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Abstract

The quantification of causal relationships between time series data is a fundamen-

tal problem in fields including neuroscience, social networking, finance, and machine

learning. Amongst the various means of measuring such relationships, information-

theoretic approaches are a rapidly developing area in concert with other methods.

One such approach is to make use of the notion of transfer entropy (TE). Broadly

speaking, TE is an information-theoretic measure of information transfer between

two stochastic processes. Schreiber’s 2001 definition of TE characterizes information

transfer as an informational divergence between conditional probability mass func-

tions. The original definition is native to discrete-time stochastic processes whose

comprising random variables have a discrete state space. While this formalism is

applicable to a wealth of practical scenarios, there is a wide range of circumstances

under which the processes of interest are indexed over an uncountable set (usually an

interval). One can generalize Schreiber’s definition to handle the case when the ran-

dom variables comprising the processes have state space R via the Radon-Nikodym

Theorem, as demonstrated by Kaiser and Schreiber in 2002. A rigorous treatment

of TE among processes that are either indexed over an uncountable set or do not

have R as the state space of their comprising random variables has been lacking in

the literature. A common workaround to this theoretical deficiency is to discretize

time to create new stochastic processes and then apply Schreiber’s definition to these

resulting processes. These time discretization workarounds have been widely used

as a means to intuitively capture the notion of information transfer between pro-

cesses in continuous-time, that is, those which are indexed by an interval. These ap-
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proaches, while effective and practicable, do not provide a native definition of TE in

continuous-time. We generalize Schreiber’s definition to the case when the processes

are comprised of random variables with a Polish state space and generalize further to

the case when the indexing set is an interval via projective limits. Our main result,

Theorem 5, is a rigorous recasting of a claim made by Spinney, Propenko, and Lizier

in 2016, which characterizes when continuous-time TE can be obtained as a limit of

discrete-time TE.

In many applications, the instantaneous transfer entropy or transfer entropy rate

is of particular interest. Using our definitions, we define the transfer entropy rate as

the right-hand derivative of the expected pathwise transfer entropy (EPT) defined

in Section 2.3. To this end, we use our main results to prove some of its properties,

including a rigorous version of a result stated without proof in work by Spinney,

Propenko, and Lizier regarding a particularly well-behaved class of stationary pro-

cesses. We then consider time-homogeneous Markov jump processes and provide an

analytic form of the EPT via a Girsanov formula, and finally, using a corollary of our

main result, we demonstrate how to apply our main result to a lagged Poisson point

process, providing a concrete example of two processes to which our aforementioned

results apply.
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Chapter 1

Introduction

Broadly speaking, information theory is the subfield of mathematics which deals with

information and the fundamental limits of communication. The field came to be as

a result of Claude Shannon’s seminal paper A Mathematical Theory of Communica-

tion [47] which quantified information precisely and established limits on information

transmission. A full review of information theory is beyond the scope of this thesis;

however, we provide a concise summary of topics that will be encountered throughout

this work in Section 1.2, then introduce the object of central focus in this thesis in

Section 1.3, then we turn to a discussion on its applications in Section 1.4 and recent

work in development of an estimator in Section 1.5. We conclude with a discussion

of the organization of this manuscript. It should be noted that the majority of the

information-theoretic frameworks used in this note make use of ideas from probabil-

ity theory; thus, we preempt our discussion of information theory with a primer on

probability theory in Section 1.1.

1.1 A review of probability

Definition 1.1.1. A probability space is a triple (Ω,F ,P), where Ω is a nonempty

set, F is a nonempty σ−algebra of subsets of Ω and P is a probability measure, that

is, a nonnegative countably additive set function mapping F into [0, 1] such that

P (Ω) = 1.

Remark 1. Elements of F are often called events and an element of F with P
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measure 0 is called a P-null set.

Definition 1.1.2. Suppose Σ is some nonempty set and X is a σ−algebra of subsets

of Σ. A function X : Ω 7→ Σ is a random variable (rv) if X : (Ω,F) 7→ (Σ,X ) is

measurable, i.e.

X−1 (A) ∈ F ,∀A ∈ X .

We say that Σ is the state space of X. If X (Ω) is countable, then we say that X is a

discrete random variable.

The following definition defines modes of convergence that will be of particular

use in this thesis.

Definition 1.1.3. Suppose (Xn)n≥1 and X are random variables.

1. We say Xn → X a.s. (almost surely) if there exists Ω′ ∈ F such that P (Ω′) = 1

and

Xn(ω)→ Xω, as n→∞,

for all ω ∈ Ω′.

2. We say that Xn converges to X in probability, denoted Xn
P→ X, if for each

ε > 0,

P
(∣∣∣∣Xn −X

∣∣∣∣ > ε
)
→ 0, as n→∞.

Definition 1.1.4. Suppose X is a rv mapping Ω 7→ Σ. A realization of X is an

element x of Σ such that X(ω) = x for some ω ∈ Ω.

Definition 1.1.5. SupposeX is a rv. The probability distribution ofX is the measure

PX on (Σ,X ) defined by

PX (A) = P ({X ∈ A}) , for A ∈ X .

Furthermore, the σ−algebra generated by X, denoted σ (X), is defined by

σ (X) =
{
X−1 (A)

∣∣∣∣ A ∈ X} .
2



Remark 2. Note that σ (X) is the smallest σ− algebra for which X is measurable.

The next definition makes precise the concept of independence.

Definition 1.1.6. Suppose (Ω,F ,P) is a probability space.

1. Events Ai ∈ F(1 ≤ i ≤ n) are independent if, for all subsets J of [n],

P (∩i∈JAi) =
∏
i∈J

P (Ai)

2. Suppose X1, X2, . . . , Xn are random variables mapping into (Σ,X ). Then

X1, X2, . . . , Xn are independent if

P (∩ni=1 {Xi ∈ Bi}) =
n∏
i=1

P ({Xi ∈ Bi}) ,

where Bi ∈ X . To this end, we define an infinite sequence of random variables,

(Xi)i≥1 to be independent if for all n ≥ 1, X1, X2, . . . , Xn are independent.

Definition 1.1.7. Suppose (Σ,X ) is a measurable space. If µ and ν are two measures

on X , then µ is absolutely continuous with respect to ν if

ν(A) = 0 =⇒ µ(A) = 0,∀A ∈ X .

If ν is absolutely continuous with respect to µ, we denote it as µ� ν.

Definition 1.1.8. The expected value (or expectation or mean) of an integrable ran-

dom variable X, denoted EP [X], is defined by

EP [X] =
∫

Ω
XdP.

Definition 1.1.9. Suppose (Σ,X ) is a measurable space and µ is a measure on

(Σ,X ). Then Σ is σ−finite under µ if Σ is the union of countably many subsets of Σ

with finite measure under µ. If Σ is σ−finite under µ, then we say that the measure

space (Σ,X , µ) is a σ−finite measure space.
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Clearly probability measures are σ−finite as they are finite measures in their own

right. The notion of σ−finite measure spaces is of high regard in this work as it is

necessary for the conclusion of the following theorem.

Theorem 1 (Radon-Nikodym Theorem). Suppose (Σ,X , µ) is a σ−finite measure

space and let ν be a measure on X such that µ � ν. Then there exists a unique,

measurable, nonnegative function dµ
dν

: Σ 7→ [0,∞) up to ν−null sets such that

µ(A) =
∫
A

dµ

dν
dν,

∀A ∈ X . We say that dµ
dν

is the Radon-Nikodym (RN) derivative of µ with respect to

ν.

Definition 1.1.10. Suppose α ⊂ R is an arbitrary indexing set. A stochastic process,

{Xt}t∈α, is a collection of RV’s taking values in a common measurable space (Σ,X ).

If α is a countable set, then {Xt}t∈α is a discrete-time stochastic process. If α is an

interval, then {Xt}t∈α is a continuous-time stochastic process. The functions t 7→

Xt(ω) mapping α into Σ are called the sample paths of the process X.

If (Σ,X ) = (R,B (R)), then it is convention to call {Xt}t∈α a real-valued stochastic

process.

Definition 1.1.11. Suppose (Ω,F ,P) is a probability space and α is some indexing

set.

1. A filtration, (Ft)t∈α is a nondecreasing collection of sub-σ-algebras of F . We

call the 4-tuple
(
Ω,F ,P, (Ft)t∈α

)
a filtered probability space.

2. A stochastic process (Xt)t∈α is adapted to the filtration (Ft)t∈α if Xt is a Ft-

measurable rv for each t ∈ α.

4



Definition 1.1.12. A family of integrable random variables (Xt)t∈α is uniformly

integrable (UI) if

lim
K→∞

(
sup
t∈α

EP
[
Xt1{|Xt≥K|}

])
= 0.

1.2 Entropy, Kullback-Leibler divergence, and mutual information

Definition 1.2.1. Suppose (Ω,F ,P) is a probability space. Define the information

of an event A ∈ F , denoted I (A), by

I (A) = − log (P (A))

Remark 3. We adhere to the convention that the base of the logarithm in Definition

1.2.1 is 2, thus entropy is measured in bits. We adhere to the convention of letting

0 log(0) = 0.

Definition 1.2.2. The entropy of a probability measure µ, denoted H(µ) is given by

H(µ) = −EP [log (µ)] .

Furthermore, define the entropy of a rv X, denoted H(X), as the entropy of its

probability distribution PX , i.e.

H(X) = −EP [log (PX)] .

If X is a discrete rv with range α(X) and distribution PX , then

H(X) = −E [log (PX)] =
∑

x∈α(X)
PX(x) log

(
1

PX(x)

)
.

Similarly, If PX � µ, where µ denotes Lebesgue measure, then from Theorem 1,

there exists a probability density function pX : Σ 7→ [0,∞) such that

H(X) = −E [log (PX)] = −
∫

Σ
pX(x) log (pX(x)) dµ(x).

Intuitively, the entropy of a distribution is the amount (usually measured in bits) of

information gained upon observing an event drawn from the distribution.
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Example 1.

Suppose X ∼ Bernoulli
(

1
2

)
and Y ∼ N (µ, σ2), where µ, σ > 0. Then

H(X) = −E [log (PX)] =
∑

x∈{0,1}
PX(x) log

(
1

PX(x)

)
= log 2

and
H(Y ) = −E [log (PY )] = −

∫
R
pY (y) log (pY (y)) dµ(y)

= −
∫
R

1√
2πσ2

e−
(x−µ)2

2σ2 log
(

1√
2πσ2

e−
(x−µ)2

2σ2

)

= 1
2 ln

(
2πσ2

)
+ 1

2
= 1

2 ln
(
2πeσ2

)
.

Definition 1.2.3. Suppose P and M are measures on a space (Σ,X ) with P �M.

The Kullback-Leibler divergence, or simply, the KL-divergence, ofM from P , denoted

KL (P ||M), is defined by

KL (P ||M) = EP
[
log

(
dP

dM

)]
.

Remark 4. Intuitively, the KL - divergence of one measure to another is the in-

formational distance between the two measures. A source coding interpretation of

KL-divergence is as follows: KL (P ||M) is the average number of additional bits

needed to encode a sample, assuming it’s drawn from distribution M instead of P .

KL-divergence does not satisfy all of the axioms of a metric; thus, it is labeled as

a divergence. Specifically, it is not symmetric: In general, the KL-divergence from

M to P is not necessarily the same as that of P to M . Typically, P represents a

ground truth distribution and M represents some approximation of P . For example,

in supervised machine learning, P may represent an empirical distribution of observed

data and M may represent a distribution imposed on the data via a model, in which

case one typically opts to minimize KL (P ||M) with respect to model parameters.

As a consequence of Jensen’s inequality,

KL (P ||M) ≥ 0 with KL (P ||M) = 0 ⇐⇒ P = M,

6



and is explicitly assymetric, that is, KL (P ||M) 6= KL (M ||P ) in general. Note that

if Σ in Definition 1.2.3 is a discrete space, then

KL (P ||M) =
∑
x∈Σ

P (x) log
(
P (x)
Q(x)

)

and if P � µ and M � µ, where µ denotes Lebesgue measure on R, then

KL (P ||M) =
∫

Σ

dP

dµ
log

 dP
dµ
dM
dµ

 dP.
It should also be noted that KL (P ||M) = ∞ in the case that P is not absolutely

continuous with respect to M .

Example 2. Suppose 0 < p, q < 1. Then

KL
(
Bernoulli (p)

∣∣∣∣∣∣∣∣Bernoulli (q)
)

= p log
(
p

q

)
+ (1− p) log

(
1− p
1− q

)
.

The following definition makes rigorous the concept of shared information between

random variables.

Definition 1.2.4. Suppose (ΣX ,X ) and (ΣY ,Y) are measurable spaces and that X

and Y are random variables on (Ω,F ,P) with state spaces ΣX and ΣY , respectively.

The mutual information between X and Y , denoted I (X, Y ) , is defined by

I (X, Y ) = KL (PXY ||PX × PY ) ,

where PX and PY are the marginal distributions ofX and Y , respectively and PX×PY

is the product measure on (ΣX × ΣY ,X
⊗Y)

Remark 5. Put simply, mutual information between two variables is the average

amount of information gained in observing the state of one variable, given full in-

formation of the other. Unlike KL-divergence, mutual information is symmetric,

as is evident by the definition. Note that if X and Y are independent RV’s, then

PXY = PX × PY , thus Definition 1.2.3 implies that

I (X, Y ) ≥ 0,

7



with equality if and only if X and Y are independent and that H(X) = I(X,X).

Also, if ΣX and ΣY are discrete, then

I(X, Y ) =
∑
x∈X
y∈Y

PX,Y (x, y) log
(
PX,Y (x, y)
PX(x)PY (y)

)
.

1.3 Transfer entropy

The notion of quantifying the transfer of information from one stochastic process

to another is a fundamental question in many fields. Mutual information is void of

directionality; thus, it is insufficient to quantify information flow. Some efforts to

address this limitation include the use of time-lagged mutual information, in which

mutual information is calculated between a time-lagged version of the source process

and the destination process. This approach remedies the directional deficiency of

mutual information; however, it is still deficient as it incorporates the measurement

of statically shared information between the processes or a common history imposed

by an exogenous force as pointed out in [45]. In this vein, Schreiber proposed a

new measure of information transfer which overcomes some limitations of former

approaches. Broadly speaking, Schreiber quantified information transfer as a KL-

divergence amongst conditional probabilities. The resulting quantity is called transfer

entropy and is defined as the following:

Definition 1.3.1. Suppose X and Y are discrete time stochastic processes composed

of discrete RV’s each with state space (Σ,X ) and k, l ≥ 1 are integers. The transfer

entropy from Y to X at n with history window lengths k and l, denoted T(k,l)
Y→X(n), is

given by

T(k,l)
Y→X(n) =

∑
xn∈Xn(Ω),

xn−1
n−k−1∈x

n−1
n−k−1(Ω),

yn−1
n−l−1∈Y

n−1
n−l−1(Ω)

P1
(
xn,

(
xn−1
n−k−1

)
,
(
yn−1
n−l−1

))
log

P2
(
xn |

(
xn−1
n−k−1

)
,
(
yn−1
n−l−1

))
P3
(
xn |

(
xn−1
n−k−1

)) , (1.1)

8



where xn ∈ Σ,
(
xn−1
n−k−1

)
,
(
yn−1
n−l−1

)
∈ Σk+1,

P1
(
xn,

(
xn−1
n−k−1

)
,
(
yn−1
n−l−1

))
= PXn,(Xn−1

n−k−1),(Y n−1
n−l−1)

(
xn,

(
xn−1
n−k−1

)
,
(
yn−1
n−l−1

))
,

P2
(
xn,

(
xn−1
n−k−1

)
,
(
yn−1
n−l−1

))
= PXn|(Xn−1

n−k−1),(Y n−1
n−l−1)

[
xn
∣∣∣ (xn−1

n−k−1

)
,
(
yn−1
n−l−1

)]
,

and

P3
(
xn,

(
xn−1
n−k−1

))
= PXn|(Xn−1

n−k−1)
[
xn
∣∣∣ (xn−1

n−k−1

)]
.

Y is called the source process and X is called the destination process.

Although Definition 1.3.1 may seem complicated, the underlying idea is relatively

straightforward. T(k,l)
Y→X(n) is simply a measure of the average reduction of uncertainty

in the present value of X (i.e. Xn) due to knowledge of the past of Y
(
i.e.

(
Y n−1
n−l−1

))
given knowledge of the past of X

(
i.e.

(
Xn−1
n−k−1

))
. Even more simply, TE measures

the average amount of information the past of the source process provides about the

present of the destination process that the past of the destination process does not

already provide. Figure 1.1 illustrates the scheme underlying TE.

Note that this formalism overcomes the limitations of using mutual information

to quantify information transfer in former approaches as it takes into account only

dependencies due to the source process. Transfer entropy can also be characterized

as an instance of KL-divergence, as (1.3.1) can be written as a KL-divergence of the

conditional probability measure PXn|(Xn−1
n−k−1)

[
xn
∣∣∣ (xn−1

n−k−1

)]
from

PXn|(Xn−1
n−k−1),(Y n−1

n−l−1)

[
xn
∣∣∣ (xn−1

n−k−1

)
,
(
yn−1
n−l−1

)]
, that is, the deviation from the assump-

tion that Xn is independent of (Y n−1
n−l−1) given (Xn−1

n−k−1). More succinctly,

T(k,l)
Y→X(n) = KL

(
P2
(
xn, (xn−1

n−k−1), (yn−1
n−l−1)

) ∣∣∣∣∣∣∣∣P3
(
xn, (xn−1

n−k−1)
))

,

implying that transfer entropy indeed quantifies information flow as it is explicitly

asymmetric, that is T(k,l)
Y→X(n) 6= T(k,l)

X→Y (n) in general, and is nonnegative for all

processes and choices of history window lengths.
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Figure 1.1: A schematic of transfer entropy from process Y to process X.

Observation 1. If indeed Xn is independent of (yn−1
n−l−1) given (Xn−1

n−k−1), then

T(k,l)
Y→X(n) = 0.

Definition 1.3.1 can be modified to handle the case when the RV’s composing

the processes in question are not discrete as demonstrated in [26]. In this case, the

expression in (1.1) becomes an integral of a function of probability density functions

as opposed to a sum of a function of probability mass functions.

Remark 6. Information transfer has also been measured by Granger causality [17],

a predictive statistical tool which makes use of vector autoregression for prediction1.

Broadly speaking, Y is Granger causal to X whenever X is better predicted using a

model that uses both X’s and Y ’s history, than from one that includes exclusively

X’s history.

1.4 Applications

TE improves upon inadequacies of former approaches of measuring information trans-

fer and has properties that make its application more suitable for some scenarios over

1TE and Granger Causality have been shown to be equivalent up to a factor of 2 in Gaussian
Processes as shown in [6]

10



other frameworks in this realm. The definition makes no assumptions about neither

the destination nor source processes, making it an appealing tool for scenarios in

which quantifying information transfer is of high regard. There is an abundance of

applications of TE in the literature, and we provide a short survey of its uses in a

wide-ranging spectrum of domains.

Biological research often requires analyses of data that can be riddled with com-

plicated dependencies and noise. TE has been used in a wide variety of topics in this

field. In [10], TE is used to detect and quantify dynamics in animal groups. Among

other applications in this field, TE has been used to detect leadership among groups of

bats through analysis of trajectory paths [38], infer gene regulatory networks [50], and

has even been used in epidemiology [5] and cardiology [34, 35, 42]. Among biological

subfields, neuroscience has a vast number of applications of TE in the literature, so

much so that there exists literature solely devoted to surveying its application in the

field [52]. TE has been used on functional MRI, electroencephalography and magne-

toencephalography datasets to provide meaningful insights in neural connectivity [24,

36], localization of information storage [54], encoding relationships among neurons [7,

49], and time scale effects on the frequency content of visual stimuli [8]. There exists

an open-source toolbox supporting both the functionality for management of datasets

common to this field, including those mentioned previously, and the application of

TE to such datasets in an efficient manner [33].

In addition to biology, information transfer is of particular relevance in finance

as well. TE has a wide-range of applications in this field. For example, in [44], TE

is used on stock data from various companies chosen via the S&P 1200 global index

with sufficient liquidity to measure intra-sector influence amongst companies. It is

used in [29] to analyze indices of stock markets in numerous countries to measure

geographic influence of stock indices. Similarly, Sensoy [46] and Sandoval [44] apply

TE to analyze exchange rates of stock using various stock data. In [12], the effect of

11



credit risk on market risk is analyzed via TE using iTraxxx and VIX data 1.

Recently, TE has been used in social media analysis, to measure various aspects

of influence in social media. In [51], TE is used on a Twitter dataset to measure

influences between pairs of users in a small user network on the basis of tweet con-

tent. The authors found that high TE is a significant predictor of mentions on the

platform. Saike He et al.[20] use TE to quantify peer influence in online social net-

works in which part of user activity is internally generated. TE has also been used

in machine learning to improve performance of recurrent neural networks in [21] and

[37].

1.5 Continuous-time TE, binning and estimators

Schreiber’s definition of TE is one of broad utility. However, it suffers from a major

theoretical deficiency: specifically, it is only applicable to data with a discretized time

basis. In the literature, the most popular approach used as a means of compensation

of this limitation is time-discretization [22, 31, 32]. This approach initially discretizes

the continuous-time processes under consideration and then uses Schreiber’s definition

on the resulting processes. This approach, however, has in some cases been shown

to suffer from erroneous convergence results as demonstrated in [3] and appears ill-

equipped to manage key mechanisms responsible for information transfer as it cannot

detect interactions below the resolution of the imposed discretization [48]. However,

a large portion of applications using this method to estimate TE on continuous-time

data have obtained satisfactory results, e.g., in [15, 22, 51]. This suggests that discrete

treatments of continuous-time stochastic processes is worthwhile in some contexts to

estimate TE.

Entropy estimation is a fundamental problem in information theory and applied

statistics. It has been shown in [40] that there is no unbiased estimator of entropy,

1iTraxx and VIX are types of indices of stock.
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and most plug-in estimators suffer from underestimation issues as demonstrated in

[19]. One widely used estimator of entropy is due to Kozachencko and Leonenko [28],

in which an approximate nearest neighbors search is utilized to estimate entropy. In

recent developments, efforts have been made to modify the KL estimator to estimate

TE and mutual information [57].

