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ABSTRACT 

This dissertation consists of three studies which examined multidimensional 

balance in youth (≤ 21 years; Individuals with Disabilities Education Act, 2004) with 

visual impairments (VIs) using the Brief-Balance Evaluation Systems Test (Brief-

BESTest). These studies have the potential to inform (adapted) physical education 

curricula and therapeutic/rehabilitative practices by providing novel understandings of 

balance performance in youth with VIs. If identified as a meaningful mechanism of 

action, the assessment and development of multidimensional balance in youth with VIs 

should be given elevated status by practitioners. Thus, the purpose of this dissertation 

was to investigate multidimensional balance in youth with VIs. 

The purpose of Study 1 was to examine the construct and convergent validity of 

the Brief-BESTest scores in youth with VIs. One-hundred and one youth with VIs (nboys = 

57) aged 8.7 to 20.4 years (M = 13.91 ± 2.82) completed the Brief-BESTest, the anterior 

reach of the Lower Quarter Y-Balance Test, the 360-degree turn test, inertial postural 

sway during quiet bipedal stance, and the Activities-specific Balance Confidence Scale. 

Favorable results were uncovered for the internal consistently reliability (ω = .87) and 

Spearman inter-item correlations (.18 to .73) for Brief-BESTest item scores. A one-factor 

minimum residual exploratory factor analysis using oblimin rotation was supported. 

Using seven of the eight Brief-BESTest (i.e., one bilaterally scored item [reactive 

postural response to the left side] was removed due to minor multicollinearity issues) and 

mean and variance-adjusted weighted least squares confirmatory factor analyses, a two-
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factor (i.e., static and dynamic balance) model was accepted based on measures of global 

and local fit. Using Spearman correlations, the Brief-BESTest total scores significantly 

correlated (i.e., converged) with all other balance assessment total scores (-.36 to .67). 

These results confirmed that Brief-BESTest scores had satisfactory construct and 

convergent validity in youth with VIs.  

The purpose of Study 2 was to compare Brief-BESTest scores between youth with 

and without VIs. Two-hundred and eighty-seven  youth with (nVI = 129) and without VIs 

aged 8.7 to 20.4 years (M = 13.80 ± 2.32) completed the Brief-BESTest. A one-way 

analysis of variance (ANOVA) suggested youth with VIs had lower total Brief-BESTest 

scores (F = 225.13, p < .001, ω² = .44). Concerning the eight individual Brief-BESTest 

items, a one-way multivariate analysis of variance (MANOVA) was statistically 

significant (F = 43.07, p < .001, V = .55). Games-Howell post hoc analyses highlighted 

significantly impaired balance performance in youth with VIs for all Brief-BESTest items 

except for the sensory orientation task (i.e., static bipedal stance on foam with eyes 

closed). The largest effect sizes (ω²) were for the anticipatory postural adjustment (i.e., 

right [.46] and left [.50] single leg stances; static balance) and biomechanical constraint 

(i.e., hip/trunk lateral strength [.26]; static balance) systems. After subsetting the youth 

with VIs within the sample, an analysis of covariance (ANCOVA) suggested that both 

degree of vision (F = 3.60, p = .016, ω² = .04) and the presence of a comorbidity (F = 

51.21, p < .001, ω² = .27) were significant explanatory variables for total Brief-BESTest 

scores in youth with VIs. These results suggested that youth with VIs are likely to have 

impaired balance performance in both static and dynamic tasks (i.e., five out of six 

balance systems) when compared to peers without VIs. Balance impairments in youth 
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with VIs are likely due to environmental and/or sociological constraints and can likely be 

improved with targeted intervention. Practitioners should acknowledge and consider the 

roles of vision level and/or the presence of a comorbidity when investigating 

multidimensional balance performance in youth with VIs.  

The purpose of Study 3 was to investigate associations between Brief-BESTest 

and the Test of Gross Motor Development-3 (TGMD-3) locomotor subscale scores in 

youth with VIs. Ninety-six youth with VIs (nboys = 52) aged 8.7 to 19.0 years (M = 12.98  

± 2.28) completed the Brief-BESTest and the TGMD-3 locomotor subscale. The zero-

order Spearman correlation between Brief-BESTest and TGMD-3 locomotor subscale 

total scores was strong (ρ = .60, p < .001, 95% CI = .46 to .72). Vision level and the 

presence of a comorbidity were identified as confounding variables. A second-order 

partial Spearman correlation simultaneously controlling for the presence of a comorbidity 

and vision level was .42 (p < .001, 95% CI = .24 to .57). These data suggest that a 

significant monotonic association existed between global multidimensional balance and 

locomotor performance in youth with VIs (i.e., total scores). Concerning individual Brief-

BESTest and TGMD-3 item relationships, results were mixed. Zero-order Spearman 

correlations between individual Brief-BESTest and TGMD-3 locomotor subscale items 

ranged from -.09 to .55. It could be suggested that certain balance systems may play a 

role in (e.g., constrain) certain locomotor skills in youth with VIs. Practitioners should 

acknowledge that specific balance systems may play a more prominent or withdrawn role 

in different locomotor skills (i.e., inter-task specificity). Thus, practitioners should 

actively develop multidimensional balance skills in youth with VIs in tandem with other 

motor skills. 
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These data have the potential to significantly impact balance assessment which 

could in turn influence (adapted) physical education curricula (e.g., Individualized 

Education Program goals) or therapeutic/rehabilitative decisions for youth with VIs. 

Information gleaned from this dissertation suggests that multidimensional balance could 

be posited as a significant (yet modifiable) mechanism of action which could be 

constraining health- and movement-based outcomes in youth with VIs.  
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CHAPTER 1 

INTRODUCTION 

This dissertation will consist of three studies that examine balance in youth with 

visual impairments (VIs). The first study will examine the construct and convergent 

validity of the Brief-Balance Evaluation Systems Test (Brief-BESTest) in youth with VIs. 

The second study will compare Brief-BESTest scores between youth with and without 

VIs. The third study will assess correlations between the Brief-BESTest and the Test of 

Gross Motor Develepmet-3 (TGMD-3) locomotor subscale scores in youth with VIs. This 

chapter will provide the overarching principles and foundations for this dissertation.    

Background 

Youth with VIs are prone to socio-determined health disparities (Krahn, Walker, 

& Correa-De-Araujo, 2015; United States Department of Health and Human Services, 

2018b; 2005), are 50% more likely to become obese (Weil et al., 2002), and trend with 

decreased levels of health-related fitness, physical activity, and motor skill competence 

compared to peers without VIs (Augestad & Jiang, 2015; Houwen, Hartman, & Visscher, 

2009a). Human balance (e.g., postural control, stability, gross body equilibrium, body 

management), which can be described as the ability to withstand falling (Winter, 1995), 

is an integral part of nearly every movement-based task a person may perform (Burton & 

Davis, 1992) and is a fundamental motor skill category (Gallahue, Ozmun, & Goodway, 

2012). Therefore, it can be postulated that balance impairments will impede a child’s 

developmental, educational (e.g., physical education psychomotor outcomes), and/or
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health-related trajectories. If balance deficits exist in youth with VIs, those deficits and 

the resultant implications (e.g., associations, mediation, moderation of pertinent 

variables) should be universally assessed and addressed.  

The ability to balance is influenced by several inertial/biomechanical 

characteristics (e.g., gravity, base of support, center of mass) and three physiological 

systems (i.e., visual, vestibular, proprioceptive). Because youth with VIs have impaired 

ocular systems, it could be hypothesized that applicable visual deficiencies would act as 

detriments to balance performance. However, it has been hypothesized that humans may 

be able to overcome a lack of visual information through sensory ‘reweighting’ to 

maintain postural control (Peterka, 2002).  

Compared to youth without VIs, youth with VIs have presented with balance 

deficits (Bouchard & Tetreault, 2000; Rutkowska et al., 2015). However, comparisons to 

peers without VIs have been inconsistent or have lacked empirical rigor (Houwen, 

Visscher, Lemmink, & Hartman, 2009b). Balance assessments historically have been 

unidimensional or oversimplified; however, modern interpretations establish balance as 

being much more contingent and complex in nature (Horak, 2006). That is, balance is a 

plural construct made up of multiple systems influenced by dynamic sensorimotor 

interactions and contextual factors (Horak, 2006). To this end, traditional balance 

assessments have evaluated limited and/or redundant forms of balance (disregarding the 

interconnectedness of the balance systems) creating incomplete balance profiles and 

leading to improper conclusions of an individual’s present level of performance. With 

modern conceptualizations of balance, practitioners can individually investigate, identify, 
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and/or remediated underlying postural systems and mechanisms (Horak, Wrisley, & 

Frank, 2009). 

Compared to traditional balance assessments, the Brief-BESTest (Padgett, Jacobs, 

& Kasser, 2012) may be a viable alternative. The Brief-BESTest is practitioner friendly, 

inexpensive, quick, assesses multiple balance systems, and has been shown to be valid 

and reliable. However, the Brief-BESTest has traditionally been utilized in 

adult/neurological populations (Jácome, Cruz, Oliveira, & Marques, 2016; O’Hoski et al., 

2014; Padgett et al., 2012). The Brief-BESTest is an abridged version of the BESTest 

(Horak et al. 2009) which often shows reproducible properties in youth (Dewar, Clausa, 

Tucker, Ware, & Johnston, 2017), although, these results used the BESTest and not the 

Brief-BESTest, which employs specific items and scoring methods. Importantly, the 

Brief-BESTest should not to be confused with the Mini-BESTest (Franchignoni, Horak, 

Godi, Nardone, & Giordano, 2010). The Mini-BESTest is a different short form of the 

BESTest, however, it is more extensive than the Brief-BESTest. Although the Mini-

BESTest is shorter than the BESTest, the Mini-BESTest has been described as lengthy 

and/or redundant which led to the creation of the Brief-BESTest (Padgett et al., 2012). 

Validation studies of assessment scores (Messick, 1995; Pedhazur & Schmelkin, 

1991) are continuously needed as validity is a perpetual process. All validation studies 

are comprised of scores which are historical in nature (i.e., temporal cross-sections). 

Further, test scores from specific populations (i.e., youth with VIs) or contexts need to be 

extensively vetted prior to the adoption of a test (American Educational Research 

Association, American Psychological Association, & the National Council on 

Measurement in Education, 2014; Cronbach & Meehl, 1955). Therefore, validation 
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studies are needed before the Brief-BESTest can be viewed as accurate in youth with VIs. 

If found to have construct and convergent validity, the Brief-BESTest could: (a) be used 

to assess balance, (b) provide detailed balance profiles, (c) be correlated to relatable 

variables of interest (e.g., psychomotor objectives, physical activity measures, health 

indicators), and (d) lead to targeted balance interventions in youth with VIs. 

No current normative values for the Brief-BESTest exist for younger populations. 

Therefore, to adequately interpret Brief-BESTest scores from youth with VIs, a group of 

youth without VIs will need to be collected for comparison. Further, after construct and 

convergent validity for the Brief-BESTest scores in youth with VIs are established and 

balance performance between youth with and without VIs is evaluated, Brief-BESTest 

scores in youth with VIs can be correlated with the locomotor subscale scores (i.e., run, 

gallop, hop, skip, horizontal jump, slide) of the TGMD-3 (Webster & Ulrich, 2017). 

Examining associations between Brief-BESTest scores and the locomotor subscale of the 

TGMD-3 in youth with VIs is vital as youth with VIs typically present with locomotive 

deficits (Wagner, Haibach, Lieberman, 2013). Importantly, balance has been described as 

a prerequisite for locomotion (Adolph, 2008; Nardini & Cowie, 2012), therefore, balance 

could be acting as a functional locomotor constraint  in youth with VIs. Further, although 

stability skills have been recognized as a standalone fundamental motor skill category 

(Gallahue et al. 2012), the TGMD-3 does not explicitly assess balance skills as they are 

assumed within the TGMD-3. 

While the overt contribution of balance skills to locomotor and/or object control 

(e.g., kicking, throwing, catching) skills has been highly debated, it has been suggested 

that methodological issues and underdeveloped conceptualizations of balance are to 
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blame for historically inconsistent correlational findings between balance and 

locomotor/object control scores (Overlock & Yun, 2004). Further—traditionally—

balance assessment scores have not associated or loaded well with other balance 

assessment scores (Burton & Davis, 1992; Overlock & Jun, 2004; Skaggs & Hopper, 

1996) highlighting the inconsistencies that have plagued balance as a construct. While the 

psychometric properties of balance assessments have customarily been a conundrum, 

modern balance-based skills have been shown to perform well alongside locomotor, 

object control, and other balance skills in contemporary motor competence models (Luz, 

Rodrigues, Almeida, & Cordovil, 2016; Rudd et al., 2015). Therefore, it is likely that the 

Brief-BESTest can further elucidate the role of balance as a fundamental motor skill. 

