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Abstract

In 2016, Hasebe and Tsujie gave a recursive characterization of the set of induced

N -free and bowtie-free posets; Misanantenaina and Wagner studied these orders fur-

ther, naming them “V-posets”. Here we offer a new characterization of V-posets by

introducing a property we refer to as autonomy. A poset P is said to be autonomous

if there exists a directed acyclic graph D (with adjacency matrix U) whose transitive

closure is P , with the property that any total ordering of the vertices of D so that

Gaussian elimination of UTU proceeds without row swaps is a linear extension of P .

Autonomous posets arise from the theory of pressing sequences in graphs, a problem

with origins in phylogenetics. The pressing sequences of a graph can be partitioned

into families corresponding to posets; because of the interest in enumerating pressing

sequences, we investigate when this partition has only one block, that is, when the

pressing sequences are all linear extensions of a single autonomous poset. We also

provide an efficient algorithm for recognition of autonomy using structural informa-

tion and the forbidden subposet characterization, and we discuss a few open questions

that arise in connection with these posets.
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Chapter 1

Introduction

The work in this thesis grew out of an attempt to exhibit the #P-completeness of

a certain graph operation known as a pressing sequence, to be defined later. We

hoped that in characterizing a certain class of posets related to pressing sequences

of graphs we could use tools developed to prove the #P-completeness of counting

linear extensions of posets found in [1], and more recently, tools used to prove the

#P-completeness of counting linear extensions restricted classes of posets such as

height-2 posets or dimension-2 posets found in [4]. In our investigation, we found this

class of posets is too restricted, and its linear extensions are countable in polynomial

time, but at the same time we were able to proved an alternating characterization

to posets studied in [7] and [8] know as V−posets. This work also provides a step

in the direction of understanding the full relationship between graphs and the posets

they generate via pressing sequences, which will be defined later. We show there is a

bijection between the linear extensions of posets a graph generates and the pressing

sequences of a graph which suggest a better understanding of the relationship between

graphs and the posets they generate could possibly be used for fast algorithms for

sampling from the pressing sequences of a graph and FPRAS for approximating the

number of pressing sequences of a graph since such algorithms have been developed

for linear extensions of posets.

A simple pseudo-graph is a graph that admits loops but not multiple edges (some-

times known as a “loopy graph”). Given a simple pseudo-graph G, denote by V (G)

the vertex set of G; E(G) ⊆ V (G) × V (G), symmetric as a relation, its edge set.
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Let N(v) = NG(v) = {w ∈ V (G) : vw ∈ E(G)} the neighborhood of v in V (G).

Observe that v ∈ N(v) iff v is a looped vertex. For S ⊂ V , we denote by G[S] the

vertex-induced subgraph on S.

Definition 1.1. Consider a simple pseudo-graph G with a looped vertex v ∈ V (G).

“Pressing v” is the operation of transforming G into G′, a new simple pseudo-graph

in which G[N(v)] is complemented. That is,

V (G′) = V (G), E(G′) = E(G)4 (N(v)×N(v))

We denote by G(v) the simple pseudo-graph resulting from pressing vertex v in V (G)

and we abbreviate G(v1)(v2)···(vk) to G(v1,v2,...,vk). For k ≥ 1 we abbreviate (1, 2, . . . , k)

as k so that when V (G) = [n] for some n ≥ k then we may simplify G(1,2,...,k) to

Gk. G0 and G() are interpreted to mean G. To aid with inductive arguments, we let

G(v) = G(v) − v: the result of pressing v in G (which leaves it isolated, loopless, and

thenceforth unpressable) and then removing the pressed vertex.

Given a simple pseudo-graph G, (v1, v2, . . . , vj) is said to be a successful pressing

sequence for G whenever the following conditions are met:

• {v1, v2, . . . , vk} ⊆ V (G),

• vi is looped in G(v1,v2,...,vi−1) for all 1 ≤ i ≤ k,

• G(v1,v2,...,vk) = (V (G), ∅)

In other words, looped vertices are pressed one at a time, with “success” meaning that

the end result (when no looped vertices are left) is an empty graph. This topic orig-

inated in computational phylogenetics, where Hannenhalli and Pevzner showed that

certain simple pseudo-graphs correspond to pairs of genomes and that the reversal

edit distance between these genomes is the minimum length of a successful pressing

sequence of said graph [6]. In phylogenetics, the simple pseudo-graph corresponds to
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a pair of homologous genomes and its successful pressing sequences corresponds to a

most plausible (i.e., parsimonious) evolutionary history between the genomes (see [5,

10]). In the present work we look at the set of simple pseudo-graphs whose pressing

sequences correspond to the linear extensions of a single poset. Since linear exten-

sions can be efficiently sampled asymptotically uniformly, this shows that pressing

sequences, and hence the evolutionary histories of the pairs of genomes giving rise to

said pseudo-graphs, can be sampled near-uniformly.

Definition 1.2. An ordered simple pseudo-graph, abbreviated OSP-graph, is a simple

pseudo-graph with a total order on its vertices. In this paper, we will assume that the

vertices of an OSP-graph are subsets of the positive integers under the usual ordering

“<”. An OSP-graph G is said to be order-pressable if there exists some initial segment

of V (G) that is a successful pressing sequence.

Figure 1.1 Left to right: an OSP-graph G; G(1), the result
pressing 1 in G; and G2, the result of pressing and then
removing vertices 1 and 2 in G. Loops are drawn a shaded
vertices.