1.6 Organization of this thesis

In Chapter 2, we generalize Schreiber’s definition of TE to the case when the state

space of the destination and source process is an arbitrary Polish space that is mean-

ingful even when probability densities (or probability mass functions) are either in-

tractable or nonexistent (this can occur in lieu of absolute continuity between prob-

ability distributions and Lebesgue measure.). Motivated by the Radon-Nikodym

Theorem and regular conditional probability measures, we define TE in such a con-

text as an expected KL-divergence between conditional measures. We then generalize

further and address TE in a continuous-time setting, that is, when the indexing set

is an interval as opposed to a countable set. We develop measures over an appropri-

ate measurable space for our continuous-time framework, and justify their existence

via a seminal result due to [43] regarding projective limits of projective systems of

probability spaces. Furthermore, in Section 2.3, we use these measures to define the

pathwise transfer entropy (PT) and define expected pathwise transfer entropy (EPT);

the latter is the continuous-time version of TE measuring information transfer over

an interval. After comparing our definitions with those presented in the current liter-

ature and defining a type of necessary consistency, we prove our main result, Theorem

5. Theorem 5 establishes necessary and sufficient conditions for the attainability of

our continuous-time definition of TE as a limit of discrete time TE; that is, when a

discrete treatment of continuous-time processes recovers our continuous-time defini-

tion. We conclude the section with some consequences of our main result.
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In Chapter 3, we define the transfer entropy rate (or instantaneous transfer en-

tropy) as a right hand derivative of the EPT and prove some of its properties, espe-

cially those relevant to the case when the destination and source processes possess a

stationarity property. We conclude the section with sufficient conditions for continu-

ity of PT and EPT.

In Chapter 4, we consider time-homogeneous Markov jump processes (THMJP).

We define conditional transition and escape rates as a limit of conditional measures

and provide an expression of the EPT via a Girsanov formula in terms of these rates.

In this vein, we consider the case when the source process is a thinned version of

the destination process and provide an expression for the EPT in this context. We

conclude with an application of Corollary 5.2, which permits the use of our main

result to a time-lagged Poisson point process.
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Chapter 2

Continuous-time transfer entropy

2.1 Discrete-time TE generalization

In this section, we present a definition of TE between processes whose comprising

random variables have an arbitrary Polish state space. This definition is a gener-

alization of Definition 2.4 and indeed recovers the original definition under suitable

conditions as demonstrated in Example 3.

Suppose X := {Xn}n≥1 and Y := {Yn}n≥1 are stochastic processes adapted to

the filtered probability space (Ω,F , {Fn}n≥1,P) such that for each n ≥ 1, Xn and Yn

are random variables taking values in a Polish state space Σ, that is, a completely

metrizable, separable space and let X be a σ-algebra of subsets of Σ. Let Pn denote

the probability distribution of the random variable Xn (Sometimes we will mean by

this a conditional probability distribution.)

For integers k, l, n ≥ 1, let

(
Xn−1
n−k−1

)
= (Xn−k−1, Xn−k, ..., Xn−1)

and (
Y n−1
n−l−1

)
= (Yn−l−1, Yn−l, ..., Yn−1) .

Since Σ is Polish, for each k, l, n ≥ 1, there exist functions, often called regular condi-

tional probability measures1, P(k,l)
n

[
Xn

∣∣∣ (Xn−1
n−k−1

)
,
(
Y n−1
n−l−1

)]
and P(k)

n

[
Xn

∣∣∣ (Xn−1
n−k−1

)]
mapping Fn × Ω into [0, 1] with the following properties:

1The existence of regular conditional probability measures is guaranteed on Polish spaces (see
Theorem 6.16 of [39])
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1. For each ω ∈ Ω,

P(k)
n

[
Xn

∣∣∣ (Xn−1
n−k−1

)]
(·, ω) (2.1)

and

P(k,l)
n

[
Xn

∣∣∣ (Xn−1
n−k−1

)
,
(
Y n−1
n−l−1

)]
(·, ω) (2.2)

are measures on (Σ,X )

2. ∀A ∈ Fn, the mappings

ω 7→ P(k,l)
n

[
Xn

∣∣∣ (Xn−1
n−k−1

)
,
(
Y n−1
n−l−1

)]
(A, ω)

and

ω 7→ P(k,l)
n

[
Xn

∣∣∣ (Xn−1
n−k−1

)]
(A, ω)

are Fn-measurable random variables.

3. ∀ω ∈ Ω, A ∈ Fn, we have both

P(k,l)
n

[
Xn

∣∣∣ (Xn−1
n−k−1

)
,
(
Y n−1
n−l−1

)]
(A, ω) =

P(k,l)
n

[
{Xn ∈ A}

∣∣∣{B ∈ σ ((Xn−1
n−k−1

)
,
(
Y n−1
n−l−1

)) ∣∣∣ ω ∈ B}] .
and

P(k)
n

[
Xn

∣∣∣ (Xn−1
n−k−1

)]
(A, ω) =

P(k)
n

[
{Xn ∈ A}

∣∣∣{B ∈ σ ((Xn−1
n−k−1

))∣∣∣ ω ∈ B}] .
To this end, the conditional probabilities

P(k,l)
n

[
Xn

∣∣∣ (Xn−1
n−k−1

)
,
(
Y n−1
n−l−1

)]
(·, ω)

and

P(k)
n

[
Xn

∣∣∣ (Xn−1
n−k−1

)]
(·, ω)

are only defined if both
{
B ∈ σ

((
Xn−1
n−k−1

))∣∣∣ ω ∈ B} and{
B ∈ σ

((
Xn−1
n−k−1

)
,
(
Y n−1
n−l−1

)) ∣∣∣ ω ∈ B} are not P-null sets. We will assume this

throughout this work whenever dealing with conditional probabilities.
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Notation 1. For sake of convenience, we let

P(k)
n

[
Xn

∣∣∣ (Xn−1
n−k−1

)]
(A, ω) = P(k)

n

[
Xn

∣∣∣ (Xn−1
n−k−1

)]
(ω) (A)

and

P(k,l)
n

[
Xn

∣∣∣ (Xn−1
n−k−1

)
,
(
Y n−1
n−l−1

)]
(A, ω) = P(k,l)

n

[
Xn

∣∣∣ (Xn−1
n−k−1

)
,
(
Y n−1
n−l−1

)]
(ω) (A) ,

whenever n, k, l ≥ 1, ω ∈ Ω, and A ∈ Fn.

The following definition generalizes Schreiber’s definition of TE for discrete-time

processes.

Definition 2.1.1. Suppose n, k, l ≥ 1 are integers. Suppose further that Σ is a Polish

space and that

P(k)
n

[
Xn

∣∣∣ (Xn−1
n−k−1

)
,
(
Y n−1
n−l−1

)]
(ω)� P(k)

n

[
Xn

∣∣∣ (Xn−1
n−k−1

)]
(ω), (2.3)

for each ω ∈ Ω. The transfer entropy from Y to X at n with history window lengths

k and l, denoted T(k,l)
Y→X(n), is defined by

T(k,l)
Y→X(n) = EP

EP(k,l)
n [Xn|(Xn−1

n−k−1),(Y n−1
n−l−1)]

log
dP(k,l)

n

[
Xn

∣∣∣ (Xn−1
n−k−1

)
,
(
Y n−1
n−l−1

)]
dP(k)

n

[
Xn

∣∣∣ (Xn−1
n−k−1

)]


=
∫

Ω

(
KL

(
P(k,l)
n [Xn

∣∣∣ (Xn−1
n−k−1), (Y n−1

n−l−1)](·)
∣∣∣∣∣∣ P(k)

n [Xn

∣∣∣ (Xn−1
n−k−1)](·)

))
dP.
(2.4)

As in Definition 1.1, we call X the destination process and Y the source process.

Observation 2. Due to [56], we have for each n ≥ 1 the following:

1. For fixed k, l ≥ 1, T(k,l)
Y→X is a measurable function from N into the extended

nonnegative real line.

2. KL
(
P(k,l)
n [Xn

∣∣∣ (Xn−1
n−k−1), (Y n−1

n−l−1)](ω)
∣∣∣∣∣∣ P(k)

n [Xn

∣∣∣ (Xn−1
n−k−1)](ω)

)
≥ 0, for each

ω ∈ Ω.
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3. dP(k,l)
n [Xn | (Xn−1

n−k−1),(Y n−1
n−l−1)](·)

dP(k)
n [Xn | (Xn−1

n−k−1)](·)
(·) is F × X -measurable as X is adapted to F .

4. KL
(
P(k,l)
n [Xn

∣∣∣ (Xn−1
n−k−1), (Y n−1

n−l−1)](ω)
∣∣∣∣∣∣ P(k)

n [Xn

∣∣∣ (Xn−1
n−k−1)](ω)

)
is F− measur-

able for each ω ∈ Ω.

Example 3. Suppose X and Y are discrete processes, that is, for each n ≥ 1,

both Xn(Ω) and Yn(Ω) are countable. Then

T(k,l)
Y→X(n) =

EP

EP(k,l)
n [Xn | (Xn−1

n−k−1),(Y n−1
n−l−1)]

log
dP(k,l)

n

[
Xn

∣∣∣ (Xn−1
n−k−1

)
,
(
Y n−1
n−l−1

)]
dP(k)

n

[
Xn

∣∣∣ (Xn−1
n−k−1

)]


=
∑

xn−1
n−k−1∈X

n−1
n−k−1(Ω)

yn−1
n−l−1∈Y

n−1
n−l−1(Ω)

PXn−1
n−k−1,Y

n−1
n−l−1

(
xn−1
n−k−1, y

n−1
n−l−1

)
×

∑
xn∈Xn(Ω)

PXn|(Xn−1
n−k−1),(Y n−1

n−l−1)
[
xn
∣∣∣ (xn−1

n−k−1

)
,
(
yn−1
n−l−1

)]
×

log
PXn|(Xn−1

n−k−1),(Y n−1
n−l−1)

[
xn
∣∣∣ (xn−1

n−k−1),
(
yn−1
n−l−1

)]
PXn|(Xn−1

n−k−1)
[
xn
∣∣∣ (xn−1

n−k−1

)]
=

∑
xn∈Xn(Ω),

xn−1
n−k−1∈x

n−1
n−k−1(Ω),

yn−1
n−l−1∈Y

n−1
n−l−1(Ω)

PXn,Xn−1
n−k−1,Y

n−1
n−l−1

(
xn, x

n−1
n−k−1, y

n−1
n−l−1

)
×

log
PXn|(Xn−1

n−k−1),(Y n−1
n−l−1)

[
xn
∣∣∣ (xn−1

n−k−1

)
,
(
yn−1
n−l−1

)]
PXn|(Xn−1

n−k−1)
[
xn
∣∣∣ (xn−1

n−k−1

)] ,

where the RN-derivatives have become quotients of probability mass functions since

the processes are discrete. The above demonstrates that Schreiber’s initial definition

of transfer entropy is indeed a special case of our more general definition of TE. Fur-

thermore, if (Σ,X ) = (R,B(R)) and the joint probability measure PXn,(Xn−1
n−k−1),(Y n−1

n−l−1)
is absolutely continuous with respect to Lebesgue measure on R(1+k+l), then there ex-

ist RN-derivatives (probability densities)

pXn,(Xn−1
n−k−1),(Y n−1

n−l−1), pXn|(Xn−1
n−k−1),(Y n−1

n−l−1) and pXn|(Xn−1
n−k−1), (2.5)
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that act as the probability mass functions in Definition 1.1. In regards to our defini-

tion in this setting, R is indeed Polish, thus assuming (2.3) we can apply our definition

and expanding the expression in (2.4) yields

T(k,l)
Y→X(n)

=
∫
R(1+k+l)

pXn,(Xn−1
n−k−1),(Y n−1

n−l−1)
(
xn,

(
xn−1
n−k−1

)
,
(
yn−1
n−l−1

))
×

log

pXn|(Xn−1
n−k−1),(Y n−1

n−l−1)
(
xn |

(
xn−1
n−k−1

)
,
(
yn−1
n−l−1

))
pXn|(Xn−1

n−k−1)
(
xn |

(
xn−1
n−k−1

))
 dµ(1+k+l),

where µ(1+k+l) denotes Lebesgue measure on R(1+k+l). This expression is exactly that

for TE in this case as presented in [26], thus our definition recovers the correct

expression for TE in the case that (Σ,X ) = (R,B(R)) as well.

Note that the definition for T(k,l)
Y→X(n) in Definition 1.1 is different than Definition

1 of [48]. According to [48],

T(k,l),SPL
Y→X (n) := T(k,l)

Y→X(n) = EP

log dP
(k,l)
n [Xn | (Xn−1

n−k−1), (Y n−1
n−l−1)]

dP(k)
n [Xn | (Xn−1

n−k−1)]
(ω)


=
∫

Ω
log dP

(k,l)
n [Xn | (Xn−1

n−k−1), (Y n−1
n−l−1)]

dP(k)
n [Xn | (Xn−1

n−k−1)]
(ω)dP(ω).

(2.6)

This is an ambiguous expression as presented. Note that the RN-derivative,

dP(k,l)
n [Xn | (Xn−1

n−k−1), (Y n−1
n−l−1)]

dP(k)
n [Xn | (Xn−1

n−k−1)]
,

is not a function of Ω, but is rather by definition a function mapping Σ into R≥0, thus

the treatment of ω in (2.6) is inconsistent with the definition of the RN-derivative.

Furthermore, the conditional measures

P(k,l)
n [Xn | (Xn−1

n−k−1), (Y n−1
n−l−1)]

and

P(k)
n [Xn | (Xn−1

n−k−1)]
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are random measures, thus ω ∈ Ω should be fixed a priori before treating them as

measures on (Σ,X ). One could, in principle, interpret the RHS of (2.6) as

EP

[
log dP

(k,l)
n [Xn | (Xn−1

n−k−1), (Y n−1
n−l−1)]

dP(k)
n [Xn | (Xn−1

n−k−1)]
(ω)

]
=

∫
Ω

log dP
(k,l)
n [Xn | (Xn−1

n−k−1), (Y n−1
n−l−1)](ω)

dP(k)
n [Xn | (Xn−1

n−k−1)](ω)
(Xn(ω))dP.

(2.7)

This expression has meaning; however, we can not recover Schreiber’s definition [45].

The fundamental issue is that the RN-derivative in the integrand is only dependent

on a single ω, which as written, is evaluated at the same realization of Xn that

corresponds to the sample point which generates the conditional distributions that

define the RN-derivative itself. Thus when one takes the integral over Ω, one does not

capture the entire conditional distribution of Xn given the events in σ
((
Xn−1
n−k−1

))
and σ

((
Y n−1
n−l−1

))
that contain the sample point. For example, if X and Y are discrete

random processes, we get

∫
Ω

log dP
(k,l)
n [Xn | (Xn−1

n−k−1), (Y n−1
n−l−1)](ω)

dP(k)
n [Xn | (Xn−1

n−k−1)](ω)
(Xn(ω))dP

=
∫

Ω
log

P(k,l)
n

[
Xn = Xn(ω) |

(
Xn−1
n−k−1

)
,
(
Y n−1
n−l−1

)]
(ω)

P(k)
n

[
Xn = Xn(ω) |

(
Xn−1
n−k−1

)]
(ω)

dP

=
∑

xn−1
n−k−1∈X

n−1
n−k−1(Ω)

yn−1
n−l−1∈Y

n−1
n−l−1(Ω)

PXn−1
n−k−1,Y

n−1
n−l−1

(xn−1
n−k−1, y

n−1
n−l−1)×

∑
xn∈Xn(Ω)

log
PXn|(Xn−1

n−k−1),(Y n−1
n−l−1)

[
xn |

(
xn−1
n−k−1

)
,
(
yn−1
n−l−1

)]
PXn|(Xn−1

n−k−1)
[
xn |

(
xn−1
n−k−1

)]
6=

∑
xn−1
n−k−1∈X

n−1
n−k−1(Ω)

yn−1
n−l−1∈Y

n−1
n−l−1(Ω)

PXn−1
n−k−1,Y

n−1
n−l−1

(
xn−1
n−k−1, y

n−1
n−l−1

)
×

∑
xn∈Xn(Ω)

PXn|(Xn−1
n−k−1),(Y n−1

n−l−1)
[
xn |

(
xn−1
n−k−1

)
,
(
yn−1
n−l−1

)]
×

log
PXn|(Xn−1

n−k−1),(Y n−1
n−l−1)

[
xn
∣∣∣ (xn−1

n−k−1

)
,
(
yn−1
n−l−1

)]
PXn|(Xn−1

n−k−1)
[
xn
∣∣∣ (xn−1

n−k−1

)]
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= T(k,l)
Y→X(n).

As demonstrated in Example 3, Definition 1.1 accurately recovers the definition

presented in [45] by taking two integrals: one which is a KL-divergence among condi-

tional measures over the present (i.e. Xn) of the destination process given a specific set

of events in the past of X and Y , and another which integrates this KL-divergence

over all possible configurations of the past via integration over Ω. We note that

the notion of using two expectations to properly represent conditional versions of

information-theoretic measures has been done in previous literature ( See Section 3

of [2], (14) of [4] and (3) of [11].).

2.2 Projective limits and construction of path measures

We now turn our attention to the main purpose of this thesis, namely, the construction

of TE in continuous-time. We restrict our attention to the case when the uncountable

indexing set is an interval. Let T ⊂ R≥0 be an interval whose elements we will

sometimes refer to as times. Analogous to the setup for discrete-time TE, we suppose

X := {Xt}t∈T and Y := {Yt}t∈T are stochastic processes adapted to the filtered

probability space (Ω,F , {F}t∈T,P) such that for each t ∈ T, Xt and Yt are random

variables taking values in the measurable state space (Σ,X ) where Σ is a Polish

space and X is a σ−algebra of subsets of Σ. In this section we begin our construction

of continuous-time TE by introducing conditional measures on the space of sample

paths of X. These measures will act as the continuous-time analogues of the random

conditional probabilities

P(k,l)
n

[
Xn

∣∣∣∣ (Xn−1
n−k−1

)
,
(
Y n−1
n−l−1

)]

and

P(k)
n

[
Xn

∣∣∣∣ (Xn−1
n−k−1

)]
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in Definition 2.1.1. The following seminal result in [43] will be paramount in the

formulation of these measures.

Theorem 2. Let A be any index set and D the set of all its finite subsets directed by

inclusion. Let (Σt,Xt)t∈A be a family of measurable spaces where Σt is a topological

space and Xt is a σ-field containing all the compact subsets of Σt. Suppose, for α ∈ D,

Σα = ×t∈αΣt,Xα = ⊗
t∈αXt, and Pα : Xα 7→ [0, 1] so that (Σα,Xα,Pα) is a probability

space. If for each α ∈ D, Pα is inner regular relative to the compact subsets of Xα, i.e.,

for any A ∈ Xα, Pα = sup {Pα(C) : C is a compact subset of A} , and παβ : Σβ 7→ Σα

(β ≥ α), πα = παA : ×t∈AΣt 7→ Σα for α, β ∈ D are coordinate projections, then there

exists a unique probability measure PA on the space (×t∈AΣt,
⊗
t∈AXt) such that

∀α ∈ D,

Pα = PA ◦ π−1
α , (2.8)

if and only if
{

(Σα,Xα,Pα, παβ)β≥α : α, β ∈ D
}
is a projective system with respect to

mappings {παβ}, that is,

(1) π−1
αβ (Xα) ⊂ Xβ so that παβ is (Xβ,Xα)−measurable.

(2) for any α ≤ β ≤ λ, παβ ◦ πβλ = πα,λ, παα = idα and

(3) Pα = Pβπ−1
αβ , whenever α ≤ β.

Due to Corollary 15.27 of [1], the same result holds without the inner regularity

of P{·} whenever Σt is a Polish space for each t ∈ A. Furthermore, the same result

holds if D is the set of countably finite subsets of A (Corollary 4.9.16 of [13]).

We will work in the case A = [t0, T ) ⊂ T, where T ⊂ R≥0 is a closed and bounded

interval. As shown in the proof of Theorem 1 (See [43].), the projective limit σ−

algebra, ⊗t∈AXt, is generated by
⋃
α∈D

π−1
α (Xα), that is,

⊗
t∈T
Xt = σ

( ⋃
α∈D

π−1
α (Xα)

)
.
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If α, β ∈ D with α < β, then due to (1) of Theorem 1,

π−1
α (Xα) = (παβ ◦ πβ)−1 (Xα) ⊂ π−1

β (Xβ). (2.9)

Consequently, (π−1
α (Xα))α∈D is a filtration ordered by set inclusion which generates⊗

t∈AXt and from (2.8) we have

PA |π−1
α (Xα)= Pα ◦ πα. (2.10)

In our case, we assume that Σt = Σ and Xt = X , ∀t ∈ T.

Now let s, r > 0 be such that (t0 −max (s, r), T ) ⊂ T. The numbers s and r are in

place to act as the continuous analogues of the positive integers k and l in Definition

2.1.1. Observe that they need not be integers as is the case with k and l in Definition

1.1.

For each ∆t > 0, define the comb set D∆t ⊂ T by

D∆t ={ ⌊
t0
∆t

⌋
∆t−

(⌊
W

∆t

⌋
− 1

)
∆t, . . . ,

⌊
t0
∆t

⌋
∆t,

⌊
t0
∆t

⌋
∆t+ ∆t, . . .

. . .
⌊
T

∆t

⌋
∆t− 2∆t,

⌊
T

∆t

⌋
∆t−∆t,

⌊
T

∆t

⌋
∆t
}
,

where W = max (s, r). Given ∆t > 0, we can use the comb set D∆t to construct two

probability measures on the measurable space×b T∆t c−b t0∆t c−1
i=0 Σ =: Σb T∆t c−b

t0
∆t c,

b T∆t c−b
t0
∆t c−1⊗

i=0
X =:

b T∆t c−b
t0
∆t c⊗
X

 .
Specifically, for ∆t > 0, let A∆t,X

m = {Xm ∈ Bm}, A∆t,Y
m = {Ym ∈ Bm},

X∆t
m,k = σ

((
X
b T∆tc∆t−(m+1)∆t

b T∆tc∆t−(m+k+1)∆t

))
, and Y ∆t

m,k,l = σ
((
Y
b T∆tc∆t−(i+1)∆t

b T∆tc∆t−(i+l+1)∆t

))
, for

m = 0, 1, · · · ,
⌊
T
∆t

⌋
−
⌊
t0
∆t

⌋
− 1.