Theoretical and Paradigmatic Underpinnings 

 A post-positivism paradigm will be adopted for this dissertation. The 

paradigmatic allegiance will (a) guide the research process, (b) make assumptions 

explicit, (c) give context to answers, and (d) guide future directions (Macdonald et al., 

2002). Therefore, post-positivistic assumptions will permeate every act of this 

dissertation (Macdonald et al., 2002). According to Guba (1990, p. 18), research 

paradigms are characterized by three foundational questions: 

a) Ontological: What is the nature of the “knowable?” Or what is the nature of 

“reality?” 

b) Epistemological: What is the nature of the relationship between the knower (the 

inquirer) and the known (or knowable)?  

c) Methodological: How should the inquirer go about finding out knowledge?  
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Based on these questions, Guba (1990, p. 23) subsequently elucidates the assumptions of 

post-positivism: 

a) Ontology: Critical realist—reality exists but can never be fully apprehended. It is 

driven by natural laws that can be only incompletely understood. 

b) Epistemology: Modified objectivist—objectivity remains a regulatory ideal, but it 

can only be approximated, with special emphasis place on external guardians such 

as the critical tradition and the critical community. 

c) Methodology: Modified experimental/manipulative—emphasize critical 

multiplism. Redress imbalances by doing inquiry in more natural settings, using 

more qualitative methods, depending more on grounded theory, and reintroducing 

discovery into the inquiry process.  

In summary, the post-positivism paradigm asserts that there is an independent reality to 

be investigated but concedes that all observations are fallible (Onwuegbuzie, Johnson & 

Collins, 2009). Because all observations are imperfect and biased, post-positivism 

emphasizes the use of inferential statistics and probabilities (e.g., p-values, confidence 

intervals) to make correct (but not certain) generalizations (Onwuegbuzie et al., 2009). 

Purpose, Research Questions, and Hypotheses 

Study 1. The purpose of this study was to examine the construct and convergent 

validity of Brief-BESTest scores in youth with VIs. This study will use a descriptive-

analytic design to examine the construct and convergent validity of the Brief-BESTest in 

youth with VIs. It was hypothesized that Brief-BESTest scores will load as a singular 

latent variable (i.e., global balance) and that Brief-BESTest total scores will significantly 

associate with the total scores of additional balance assessments.  
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Study 2. The purpose of this study was to compare Brief-BESTest scores between 

youth with and without VIs. This study will use a descriptive-analytic design to compare 

item scores and total scores on the Brief-BESTest. It is hypothesized that youth with VIs 

will score significantly lower than youth without VIs on the individual item scores and 

total scores of the Brief-BESTest. 

Study 3. The purpose of this study was to investigate associations between Brief-

BESTest scores and the TGMD-3 locomotor subscale scores in youth with VIs. This 

study will use a descriptive-analytic design to investigate relationships between the Brief-

BESTest and the TGMD-3 locomotor subscale. It is hypothesized that all item and total 

score bivariate correlations between the Brief-BESTest and the TGMD-3 locomotor 

subscale will be significant in youth with VIs. 

Delimitations and Limitations  

 Delimitations. This section will define the scope/boundaries of this dissertation. 

For this dissertation, balance abilities in youth with VIs, and to a secondary degree, youth 

without VIs (i.e., Study 2), will be investigated. The main rationale behind this selection 

was that balance research in youth with VIs is underdeveloped (e.g., lacks rigor, 

conflicting findings). This dissertation will focus on youth with VIs in New York, 

Florida, and North Carolina and youth without VIs in South Carolina. The selection of 

these locations is due to access and feasibility.  

The sample will be comprised of youth with VIs aged 8-20 years, of multiple VIs, 

races, comorbidities, and biological sexes. Any student with a VI who provides consent 

will be included (i.e., no exclusion criteria). The wide age range and inclusive criteria are 

necessary because youth with VI are a low prevalence population. However, in Study 2, 
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youth without VIs will be excluded if they (a) have a VI and/or (b) have a documented 

disability. Analyses within these studies will be variable-centered as opposed to person-

centered (Muthén & Muthén, 2006). However, descriptive statistics and or additional 

analyses (if found to be appropriately powered post hoc) will be used in an attempt to 

control for clusters/stratifications through dummy coding and multivariate regression 

and/or covariate analyses when appropriate and allowable.  

Finally, four physical balance assessments and one psychological balance 

assessment will be utilized. Of the four physical assessments, the Brief-BESTest has been 

selected for its practicality and its ability to assess multiple balance systems. Postural 

sway and the 360-degree turn test have been selected as they are well established, 

laboratory-based balance assessments. The Lower Quarter Y-Balance Test (LQYBT) has 

been included for its growing popularity, simplicity, and application to athletic-based 

settings. The Activities-specific Balance Confidence Scale (ABC Scale) was selected to 

provide a psychological measurement. Further, the ABC Scale is regularly included in 

balance validation studies.  

For Study 3, only the TGMD-3 locomotion subscale will be used due to time 

constraints. Further, from a developmental standpoint, balance precedes locomotion 

meaning it would be logical to examine the role of balance in locomotion before 

examining the role of balance in object control skills. 

Limitations. Although carefully prepared, this dissertation will have notable 

limitations. All participants recruited for this study will be recruited through convenience 

sampling (i.e., selection bias, non-probability sampling), therefore, the results of this 

study will lack generalizability. However, due to the low prevalence and accessibility of 
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youth with VIs, convenience sampling is the only realistic option. Further, while it is 

hoped that the total sample size for this study will reach ≥ 100 participants, this sample 

size will be reached by combining participants of various ages (i.e., 8-18 years), 

biological sexes, vision levels, and comorbidities (i.e., Study 1).  

It is important to note that obtaining a sample size of ≥100 participants would be 

viewed as substantial within the VI literature. Yet, this heterogeneous sample will also 

decrease the generalizability and specificity of the results. To address this issue, attempts 

will be made to control for and/or present data by age-band, biological sex, and vision 

level, and comorbidity. Unfortunately, it is unlikely that the necessary assumptions and 

statistical power will be reached to complete advanced stratified/cluster or invariance 

analyses. As a result, cross-tabulations, dummy coding, and/or multivariate regression 

will be used to assess the influence of these potentially confounding variables.   

Of the descriptive variables, vision level is the most negatively skewed meaning 

those with the lowest level of vision are most likely to be underrepresented in this 

sample. All attempts will be made to maximize the enrollment of youth with VIs of all 

vision levels. Additional limitations include lack of effort and social desirability response 

bias; however, proactive efforts will be made to build rapport and motivate participants to 

try their best and to give honest answers when answering questions.   

Significance and Innovation 

 Significance. This dissertation is significant as it has the potential to validate a 

system-specific, practitioner-friendly, quick, and inexpensive balance assessment in 

youth with VIs. By validating the Brief-BESTest, practitioners and researchers will be 

able to pinpoint what specific balance systems and/or mechanisms should be targeted to 
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improve balance performance in youth with VIs. Further, positive outcomes from this 

dissertation would facilitate future research exploring associations between the Brief-

BESTest and related variables of interest (e.g., psychomotor objectives, physical activity 

measures, health indicators).  

Innovation. This dissertation is innovative because it will be the first to explore 

system-specific balance performance (i.e., Brief-BESTest) in youth with VIs, compare 

those results to youth without VIs, and explore associations between the Brief-BESTest 

and the TGMD-3 in youth with VIs. 
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CHAPTER 2 

LITERATURE REVIEW

The purpose of this chapter is to provide a comprehensive literature review 

informing all three studies. The chapter is organized into the following sections: (a) the 

population of interest (b) a background of balance and (c) research regarding balance in 

youth with VIs.  

Population of Interest 

Prevalence and epidemiology of VI. According to the U.S. Census Bureau 

(2016), over 539,000 or 0.7% of people under the age of 18 years have a self-reported 

‘vision difficulty.’ Per a single “Yes/No” census question, vision difficulty is defined as 

someone who claims to be “blind or have serious difficulty seeing even when wearing 

glasses” (U.S. Census Bureau, 2016). However, it has been purported that the self-

reporting of VI through the census process lacks sensitivity (Hiller & Krueger, 1983).  

Unfortunately, the prevalence rates of VI in Western countries has been shown to range 

widely between 3 per 10,000 to 61 per 10,000 cases (Kong, Fry, Al-Samarraie, Gilbert, & 

Steinkuller, 2012; Steinkuller et al., 1999; Mervis, Boyle, & Yeargin-Allsopp, 2002; 

National Academies of Sciences, Engineering, and Medicine, 2016) depending on the 

definition, age, and/or origin of the prevalence data (Houwen, Visscher, Lemmink, & 

Hartman, 2008; Mervis et al., 2002). Factors including race/ethnicity, biological sex, 
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family history of eye disease, socioeconomic status, and geographic location influence 

the prevalence of VI (National Academies of Sciences, Engineering, and Medicine, 

2016). 

 Across all grades and states it is believed that the United States has over 50 

million youth, over 6.5 million of which (aged 3-21 years) receive services under Part B - 

Assistance for Education of All Children with Disabilities of the Individuals with 

Disabilities Education Act (IDEA) (United States Department of Education, 2017a; 

2017b). Of the youth who received services under Part B of the IDEA, over 27,000 of 

those were classified under the VI category (United States Department of Education, 

2017b). Therefore, the percentage distribution of youth with disabilities served who have 

VIs equates to 0.4% (i.e., out of 6.5+ million) while the total percentage of prevalence of 

youth with VIs across all grades and states equates to 0.0005% (i.e., out of 50+ million 

youth). However, the VI count only includes youth who are receiving services and does 

not include youth counted in a separate disability category. It has been suggested that the 

actual number of youth with VIs may be upwards of 3-4 times higher than the 27,000+ 

youth currently served by Part B of the IDEA (Kirchner & Diament, 1999). Regardless, 

youth with VIs have been classified as a low prevalence population (United States 

Department of Education, 2003) and likely make up less than 1% of the student 

population in the United States. Irrespective of the prevalence rate, youth with VI are an 

at-risk population which deserve empirical investigation and support.  

 Childhood blindness in the United States accounts for only 4% of total blindness 

but as Gilbert and Foster (2001) elucidated, youth with blindness experience 40 more 

years of VI compared to those who experience adult-onset vision. Unfortunately, a 
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national registry for the blind and visually impaired does not exist in the United States 

and it has been purported that a majority of schools for the blind do not typically maintain 

and/or share data regarding the cause of blindness in their youth (Kong et al., 2012). 

Based on a survey sent to schools for the blind in the United States, out of 56 schools, 16 

schools (28.6%) from 15 states supplied data on over 3,000 youth. Based on the survey, 

the leading causes of blindness were cortical VI (18%), optic nerve hypoplasia (15%), 

and retinopathy of prematurity (14%) while the primary anatomic sites causing VI were 

the retina (30%) and the optic nerve (23%) (Kong et al., 2012). In the United States, most 

childhood blindness was found to be hereditary (e.g., albinism, congenital cataracts with 

family history, retinitis pigmentosa) or due to perinatal factors (i.e., from 22 completed 

weeks [154 days] of gestation to seven completed days after birth). However, these data 

were not comprehensive as (a) less than 10% of youth with VI attend schools for the 

blind (American Printing House for the Blind, 2017), (b) admission criteria at schools for 

the blind may vary, and (c) schools for the blind do not necessarily use or employ 

equivalent VI definitions (Kong et al., 2012).  

 The visual system. The ocular system is complex. Good vision requires 

appropriate functioning of the optical and perceptual systems (Schwartz, 2010). A 

properly functioning visual system is one that “effectively capture(s) light from an object 

and translate it into neural impulses that are processed in the brain. The visual system 

consists of the eye, the pathways that conduct neural impulses from the eye to the brain, 

and specific areas within the brain to interpret the signals” (National Academies of 

Sciences, Engineering, and Medicine, 2016, p. 57). There are several functions that the 

visual system performs (see Table 2.1). Figure 2.1 is an anatomical diagram of the human 
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eye. The National Academies of Sciences, Engineering, and Medicine (2016, p. 57-58) 

thoroughly describes how the visual system operates: 

Light enters the eye through the cornea, which helps refract light. The pupil is the 

small opening at the center of the iris, which functions like the shutter of a camera 

to regulate the amount of light entering the pupil and expanding and contracting 

the opening in response to ambient light. The lens further focuses light on the 

retina, with muscles controlling the lens shape to differentially focus on objects 

based on distance from the eye. Between the lens and the retina is the vitreous 

humor—a clear gel that gives the eye its spherical shape and keeps the retina in 

place. The retina includes blood vessels and a thin layer of light-sensitive tissue 

(photoreceptors called cones and rods), which translate light energy into neural 

impulses. Within the retina, the macula has millions of tightly packed cones that 

are concentrated at the fovea and are responsible for sharp, detailed central vision 

and color vision. Surrounding the macula, rods are more sensitive to light and are 

responsible for night vision, peripheral vision, and the ability to detect motion. 

Photoreceptors convert light into electrical signals, which are relayed to the brain 

through the optic nerve. Within the brain, visual information is parsed and relayed 

along various pathways, and eventually interpreted as a recognizable image.  

VIs occur because of damage or dysfunction to a structure(s) within the visuo-

perceptual system (see Table 2.2). However, two people with the same diagnosis could 

greatly differ in terms of their visual abilities and/or symptomologies. Further, because an 

infinite number of conditions and severities are possible, vision impairment is highly 

variable from individual to individual. For common conditions which cause VIs, see 
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Table 2.3. Factors such as maturation, age, personal lifestyle, and changes in body 

chemistry can influence a VI (Schwartz, 2010) as well as medications (Levack, 1994). 

For additional information related to the visual effects of selected syndromes and diseases 

on individuals with VIs, see Schwartz (2010, 188-191). For supplementary information 

on (a) the sequence of visual development or (b) adaptations for corresponding eye 

conditions, see Levack (1994, p. 104-155). 