Definition 1.3. It was shown in [2] that pressing the vertices of a simple-pseudo-

graph is essentially equivalent to performing Gaussian elimination with no row swaps

on its adjacency matrix; therefore, the length of any successful pressing sequence of a
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simple pseudo-graph is the F2-rank of its adjacency matrix. Thus, we define the rank

of a simple pseudo-graph to be the F2-rank of its adjacency matrix. The rank of a

simple pseudo-graph on n vertices can vary from 0 (in the case that it is an edgeless

simple pseudo-graph) to n (such as is the case in Figure 1). We say G is full-rank if

its adjacency matrix is invertible over F2.

Call a matrix M “Cholesky" if there exists an upper-triangular matrix U so that

M = UTU . In [2] a proof was given that Cholesky decompositions of full-rank, F2

matrices are unique; in [3] it was shown that for every OSP-graph and adjacency

matrix A there exists a particular Cholesky decomposition of A that encodes the

pressing instructions for G.

Definition 1.4. Let G be OSP-graph with adjacency matrix A (whose rows and

columns are ordered by the identity permutation). The instructional Cholesky root of

G (over F2) is the upper triangular matrix U where for all (i, j) ∈ [n]× [n], U [i, j] = 1

if and only if ij ∈ E(Gi−1). In [3] it was shown that U satisfies that UTU = A,

therefore is a Cholesky decomposition of G.

The reason this matrix is called “instructional” is that it contains the instructions

for how vertices affect one another during the corresponding pressing sequence: the

(i, j) entry is 1 iff pressing i flips the state of j. Since the (instructional) Cholesky

matrices are upper-triangular we may also regard U as the adjacency matrix of a

directed acyclic graph with vertex set {v | v is pressed at some point in the success-

ful pressing sequence}. Furthermore, the transitive closure of this digraph can be

considered as a poset. Although it is possible to define these instructional posets for

less-than-full-rank OSP-graphs, presently we are only concerned with the posets of

full-rank OSP-graphs.

We refer to the set of looped vertices in a graph G by L(G) and the set of successful

pressing sequences for G as Σ(G).
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Lemma 1.5 ([2], Theorem 9). Let G be a full-rank OSP-graph and σ ∈ Σ(G). Let A

be the adjacency matrix of G with rows and columns ordered by σ. σ ∈ Σ(G) if and

only if A has a Cholesky decomposition over F2.

Definition 1.6. Let G be a full-rank OSP-graph and σ ∈ Σ(G). Let U be the in-

structional Cholesky root of A=adj(G), with rows and columns ordered identically

by σ, and D the digraph with vertex set V (G) and adjacency matrix U . The in-

structional poset of G under σ is Poset(G, σ) = (V (G),�) where y � x (equivalently

x � y) if there is an x to y path in D, i.e., Poset(G, σ) is the transitive closure of D.

We say P is generated by G, or equivalently G is a generator of P , if Poset(G, σ)

= P for some σ ∈ Σ(G). If σ is the natural order given by G (typically the identity

permutation) we simply write Poset(G). We denote the set of instructional posets of

an OSP-graph G by S(G).

Figure 1.2 An order-pressable graph G and the Hasse
diagrams of the two posets it generates.

Example 1.7. Let P be a poset on the element set [4] = {1, 2, 3, 4} with cover

relations 1 � 3, 2 � 3, 3 � 4. Then any OSP-graph that generates P must have an
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adjacency matrix A = UTU where U is of the form



1 0 1 ∗

0 1 1 ∗

0 0 1 1

0 0 0 1


. It follows that P

has four generators, as shown below.

Figure 1.3 The Hasse diagram of P and its four generators.

We finish this section with two more lemmas from [2] which we will need below.

Lemma 1.8 ([2], Proposition 1). Let G be an OSP-graph. Σ(G) 6= ∅ if and only if

every component of G containing two or more vertices contains a looped vertex.

Lemma 1.9 ([2], Theorem 9). Let G be a full-rank OSP-graph and σ ∈ Σ(G). Let A

be the adjacency matrix of G with rows and columns ordered by σ. σ ∈ Σ(G) if and

only if every leading principal minor (over F2) of A is non-zero.
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Chapter 2

Structure of Autonomous Posets

We denote the set of linear extensions of a poset P by LE(P).

Lemma 2.1. If G is a full-rank OSP-graph then LE(P(G, σ)) ⊆ Σ(G) for all σ ∈

Press(G). That is, Σ(G) = ⋃
P∈S(G) LE(P).

Proof. Let G = ([n], E) be an OSP-graph of rank n ordered by successful pressing

sequence σ. By relabeling G we may assume σ is the identity permutation. Let A

be the adjacency matrix of G (with rows and columns ordered by σ) and U be its

instructional Cholesky root (identically ordered). Let D = ([n],−→E ) be the directed

acyclic graph (aka “DAG”) with adjacency matrix U . Let P = Poset(G) = ([n],�P )

and observe that if (a, b) ∈ −→E then a �p b.

Fix a linear extension τ = (τ1, τ2, . . . , τn) of P . By the previous observation, if

(τi, τj) ∈
−→
E then τi �P τj and hence τi must appear before τj in τ = (τ1, τ2, . . . , τn).

Thus, (τi, τj) ∈
−→
E implies i ≤ j ∈ N. By contraposition, we have that

i > j implies (τi, τj) /∈
−→
E .

Let P be the permutation matrix encoding τ . The previous assertion can be restated

as [
P TUP

]
i,j

= 0 for all i > j.

Then V = P TUP is an upper-triangular matrix and

V TV = (P TUP )T (P TUP ) = P TUTUP = P TAP.
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Observe that P TAP is a full-rank symmetric matrix with a Cholesky decomposi-

tion given by V . It follows from Lemma 1.5 that τ is a successful pressing sequence

for G.