Then
b T∆t c−b

t0
∆t c−1∏

i=0
Pb T∆tc∆t−i∆t

(
A∆t,X
b T∆tc∆t−i∆t

∣∣∣∣αi,∆tX

)

=
b T∆tc−b t0∆tc−1∏

i=0

(
Pb T∆tc∆t−i∆t

(
Xb T∆tc∆t−i∆t

∣∣∣∣X∆t
i,k

))
(ω)

(
Bb T∆tc∆t−i∆t

)
,

for some ω ∈ Ω,

(2.11)
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where k =
⌊
s

∆t

⌋
and αi,∆tX =

b T∆tc−(i+1)⋂
j=b T∆tc−(i+b s

∆tc+1)

A∆t,X
j∆t , and that

b T∆tc−b t0∆t c−1∏
i=0

Pb T∆tc∆t−i∆t
(
A∆t,X
b T∆tc∆t−i∆t

∣∣∣∣ (αi,∆tX

)⋂(
αi,∆tY

))

=
b T∆tc−b t0∆tc−1∏

i=0

(
Pb T∆tc∆t−i∆t

(
Xb T∆tc∆t−i∆t

∣∣∣∣X∆t
i,k , Y

∆t
i,k,l

))
(ω)

(
Bb T∆tc∆t−i∆t

)
,

for some ω ∈ Ω,

(2.12)

where l =
⌊
r

∆t

⌋
and αi,∆tY =

b T∆tc−(i+1)⋂
j=b T∆tc−(i+b r∆tc+1)

A∆t,Y
j∆t .

Given ω ∈ Ω,∆t > 0, define the measures P(ω),(k)
X|
←−
X,i,∆t

and P(ω),(k,l)
X|
←−
X,
←−
Y ,i,∆t

on the space

(Σ,X ) for each i = 0, 1, · · · ,
⌊
T
∆t

⌋
−
⌊
t0
∆t

⌋
− 1, by

P(ω),(k)
X|
←−
X,i,∆t

(
Bb T∆tc∆t−i∆t

)
=
(
Pb T∆t c∆t−i∆t

(
Xb T∆tc∆t−i∆t

∣∣∣X∆t
i,k

))
(ω)

(
Bb T∆tc∆t−i∆t

)
(2.13)

and

P(ω),(k,l)
X|
←−
X,
←−
Y ,i,∆t

(
Bb T∆tc∆t−i∆t

)
=
(
Pb T∆tc∆t−i∆t

(
Xb T∆tc∆t−i∆t

∣∣∣X∆t
i,k , Y

∆t
i,k,l

))
(ω)

(
Bb T∆tc∆t−i∆t

)
.

(2.14)

Notation 2. For ∆t′,∆t > 0, we write ∆t′ | ∆t whenever there exists a positive

integer m such that ∆t = m∆t′.

Suppose k =
⌊
s

∆t

⌋
and l =

⌊
r

∆t

⌋
. If for each ω ∈ Ω, the systems

Σb T∆t c−b
t0
∆t c,

b T∆t c−b
t0
∆t c⊗
X ,
b T∆t c−b

t0
∆t c−1∏

i=0
P(ω),(k)
X|
←−
X,i,∆t

, πD∆tD∆t′


0<∆t′<∆t

∆t′|∆t

∣∣∣∣∣∣∣∣∣ ∆t > 0


and

Σb T∆t c−b
t0
∆t c,

b T∆t c−b
t0
∆t c⊗
X ,
b T∆t c−b

t0
∆t c−1∏

i=0
P(ω),(k,l)
X|
←−
X,
←−
Y ,i,∆t

, πD∆tD∆t′


0<∆t′<∆t

∆t′|∆t

∣∣∣∣∣∣∣∣∣ ∆t > 0
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are projective systems with respect to coordinate projections
{
πD∆tD∆t′

}
, then as a

consequence of Theorem 2, there exist unique probability measures

P(s)
X [XT

t0 | X
t0
t0−s](ω)

and

P(s,r)
X|X,{Y }[X

T
t0 | X

t0
t0−s, {Y

T
t0−r}](ω)

on the measurable space
(
×t∈[t0,T )Σ,

⊗
t∈[t0,T )X

)
such that

P(s)
X [XT

t0 | X
t0
t0−s](ω)

∣∣∣∣
F [t0,T )

∆t

=

b
T
∆t c−b

t0
∆t c−1∏

i=0
P(ω),(k)
X|
←−
X,i,∆t

 ◦ πD∆t (2.15)

and

P(s,r)
X|X,{Y }[X

T
t0 | X

t0
t0−s, {Y

T
t0−r}](ω)

∣∣∣∣
F [t0,T )

∆t

=

b
T
∆t c−b

t0
∆t c−1∏

i=0
P(ω),(k,l)
X|
←−
X,
←−
Y ,i,∆t

 ◦ πD∆t , (2.16)

where F [t0,T )
∆t = π−1

D∆t
(XD∆t).

Notation 3. We let Ω[t0,T )
X denote the set of sample paths of the process X.

2.3 Pathwise transfer entropy and expected pathwise transfer

entropy

The purpose of this section is to use the measures

P(s)
X [XT

t0 | X
t0
t0−s](·)

and

P(s,r)
X |X,{Y }

[
XT
t0 | X

t0
t0−s, {Y

T
t0−r}

]
(·)

to define transfer entropy over an interval of the form [t0, T ) with history window

lengths r, s > 0. Unlike Definition 2.4, we give the logarithm of the RN-derivative its

own name as we will later prove various properties about it alone.
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Definition 2.3.1. Suppose T ⊂ R≥0 is a closed and bounded interval and that

[t0, T ) ⊂ T. For ω ∈ Ω, xTt0 ∈ Ω[t0,T )
X , and r, s > 0 such that (t0 −max (s, r), T ) ⊂ T,

define the pathwise transfer entropy from Y to X on [t0, T ) at xTt0 with history window

lengths r and s, denoted PT (s,r)
Y→X |Tt0 (ω, xTt0), by

PT (s,r)
Y→X |Tt0 (ω, xTt0) = log

dP(s,r)
X|X,{Y }[XT

t0 | X
t0
t0−s, {Y T

t0−r}](ω)
dP(s)

X [XT
t0 | X

t0
t0−s](ω)

(
xTt0

)
, (2.17)

whenever P(s,r)
X|X,{Y }[XT

t0 | X
t0
t0−s, {Y T

t0−r}](ω) and P(s)
X [XT

t0 | X
t0
t0−s](ω) exist with

P(s,r)
X|X,{Y }[X

T
t0 | X

t0
t0−s, {Y

T
t0−r}](ω)� P(s)

X [XT
t0 | X

t0
t0−s](ω).

Observation 3. For each ω ∈ Ω, PT (s,r)
Y→X |Tt0 (ω, ·) maps Ω[t0,T )

X into the extended

nonnegative real line R≥0 ∪ {∞} and PT (s,r)
Y→X |Tt0 (ω, ·) is unique P(s)

X [XT
t0 | X

t0
t0−s](ω)

a.s. due to Theorem 1.

The following is our definition of transfer entropy over an interval of the form

[t0, T )2.

Definition 2.3.2. Suppose T ⊂ R≥0 is a closed and bounded interval and [t0, T ) ⊂ T.

For r, s > 0 such that (t0 −max (s, r) , T ) ⊂ T, the expected pathwise transfer entropy

from Y to X on [t0, T ) with history window lengths r and s, denoted EPT (s,r)
Y→X |Tt0 , is

defined by

EPT (s,r)
Y→X |Tt0=

EP

[
EP(s,r)

X|X,{Y }

[
log

dP(s,r)
X|X,{Y }[XT

t0 |X
t0
t0−s

,{Y Tt0−r}]
dP(s)
X [XT

t0 |X
t0
t0−s]

]]
, P(s,r)

X|X,{Y }

[
XT
t0 | X

t0
t0−s,

{
Y T
t0−r

}]
(ω)

� P(s)
X

[
XT
t0 | X

t0
t0−s

]
(ω),

∀ω ∈ Ω

∞ , otherwise
(2.18)

2 One could, in principle, construct a similar definition in the case that the interval was of
the form [t0, T ], via following the procedure outlined in Section 2.2 with comb sets of the form
D̃∆t :=

{
T, T −∆t, T − 2∆t, . . . , T −

⌊
max (s,r)

∆t

⌋
∆t
}

rather than D∆t.
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whenever the path measures P(s,r)
X|X,{Y }[XT

t0 | X
T
t0−s, {Y

T
t0−r}](ω) and P(s)

X [XT
t0 | X

T
t0−s](ω)

exist for each ω ∈ Ω.

For clarity, we emphasize that the expectation in (2.18) is understood as the

integral

EP

EP(s,r)
X|X,{Y }

log
dP(s,r)

X|X,{Y }

[
XT
t0

∣∣∣X t0
t0−s, {Y T

t0−r}
]

dP(s)
X

[
XT
t0

∣∣∣X t0
t0−s

]


=
∫

Ω
KL(ω) dP(ω),

(2.19)

where
KL(ω) =
∫

Ω[t0,T )
X

log
dP(s,r)

X|X,{Y }[XT
t0 | X

t0
to−s, {Y T

t0−r}](ω)
dP(s)

X [XT
t0 | X

t0
to−s](ω)

(
xTt0

)
dP(s,r)

X|X,{Y }[X
T
t0 | X

t0
to−s, {Y

T
t0−r}](ω),

and note that this is consistent with the expression in (2.4) for discrete-time TE. Fur-

thermore, note that (2.19) is an expectation of the KL-divergence among conditional

measures induced by the dynamics of the processes over the space of paths of X and

the EPT is always real-valued.

2.4 Counterexamples to claims in the literature

Question 1. When, in principle, can continuous-time TE be obtained as a limit of

discrete-time TE?

The current section and Section 2.5 are devoted to answering this question. This

notion is captured through the following claim made in [48] stated without proof

listed as Remark 1.

Claim 1. We recover an approximation to the quantities in this formalism given a

discretization of a continuous-time process by recognizing, due to the linearity of the

27



expectation operator,

T
(s,r)
Y→X

∣∣∣∣T
t0

= lim
∆t→0

T
∆t−

t0
∆t−1∑

i=0
T(k,l),∆t,SPL
Y→X

(
T

∆t∆t− i∆t
)
, (2.20)

where T (s,r)
Y→X

∣∣∣∣T
t0

= EP

log
dP(s,r)

X|X,{Y }[XT
t0 | X

t0
t0−s, {Y T

t0−r}]
dP(s)

X [XT
t0 | X

t0
t0−s]

 ,
where this limit exists, such that the relevant path measures are convergent in such

a procedure, and where ∆t defines the discretization scheme.

The claim presents a very interesting notion of the relationship between continuous-

time TE and discrete-time; however, the statement of the claim in its own right is

void of the level of rigor expected in mathematical exposition. Additional elabora-

tion and precision is needed to make (2.20) realizable. The intention of the material

herein is to remedy these theoretical deficiencies of the claim as well as to recast it

in a manner which is mathematically defensible. We first demonstrate the necessity

of these efforts by giving a counterexample to the claim as it stands.

Example 4. For the purposes of only this counterexample, we will redefine

P(ω),(s,r)
X|
←−
X,
←−
Y ,i,∆t

and P(ω),(s)
X|
←−
X,i,∆t

in (2.13) and (2.14) as

P(ω),(s,r)
X|
←−
X,
←−
Y ,i,∆t

(A)

= P T
∆t∆t−i∆t

(
X T

∆t∆t−i∆t
∈ A | X

T
∆t∆t−(i+1)∆t
T
∆t∆t−(i+k+1)∆t, Y

T
∆t∆t−(i+1)∆t
T
∆t∆t−(i+l+1)∆t

)
(ω)

and

P(ω),(s)
X|
←−
X,i,∆t

(A)

= P T
∆t∆t−i∆t

(
X T

∆t∆t−i∆t
∈ A | X

T
∆t∆t−(i+1)∆t
T
∆t∆t−(i+k+1)∆t

)
(ω).

where k = b s∆tc, l = b r∆tc.

Let t ∈ Q,T = [t0, T ), s, r > 0 be such that [t0 − max(s, r), T ) ⊂ T. Let {∆tQj }j≥1
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and {∆tIj}j≥1 be sequences in Q and I, respectively, with both converging to 0 as

j →∞. Suppose Z ∼ Bern
(

1
2

)
and for each t ∈ T, let

Xt = χQ(t)Z,

Yt = Z

and let

X = (Xt)t∈T,

Y = (Yt)t∈T.

Let ω ∈ Ω satisfy Z(ω) = 1. Note that

πt(XT
t0(ω)) = 1,∀t ∈ Q

and

πt(XT
t0(ω)) = 0,∀t ∈ I.

Also observe that

P T

∆tQ
j

∆tQj −i∆t
Q
j

X T

∆tQ
j

∆tQj −i∆t
Q
j

= 1 | X
T

∆tQ
j

∆tQj −(i+1)∆tQj

T

∆tQ
j

∆tQj −(i+k+1)∆tQj
, Y

T

∆tQ
j

∆t−(i+1)∆tQj

T

∆tQ
j

∆tQj −(i+l+1)∆tQj

 (ω) = 1,

and

P T

∆tQ
j

∆tQj −i∆t
Q
j

(
X T

∆tQ
j

∆tQj −i∆t
Q
j

= 1 | X
T

∆tQ
j

∆tQj −(i+1)∆tQj

T

∆tQ
j

∆tQj −(i+k+1)∆tQj

)
(ω) = 1

for all i = 0, 1, . . . , T

∆tQj
− t0

∆tQj
− 2, T

∆tQj
− t0

∆tQj
− 1

P T

∆tI
j

∆tIj−i∆t
I
j

(
X T

∆tI
j

∆tIj−i∆t
I
j

= 0 | X
T

∆tI
j

∆tIj−(i+1)∆tIj
T

∆tI
j

∆tIj−(i+k+1)∆tIj
, Y

T

∆tI
j

∆tIj−(i+1)∆tIj
T

∆tI
j

∆tIj−(i+l+1)∆tIj

)
(ω) = 1,

and

P T

∆tI
j

∆tIj−i∆t
I
j

(
X T

∆tI
j

∆tIj−i∆t
I
j

= 0 | X
T

∆tI
j

∆tIj−(i+1)∆tIj
T

∆tI
j

∆tIj−(i+k+1)∆tIj

)
(ω) = 1

for all i = 1, 2, . . . , T
∆tIj
− t0

∆tIj
− 2, T

∆tIj
− t0

∆tIj
− 1 and

P T

∆tI
j

∆tIj−i∆t
I
j

(
X T

∆tI
j

∆tIj−i∆t
I
j

= 1 | X
T

∆tI
j

∆tIj−(i+1)∆tIj
T

∆tI
j

∆tIj−(i+k+1)∆tIj
, Y

T

∆tI
j

∆tIj−(i+1)∆tIj
T

∆tI
j

∆tIj−(i+l+1)∆tIj

)
(ω) = 1,

29



and

P T

∆tI
j

∆tIj−i∆t
I
j

(
X T

∆tI
j

∆tIj−i∆t
I
j

= 1 | X
T

∆tI
j

∆tIj−(i+1)∆tIj
T

∆tI
j

∆tIj−(i+k+1)∆tIj

)
(ω) = 1

2

when i = 0. Now

lim
j→∞

T

∆tQ
j

− t0
∆tQ
j

−1∏
i=0

dP(ω),(s,r)
X|
←−
X,
←−
Y ,i,∆tQj

dP(ω),(s)
X|
←−
X,i,∆tQj

(
π T

∆tQ
j

∆tQj −i∆t
Q
j
(XT

t0(ω))
)

= lim
j→∞

T

∆tQ
j

− t0
∆tQ
j

−1∏
i=0

dP(ω),(s,r)
X|
←−
X,
←−
Y ,i,∆tQj

dP(ω),(s)
X|
←−
X,i,∆tQj

(
1
)

= lim
j→∞

T

∆tQ
j

− t0
∆tQ
j

−1∏
i=0

P(ω),(s,r)
X|
←−
X,
←−
Y ,i,∆tQj

({1})

P(ω),(s)
X|
←−
X,i,∆tQj

({1})

= 1

6= 2

= lim
j→∞

(
1
t−t0
∆tI
j

−1
)(

1
1
2

)

= lim
j→∞


T

∆tI
j

− t0
∆tI
j

−1∏
i=0

P(ω),(s,r)
X|
←−
X,
←−
Y ,i,∆tIj

({0})

P(ω),(s)
X|
←−
X,i,∆tIj

({0})


P(ω),(s,r)

X|
←−
X,
←−
Y ,0,∆tIj

({1})

P(ω),(s)
X|
←−
X,0,∆tIj

({1})



= lim
j→∞


T

∆tI
j

− t0
∆tI
j

−1∏
i=1

dP(ω),(s,r)
X|
←−
X,
←−
Y ,i,∆tIj

dP(ω),(s)
X|
←−
X,i,∆tIj

(
πt−i∆tIj(X

T
t0(ω))

)
dP

(ω),(s,r)
X|
←−
X,
←−
Y ,0,∆tIj

dP(ω),(s)
X|
←−
X,0,∆tIj

(
πt(XT

t0(ω))
)

= lim
j→∞

T

∆tI
j

− t0
∆tI
j

−1∏
i=0

dP(ω),(s,r)
X|
←−
X,
←−
Y ,i,∆tIj

dP(ω),(s)
X|
←−
X,i,∆tIj

(
πt−i∆tIj(X

T
t0(ω))

)
,

thus the limit in (2.20) does not exist.

In a revised version of [48], the expression in (2.20) is changed to

T
(s,r)
Y→X

∣∣∣∣T
t0

= lim
∆t↓0

b
T
∆tc−b t0∆tc−1∑

i=0
T(k,l),∆t
Y→X

(⌊
T

∆t

⌋
∆t− i∆t

) . (2.21)
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This version still inherits the theoretical issues apparent in Claim 1, thus additional

elaboration is still needed. For completeness, we give an example demonstrating that

it is also not true in general.

Example 5. For each t ∈ Q+, let {εtj}j≥1 be a sequence of irrational numbers con-

verging to 0 as j → ∞ which are linearly independent over Q. For each j ≥ 1,

define

btcεtj =
⌊
t

εtj

⌋
εtj

and let

U =
⋃
t∈Q
{btcεtj | t ≥ t0, j ≥ 1}

⋃
Q.

Let t ∈ Q+,T = [t0, T ), s, r > 0 be such that [t0 −max(s, r), T ) ⊂ T. Let {∆tQj }j≥1

be a sequence in Q converging to 0 as j →∞. Suppose

Z ∼ Bern
(1

2

)

and for each t ∈ T, let

Xt = χU(t)Z,

Yt = Z

and let X = (Xt)t∈T, Y = (Yt)t∈T. Let ω ∈ Ω satisfy Z(ω) = 1. Note that

πt(X t
t0(ω)) = 1,∀t ∈ Q,

πt(X t
t0(ω)) = 1,∀t ∈ U,

and

πt(X t
t0(ω)) = 0,∀t ∈ I \ U.

Also observe that ∀j ≥ 1,

P(ω),(s,r)
X|
←−
X,
←−
Y ,i,∆tQj

({1}) = 1
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and

P(ω),(s)
X|
←−
X,i,∆tQj

({1}) = 1

for all i = 0, 1, . . . ,
⌊

T

∆tQj

⌋
−
⌊
t0

∆tQj

⌋
− 2,

⌊
T

∆tQj

⌋
−
⌊
t0

∆tQj

⌋
− 1

P(ω),(s,r)
X|
←−
X,
←−
Y ,i,εtj

({0}) = 1

and since ←−Y εtj
/∈ Q from linear independence.

P(ω),(s)
X|
←−
X,i,εtj

({0}) = 1,

for all i = 1, 2, . . .
⌊
T
εtj

⌋
−
⌊
t0
εtj

⌋
− 2,

⌊
T
εtj

⌋
−
⌊
t0
εtj

⌋
− 1. Furthermore,

P(ω),(s,r)
X|
←−
X,
←−
Y ,i,εtj

({1}) = 1

and since btcεtj − iε
t
j /∈ U,∀i > 0

P(ω),(s)
X|
←−
X,i,εtj

({1}) = 1
2 ,

whenever i = 0. Now

lim
j→∞

⌊
T

∆tQ
j

⌋
−
⌊

t0
∆tQ
j

⌋
−1∏

i=0

dP(ω),(s,r)
X|
←−
X,
←−
Y ,i,∆tQj

dP(ω),(s)
X|
←−
X,i,∆tQj

π⌊
T

∆tQ
j

⌋
∆tQj −i∆t

Q
j

(X t
t0(ω))



= lim
j→∞

⌊
T

∆tQ
j

⌋
−
⌊

t0
∆tQ
j

⌋
−1∏

i=0

dP(ω),(s,r)
X|
←−
X,
←−
Y ,i,∆tQj

dP(ω),(s)
X|
←−
X,i,∆tQj

(
1
)

= lim
j→∞

⌊
T

∆tQ
j

⌋
−
⌊

t0
∆tQ
j

⌋
−1∏

i=0

P(ω),(s,r)
X|
←−
X,
←−
Y ,i,∆tQj

({1})

P(ω),(s)
X|
←−
X,i,∆tQj

({1})

= 1

6= 2

= lim
j→∞

1

⌊
t

εt
j

⌋
−
⌊
t0
εt
j

⌋
−1
(1

1
2

)
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= lim
j→∞



⌊
t

εt
j

⌋
−
⌊
t0
εt
j

⌋
−1∏

i=1

P(ω),(s,r)
X|
←−
X,
←−
Y ,i,εtj

({0})

P(ω),(s)
X|
←−
X,i,εtj

({0})


P(ω),(s,r)

X|
←−
X,
←−
Y ,0,εtj

({1})

P(ω),(s)
X|
←−
X,0,εtj

({1})



= lim
j→∞

⌊
t

εt
j

⌋
−
⌊
t0
εt
j

⌋
−1∏

i=0

dP(ω),(s,r)
X|
←−
X,
←−
Y ,i,εtj

dP(ω),(s)
X|
←−
X,i,εtj

π⌊
t

εt
j

⌋
εtj−iε

t
j

(X t
t0(ω))

 .