Visual classifications. The International Blind Sports Federation (2019; B1-B3) 

and the United States Association of Blind Athletes (2019; B4) use a common 

classification system for those with VIs. The sport-based classifications are as follows: 

a) B1: No light perception in either eye up to light perception, and an inability to 

recognize the shape of a hand at any distance or in any direction. 

b) B2: From ability to recognize the shape of a hand up to visual acuity of 20/600 

and/or a visual field of less than 5 degrees in the best eye with the best practical 

eye correction. 

c) B3: From visual acuity above 20/600 and up to visual acuity of 20/200 and/or a 

visual field of less than 20 degrees and more than 5 degrees in the best eye with 

the best practical eye correction. 

d) B4 (United States Association of Blind Athletes Recognized Low Vision 

Classification): From visual acuity above 20/200 and up to visual acuity of 20/70 

and a visual field larger than 20 degrees in the best eye with the best practical eye 

correction. 

However, the World Health Organization (2016, ICD-10 H54) uses more specific 

classifications (see Table 2.4): 
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a) H54.0; Blindness, binocular (VI categories 3,4,5 in both eyes) 

b) H54.1; Severe VI, binocular (VI category 2) 

c) H54.2; Moderate VI, binocular (VI category 1) 

d) H54.3; Mild or no VI, binocular (VI category 0) 

e) H54.4; Blindness, monocular (VI categories 3, 4, 5 in one eye and categories 0, 1, 

2 or 9 in the other eye) 

f) H54.5; Severe VI, monocular (VI category 2 in one eye and categories 0, 1 or 9 in 

other eye) 

g) H54.6; Moderate VI, monocular (VI category 1 in one eye and categories 0 or 9 in 

other eye) 

h) H54.9; Unspecified VI (binocular) (VI category 9) 

Motor development, physical activity, and health-related discrepancies. 

Youth with disabilities are prone to socially-determined health gaps. Healthy People 

2020 “recognizes that what defines individuals with disabilities, their abilities, and their 

health outcomes more often depends on their community, including social and 

environmental circumstances” (United States Department of Health and Human Services, 

2018b). As such, five key socio-determined factors have been identified which could 

influence and/or determine the health of youth with VIs: (a) economic stability, (b) 

education, (c) social and community context, (d) health and health care, and (e) 

neighborhood and built environment. While the World Health Organization has published 

‘principles of action’ toward achieving health equity among those with disabilities, large 

gaps still exist.  
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 In general, youth with VIs have been found to be sedentary (Longmuir & Or, 

2000) and overweight (Lieberman, Byrne, Mattern, Watt, & Fernandez-Vivo, 2010; 

Lieberman & McHugh, 2001). These concerns are heightened by the likelihood that 

youth with VIs are 50% more likely to become obese in adulthood when compared to 

those without VIs (Weil et al., 2002). Further, youth with VIs have been shown to trend 

with decreased levels of health-related fitness, physical activity, and perceived and actual 

motor competence when compared to peers without VIs (Augestad & Jiang, 2015; Brian, 

Haegele, & Bostick, 2016; Houwen et al., 2009a; Kozub & Oh, 2004; Lieberman et al., 

2010; Lieberman & McHugh, 2001; Longmuir & Or, 2000; Stuart, Lieberman, & Hand, 

2006; Wagner et al., 2013). Youth with VIs may also be susceptible to mental health 

issues (Augestad, 2017). 

 Summary. Youth with VIs are a low prevalence population. 

Anatomical/physiological descriptions of the visual system were presented. There are 

several classification systems, etiologies, and factors regarding VIs; however, each 

person experiences a specific VI differently. Youth with VIs trend with lower levels of 

motor skill competence, health-related factors, and physical activity. Further, youth with 

VIs are more likely to be sedentary and are at an increased risk for becoming obese in 

adulthood. 

Background of Balance 

The nature of balance. The nature of balance is a highly complex, contingent, 

and multifaceted (Horak, 2006). According to Reed (1989), balance is an act, not a state. 

Multiple definitions and conceptualizations of balance/stability/posture have been 

described, however, within this document human balance will be defined as “a 
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multidimensional concept, referring to the ability of a person not to fall” (Pollock, 

Durward, Rowe, & Paul, 2000, p. 405). In physical education and/or related movement-

based settings, balance (whether subvert or overt) is needed for nearly every physical 

activity. In an overt sense, balance is needed for certain activities such as gymnastics, 

dancing, golf, slacklining, climbing, or shooting. However, balance is necessary for all 

forms of static and dynamic postures and movements (e.g., hopping, shooting a soccer 

ball, throwing a baseball). Further, many lifespan activities such as wheel-, ice-, snow-, 

and water-based actions rely heavily on adequate balance (e.g., bicycling, skateboarding, 

rollerblading, ice skating, surfing, standup paddle boarding, water skiing, wakeboarding, 

snow skiing, snowboarding, etc.). Balance also is applied to a variety of everyday tasks 

(e.g., walking on a slippery surface, using a ladder, traversing terrain, reaching for 

something overhead or when standing on a stool).  

Two forms of balance have been described in the literature (Bass, 1939): static 

balance (i.e., equilibrium in one position) and dynamic balance (i.e., equilibrium through 

a series of changing positions). Additionally, balance has been described as a task-

specific entity. Burton and Davis (1992, p. 17) elaborate: “…although [some] studies 

suggest that balance is a fairly unified general ability underlying the performance of a 

variety of movement skills…there also is a considerable amount of research indicating 

that balance is specific to the task being performed.” In line with Burton and Davis 

(1992), Reed (1989) has stated that isolated environmental contexts and singular 

mechanisms regarding posture and movement are ‘biological fictions.’ These realities 

have led to considerable debates and issues within balance research.   
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Determinants and theoretical considerations for balance. It is known that three 

physiological systems (i.e., visual, proprioceptive, vestibular; Huxham, Goldie, & Patla, 

2001; Peterka, 2002), biomechanical aspects, inertial properties, environmental contexts, 

task characteristics, as well as motor learning principles are determinants of functional 

balance control (Huxham et al. 2001). Specifically, “balance or equilibrium is obtained 

through the combined efforts of simple reflexes, proprioceptive information relayed to 

the cerebrum and cerebellum, and activation of the reticular formation, the vestibular 

apparatus, voluntary movements, and visual information” (Singer, 1975, p. 59). Due to 

the complexity of balance, Huxham and colleagues (2001) have provided a guiding 

model for conceptualizing balance and its contributing factors (see Figure 2.2). Further, 

Pollock et al. (2000) provide a practical model which highlights two forms of strategies 

that can be used to keep balance (i.e., fixed-support: ankle or hip strategy; change-in-

support: stepping, grasping) as these strategies can be useful for qualitative balance 

analyses (see Figure 2.3). 

Based on the model produced by Huxham et al. (2001), balance performance 

depends on (a) the environment and (b) the task. Huxham and colleagues further extend 

their model by integrating Gentile’s taxonomy of tasks (1987) to explicate that the task 

and the environment subsequently influence (a) the amount of information that must be 

processed while keeping balance and (b) the biomechanical features of a given task. 

Regarding information processing (i.e., cognitive demands), task and environmental 

characteristics influence how an individual plans a strategy or uses timing while keeping 

their balance and/or to achieve a goal. Further, how one experiences things (e.g., 

open/dynamic vs. closed/controlled tasks) or learns to balance (e.g., lived experiences, 
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random vs. blocked practice) can be very important. Balance is situated as being 

comprised of (a) postural control (i.e., biological work to remain upright and 

counterbalancing) and (b) equilibrium control (i.e., intersegmental stabilization despite 

acted forces). Last, postural and equilibrium control are stated to be influenced by three 

mechanistic categories: proactive, predictive, and reactive mechanisms.  

Proactive balance mechanisms, which are heavily grounded by the visual system, 

enable a person to perceive their environment so that they may act judiciously. Predictive 

balance mechanisms are somewhat similar in nature (if not subservient to) proactive 

balance measures, as these mechanisms attempt to sustain intersegmental stability based 

on “learned awareness” and movement/muscle relationships (Huxham et al., 2001, p. 93). 

The final mechanism category concerns reactive balance mechanisms. These balance 

mechanisms are postural reflexes. Huxham et al. (2001, p. 93) summates the roles of 

these mechanisms by stating that: “the normal balance system is believed to 

meet…varied demands by a mixture of proactive visual and predictive mechanisms, with 

reactive processes playing an important role when proactive ones fail, or perturbation is 

unexpected.” 

Issues of measurement variability and validity. Importantly, questions of 

balance assessment variability and/or validity have been raised. According to Reed 

(1989, p. 5), “the phenomena of posture have not fit in well with most accounts of 

movement.” Methodological issues, underdeveloped conceptualizations of balance, and 

low/insignificant loadings (Burton & Davis, 1992; Overlock & Jun, 2004; Skaggs & 

Hopper, 1996) between fundamental motor skills and/or other balance assessments 

(Drowatzky  & Zuccato, 1967; Hempel & Fleishman, 1955; Tsigilis, Zachopoulou, & 
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Mavridis, 2001) have led some researchers to questions the role of balance in movement 

(Klavina, Ostrovska, & Campa, 2017; Singh et al., 2015; Ulrich & Ulrich, 1985; 

Winstein, Gardner, McNeal, Barto, & Nicholson, 1989). However, such a conclusion has 

been regularly contended (Chew-Bullock et al., 2012; Logan, Robinson, & Getchell, 

2011; Loovis & Butterfield, 2000; Mache & Todd, 2016; Wang, Long, & Liu, 2012) 

supporting the stance put forth by Reed (1989, p. 21) who posited that  “a key factor in 

constraining motor variability into functional action is [the] adaptable and flexible 

nesting of movement and posture.”  

Assessments may use static and/or dynamic balance, may be more practical or 

more laboratory-based, or may conceptualize balance in a very specific (e.g., walking a 

balance beam) or general way. While some assessments may have a variety of activities 

(e.g., perturbed and non-perturbed), most assessments (if not all) lack environmental, 

biomechanical, and/or cognitive considerations, or do not adequately reproduce 

proactive, predictive, and/or reactive balance mechanisms in authentic and dynamic 

settings (Huxham et al., 2001). “It appears likely that our current inability to evaluate this 

highest level of balance objectively contributes to the poor predictive value of available 

tests” (Huxham et al., 2001, p. 96). Therefore, more empirically-authentic balance 

assessments are needed. As Reed, (1989, p. 6) notes, “a primary function of posture is the 

integration of movements into coordinated action sequences. Such phenomena simply do 

not emerge in experimental paradigms devoted to isolated movements under constrained 

conditions.” 

Balance as a lifespan and fundamental motor skill. Assaiante and Amblard 

(1995) have proposed an ontogenetic model in reference to human balance control 
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(Assaiante, 1998) across the life course. This model is grounded by two principles: the 

support surface and the continuous effective organization and reorganization of one’s 

degrees of freedom. Using this framework Assaiante and Amblard (1995) propose four 

successive periods for the ontogenesis for balance control. The first period is defined as 

birth until upright stance (~1 year of life) which is marked by “a clear cephalocaudal 

gradient in the development of…postural responses” (Assaiante & Amblard, 1995, p. 19) 

which begins at the neck, transitions to the trunk, and finishes at the legs. Henceforth, 

Assaiante and Amblard (1995) suggest that—with the development of bipedal posture—

equilibrium control becomes more global in nature (as opposed to segmental). This 

second phase is categorized by “a gradual mastery of the equilibrium constraints” 

(Assaiante & Amblard, 1995, p. 20) (i.e., coordination development of the ankle, knee, 

hip, and head) which lasts from upright stance (~1 year of life) until around the age of 6. 

After the second phase, youth aged 7-10 years begin to perform with adult like postural 

responses (Nougier, Bard, Fleury, & Teasdale, 1998; Shumway-Cook & Woollacott, 

1985; Woollacott, Shumway-Cook, & Williams, 1989).  

The third and fourth periods concern “head stabilization in space [and] a basic 

means of descending temporal organization of balance control” (Assaiante & 

Amblard, 1995, p. 23). The third period, from about age 7 to sometime in 

adolescence, is characterized by the refinement of head stabilization in balance 

control. The fourth and last period, which begins in adolescence and extends 

through adulthood, is characterized by refined control of the degrees of freedom 

of movement in the neck. (Haywood & Getchell, 2014, p. 247) 
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Given the utility of the ontogenetic model of postural and locomotor balance 

control in humans as posited by Assaiante (1998) and Assaiante and Amblard (1995), the 

development of balance should be appreciated across the lifespan as a critical component 

of movement development and sustainability in function and not only investigated during 

infancy and/or older adulthood. Importantly, balance is a variable that is developmentally 

appropriate at all ages, and therefore, can be used to assess motor skills across the 

lifespan (Leversen, Haga, & Sigmundsson, 2012; Sigmundsson, Lorås, & Haga, 2016 ).  

 Is balance a (fundamental) motor skill or ability? Motor abilities can be 

defined as general traits or capacities of an individual that underlie the performance of a 

variety of movement skills (Magill, 1985). Motor abilities are presumed to be relatively 

stable (Schmidt, 1982; Keogh & Sugden, 1985), however, it has been suggested that 

motor abilities can change (Fleishman & Hempel, 1955). Several researchers have stated 

that balance should be classified as a motor ability (i.e., stable/general ability) and not as 

a motor skill (Burton & Rodgerson, 2001; Fleishman, 1962; Holfelder & Schott, 2014). 

