Fig. 2.10 Tensile DIC equipment setup 
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also machined with identical geometry. Several configurations of crack growth orientation 

were used for each build to explore crack growth behavior: (1) from bottom to top of build, 

(2) growing in opposite direction of last pass weld travel, (3) from top to bottom of build, 

and (4) growth in the direction of weld travel. This is also given in Table 2.4 and can be 

observed in Figure 2.11. All fracture specimens apart from the base T8 material were given 

the preceding heat treatment method.  

 

 

Sample 

designation 
Orientation of crack growth 

1 Bottom to top direction of builds 

2 Opposite welding direction at approximate build midplane 

3 Growing from top to bottom of builds 

4 With welding direction at approximate build midplane 

 

 

 

 

Table 2.4 Orientations of crack growth in samples  

Figure 2.11 Machined C-T specimens with notch orientations for crack growth  
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An MTS-810 servo-hydraulic materials testing system with a force range up to 100 

kN was used to grow a fatigue crack in each sample according to ASTM E647 with the 

assistance of software from Fracture Technology Associates. The drop voltage compliance 

method was implemented to monitor the crack growth with the use of a gage placed within 

the knife edge of sample crack openings, such as in Figure 2.11. With an additional 

program from FTA and the compliance method, the nonlinear fracture toughness was 

investigated as per ASTM E1820. Post-processing of results with the software suite yields 

crack growth distance Δa and the calculated fracture toughness, KJIC. 

 

  

Figure 2.12 Gage for 

compliance method 

CTOD  
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CHAPTER 3 

RESULTS AND DISCUSSION 

 

3.1 Weld Process Feedback 

For this study x-force feedback is defined as the in-plane forces experienced by the 

welding tool in the longitudinal welding direction. The other in-plane force is that of the 

y-force response as the transverse force within the z-direction is responsible for plunge. 

Analysis for the welding data involved taking running averages of portions identified as 

steady state operation. This was done for each individual pass of all three builds. A concise 

comparison view of the normalized build response variables is shown in Figure 3.1 on the 

next page and full data for each build is shown in Appendix E through Appendix G.  

It is expected that the y-axis response force is always higher than that of the weld 

travel x-axis response force, and this was seen with all these builds. Z-feedback forces 

correspond closely to the commanded plunge forces which were anticipated values.         

Observations of the build layer data in Appendices E-G and that of the generalized 

summary table indicate that feedstock material properties have an effect on the forces 

experienced during this process. Specifically, the thinner/faster T3 build and any layers 

from the two other builds containing 2050-T3 material experienced greater
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Figure 3.1 Comparison of all three build average response variables  

Figure 3.2 Build temperature responses  
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forces, increased temperatures, and required a larger plunging force. However, second 

passes of T3 plates showed a decrease in in-plane forces and temperature likely due to the 

softening of the weld nugget [39]. In contrast, welding through a previously stirred zone 

of a cast feedstock weld resulted in larger response variables than the initial weld pass of 

unprocessed cast 2050.  

Intuitive, but observed from these builds and data is the effect of pin length on 

feedback forces from the process. The slower/thicker/cast build with exhibits much higher 

response forces and sampled temperature—which is logical as it had thicker material and 

a longer pin. Both faster/thinner builds resulted in similar feedback forces and temperature 

however with the previously discussed slight increase of response variables for T3 build. 

The logged weld data revealed a total of 3.3 meters of weld to complete all layers 

of the thicker/slower/cast build. The thinner/faster cast build required 6.3 m, and the thinner 

T3 build ended with 6.4 m. Although the thicker cast build was performed with less total 

weld distance, the energy per unit length and total build energy greatly exceeded the thinner 

builds. 

With the above considerations, the configuration with the lowest response variables 

is that of the thinner, faster cast build. These welds experienced lower temperatures and 

forces overall. As stated before, the thicker/cast layer build experienced the highest forces 

and temperatures. In-plane forces, torque and corresponding power in this case was almost 

double that of the two smaller builds. The all-T3 build was much closer in response 

variables to its cast counterpart but presented slightly higher temperatures and forces due 

to the bulk material choice.  
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3.2 Metallography 

3.2.1 Macro Cross-Sectional Images 

Samples from the weld builds were cut, processed, and analyzed with the 

procedures mentioned in the preceding chapter. Macro observations of the final polished 

and etched build cross sections can be seen in Figures 3.3 through 3.5. They highlight the 

geometric differences between the pins and lap plate thicknesses. It is also much easier to 

distinguish the overlapping double pass welds for the slower/thicker/cast build as compared 

to the two smaller builds that had a lesser value of this metric. Immediately noticeable is 

that all three builds are uniform in appearance and free of large defects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Slower/thicker/cast build cross section 
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Figure 3.4 Faster/thinner/cast build cross section 

Figure 3.5 Faster/thinner/T3 build cross section 
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3.2.2 Usable nugget width 

Extremely relevant to the additive manufacturing process is the amount of nugget 

free of the CLD. These regions would dictate the dimensions of the final additively 

manufactured component. Figure 3.6 of the thicker/slower/T3 build shows an estimated 

CLD-unaffected stir zone to be at 8 millimeters at the center of the build. However, it is 

noticeable that the amount of usable nugget is less than the total length of residual interface 

even after the double pass weld procedure. Some advancing side defects were also noticed 

in this specific build, as displayed in Figure 3.7. However, this was only noticed in close 

inspection of the top T3 layer, and not within the cast middle sections. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.6 Usable nugget width measured in thicker/slower/cast build 
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The amount of unaffected weld material in between the double passes of the 

faster/thinner/cast build was estimated at over 7 millimeters using optical microscopy, 

shown in Figure 3.8 below. No consolidation-related defects were seen in this build and 

the interface appears quite disrupted within the mid-build cast layers, as presented in 

Figures 3.9 and 3.10. 