2.5 The attainability of continuous-time TE as a limit of

discrete-time TE

As demonstrated in Example 4 and Example 5, the limit in (2.20) is not true in

general. This motivates the pursuit of conditions under which the limit in (2.20)

is indeed valid. The purpose of this section is to present such conditions for our

definitions of continuous-time and discrete-time TE and present our main theorem,

which should be regarded as a recasting of the revised version of claim 1 presented

in (2.21). We first prove two analysis lemmas that will be used in the proof of our

main theorem; then we define a type of consistency between processes that makes

the expressions in the main result meaningful; then we provide the main result and

conclude with some of its consequences.

Lemma 3. Suppose N ≥ 1 and {µi}i≥1 and {νi}i≥1 are finite measures on the

measurable space (X ,Σ) with µi � νi for i = 1, ..., N. Let µ = ∏N
i=1 µi and ν = ∏N

i=1 νi

be product measures on the space
(
XN ,⊗NΣ

)
. Then µ� ν and

N∏
i=1

dµi
dνi

(πi(x1, x2, ..., xN)) = dµ

dν
(x1, x2, ..., xN) , ν - a.e.,

where xi ∈ X , for i ∈ [N ].
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Proof. Clearly µ� ν since ∀A ∈ ⊗NΣ,

ν(A) = 0

=⇒ ∃j ≤ N, such that νj(πj(A)) = 0

=⇒ µj (πj(A)) = 0

=⇒ µ(A) = 0.

Fix E ∈ ⊗NΣ and for i = 1, 2, . . . , N , let

Ex1,x2,...,xi = {(xi+1, xi+2, ..., xN ∈ XN−i) | (x1, x2, ..., xi, xi+1, ..., xN) ∈ E},

where xi ∈ X ,∀i ∈ [N ]. Then from the Radon-Nikodym chain rule,

µ(A) =
∫
X
. . .
∫
X

(
χEx1,x2,...,xN−1

(xN)
)
dµN (xN) ...dµ1(x1)

=
∫
X
. . .
∫
X

((
χEx1,x2,...,xN−1

(xN)
) dµN
dνN

(xN) dνN(xN)
)
dµN−1(xN−1)...dµ1(x1)

=
∫
X
. . .
∫
X

(
χEx1,x2,...,xN−1

(xN)dµN
dνN

(xN) dµN−1

dνN−1
(xN−1) ...dµ1

dν1
(x1)

)
N∏
i=1

dνi(xi)

=
∫
X
. . .
∫
X

(
χEx1,x2,...,xN−2

(xN , xN−1)
) N∏
i=1

dµi
dνi

(xi)
N∏
i=1

dνi(xi)

...∫
XN

χE (xN , xN−1, . . . , x2, x1)
N∏
i=1

dµi
dνi

(xi)
N∏
i=1

dνi(xi)

=
∫
E

N∏
i=1

dµi
dνi

(xi)
N∏
i=1

dνi(xi).

=
∫
E

N∏
i=1

dµi
dνi

(xi)dν (x1, . . . , xN) .

By the uniqueness of the RN-derivative,

dµ

dν
(x1, x2, ..., xN) =

N∏
i=1

dµi
dνi

(xi)

=
N∏
i=1

dµi
dνi

(πi(x1, x2, ..., xN)) ν - a.e.
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The following lemma establishes convergence of KL-divergences in a manner which

will be useful for the proof of our main result.

Lemma 4. Suppose (Ω,F) is a measurable space. Suppose further, (F∆t)∆t>0 is

a sequence of decreasing sub-σ-algebras of F such that F =
⋂

∆t>0
F∆t and that P

and M are probability measures on (Ω,F) with P � M . Let P∆t = P |F∆t and

M∆t = M |F∆t for each ∆t > 0. If EP
[
log dP

dM

]
<∞, then

EP∆t

[
log dP∆t

dM∆t

]
→ EP

[
log dP

dM

]
, as ∆t ↓ 0. (2.22)

Proof. Since probability measures are σ−finite, the RN-derivatives in (2.22) exist.

Suppose ∆t > 0. Observe that for all A ∈ F∆t, we have that

EM
[
χA

dP∆t

dM∆t

]
= EM

[
χA

dP

dM

]
,

implying that

EM
[
dP

dM

∣∣∣∣∣F∆t

]
= dP∆t

dM∆t
(M -a.s.) (2.23)

from the definition of conditional expectation. Define ζ∆t = dP∆t
dM∆t

for each ∆t > 0.

From (2.23), we get that {ζ∆t}∆t>0 is a uniformly integrable backward martingale

since ζ∆t is clearly M−integrable for any ∆t > 0 by Theorem 1 and if ∆t′ > ∆t, then

F∆t′ ⊂ F∆t, thus

EM [ζ∆t |F∆t′ ] = EM
[
EM

[
dP

dM

∣∣∣∣∣F∆t

] ∣∣∣∣∣F∆t′

]

= EM
[
dP

dM

∣∣∣∣∣F∆t′

]

= ζ∆t′ ,

due to the tower property of conditional expectation.

We claim that

ζ∆t →
dP

dM
, as ∆t ↓ 0, M -a.s.. (2.24)

To see this, note first that the limit exists a.s and in L1 due to Theorem 6.1 of [14],

that is, there exists some nonnegative ζ ∈ L1 (Ω,F ,M) such that

EM
[∣∣∣ζ∆t − ζ

∣∣∣]→ 0, as ∆t ↓ 0.
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Fix ∆t > 0 and suppose A ∈ F∆t. Then for all 0 < ∆t′ < ∆t, we have that A ∈ F∆t′

since (F∆t)∆t>0 is a decreasing collection of σ−algebras. As a consequence of the

Radon-Nikodym Theorem,

P (A) = EM [χAζ∆t′ ] ,

implying that EM [χAζ∆t′ ] is constant for 0 < ∆t′ < ∆t, consequently

P (A) = EM [χAζ∆t′ ] = EM [χAζ] .

Furthermore, since F = ⋂
∆t>0F∆t we must have that

P (A) = EM [χAζ]

for all A ∈ F , proving (2.24).

Since (0,∞) 3 x 7→ x log x is convex and ∀∆t > 0,

EP [log ζ∆t] = EM∆t [ζ∆t log ζ∆t] = EM
[
dP∆t

dM∆t
log dP∆t

dM∆t

]
, (2.25)

conditional Jensen’s inequality and (2.23) imply that

EM
[
dP

dM
log dP

dM

∣∣∣∣∣F∆t

]
≥ ζ∆t log ζ∆t (M∆t-a.s.). (2.26)

Taking expectations with respect to M of both sides of (2.26) we get that ∀∆t > 0,

EP
[
log dP

dM

]
= EM

[
dP

dM
log dP

dM

]

= EM
[
EM

[
dP

dM
log dP

dM

∣∣∣∣∣F∆t

]]

≥ EM
[
dP∆t

dM∆t
log dP∆t

dM∆t

]
,

thus
EP

[
log dP

dM

]
≥ lim sup

∆t↓0
EM

[
dP∆t

dM∆t
log dP∆t

dM∆t

]

= lim sup
∆t↓0

EM∆t

[
dP∆t

dM∆t
log dP∆t

dM∆t

]

= lim sup
∆t↓0

EP∆t

[
log dP∆t

dM∆t

]
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The Radon-Nikodym Theorem guarantees that dP
dM

is nonnegative and that dP
dM

log dP
dM

is F− measurable, thus

lim inf
∆t↓0

EP∆t

[
log dP∆t

dM∆t

]
= lim inf

∆t↓0
EM

[
dP∆t

dM∆t
log dP∆t

dM∆t

]

≥ EM
[
dP

dM
log dP

dM

]

= EP
[
log dP

dM

] (2.27)

as a consequence of the continuous-time version of Fatou’s Lemma and (2.25). Now

EP∆t

[
log dP∆t

dM∆t

]
→ EP

[
log dP

dM

]
, as ∆t ↓ 0.

Let F [t0,T )
X be the sub-σ−algebra of

⊗
t∈[t0,T )

X defined by

F [t0,T )
X =

⋂
∆t>0
F [t0,T )

∆t (2.28)

and observe that
(
F [t0,T )

∆t

)
∆t>0

is a decreasing collection of σ−algebras due to (2.9).

Herein, it should be understood that when we write P(s,r)
X|X,{Y }[XT

t0 | X
t0
t0−s, {Y T

t0−r}] (·)

or P(s)
X [XT

t0 | X
t0
t0−s}] (·) we are referring to the restriction of these measures to the

σ−algebra F [t0,T )
X . Furthermore, recall from (2.15) and (2.16) that for all A ∈

F [t0,T )
∆t , ω ∈ Ω,

P(s,r)
X|X,{Y }[X

T
t0 | X

t0
t0−s, {Y

T
t0−r}] (ω)

∣∣∣∣∣∣
F [t0,T )

∆t

(A) =

b T∆tc−b t0∆tc−1∏
i=0

P(ω),(k,l)
X|
←−
X,
←−
Y ,i,∆t

(
πb T∆tc∆t−i∆t(A)

)
,

(2.29)

and

P(s)
X [XT

t0 | X
t0
t0−s}] (ω)

∣∣∣∣∣∣
F [t0,T )

∆t

(A) =

b T∆tc−b t0∆tc−1∏
i=0

P(ω),(k)
X|
←−
X,i,∆t

(
πb T∆tc∆t−i∆t(A)

)
,

(2.30)
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where k =
⌊
s

∆t

⌋
and l =

⌊
r

∆t

⌋
and note that (2.29) and (2.30) will be used in the

proof of our main result. From here on in, we will ignore writing the projections in

(2.29) and (2.30) to avoid cumbersome notation.

Notation 4. We denote by P (ω)
∆t and M (ω)

∆t the probability measures

P(s,r)
X|X,{Y }[X

T
t0 | X

t0
t0−s, {Y

T
t0−r}] (ω)

∣∣∣∣∣∣
F [t0,T )

∆t

and

P(s)
X [XT

t0 | X
t0
t0−s}] (ω)

∣∣∣∣∣∣
F [t0,T )

∆t

,

respectively. It should be noted that these are measures on the measurable spaceΣb
T
∆tc−b t0∆tc,

b T∆tc−b t0∆tc⊗
X

 .
Notation 5. For any ∆t > 0, let

T(k,l),∆t
Y→X

(⌊
T

∆t

⌋
∆t− i∆t

)
= EP

[
KL

(
P

(k,l)
∆t

∣∣∣∣∣∣∣∣M (k)
∆t

)]
,

for any i = 0, 1, . . . ,
⌊
T
∆t

⌋
−
⌊
t0
∆t

⌋
− 1, where

P
(k,l)
∆t = P(k,l)

[
Xb T∆tc∆t−i∆t

∣∣∣∣ (Xb T∆tc∆t−(i+1)∆t

b T∆tc∆t−(i+k+1)∆t

)
,
(
Y
b T∆tc∆t−(i+1)∆t

b T∆tc∆t−(i+l+1)∆t

)]
,

M
(k)
∆t = P(k)

[
Xb T∆tc∆t−i∆t

∣∣∣∣ (Xb T∆tc∆t−(i+1)∆t

b T∆tc∆t−(i+k+1)∆t

)]
,(

X
b T∆tc∆t−(i+1)∆t

b T∆tc∆t−(i+k+1)∆t

)
=
(
Xb T∆tc∆t−(i+1)∆t, Xb T∆tc∆t−(i+2)∆t, · · · , Xb T∆tc∆t−(i+k+1)∆t

)
and
(
Y
b T∆tc∆t−(i+1)∆t

b T∆tc∆t−(i+l+1)∆t

)
=
(
Yb T∆tc∆t−(i+1)∆t, Yb T∆tc∆t−(i+2)∆t, · · · , Yb T∆tc∆t−(i+l+1)∆t

)
.

As a means of succinctly capturing all of the conditions which need hold to use TE

in our formalism, we define a type of consistency between two processes dependent on

the window lengths r and s and the set [t0, T ). This notion of consistency captures

the conditions under which our main result, Theorem 5, is of utility.
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Definition 2.5.1. Suppose T ⊂ R≥0 is a closed and bounded interval, [t0, T ) ⊂ T,

and s, r > 0 are such that (t0 −max(s, r), T ) ⊂ T. Suppose further thatX := {Xt}t∈T

and Y := {Yt}t∈T are stochastic processes adapted to the filtered probability space

(Ω,F , {Ft}t∈T,P) such that for each t ∈ T, Xt and Yt are random variables taking

values in the measurable space (Σ,X ) where Σ is assumed to be a Polish space and

X is a σ−algebra of subsets of Σ. Y is (s,r)-consistent upon X on [t0, T ) iff

1. ∀ω ∈ Ω, there exist path measures P(s)
X [XT

t0 | X
t0
t0−s}] (ω) and P(s,r)

X|X,{Y }[XT
t0 |

X t0
t0−s, {Y T

t0−r}] (ω) on the space
(
Ω[t0,T )
X ,F [t0,T )

X

)
for which (2.15) and (2.16)

hold.

2. ∃δ1 > 0 such that ∀∆t ∈ (0, δ1), ω ∈ Ω, i = 0, 1, . . . ,
⌊
T
∆t

⌋
−
⌊
t0
∆t

⌋
− 1,

(a) P(ω),(b s∆t c,b
r

∆t c)
X|
←−
X,
←−
Y ,i,∆t

� P(ω),(b s∆t c)
X|
←−
X,i,∆t

.

(b)
dP(ω),(k,l)
X|
←−
X,
←−
Y ,i,∆t

dP(ω),(k)
X|
←−
X,i,∆t

∈ L1

(
Σ,X ,P(ω),(k,l)

X|
←−
X,
←−
Y ,i,∆t

)
.

3. ∀ω ∈ Ω,P(s,r)
X|X,{Y }[XT

t0 | X
t0
to−s, {Y T

t0−r}] (ω)� P(s)
X [XT

t0 | X
t0
to−s] (ω) .

We call 1.- 3. consistency conditions.

Remark 7. For clarity, we assume that the limit of a function f : R 7→ R at a point

c ∈ R exists iff ∃L < ∞ such that ∀ε > 0,∃δ > 0 such that x ∈ (c − δ, c + δ) =⇒

f(x) ∈ (L− ε, L+ ε).

We now proceed to our main theorem which should be regarded as our recasted

version of Claim 1 in (2.20). We show that integrability (under P) of the EPT is

equivalent to our version of the limit in Claim 1 under (s, r)− consistency and a

bounding condition.

Theorem 5. Suppose T ⊂ R≥0 is a closed and bounded interval, [t0, T ) ⊂ T, Σ is

a Polish space and s, r > 0 satisfy (t0 −max(s, r), T ) ⊂ T. Suppose further that

X := {Xt}t∈T and Y := {Yt}t∈T are stochastic processes adapted to the filtered
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probability space (Ω,F , {Ft}t∈T,P) such that for each t ∈ T, Xt and Yt are random

variables taking values in the measurable state space (Σ,X ) and that Y is (s, r)-

consistent upon X on [t0, T ).

If ∃M, δ2 > 0 such that ∀∆t ∈ (0, δ2),

KL

P (·)
∆t

∣∣∣∣∣∣
∣∣∣∣∣∣M (·)

∆t

 ≤M, P-a.s. , (2.31)

then

EPT (s,r)
Y→X |Tt0<∞

iff

lim
∆t↓0

b
T
∆tc−b t0∆tc−1∑

i=0
T(k,l),∆t
Y→X

(⌊
T

∆t

⌋
∆t− i∆t

) = EPT (s,r)
Y→X |Tt0 , (2.32)

where k = b s∆tc and l = b r∆tc.

Proof. (⇒) Suppose EPT (s,r)
Y→X |Tt0<∞, let δ = min {δ1, δ2} and for each ω ∈ Ω, let

P (ω) = P(s,r)
X|X,{Y }[X

T
t0 | X

t0
t0−s, {Y

T
t0−r}] (ω) ,

and

M (ω) = P(s,r)
X [XT

t0 | X
t0
t0−s] (ω) .

If ∆t ∈ (0, δ), then (2.31) implies that KL
(
P

(ω)
∆t ||M

(ω)
∆t

)
is P-integrable and since Σ

is σ−finite under both P
(ω),(b s

∆tc,b r∆tc)
X|
←−
X,
←−
Y ,i,∆t

and P
(ω),(b s

∆tc)
X|
←−
X,i,∆t

,∀ω ∈ Ω, and

i = 0, 1, . . . ,
⌊
T
∆t

⌋
−
⌊
t0
∆t

⌋
− 1, we have that the measurable spaceΣb

T
∆tc−b t0∆tc,

b T∆tc−b t0∆tc⊗
X

 is σ−finite under both P
(ω)
∆t and M

(ω)
∆t for each ω ∈ Ω,
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thus the RN-derivatives in (2.32) exist. Furthermore, we get from Lemma 3 that

EP
[
KL

(
P

(·)
∆t||M

(·)
∆t

)]
= EP


E
P

(ω)
∆t


log

d

b
T
∆tc−b t0∆tc−1∏

i=0
P(ω),(k,l)
X|
←−
X,
←−
Y ,i,∆t


d

b
T
∆tc−b t0∆tc−1∏

i=0
P(ω),(k)
X|
←−
X,i,∆t







= EP

E
P

(ω)
∆t

log

b
T
∆tc−b t0∆tc−1∏

i=0

dP
(ω),(k,l)
X|
←−
X,
←−
Y ,i,∆t

dP(ω),(k)
X|
←−
X,i,∆t






=
b T∆tc−b t0∆tc−1∑

i=0
EP

E
P

(ω)
∆t

log
dP(ω),(k,l)

X|
←−
X,
←−
Y ,i,∆t

dP(ω),(k)
X|
←−
X,i,∆t


 .

(2.33)

Now for each ∆t > 0, i = 0, 1, · · · , b T∆tc − b
t0
∆tc − 1 and ω ∈ Ω, let

F ω
i,∆t

(
x0, x1, · · · , xb T∆tc−b t0∆tc−1

)
= log

dP(ω),(k,l)
X|
←−
X,
←−
Y ,i,∆t

dP(ω),(k)
X|
←−
X,i,∆t

(xi)

for each
(⌊

T
∆t

⌋
−
⌊
t0
∆t

⌋)
-tuple(
x0, x1, · · · , xb T∆tc−b t0∆tc−1

)
∈ Σb

T
∆tc−b t0∆tc.

Clearly, F ω
i,∆t is Σb

T
∆tc−b t0∆tc−measurable and furthermore P (ω)

∆t −integrable due to

Jensen’s inequality since consistency condition 2(b) implies∫
Σb T∆tc−b

t0
∆tc

[
F ω
i,∆t

]
dP

(ω)
∆t

≤ log

∫
Σb T∆tc−b

t0
∆tc

dP
(ω),(k,l)
X|
←−
X,
←−
Y ,i,∆t

dP(ω),(k)
X|
←−
X,i,∆t

 dP (ω)
∆t

 <∞,

Now we apply Fubini’s Theorem and obtain

b T∆tc−b t0∆tc−1∑
i=0

EP

E
P

(·)
∆t

log
dP(·),(k,l)

X|
←−
X,
←−
Y ,i,∆t

dP(·),(k)
X|
←−
X,i,∆t




=
b T∆tc−b t0∆tc−1∑

i=0
EP

∫
Σb T∆tc−b

t0
∆tc

log
dP(·),(k,l)

X|
←−
X,
←−
Y ,i,∆t

dP(·),(k)
X|
←−
X,i,∆t

 d
b

T
∆tc−b t0∆tc−1∏

j=0
P(·),(k,l)
X|
←−
X,
←−
Y ,j,∆t




=
b T∆tc−b t0∆tc−1∑

i=0
EP

∫
Σb T∆tc−b

t0
∆tc F

(·)
i,∆t d

b
T
∆tc−b t0∆tc−1∏

j=0
P(·),(k,l)
X|
←−
X,
←−
Y ,j,∆t
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=
b T∆tc−b t0∆tc−1∑

i=0
EP

Si,∆t
∫

Σ
log

dP(·),(k,l)
X|
←−
X,
←−
Y ,i,∆t

dP(·),(k)
X|
←−
X,i,∆t

dP(·),(k,l)
X|
←−
X,
←−
Y ,i,∆t




=
b T∆tc−b t0∆tc−1∑

i=0
T(k,l),∆t
Y→X

(⌊
T

∆t

⌋
∆t− i∆t

)
.

where Si,∆t =
b T∆tc−b t0∆tc−1∏

j=0
j 6=i

∫
Σ

1dP(·),(k,l)
X|
←−
X,
←−
Y ,j,∆t

for i = 0, 1, . . . ,
⌊
T
∆t

⌋
−
⌊
t0
∆t

⌋
− 1.

Thus

EP
[
KL

(
P

(·)
∆t||M

(·)
∆t

)]
=
b T∆tc−b t0∆tc−1∑

i=0
T(k,l),∆t
Y→X

(⌊
T

∆t

⌋
∆t− i∆t

)
. (2.34)

Since EPT (s,r)
Y→X |Tt0<∞,

KL
(
P (·)

∣∣∣∣∣∣M (·)
)
<∞

for all ω ∈ Ω\B for some P-null set B, which from Lemma 4 implies that

E
P

(·)
∆t

log dP
(·)
∆t

dM
(·)
∆t

→ EP (·)

[
log dP (·)

dM (·)

]
, as ∆t ↓ 0, P- a.s. (2.35)

Let

g(ω) =


lim
∆t↓0

(
KL

(
P

(ω)
∆t ||M

(ω)
∆t

))
ω ∈ Ω\B

0 ω ∈ B
and observe that

g ∈ L1 (Ω,F ,P)

and

lim
∆t↓0

KL
(
P

(·)
∆t||M

(·)
∆t

)
= g P-a.s. (2.36)

Since almost sure convergence implies convergence in measure over finite measure

spaces, (2.36) implies that

KL
(
P

(·)
∆t||M

(·)
∆t

) P→ g as ∆t ↓ 0. (2.37)

Now for each ε,∆t > 0, ω ∈ Ω, define hε∆t(ω) by

hε∆t(ω) =


KL

(
P

(ω)
∆t ||M

(ω)
∆t

) ∣∣∣∣KL (P (ω)
∆t ||M

(ω)
∆t

)
− g(ω)

∣∣∣∣ < ε

0 otherwise
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and note that hε∆t is nonnegative ∀ε,∆t > 0 due to Gibbs’ inequality and converges

in probability to g since ∀η > 0,

P
({∣∣∣∣h∆t − g

∣∣∣∣ ≥ η
})

= P
({∣∣∣∣h∆t − g

∣∣∣∣ ≥ η
}
∩
{∣∣∣∣KL (P (·)

∆t||M
(·)
∆t

)
− g

∣∣∣∣ < ε
})

+ P
({∣∣∣∣h∆t − g

∣∣∣∣ ≥ η
}
∩
{∣∣∣∣KL (P (·)

∆t||M
(·)
∆t

)
− g

∣∣∣∣ ≥ ε
})

≤ P
({∣∣∣∣KL (P (·)

∆t||M
(·)
∆t

)
− g

∣∣∣∣ ≥ η
})

+ P
({∣∣∣∣KL (P (·)

∆t||M
(·)
∆t

)
− g

∣∣∣∣ ≥ ε
})

→ 0, as ∆t ↓ 0.
Let ε > 0 be arbitrary and observe that

‖hε∆t − g‖L1 = EP

∣∣∣∣KL (P (·)
∆t||M

(·)
∆t

)
− g

∣∣∣∣1{∣∣∣∣KL(P (·)
∆t ||M

(·)
∆t

)
−g

∣∣∣∣<ε}


+ EP

g1{∣∣∣∣KL(P (·)
∆t ||M

(·)
∆t

)
−g

∣∣∣∣≥ε}


< ε P
({∣∣∣∣KL (P (·)

∆t||M
(·)
∆t

)
− g

∣∣∣∣ < ε
})

+ EP

g1{∣∣∣∣KL(P (·)
∆t ||M

(·)
∆t

)
−g

∣∣∣∣≥ε}
 .