Contradictingly, balance has been categorized as a motor skill, ability, and/or state within 

the literature (Burton & Davis, 1992). However, it has been suggested that balance 

performance cannot be concretely generalized across a multitude of tasks and 

environments (Burton & Davis, 1992). Further, because balance abilities can typically be 

improved with practice, it is assumed within this document that—as acknowledged by 

Gallahue and colleagues (2012)—balance is a motor skill (albeit elusive) and not a motor 

ability. 

Although balance has been categorized as a fundamental motor skill (Gallahue et 

al. 2012), the role of balance as a fundamental motor skill has been downplayed and/or 
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under investigated in the field of motor development (Rudd et al., 2015). For example, 

there is no balance subscale in the TGMD-2 or -3 (Ulrich, 2000; Webster & Ulrich, 2017) 

which is one of the most popular fundamental motor skill assessments used in the United 

States. While Ulrich and Ulrich (1985) found that correlations between the balance 

subscale of the Bruininks-Oseretsky Test of Motor Proficiency (BOT, Bruininks, 1978) 

and qualitative stages of development for six fundamental motor skills (Seefeldt & 

Haubenstricker, 1974-1976) in youth aged 3-5 years were inconclusive, modern balance-

based skills have been shown to perform well alongside locomotor, object control, and 

other balance-like skills in contemporary motor competence models (Luz et al., 2016; 

Rudd et al., 2015). Further, in Europe, balance-related skills have been consistently 

valued and utilized to measure motor competence in youth (i.e., KörperkoordiantionsTest 

für Kinder; Kiphard & Shilling, 1974). Therefore, it is likely that balance is, and plays a 

role, as a fundamental motor skill. 

Summary. Balance is influenced by reflexes, afferent/sensory sources (i.e., 

visual, proprioceptive, vestibular) and efferent/voluntary movements (Singer, 1975). 

Balance performance is further influenced by environmental and inertial characteristics. 

As such, balance is a complex, task-specific skill that is foundational to the development 

and sustainability of effective movement function across the life-course and should be 

classified as a (fundamental) motor skill and not as a ‘general’ trait or ability. Huxham et 

al. (2001) has provided a useful model for conceptualizing balance. The field of balance 

assessment has been plagued by validity and measurement variability issues.  
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Balance of Youth with VIs 

Regarding sensory contributions to balance control, vision has been shown to play 

a predominate role in the acquisition of posturo-kinetic skills from infancy up to the age 

of six (Assaiante & Amblard, 1995). Due to impairments to the visual modality, it is not 

surprising that infants and children with VIs have been shown to present with impaired 

motor delays when compared to peers without VIs (Adelson & Fraiberg, 1974; Griffin, 

1981; Murphy & O’Driscoll, 1989). According to Rosen (1997, p. 173) “vision 

stimulates, guides, and verifies [an individual’s] interaction with the environment. It 

stimulates motor activities and the development of cognitive relationships.” (p. 173). 

To date, the favored explanations of the adverse impact of VI on motor 

development have been that: (i) visual feedback is necessary for the refinement of 

movements, therefore a VI will result in less opportunity for this to occur; (ii) the 

infant or child with a VI is less motivated to move about their environment as 

they cannot, for example, see toys across the room, and are less able to avoid 

hazards during exploration (Warren, 1994); and (iii) children with a visual 

disability are often overprotected and provided with fewer opportunities than 

sighted children for exploration and independence (Dobree & Boulter, 1982). 

(Wyver & Livesey, 2003, p. 26) 

However, from the age of six years and on, visual dominance appears to gradually 

decrease (Assaiante & Amblard, 1995) and individuals with VIs may be able to make-up 

lost ground regarding basic motor milestone as they age, albeit to varying degrees and 

contexts, possibly due to sensory reweighting (Peterka, 2002) and/or 

lifestyle/environmental circumstances (Schneekloth, 1989). Nakata and Yabe (2001) have 
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posited that blindness at birth may not affect the automatic postural response system, “but 

may affect a volitional act mediated through the motor cortex” (p. 36).  

Regarding balance performance, comparisons to those without VIs have been 

equivocal and/or controversial (e.g., variability of assessments, assessment validity 

concerns; low: empirical rigor, application to the real world, utility for practitioners, 

loadings/relationships). When scored out of 16 points, 13 studies that emphasized or 

included a balance assessment in youth with VIs averaged a score of 7 (Houwen et al., 

2009b; see Table 2.5). Houwen et al. (2009b) went on to state that there is insufficient 

evidence that degree of vision is associated with dynamic and static balance in youth with 

VIs. In fact, in some studies, balance performance qualities have been shown to not be 

different from individuals without IVs (Johnson-Kraemer, Sherwood, French, & Canabal, 

1992; Nakata & Yabe, 2001).  

Sampling and sample sizes. To the author’s knowledge, no studies have used 

random sampling of youth with VIs which leads to concerns about the generalizability of 

results. Also, it can be extremely difficult to obtain significant sample sizes across 

multiple age and vision levels, primarily from individuals of the B1 and B2 vision 

classification. Therefore, underrepresentation of youth in lower vision categories is 

common. Most studies either examine very specific ranges or combine youth into larger 

or cumulative groupings for analysis.  

Regarding sample size, most balance-related studies utilizing youth with VIs have 

sample sizes ≤ 30 (Aki et al., 2007; Bouchard & Tetreault, 2000; Brambring, 2006a; 

Caputo et al., 2007; Engel-Yeger, 2008; Gipsman,1981; Haibach et al., 201l; Häkkinen, 

Holopainen, Kautiainen, Sillanpää, & Häkkinen, 2006; Johnson-Kraemer et al., 1992; 
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Navarro, Fukujima, Fontes, Matas, & Prado, 2004; Ribadi, Rider, & Toole, 1987; 

Schneekloth, 1989; Wyver & Livesey, 2003). Three studies have managed to recruit 

between 48 and 67 participants with VIs (Case, Dawson, Schartner, & Donaway, 1973; 

Houwen et al., 2008; Pereira, 1990) while three studies have reached over 100 

participants (Buell, 1950; Leonard, 1969; Rutkowska et al., 2015). Of the three studies 

that have reached over 100 participants with VIs, Buell (1950) was able to enroll an 

astounding 865 participants. Overall, it should be concluded that a bulk of the literature 

surrounding balance performance in youth with VIs has been plagued by suboptimal 

levels of statistical power (i.e., low sample sizes).  

Common assessments. Several assessments have been used to assess and/or 

compare the balance performance of youth with VIs. Assessments which have been 

utilized include versions and/or combinations of the BOT (Aki, Atasavun, Turan, & 

Kayihan, 2007; Bouchard & Tetreault, 2000; Rutkowska et al., 2015; Schneekloth, 1989), 

the Movement Assessment Battery for Children (MABC, Caputo et al., 2007; Engel-

Yeger, 2008; Houwen et al., 2008; Wyver & Livesey, 2003), other clinical motor 

assessments (Brambring, 2006a; Navarro et al., 2004), stabiliometry (Gipsman,1981; 

Haibach, Lieberman, & Pritchett, 2011; Johnson-Kraemer et al.,1992; Ribadi et al., 

1987), motor educability tests (Buell, 1950; Case et al., 1973), or more practical balance 

assessments (Häkkinen, Holopainen, Kautiainen, Sillanpää, & Häkkinen, 2006; Leonard, 

1969; Pereira, 1990; Ribadi et al., 1987). Due to the wide variance of assessments, 

comparisons between studies can be difficult as different assessments may produce 

different results. Further, it is important to note that certain researchers have examined 
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static, dynamic, or static and dynamic forms of balance. Therefore, findings are highly 

influenced by focus and context.  

 Results based on the BOT balance subscale. The BOT is one of the most widely 

utilized motor assessments for youth and was first published by Bruininks (1978) and 

later updated (including the introduction of a short form) in 2005 by Bruininks and 

Bruininks. The current version of the full BOT balance subscale consists of nine items: 

(a) standing with feet apart on a line for up to 10 seconds with eyes open (b) and closed, 

(c) walking forward on a line for up to six steps with eyes open, (d) standing on one leg 

on a line for up to 10 seconds with eyes open (e) and closed, (f) walking forward heel to 

toe on a line for up to six steps with eyes open, (g) standing on one leg on a balance beam 

for up to 10 seconds with eyes open (h) and closed, and standing heel-to-toe on a balance 

beam for up to 10 seconds with eyes open. Each of the nine assessments is scored from 0-

4 for a total of 36 points for the full BOT balance subscale. All versions of the BOT have 

been said to be valid and reliable (Bruininks, 1978; Bruininks & Bruininks, 2005), 

however, significant concerns regarding the BOT have been raised (Deitz, Kartin, & 

Kopp, 2007; Hattie & Edwards, 1987). These concerns have not stopped the BOT from 

being utilized in youth with VIs.  

 (Note: for the following sections nVI will correspond to youth with VIs while nWO 

will denote youth without VIs. A single study will include nHI which will denote a sample 

of youth with hearing impairments). Schneekloth (1989), Bouchard and Tetreault (2000), 

Aki et al. (2007), and Rutkowska et al., 2015 all had participants with VIs complete the 

balance subscale using a version of the BOT. Results from all four studies concluded that 

balance was impaired in youth with VIs. Bouchard and Tetreault (2000; nVI = 30, nWO = 
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30, N = 60; 8-13 years) concluded that youth with VIs had poorer balance. Further, 

improved performance on the balance subtest was linked to higher percentile ranks for 

fine and gross motor skills. However, for the low vision group, the same association was 

not present for the fine motor skills. Schneekloth (1989, nVI = 24, nWO = 12, N = 36; 7-13 

years), who only utilized the non-sight dependent items form the BOT, found that there 

were significant differences in motor proficiency between those without VIs, however, 

the balance subscale results were not parsed out. Schneekloth (1989) went on to conclude 

that the discrepancies between the two populations were due to (a) motor passivity (i.e., 

unwillingness to explore), (b) self-manipulation versus environmental-manipulation, and 

(c) immature play behaviors.  

Rutkowska et al. (2015, NVI = 127, 6-16 years) in one of the most impressive 

sample sizes to date examined relationships between the balance subscale and personal 

traits (e.g., age, sex). While no comparison made to individuals without VIs, the authors 

were able to use normative values for the BOT to make comparisons. However, it is 

important to note that these youth were sampled in Poland; therefore, the BOT normative 

values may not be ideal for comparison. Overall, age and degree of vision were found to 

significantly influence balance performance, but not sex. Based on the normative 

comparisons, 21% and 58% of individuals with VIs were found to be below or well 

below peers without VIs respectively—highlighting noteworthy balance deficits within 

most of the sample (i.e., 79%). A final study by Aki et al. (2007, nVI-1 = 20, nVI-2 = 20, NVI 

= 40; 8.9 and 8.10 years) examined the effects of an intervention using the BOT short 

form, however, the study did not have a control group. This review will not be focusing 

on interventions. However, for current purposes, pre-test scores can be used to add 
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breadth to this review. Based on mean pre-test balance scores (out of 12 points), 

participant balance performances within two VI groups were not maximal (nVI-1 = 5.65; 

SD = 3.37, nVI-2 = 4.60; SD = 2.90).  

 Results based on the MABC balance subscale. The MABC utilizes specific static 

and dynamic balance tasks which can vary across age bands (i.e., 3-6 years, 7-10 years, 

11-16 years). The first age band assesses one-leg balance (on both legs) up to 30 seconds, 

walking heels raised on a line up to 15 steps, and jumping forward on mats up to 5 jumps. 

The second age band assesses one-board balance (on both legs) up to 30 seconds, 

walking forward on a line heel-to-toe up to 15 steps, and one-leg forward hopping on 

mats (on both legs) up to 5 hops. The third age band assesses two-board in-line balance 

up to 30 seconds, walking backward on a line heel-to-toe up to 15 steps, and zig-zag 

forward hopping on mats (on both legs) up to 5 hops. The MABC has also been found to 

be reliable and valid and includes normative values (Henderson & Sugden, 1992; 

Henderson, Sugden, & Barnett, 2007). Much like the BOT, the MABC has been a 

popular motor assessment for youth with VIs. Each item is scored on a five-point scale 

were 0 equals no impairment and 5 equates to severe impairment (i.e., 0 = good).  

According to Wyver and Livesey (2003), Caputo et al., (2007), Engel-Yeger 

(2008), Houwen et al. (2008), youth with VIs present with balance deficits. Although the 

sample size was low, Wyver and Livesey (2003, nVI = 15, nWO = 15, N = 30; 6-12 years), 

who manipulated occlusion and non-occlusion, descriptively concluded (i.e., only four 

with severe VIs, did not run inferential statistics) that those with severe (versus moderate) 

VIs had impaired balance performance. The authors went on to conclude that differing 

interventions may be needed for severe versus moderate VIs. Caputo et al. (2007 nVI = 
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19, nWO = 23, N = 42; 4-6 years) found that youth with VIs significantly improved their 

static and dynamic performance due to improvements of balancing on one leg and 

walking with heels raised (i.e., no difference for jumping) post-strabismus surgery. This 

result highlighted (that for certain conditions) surgery may be a viable solution for 

improve perceptual-motor functioning.  