Definition 2.2. We say an OSP-graph G is an autonomous graph if

Σ(G) = LE(Poset(G)). We say P is an autonomous poset if there exists an au-

tonomous graph G that generates P . That is, if there exists an OSP-graph G such

that Poset(G, σ) = P for some σ ∈ Σ(G) and Σ(G) = LE(P).

In our main theorem, we will show that the set of autonomous posets is precisely

the set of induced N -free and induced bowtie-free posets (refered to in [8] as the set

of V-posets).

Definition 2.3. For a graph G and a vertex x /∈ V (G) we let x⊕G be the graph with

vertex set V (G)∪{x}, edge set E(G)4
(
L(G)∪{x}

2

)
, and L(x⊕G) = {x}. Equivalently,

x⊕G is the graph that results from adding a looped vertex x to V (G) and making it

incident to each looped vertex in G to get an intermediate graph H, then switching

the state of each edge (including loops and non-loops) in NH(x) \ {x}. We refer to

this process as left-appending x to G, we justify this terminology in the following

observation.

Observation 2.4.

Consider OSP-graphs G and H = x ⊕ G. Let τ = (τ1, τ2, . . . , τn+1) ∈ Σ(H). Since

L(H) = {x} we have that τ1 = x. Furthermore, pressing x switches the state of every

edge in NH(x) so H(x) = G. Thus, the successful pressing sequences of H are exactly

those resulting from left-appending x to the successful pressing sequences of G. If G

is order-pressable with instructional Cholesky root U , then x ⊕ G is order-pressable
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and has instructional Cholesky root V that satisfies

V [i, j] =



U [i− 1, j − 1] if i, j ≥ 2

1 if i = 1 and j ∈ L(G)

0 otherwise.

Definition 2.5. For a graph G and a vertex x /∈ V (G) we let G ⊕ x be the graph

with vertex set V (G) ∪ {x}, edge set E(G) ∪ {lx | l ∈ L(G)}, and

L(G⊕ x) =


L(G) if |V (G)| is odd

L(G) ∪ {x} if |V (G)| is even

Equivalently, G⊕x is the graph that results from adding a vertex x to V (G), making

it incident to each looped vertex in G, and, if the resulting graph has an odd number

of vertices, then we add a loop to x. We refer to this process as right-appending x to

G.

Figure 2.1 OSP-graphs x⊕G, G, and G⊕ x, respectively.

Recall that the instructional Cholesky root of an OSP-graph is unique. In par-

ticular, if H is a full-rank graph and V TV is a Cholesky factorization of A = adj(H)

then V must be the instructional Cholesky root of H; from this we get the following

observation.
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Observation 2.6.

If G is order-pressable graph on n vertices and has instructional Cholesky root U

then G⊕ x is order-pressable and has instructional Cholesky root V where

V [i, j] =



U [i, j] if i, j ≤ n

1 if j = n+ 1

0 otherwise.

Lemma 2.7. If G is autonomous then so is x⊕G.

Proof. Let H = x ⊕ G. Since L(H) = {x} we have only one candidate vertex for

an initial press. Furthermore, by Observation 2.4, H(x) = G. It follows that any

pressing sequence must start with x and then continue as a pressing sequence for G.

Therefore, the only instructional poset of H is that of G with a maximum element x

appended. This demonstrates that H is also autonomous.

Lemma 2.8. If G is autonomous then so is G⊕ x.

Proof. If |V (G)| = 1 and G is order-pressable then G is the graph on a single looped

vertex and G ⊕ x is the graph with one looped vertex, one unlooped vertex and

an edge between them; both of these graphs are uniquely pressable and therefore

autonomous. Assume now towards an inductive argument that |V (G)| > 1 and that

the inductive hypothesis holds for |V (G)| − 1. Let G = ([n], E) and H = G ⊕ x.

By Observation 2.6, every pressing sequence of G can be extended to a pressing

sequence for H by appending x to the end of the sequence. Therefore, we need only

show that |Σ(H)| = |Σ(G)| to conclude that H generates only one poset, namely,

Poset(G) with the addition of a minimal element x. Since NH(x) = L(G), the result

of pressing x (should it be looped) in H would be a loopless graph – by Lemma 1.8

such a graph cannot be successfully pressed. Thus, every successful pressing sequence

for H must begin with some element of L(H)\{x} = L(G). Choose and fix j ∈ L(G)
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that is the initial vertex in a successful pressing sequence for H. Assume, by way

of contradiction, that j is not maximal in Poset(G). It follows that no successful

pressing sequence for G begins with j, hence (by Lemma 1.8) G(j) contains a loopless

component on two or more vertices; call this component C.

Consider now the result of pressing j in H. Since

NH(j) ∩ V (C) = L(G) ∩ V (C) = NH(x) ∩ V (C),

we have that every edge from x to V (C) is deleted upon pressing j and V (C) is a set

of unlooped vertices in H(j). Finally, observe that any vertex that is incident to x in

H(j) must be in a different component than C, as it was in G. It follows that H(j)

contains a non-trivial loopless component, contradicting that j was the beginning of a

successful pressing sequence. Thus, the initial presses of H are those of G. Observing

that H(j) = G(j) ⊕ x the result follows from the inductive hypothesis.

Lemma 2.9. If P is an autonomous poset and k is a minimal element, then P−k is

also an autonomous poset. Furthermore, if S(G) = {P} then S(G− k) = {P − k}.