(2.38)

Since g ∈ L1 (Ω,F ,P) we have that ∀ε′ > 0, ∃δ′ > 0 such that

P(A) < δ′ =⇒ EP [g1A] < ε′,

∀A ∈ F . Since KL
(
P

(·)
∆t||M

(·)
∆t

) P→ g as ∆t ↓ 0, ∃δ′′ > 0 such that

P
({∣∣∣∣KL (P (·)

∆t||M
(·)
∆t

)
− g

∣∣∣∣ ≥ ε
})

< δ′,

∀∆t ∈ (0, δ′′), implying that

lim
∆t↓0

EP

g1{∣∣∣∣KL(P (·)
∆t ||M

(·)
∆t

)
−g

∣∣∣∣≥ε}
 = 0.

Now since P
({∣∣∣∣KL (P (·)

∆t||M
(·)
∆t

)
− g

∣∣∣∣ < ε
})
→ 1, as ∆t ↓ 0, we obtain

lim
∆t↓0
‖hε∆t − g‖L1 ≤ ε
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from (2.38) and thus

lim
ε↓0

lim
∆t↓0
‖hε∆t − g‖L1 = 0

since ε > 0 was arbitrary. In particular,

lim
ε↓0

lim
∆t↓0

EP [hε∆t] = EP [g] = EP

[
lim
∆t↓0

KL
(
P

(·)
∆t||M

(·)
∆t

)]
. (2.39)

We now show that

lim
ε↓0

lim
∆t↓0

EP [hε∆t] = lim
∆t↓0

EP
[
KL

(
P

(·)
∆t||M

(·)
∆t

)]
. (2.40)

Note that

lim
ε↓0

lim
∆t↓0

EP [αε∆t] = 0 =⇒ lim
ε↓0

lim
∆t↓0

EP

[
hε∆t −KL

(
P

(·)
∆t||M

(·)
∆t

)]
= 0,

where

αε∆t(ω) = KL
(
P

(ω)
∆t ||M

(ω)
∆t

)
1{∣∣∣∣KL(P (·)

∆t ||M
(·)
∆t

)
−g

∣∣∣∣≥ε}(ω)

for ε,∆t > 0, ω ∈ Ω. Fix ε > 0 and note that (2.31) implies

0 ≤ EP [αε∆t] ≤MP
({∣∣∣∣KL (P (·)

∆t||M
(·)
∆t

)
− g

∣∣∣∣ ≥ ε
}]
, (2.41)

∀∆t ∈ (0, δ). From (2.37), the RHS of (2.41) converges to 0 as ∆t ↓ 0, thus

lim
ε↓0

lim
∆t↓0

EP [αε∆t] = 0, (2.42)

so

lim
ε↓0

lim
∆t↓0

EP
[
hε∆t −KL

(
P

(·)
∆t||M

(·)
∆t

)]
= 0. (2.43)

Now from (2.39) and (2.43) we have that lim
∆t↓0

EP

[
KL

(
P

(·)
∆t||M

(·)
∆t

)]
exists since

EP

[
KL

(
P

(·)
∆t||M

(·)
∆t

)]
= EP [hε∆t]−

[
EP

[
hε∆t −KL

(
P

(·)
∆t||M

(·)
∆t

)]]
,
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hence
0 = lim

ε↓0
lim
∆t↓0

EP
[
hε∆t −KL

(
P

(·)
∆t||M

(·)
∆t

)]
= lim

ε↓0
lim
∆t↓0

(
EP [hε∆t]− EP

[
KL

(
P

(·)
∆t||M

(·)
∆t

)])
= lim

ε↓0
lim
∆t↓0

(EP [hε∆t])− lim
ε↓0

lim
∆t↓0

(
EP
[
KL

(
P

(·)
∆t||M

(·)
∆t

)])
= lim

ε↓0
lim
∆t↓0

(EP [hε∆t])− lim
∆t↓0

(
EP
[
KL

(
P

(·)
∆t||M

(·)
∆t

)])
proving (2.40). Now we have

lim
∆t↓0

EP
[
KL

(
P

(·)
∆t||M

(·)
∆t

)]
= EP

[
lim
∆t↓0

KL
(
P

(·)
∆t||M

(·)
∆t

)]
(2.44)

from which the result follows as

EPT (s,r)
Y→X |Tt0 = EP

[
KL

(
P (·)||M (·)

)]
= EP

[
lim
∆t↓0

KL
(
P

(·)
∆t||M

(·)
∆t

)]
= lim

∆t↓0
EP

[
KL

(
P

(·)
∆t||M

(·)
∆t

)]

= lim
∆t↓0

b
T
∆tc−b t0∆tc−1∑

i=0
T(k,l),∆t
Y→X

(⌊
T

∆t

⌋
∆t− i∆t

) .
(⇐) Suppose towards a contradiction

lim
∆t↓0

b
T
∆tc−b t0∆tc−1∑

i=0
T(k,l),∆t
Y→X

(⌊
T

∆t

⌋
∆t− i∆t

) = EPT (s,r)
Y→X |Tt0=∞.

Then

lim
∆t↓0

EP

[
KL

(
P

(·)
∆t||M

(·)
∆t

)]
=∞,

meaning ∃δ3 > 0 such that ∆t ∈ (0, δ3) =⇒ EP
[
KL

(
P

(·)
∆t||M

(·)
∆t

)]
> M. From (2.31),

KL
(
P

(·)
∆t||M

(·)
∆t

)
≤M P- a.s. ∀∆t ∈ (0, δ2),

hence

M < EP

[
KL

(
P

(·)
∆t||M

(·)
∆t

)]
≤ EP[M ] = M,

∀∆t ∈ (0,min {δ3, δ2}), a contradiction.
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Due to the following corollary, one can conclude the only if part of Theorem 5

under a slightly weaker version of (2.31).

Corollary 5.1. Let T ⊂ R≥0 be an interval and [t0, T ) ⊂ T and s, r > 0 be such

that (t0 −max(s, r), T ) ⊂ T. Suppose X := {Xt}t∈T and Y := {Yt}t∈T are stochastic

processes adapted to the filtered probability space (Ω,F , {Ft}t∈T,P) such that for

each t ∈ T, Xt and Yt are random variables taking values in the measurable state

space (Σ,X ) and Y is (s, r)−SPL consistent upon X on [t0, T ). If

∃η ∈ L1 (Ω,F ,P) , δ2 > 0 such that ∀∆t ∈ (0, δ2), KL
P (·)

∆t

∣∣∣∣∣∣
∣∣∣∣∣∣M (·)

∆t

 ≤ η(·), P-a.s.

(2.45)

and

EPT (s,r)
Y→X |Tt0<∞,

then

lim
∆t↓0

b
T
∆tc−b t0∆tc−1∑

i=0
T(k,l),∆t
Y→X

(⌊
T

∆t

⌋
∆t− i∆t

) = EPT (s,r)
Y→X |Tt0 ,

where k = b s∆tc and l = b r∆tc.

Proof. We need only show that (2.42) in the proof of the forward direction of Theorem

5 is still true assuming (2.45). Since η ∈ L1 (Ω,F ,P), this is immediate since for ε > 0,

EP [αε∆t(·)] = EP

KL (P (·)
∆t||M

(·)
∆t

)
1{∣∣∣∣KL(P (·)

∆t ||M
(·)
∆t

)
−g

∣∣∣∣≥ε}


≤ EP

η1{∣∣∣∣KL(P (·)
∆t ||M

(·)
∆t

)
−g

∣∣∣∣≥ε}
→ 0,

as ∆t ↓ 0 due to (2.37).

The following corollary of Theorem 5 is a key result because it will be used in an

application to be explored later in Section 4.2. The conditions in Theorem 5 may

be too strong to apply to some common situations. The following weakens these
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conditions at the cost of the equivalence between the hypotheses and conclusion;

however, it is necessary to make a reasonable example work.

Corollary 5.2. Let T ⊂ R≥0 be an interval and [t0, T ) ⊂ T and s, r > 0 be such

that (t0 −max(s, r), T ) ⊂ T. Suppose X := {Xt}t∈T and Y := {Yt}t∈T are stochastic

processes adapted to the filtered probability space (Ω,F , {Ft}t∈T,P) such that for

each t ∈ T, Xt and Yt are random variables taking values in the measurable state

space (Σ,X ) and Y is (s, r)−SPL consistent upon X on [t0, T ). If there exists γ > 0

such that

lim
∆t↓0

P (B∆t,γ) = 1, (2.46)

where

B∆t,γ =

ω ∈ Ω

∣∣∣∣∣∣ ∆t′ ∈ (0,∆t) =⇒ KL

P (ω)
∆t′

∣∣∣∣∣∣
∣∣∣∣∣∣M (ω)

∆t′

 ≤ γ

 (2.47)

for ∆t, λ > 0, and

EPT (s,r)
Y→X |Tt0<∞,

then

lim
∆t↓0

b
T
∆tc−b t0∆tc−1∑

i=0
T(k,l),∆t
Y→X

(⌊
T

∆t

⌋
∆t− i∆t

) = EPT (s,r)
Y→X |Tt0 ,

where k = b s∆tc and l = b r∆tc.

Proof. As in Corollary 5.1, it suffices to show that (2.42) holds whenever both (2.46)

and EPT (s,r)
Y→X |Tt0<∞ hold. Observe that

EP

KL (P (·)
∆t||M

(·)
∆t

)
1{∣∣∣∣KL(P (·)

∆t ||M
(·)
∆t

)
−g

∣∣∣∣≥ε}∩B∆t



≤ EP

γ1{∣∣∣∣KL(P (·)
∆t ||M

(·)
∆t

)
−g

∣∣∣∣≥ε}
→ 0 as ∆t ↓ 0,

since clearly γ ∈ L1 (Ω,F ,P). Since EPT (s,r)
Y→X |Tt0<∞, Lemma 4 implies that

KL

b
T

∆t′ c−b t0∆t′ c−1∏
i=0

P(·),(k,l)
X|
←−
X,
←−
Y ,i,∆t′

∣∣∣∣∣∣
∣∣∣∣∣∣
b T

∆t′ c−b t0∆t′ c−1∏
i=0

P(·),(k)
X|
←−
X,i,∆t′

 ∈ L1 (Ω,F ,P)
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for all ∆t′ in a small enough neighborhood of 0, thus

EP

KL (P (·)
∆t||M

(·)
∆t

)
1{∣∣∣∣KL(P (·)

∆t ||M
(·)
∆t

)
−g

∣∣∣∣≥ε}∩B∆t

→ 0, as ∆t ↓ 0

since P
(
B∆t

)
→ 0 as ∆t ↓ 0. Now for any ε > 0,

EP [αε∆t]

= EP

KL (P (·)
∆t||M

(·)
∆t

)
1{∣∣∣∣KL(P (·)

∆t ||M
(·)
∆t

)
−g

∣∣∣∣≥ε}


= EP

KL (P (·)
∆t||M

(·)
∆t

)
1{∣∣∣∣KL(P (·)

∆t ||M
(·)
∆t

)
−g

∣∣∣∣≥ε}∩B∆t



+ EP

KL (P (·)
∆t||M

(·)
∆t

)
1{∣∣∣∣KL(P (·)

∆t ||M
(·)
∆t

)
−g

∣∣∣∣≥ε}∩B∆t


→ 0, as ∆t ↓ 0.

We now provide an alternate version of our main theorem under different condi-

tions. Instead of an a.s. bounding condition on the KL-divergence of M (·)
∆t from P

(·)
∆t,

we impose a bounding condition on the transfer entropy itself and obtain a similar

equivalence.

Theorem 6. Let T ⊂ R≥0 be an interval and [t0, T ) ⊂ T and s, r > 0 be such that

(t0 −max(s, r), T ) ⊂ T. Suppose X := {Xt}t∈T and Y := {Yt}t∈T are stochastic

processes adapted to the filtered probability space (Ω,F , {Ft}t∈T,P) such that for

each t ∈ T, Xt and Yt are random variables taking values in the measurable state

space (Σ,X ) and Y is (s, r)−SPL consistent upon X on [t0, T ). If

1. ∀∆t > 0, KL
(
P(·),(b s∆t c,b

r
∆t c)

X|
←−
X,
←−
Y ,i,∆t

∣∣∣∣∣∣P(·),(b s∆t c)
X|
←−
X,i,∆t

)
∈ L1 (Ω,F ,P) ,

∀i = 0, 1, . . . ,
⌊
T
∆t

⌋
−
⌊
t0
∆t

⌋
− 1.
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2. EPT (s,r)
Y→X |Tt0<∞.

3.

KL
P (·)

∆t

∣∣∣∣∣∣
∣∣∣∣∣∣M (·)

∆t


∆t>0

is a UI family.

then ∃δ > 0 such that for some M > 0,

b T∆tc−b t0∆tc−1∑
i=0

T(k,l),∆t
Y→X

(⌊
T

∆t

⌋
∆t− i∆t

)
≤M, ∀∆t ∈ (0, δ),

iff

lim
∆t→0

b
T
∆tc−b t0∆tc−1∑

i=0
T(k,l),∆t
Y→X

(⌊
T

∆t

⌋
∆t− i∆t

) = EPT (s,r)
Y→X |Tt0 ,

where k = b s∆tc and l = b r∆tc.

Proof. (⇒) Assume ∃δ > 0 such that for some M > 0,

b T∆tc−b t0∆tc−1∑
i=0

T(k,l),∆t
Y→X

(⌊
T

∆t

⌋
∆t− i∆t

)
≤M, ∀∆t ∈ (0, δ).

For each ∆t > 0, ω ∈ Ω, let P (ω),M (ω) and g(ω) be as in the proof of

Theorem 5. From Gibbs’ inequality, g is a nonnegative random variable thus

EP [g] + 1 > 0.

For each ∆t > 0, ω ∈ Ω, define h∆t(ω) by

h∆t(ω) =


KL

(
P

(ω)
∆t ||M

(ω)
∆t

) ∣∣∣KL (P (ω)
∆t ||M

(ω)
∆t

)
− g(ω)

∣∣∣ ≤ EP [g] + 1

0 otherwise

and note that h∆t is a nonnegative random variable ∀∆t > 0.

Let α > 0. Since
{
KL

(
P

(·)
∆t||M

(·)
∆t

)}
∆t>0

is UI, ∃ 0 < Kα <∞ such that

EP

KL (P (·)
∆t||M

(·)
∆t

)
1{

KL

(
P

(·)
∆t ||M

(·)
∆t

)
≥Kα

} < α,

∀∆t > 0, thus {h∆t(·)}∆t>0 is UI since

EP

[
h∆t1{h∆t≥Kα}

]
≤ EP

KL (P (·)
∆t||M

(·)
∆t

)
1{

KL

(
P

(·)
∆t ||M

(·)
∆t

)
≥Kα

} < α,
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∀∆t > 0. Furthermore, if J∆t =
{∣∣∣KL (P (ω)

∆t ||M
(ω)
∆t

)
− g(ω)

∣∣∣ ≤ EP[g] + 1
}
, then

P ({|h∆t − g| > α}) = P ({|h∆t − g| > α} ∩ J∆t) + P
(
{|h∆t − g| > α} ∩ J∆t

)
≤ P

({∣∣∣KL (P (·)
∆t||M

(·)
∆t

)
− g

∣∣∣ > α
})

+ P
(
J∆t

)
→ 0, as ∆t ↓ 0 ( due to (2.37) )

hence

h∆t
P→ g, as ∆t ↓ 0. (2.48)

From 1. and consistency conditions 2a and 2b, we have that,

EP

[
KL

(
P

(·)
∆t||M

(·)
∆t

)]
=
b T∆tc−b t0∆tc−1∑

i=0
T(k,l)
Y→X

(⌊
T

∆t

⌋
∆t− i∆t

)
.

as shown in the proof of Theorem 5 implying

EP

[
KL

(
P

(·)
∆t||M

(·)
∆t

)]
≤M, ∀∆t ∈ (0, δ),

thus

KL
(
P

(·)
∆t||M

(·)
∆t

)
∈ L1 (Ω,F ,P) , ∀∆t ∈ (0, δ). (2.49)

Now using (2.48) and the uniform integrability of {h∆t}∆t>0, we can apply the Vitali

Convergence Theorem to obtain

||h∆t − g||L1
→ 0, as ∆t ↓ 0

which implies that

EP [h∆t]→ EP [g] as ∆t ↓ 0. (2.50)

Furthermore, observe that for all ∆t > 0,

EP [h∆t] = EP [h∆t1J∆t ] + EP
[
h∆t1J∆t

]
= EP

[
KL

(
P

(·)
∆t||M

(·)
∆t

)
1J∆t

]
+ 0,
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and that
0 ≤ lim

∆t↓0
EP
[
KL

(
P

(·)
∆t||M

(·)
∆t

)
−KL

(
P

(·)
∆t||M

(·)
∆t

)
1J∆t

]
= lim

∆t↓0
EP
[
KL

(
P

(·)
∆t||M

(·)
∆t

)
1J∆t

]
= lim

∆t′↓0
∆t′∈(0,δ)

EP
[
KL

(
P

(·)
∆t′ ||M

(·)
∆t′
)
1J∆t

]

≤ lim
∆t′↓0

∆t′∈(0,δ)

P
(
J∆t

) sup
∆t′>0

∆t′∈(0,δ)

EP
[
KL

(
P

(·)
∆t′||M

(·)
∆t′
)]

= 0.

Now
lim
∆t↓0

EP

[
KL

(
P

(·)
∆t||M

(·)
∆t

)]
= lim

∆t↓0
EP

[
KL

(
P

(·)
∆t||M

(·)
∆t

)
1J∆t

]
= lim

∆t↓0
EP [h∆t]

which from (2.50) implies that

lim
∆t↓0

EP

[
KL

(
P

(·)
∆t||M

(·)
∆t

)]
= EP

[
lim
∆t↓0

KL
(
P

(·)
∆t||M

(·)
∆t

)]
. (2.51)

As in the proof of Theorem 4. the result follows as

EPT (s,r)
Y→X |Tt0 = EP

EP (·)

log
dP(s,r)

X|X,{Y }[XT
t0 | X

t0
t0−s, {Y T

t0−r}](·)
dP(s)

X [XT
t0 | X

t0
t0−s](·)


= EP

[
lim
∆t↓0

KL
(
P

(·)
∆t||M

(·)
∆t

)]
= lim

∆t↓0
EP

[
KL

(
P

(·)
∆t||M

(·)
∆t

)]

= lim
∆t↓0

b
T
∆tc−b t0∆tc−1∑

i=0
T(k,l),∆t
Y→X

(⌊
T

∆t

⌋
∆t− i∆t

) .
(⇐) Conversely, if

lim
∆t↓0

b
T
∆tc−b t0∆tc−1∑

i=0
T(k,l),∆t
Y→X

(⌊
T

∆t

⌋
∆t− i∆t

) = EPT (s,r)
Y→X |Tt0 ,
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then from 2. we have EPT (s,r)
Y→X |Tt0<∞, thus ∃δ > 0 such that

∣∣∣∣ b
T
∆tc−b t0∆tc−1∑

i=0
T(k,l),∆t
Y→X

(⌊
T

∆t

⌋
∆t− i∆t

)
− EPT (s,r)

Y→X |Tt0
∣∣∣∣ < 1

=⇒
b T∆tc−b t0∆tc−1∑

i=0
T(k,l),∆t
Y→X

(⌊
T

∆t

⌋
∆t− i∆t

)
< 1 + EPT (s,r)

Y→X |Tt0=: M,

∀∆t ∈ (0, δ) and the proof is complete.
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Chapter 3

The transfer entropy rate

The generalization of information theoretic measures to the framework of information

rates is a common paradigm in information theory. In this section we address the

topic of instantaneous information transfer between processes using our methodology.

We first provide a definition of transfer entropy rate using EPT as follows. It should

be noted that a similar definition appears in [48].

Definition 3.0.1. For t ∈ [t0, T ), define the transfer entropy rate from Y to X at t,

denoted T(s,r)
Y→X(t), by

T(s,r)
Y→X(t) = lim

∆t↓0

1
∆t

(
EPT (s,r)

Y→X |t+∆t
t

)
. (3.1)

whenever the limit in (3.1) exists.

Remark 8. Suppose the hypotheses of Theorem 5 hold for processes X and Y . If

t ∈ [t0, T ) and ∃δ > 0 such that EPT (s,r)
Y→X |t+dtt <∞, ∀dt ∈ (t, t+ δ), then

T(s,r)
Y→X(t) = lim

dt↓0

1
dt

(
EPT (s,r)

Y→X |t+dtt

)

= lim
dt↓0
∆t↓0

 1
dt

b t+dt∆t c−b t
∆tc−1∑

i=0
T(k,l),∆t
Y→X

(⌊
T

∆t

⌋
∆t− i∆t

) .
Assuming some smoothness, we can recover the expected pathwise transfer en-

tropy at any time given the rate by using the following straightforward result.