In 2008, Engel-Yeger (nVI = 22, nWO = 25, N = 47; 4-7 years) found that youth 

with amblyopia scored significantly lower on static balance, dynamic balance (excluding 

jumping), mean dynamic balance score, total mean balance scores. Further, parents 

completed the Child’s Balance Performance in Daily Life questionnaire (which had 

previously been found to be internally consistent), a survey which had been composed for 

the study. Using sensory processing theoretical models, the developed questionnaire 

contained “18 items describing everyday situations performed inside or outside the home 

that reflect the child’s balance and posture abilities, as well as his/her intolerance or 

hypersensitivity to movement” (Engel-Yeger, 2008, p. 245). Significant correlations 

between the children’s mean MABC balance scores and the parents Child’s Balance 

Performance in Daily Life responses were: 

(a) Does your child avoid swinging? 

(b) Does your child enjoy somersaults like tumbling? 

(c) Does your child lose balance after bending down? 

(d) Does your child tend to lean on walls? 

Houwen et al. (2008, nVI = 48, nWO = 48, N = 96; 7-10 years) investigated balance 

in youth with VIs. According to Houwen et al. (2009b), this study scored the highest in 

quality (i.e., 12 out of 16) out of 26 reviewed, motor skill performance articles completed 
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in youth with VIs. According to the author’s findings, youth with severe and moderate 

VIs 7-10 years of age scored significantly worse at static and dynamic when compared to 

those without VIs. However, there were not statistically significant difference between 

those with severe and moderate VIs regarding balance performance. In describing these 

findings, Houwen et al. (2008, p. 143) elaborate: 

For static balance, it has been reported that visual information plays an important 

role as it specifies body position, whereas dynamic balance during fast movement 

is expected to depend more on the ability to rapidly transform perturbations of 

proprioceptive or vestibular origin into proper motor responses (Hatzitaki, Zisi, 

Kollias, & Kioumourtzoglou, 2002; Riach & Hayes, 1987). The results in the 

present study correspond to these findings, as no significant difference was found 

between children with VI and children without VI for dynamic balance fast. 

Bouchard (1996) also reported that static balance was more affected than dynamic 

balance in children with VI. 

 Results based on other clinical motor assessments. In an extremely thorough, 

albeit low powered study, Brambring (2006a, NVI = 4; 4-6 years) examined the 

longitudinal motor skill development of a small group of congenitally blind youth. Using 

(a) developmental data based on youth who are blind with the Entwicklungsbeobachtung 

und Entwicklungsforderung blinder Klein und Vorschulkinder (Brambring, 1999; 

Brambring, 2006b [English version]) and (b) four standardized developmental 

assessments used with youth without VIs (Bayley Scales of Infant Development, Bailey, 

1969; Denver Developmental Screening Test [German version], Flehmig, Schloon, Uhde, 

& von Bernuth, 1973; Griffiths Developmental Scales [German version], Brandt, 1983; 
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Entwicklungskontrolle ftir Krippenkinder, Zwiener & Schmidt-Kolmer, 1982) the author 

examined the motor development of youth with blindness using 29 purposefully selected 

gross motor skills items.  

For static balance, stands confidently and stands for a short time were assessed. 

For dynamic balance, stands on one foot (assisted), stands on one foot (unassisted), walks 

along a line, bends down and picks up an object, and hops on the spot with both legs were 

assessed. Results showed that youth who were blind “had much lower developmental 

divergences on static balance than on dynamic balance” (Brambring, 2006a, p. 630) 

leading the author to suggest that dynamic balance may depend more on visual control 

during the early years. The finding that dynamic balance is worse than static balance in 

youth with VIs is in direct opposition to previously literature (Bouchard, 1996; Häkkinen 

al., 2002; Houwen et al., 2008). However, it is likely that this finding is age-related as 

this study only examined ages 4-6 years. Youth who are blind appear to motorically 

compensate as they age either due to verbal or physical guidance (Brambring, 2006a) and 

it has been purported that vision is a dominant sense for motor development until the age 

of 6 (Assaiante &, Amblard, 1995). 

 A second study published by Navarro et al. (2004, nVI = 20, nWO = 20, N = 40; 7 

years) assessed balance using the Exame Neurológico Evolutivo [Neurological Evolution 

Examination] (Lefèvre, 1976). Static balance was assessed by qualitative success/failure 

evaluations with feet together, on one foot, with knees bent at 90 degrees, in a crouched 

position, and balancing a ruler on the index finger. Dynamic balance was assessed by 

asking the participants to jump vertically with maximal effort and clap twice before 

landing. Regarding static and dynamic balance, the only assessment that was statistically 
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significant to participants who were sighted was the static balance test of balancing with 

knees bent at a 90-degree angle based on the failure/success of keeping the knees bent at 

90 degrees. However, participants with VIs did descriptively perform worse at the one 

foot and jump/clap tasks.  

 Results based on stabiliometry. Several balance/VI researchers have used a 

stabiliometer (Gipsman, 1981; Haibach et al., 2011; Johnson-Kraemer et al., 1992; Ribadi 

et al., 1987). A stabiliometer is a dynamic balance apparatus (Dvir & Trousil, 1982) 

which has historically been used in motor behavior settings and/or laboratories. Gipsman 

(1981, nVI = 24, nWO = 24, N = 48; 8-14 years) examined balance performance on a 

stabiliometer and described a balance-related motor performance hierarchy based on age 

and vision. In 12-14-year olds, balance performance followed the following hierarchy 

(ordered best to worst): sighted, totally blind, blindfolded legally blind, and sighted 

blindfolded. This finding was later confirmed by Ribadi et al. (1987) in a slightly older 

age band. In a younger group of 8-10-year olds, youth without VIs performed best, 

however, the same hierarchy was not reproduced. It was also found that older youth with 

VIs performed better than younger youth with VIs, establishing that age may be an 

important factor for balance performance.  

 Ribadi et al. (1987, nVI = 17, nWO = 34, N = 54; 14-17 years) used a stabiliometer 

as well as a single leg stance test (i.e., stork stand). Sex was not found to effect balance 

performance which have been supported by Rutkowska et al. (2015), Pereira (1990), and 

Leonard (1969), however, similar to Gipsman (1981), a balance hierarchy of dynamic 

(i.e., stabiliometer) balance performance decreasing from participants without VIs, to 

youth with VIs, to youth without VIs who were blindfolded was noted. A statistically 
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significant difference was not found between youth with VIs and youth without VIs who 

were blindfolded on static (i.e., stork stand) balance. However, youth with VIs performed 

significantly better than youth without VIs who were blindfolded on the dynamic task. It 

was concluded that youth with VIs have adapted (to some level) to offset their lack of 

vision while the youth without VIs who were blindfolded. Implications of this are 

elucidated by Ribadi et al. (1987, p. 224). 

The sighted blindfolded subjects had no opportunity to adapt or to develop 

hierarchal strategies for postural control, and therefore performed poorly on 

dynamic balance. This finding further supports the essential role of vision to the 

balance act. Obviously, experience alone cannot compensate for loss of sight 

when it comes to performing dynamic balance. A certain amount of learning must 

take place to assist unsighted individuals in overcoming the various perturbations 

in their environments. 

This finding is also contradictory to the findings of Bouchard (1996) and Houwen et al. 

(2008) in which static balance was not impaired in youth with VIs but does match 

Brambring’s (2006a) findings which were found in youth aged 4-6.  

 One interesting finding occurred in the study completed by Johnson-Kraemer et 

al. (1992, nVI = 7, nWO-1 = 9, nWO-2 = 9, N = 25; 9-14 years). Using a stabiliometer, no 

significant error scores were found between participants who were sighted and 

participants with VIs who were blindfolded. However, the participants without VIs who 

were blindfolded did have more errors than the other two groups. This evidence 

supported that participants with VIs were more efficient than those without VIs who were 

occluded—again highlighting a balance performance hierarchy (Gipsman, 1981; Ribadi 
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et al., 1987). Further, boys were found to perform better than girls challenging the 

findings of Pereira (1990) and Ribadi et al. (1987).  

A more modern examination of balance performance which utilized a 

stabiliometer and a force plate (i.e., static balance; center of pressure) was conducted by 

Haibach et al. (2011, nVI = 22, nWO = 22, N = 44; 12-17 years). Haibach and colleagues 

found that typically, degree of VI and experience with vision were significant factors of 

balance and postural performance. Those with VI had poorer balance, increased 

variability, and (anecdotally) appeared to need increased usage of the upper body (i.e., 

appeared to freeze their degrees of freedom more) compared to those without VIs. 

Further, balance self-efficacy was examined with the ABC Scale and it was found that 

self-efficacy was associated with the more difficult balance tasks completed on the 

stabiliometer. However, self-reported balance self-efficacy was not statistically different 

between groups, although there was a trend toward higher ratings in participants without 

VIs. Further, ratings within participants with VIs were more varied compared to those 

without VIs. The most correlated scenarios (to the physical balance assessments) within 

the ABC Scales in participants with VIs were: (a) walking in a crowd/bumped, (b) stand 

on chair to reach, and (c) walk on icy sidewalks (i.e., more challenging scenarios within 

the ABC Scale).  

 Results based on motor educability tests. Historically, motor educability tests 

were very popular in physical education around the late 1920s until the mid-1950s. Stunt-

type motor educability assessments mainly comprised of gymnastics/stunt/balance tasks 

(Brace, 1927; Johnson, 1932; McCloy, 1934; McCloy, 1937; Metheny, 1938) were 

common assessments until the transition towards sport-type educability emerged (Adams, 
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1954). Therefore, it is not surprising decalages ago, researchers who investigated balance 

utilized these assessments. The most significant sample ever assessed regarding balance 

and youth with VIs was conducted by Buell (1950, NVI = 865; “well distributed” years). 

Buell (1950) used the Iowa Brace Test (which included static balance). However, the 

specific results of the static balance assessments were not provided. Overall, Buell (1950) 

concluded that youth with VIs were lagging in motor educability and that performance 

was better but not markedly different between those with severe and moderate VIs. 

Likewise, Case et al. (1973, nVI = 30, nWO = 30, nHI = 30, N = 90; 16-18 years) examined 

motor educability using 11 of the 21 stunts from the Iowa Brace Test of Motor 

Educability between youth with and without VIs as well as youth with hearing 

impairments. Youth with VIs were not found to have statistically different balance 

capacity when compared to those without VIs or with hearing impairments. However, 

anecdotally, youth with VIs were described as having increased levels of apprehension 

about falling,  

Results based on practical balance assessments. Finally, some researchers have 

used more general and practical assessments (e.g., stork/flamingo standing, balance 

beams/boards). Leonard (1969, nVI = 101, nWO = 114, N = 215; 12-20 years) compared 

balance abilities between individuals with and without VIs using a balance board and 

balance beam task. Those with VIs required a wider beam for static balancing than those 

without VIs, however, no relationship between degree of residual vision and static 

performance was found. Further, static balance performance between boys and girls with 

VIs was not statistically different. However, dynamic balance was related to level of 

vision. These findings again add conflicting evidence about whether static or dynamic 
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tasks are most influence by a lack of vision. Interestingly, low static balance scores 

predicted poor dynamic balance; however, high static scores did not guarantee high 

dynamic scores. There was a clear difference in performance favoring those without VIs 

overall. 

Pereira (1990, nVI = 67, nWO = 150, N = 217; 6-13 years) used an adaptation of 

Leonard’s balance test (Leonard, 1969) in which better balance performance differences 

between individuals with and without VIs appeared to be related to visual acuity while 

age and sex did not seem to influence balance. Again, these results are consistent with the 

mixed findings from other research regarding the impact of age and sex on balance 

performance in those with VIs. In a more recent study, Häkkinen et al. (2006, nVI = 16, 

nWO = 17, N = 33; 9-18 years) utilized the modified flamingo balance test on a raised 

beam with eyes open and shaded with blackout sunglasses. In younger and older 

participants, balance performance was significantly different in favor of those without 

VIs. However, when the vision of the participants without VIs was blocked, the 

differences between those with and without VIs disappeared. Again, providing evidence 

of a balance-based motor hierarchy.  

From balance to fundamental motor skills. Balance is often emphasized for its 

important role in locomotion (Skaggs & Hopper, 1996). According to unpublished raw 

data by Rosen (1989), dynamic balance was impaired in participants with VIs (6-18 

years). Per Rosen (1989), impaired balance measures correlated with the presence of 

selected immature gait characteristics (e.g., out-toeing, short-stride lengths). As such, it 

has been suggested that individuals with VIs make adaptations in mobility to maintain 

stability and/or safety (Horvat et al., 2003; Ray, Horvat, Williams, & Blasch, 2007).  
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Further, as Ribadi et al. (1987, p. 220) concludes, “one of the most important 

skills associated with the successful acquisition of motor proficiency is balance.” 

However, controversy over this topic exists. According to Ulrich and Ulrich (1985), 

although to role of balance is logically appealing, strong empirical evidence of the 

relationships between balance and more advanced motor skills has been deficient. This 

belief may have led the creators of the TGMD-3 (Ulrich, 2000; Webster & Ulrich, 2017), 

one of the most popular motor development assessment tools in the United States, to not 

assess balance/stability skills. Origins of this decision may trace back to Ulrich and 

Ulrich (1985) where it was found that balance measures from the BOT (Bruininks, 1978) 

and stages of development for six fundamental motor skills (Seefeldt & Haubenstricker, 

1974-1976) were not convincing.  