Proof. Let P is an autonomous poset on n elements. By relabeling, we may assume

that the elements of P are the integer set [n] = {1, 2, . . . , n}, so that (1, 2, . . . , n)

is a linear extension of P . By relabeling the minimal elements, we may assume the

element we remove is n.

Let G = ([n], E) such that G generates only P . Let A be the adjacency matrix of

G. By Lemma 1.9 and the fact that S(G) = {P}, for any permutation matrix P we

have that P TAP has all non-singular leading principal minors (i.e., is LPN) if and

only if P encodes a linear extension of P . Let A′ denote the (n− 1)× (n− 1) leading

principal submatrix of A. Choose and fix an (n − 1) × (n − 1) permutation matrix

P ′.
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Suppose P ′TA′P ′ is LPN. Then P ′ 0

0 1


T  A′ ∗

∗ a


 P ′ 0

0 1

 =

 P ′TA′P ′ ∗

∗ a



is LPN if and only if

 P ′TA′P ′ ∗

∗ a

 is invertible, which occurs if and only if

 A′ ∗

∗ a

 is invertible. Since A is invertible, we may conclude that if P ′TA′P ′ is

LPN then  P ′ 0

0 1


T

· A ·

 P ′ 0

0 1


is LPN. It follows that every successful pressing sequence for a graph G′ with adja-

cency matrix A′ can be extended to a successful pressing sequence for G by appending

n to the end of the sequence. Furthermore, the instructional Cholesky root of A′ is

the (n − 1) × (n − 1) leading principal submatrix of A; hence G′, the graph whose

adjacency matrix is A′, generates P − n.

Lemma 2.10. If P is an autonomous poset and k is a maximal element of P, then

P − k is also an autonomous poset.

Proof. Suppose P is autonomous and G is an OSP-graph such that S(G) = {P}. Let

U be the n×n intructional Cholesky root of G. Then the intructional Cholesky root of

G(1) is the (n−1)×(n−1) trailing principal submatrix of U . Thus, G(1) is a generator

of P − k. However, every successful pressing sequence of G(1) can be left-appended

by k to obtain a successful pressing sequences for G. Hence,
∣∣∣Σ (G(1)

)∣∣∣ = |Σ (G)|, so

that P − k is the only poset generated by G(1).

Lemma 2.11. Let P be an autonomous poset on n ≥ 3 elements. If P has a max-

imum element x and a minimal element z such that x covers z, then any graph G

that generates only P must satisfy |L(G)| = 1.

12



Proof. By assumption that x is maximum we have that P is connected; therefore, if

y ∈ P \ {x, z}, then x � y and y is incomparable to z. Suppose first that n = 3,

whence P = ({x, y, z},�) with x covering both y and z. If G is an OSP-graph that

generates P then the adjacency matrix A of G must have an instructional Cholesky

root U encoding the cover relations of P . Hence

U =


1 1 1

0 1 0

0 0 1

 and so A = UTU =


1 1 1

1 0 1

1 1 0

 .

As the result holds for n = 3, we proceed by induction on n ≥ 4. Choose a

minimal element y ∈ P \ {x, z}, let P ′ = P − y, and let G′ = G− y.

By Lemma 2.9, P ′ is autonomous and S(G′) = {P ′}. Furthermore, P ′ has a

maximum element x and a minimal element z such that x covers z, so we may apply

the inductive hypothesis; |L(G′)| = 1, in particular, L(G′) = {x} (since it must be a

pressable vertex). It follows that L(G) ⊆ {x, y}. Assume, by way of contradiction,

that y ∈ L(G). If xy /∈ E(G) then pressing y would create a looped vertex in

every component of G(y), therefore there is a pressing sequence that begins with y,

contradicting that P is autonomous. Thus, we must conclude that xy ∈ E(G). Since

z is a minimal element covered by x, then z is an isolated looped vertex in G(x) and

hence NG(z) = NG(x). In particular, yz ∈ E(G).

Let S = NG(x) \ NG(y) and T = NG(y). Assume, towards a contradiction, that

S 6= ∅. Observe that sx, sz ∈ E
(
G(y)

)
for all s ∈ S and hence there is a connected

component in G(y) containing x and z (as well as the elements of S), and z is looped

in G(y). Every other connected component in G(y) was created by deleting an edge

between the vertices of T and hence contains an element of T which is now looped.

It follows that G(y) can be successfully pressed, which is a contradiction. Thus, we

may proceed under the assumption that S = ∅.

If v ∈ NG(y) \ NG(x) then v is looped in G(y), xy ∈ E
(
G(y)

)
, and every other
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connected component in G(y) was created by deleting the edge between two unlooped

vertices and therefore would contain a looped vertex. It follows that NG(y) = NG(x),

therefore x and y can be interchanged in any successful pressing sequence. This

contradicts that G is autonomous, so we must conclude that y /∈ L(G), as desired.

Definition 2.12. Let P = (X,�) be a poset. We say (a, b, c, d) is an occurrence of

the pattern N in P if {a, b, c, d} ⊆ X and a � c, a � d, and b � d. We say (a, b, c, d)

is an induced occurrence of the pattern N in P if a � c, a � d, b � d and otherwise

a, b, c and d are pairwise incomparable.

We say (a, b, c, d) is an occurrence of the pattern bowtie in P if {a, b, c, d} ⊆ X

and a � c, a � d, b � c, and b � d. We say (a, b, c, d) is an induced occurrence of the

pattern bowtie in P if a � c, a � d, b � d and otherwise a, b, c and d are pairwise

incomparable.

We say P is induced N-free if it contains no induced occurrences of the pattern

N . Similarly, P is induced bowtie-free if it contains no induced occurrences of the

pattern bowtie.