 

Figure 3.7 Advancing side defects of the 

slower/thicker/cast build T3 top layer 

Figure 3.8 Thinner/faster/cast build usable weld nugget dimensions 

7.24mm 

RS2 
RS1 AS2 
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As the geometry was similar for the cast and wrought small pin builds, the 

thinner/faster/T3 build was expected to remain very similar to that of its cast counterpart 

with regards to the cold lap defect and unaffected area. However, as previously mentioned 

in the Process section, after welding it was apparent that this build had been performed 

backwards—that is to say, the retreating sides of both passes instead of the advancing sides 

were captured in the stirred zone. Images of the two nugget sides are shown in Figures 3.11 

and 3.12 which demonstrate the fortunate lack of visible CLD into the nugget area. 

 

Figure 3.10 Thinner/faster/cast build second rereating side (RS2) 

Figure 3.9 Thinner/faster/cast build first retreating side (RS1) 

Figure 3.10 Thinner/faster/cast build second retreating side (RS2) 



 

34 

 

 

 

 

 

 

Figure 3.11 First advancing side of the thinner/faster/T3 build 

Figure 3.12 Second advancing side of the thinner/faster/T3 build 

AS2 

AS1 
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In general, from macrographic observations of both builds, the largest pin and lap 

width resulted in a large, visible interface CLD in the welded nugget but rendered a total 

usable amount of nugget of 8 mm thickness. The smaller builds exhibit no large defects, 

adequate visible disruption of the interface, and over 7.2 mm of usable nugget width in the 

case of the smaller cast build. In the case of the T3 build—which had been unintentionally 

performed with two advancing sides—there appeared to be no residual interface in the weld 

nugget. 

  

3.3 Hardness 

3.3.1 Horizontal Hardness Analysis 

The hardness analysis was first performed at the pin midplanes of different 

locations within the cross sections as defined in the previous Process chapter. 

Demonstrated in Figure 3.13 on the next page, the processed cast mid-section of the 

thicker/slower/cast build exceeded the nugget strength of the 2050-T3 top layer in both as-

welded and PWHT conditions. Unfortunately, this build did not have a midplane substrate 

plate hardness analysis to compare with the smaller builds.  

Horizontal hardness was plotted in Figure 3.14 for the thinner/faster/T3 build at the 

pin midplanes of top, mid, and substrate layers. The initial observation of this analysis was 

that of the base T3 recovery in both the top and substrate layers. In fact, the applied aging 

treatment used in this study brings base T3 material up to the strength of 2050-T8, at 

approximately 190 HV. The welded material of the cast-mid layers showed some strength 

recovery with the heat treatment within this analysis, but not to the degree of the T3 layers. 
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Figure 3.13 Midplane layer hardness of thicker/slower/cast 

build 

Figure 3.14 Midplane layer hardness of thinner/faster/cast 

build 
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The all-T3 thinner/faster build horizontal hardness analysis is shown above in 

Figure 3.15. Initial observation indicates a recovery of the substrate hardness, however 

from this analysis the top and mid layers do not appear to increase in strength after aging. 

This is not thought to be true after observations with the previous builds, so this result will 

be explored further in the subsequent section.  

The most important conclusion from horizontal hardness analysis for these builds 

is the observation of minimal variation in hardness occurring over the usable width of the 

weld nuggets. It is important to note that measurements at pin or layer midplanes are highly 

subjective to user choice, as they reflect a local property at a casually estimated location. 

Large variations with hardness are then possible when comparing between the builds and 

are not an accurate representation of hardness behavior throughout. Therefore, this is not 

the most precise analysis to gauge the properties of FSAM. 

Figure 3.15 Midplane layer hardness of thinner/faster/T3 

build 



 

38 

3.3.2 Vertical Hardness Analysis 

In comparison to the horizontal hardness results, vertical microhardness hardness 

analysis for all three builds provides an analysis for hardness as a function of depth.  

A vertical plot of the thicker/slower/cast build’s hardness from the top layer through 

the z-direction depth is shown in Fig. 3.16. At first glance, the inhomogeneous distribution 

throughout depth is immediately noticeable. It can also be observed that the average 

hardness of each layer decreased slightly as the next layer was welded on top. The PWHT 

reversed this trend and resulted with a general tendency of increasing average nugget 

hardness through the depth until peak condition base metal was reached. 

 

 

 

 

 

 

 

 

 

 

 

Minimum hardness values within this build are shown to be at four different 

locations. This corresponds exactly with the number of lap weld layers that were used to 

fabricate the final build. More so, these areas show almost no recovered strength after the 

Figure 3.16 Thicker/slower/cast hardness through layers 
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heat treatment. Hardness data overlaid on the macro cross sectional image of Figure 3.17 

show that these regions of interest are occurring at the base of each lap weld nugget, 

towards the bottom of the pin.    

 

 

 

 

 

 

 

 

 

Similar trends with the hardness distribution were also seen through-thickness with 

the thinner/faster/cast build as shown in Figure 3.18. In the case of this build, there were 

seven lap layers, and these are shown in the corresponding individual areas of minimum 

hardness. Again, the lack of strength recovery in some areas was visible. It appears that the 

proportion of recovered nugget is much less than that of its thicker build counterpart, but 

the maximums experienced were higher. A visual of hardness and locations through the 

build are shown in Figure 3.19. Like the thicker cast build, minimums are once again at the 

transition zone (TZ) in between lap weld layers. Mid-build layers demonstrated substantial 

strength only in the top of each layer which rapidly decreased towards the bottom of the 

lap weld nuggets. 