A multivariate analysis of covariance (controlling age as the covariate) was 

calculated to examine the main effect of balance on fundamental motor skills and the 

model was found to be significant (Wilk’s Λ (balance) = 0.699; F7,63 = 3.87, p < 0.05). 

Univariate analysis showed that balance performance was significantly associated with 

hopping with either foot, jumping, and striking (p < 0.05; R2 = 0.05 - 0.17) but not with 

skipping, throwing, or kicking. Based on static and dynamic balance tasks, static balance 

scores significantly related to hopping on the preferred foot and striking, dynamic 

balance with jumping, and both static/dynamic balance with hopping on the nonpreferred 

foot. Yet, based on the small proportion of the variance from the significant balance 

relationships (i.e., R2 = 05 - 0.17), it was concluded that balance (likely) has low practical 

significance. However, Ulrich and Ulrich (1985) do concede that both assessments may 

have been too specific and elucidated that correlational balance research can be a tangled 
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enterprise (Drowatzky & Zuccato, 1967; Hempel & Fleishman, 1955; Tsigilis et al., 

2001). Therefore, additional conceptualizations and analyses of balance in fundamental 

motor skills is warranted. Particularly as modern motor skill batteries show 

balance/stability as being related to locomotion and object control skills (Luz et al., 2016; 

Rudd et al., 2015).  

Summary. A lack of vision has historically been linked with balance 

impairments, especially during early development (i.e., birth-six years). It has been 

suggested that after the age of six years, most youth with VIs appear to compensate and 

‘catch up’ motorically (potentially due to maturation, verbal or physical guidance), albeit 

to varying degrees. While these adaptations appear to occur with rudimentary motor 

skills, in general, evidence suggests (fundamental) motor skill competence and/or 

proficiency does not compensate to the same level when compared to those without VIs. 

Research has shown that youth with VIs tend to perform worse at balance when 

compared to those without VIs. Findings tend to highlight that those with lower levels of 

vision (i.e., severe blindness) have the largest balance deficits, however, these findings 

are not universal. Regarding static and dynamic balance, equivocal results exists. 

Therefore, it cannot be concluded that youth with VIs are more prone to static or dynamic 

balance issues.  

Most studies have not found sex effects regarding balance performance while the 

opposite appeared to be true regarding age. Also, several researchers have provided 

potential evidence of a visuo-perceptual hierarchy regarding balance performance (best to 

worst): youth without VIs, youth with VIs, youth without VIs who have their vision 

occluded—highlighting that those with VIs are able to adapt (to some level) to their lack 
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of vision during certain balance tasks. Last, balance performance may be more related to 

facilitators/barriers to movement as opposed to being explained purely by an impaired 

visuo-perceptual system (i.e., experience versus physiology). A variety of assessments, 

sample sizes, and contexts have been used for balance research in youth with VIs. 

Crucially, most studies have lacked empirical rigor (Houwen et al., 2009b), application to 

the real world, and/or utility for practitioners. Further, the predictive validity (i.e., what 

are the implications of a balance assessment for the future) of balance assessments have 

been grossly ignored in youth with VIs. 
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Table 2.1 

Measures of Visual Function 

Function Description 

Visual acuity 
Ability to resolve images of various sizes at fixed 

distances 

Visual field sensitivity 
Ability to detect objects of various sizes within visual 

space 

Contrast sensitivity 
Ability to detect images against decreasingly contrasting 

backgrounds 

Visual processing speeds Time to complete visual tasks 

Dark adaptation Ability to adjust to low levels of illumination 

Note. Adapted from the National Academies of Sciences, Engineering, and Medicine 

(2016). 
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Table 2.2  

Anatomy of the Eye and Associated VIs  

Ocular Structure Associated VIs 
Conditions Related to 

Ocular Structure 

Cornea 
Reduce acuity and contrast, 

glare, light sensitivity 

Corneal scar, lattice corneal 

dystrophy 

Iris (thinning or absent) Light sensitivity Aniridia, albinism 

Lens 
Reduced acuity and 

contrast, glare 
Cataract 

Retina   

    Cone photoreceptors 

Reduced acuity, reduced 

color discrimination, light 

sensitivity 

Cone dystrophy, 

achromatopsia 

    Rod photoreceptors 
Reduced night vision, loss 

of peripheral visual field 

Rod dystrophy (retinitis 

pigmentosa) 

    Foveal hypoplasia Reduced visual acuity Albinism, aniridia 

    Macula (lesion of) 
Reduced visual acuity, 

eccentric viewing 

Ocular histoplasmosis, age-

related macular 

degeneration 

Optic nerve 
Reduced visual acuity and 

contrast, visual field defects 

Hereditary optic atrophy, 

glaucoma 

Note. Adapted from Schwartz (2010). 
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Table 2.3 

Childhood Congenital and Acquired Diseases and Conditions Causing VIs 

Congenital Acquired 

Achromatopsia, anterior segment 

dysgenesis, aniridia (Axenfeld-Reiger 

syndrome), albinism, cataract, coloboma, 

congenital infection, congenital stationary 

night blindness, corneal opacity, cortical 

VI, familial exudative vitreoretinopathy, 

glaucoma, nystagmus, optic atrophy, optic 

nerve hypoplasia, persistent hyperplastic 

primary vitreous, refractive error, retinal 

dystrophy, Stickler syndrome, strabismus 

Amblyopia, age-related macular 

generation, cataract, corneal opacity 

(scar), diabetic retinopathy, ectopia lentis, 

glaucoma, optic atrophy, refractive error, 

retinal detachment, retinal dystrophy, 

retinopathy of prematurity, Stargardt 

disease, strabismus, uveitis 

Note. Adapted from Schwartz (2010). 
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Table 2.4  

World Health Organization VI Classifications 

Category 
Presenting distance visual acuity 

Worse than Equal to or better than 

0 Mild or no VI  6/18 

3/10 (0.3) 

20/70 

1 Moderate VI 6/18 

3/10 (0.3) 

20/70 

6/60 

1/10 (0.1) 

20/200 

2 Severe VI 6/60 

1/10 (0.1) 

20/200 

3/60 

1/20 (0.05) 

20/400 

3 Blindness 3/60 

1/20 (0.05) 

20/400 

1/60* 

1/50 (0.02) 

5/300 (20/1200) 

4 Blindness 1/60* 

1/50 (0.02) 

5/300 (20/1200) 

 

Light perception 

5 Blindness No light perception 

9 Undetermined or unspecified 

Note: Adapted from the World Health Organization (2016). * = or counts fingers at  

1 meter. 
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Table 2.5 

Quality Ratings of a Sample of Studies Involving  

Balance in Youth with VIs 

Citation Quality Rating 

Aki et al. (2007) 5 

Bouchard & Tetreault (2000) 9 

Caputo et al. (2007) 10 

Engel-Yeger (2008) 8 

Gipsman (1981) 6 

Häkkinen et al. (2006) 10 

Houwen et al. (2008) 12 

Johnson-Kraemer et al. (1992) 5 

Leonard (1969) 3 

Pereira (1990) 5 

Ribadi et al. (1987) 7 

Schneekloth (1989) 3 

Wyver & Livesey (2003) 8 

Average 7 

Note. Adapted from Houwen et al. (2009b). Maximum  

score = 16.  
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Figure 2.1 Diagram of the eye from the National Eye Institute (n.d.). 
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Figure 2.2 Huxham and colleagues’ (2001) determinants of functional balance.  
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Figure 2.3 Pollock and colleagues’ (2000) postural control strategies.  
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CHAPTER 3: STUDY 1 

CONSTRUCT AND CONVERGENT VALIDITY OF THE BRIEF-BESTEST IN 

YOUTH WITH VISUAL IMPAIRMENTS 

Introduction  

Youth with VIs have been found to balance deficits when compared to peers 

without VIs (Bouchard & Tetreault, 2000; Engel-Yeger, 2008; Gipsman, 1981; Häkkinen 

et al., 2006; Houwen et al., 2008; Leonard, 1969; Navarro et al., 2004; Pereira, 1990; 

Ribadi et al., 1987; Uysal & Düger, 2011; Wyver & Livesey, 2003). However, serious 

concerns over the inconsistences and rigors of previous balance investigations in youth 

with VIs have been raised (Houwen et al., 2009b). Further, Overlock and Yun (2004) 

suggested that balance assessment has been plagued by methodological/assessment issues 

and underdeveloped conceptualizations of balance.   

Assessments may investigate static and/or dynamic balance, may be more 

practical or more laboratory-based, or may conceptualize balance in a very specific (e.g., 

walking a balance beam) or general way. While some assessments may have a variety of 

activities (e.g., perturbed and non-perturbed), most assessments (if not all) lack 

environmental, biomechanical, and/or cognitive considerations, or do not adequately 

reproduce proactive, predictive, and/or reactive balance mechanisms in authentic and 

dynamic settings (Huxham et al., 2001). As Reed (1989, p. 6) noted, “a primary function 

of posture is the integration of movements into coordinated action sequences. Such 

phenomena simply do not emerge in experimental paradigms devoted to isolated 
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movements under constrained conditions.” Therefore, more empirically-authentic balance 

assessments are needed.  

Compared to traditional balance assessments, the Brief-Balance Evaluation 

Systems Test (Brief-BESTest; Padgett et al., 2012) may be a contemporary and viable 

alternative. The Brief-BESTest is a multifaceted balance battery that is practitioner-

friendly, inexpensive, and can be administered quickly. Further, the Brief-BESTest 

utilizes a ‘systems-based’ framework (Horak et al., 2009; Sibley et al., 2015) allowing for 

the multidimensional analysis of balance performance by considering dynamic 

sensorimotor interactions and contextual factors (Horak, 2006). 

The reliability and validity of Brief-BESTest scores have been examined in  

adult/neurological populations but not in youth with VIs (Jácome et al., 2016; O’Hoski et 

al., 2014; Padgett et al., 2012). Prior to the adoption of an assessment, scores from 

specific populations or contexts should be interpreted and evaluated (American 

Educational Research Association, American Psychological Association, & the National 

Council on Measurement in Education, 2014; Cronbach & Meehl, 1955). Therefore, 

Brief-BESTest scores in youth with VIs must be psychometrically vetted before the 

Brief-BESTest can be adopted by practitioners and researchers alike.  

If Brief-BESTest scores are found to perform well in youth with VIs, the Brief-

BESTest could: (a) be used to assess balance, (b) provide detailed balance profiles, (c) be 

correlated to relatable variables of interest (e.g., psychomotor objectives, physical activity 

measures, health indicators), and (d) lead to targeted balance interventions in youth with 

VIs. Thus, the purpose of this study was to examine the construct and convergent validity 

of Brief-BESTest scores in youth with VIs. Using scores from youth with VIs, it was 
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hypothesized that the psychometric properties of the Brief-BESTest would be acceptable, 

that the Brief-BESTest items would load as a one-factor latent model using confirmatory 

factor analysis (CFA), and that total Brief-BESTest scores would converge (i.e., 

significantly correlate; p < .05) with total scores from other balance assessments.  

Methods 

Participants and Setting 

Using convenience sampling, youth with visual impairments (N = 101) were 

recruited from Camp Abilities Brockport (NY) Saratoga Springs (NY), and Starke (FL) 

as well as the Governor Morehead School for the Blind (NC). Descriptive information for 

the sample was as follows: Mage = 13.91 years ± 2.82, Mmaturityoffset =  .38 ± 2.16 years, 

Mheight = 1.55 meters (m) ± .12, Mweight = 58.22 kilograms (kg) ± 21.87, MBMI = 23.52 

kg/m2 ± 6.63, and MBMI% = 69.52 ± 24.06. Concerning visual classification, 8% (n = 8) 

were B4, 33% (n = 33) were B3, 28% (n = 28) were B2, and 32% (n = 32) were B1. 

Fifty-six percent of the participants were boys (n = 57) while 38% (n = 38) of the sample 

had a comorbidity.  Regarding race, 12% were Black (n = 12), 17% were Other (n = 17), 

and 70% were White (n = 71). Fifty-three percent, 42%, and 5% of the sample attended 

public, schools for the blind, and private schools, respectively.  

Instrumentation 

 Demographics. A self-report demographic and visual information questionnaire 

was completed by the parent/guardian of each participant while the participant was 

present.  

 Anthropometrics. Standing height as well as weight were assessed while 

barefoot. Standing height and weight were used to determine BMI percentiles (United 
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States Department of Health and Human Services, 2010). Predicted maturity offset (i.e., 

years before or after peak height velocity [PHV]) was estimated with the Moore-1 sex-

specific equations (Moore et al., 2015). Subsequently, an estimate of age at PHV was 

calculated (i.e., predicted maturity offset - age; Mirwald, Baxter-Jones, Bailey, & 

Beunen, 2002).  

 Brief-BESTest. The Brief-BESTest was used to assess six balance systems (i.e., 

eight items). The Brief-BESTest has been found to be reliable and valid in separate 

populations (Jácome et al., 2016; O’Hoski, Sibley, Brooks, & Beauchamp, 2015; Padgett 

et al., 2012). The six systems and the eight respective items are as follows: (a) 

biomechanical constraints—hip/trunk lateral strength (Hip), (b) stability limits—

functional reach forward (Reach), (c) transitions—standing on one leg on each side 

(Single-R; Single-L) (d) reactive—lateral compensatory stepping on each side (Fall-R; 

Fall-L), (e) sensory orientation—standing with eyes closed on foam (Foam), and (f) 

stability in gait—timed “up and go” (UpGo). Participants were digitally recorded 

performing the Brief-BESTest and retroactively scored using an ordinal scale (i.e., 0-3) 

for each item. Each of the eight test items were combined to create a composite score 

between 0 and 24. Higher scores represented better balance performance. Total test time 

ranged around 10 minutes per participant. 