Lemma 7. If [t0, T ] 3 t 7→ EPT (s,r)
Y→X |tt0∈ C

1 ([t0, T ]) , then

∫ T

t0
T(s,r)
Y→X(t)dt = EPT (s,r)

Y→X |Tt0 .
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Proof. From the Fundamental Theorem of Calculus, we have that∫ T

t0
T(s,r)
Y→X(t)dt = EPT (s,r)

Y→X |Tt0 −EPT
(s,r)
Y→X |t0t0

= EPT (s,r)
Y→X |Tt0 −EP [log(1)]

= EPT (s,r)
Y→X |Tt0 .

Note that in the previous lemma we impose differentiablity not simply right-hand

differentiability.

Lemma 8. Suppose t0 and T are distinct elements of T and r, s > 0 satisfy

(t0 −max (s, r), T ) ⊂ T. If Y is (s, r)-consistent upon X on [t0, T ) and EPT (s,r)
Y→X |·t0

is linear on [t0, T ], then for any t ∈ [t0, T ),

T(s,r)
Y→X(t) = 1

T − t0
EPT (s,r)

Y→X |Tt0 .

Proof. From linearity T(s,r)
Y→X is constant, thus clearly EPT (s,r)

Y→X |·t0∈ C
1 ([t0, T ]), thus

from Lemma 7, we have

EPT (s,r)
Y→X |Tt0 =

∫ T

t0
T(s,r)
Y→X(t′)dt′

= (T − t0)T(s,r)
Y→X(t),

for any t ∈ [t0, T ) and the proof is complete.

3.1 Application to stationary processes

Definition 3.1.1. Stochastic processes X and Y indexed over T are conditionally

stationary if ∀ω ∈ Ω, k ≥ 1, all collections of times {ti}0≤i≤k of T such that ti < ti+1,

and all A ∈ X ,

P
(
Xti+1 ∈ A|Xti , . . . Xti−k , Yti , . . . Yti−k

)
(ω) =

P
(
Xti+1+τ ∈ A|Xti+τ , . . . Xti−k+τ , Yti+τ , . . . , Yti−k+τ

)
(ω)

(3.2)

for all i ∈ [k − 1], τ > 0.

54



Definition 3.1.2. Suppose k and l are positive integers. Stochastic processes X and

Y on T are (k, l) - order conditionally stationary processes if ∀ω ∈ Ω, all collections

of times {ti}0≤i≤max (k,l) of T such that ti < ti+1, and all A ∈ X ,

P
(
Xti+1 ∈ A|Xti , . . . Xti−k , Yti , . . . Yti−l

)
(ω) =

= P
(
Xti+1+τ ∈ A|Xti+τ , . . . Xti−k+τ , Yti+τ , . . . , Yti−l+τ

)
(ω)

(3.3)

for all i ∈ [max (k, l)− 1], τ > 0.

Observe that if X and Y are conditionally stationary processes, then they are by

definition (k, l)− order conditionally stationary for all k, l ≥ 1. Moreover, if X and Y

are stationary, then ∀∆t > 0 and s, r > 0 such that [t0 −max(s, r), T ) ⊂ T, we have

that X and Y are also (b s∆tc, b
r

∆tc)− order conditionally stationary. We exploit this

stationarity in the following key observation.

Observation 4. For any ∆t > 0 and j = 0, · · · ,
⌊
T
∆t

⌋
−
⌊
t0
∆t

⌋
− 1, we have

b T∆tc−b t0∆tc−1∑
i=0

T(k,l),∆t
Y→X

(⌊
T

∆t

⌋
∆t− i∆t

)

= EP

KL
b

T
∆tc−b t0∆tc−1∏

i=0
P(ω),(b s∆t c,b

r
∆t c)

X|
←−
X,
←−
Y ,i,∆t

∣∣∣∣∣∣
∣∣∣∣∣∣
b T∆tc−b t0∆tc−1∏

i=0
P(ω),(b s∆t c)
X|
←−
X,i,∆t




= EP

KL
P(ω),(b s∆t c,b

r
∆t c)

X|
←−
X,
←−
Y ,j,∆t

(⌊
T

∆t

⌋
−
⌊
t0
∆t

⌋) ∣∣∣∣∣∣
∣∣∣∣∣∣P(ω),(b s∆t c)
X|
←−
X,j,∆t

(⌊
T

∆t

⌋
−
⌊
t0
∆t

⌋)
=
(⌊

T

∆t

⌋
−
⌊
t0
∆t

⌋)
EP

KL
P(ω),(b s∆t c,b

r
∆t c)

X|
←−
X,
←−
Y ,j,∆t

∣∣∣∣∣∣
∣∣∣∣∣∣P(ω),(b s∆t c)
X|
←−
X,j,∆t


=
(⌊

T

∆t

⌋
−
⌊
t0
∆t

⌋)
T(k,l),∆t
Y→X

(⌊
T

∆t

⌋
∆t− j∆t

)
,

(3.4)

where in the second to last equality we used that

d
(
cP(ω),(b s∆t c,b

r
∆t c)

X|
←−
X,
←−
Y ,j,∆t

)
d
(
cP(ω),(b s∆t c)

X|
←−
X,j,∆t

) =
dP(ω),(b s∆t c,b

r
∆t c)

X|
←−
X,
←−
Y ,j,∆t

dP(ω),(b s∆t c)
X|
←−
X,j,∆t

, P(ω),(b s∆t c)
X|
←−
X,j,∆t

-a.s.
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for any c 6= 0 due to the a.s. uniqueness of the RN-derivative.

We can use Observation 3.4 to provide an expression for the transfer entropy rate

for stationary processes that have (r, s)−consistency on subintervals of [t0, T ) of the

form [t0, t). It should be noted that a result similar to the statement of part 2 of the

following corollary appears as a remark in [48] without proof.

Corollary 8.1. Suppose [t0, T ) ⊂ T, r, s > 0 satisfy (t0 −max (s, r), T ) ∈ T and X

and Y are stationary processes such that Y is (s, r) - consistent upon X on [t0, t) and

satisfies (2.31), ∀t ∈ (t0, T ].

1. If ∀t ∈ (t0, T ], lim
∆t↓0

1
∆tT

(k,l),∆t
Y→X

(
∆t

⌊
t1
∆t

⌋)
exists ∀t1 ∈ [t0, t), then

lim
∆t→0

1
∆tT

(k,l),∆t
Y→X

(
∆t

⌊
t1
∆t

⌋)
= EPT

(s,r)
Y→X |t1t0

t1 − t0
,∀t1 ∈ (t0, t).

2. T(s,r)
Y→X(t) = 1

T−t0EPT
(s,r)
Y→X |Tt0 .

Proof. (Proof of 1.) Let t1 ∈ (t0, t) with t ∈ (t0, T ]. Since lim
∆t→0

1
∆tT

(k,l),∆t
Y→X

(
∆t

⌊
t1
∆t

⌋)
exists, we have that

lim
∆t→0

T(k,l),∆t
Y→X

(
∆t

⌊
t1
∆t

⌋)
=
(

lim
∆t↓0

∆t
)(

lim
∆t→0

1
∆tT

(k,l),∆t
Y→X

(
∆t

⌊
t1
∆t

⌋))
= 0. (3.5)

From Theorem 5 and (3.4) we have that

∞ > EPT (s,r)
Y→X |t1t0

= lim
∆t→0

b t1∆t c−b
t0
∆t c−1∑

i=0
T(k,l),∆t
Y→X

(
∆t

⌊
t1
∆t

⌋
− i∆t

)

= lim
∆t→0

(⌊
t1
∆t

⌋
−
⌊
t0
∆t

⌋)
T(k,l),∆t
Y→X

(
∆t

⌊
t1
∆t

⌋
− j∆t

)
,

(3.6)

for any j = 0, · · · ,
⌊
t1
∆t

⌋
−
⌊
t0
∆t

⌋
− 1.

Note that for each ∆t > 0, ∃C∆t ∈ (−2, 2) such that

⌊
t1
∆t

⌋
−
⌊
t0
∆t

⌋
= t1 − t0

∆t + C∆t.
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Letting j = 0 in (3.6)

lim
∆t→0

(⌊
t1
∆t

⌋
−
⌊
t0
∆t

⌋)
T(k,l),∆t
Y→X

(
∆t

⌊
t1
∆t

⌋)
= lim

∆t→0

(
t1 − t0

∆t + C∆t

)
T(k,l),∆t
Y→X

(
∆t

⌊
t1
∆t

⌋)
= (t1 − t0) lim

∆t→0

1
∆tT

(k,l),∆t
Y→X

(
∆t

⌊
t1
∆t

⌋)
+ lim

∆t→0
C∆tT(k,l),∆t

Y→X

(
∆t

⌊
t1
∆t

⌋)
.

(3.7)

Since C∆t is bounded, lim
∆t→0

C∆tT(k,l),∆t
Y→X

(
∆t

⌊
t1
∆t

⌋)
= 0. Now using (3.6) we get

(t1 − t0) lim
∆t→0

1
∆tT

(k,l),∆t
Y→X

(
∆t

⌊
t1
∆t

⌋)
= EPT (s,r)

Y→X |t1t0

and the result follows from division by t1 − t0.

(Proof of 2.) Suppose t1, t2 are distinct elements of [t0, T ]. Without loss of generality,

suppose t1 > t2 6= t0. Per assumption, X and Y are stationary processes such that Y

is (s, r) - consistent upon X on [t0, t1) and [t0, t2). If

j′ =
⌊
t1
∆t

⌋
−
⌊
t2
∆t

⌋
,

then from (3.4),

EPT (s,r)
Y→X |t1t0

= lim
∆t→0

(⌊
t1
∆t

⌋
−
⌊
t0
∆t

⌋)
T(k,l),∆t
Y→X

(
∆t

⌊
t1
∆t

⌋
− j′∆t

)
= lim

∆t→0

(
t1 − t0

∆t + C∆t

)
T(k,l),∆t
Y→X

(
∆t

⌊
t2
∆t

⌋)
= lim

∆t→0

t1 − t0
t2 − t0

(
t1 − t0 + ∆tC∆t

(t1 − t0)∆t

)
(t2 − t0)T(k,l),∆t

Y→X

(
∆t

⌊
t2
∆t

⌋)

= t1 − t0
t2 − t0

lim
∆t→0

(
∆tC∆t

(t1 − t0)

)(⌊
t2
∆t

⌋
−
⌊
t0
∆t

⌋
−K∆t

)
T(k,l),∆t
Y→X

(
∆t

⌊
t2
∆t

⌋)

+ t1 − t0
t2 − t0

lim
∆t→0

(⌊
t2
∆t

⌋
−
⌊
t0
∆t

⌋
−K∆t

)
T(k,l),∆t
Y→X

(
∆t

⌊
t2
∆t

⌋)
.

(3.8)

Per assumption,
(⌊

t2
∆t

⌋
−
⌊
t0
∆t

⌋)
T(k,l),∆t
Y→X

(
∆t

⌊
t2
∆t

⌋)
exists thus since C∆t and K∆t are

bounded

t1 − t0
t2 − t0

lim
∆t→0

(
∆tC∆t

(t1 − t0)

)(⌊
t2
∆t

⌋
−
⌊
t0
∆t

⌋)
T(k,l),∆t
Y→X

(
∆t

⌊
t2
∆t

⌋)
= 0
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and
t1 − t0
t2 − t0

lim
∆t→0

(
∆tC∆t

(t1 − t0)

)
K∆tT(k,l),∆t

Y→X

(
∆t

⌊
t2
∆t

⌋)
= 0.

Now we have that

EPT (s,r)
Y→X |t1t0

= t1 − t0
t2 − t0

lim
∆t→0

(
∆tC∆t

(t1 − t0)

)(⌊
t2
∆t

⌋
−
⌊
t0
∆t

⌋
−K∆t

)
T(k,l),∆t
Y→X

(
∆t

⌊
t2
∆t

⌋)

+ t1 − t0
t2 − t0

lim
∆t→0

(⌊
t2
∆t

⌋
−
⌊
t0
∆t

⌋
−K∆t

)
T(k,l),∆t
Y→X

(
∆t

⌊
t2
∆t

⌋)
= t1 − t0
t2 − t0

lim
∆t→0

(⌊
t2
∆t

⌋
−
⌊
t0
∆t

⌋
−K∆t

)
T(k,l),∆t
Y→X

(
∆t

⌊
t2
∆t

⌋)
(3.9)

and since t1−t0
t2−t0 lim

∆t→0
K∆tT(k,l),∆t

Y→X

(
∆t

⌊
t2
∆t

⌋)
= 0, we have

EPT (s,r)
Y→X |t1t0= t1 − t0

t2 − t0
lim

∆t→0

(⌊
t2
∆t

⌋
−
⌊
t0
∆t

⌋)
T(k,l),∆t
Y→X

(
∆t

⌊
t2
∆t

⌋)
=⇒ EPT (s,r)

Y→X |t2t0= t2 − t0
t1 − t0

EPT (s,r)
Y→X |t1t0 ,

(3.10)

that is, EPT (s,r)
Y→X |tt0 is linear in t−t0 and we get the result by applying Lemma 8.

Simply put, Corollary 8.1 states that under stationarity in a rather strict sense,

the TE rate is the average value of the expected pathwise transfer entropy.

3.2 Sufficient conditions for PT and EPT continuity

This section is devoted to the establishment of sufficient conditions for continuity of

the pathwise and expected pathwise transfer entropy in time. Suppose t ∈ [t0, T ), ω ∈

Ω. Let

Aω

(
xtt0

)
=

P(s,r)
X|X,{Y }

[
A
∣∣∣X t0

t0−s, {Y t
t0−r}

]
(ω)

P(s)
X

[
A
∣∣∣X t0

t0−s

]
(ω)

∣∣∣∣∣∣ A ∈ F [t0,t)
X and xtt0 ∈ A


and let us denote by aω(xtt0) the limit point of Aω(xtt0), if it exists. From here on in,

we will say that processes X and Y satisfy the Piccioni condition if aω(xtt0) exists and

is unique. Due to [41], there exists a version of PT (s,r)
Y→X |tt0 (ω, ·) which is continuous
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at xtt0 and for which the equality PT (s,r)
Y→X |tt0 (ω, xtt0) = aω(xtt0) holds, implying that

PT (s,r)
Y→X |tt0 (ω, xtt0) = log

dP(s,r)
X|X,{Y }[XT

t0 | X
t0
to−s, {Y T

t0−r}](ω)
dP(s)

X [XT
t0 | X

t0
to−s](ω)

(xTt0)


= log

 lim
ε↓0

∆t→0

b T∆tc−b t0∆tc−1∏
i=0

P(ω),(s,r)
X|
←−
X,
←−
Y ,i,∆t

(
πb T∆tc∆t−i∆t

(
B
(
xTt0 , ε

)))
P(ω),(s)
X|
←−
X,i,∆t

(
πb T∆tc∆t−i∆t (B (xTt0 , ε))

)


= lim
ε↓0

∆t↓0

b T∆tc−b t0∆tc−1∑
i=0

log

P(ω),(s,r)
X|
←−
X,
←−
Y ,i,∆t

(
πb T∆tc∆t−i∆t

(
B
(
xTt0 , ε

)))
P(ω),(s)
X|
←−
X,i,∆t

(
πb T∆tc∆t−i∆t (B (xTt0 , ε))

)
 .

The following lemma proves continuity of the RN-derivative in time as opposed to

continuity on path space Ω[t0,T )
X .

Lemma 9. For t ∈ [t0, T ) and xTt0 ∈ Ω[t0,T )
X , let Ct

(
xTt0

)
= xTt0

∣∣∣
[t0,t]

. If X and Y

satisfy the Piccioni condition and all of their respective sample paths are elements of

C0 ([t0, T )), then for each ω ∈ Ω, there exists a version of PT (s,r)
Y→X |·t0 (ω, ·) such that

∀xTt0 ∈ Ω[t0,T )
X ,

t 7→ PT (s,r)
Y→X |tt0

(
ω,Ct

(
xTt0

))
∈ C0([t0, t)).

Proof. Fix t ∈ [t0, T ), xTt0 ∈ Ω[t0,T )
X , ω ∈ Ω and note that ∀dt > 0, we have∣∣∣∣∣∣PT (s,r)

Y→X |t+dtt0

(
ω,Ct+dt

(
xTt0

))
− PT (s,r)

Y→X |tt0
(
ω,Ct

(
xTt0

)) ∣∣∣∣∣∣
=

∣∣∣∣∣∣ log
dP(s,r)

X|X,{Y }[X
t+dt
t0 | X t0

t0−s, {Y
t+dt
t0−r }](ω)

dP(s)
X [X t+dt

t0 | X t0
t0−s](ω)

(
xt+dtt0

)
− log

dP(s,r)
X|X,{Y }[X t

t0 | X
t0
t0−s, {Y t

t0−r}](ω)
dP(s)

X [X t
t0 | X

t0
t0−s](ω)

(
xtt0

) ∣∣∣∣∣∣

= log



lim
ε↓0

∆t↓0

b t+dt∆t c−b t0∆tc−1∏
i=0

P(ω),(s,r)
X|
←−
X,
←−
Y ,i,∆t

(
πb t+dt∆t c∆t−i∆t

(
B
(
xt+dtt0 , ε

)))
P(ω),(s)
X|
←−
X,i,∆t

(
πb t+dt∆t c∆t−i∆t

(
B
(
xt+dtt0 , ε

)))

lim
ε↓0

∆t↓0

b t
∆tc−b t0∆tc−1∏

i=0

P(ω),(s,r)
X|
←−
X,
←−
Y ,i,∆t

(
πb t∆t c∆t−i∆t

(
B
(
xtt0 , ε

)))
P(ω),(s)
X|
←−
X,i,∆t

(
πb t∆t c∆t−i∆t (B (xtt0 , ε))

)



= log

 lim
ε↓0

∆t↓0

b t+dt∆t c−b t
∆tc−1∏

i=0

P(ω),(s,r)
X|
←−
X,
←−
Y ,i,∆t

(
πb t+dt∆t c∆t−i∆t

(
B
(
xt+dtt , ε

)))
P(ω),(s)
X|
←−
X,i,∆t

(
πb t

∆tc∆t−i∆t
(
B
(
xt+dtt , ε

)))
 .
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Observe that since the sample paths ofX are continuous, the sample xt+dtt is uniformly

continuous on [t, t+ dt], thus for each ε > 0, ∃δ(ε) > 0 s.t. if ∆t < δ(ε), then

P(ω),(s,r)
X|
←−
X,
←−
Y ,i,∆t

(
πb t+dt∆t c∆t−i∆t

(
B
(
xt+dtt , ε

)))
P(ω),(s)
X|
←−
X,i,∆t

(
πb t∆t c∆t−i∆t

(
B
(
xt+dtt , ε

))) = 1,

∀i = 0, . . . ,
⌊
t+dt
∆t

⌋
−
⌊
t

∆t

⌋
− 1, hence

lim
dt↓0

∣∣∣∣∣∣PT (s,r)
Y→X |t+dtt0

(
ω,Ct+dt

(
xTt0

))
− PT (s,r)

Y→X |tt0
(
ω,Ct

(
xTt0

)) ∣∣∣∣∣∣
= lim

dt↓0
log

 lim
ε↓0

∆t↓0

b t+dt∆t c−b t
∆tc−1∏

i=0

P(ω),(s,r)
X|
←−
X,
←−
Y ,i,∆t

(
πb t+dt∆t c∆t−i∆t

(
B
(
xt+dtt , ε

)))
P(ω),(s)
X|
←−
X,i,∆t

(
πb t∆t c∆t−i∆t

(
B
(
xt+dtt , ε

)))


= lim
dt↓0

log

b
t+dt
∆t c−b t

∆tc−1∏
i=0

1


= 0,

proving continuity.

A natural question arising from Lemma 9 is the question of when the expected

pathwise transfer entropy is continuous in time. The following lemma provides an

answer.

Lemma 10. For each t ∈ [t0, T ) ⊂ T and ω ∈ Ω, let

KL (t, ω) = KL
(
P(s,r)
X|X,{Y }[X

t
t0 | X

t0
to−s, {Y

t
t0−r}](ω)

∣∣∣∣∣∣P(s)
X|X [X t

t0 | X
t0
to−s](ω)

)
.

If

1. t 7→ KL(t, ω) is continuous in t for a.e. ω ∈ Ω,

2. {KL(t, ·)}t∈[t0,T ) is a UI family.

then t 7→ EPT (s,r)
Y→X |tt0 is continuous on [t0, T ).

Proof. Let t ∈ [t0, T ). It suffices to show that

EPT (s,r)
Y→X |tnt0→ EPT

(s,r)
Y→X |tt0
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for any sequence {tn}n≥1 converging to t as n → ∞. Suppose tn → t, as n → ∞,

ε > 0 and for n ≥ 1 define

Sn,ε = {ω ∈ Ω | |KL(tn, ω)−KL(t, ω)| ≥ ε} .

From 1., for a.e. ω ∈ Ω,∃N ≥ 1 such that ω ∈ Sn,ε,∀n ≥ N. Thus

1 = P (Ω \B) ≤ P

⋃
n≥1

Sn,ε

 ≤ 1 =⇒ P

⋃
n≥1

Sn,ε

 = 1,

where B is the P-null set such that t 7→ KL(t, ω) is discontinuous on [t0, T ) for any

ω ∈ B. Observe that {Sn,ε}n≥1 is an increasing sequence of events, thus

lim
n→∞

P
(
Sn,ε

)
= P

⋃
n≥1

Sn,ε

 = 1

and so

P (Sn,ε)→ 0, as n→∞.

Thus ∀t ∈ [t0, T ),

KL(tn, ·) P→ KL(t, ·)

for all sequences tn → t, as n → ∞. Applying the Vitali Convergence Theorem

(Theorem 7.29 in [16]), we get that

EP [KL(tn, ω)−KL(t, ω)] ≤ EP [|KL(tn, ω)−KL(t, ω)|]→ 0 as n→∞

proving continuity.

While Lemma 9 and Lemma 10 provide sufficient conditions for continuity of PT

and EPT, differentiability of these functions is an open problem.
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Chapter 4

Cadlag processes

This section is devoted to the investigation of EPT between cadlag processes, a sce-

nario ubiquitous in the literature concerning the application of TE to neural spike

trains common to neuroscience. To this end, we define a cadlag process as follows.

Definition 4.0.1. A stochastic process X is cadlag if its sample paths are right-

continuous with left limits with probability one.