 

Figure 3.17 Thicker/slower/cast build hardness overlaid with cross 

section 



 

40 

 

 

 

 

 

 

 

 

 

 

 

 

Recall that the hardness analysis of the thinner/faster/T3 build from the horizontal 

interpretation in Figure 3.15 showed that the welded nugget recovered very little if at all 

within the midplane. The vertical microhardness analysis in Fig. 3.20 shows that this is not 

true as there is a substantial recovery mostly towards the upper pin areas of each welded 

layer. As has been seen in all the investigated builds, almost no recovery occurs at the areas 

Figure 3.18 Thinner/faster/cast build hardness through layers 

Figure 3.19 Thinner/faster/cast build hardness overlaid with cross 

section 
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located towards the bottom of the pin length and within the transition zone in between lap 

layers. This is verified through examination of Figure 3.21 which again displays the lowest 

values corresponding to the areas of weld nugget associated with the bottom of the pins or 

the overlapping zones. When compared with the previous cast build with identical lap weld 

thickness and similar response variables, the hardness of this T3 build has both lower 

maximum and minimum values. However, unlike the cast build, nugget hardness is much 

more uniform in distribution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20 Through-thickness Vickers microhardness of the T3 build 
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3.3.2 General Remarks 

For all builds, average hardness of the welds in the as-welded state was shown to 

very slightly decrease as the distance away from the top layer increases. By performing a 

weld on the top surface of previous welded layers, the preceding plates were subject 

thermal cycles in different quantities depending on the number of layers added to the 

structure. This could possibly contribute to an annealing of the welds below, leading to 

coarsening of the precipitates and a reduction in hardness as seen in some of the as-welded 

build conditions. The hardness was also observed to be at minimums in the overlapping 

locations or transition zones (TZ) in between layers for all builds. This is consistent with 

previous studies of lap welding additive manufacturing—and attributed to the thermal 

conditions associated with the process [14-15]. 

All builds displayed inhomogeneous behavior throughout the layers with high and low 

hardness values dependent on location. The lowest hardness values corresponded closely 

with TZ between layers which includes areas towards the bottommost tip of the welding 

Figure 3.21 Thinner/faster/T3 build hardness overlaid with cross section 
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tool and possibly the adjacent HAZ created through this process. The smaller build from 

cast material showed both increased minimum hardness and larger maximum values after 

heat treatment as compared to the T3 build of similar lap geometry. However, the T3 build 

demonstrated a more uniform recovery across the nugget compared to its cast counterpart. 

Of all the builds, however, the thicker cast build demonstrated the highest proportions of 

uniformity and recovery, indicating that more of the weld nugget for this build was held 

above the solution heat treating temperature. 

 

3.4 Tensile Testing 

3.4.1 Stress-Strain Results For All Builds 

Uniaxial tension tests were performed using the procedures outlined in Chapter 2. 

Figure 3.22 on the next page displays the engineering stress and average strain curve results 

for the thicker/slower/cast build. Ultimate tensile strength in the as-welded condition 

reached up to 382 MPa, however for the PWHT samples, this value only reached an 

average of 352 MPa. Maximum elongation for the conditions were reported as 8.3 and 6.9 

% for the as-welded and PWHT conditions respectively. From this build analysis, samples 

with the aging treatment showed a reduction in both ultimate tensile strength and 

elongation. Behavior within the elastic regime is shown to be very uniform in any condition 

for this build. 

The second build of cast material performed with thinner layers and a faster welding 

speed resulted in the data seen in Figure 3.23 on the next pages. Both tested PWHT samples 

have good uniformity and the elastic portions of all condition samples are consistent with 

those found in the previous build. In the as-welded and post-weld heat treated conditions, 
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the samples from this configuration show improved elongation as compared to the thicker 

build with maximums of 12.4 and 10.2% for the respective conditions. The ultimate 

strength of this build resulted in a reduction from 341 MPa in the as welded condition to 

that of 332 MPa with the aging treatment. This is a similar trend to that found in the thicker 

cast build samples, however the ultimate strength for this build is notably less than that of 

the previous thicker cast build results. 

 

 

 

 

 

 

Figure 3.22 Engineering stress and average strain of thicker/slower/cast build 
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Figure 3.23 Engineering stress and average strain of thinner/faster/cast build 

Figure 3.24 Engineering stress and average strain of thinner/faster/T3 build 
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In comparison to the two cast builds, stress-strain results from the T3 build that was 

performed with thinner and faster lap welds are shown in Figure 3.24 on the previous page. 

The as-welded condition resulted in an ultimate tensile strength of 365 MPa with a 10.9% 

average elongation in these samples. The aging treatment showed a decrease in these 

properties to a strength of 354 MPa and elongation of 9.1% which establishes a noticeable 

trend for all three FSAM builds investigated within this study. 

 

3.4.2 Build Tensile Comparisons 

Concise comparison charts are shown in Figures 3.25 and 3.26 below and on the 

next page for ultimate tensile strength and average elongations of all three builds. The only 

specimen that met and slightly exceeded cast 2050 base metal tensile strength was that of 

the as-welded thicker/slower cast build. None of the samples met the other feedstock 

material UTS of 2050-T3 (453 MPa) or approached that of monolithic T8 temper (540 

MPa). As previously described, there was a noticeable trend of decrease in these 

mechanical properties reported after the post-weld heat treatment. 

 

 

 

 

 

 

 

 
Figure 3.25 Comparison of FSAM builds ultimate tensile 

strength 
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Of the three configurations, the highest tensile strength in both conditions was 

shown be that of the thicker/slower cast build which resulted in an UTS efficiency in the 

as-welded state of up to 87% of 2050-T3. However, the highest elongations were reported 

with the thinner/faster cast build. The FSAM build made from T3 material resulted in 

intermediate properties of tensile strength and elongation compared to the two cast builds. 

Figure 3.27 displays the engineering stress-strain curves of aged build samples with 

those of 2050-T3, 2050-T8 and cast 2050. As previously discussed, performance of the 

FSAM samples in the aged condition resulted in a lower UTS than the as-welded samples 

or base materials within this family—and in all cases a decrease in elongation.  

Figure 3.26 Comparison of average elongation in FSAM builds 
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It is however important to note that the strain from the builds is an overall value 

indicating the performance of these samples, determined by an extensometer function of 

the digital image correlation software. Therefore, local measurements were not taken into 

consideration and any heterogeneity in mechanical properties would not be immediately 

obvious. This will be explored within the following subsections. 

 

 

 

 

Figure 3.27 Stress-strain curves for FSAM builds and base materials 
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3.4.3 Strain Concentrations And Digital Image Correlation 

Digital image correlation was used to identify the strain concentrations experienced 

in the FSAM samples under uniaxial tension. Displayed in Figure 3.28 with a 2050-T3 

sample, these images were not captured at the time of failure, but at earlier moments to 

visibly see the patterns of strain.  