It is worth noting that the literature varies on the definitions of “N -free poset”. In

our terminology a poset may include an occurrence of the pattern N yet be induced

N - and bowtie-free. Such an example is the poset P = ([4], {1 � 2 � 3 � 4}).

Lemma 2.13. Autonomous posets are induced N-free.

Proof. Let P ′ be an autonomous poset and assume towards a contradiction that

(a, b, y, z) is an induced occurrence of the pattern N in P ′. Let P = (X,�) be the

result of iteratively removing maximal and minimal elements from P ′ until a, b are

the only maximal elements and y, z are the only minimal elements. By Lemmas 2.9

and 2.10, P is an autonomous poset with an induced occurrence of the pattern N ,

namely (a, b, y, z). Observe that if there exists (a′, b′, y′, z′) 6= (a, b, y, z) that induces

the pattern N in P then we may repeat the process of iteratively removing elements
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until only a′, b′, y′, z′ are extremal elements; thus, we proceed under the assumption

that P has exactly one induced occurrence of the pattern N .

Choose x ∈ P such that x � y (hence x 6= y). By assumption that only a

and b are maximal in P we have that a � x or b � x. Since (a, b, y, z) is an induced

occurrence of the pattern N we have b 6� y and hence b 6� x, therefore a � x. Observe

that if x 6� z then (a, b, x, z) is an induced occurrence of the pattern N , contrary to

assumption. Thus, x � z (since x 6= z) and it follows that (x, b, y, z) is an induced

occurrence of the pattern N implying that x = a, therefore a covers y.

Now choose w ∈ P such that b � w, observe that w 6= a. Since b 6� y we have

w 6� y, hence w � z. If a � w � z then (a, b, y, w) is an induced occurrence of the

pattern N , contrary to assumption. Hence, a � w if and only if w = z. However, if

w 6= z then (a, w, y, z) is an induced occurrence of the pattern N , again contrary to

assumption. Therefore, w = z and it follows that b covers z.

By assumption that P is autonomous there exists a graph G that generates only

P . Fix such a G. Since b ∈ P is maximal, there is a successful pressing sequence

beginning with b ∈ V (G); thus b ∈ L(G). A sequence σ′ = (σ1, . . . , σk) is successful

in G(b) exactly when σ = (b, σ1, . . . , σk) is successful in G. Since G generates an

autonomous poset then so does G(b) and hence P − b is autonomous. Further P − b

meets the description of Lemma 2.11 so L
(
G(b)

)
= {a}, therefore L (G) = {a, b} ∪

NG(b). Now observe that if v ∈ NG(b), then pressing b affects v and hence b � v. It

follows that NG(b) = {b, z}, therefore L (G) = {a, b, z}. We proceed to show that z

can be pressed in G, contradicting that S(G) = {P}

Suppose first that a /∈ NG(z). Then NG(z) \ {b} ⊆ L
(
G(z)

)
and bv ∈ E

(
G(z)

)
for all v ∈ NG(z) \ {b}. It follows that any component created by pressing z in G has

a looped vertex, and hence there is a successful pressing sequence starting with z in

Σ(G), a contradiction. Thus we must conclude that {a, b, z} ⊆ NG(z). Observe that

the only elements comparable to y in P are a and y itself. Thus in any successful
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pressing sequence of G, a must be pressed before y and no other vertex affects (or is

affected by) y. Hence y /∈ L(G) and NG(y) = NG(a)\{y}. Then {a, b, y, z} ⊆ NG(z).

Since ab, by /∈ E(G) we have that ab, by ∈ E
(
G(z)

)
and hence a, b and y are path

connected and y ∈ L
(
G(z)

)
. Similarly, if v ∈ NG(z) \ {a, b, y, z} then bv ∈ E

(
G(z)

)
.

It follows that every non-trivial component created by pressing z in G contains a

looped vertex, therefore z is the initial press of for some σ ∈ Σ(G), a contradiction.

Before proceeding, we state the main theorem of [3], which will be used below.

Theorem 2.14 ([3], Theorem 1). Let G = ([n], E) be full rank with instructional

Cholesky root U . Then G is uniquely pressable (i.e., has exactly one pressing se-

quence) if and only if U has columns C1, . . ., Cn whose weights (number of nonzero

entries) are w1, . . ., wn respectively, satisfying:

• For each j, if Cj = (c1,j, c2,j, . . . , cn,j)T then


ci,j = 1, j − wj < i ≤ j

ci,j = 0, otherwise
.

• 1 = w1 ≤ w2 ≤ · · · ≤ wn.

• wi > 2 implies wi+2 > wi, for i ∈ [n− 2].

• If wi is odd for i > 1, then wj = j for all j ≥ i.

For an integer n, let Λ(n) denote the poset with element set [n] such that n − 2

covers n and i covers i + 1 for all i ∈ [n − 2]. The Hasse diagram of Λ(n) consist

of two minimal elements (n − 1 and n) below a chain of length n − 2. Let GΛ(n)

be the OSP-graph with vertex set V (G) = [n], edge set E(G) = {(i, i + 1) | i ∈

[n− 1]} ∪ {(1, 1), (n− 2, n)}.

Lemma 2.15. Λ(n) is an autonomous poset and GΛ(n) is the unique graph which

generates only Λ(n).
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Proof. Observe that for n = 3 we have only one instructional Cholesky that generates

Λ(n);

U =


1 1 1

0 1 0

0 0 1

 .

It follows that the only graph that generates Λ(3) has adjacency matrix

A = UTU =


1 1 1

1 0 1

1 1 0


which is the adjacency matrix of GΛ(3).