 Postural sway. Postural sway was examined via bipedal quiet stance. Historically 

performed on a force plate in laboratory settings, the quantification of sway on force 

plates has been considered the ‘gold standard’ of balance/postural assessment (Haas & 

Burden, 2000); however, force plates are costly and cumbersome. In recent years, a valid, 

relatively less expensive (when compared to a force plate), and more portable alternative 
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has grown in prominence in the field of posture and balance: inertial measurement units. 

Using an algorithm, inertial measurement units estimate movement by fusing 

accelerometer, gyroscope, and magnetometer data (Brunetti, Moreno, Ruiz, Rocon, & 

Pons, 2006; Mayagoitia, Lotters, Veltink, & Hermens, 2002; Neville, Ludlow, & Rieger, 

2015; Seimetz, Tan, Katayama, & Lockhart, 2012).  

With feet positioned using a standardized foot plate, participants stood quietly 

with arms on their hips, two meters from a neutral colored wall with eyes open for 30 

seconds while visually fixating on a three-centimeter diameter black dot (i.e., external 

focus) directly in-front of their eyes (Maeda, Nakamura, Otomo, Higuchi, & Motohashi, 

1998) while wearing an advanced wearable Opal sensor (APDM, Inc., Portland, OR) 

positioned on the lumbar spine (L5) with an adjustable elastic belt. A three-centimeter 

diameter dot was utilized as visual targets have been shown to reduce postural sway and 

saccades in youth (Riach & Starkes, 1989). Irrespective of whether or not the participant 

was able to see the dot, they were instructed to focus on the target/maintain a horizontal 

gaze at all times and to “stay as still as a statue” for the duration of each trial.  

The 95% ellipse sway area (m2/s4) defined as “the area of an ellipse covering 95% 

of the sway angle in both the coronal and sagittal planes” (APDM, Inc., 2015) was 

calculated for each trial. This calculation should not be confused with the 95% 

confidence ellipse defined by Rocchi and colleagues (2005, p. 169) as “the ellipse that, 

with the (1 - α)% of probability, contains the center of the points of the sway. In more 

general terms, a confidence ellipse is a region that covers the center of a sample with a 

given probability.” All trials were quantified using the Mobility Lab software (APDM, 

Inc., Portland, OR). The average of three trials was used for analysis. As 95% ellipse 
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sway area is a linear function, higher mean sway area represented impaired balance 

performance (Kirchner, 2013). Total test time ranged around three minutes per 

participant. 

 360-degree turn test. The 360-degree turn test is a balance assessment that can 

be traced back to Tinetti (1986). The 360-degree turn test provided a ratio data point (i.e., 

turn velocity [degrees/sec]) via an advanced wearable Opal sensor (APDM, Inc., 

Portland, OR) positioned on the lumbar spine (L5) with an adjustable elastic belt. On the 

command “go,” participants were instructed to complete a full 360-degree turn to a self-

selected side. Once they had completed a complete 360-degree circle (as verbally 

confirmed by the assessor), the participants were then instructed to quickly “go back” 

360-degrees (i.e., two consecutive 360-degree turns, one in each direction). Participants 

were required to “take steps” to complete the assessment and were not permitted to 

spin/twirl. All trials were quantified using the Mobility Lab software (APDM, Inc., 

Portland, OR). The average of three trials was used for analysis. Higher mean velocity 

represented better balance performance. Total test time ranged around one minute per 

participant. 

 Anterior Reach Lower Quarter Y-Balance Test. The Anterior Reach Lower 

Quarter Y-Balance Test (AR-YBT) was used to assess dynamic balance. The full YBT 

(i.e., anterior, posteromedial, posterolateral reaches) has been found to be reliable and 

valid in separate populations (Gribble, Kelly, Refshauge, & Hiller, 2013; Plisky, Rauh, 

Kaminski, & Underwood, 2006; Shaffer et al., 2013). However, pilot testing suggested 

the posterior reaches were exceedingly difficult for most youth with VIs. Further, 
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assessing all three planes in youth with VIs resulted in large testing times and led to 

fatigue/frustration in youth with VIs. Therefore, only the AR-YBT was assessed.  

While maintaining a single leg stance on a stance platform, participants attempted 

to maximally reach with the non-stance limb in the anterior direction using the Y-Balance 

Test Kit (Plisky et al., 2009). Each participant practiced reaching with the left limb in the 

anterior plane for six trials and then performed three official trials. If a successful trail 

was not completed after the third official trial, an additional trial was completed. If a 

participant could not complete a successful trial, they were given a score of zero for that 

stance/reach combination. The same protocol was then be repeated by reaching with the 

right limb in the anterior plane.  

A trial was discarded if the participant: touched the floor, fell off the stance 

platform/did not keep their stance leg behind the stance line, kicked or placed their foot 

on top of the reach indicator, or failed to return the reach foot to the starting position 

under control. All trials were completed while barefoot. Stance foot and body movement 

were permitted (e.g., heel raising, unrestricted arm/hand movement) (Plisky et al., 2009). 

While standing, participant right limb length was measured in centimeters from the 

anterior superior iliac spine to the most distal portion of the medial malleolus to allow 

normalization of the reach lengths (i.e.,  [raw reach distance / right limb length]*100; 

Plisky et al., 2006).  

Minor adaptations were made to the Y-Balance Test Kit/protocol to assist youth 

with VIs in completing the AR-YBT. First, participants were verbally and tactically 

guided through the Y-Balance Test Kit by the assessor (e.g., sitting on their knees 

physically feeling/exploring the kit while being given verbal explanations of the task). A 
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piece of floor tape was rolled into a cylindrical shape and then taped to the stance line on 

the stance platform (see Figure 3.1). This allowed youth with VIs to tactically identify 

where their stance foot should be placed at all times. Second, a piece of multi-colored 

tape was placed on the front-side of the reach platform. The multi-colored tape gave color 

and pattern contrast to the front side of the reach platform (i.e., the side participants 

needed to locate and guide forward with their reach foot; see Figure 3.2). If needed, 

participants were provided with verbal guidance by the assessor during the completion of 

the AR-YBT trials (e.g., “lower your foot a bit more and bring it forward until you meet 

the front side of the platform”). It is believed that these adaptations made the YBT more 

accessible for youth with VIs and did not undermine the underpinnings of the YBT. 

Raw maximum scores for each AR stance/reach combination were identified. 

Each raw maximum score was then normalized to right limb length distance. Both 

normalized maximum distances were than summed representing a single composite AR 

score (i.e., maximum normalized left reach + maximum normalized right reach). 

Composite AR scores were then categorized by quartile (type = 7; 1: < 25th, 2:  < 50th, 3: 

< 75th, 4: ≥ 75th). That is, higher AR-YBT classification represented better balance 

performance. Total test time ranged from five to 15 minutes per participant. 

Activities-specific Balance Confidence Scale. The ABC Scale is a 16-item self-

report measure in which participants rate their balance confidence in performing 

everyday activities. The ABC Scale has been found to be reliable and valid in separate 

populations (Powell & Myers, 1995; Raad, Moore, Hamby, Rivadelo, & Straube, 2013), 

has been used in youth (Ilg et al., 2012), and has been purported to have face validity in 

youth with VIs (Haibach et al., 2011).  Responses are based on a rating scale which uses 
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10% increments (i.e., 0%, 10%, 20%, etc.). Scores range from 0% (i.e., no confidence) to 

100% (i.e., complete confidence). For example, “How confident are you that you will not 

lose your balance or become unsteady when you…walk up and down stairs.” The 

participant thinks and responds “80%.” Participants completed the ABC-16 in a face-to-

face interview with a member of the research team. The composite score was calculated 

by summing the percentages of each item and then dividing by the total number of items. 

Higher mean ABC Scale scores represented higher balance perceptions. Total test time 

ranged from three to five minutes.  

Procedures 

Internal Review Board approval was granted by the University of South Carolina 

for this study. Research sites which agreed to participate in this study included Camp 

Abilities Brockport (NY), Saratoga (NY), Starke (FL), and the Governor Morehead 

School for the Blind (NC). At each site, participants were recruited in a face-to-face 

format where signed parental and/or participant consent and demographic questionnaires 

were completed. Within the school, data collection occurred after-school during one-hour 

timeslots during the evening. At Camp Abilities, data collection occurred during one-

hour timeslots in the morning or evening. During data collection, participants first 

completed the ABC Scale and were anthropometrically assessed and then completed the 

Brief-BESTest, postural sway, 360-degree turn test, and the AR-YBT while barefoot. The 

Brief-BESTest was digitally recorded and retroactively coded. All data were collected in 

2018. 
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Analysis 

Data screening/preparation. All analyses were conducted using R statistical 

software (R Core Team, 2013). Prior to statistical analyses the aggregated data was 

assessed for missingness. Percent, patterns, and mechanisms of missingness were found 

to be satisfactory for imputation (Bennett, 2001; Dong & Peng, 2013; Kang, 2013; Rubin, 

1976). Missing cells were imputed using the missForest package (Stekhoven & 

Bühlmann, 2012). Estimated error levels for the imputation were satisfactory (Oba et al., 

2003;  Stekhoven & Bühlmann, 2012). Following the completion of the imputation, the 

dataset was screened for normality and outliers to inform subsequent statistical analyses. 

Individual Brief-BESTest items, total score, AR-YBT quantile classification, 360-

degree turn, postural sway, and ABC Scale were assessed for univariate normality using 

the Shapiro-Wilk test. All variables of interest were found to be non-normal (p < .001) 

except for the 360-degree turn (p = .96). Royston’s multivariate normality test confirmed 

a lack of multivariate normality for the individual Brief-BESTest items (H = 376.86, p < 

.001) and the five balance assessments (H = 125.31, p < .001). Outliers were determined 

using the ‘fence’ method (±1.5 * interquartile range; interquartile range = type 7). Five 

(5.0%; Brief-BESTest), zero (0%; AR-YBT), three (3%; 360-degree turn), 11 (11%; 

postural sway), and two (2%; ABC Scale) participants were identified as outliers. All 

outliers were deemed relevant to the sample, therefore, none of the outliers were removed 

from the dataset. 

Descriptives. Measures of central tendency and spread were calculated for all 

applicable variables. 
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Internal consistency reliability. Internal consistency (i.e., the interrelatedness of 

components within a test [Tavakol & Dennick, 2011]) for the individual items of the 

Brief-BESTest was determined by calculating ordinal omega (Peters, 2018). An internal 

consistency coefficient of ≥ .70 but ≤ .90 was deemed as strong yet non-redundant 

(Tavakol & Dennick, 2011).  

Brief-BESTest inter-item correlations. Zero-order Spearman correlations (ρ) 

were used to assess the strength and direction of the monotonic relationship between the 

eight Brief-BESTest item scores. Absolute value two-tailed bivariate coefficients were 

classified as very strong (ρ ≥ .70), strong (.40 ≥ ρ ≤ .69), moderate (.30 ≥ ρ ≤ .39), weak 

(.20 ≥ ρ ≤ .29), or negligible (.00 ≥ ρ ≤ .19) (Dancey & Reidy, 2007). Further, a bias-

corrected (i.e., Fisher’s Z transform and back transform) average inter-item correlation 

for all Brief-BESTest items was calculated. Clark and Watson (1995) suggest the average 

inter-item correlation should fall between .15 and .50, however, for a specific/narrow 

target construct, ≥ .40 is desirable.  

Exploratory factor analysis. The sample size of this dataset (N = 101) was 

below a common rule of thumb (i.e., ≥ 150-200; Kyriazos, 2018). However, smaller 

sample sizes can be acceptable for exploratory factor analyses (EFA; de Winter, Dodou, 

& Wieringa, 2009). Further, with eight items in the Brief-BESTest, the subject-to-

variable ratio (i.e., 101:8) equated to 12.63:1 which is larger than the minimum suggested 

subject-to-variable ratio of ≥10:1 (Costello & Osborne, 2005). Therefore, with caution, it 

was concluded that the sample size appeared adequate to move forward with the analyses.  

Next, the factorability of the matrices was examined. The strengths of the zero-

order monotonic relationships proved to be acceptable. Further, the determinant of the 
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matrix (det = .04 where <.00001 = multicollinearity issues, Field 2000), Bartlett’s test of 

sphericity (p < .001 where p > 0.05 = items are not inter-correlated, Hair, Black, & 

Babin, 2010), and the Kaiser-Meyer-Olkin test of sampling adequacy (KMO = .79 where 

< .60 = inadequate sampling adequacy, Hair et al., 2010) were run. All three results 

confirmed it was acceptable to proceed with the EFA.  

For extraction, factor analysis (as opposed to principal component analysis) was 

used. Factor analysis only assesses shared variance (i.e., accounts for error), and 

therefore, it is more likely to avoid over-inflation of estimates. Because the data were 

non-normal, Minimum Residual was selected as the preferred factor extraction method 

(Zygmont & Smith, 2014). It was believed that factors would correlate to some degree, 

therefore, oblique oblimin rotation was selected. Oblique rotation takes shared variance 

between the factors into account (i.e., accounts for error) and the degree of correlation 

between the factors. 