 

 

As compared to base metal that tends to only concentrate strain at the single 

location of failure, the additively manufactured builds feature multiple high strain zones 

which correspond to the location of softened material in between layers—these are the 

same areas of the cross section that exhibited low hardness measurements with the previous 

section hardness analysis. Ultimately, the FSAM samples fracture at any one of these 

locations—examples of these are shown in Figure 3.29. The low average elongation and 

Figure 3.28 Strain concentrations calculated with DIC 

2050-T3 Thicker/slower/cast Thinner/faster/cast Thinner/faster/T3 
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ultimate tensile strength of these welded specimens as whole are a result of the softened 

areas in the welded builds where strain tends to concentrate [2].  

 

 

 

 

 

 

 

Thinner/faster/cast build with PWHT  

Fig. 3.29 Strain distributions at failure  

Thinner/faster/T3 build with PWHT  Thicker/slower/cast build with PWHT  
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The minimum and maximums of local strain at fracture are noted in Table 3.1 for 

all the builds and T3 temper samples. The FSAM builds show relatively similar values for 

the maximum strain concentrated at the point of failure. Welded samples showed local 

strain of 25-34% at failure and base metal in the T3 temper was almost to 53%. Lower 

values compared to T3 were also registered for the minimum local strains in the weld 

samples. Concisely, the local minimum or maximum strain values associated with the 

welded samples were less than those found in 2050-T3 in addition to observing multiple 

high strain areas within the tested builds. 

 

 

Build Minimum strain, ε Maximum strain, ε  

Slower/thicker/cast  

PWHT 
0.015 0.275 

Faster/thinner/cast 

PWHT 
0.032 0.342 

Faster/thinner/T3 

As-welded 
0.034 0.25 

Faster/thinner/T3 

PWHT 
0.024 0.343 

2050-T3  0.2 0.516 

 

 

3.4.4 Fracture Surfaces Of T3 Build Tensile Samples 

It was observed that the T3 build tensile samples contained prominent onion ring 

tool marks on their fracture surfaces, displayed in Figure 3.30. This is presented next to a 

Table 3.1 Strain concentrations at failure 
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sample from the similarly lapped cast build for comparison purposes. The presence of this 

visible feature towards the base of the pin suggests that this build was performed with 

inadequate penetration and required more plunging force during the welding process [40]. 

 

 

 

 

 

3.4.5 General tensile analysis observations 

As explored in the previous sections, engineering stress and average strains were 

explored for all welded builds and found to be in most cases below the ranges of 2050 cast, 

T3, and T8 temper base metals no matter the condition of the welded samples (as-welded 

or aged). The friction stir additive manufacturing process resulted in inhomogeneous strain 

distribution within the investigated builds during tensile uniaxial load. Areas of 

concentrated high strain corresponded to the same locations of minimum hardness and 

were always the sites of failure in tensile tests.  

 

 

5 mm 

Fig. 3.30 Tool marks visible on T3 tensile fracture 

Thinner/faster/T3 with PWHT Thinner/faster/cast with PWHT 
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3.5 Fracture Testing 

3.5.1 K-Δa Curve Results 

Using the methods described in Chapter 2, a fracture analysis was performed for 

the FSAM process builds. Stress intensity plotted against crack growth is shown in Figure 

3.31 which includes all aged FSAM build samples and that of monolithic T8 taken from 

the short-transverse (S-T) rolling direction. The calculated fracture toughness of base metal 

corresponded well to that found in literature [41]. An initial observation of this plot shows 

most of the welded samples displayed higher stress intensity than the base metal values, 

though demonstrated similar overall crack growth. 

 

 
Fig. 3.31 KJ-Δa curves of fracture analysis 
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Of the builds, the thicker/slower/cast build exhibited the highest observed fracture 

resistance with the samples which grew cracks through the welded layers. The two thinner 

builds of cast and T3 had reasonably similar appearances overall, but the lowest 

experienced value of fracture resistance was seen by the thinner/faster/T3 build in 

orientation -2 which corresponds to crack growth parallel to the welding direction.  

Some samples are observed to exhibit curves with sudden increases in resistance. 

Most of these correspond to the odd-numbered orientations of -1 and -3 which are given to 

crack growth through weld thickness layers. Noticeably, many of the even-numbered 

samples of -2 and -4 show stable curves with gradual increase in resistance. These samples 

correspond to crack growth parallel to the welding direction at approximate midplane of 

the builds. The overall fracture behavior can be explained through the interaction of 

strong/weak interfaces—growth parallel to the welding direction follows along weaker 

interfaces which appear as stable, predictable curves. In contrast, when fracture is initiated 

through the welded layers, the strong/weak interfaces demonstrate crack stopper behavior 

similar to that of a composite material and sudden changes in resistance are seen. Most 

importantly, this indicates that crack growth orientation with respect to weld direction had 

a large effect on the behavior of the additively manufactured samples. 

 

3.5.2 Fracture Surfaces 

The monolithic AA2050-T8 samples displayed very predictable and stable fracture 

along the same plane as the initial pre-crack, shown in the figure on the next page. The 
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surfaces were uniform in appearance which corresponded with the generally steady R-

curve results.  

 

 

The specimens from the thicker/slower/cast build displayed jagged fracture 

surfaces with no definite trends as far as the direction of crack propagation with respect to 

welding direction. However, the polished sides shown in Figure 3.33 demonstrate that 

changes in mode, behavior, or fracture resistance could likely be attributed to the cracks 

seeking weak areas in the weld builds. Shown by the hardness distributions through the 

layers and tensile test stress concentrations, there are strong/weak interfaces present in the 

investigated FSAM builds as a result of the process.  

 

 

Fig. 3.32 Fracture surfaces of 2050-T8 base material 
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Build samples from the thinner/faster/cast FSAM configuration exhibited fractures 

that wandered in direction from the nominal crack plane and included some very mild 

onion ring marks at the locations of pre-crack. These are shown in Figures 3.34 and 3.35 

on the next page. The jagged appearing samples of orientations -1 and -3 showed some 

distinctive artifacts within the fracture structure at several locations corresponding with lap 

weld transition zones. This reinforces the explanation for sudden changes in fracture 

resistance related to these sample orientations. The sample orientations -2 and -4 which 

denoted crack orientation parallel to the weld travel did not show the same interface defects 

and were also the orientations that displayed smoother R-curves. 