For n = 4 we need only consider instructional Cholesky roots of the form:

1 1 ∗1 ∗2

0 1 1 1

0 0 1 0

0 0 0 1


where ∗1, ∗2 ∈ {0, 1}. A quick check reveals that setting ∗1 = ∗2 = 0 yields a graph

with two successful pressing sequences (1, 2, 3, 4) and (1, 2, 4, 3), and otherwise the

resulting graph has 3 or more successful pressing sequences; hence the claim holds

for n = 4.

We proceed by induction on n ≥ 5. Let G be an OSP-graph that generates

only Λ(n). Since Λ(n) has maximum element 1, we have that 1 ∈ L(G) and G(1)

has instructional poset Λ(n) − 1. But Λ(n) − 1 is isomorphic to Λ(n − 1). By the

inductive hypothesis we have that G(1) is isomorphic to GΛ(n−1).

Let U be the instructional Cholesky of G under the identity permutation. Let

A = UTU and let U ′ be the (n − 1) × (n − 1) leading principal submatrix of U ,

A′ = U ′TU ′ and G′ = ([n − 1], E ′) the graph with adjacency matrix A′. Choose

and fix σ ∈ Sn such that σ(n) = n and let Pσ be the permutation matrix encoding
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σ. Let Pσ′ be the (n − 1) × (n − 1) leading principal submatrix of Pσ′ and σ′ its

corresponding permutation. Observe that since G is full-rank then A is invertible.

Hence, σ′ ∈ Σ(G′) if and only if P T
σ′A

′Pσ′ is in LPN form, which occurs if and only if

P T
σ APσ is in LPN form, which in turn occurs if and only if σ ∈ Σ(G).

Since Σ(G) = {(1, 2, . . . , n − 2, n − 1, n), (1, 2, . . . , n − 2, n, n − 1)} we have that

the only successful pressing sequence of G′ is σ′ = (1, 2, . . . , n − 2, n − 1) and hence

G′ is a uniquely pressable graph (has only one pressing sequence). By Theorem 2.14,

if U ′[1, i] = 1 then U ′[2, i] = U ′[2, i+ 1] = 1 and hence for 2 ≤ i ≤ n− 2 if U [1, i] = 1

then U [2, i] = U [2, i+ 1] = 1 . However the intructional Cholesky root of G(1) is the

(n− 1)× (n− 1) trailing principal minor of U and G(1) is isomorphic to GΛ(n−1). It

follows that U [2, i+ 1] = 0 for all 3 ≤ i ≤ n− 1 thus U [1, i] = 0 for all 3 ≤ i ≤ n− 1,

hence [3, n − 1] ∩ NG(1) = ∅. Observe that by relabeling n to n − 1 and vice-versa

we can make the same argument and conclude that n /∈ NG(1), therefore U [1, n] = 0.

We conclude that G = GΛ(n).

For an integer n we let X(n) denote the poset with element set [n] so that 1 covers

3, n− 2 covers n, and i covers i+ 1 for all i ∈ [2, n− 2]. The Hasse diagram of X(n)

consist of a chain of length n− 4 joining two minimal elements (n− 1 and n) to two

maximal elements (1 and 2).

Lemma 2.16. X(n) is not an autonomous poset.

Proof. Assume, by way of contradiction, that X(n) is an autonomous poset and let

G be any graph that generates only X(n). Every successful pressing sequence of G

must begin with 1, 2, 3 or 2, 1, 3. Thus, {1, 2} ⊆ L(G). Since 3 must be looped after

pressing 1 and 2, and since the instructional Cholesky root instructs that both 1 and

2 switch the state of 3 upon being pressed, then 3 ∈ L(G). Observe that X(n)−1 and

X(n)−2 are isomorphic to Λ(n−1) and hence G(1) and G(2) are isomorphic to GΛ(n−1)
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and hence each have exactly one looped vertex. In particular, L
(
G(i)

)
= {j} for

{i, j} = {1, 2}. Since 1 and 2 are both maximal in X(n) then (1, 2) /∈ E(G). It follows

that NG(j) = NG(i)(j) for {i, j} = {1, 2}. Therefore, by considering the structure of

GΛ(n−1), we see NG(1) \ {1} = NG(2) \ {2} = {3}; furthermore, L(G) = {1, 2, 3}.

Consider the result of pressing 3 in G: (1, 2), (1, 4), (2, 4) become edges, 4 becomes

looped, and every other vertex incident to 3 in G becomes incident to both 1 and 2

in G(3). Thus, there is exactly one component in G(3) and it contains a looped vertex

at 4. By Lemma 1.8 there is a successful pressing sequence in G that begins with 3,

a contradiction. We conclude that X(n) is not an autonomous poset.

Lemma 2.17. Autonomous posets are induced bowtie-free.

Proof. Let P be an autonomous poset. By Lemma 2.13, P is induced N -free. As-

sume, towards a contradiction, that (a, b, y, z) is an induced occurrence of the pattern

bowtie. By iteratively removing maximal and minimal elements, and by application

of Lemmas 2.9 and 2.10, we may assume a, b, y, and z are the only extremal elements

of P , and that P does not properly contain another occurrence of the pattern bowtie.