Examples of such processes are Levy processes and Poisson processes. Suppose

now that X and Y are cadlag processes. We can specify a sample path of either

process by providing its transition times and states, specifically, for any realization

xTt0 of XT
t0 , there exists t0 ≤ t1 < . . . < T such that we can write

xTt0 = {{ti, xti}
N

[t0,T )
X (xTt0 )

i=0 }, (4.1)

where N [t0,T )
X (xTt0) =

∣∣∣∣Range (xTt0)
∣∣∣∣− 1 and xti = x (ti).

Furthermore, we define conditional escape and transition rates similar to those in [48]

as follows.

Definition 4.0.2. For cadlag processes X = (Xt)t∈[t0,T ) and Y = (Yt)t∈[t0,T ), with

Σ countable, define for all ω ∈ Ω, t ∈ [t0, T ), r, s > 0, and x′ ∈ Σ the conditional

transition rate of X given X and Y of x′ at t, denoted ψ
[
x′
∣∣∣←−X,←−Y ] (t, ω) by

ψ
[
x′
∣∣∣←−X,←−Y ] (t, ω) =

lim
∆t↓0

1
∆tP

(
{ω′ ∈ Ω | Xt′(ω′) = x′, for some t′ ∈ [t, t+ ∆t)} | X t−

t−−s, Y
t−

t−−r

)
(ω) ,

(4.2)
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the conditional transition rate of X given X of x′ at t, denoted ψ
[
x′
∣∣∣←−X ] (t, ω) by

ψ
[
x′
∣∣∣←−X ] (t, ω) =

lim
∆t↓0

1
∆tP

(
{ω′ ∈ Ω

∣∣∣Xt′(ω′) = x′, for some t′ ∈ [t, t+ ∆t)} | X t−

t−−s

)
(ω) ,

(4.3)

and the conditional escape rates λ(s)
X|X(t, ω) and λ(s,r)

X|X,Y (t, ω) by

λ
(s)
X|X(t, ω) =

∑
x′∈Σ,x′ 6=x−t

ψ
[
x′
∣∣∣←−X ] (t, ω) (4.4)

and

λ
(s,r)
X|X,Y (t, ω) =

∑
x′∈Σ,x′ 6=x−t

ψ
[
x′
∣∣∣←−X,←−Y ] (t, ω). (4.5)

In the forthcoming, we will sometimes regard the conditional transition rates defined

above as measures on the space (Σ,X ) for fixed ω ∈ Ω, t ∈ T in agreeance with

standard definitions of transition kernels (see Section 1.2 of [25]).

Notation 6. for t ∈ [t0, T ), ω ∈ Ω,and s, r > 0, let

∆λ(s,r)(t, ω) = λ
(s)
X|X(t, ω)− λ(s,r)

X|X,Y (t, ω).

We restrict our attention to TE between time-homogeneous Markov processes.

Definition 4.0.3. Suppose (Ω,F ,P) is a probability space, T ⊂ R≥0 is a bounded and

closed interval, Σ is a countable set, and X is a σ−algebra of subsets of Σ containing

all singletons of Σ. A stochastic process X = (Xt)t∈T is a time-homogeneous Markov

jump process if all of its sample paths are piecewise constant and right-continuous

and ∀n ≥ 1, times t0 < t1 < · · · < tn−1 and sets Ai with ti ∈ T, Ai ∈ X , ∀0 ≤ i ≤ n,

Ptn−1+τ
[
Xtn−1+τ ∈ An−1

∣∣∣Xtn−2+τ , · · · , Xt0+τ
]

(ω)

= Ptn−1+τ
[
Xtn−1+τ ∈ An−1

∣∣∣Xtn−2+τ
]

(ω)

= Ptn−1

[
Xtn−1 ∈ An−1

∣∣∣Xtn−2

]
(ω),

for each ω ∈ Ω and all τ ≥ 0 such that ti−1+τ ∈ T for 0 ≤ i ≤ n.
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We now present a Girsanov formula for the pathwise transfer entropy when the

destination process is a time-homogeneous Markov jump process and the source pro-

cess is any cadlag process.

Theorem 11. Suppose X and Y are cadlag processes on T with [t0, T ) ⊂ T and Σ

countable, where X is a time-homogeneous Markov process with conditional transi-

tion rates given by (4.2) and (4.3) and conditional escape rates given by (4.5) and

(4.4). If

1. ∀ω ∈ Ω, ψ
[
xt0
∣∣∣←−X,←−Y ] (t0, ω) = ψ

[
xt0
∣∣∣←−X ] (t0, ω).

2. The conditional escape rates are bounded and positive.

3. ψ
[
·
∣∣∣←−X,←−Y ] (t, ω)� ψ

[
·
∣∣∣←−X ] (t, ω),∀ω ∈ Ω and t ∈ [t0, T ).

Then ∀ω ∈ Ω, we have

PT (s,r)
Y→X |Tt0

(
ω, xTt0

)
=

N
[t0,T )
X (xTt0)∑
i=1

log

ψ
[
xτi

∣∣∣←−X,←−Y ] (τi, ω)

ψ
[
xτi

∣∣∣←−X ] (τi, ω)

+
∫ T

t0

(
∆λ(s,r)(t, ω)

)
dt.

(4.6)

for every realization xTt0 of the process XT
t0 .

Proof. Since X is Markov, there exists an increasing sequence of finite random jump

times {τn}n≥0 such that τ0 = t0, Xτn is constant on [τn, τn+1), and Xτ−n
6= Xτn .

Furthermore, from the Markov assumption, conditionally on {Xτn}n≥0, the variables

{τn+1 − τn}n≥0 are independent and exponentially distributed.

We first need to show that for arbitrary measures P � Q on the path space of cadlag

sample paths ofX with transition probabilities pP (·, ·), pQ(·, ·) and escape rates γP , γQ

, that for every realization xTt0 of the process XT
t0 ,

dP

dQ

(
xTt0

)
=

N
[t0,T )
X (xTt0)∑
i=0

log
γP (x−τi)pP

(
x−τi, xτi

)
γQ(x−τi)pQ

(
x−τi, xτi

)
+

∫ T

t0

(
γQ(xt)− γP (x−t )

)
dt, (4.7)
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where {τi}
N

[t0,T )
X

i=0 is the sequence of jump times of the realization xTt0 . A proof of (4.7)

is given in Appendix 1, Proposition 2.6 of [27].

Now letting P and Q be the measures in (4.2) and (4.3), respectively, using assump-

tion 1., and noting that

ψ
[
xτi

∣∣∣←−X,←−Y ] (τi, ω)
λ

(s,r)
X|X,Y (τi, ω)

= pX|X,Y (xτi , xτ−i , Yτ−i (ω))

and
ψ
[
xτi

∣∣∣←−X ] (τi, ω)
λ

(s)
X|X(τi, ω)

= pX|X(xτi , xτ−i )

where pX|X,Y and pX|X denote conditional transition probabilities, we get that

PT (s,r)
Y→X |Tt0

(
ω, xTt0

)
=

N
[t0,T )(xTt0)
X ∑
i=0

log

(
λ

(s,r)
X|X,Y (τi, ω)

) (
pX|X,Y (xτi , xτ−i , Yτ−i (ω))

)
(
λ

(s)
X|X(τi, ω)

) (
pX|X(xτi , xτ−i )

)
+

∫ T

t0

(
∆λ(s,r)(t, ω)

)
dt

=
N

[t0,T )(xTt0)
X ∑
i=0

log

ψ
[
xτi

∣∣∣←−X,←−Y ] (τi, ω)

ψ
[
xτi

∣∣∣←−X ] (τi, ω)

+
∫ T

t0

(
∆λ(s,r)(t, ω)

)
dt

= log

ψ
[
x0

∣∣∣←−X,←−Y ] (τ0, ω)

ψ
[
x0

∣∣∣←−X ] (τ0, ω)

+
N

[t0,T )(xTt0)
X ∑
i=1

log

ψ
[
xτi

∣∣∣←−X,←−Y ] (τi, ω)

ψ
[
xτi

∣∣∣←−X ] (τi, ω)


+
∫ T

t0

(
∆λ(s,r)(t, ω)

)
dt

=
N

[t0,T )
X (xTt0 )∑
i=1

log

ψ
[
xτi

∣∣∣←−X,←−Y ] (τi, ω)

ψ
[
xτi

∣∣∣←−X ] (τi, ω)

+
∫ T

t0

(
∆λ(s,r)(t, ω)

)
dt.

(4.8)

The conclusion of Theorem 11 holds for Feller processes (See Theorem 3.13 of

[18].) under some conditions that imply absolute continuity.
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Observation 5. Note that under the hypotheses of Theorem 11,

PT (s,r)
Y→X |Tt0

(
ω, xTt0

)
=

N
[t0,T )
X (ω)∑
i=1

log

ψ
[
xτi

∣∣∣←−X,←−Y ] (τi, ω)

ψ
[
xτi

∣∣∣←−X ] (τi, ω)

+
∫ T

t0

(
∆λ(s,r)(t, ω)

)
dt

=
∫ T

t0
log

ψ
[
xt
∣∣∣←−X,←−Y ] (t, ω)

ψ
[
xt
∣∣∣←−X ] (t, ω)

 dN [t0,t)
X (ω) +

∫ T

t0

(
∆λ(s,r)(t, ω)

)
dt

=
∫ T

t0

λ(s,r)
X|X,Y (t, ω) log

ψ
[
xt
∣∣∣←−X,←−Y ] (t, ω)

ψ
[
xt
∣∣∣←−X ] (t, ω)


 dt+

∫ T

t0

(
∆λ(s,r)(t, ω)

)
dt

=
∫ T

t0

(λ(s,r)
X|X,Y (t, ω)

)log

ψ
[
xt
∣∣∣←−X,←−Y ] (t, ω)

ψ
[
xt
∣∣∣←−X ] (t, ω)

− 1

+ λ
(s)
X|X(t, ω)

 dt,

(4.9)

where the second to last equality comes from the observation that the process(
N

[t0,t)
X (·)−

∫ T
t0
λX|X,Y (t, ·)

)
t∈[t0,T )

is a mean-zero martingale from Watanabe’s well-

known martingale characterization of Poisson processes (see pp. 225 - 235 of [9]).

Furthermore,

EPT (s,r)
Y→X |Tt0=

EP

EP(s,r)
X|X,{Y }(·)

∫ T

t0

λ(s,r)
X|X,Y (t, ·) log

ψ
[
xt
∣∣∣←−X,←−Y ] (t, ·)

ψ
[
xt
∣∣∣←−X ] (t, ·)

+
∫ T

t0

(
∆λ(s,r)(t, ·)

) dt



(4.10)

Corollary 11.1. If X is a cadlag process on [t0, T ), such that the hypotheses of

Theorem 11 hold, then ∀t ∈ [t0, T ), the transfer entropy rate, T(s,r)
Y→X(t), is given by

T(s,r)
Y→X(t) =

EP

EP(s,r)
X|X,{Y }(·)

(λ(s,r)
X|X,Y (t, ·)

)log

ψ
[
xt
∣∣∣←−X,←−Y ] (t, ·)

ψ
[
xt
∣∣∣←−X ] (t, ·)

− 1

+ λ
(s)
X|X(t, ·)


 .

(4.11)

Proof. Let ψ̃t,ω = ψ
[
xt
∣∣∣←−X,←−Y ] (t, ω) and ψ̄t,ω = ψ

[
xt
∣∣∣←−X ] (t, ω) for each t ∈ [t0, T )
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and ω ∈ Ω. From Theorem 11 and Observation 5,

T(s,r)
Y→X(t) =

lim
∆t↓0

1
∆tEP

[
EP(s,r)

X|X,{Y }(ω)

[∫ t+∆t

t

[(
λ

(s,r)
X|X,Y (t′, ω)

)(
log

[
ψ̃t′,ω

ψ̄t′,ω

]
− 1

)
+ λ

(s)
X|X(t′, ω)

]
dt′
]]

= EP

[
EP(s,r)

X|X,{Y }(ω)

[(
λ

(s,r)
X|X,Y (t, ω)

)(
log

[
ψ̃t,ω

ψ̄t,ω

]
− 1

)
+ λ

(s)
X|X(t, ω)

]]
(4.12)

where the last equality comes from Theorem A16.1 in [53].

4.1 Thinned Poisson point process

In this section we present an expression for the PT and EPT from a time-homogeneous

point process to a thinned version of the process. The following definitions make these

notions precise.

Definition 4.1.1. A point process Ψ = (Tn)n≥1 on a nonempty set A is a time -

homogeneous Poisson point process (THPPP) with intensity λ if and only if Tj −

Tj−1 ∼ exp (λ) ,∀j ≥ 1 and the random variables T1, T2 − T1, . . . Ti − Ti−1, . . . are

independent.

Definition 4.1.2. Suppose Ψ = (Tn)n≥1 is a THPPP with intensity λ on a nonempty

set A. The Counting Process of Ψ is the process (Xt)t∈A, where Xt is the random

variable defined by

Xt(ω) =
∑
n≥1

1{Tn∈(0,t)}(ω)

Definition 4.1.3. For any given time-homogeneous Poisson point process (THPPP)

Ψ1 =
(
TΨ1
n

)
n≥1

and p ∈ (0, 1), the process Ψ2 =
(
TΨ2
n

)
n≥1

is called a p-thinning of

Ψ1 if

1. every arrival (point) that occurs in Ψ2 also occurs in Ψ1 a.s.
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2. every arrival (point) that occurs in Ψ2 also occurs in Ψ1 with probability p

independently of Ψ2

We now give a result for TE between the counting processes of a THPPP and a

thinned version of said THPPP if history windows are the same.

Corollary 11.2. Suppose Y is the counting process of a time-homogeneous Poisson

point process Ψ with intensity λ on [t0, T ) and X is the counting process of a p -

thinning of Ψ for some p ∈ (0, 1). If r = s and Xt0 = Yt0 a.s., then ∀ω ∈ Ω and all

realizations xTt0 of XT
t0 ,

PT (s,r)
Y→X |Tt0

(
ω, xTt0

)
= log (p)N [t0,T )

X (xTt0) + (1− p)
∫ T

t0

(
λ

(s)
X|X(t, ω)

)
dt.

Furthermore,

EPT (s,r)
Y→X |Tt0= λ log(p) (T − t0) + (1− p)EP

[
EPX|X,Y

[∫ T

t0

(
λ

(s)
X|X(t, ω)

)
dt.

]]

Proof. Note that any p-thinning of an intensity λ THPPP Ψ is also a THPPP with

intensity pλ, thus both X and Y are time-homogeneous Markov processes. From

Exercise 6.2.12 in [30], we have that ∀t ∈ [t0, T ), ω ∈ Ω, x′ ∈ Σ,

ψ
[
x′
∣∣∣←−X,←−Y ] (t, ω) = pψ

[
x′
∣∣∣←−X ] (t, ω) (4.13)

Applying Theorem 11, we get that

PT (s,r)
Y→X |Tt0

(
ω, xTt0

)
=

N
[t0,T )
X (xTt0 )∑
i=1

log

ψ
[
xτi

∣∣∣←−X,←−Y ] (τi, ω)

ψ
[
xτi

∣∣∣←−X ] (τi, ω)

+
∫ T

t0

(
∆λ(s,r)(t, ω)

)
dt

=
N

[t0,T )
X (xTt0 )∑
i=1

log [p] +
∫ T

t0

(
∆λ(s,r)(t, ω)

)
dt

= log (p)N [t0,T )
X (xTt0) +

∫ T

t0

(
∆λ(s,r)(t, ω)

)
dt

= log (p)N [t0,T )
X (xTt0) +

∫ T

t0

(
λ

(s)
X|X(t, ω)− pλ(s)

X|X(t, ω)
)
dt

= log (p)N [t0,T )
X (xTt0) + (1− p)

∫ T

t0

(
λ

(s)
X|X(t, ω)

)
dt,

(4.14)
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where we have used (4.13) to get the second to last equality. Note that

EP
[
N

[t0,T )
X

]
= λ (T − t0)

since X is a Poisson Process, thus

EPT (s,r)
Y→X |Tt0= λ log(p) (T − t0) + (1− p)EP

[
EPX|X,Y

[∫ T

t0

(
λ

(s)
X|X(t, ω)

)
dt.

]]
.

Remark 9. From Corollary 11.2, we obtain the TE rate in this case by applying the

definition for any t ∈ [t0, T ) and get

T(s,r)
Y→X(t)

= lim
∆t↓0

1
∆t

(
λ log(p) (t+ ∆t− t) + (1− p)EP

[
EPX|X,Y

[∫ t+∆t

t

(
λ

(s)
X|X(t′, ω)

)
dt′.

]])

= λ log(p) + (1− p) lim
∆t↓0

1
∆tEP

[
EPX|X,Y

[∫ t+∆t

t

(
λ

(s)
X|X(t′, ω)

)
dt′
]]
.

(4.15)

4.2 Application: Lagged Poisson point process

In the forthcoming, we provide an example of two processes which satisfy (2.46) for

some γ > 0 in a particular case. In the following example, we consider TE from a

time-lagged version of the counting process of a given THPPP to itself, a case through

which we demonstrate the applicability of our results.

Example 6. Suppose [t0, T ) ⊂ T ⊂ R, X = (Xt)t∈T is the counting process of a

THPPP with intensity λ. Suppose further that ε > 0 and Y = (Yt)t∈T Yt = Xt+ε,∀t ≥

−ε. If X is the counting process with intensity λ > 0 of a THPPP ψ := (Tn)n≥1, then

Y is also a counting process of a THPPP with intensity λ > 0, specifically that of

the point process ψ′ := (Tn − ε)n≥1). Note that the state space of Xt is the natural

numbers for any t ∈ [t0, T ); a Polish space with discrete metrics.
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For any ω ∈ Ω and ∆t > 0 we can calculate for any i = 0, 1, . . . ,
⌊
T
∆t

⌋
−
⌊
t0
∆t

⌋
− 1,

Pb T∆tc∆t−i∆t
(
Xb T∆tc∆t−i∆t

∣∣∣∣(Xb T∆tc∆t−(i+1)∆t

b T∆tc∆t−(i+k+1)∆t

))
(ω)

(
bb T∆tc∆t−i∆t

)
= Pb T∆tc∆t−i∆t

(
Xb T∆tc∆t−i∆t

∣∣∣∣Xb T∆tc∆t−(i+1)∆t

)
(ω)

(
bb T∆tc∆t−i∆t

)
= P

(
Xb T∆tc∆t−i∆t −Xb T∆tc∆t−(i+1)∆t = bb T∆tc∆t−i∆t −Xb T∆tc∆t−(i+1)∆t(ω)

)

= e−λ∆t

 (λ∆t)
bb T∆tc∆t−i∆t−Xb T∆tc∆t−(i+1)∆t

(ω)(
bb T∆tc∆t−i∆t −Xb T∆tc∆t−(i+1)∆t(ω)

)
!


= pois

(
λ∆t; bb T∆tc∆t−i∆t −Xb T∆tc∆t−(i+1)∆t(ω)

)
,

(4.16)

where pois (x, n) = e−xxn

n! , for x > 0 and integers n ≥ 0.

Suppose that [t0 −max (ε, s), T ) ⊂ T and 0 < r < ε. Then ∃∆t? > 0 such that

0 < j∆t? < ε,∀j = 1, 2, · · · ,
⌊
r

∆t?
⌋
.

Letting L =
⌊

r
∆t?
⌋
we get that

Pb T
∆t? c∆t?−i∆t?

(
Xb T

∆t? c∆t?−i∆t?
∣∣∣∣(Xb T

∆t? c∆t?−(i+1)∆t?

b T
∆t? c∆t?−(i+k+1)∆t?

)
,
(
Y
b T

∆t? c∆t
?−(i+1)∆t?

b T
∆t? c∆t?−(i+L+1)∆t?

))
(ω)

= Pb T
∆t? c∆t?−i∆t?

(
Xb T

∆t? c∆t?−i∆t?
∣∣∣∣Xb T

∆t? c∆t?−(i+1)∆t? , Xb T
∆t? c∆t?−(i+L)∆t?+ε

)
(ω)(·)

=
pois

(
λ(ε− L∆t?);XT−(i+L)∆t?+ε(ω)− bT−i∆t?

)
· p∆t?,i,ω

pois
(
λ ((1− L)∆t? + ε) ;XT−(i+L)∆t?+ε(ω)−XT−(i+1)∆t?(ω)

)
=: fε,λ,ω(∆t?, i, bT−i∆t?),

(4.17)

where p∆t?,i,ω = pois
(
λ∆t?; bT−i∆t? −XT−(i+1)∆t?(ω)

)
.

Let aω,i = XT−(i+1)∆t?(ω) and cω,i = XT−(i+L)∆t?+ε(ω) and observe that for any

i = 0, 1, . . . ,
⌊
T

∆t?
⌋
−
⌊
t0

∆t?
⌋
− 1,
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KL
(
P(ω),(k,l)
X|
←−
X,
←−
Y ,i,∆t?

∣∣∣∣∣∣∣∣ P(ω),(k)
X|
←−
X,i,∆t?

)
=

∑
b∈Range(XT−i∆t?)

fε,λ,ω(∆t?, i, b) log fε,λ,ω(∆t?, i, b)

pois
(
λ∆t?; b−Xb T

∆t? c∆t?−(i+1)∆t?(ω)
)

=
∑

aω≤b≤cω
fε,λ,ω(∆t?, i, b) log fε,λ,ω(∆t?, i, b)

pois
(
λ∆t?; b−Xb T

∆t? c∆t?−(i+1)∆t?(ω)
)

=
∑

0≤b≤cω−aω
fε,λ,ω(∆t?, i, aω + b) log fε,λ,ω(∆t?, i, aω + b)

pois
(
λ∆t?; b+

(
aω −Xb T

∆t? c∆t?−(i+1)∆t?(ω)
))

=
∑

0≤b≤cω−aω
fε,λ,ω(∆t?, i, aω + b) log pois (λ(ε− L∆t?); cω − aω − b)

pois (λ ((1− L)∆t? + ε) ; cω − aω)

=
∑

0≤b≤cω−aω

(
cω − aω

b

)(
∆t?

ε− L∆t?

)b (
ε− L∆t?

ε+ (1− L)∆t?

)cω−aω
×

[
λ∆t? + log

(
(cω − aω)b

)
− b log(λ(ε− L∆t?))− (cω − aω) log

(
1 + ∆t?

ε− L∆t?

)]

=
η
( ε− L∆t?

ε+ (1− L)∆t?

)cω−aω+ λ∆t?
(

ε− L∆t?
ε+ (1− L)∆t?

)cω−aω ∑
0≤b≤cω−aω

ζ∆t?(b)

+
( ε− L∆t?