Fig. 3.33 Fracture appearances of the 

thicker/slower/cast build samples 
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Fig. 3.34 Fracture surfaces from the side view for thinner/faster/cast build samples 

Fig. 3.35 Inner fracture surfaces of thinner/faster/cast build 
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Samples that grew cracks through weld layers of the faster/thinner/T3 feedstock 

build (orientations -1 and -3) did not as-prominently exhibit layer artifacts compared to the 

welded build but did display very jagged fractures and slight layer artifacts. Importantly, it 

was observed that samples from this build with crack growth orientation parallel to weld 

travel exhibited extremely pronounced onion ring tool marks, similar to those seen in the 

tensile test samples. This is shown in the figures 3.36 and 3.37 below and on the next page 

and emphasizes the severity of the lack of plunge force with this build. It appears that from 

the nominal pre-crack plane, the fracture itself jumped to a close, under-plunged plane of 

weakness and continued the propagation along this plane. The general fracture resistance 

of these samples was still high regardless of the process fault.  

 

 

 

 

 

 

Fig. 3.36 Fracture appearance of thinner/faster/T3 build from side view 
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Fig. 3.37 Inner face fracture surfaces of the thinner/faster/T3 FSAM 

build 
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3.6 Summary Of Results 

3.6.1 Weld Process 

▪ Overall temperature and response forces were the highest in the thicker/slower/cast 

build.  

▪ Though the thicker cast build had shorter total weld length compared to the thinner 

builds, it still contained the total highest build energy   

▪ The responses for the two thinner builds were similar, however the T3 build showed 

slightly greater values.  

 

3.6.2 Metallography Analysis 

▪ All build cross sections appeared uniform and free of major defects 

▪ The thicker/slower/cast build resulted in a cold lap defect-free useable nugget width 

of 8 mm 

▪ A CLD-free usable nugget width of 7.2 mm was established for the thinner/faster 

cast build 

▪ The thinner/faster/T3 build was found to have been manufactured incorrectly but 

no CLD was observed in this build using macrographic methods 

 

3.6.3 Hardness Analysis 

▪ All builds presented inhomogeneous hardness distributions 

▪ Much of the PWHT nugget when examined through lap layers exceeded cast and 

T3 base strength—However, areas of low hardness were found distributed through 

the build depth 
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▪ These reported minimum values were located at the transition zones in between lap 

weld layers. These areas also did not recover strength with the post-weld heat 

treatment 

▪ The thicker/slower cast build displayed the most consistent hardness distribution in 

both as-welded and with a PWHT. This is likely due to more of the nugget held 

above the solution heat treating temperature during the welding process 

 

3.6.4 Tensile Analysis 

▪ Builds exhibited multiple strain concentrations throughout the tensile samples 

o Located at the weaker minimum-hardness transition zones 

▪ Largely, tensile performance was less than that of base cast 2050, 2050-T3, and 

2050-T8 with both ultimate tensile strength and average elongation 

▪ Of the three builds, the highest UTS was achieved in the as-welded 

thicker/slower/cast build. Largest average elongation was observed in the 

thinner/faster/cast build in as-welded condition 

▪ Process underplunge tool marks were observed on the tensile fracture surfaces of 

the T3 build samples 

 

3.6.5 Fracture Analysis 

▪ In general, fracture resistance of welded samples was higher than that of monolithic 

2050-T8 
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▪ The slower/thicker/cast build demonstrated the highest fracture resistance of the 

FSAM builds and both thinner builds showed similar fracture resistance and crack 

growth 

▪ Fracture behavior of these FSAM builds showed dependence of crack growth 

orientation with respect to welding direction—interaction of strong/weak interfaces 

with crack growth demonstrates behavior characteristic of composites 

▪ Surfaces of the T3 build revealed the extent of  process-related underplunge 
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CHAPTER 4 

FSAM BEAM FINITE ELEMENT ANALYSIS 

 

4.1 Introduction 

The previous chapters detailed properties of friction stir additively manufactured 

builds with cast and T3 feedstock materials. However, visualizing the behavior of a full-

size fabricated component under load is almost impossible without constructing it, and 

even then, investigations of the complex internal stress behavior would require further 

investigation. For this application, nonlinear three-dimensional finite element analysis 

(FEA) with ANSYS Mechanical 14.0 was chosen to analyze two beams models: one of 

monolithic 2050-T8 and the other made with the FSAM lap welding process. The behavior 

of these models could be useful in further understanding this additive process. 

 

4.2 Approach and Model Setup 

4.2.1 Material Properties 

The thicker/slower/cast build was chosen to populate the FSAM material property 

data for this analysis, with the beam cross section taken from the weld nugget as shown in 

Fig. 4.1. The PWHT microhardness results from the previous section were used to 

approximate local yielding properties within the beam: due to the hardness distributions 

found with this build, average hardness values were assigned to a total of twenty-five
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separate sections. Hardness and yield strength were known for 2050-T3 and 2050-T8, so a 

linear relationship was used to extrapolate yield strength of the small areas having 

knowledge of their individual hardness assignments. A diagram of the relationship is 

shown in Fig. 4.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Extrapolated data 

Figure 4.1 Sample beam cross section taken 

from thicker/slower/cast FSAM build  

Figure 4.2 Hardness and yield strength relationship for 

AA2050 tempers 
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Final sections are displayed in Figure 4.3 below—associated yield strengths are 

given in Table 4.1. It is noticeable that some of these values are quite low compared to 

2050-T3 yield strength of 250 MPa. Material properties of the 2050-T8 beam were 

determined from tensile tests and results from literature. Displayed in Table 4.2, these 

values were implemented in the user-defined material properties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Section Est. yield strength MPa 

1 283 

2 326 

3 226 

4 180 

5 372 

6 196 

7 409 

8 279 

9 347 

10 196 

11 415 

12 215 

13 202 

14 145 

15 488 

16 434 

17 434 

18 287 

19 287 

20 349 

21 349 

22 299 

23 299 

24 346 

25 346 

Yield strength, MPa 493 

Ultimate tensile strength, MPa 540 

Young’s modulus, GPa 76 

Tangent modulus, MPa 787.6 

Figure 4.3 Portioned cross sectional areas 

Table 4.2 AA2050-T8 Material Properties 

Table 4.1 Yield strength 

approximations 
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Specifically, the tangent modulus, ET, of T8 temper material was determined by the linear 

relationship between the yield strength and ultimate tensile strength of the material and 

elongations at these stresses. This is shown in Equation 4.1 below. 