If the only elements of P are a, b, y, z then

U =



1 0 1 1

0 1 1 1

0 0 1 0

0 0 0 1


and hence

A =



1 0 1 1

0 1 1 1

1 1 1 0

1 1 0 1


which has a successful pressing sequence of (4, 3, 2, 1), contrary to assumption.
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Choose and fix x ∈ P such that x /∈ {a, b, y, z}. Since x is not extremal in P

we may assume, without loss of generality, that a � x � y. If b � x 6� z then

(a, b, x, z) induces a bowtie, contrary to assumption. Similarly, if b 6� x � z then

(x, b, y, z) induces a bowtie. Observe that if b 6� x 6� z then (a, b, x, z) induces an

N , contradicting Lemma 2.13. Thus we must proceed under the assumption that

b � x � z.

Observe that the choice of x was arbitrary so any w ∈ P \ {a, b, y, z} must also

satisfy a � w � y and b � w � z. If x and w are incomparable then (a, b, x, w) and

(x,w, y, z) induce a smaller bowtie, contrary to assumption. Hence, any two elements

in P \ {a, b, y, z} must be comparable, therefore P = X(m) for some m ≥ 5. This

contradicts Lemma 2.16.
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Chapter 3

Main Result

In [7] (and later [8]) the authors gave a simple description of posets that are both

induced N -free and induced bowtie-free which we include here as Definition 3.1 and

Theorem 3.2.

Definition 3.1. A poset is called a V-poset if it can be generated by beginning with

the singleton poset and then iteratively applying any of the following three operations:

(1) a disjoint union,

(2) adding a new greatest element,

(3) adding a new least element.

Theorem 3.2 ([7], Proposition 3.22). A poset is induced N-free and induced bowtie-

free if and only if it is a V-poset.

Theorem 3.3. P is autonomous if and only if P is induced N-free and induced

bowtie-free.

Proof. By Lemmas 2.13 and 2.17, if P is autonomous then P is induced N -free and in-

duced bowtie-free. By Theorem 3.2 it suffices to show that V-posets are autonomous.

A poset on one element is autonomous as it corresponds to the uniquely pressable

graph on a single looped vertex. We proceed by induction. Let n ≥ 2 and assume

that all V-posets on n−1 vertices are autonomous. Let P be a V-poset on n vertices.

If P is the disjoint union of multiple posets then each of its connected subposets is a

21



smaller V-poset. By inductive hypothesis for each connected subposet there is a graph

that generates it and has only the pressing sequences dictated by said subposet. It

follows that in this case P is autonomous as well. Suppose now that P is connected.

It then follows that P has a unique maximal or a unique minimal element. Let P −x

be the result of removing a unique maximal or minimal element from P . Observe

that P − x is a V-poset and thus by induction is autonomous; let H be a graph such

that S(H) = {P − x}. By Lemmas 2.4 and 2.6, x ⊕ H or H ⊕ x generates only P

and therefore is autonomous.
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Chapter 4

V-poset Recognition

For a poset P we let nP and eP denote the number of vertices and edges in the

Hasse diagram of the poset, respectively. We let hP denote the sum of the heights of

components of P (the height of a poset is the length of its longest chain), cP denote

the number of components of P , andMP and mP denote the number of maximal and

minimal elements in P , respectively.

Lemma 4.1. If P is a V-poset then

eP = 2nP + cP −MP −mP − hP ≤ 2nP − 2

Proof. We show that eP = 2nP+1−MP−mP−hP for a connected poset; the equality

above follows by summing over components, and the inequality is immediate. Observe

that if nP = 1 then P is a poset one element and hence (2nP+1)−(MP+mP+hP) =

0 = eP . Assume towards an inductive argument that nP ≥ 2. Since P is connected

it must have a unique minimal or maximal element, say x, which we assume will be

maximal (as the argument is identical for a minimal element). Let Q = P − {x}.

Then, by applying the inductive hypothesis to Q,

eP −MQ = eQ = 2nQ + 1−MQ −mQ − hQ

eP = 2nQ + 1−mQ − hQ = 2(nP − 1) + 1−mP − (hP − 1)

eP = 2nP −mP − hP

By noting that MP = 1, we have our result.
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We now give a different edge count that uses width (referred to as wP in the

statement) instead of heights. While both of these edge counts are necessary for the

property of being a V-poset, even when taken together, they are not sufficient.

Lemma 4.2. If P is a V-poset then

eP = nP + wP −MP −mP

Proof. As in the previous proof, we show that eP = nP + wP − MP − mP for a

connected poset; the equality above follows by summing over components since the

width of a disconnected poset is the sum of the width of its connected components

(i.e. the length of a maximal antichain). Observe that if nP = 1 then P is a poset one

element and nP +wP −MP −mP = 0 = eP . Assume towards an inductive argument

that nP ≥ 2. Since P is connected it must have a unique minimal or maximal element,

say x, which we assume will be maximal (as the argument is identical for a minimal

element). Let Q = P − {x}. Then, by applying the inductive hypothesis to Q,

eP = eQ +MQ = (nQ + wQ −MQ −mQ) +MQ

= nQ + wQ −mQ = nP − 1 + wP −mP = nP −MP + wP −mP .

We propose an algorithm for the recognition of autonomous posets that operates

on an arbitrary directed acyclic graph whose transitive closure is the poset in question.

As a subroutine, we employ an algorithm found in [11] that detects if a directed

acyclic graph contains an induced copy of the pattern N and, if the input is found

to be induced N -free, it also returns the transitive reduction of the input. The

aforementioned subroutine is guaranteed to run in O(|V |+ |E|). Observe that by the

proof of Lemma 2.17, in order to determine if an induced N -free poset is a V-poset

we need only to verify that its transitive-reduction does not contain a sub-DAG that

is isomorphic to ([4], {(1, 3), (2, 3), (1, 4), (2, 4)}) (as done in Subroutine 2) and does
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not contain sub-DAG whose transitive closure (interpreted as a poset) is isomorphic

to X(n), (n ≥ 5).