ε+ (1− L)∆t?

)cω−aω ∑
0≤b≤cω−aω

ζ∆t?(b) log
(

(cω − aω)b

λb(ε− λ∆t?)b

)
,

where ζ∆t?(b) =
(
cω−aω
b

) (
∆t?

ε−L∆t?
)b
, for 0 ≤ b ≤ cω − aω, η(x) = x log(x), for x > 0

and xb denotes the b-th falling factorial of x.

We suppose now that ∀ω ∈ Ω,∃∆tω > 0 such that Xt+∆tω(ω) −Xt(ω) ≤ 1, ∀t ∈

[t0, T ), that is, there is no more than one event in any interval of length ∆tω. From

this, we have that ∀ω ∈ Ω and 0 < ∆t < min {∆tω,∆t?},

KL
(
P(ω),(k,l)
X|
←−
X,
←−
Y ,i,∆t

∣∣∣∣∣∣∣∣ P(ω),(k)
X|
←−
X,i,∆t

)

=
∑

aω,i≤b≤eω,i

fε,λ,ω(∆t, i, b) log
 fε,λ,ω(∆t, i, b)
pois

(
λ∆t; b−Xb T∆t c∆t−(i+1)∆t(ω)

)


=
η
( ε− L∆t

ε+ (1− L)∆t

)dω+ λ∆t
(

ε− L∆t
ε+ (1− L)∆t

)dω ∑
0≤b≤dω

(
dω
b

)(
∆t

ε− L∆t

)b

+
( ε− L∆t

ε+ (1− L)∆t

)dω ∑
0≤b≤dω

(
dω
b

)(
∆t

ε− L∆t

)b
log

(
(dω)b

λb(ε− λ∆t)b

)
,
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where eω,i ∈ {aω,i, aω,i + 1} and dω,i ∈ {0, 1}.

For any i = 0, 1, · · ·
⌊
T
∆t

⌋
−
⌊
t0
∆t

⌋
− 1, if dω,i = 0, then

KL
(
P(ω),(k,l)
X|
←−
X,
←−
Y ,i,∆t

∣∣∣∣∣∣∣∣ P(ω),(k)
X|
←−
X,i,∆t

)
= λ∆t

and if dω,i = 1, then

KL
(
P(ω),(k,l)
X|
←−
X,
←−
Y ,i,∆t

∣∣∣∣∣∣∣∣ P(ω),(k)
X|
←−
X,i,∆t

)
= λ∆t

(
ε− L∆t

ε+ (1− L)∆t

)
+ η

((
ε− L∆t

ε+ (1− L)∆t

))

+ λ(∆t)2 − log(λ)∆t
ε+ (1− L)∆t + ∆tη

(
1

ε+ (1− L)∆t

)

=: S(λ,∆t).

Recall that

KL
(
P

(ω)
∆t

∣∣∣∣∣∣ M (ω)
∆t

)
=
b T∆tc−b t0∆tc−1∑

i=0
KL

(
P(ω),(k,l)
X|
←−
X,
←−
Y ,i,∆t

∣∣∣∣∣∣∣∣ P(ω),(k)
X|
←−
X,i,∆t

)

from the proof of Theorem 4 and let Qω,∆t =
b T∆tc−b t0∆tc−1∑

i=0
dω,i.

Then ∀ω ∈ Ω,

KL

b
T
∆tc−b t0∆tc−1∏

i=0
P(ω),(k,l)
X|
←−
X,
←−
Y ,i,∆t

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
b T∆tc−b t0∆tc−1∏

i=0
P(ω),(k)
X|
←−
X,i,∆t



=
b T∆tc−b t0∆tc−1∑

i=0
KL

(
P(ω),(k,l)
X|
←−
X,
←−
Y ,i,∆t

∣∣∣∣∣∣∣∣ P(ω),(k)
X|
←−
X,i,∆t

)

=
(⌊

T

∆t

⌋
−
⌊
t0
∆t

⌋
−Qω,∆t

)
λ∆t+Qω,∆tS(λ,∆t)

= λ∆t
(⌊

T

∆t

⌋
−
⌊
t0
∆t

⌋)
+Qω,∆t (S(λ,∆t)− λ∆t)

≤
(⌊

T

∆t

⌋
−
⌊
t0
∆t

⌋)
S(λ,∆t).

Since whenever 0 < r < ε

lim
∆t↓0

(⌊
T

∆t

⌋
−
⌊
t0
∆t

⌋)
S(λ,∆t) = (T − t0)

(
λ− log (λ(ε− r))

ε− r

)
, (4.18)
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KL

b
T
∆tc−b t0∆tc−1∏

i=0
P(ω),(k,l)
X|
←−
X,
←−
Y ,i,∆t

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
b T∆tc−b t0∆tc−1∏

i=0
P(ω),(k)
X|
←−
X,i,∆t

 is bounded in a sufficiently

small neighborhood of 0. Note that this limit is independent of ω. For illustra-

tion, Figure 4.1 shows the bound established in (6) as a function of ∆t for specific

parameters.

Figure 4.1: KL bound for lagged PPP

y =
(⌊

T
∆t

⌋
−
⌊
t0
∆t

⌋)
S(λ,∆t) plotted as a function of ∆t with

r = 0.5, ε = 1, λ = 0.2, T = 2, and t0 = 1. It should be noted that there is clear

numerical error as the function is not constant near 0.

For each ∆t > 0, let A∆t = {ω ∈ Ω | Xt+∆t(ω)−Xt(ω) ≤ 1,∀t ∈ [t0, T )} and B∆t,γ

be as in Corollary 5.2, that is,

B∆t,γ =
{
ω ∈ Ω

∣∣∣ ∆t′ ∈ (0,∆t) =⇒ KL
(
P

(ω)
∆t

∣∣∣∣∣∣ M (ω)
∆t

)
≤ γ

}
.

Fix γ > (T −t0)
(
λ− log(λ(ε−r))

ε−r

)
. We have now shown that for all ∆t > 0, there exists

0 < ∆̃t < ∆t such that A∆t ⊂ B∆̃t,γ. Furthermore, since (B∆t,γ)∆t>0 is a decreasing

73



collection of sets,

P (A∆t) ≤ P
(
B∆̃t,γ

)
≤ P (B∆t′,γ) for all 0 < ∆t′ < ∆̃t. (4.19)

From properties of the Poisson point process,

P (A∆t) = 1− o(∆t),

thus P (A∆t)→ 1 as ∆t ↓ 0. Now due to (4.19), we have that P (B∆t,γ)→ 1 as ∆t ↓ 0,

which establishes the existence of processes that satisfy (2.46).
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Chapter 5

Future Directions

5.1 Alternate Definition of EPT

Motivated by [55], we present the following alternate definition of EPT. This definition

defines EPT as a limsup of conditional mutual information over sub-partitions of the

interval [t0, T ). This approach has practical relevance as implementing a non-uniform

partitioning of time has been used in [51] and [31]. We begin by defining sub-partitions

of an interval of the form [t0, T ).

Definition 5.1.1. A sub-partition P of an interval [t0, T ) ⊂ R is a set of real numbers

t0, t1, . . . , tn such that

t0 < t1 < · · · < tn < T.

Definition 5.1.2. Let P[t0,T ) be the set of sub-partitions of the interval [t0, T ) ⊂ T

and let ||P || denote the mesh of a sub-partition P ∈ P[t0,T ), defined by

||P || = max
ti∈P
i≥1

|ti − ti−1| .

For all P ∈ P[t0,T ), r, s > 0, such that (t0−max (r, s), T ] ⊂ T, define the sub-partitioned

expected pathwise transfer entropy of the sub-partition P , denoted EPT (s,r),P
Y→X |Tt0 , by

EPT (s,r),P
Y→X |Tt0=

||P ||∑
i=1

I
(
X ti
ti−1

;Y ti
ti−r | X

ti−1
ti−1−s

)
. (5.1)
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Definition 5.1.3.

EPT (s,r)
Y→X |Tt0 = lim sup

∆t↓0
P∈P[t0,T ),||P ||≤∆t

EPT (s,r),P
Y→X |Tt0

= lim sup
∆t↓0

P∈P[t0,T ),||P ||≤∆t

||P ||∑
i=1

I
(
X ti
ti−1

;Y ti
ti−r | X

ti−1
ti−1−s

)
.

(5.2)

Remark 10. The mutual information in 5.1 can be expressed as a supremum of

conditional mutual information between discrete random variables over partitions of

the sigma-algebra generated by the path spaces ΩT
X and ΩT

Y due to Wyner’s definition

of conditional mutual information presented in [55].

Specifically, suppose {A1, · · · , Am} and {B1, · · · , Bn} are finite partitions of the path

spaces FT
X and FT

Y , respectively. Now define discrete random variables X̃, Ỹ by

X̃(ω) = i, if ω ∈ Ai and Ỹ (ω) = j, if ω ∈ Bj. (5.3)

From Theorem 1.6.1 in [23] we have that

I(X;Y ) = sup
PX ,PY

I(X̃; Ỹ ),

where PX and PY denote the set of all finite partitions of ΩT
X and ΩT

Y , respectively.

With this along with equation 2.6 a. in [55], we can deduce that for any P ∈ P[t0,T )

and ∀i ∈ [| P |], we have

I
(
X ti
ti−1

;Y ti
ti−r | X

ti−1
ti−1−s

)
= sup

P
X
ti
ti−1

, P
Y
ti
ti−r

I(X̃ ti
ti−1

; Ỹ ti
ti−r | X

ti−1
ti−1−s).

Note that X̃ ti
ti−1 and Ỹ ti

ti−r are discrete random variables which are generally easier

to deal with than the RN-derivatives in the previous definition of pathwise transfer

entropy. This alternate definition of pathwise transfer entropy allows us to express

pathwise transfer entropy as a limit of discrete time transfer entropy as in the Theorem

5, but without having to satisfy the rather strict SPL conditions.

We prove the following proposition which establishes time-dilation invariance of

the EPT as defined in Definition 5.1.3.
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Proposition 1. Suppose φ is linear and monotone increasing. If X̃φ(t) = Xt and

Ỹφ(t) = Yt,∀t ∈ [t0, T ), then

EPT (s,r)
Y→X |Tt0= EPT (φ(s),φ(r))

Ỹ→X̃ |φ(T )
φ(t0) .

Proof. Mutual information is invariant to injective transformations, thus for any P ∈

P[t0,T ), we have

EPT (s,r),P
Y→X |Tt0=

||P ||∑
i=1

I
(
X ti
ti−1

;Y ti
ti−r | X

ti−1
ti−1−s

)
=
||φ(P )||∑
i=1

I
(
X̃
φ(ti)
φ(ti−1); Ỹ

φ(ti)
φ(ti−r) | X̃

φ(ti−1)
(φ(ti−1−s)

)
,

where the partition φ(P ) of [φ(t0), φ(T )) is defined by

φ(P ) = {φ(t?) | t? ∈ P}.

From the continuity and monotonicity of φ we have that

{P | P ∈ P[φ(t0),φ(T ))} = {φ(P ) | P ∈ P[t0,T )}

and so

EPT (s,r)
Y→X |Tt0 = inf

n≥1
||P ||=n
P∈P[t0,T )

EPT (s,r),P
Y→X |Tt0

= inf
n≥1
||P ||=n
P∈P[t0,T )

n∑
i=1

I
(
X ti
ti−1

;Y ti
ti−r | X

ti−1
ti−1−s

)

= inf
n≥1

||φ(P )||=n
φ(P )∈P[φ(t0),φ(T ))

n∑
i=1

I
(
X̃
φ(ti)
φ(ti−1); Ỹ

φ(ti)
φ(ti−r) | X̃

φ(ti−1)
(φ(ti−1−s)

)

= inf
n≥1

||φ(P )||=n
φ(P )∈P[φ(t0),φ(T ))

n∑
i=1

I
(
X̃
φ(ti)
φ(ti−1); Ỹ

φ(ti)
φ(ti)−φ(r) | X̃

φ(ti−1)
(φ(ti−1)−φ(s)

)

= EPT (φ(s),φ(r))
Ỹ→X̃ |φ(T )

φ(t0),

(5.4)

where the second to last equality if from the linearity of φ.

Question 2. Is this definition advantageous or even equivalent to Definition 2.18?

We have mentioned some advantages of this definition earlier; however, they are
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quite simplistic. There is a much richer collection of literature involving Wyner’s

definition, in some vicinity, of conditional mutual information than the approach we

used to define the EPT. Thus, it is likely that defining EPT as in Definition 5.2 makes

EPT easier to use and calculate. However, a rigorous exploration of this matter is

not performed here and is left as an open question.

Question 3. What other processes satisfy (2.31) or (2.46) other than the determin-

istically lagged counting process of a THPPP?

In Appendix A, we provide a calculation for KL
(
P(ω),(k,l)
X|
←−
X,
←−
Y ,i,∆t

∣∣∣∣∣∣∣∣P(ω),(k)
X|
←−
X,i,∆t

)
where

Y is a time-lagged version of a Wiener process X. However, there is no calculation

of KL
(
P

(ω)
∆t

∣∣∣∣∣∣M (ω)
∆t

)
for these processes or for any other process other than that

presented in example 6. There is a wealth of transformations one could perform on

a process to yield another: thinning, superimposition, deterministic lagging, random

lagging, bump convolution, etc. Each of these transformations yields a new process

that is not independent of the original process; thus, there should be a nonzero TE.

Compound Poisson processes (CPP) are of particular relevance to the continuous-

time framework presented in this work and are widely used to model neural spike

trains, thus showing that either (2.31) or (2.46) hold for a transformed CPP (using

the aforementioned transformations) would be a fruitful discovery.

5.2 Differentiability of EPT and estimators

In Section 2.3, we provided sufficient conditions for continuity of PT and EPT in

time. However, there are no sufficient conditions for the existence of the limit in

Definition 3.1; thus, differentiability of these functions is still an open topic.

Question 4. Do there exist nontrivial sufficient conditions for the differentiability of

the EPT function?
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One of the main contributions of this thesis is a definition of the TE rate native to

continuous-time processes. However, our methodology does not present any practical

means of measuring it, only the theoretical formulation.

Question 5. Do there exist practical estimators of the EPT and the TE rate?

The transfer entropy estimator presented in [28] is of practical utility for discrete-

time processes. Can it be generalized to appropriately measure TE using the measure

theoretical approach taken in this work? If so, what are its properties? There is a

wealth of questions one could propose pertaining to such an estimator, e.g., is this

estimator biased or asymptotically biased/unbiased? Is it an efficient estimator and

how is its speed performance? Does there exist an appropriate model class under

which an MLE for TE exists? How does this estimator compare with binning and

partitioning based estimators used in the literature referenced in Section 1.4?

If there is no such estimator that can be used in a general setting, does there exist

one when the destination and source process are a particular type of continuous-time

stochastic process? Providing estimators for TE rate and EPT amongst a pair of non-

homogeneous PPPs, compound Poisson processes, or Brownian motions with various

effects appear to be the types of processes for which an estimator with appealing

properties would be of most interest as these processes are encountered or considered

in many applications in which causality in real-time data is held in high regard.
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Appendix A

A lagged Weiner process calculation

Suppose ε > 0 (non- random) and Yt = Xt+ε, ∀t ≥ −ε. If X is a Weiner process, then

Y is also a Weiner process and for fixed ∆t > 0, we can calculate for any ω ∈ Ω and

any Borel set, the conditional probabilities for (2.11) and (2.12).

From incremental independence of the Poisson counting process, we have that

b T∆t c−b
t0
∆t c−1∏

i=0

(
(PXb T∆t c∆t−i∆t

(
Xb T∆t c∆t−i∆t

| Xb
T
∆t c∆t−(i+1)∆t
b T∆t c∆t−(i+k+1)∆t

)
(ω)

) (
Bb T∆t c∆t−i∆t

)

=
b T∆t c−b

t0
∆t c−1∏

i=0

(
(PXb T∆t c∆t−i∆t

(
Xb T∆t c∆t−i∆t

| Xb T∆t c∆t−(i+1)∆t

)
(ω)

) (
Bb T∆t c∆t−i∆t

)

=
b T∆t c−b

t0
∆t c−1∏

i=0

 1√
2π∆t

∫
Bb T∆t c∆t−i∆t

exp

−
(
x−Xb T∆t c∆t−(i+1)∆t(ω)

)2

2∆t

 dx
 .
(A.1)

Let B∆t,i = Bb T∆t c∆t−i∆t
for i = 0, 1, . . . ,

⌊
T
∆t

⌋
−
⌊
t0
∆t

⌋
− 1. If 0 < ∆t < ε, then

b T∆t c−b
t0
∆t c−1∏

i=0
P(ω),(k,l)
X|
←−
X,
←−
Y ,i,∆t

(B∆t,i)

=
b T∆t c−b

t0
∆t c−1∏

i=0
PXb T∆t c∆t−i∆t

(
Xb T∆t c∆t−i∆t

| Xb T∆t c∆t−(i+1)∆t, Y
b T∆t c∆t−(i+1)∆t
b T∆t∆t−(i+l+1)∆t

)
(ω) (B∆t,i)

=
b T∆t c−b

t0
∆t c−1∏

i=0
PXb T∆t c∆t−i∆t

(
Xb T∆t c∆t−i∆t

| Xb T∆t c∆t−(i+1)∆t, Yb T∆t c∆t−(i+1)∆t

)
(ω) (B∆t,i)

=
b T∆t c−b

t0
∆t c−1∏

i=0
PXb T∆t c∆t−i∆t

(
Xb T∆t c∆t−i∆t

| Xb T∆t c∆t−(i+1)∆t, Xb T∆t c∆t−(i+1)∆t+ε

)
(ω) (B∆t,i)

=
b T∆t c−b

t0
∆t c−1∏

i=0

(∫
B∆t,i
N
(
x;µi,∆t, σ2

i,∆t

)
dx

)
,
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where

µi,∆t = Xb T∆t c∆t−(i+1)∆t+ε(ω)∆t
ε

+Xb T∆t c∆t−(i+1)∆t(ω)ε−∆t
ε

,

σ2
i,∆t =

(
ε−∆t
ε2

)
∆t,

and the last equality comes from the observation that if X is a SBM then for any

t0 < t1 < t2 we have

Xt1|Xt0=x,Xt2=y ∼ N
(
t2 − t1
t2 − t0

x+ t1 − t0
t2 − t0

y,
(t2 − t1)(t1 − t0)

t2 − t0

)
.

Note that for any two Gaussian distributions, say p and q with means µp, µq and

variances σp, σq, respectively, we get after some calculations that

KL(p || q) = log
(
σq
σp

)
+ σp + (µp − µq)2

2σ2
q

− 1
2 .

Thus for any ω ∈ Ω and ∆t > 0, we can calculate for any i = 0, 1, . . . ,
⌊
T
∆t

⌋
−
⌊
t0
∆t

⌋
−1,

KL
(
P(ω),(k,l)
X|
←−
X,
←−
Y ,i,∆t

|| P(ω),(k)
X|
←−
X,i,∆t

)

= log
 ∆t(

ε−∆t
ε2

)
∆t

+

(
ε−∆t
ε2

)
∆t

2 (∆t)2 − 1
2

+

(
Xb T∆t c∆t−(i+1)∆t+ε(ω)∆t

ε
+Xb T∆t c∆t−(i+1)∆t(ω) ε−∆t

ε
−Xb T∆t c∆t−(i+1)∆t(ω)

)2

2 (∆t)2

= log
(

ε2

ε−∆t

)

+ ε−∆t (1 + ε2)
2∆tε2 +

Xb T∆t c∆t−(i+1)∆t+ε(ω)∆t
ε
−
(

∆t
ε

) (
Xb T∆t c∆t−(i+1)∆t(ω)

)
√

2∆t

2

= log
(

ε2

ε−∆t

)
+ ε−∆t (1 + ε2)

2∆tε2
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Xb T∆t c∆t−(i+1)∆t+ε(ω)−

(
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)
√

2ε

2

.

(A.2)

and the TE at any time i∆t as
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T(k,l)
Y→X(i∆t)

= EP

 log
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Appendix B

Lagged Poisson calculation

In Example 6, the source process is constructed as a time lagged version of the

destination process. In what follows, we regard TE as a function of said lag and

investigate its behavior, after applying a binning strategy, for different values of

history length windows.

Suppose that X and Y are as in Example 6 and ε = s. Let n ≥ 1 be an integer

and let

Xn,∆t = H
(∣∣∣(n∆t, (n+ 1)∆t) ∩ (ψm)m≥1

∣∣∣) ,
where H denotes the heaviside function. It should be noted that these random

variables are Bernoulli random variables with a mean of 1−e−λ∆t. We utilize the fact

that the value of these random variables is either 0 or 1 to calculate the probabilities

in (1.1) by calculating the appropriate probabilities (those that appear in (1.1)) for

all possible outcomes of these processes. For example, if 2∆t ≤ s ≤ 3∆t, then

P ({Xn,∆t = 1} ∩ {Xn−1,∆t = 1} ∩ {Xn−2,∆t = 0} ∩ {Yn−1,∆t = 0} ∩ {Yn−2,∆t = 0})

(B.1)

can be easily calculated using the incremental independence property of the Poisson

process as α3 (1− α)
(
1− α

α2β

)
, where α = e−λ∆t and β = 1 − α. The remaining 31

joint probabilities can be obtained similarly for this choice of k and l and each of the

conditional probabilities in (1.1) can be obtained as a quotient of joint probabilities.

Upon the aforementioned calculations, we obtain finally that the joint and conditional

probabilities in the case of the lagged PPP with k = l = 2 are polynomials in α and

β. For n ≥ 1, Figure B.1 shows a graph of T(2,2)
Yj,∆t→Xj,∆t as a function of s for a
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particular process intensity λ and bin width ∆t. Upon similar calculations, the joint

and conditional probabilities in the case that k = l = 1 are also polynomials in α and

β and T(1,1)
Yj,∆t→Xj,∆t is graphed as a function of s in Figure B.2, again with particular

values of λ and ∆t.

Figure B.1: Lagged PPP calculation with k = l = 2, λ = 2,∆t = 0.2.
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Figure B.2: Lagged PPP calculation with k = l = 1, λ = 1, ∆t = 1.

The source code containing the calculation of T(2,2)
Yj,∆t→Xj,∆t and T(1,1)

Yj,∆t→Xj,∆t can be

found at https://github.com/edgarcde/transfer_entropy.
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