 

 

 

4.2.2 Geometry 

A simple I-beam cross section was chosen for the test geometry for both models. 

Shown in Figure 4.4, the width of the flanges was established at 75 mm across. The web 

and flange thickness were 10 mm, with a total beam length of 500 mm. A moderate radius 

was applied to the web/flange connection to reduce stress concentration and potential 

convergence issues arising from sharp edges. 

 

 

 

Eq. 4.1 

62.5 mm 

Fig 4.4 Beam cross sectional geometries 
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4.2.3 Boundary conditions 

This analysis was performed as a point-load cantilever beam model. As illustrated 

in Figure 4.5, one end was given a fixed boundary condition, and the other free end had an 

applied force. The load within this analysis was determined to be 53 kN, calculated to be 

beyond the point of outer fiber yielding within a T8 beam with the previously determined 

material properties. The intent with these loading conditions is to analyze the nonlinear 

conditions within the beams after the elastic regime. 

 

 

 

4.3 Mesh And Refinement 

4.3.1 Meshing Method and Convergence 

An initial mesh for both beams was given a starting element size of 5 mm, 

comparable to that shown Figure 4.6 for the FSAM beam. The load and fixed end 

conditions were applied, and the initial analysis was performed. A variety of test points 

Fig. 4.5 Cantilever I-beam system 

Fig 4.5 Cantilever I-beam system 
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were chosen 10 mm from the fixed end of the beams to determine and ensure convergence. 

The mesh size was decreased to 3 mm shown in Figure 4.7 and the analysis was repeated. 

It was found that the stress values at these test points had acceptable (<2%) relative error 

for both models. This is an indication of a converged solution, so the 2050-T8 and FSAM 

models were determined satisfactory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.6 Initial 5 mm mesh size shown with FSAM beam 

Fig. 4.7 Final 3 mm mesh size 
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4.3.2 Model Verification 

To verify the accuracy of results, the converged 2050-T8 FEA model was evaluated 

within the linear regime and compared with a linear analytical beam analysis. The 

equations used for this analysis are shown in Eqns. 4.2 and 4.3 for deflection at the loaded 

end of the beam, qp, and bending stress needed to induce yielding of the outer fibers, σbend,Y 

[42]. The total deflection was a function of beam length, L, applied load, P, second moment 

of inertia, Ix, and material modulus of elasticity, E.  Bend stress required to induce yielding 

requires the yield moment, MY, distance from the centroid to the outer fibers, c, as well as 

the second moment of inertia. For comparison of analytical solution and ANSYS values, 

the von Mises distortional energy density yield criterion was used. This states yielding 

occurs when the von Mises equivalent stress reaches that of the material yield strength.  

 

 

 

 

                                 Where 

 

 At a load of 18.75 kN, total beam deflection and bending stress were found to be 

within 10% of the calculated values which was satisfactory. Some of the variation between 

analytical and FEA results could be attributed to the corner radii of the model geometry—

this was not applied in the linear calculation.  

 

 

Eq. 4.2 

Eq. 4.3 
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4.4 Results From Analysis 

4.4.1 Initial Loading 

At maximum load of 53 kN, both models displayed the total deformation seen in 

Figures 4.8 and 4.9. The orientation is shown with the fixed end on the left-hand side of 

the models. The total maximum deformation of the 2050-T8 beam at the point of loading 

was 14.7 mm, while the weld build resulted in 20.2 mm of max deformation at the loaded 

beam end. These results show a significant increase of deformation with the FSAM beam 

compared to that of the monolithic T8 at this load magnitude.  

 

 

 

 

 

 

 

Fig. 4.8 Total deformation of the 2050-T8 model at max load 
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The von Mises stresses experienced on the fixed end of the models are given on the 

next page with Figs. 4.11 and 4.12 at the point of maximum loading. The stress 

concentration is visibly symmetrical for the 2050-T8 model, which is expected. According 

to the yield criterion, the T8 beam exhibits yielding of the outer fibers and contains various 

locations past the ultimate tensile strength. However, the FSAM beam cross section shows 

stress asymmetrical to the centroid, with the largest concentrations on the lower flange. 

Minimum values were not observed at the centroid likely due to the asymmetry of material 

properties throughout the flange thickness. Yielding is observed at the outer fibers and 

further analysis of this model revealed that several sections within the web experienced 

stress higher than their designated yield strengths. These are captured within the dotted 

lines of Figure 4.12. 

 

 

 

Fig. 4.9 Total deformation of the FSAM model at max load 
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Fig. 4.10 Fixed-end von Mises stresses of the T8 model at max load 

Fig. 4.11 Fixed-end von Mises stresses of the FSAM model at max load 
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Internal von Mises equivalent stresses for both models were analyzed at test points 

throughout the cross section at 100 mm from the fixed end as displayed in Figure 4.12. 

Each test point was placed at 5 mm increments apart. The exact values of stress at the time 

of maximum loading are given in Table 4.3. The stress distributions for both models are 

visualized in Figures 4.13 and 4.14.  