Lemma 4.1 shows that if we present the poset by the transitively-reduced directed

acyclic graph with cover relations as edges then the run-time is O(|V |). Observe that

in Subroutines 2 and 3 each edge is traversed at most twice, hence these algorithms

have run-time O(|V |+ |E|). Thus the presented algorithm has the same run-time as

Subroutine 1.

Algorithm 1

1: input: a directed acyclic graph D.

2: output: true or false. True if the transitive closure of D is a V-poset, False

otherwise.

3: Bool ← true

4: if IsSeriesParallel(D)[Bool]=False then

5: Bool ← false

6: else

7: D ← IsSeriesParallel(D)[DAG]

8: if IsBowtieFree(D)= false then

9: Bool ← false

10: else

11: if ClosureIsVPoset(D) = false then

12: Bool ← false

13: return Bool

Subroutine 1: IsSeriesParallel()

1: input: a directed acyclic graph D.

2: output: (Bool, DAG). Bool= true when D has a series-parallel decomposition

and Bool= false otherwise, and DAG is the transitive reduction of D.
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3: Algorithm found in [11]

4: return (Bool, DAG)

Subroutine 2: IsBowtieFree()

1: input: an induced N -free, transitively reduced directed acyclic graph D.

2: output: true or false. False if some induced subgraph of D is isomorphic to the

bowtie digraph ({a, b, c, d}, {(a, c), (a, d), (b, c), (b, d)}), True otherwise.

3: Bool ← true, Current ← ∅, Parents ← ∅, Visited ← ∅

4: for v ∈ V (D) do

5: if OutDegree(v) = 0 then

6: Current.Add(v)

7: while Current6= ∅ do

8: for v ∈ Current do

9: for u ∈ InNeighborhood(v) do

10: Parents.Add(u)

11: for v ∈ Parents do

12: if OutDegree(v) > 1 then

13: for u ∈ OutNeighborhood(v) do

14: if InDegree(u) > 1 then

15: Bool ← false (Break while loop)

16: Visited.Add(u)

17: for v ∈ Current do

18: Visited.Add(v)

19: Current ← ∅

20: for v ∈Parents do

21: if v /∈ Visited then

22: Current.Add(v)

23: Visited.Add(v)
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24: Parents ← ∅

25: return Bool

Subroutine 3: ClosureIsVPoset()

1: input: an induced N -free, induced bowtie-free, transitively reduced directed

acyclic graph D.

2: output: true or false. True if the transitive closure of D is a V-poset, False

otherwise.

3: Bool ← true, Current ← ∅, Parents ← ∅, Visited ← ∅, Multiple ← ∅

4: for v ∈ V (D) do

5: if OutDegree(v) = 0 then

6: Current.Add(v)

7: while Current 6= ∅ do

8: for v ∈ Current do

9: if v ∈ Multiple and InDegree(v) > 1 then

10: Bool ← false (Break while loop)

11: for u ∈ InNeighborhood(v) do

12: Parents.Add(u)

13: if v in Multiple then

14: Multiple.Add(u)

15: for v ∈ Parents do

16: if OutDegree(v) > 1 then

17: Multiple.Add(v)

18: for v ∈ Current do

19: Visited.Add(v)

20: Current ← ∅

21: for v ∈Parents do

22: if v /∈ Visited then
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23: Current.Add(v)

24: Parents ← ∅

25: return Bool
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Chapter 5

Open Questions

In Lemma 2.1 we demonstrate that the successful pressing sequences of an OSP-

graph are the linear extensions of a set of posets that arise from the instructional

Cholesky roots of the graph. An autonomous graph has the property that its suc-

cessful pressing sequences are all linear extensions of a single poset. In particular,

in the autonomous case, this poset can be viewed as the intersection of all of the

successful pressing sequences of the graph (interpreted as linear extensions). In the

case that the OSP-graph is not autonomous then the posets are the intersections

of pairwise disjoint families of successful pressing sequences. Thus, we have that if

G is an OSP-graph then the instructional posets of G partition Σ(G) into disjoint

sets S1, S2, . . . , Sk satisfying that LE (⋂Si) = Si for each i ∈ [k]. Observe that this

partition is not sufficient to determine the instructional posets of a graph since, for

example LE (⋂{σ}) = {σ}.

Question 5.1. In general, how many distinct partitions of Σ(G) into disjoint sets

{Si}i exist such that LE (⋂Si) = Si for each i?

The present work arose in the context of studying the complexity of enumeration

of pressing sequences. While every poset has a graph G that generates it, only for

the autonomous posets P does there exist a G for which P is unaccompanied by

other posets in S(G). As we have shown that the autonomous posets are a subset

of the series-parallel posets, this means that demonstrating #P-hardness of counting

pressing sequences or efficient sampling asymptotically uniformly at random from all
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pressing sequences of graph cannot be derived directly from results on the complexity

of linear extension enumeration (see [1]).

Conjecture 5.2. Exactly counting pressing sequences of a graph is #P-hard.

If exact counting is not possible then exhibiting an FPRAS would be desirable –

and is often possible for problems which are #P-hard. In the case that the number

of posets generated by an OSP-graph is small (say, polynomial in the number of

vertices), then it may be possible to adapt an FPRAS for sampling linear extensions

(see [9]).

Question 5.3. Does there exists a constant c such that |S(G)| = O(nc) for all graphs

G on n?

Question 5.4. Is there an FPRAS for counting the number of pressing sequences of

a graph?
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