 

 

 

 

 

 

 

 

 

Fig. 4.12 Internal test point locations for both beam models 

Fig. 4.13 Internal stresses of T8 model 100 mm from fixed end at max load 
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 Stress, MPa 

Location FSAM 2050-T8 Location FSAM 2050-T8 Location FSAM 2050-T8 

T1 370.7 338 B1 377.6 339.5 C1 284.4 369.7 

T2 365.2 338.1 B2 376.7 339.7 C2 325.7 327.7 

T3 346.1 338.4 B3 375.6 340.2 C3 305.9 292.6 

T4 299.5 339 B4 374.4 340.8 C4 274.3 261.2 

T5 344.5 339.8 B5 373.2 341.7 C5 226.1 225.6 

T6 344.2 340.7 B6 372.4 342.4 C6 202.0 191.7 

T7 287.8 340.4 B7 369.5 342.7 C7 173.5 162.9 

T8 325.8 340.4 B8 369.5 342.4 C8 150.9 142.5 

T9 344.2 340.7 B9 372.4 342.5 C9 138.6 134.5 

T10 344.5 339.8 B10 373.2 341.7 C10 140.4 140.8 

T11 299.5 339 B11 374.4 340.8 C11 157.0 159.9 

T12 346.1 338.4 B12 375.6 340.2 C12 185.0 188 

T13 365.1 338.1 B13 376.7 339.7 C13 220.7 221.6 

T14 370.6 338 B14 377.6 339.5 C14 215.3 256.8 

      C15 201.9 228.2 

      C16 352.1 324.6 

      C17 392.4 369.6 

Fig. 4.14 Internal stresses of FSAM model 100 mm from fixed end at max load 

Table 4.3 Internal von Mises stresses at test points – maximum load 
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Internally, the T8 beam exhibits symmetrical stress distribution with minimum 

stress at the centroid and maximums at the outer fibers of the flanges that do not exceed 

the yield strength. It is evident that the FSAM model experiences higher stresses in the 

bottom flange compared to the T8 beam. The top flange stress values were shown of a 

broader spread than the T8 values which were uniform. Several sections shown within the 

dotted lines of Figure 4.14 were also observed to contain stresses above their assigned yield 

strengths. These were not only located on the outer flanges, but at the connections between 

web and flanges. 

 

4.4.2 After Unloading 

The models were again analyzed after the maximum load was removed. Final 

deformations of the two beams after unloading are given in Figures 4.15 and 4.16. The T8 

beam appears to have almost no final deformation as a result of this load/unload cycle. 

However, the FSAM beam results in a final plastic deformation of 5.4 mm. This is further 

explored in the load-deformation plot of Figure 4.17. With this applied load, the FSAM 

beam exhibits the largest deformation in both the loading and unloaded steps with 

considerable plastic deformation. However, the T8 beam remains almost elastic with a final 

deformation of 0.0094 mm 
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Fig. 4.15 AA2050-T8 beam model final deformation 

Fig. 4.16 FSAM beam model final deformation 
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Residual von Mises stresses at the fixed end cross sections are shown in Figures 

4.18 and 4.19 on the next page. Concentrated stress is observed at the corners of both builds 

however this could partially be caused by sharp edges of the geometry at these locations. 

The stress at these points also does not exceed the yield strength of the material. The T8 

model does retain small amounts of stress after unloading, but not to the degree of the 

FSAM beam. Many sections within the welded build contain considerable amounts of 

residual stress. Sections 18 and 19 of the top flange experience concentrations at the outer 

fibers that are above their respective yield strengths.  

 

Fig. 4.17 Load-deformation behavior of both beam models 

Fig. 4.17 Load-deformation behavior of both beam models 
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Fig. 4.18 Residual stress at the fixed end of the T8 beam model 

Fig. 4.19 Residual stress at the fixed end of the FSAM model 
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Internal residual stress at 100 mm from the fixed end can be observed in Figures 

4.20 and 4.21 and also further analyzed at the test points in Table 4.4. Some residual 

stresses are observed with the 2050-T8 beam, but they are minimal. It is evident that 

internally, stresses remain within many sections of the welded beam at this location from 

the fixed end. Most importantly, the stress observed at the base of the web in section 14 

exceeds the yield strengths of this section due to the assigned properties of this location. 

The T8 model in comparison contains negligible residual internal stress at the time of 

unloading.    

 

 

 

 

 

Fig. 4.20 Internal stresses of the T8 model after unloading 
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 Stress, MPa 

Location FSAM 2050-T8 Location FSAM 2050-T8 Location FSAM 2050-T8 

T1 37.6 0.017 B1 34.7 0.015 C1 94.0 0.019 

T2 34.2 0.012 B2 34.2 0.010 C2 17.4 0.016 

T3 22.5 0.017 B3 33.5 0.014 C3 25.3 0.022 

T4 40.1 0.018 B4 32.9 0.015 C4 31.2 0.015 

T5 11.5 0.019 B5 32.4 0.015 C5 26.6 0.016 

T6 9.0 0.020 B6 34.2 0.014 C6 35.3 0.016 

T7 16.6 0.018 B7 32.5 0.014 C7 34.8 0.015 

T8 16.6 0.018 B8 32.4 0.011 C8 34.0 0.015 

T9 9.0 0.020 B9 34.1 0.014 C9 33.4 0.015 

T10 11.5 0.018 B10 32.4 0.013 C10 32.8 0.014 

T11 40.1 0.017 B11 32.9 0.013 C11 32.4 0.014 

T12 22.5 0.016 B12 33.5 0.013 C12 32.0 0.013 

T13 34.2 0.011 B13 34.2 0.013 C13 31.8 0.013 

T14 37.6 0.013 B14 34.7 0.014 C14 83.6 0.013 

      C15 128.8 0.016 

      C16 36.7 0.012 

      C17 21.8 0.021 

Fig. 4.21 Internal stresses of the FSAM model after unloading 

Table 4.4 Internal von Mises stresses at test points –Unloaded 
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4.5 Conclusions 

Mechanical properties of a friction stir additive manufacturing build were used to 

populate a FEA beam model and compared to an identical beam made from 2050-T8. The 

FSAM model properties were determined by grouping sections of similar microhardness 

and then assigned corresponding yield strengths assuming AA2050 temper property 

relationships.  

With the same load and geometry, the welded beam showed significant residual 

stress and plastic deformation as a result of the loading and unloading cycles. Importantly, 

after the load was removed some of the sections within the beam and away from the fixed 

end experienced residual stresses above their assigned yield strengths. However, the T8 

beam did not exhibit severe plastic deformation or major residual stresses. 
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CHAPTER 5 

CONCLUSIONS 

 

1. The use of opposing, double weld passes is an effective strategy to reduce the 

retreating side CLD in friction stir lap welds 

 

2. Resulting inhomogeneous hardness distribution of FSAM builds with this 

aluminum alloy creates areas of lower strength which do not recover with the 

applied PWHT.  

a. Strain concentrates, and eventual failure occurs at these low-hardness areas 

under tensile load 

 

3. Fracture behavior of FSAM is much like that of a composite—There is a noticeable 

relationship of crack growth orientation with respect to welding direction/lap layers 

as a result of the inhomogeneous hardness distributions 

 

4. There is not a significant disadvantage to using cast AA2050 feedstock with the 

FSAM process compared to the use of AA2050-T3
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5. From the current investigations at this point, this AM process is not well suited to 

industrial applications intending to replace wrought materials such as AA2050-T3 

or AA2050-T8. Further exploration is required with this process to explore its 

potential technology readiness.  
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CHAPTER 6 

FUTURE RECOMMENDATIONS 

 

1. Microstructural characterization of the FSAM materials could be performed to 

examine grain size and precipitate phases throughout in order to further explore the 

properties of friction stir lap welded additive manufacturing with the current alloy or 

investigate other alloys for their FSAM potential. 

 

2. It may also be prudent to investigate alternative heat treatments or explore aging times 

for FSAM hardness recovery with AA2050.  

 

3. Determine local yield strengths from DIC tensile results, and assign these to the FEA 

model sections for more accurate analysis 

 

4. Conduct in-depth fractography and characterization of tensile and fracture test 

surfaces to investigate the mechanics of the current build failures 

 

5. Perform a cost-benefit analysis of FSAM compared to other additive processes and 

current industry methods involving subtractive manufacturing 
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APPENDIX A 

25 MM PIN DIMENSIONS 
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APPENDIX B 

12.85 MM PIN DIMENSIONS 
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APPENDIX C 

TENSILE SAMPLE GEOMETRY 

  



 

94 

APPENDIX D 

COMPACT TENSION COUPON GEOMETRY 
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APPENDIX E 

WELD PROCESS FEEDBACK OF THICKER/SLOWER/CAST BUILD  

  

Layer - 

pass 

X 

Force 

(lbf) 

Y Force 

(lbf) 

Z Force 

(lbf) 

Steady State 

Temp (°C) 

Max 

Temp 

(°C) 

Torque 

(N-m) 

Power 

(kW) 

Layer 1-1 1,723 3,564 12,002 501 512 373 7.8 

Layer 1-2 2,400 3,964 12,000 517 531 382 8 

Layer 2-1 1,694 3,927 12,002 503 522 371 7.8 

Layer 2-2 2,071 3,678 12,004 519 527 383 8 

Layer 3-1 1,634 3,192 12,001 506 554 384 8 

Layer 3-2 2,303 4,196 12,007 515 525 387 8.1 

Layer 4 -

1  

2050-T3 

2,373 2,829 12,000 540 556 383 8 

Layer 4-2 

2050-T3 
2,171 3,618 12,001 527 531 396 8.3 
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APPENDIX F 

WELD PROCESS FEEDBACK OF THINNER/FASTER/CAST BUILD 

Layer- weld pass 

X Force 

(lbf) 

Y Force 

(lbf) 

Z Force 

(lbf) 

Steady State 

Temp (°C) 

Max 

Temp 

(°C) 

Torque 

(N-m) Power, kW 

Layer 1-1 896 1216 7000 483 511 167 
4.4 

Layer 1-2 897 1423 7000 487 505 162 
4.2 

Layer 2-1 780 1212 7000 481 501 164 
4.3 

Layer 2-2 1011 1323 7000 490 501 163 
4.3 

Layer 3-1 809 1241 7000 480 498 170 
4.5 

Layer 3-2 816 1433 7000 487 501 168 
4.4 

Layer 4 -1 889 1218 6999 483 505 164 
4.3 

Layer 4-2 939 1400 6999 490 512 162 
4.2 

Layer 5-1 729 1183 6999 486 502 161 
4.2 

Layer 5-2 788 1382 7000 492 503 160 
4.2 

Layer 6-1 657 1277 7000 483 496 167 
4.4 

Layer 6-2 1164 1436 7000 491 497 164 
4.3 

Layer 7-1  

(2050-T3) 

1656 2290 6999 480 514 155 
4.1 

Layer 7-2 

(2050-T3) 

1028 1456 6999 497 503 165 
4.3 
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APPENDIX G 

WELD PROCESS FEEDBACK OF THINNER/FASTER/T3 BUILD 

Layer- weld 

pass 

X Force 

(lbf) 

Y Force 

(lbf) 

Z Force 

(lbf) 

Steady State 

Temp (°C) 

Max 

Temp 

(°C) 

Torque (N-m) Power, 

kW 

Layer 1-1 1557 1747 7501 493 508 170.3 
4.5 

Layer 1-2 1116 1111 7501 496 503 178.8 
4.7 

Layer 2-1 1656 2060 7499 488 503 161.4 
4.2 

Layer 2-2 840 994 7499 500 507 169.7 
4.4 

Layer 3-1 1388 1961 7500 488 501 160.1 
4.2 

Layer 3-2 776 987 7500 499 506 168.2 
4.4 

Layer 4 -1 1462 2084 7500 488 509 159.2 
4.2 

Layer 4-2 940 1000 7499 499 509 168.4 
4.4 

Layer 5-1 1503 2176 7501 483 502 165.0 
4.3 

Layer 5-2 908 995 7499 498 508 171.2 
4.5 

Layer 6-1 1499 2237 7500 485 501 160.2 
4.2 

Layer 6-2 961 1058 7500 499 506 168.1 
4.4 

Layer 7-1 1463 2193 7501 489 505 157.8 
4.3 

Layer 7-2 930 1023 7499 502 506 166 
4.4 
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