Next, the number of factors to retain was examined. Based on a traditional scree 

plot (i.e., a visual method used to separate trivial and nontrivial factors), the “break in the 

elbow” occurred at two factors, however, the second factor had an eigenvalue < 1. 

According to the Guttman-Kaiser rule (i.e., that eigenvalues should be > 1), one factor  

may be appropriate. However, the Guttman-Kaiser criterion has been criticized in recent 

decades (Nunnally & Bernstein, 1994). Using more modern methods which are superior 

to the traditional scree plot (i.e., statistics-based; more likely to not over/under-estimate), 

a Very Simple Structure (VSS) analysis achieved a maximum complexity with one factor 

(.83), while Velicer’s minimum average partial (MAP) test achieved the minimum 

squared average partial correlation of .073 with two factors (suggesting the retention of 
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two factors), however, the MAP for one factor was marginally larger (.077). Last, a 

modified Horn’s parallel analysis (percentile = 95; Glorfeld, 1995) using common factor 

analysis suggested the retainment of one factor.  

 To determine the factor structure of the Brief-BESTest items without imposing a 

preconceived structure (Child, 2006), both a one- and two-factor EFA model using 

Minimum Residual factor extraction and oblique oblimin rotation were run. To determine 

the optimal number of factors, the preferred criteria were: item communalities (h2) ≥ .40, 

at least three strong loadings per factor ≥ .50, and the avoidance of cross-loadings (i.e., 

items should not load ≥ .32 on more than one factor or be within .20 of the items primary 

factor loading) (Costello & Osborne, 2005; Matsunaga, 2010). 

Confirmatory factor analysis. Next, a CFA was implemented to investigate the 

construct validity of the Brief-BESTest items at the latent level. Construct validity can be 

defined as “representing the correspondence between a construct (conceptual definition 

of a variable) and the operational procedure to measure or manipulate that construct” 

(Schwab, 1980, p. 5). Data were estimated using the mean and variance-adjusted 

weighted least squares (WLSMV) procedure (Li, 2016; Natesan, 2015). The WLSMV is 

a robust estimator which does not assume normally distributed variables and provides the 

best option for modelling categorical or ordered data (Brown, 2006).  

Latent factors do not have a scale, therefore, the first item (i.e., UpGo) for the 

latent variable (i.e., balance) was set to 1.0 for the WLSMV estimates. Robust and 

diagonally weighted least squares (DWLS) values were calculated; however, robust 

values were utilized for interpretation of the model. Global and local fit indices (Kline, 

2016; Schweizer & DiStefano, 2016) were used to appropriately detail model 
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performance (Jackson, Gillaspy, & Purc-Stephenson, 2009). Global fit indices (i.e., 

heuristics for overall fit of a model) selected for analyses included the chi-square exact fit 

test (χ2), the comparative fit index (CFI), the Tucker-Lewis index (TLI), standardized 

root mean square residual (SRMR), and root mean squared error of approximation 

(RMSEA).  

The χ2 test of model fit is a conventional null hypothesis significance test that 

assesses exact fit between the model and the model reproduced by the data. To pass the χ2 

test, retention of the null hypothesis was required. The CFI determines whether the 

hypothesized model is superior to the baseline (i.e., null) model. The TLI is similar to the 

CFI and is also an incremental test. It was recommended that CFI and TLI values be ≥ 

.95. For SRMR, standardized differences between observed and predicted correlations 

were calculated. SRMR is a badness-of-fit index were values ≤ .08 were viewed as 

acceptable. Finally, RMSEA estimates the discrepancy between the population 

covariance matrix and the reproduced covariance matrix. Like SRMR, RMSEA also 

examines lack-of-fit were values ≤ .06 were viewed as satisfactory.  

For local fit (i.e., heuristics for assessing individual components of a model), 

standardized parameter estimates, standard errors, R2 values, polychoric residual 

correlations, z-scores, and modification indices were examined. Good local fit was 

indicated by (a) standardized parameter estimates that had uniformity within each factor 

and were significant to the model (i.e., large z-values, p ≤ .05), (b) standard errors ≤ .10, 

(c) R2 values ≥ .10, and (d) polychoric residual correlations ≤ .10.  

Modification indices were calculated to determine significant paths not included 

in the original congeneric model and were termed significant if ≥ 3.84 (i.e., the critical 
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value of χ2 at p ≤ .05, df = 1). To add strength to the results, two competing theoretically-

driven models were examined. Following the theory that all of the Brief-BESTest items 

would load as a single balance construct, a one-factor model was investigated. Likewise, 

a model using two factors (defined as dynamic and static) was examined. Based on a task 

analysis, the authors defined the Brief-BESTest items as predominately dynamic or static 

balance tasks. Within the two-factor model, the UpGo, Fall-R, Fall-L, and the Reach 

items were identified as dynamic tasks while Foam, Single-R, Single-L, and the Hip 

items were identified as static balance tasks. All models were required to be over-

identified (i.e., df  > 0). 

Convergent validity. “Convergent validity reflects the extent to which two 

measures capture a common construct” (Carlson & Herdman, 2012, p. 18). Zero-order 

Spearman correlations (ρ) were used to assess the strength and direction of the monotonic 

relationship between the total scores of five balance tests. Absolute value two-tailed 

bivariate coefficients were classified as very strong (≥ .70), strong (.40 ≥ ρ ≤ .69), 

moderate (.30 ≥ ρ ≤ .39), weak (.20 ≥ ρ ≤ .29), or negligible (.00 ≥ ρ ≤ .19) (Dancey & 

Reidy, 2004). Further, a bias-corrected (i.e., Fisher’s Z transform and back transform) 

average inter-item correlation for all total scores was calculated. Clark and Watson 

(1995) suggest the average inter-item correlation should fall between .15 and .50, 

however, for a specific/narrow target construct, ≥ .40 was desirable. 

Results 

 Descriptive results for the Brief-BESTest can be found in Table 3.1. The ordinal 

omega for the Brief-BESTest items was .87 (95% CI = .83, .91) highlighting strong 

internal consistency between the Brief-BESTest items (Tavakol & Dennick, 2011). Zero-
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order Spearman inter-item correlations for the Brief-BESTest items ranged from .18 (i.e., 

UpGo/Foam) to .73 (R-Fall/L-Fall; Single-R/Single-L). Twenty-seven of the 28 

correlations were statistically significant (p < .05; see Table 3.2). Using Fisher’s 

transformation, the average bias-corrected inter-item correlation (i.e., the average 

correlation of Table 3.2)  was .41 suggesting that the Brief-BESTest items were 

measuring a specific/narrow construct (Clark & Watson, 1995).  Most of the associations 

between the Brief-BESTest items were moderate-to-strong in magnitude except for 

several of the correlations concerning the Foam item. The Foam item was negatively 

skewed (-3.60) and leptokurtic (12.80) suggesting the Foam item was not particularly 

challenging to most youth with VIs (i.e., ceiling effect).  

Based on the Minimum Residual oblimin EFA, the one-factor model performed 

relatively well as seven out of eight Brief-BESTest items presented with standardized 

loadings ≥ .50 while five out of eight item communalities (h2) were ≥ .40. The cross-

loading criterion was irrelevant for this analysis as the model was a single-factor solution. 

The two-factor model had six primary factor loadings (versus seven) that were ≥ .50 and 

also had five item communalities that were ≥ .40. The two-factor model had two cross-

loading items—one was within .20 of the items primary factor loading (i.e., Foam) while 

one item loaded ≥ .32 on both factors (i.e., Reach). As such, the stronger one-factor 

solution was retained. Within the one-factor model, the Foam item performed the worst 

(i.e., loading = .48, communality = .23) while both the Hip (.38) and UpGo (.33) 

communalities were low. This was likely caused by the smattering of negligible, weak, 

and moderate correlations found in the zero-order Spearman correlation matrix between 
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the Foam, Hip, and UpGo items. Results of the one-factor EFA can be found in Table 

3.3.  

For the WLSMV-estimated CFA analyses, the initial variance-covariance matrix 

did not present as positive definite (i.e., the smallest eigenvalue [1.470559e-17] was close 

to zero). A variance inflation factor (VIF) analysis highlighted that the Fall-R and Fall-L 

items had VIFs of 4.1 and 4.0, respectively. VIFs of ≈ 4-5 can be a nuisance, while VIFs 

≥ 10 denote serious multicollinearity. However, VIF cutoff recommendations vary 

(Vatcheva, Lee, McCormick, & Rahbar, 2016). Two supplementary CFAs were run, one 

without Fall-R, and one without Fall-L. Both models had variance-covariance matrices 

that were positive definite. However, overall model performance was optimized with the 

removal of Fall-L (Fall-L removed χ2 = 21.94 vs. Fall-R removed χ2 = 19.85). 

Subsequently, the Fall-L item was removed from further analyses. The removal of the 

Fall-L item was not viewed as detrimental as Fall-L appeared to be providing redundant 

co/variance which could be sufficiently provided by Fall-R. Further, Fall-L and Fall-R 

were the same task performed unilaterally, therefore, the reactive postural response 

system was represented in the 7-item Brief-BESTest, albeit, in a more succinct manner.  

To verify the factor structure (i.e., construct validity) of the Brief-BESTest items 

it was hypothesized that the Brief-BESTest would be composed of a single balance factor 

(i.e., global balance), however, a competing two-factor model  (i.e., dynamic and static 

balance; Bass, 1939) was also run. Global fit indices for both models can be found in 

Table 3.4. Both models performed fairly well, however, the two-factor model was 

slightly superior (see Figure 3.3). This we reinforced by a scaled-χ2 test (Satorra, 2000) 

which showed a significant difference between the two models (p = .001) favoring the 
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two-factor model. The χ2 value for the two-factor model was low enough to retain the 

null hypothesis highlighting evidence of exact fit between the model and the model 

reproduced by the data (p = .10, df = 13). The null hypothesis for the χ2(13) test of model 

fit (19.85) was retained, the CFI (.99) and the TLI (.98) were above 0.95, and the SRMR 

(.07) was below .08. However, the RMSEA (.07) was above 0.06. In recent years, the 

RMSEA has been touted as “one of the most informative fit indices” (Diamantopoulos & 

Siguaw, 2000, p. 85), however, an RMSEA of .07 has been suggested as a strict upper 

limit (Steiger, 2007). Given all of the global fit outcomes, it was concluded that the two-

factor model was satisfactory.   

Regarding local fit, multiple indices were examined (see Table 3.5). Standard 

errors were somewhat acceptable as three standard error values were > .10, however, 

none were > .15 (i.e., Fall-R, Reach, Foam). All standardized parameter estimates 

performed uniformly within each factor and were > .50 while all R2 values for each item 

were > .10. Based on the z- and p-values, all parameters were found to be significant in 

the model. Regarding residuals, a covariance-based unstandardized residual polychoric 

correlation matrix was produced. The matrix was unstandardized because a standardized 

residual matrix could not be intuitively calculated using WLSMV estimation. Four of the 

residual-based correlations were > .10 (i.e., UpGo/Reach, Fall-R/Single-L, Reach/Foam, 

Single-R/Foam) suggesting four of the 28 inter-item relationships were not optimally 

captured by the model (i.e., increased error correlations at the latent level). All other 

measures of local fit were satisfactory within the two-factor model. As such, the two-

factor model was determined to be justifiable in lieu of the standard error and residual 

correlation caveats. 



 

68 

Concerning modification indices for the two-factor model, only one path was 

statistically significant (i.e., a path from the dynamic balance factor to the Single-L item) 

which would have decreased the χ2 test of model fit by 5.74. However, decreasing the χ2 

statistic for the two-factor model was not needed as the null hypothesis (p > .05) was 

retained. Further, the CFA analyses were not exploratory in nature as the addition of 

modification indices path(s) could have caused over-fitting/reduced the generalizability 

of the model. Thus, a congeneric (i.e., simple structure) and parsimonious model was 

maintained.  

Finally, using additional balance assessments, the convergent validity of the 

Brief-BESTest was investigated. For the composite AR-YBT classification (i.e., 

maximum normalized left reach + maximum normalized right reach), the quantile cutoffs 

were < 24.6, < 95.2, < 119.2, and  ≥ 119.2. Using Fisher’s transformation, the average 

bias-corrected inter-item correlation was .37 suggesting a moderate relationship between 

the balance assessments (Clark & Watson, 1995). Descriptive results for the zero-order 

Spearman correlations using total scores for all five balance assessments can be found in 

Table 3.6. Brief-BESTest total score zero-order Spearman correlations ranged from -.36 

(i.e., Brief-BESTest/Sway) to .67 (Brief-BESTest/AR-YBT) and all were statistically 

significant (p < .001). Given the full correlation matrix (see Table 3.7), two out of ten 

associations were not statistically significant (i.e., Sway/AR-YBT, Sway/Turn). 

However, this study focused upon the Brief-BESTest results, therefore, these results were 

not extensively discussed hereafter.  

 

 



 

69 

Discussion 

 The purpose of this study was to examine the construct and convergent validity of 

Brief-BESTest scores in youth with VIs. While the Brief-BESTest examined six 

operationalized balance systems (Padgett et al., 2012), it was reasonable to theoretically 

situate the Brief-BESTest systems/items within the dynamic-static balance paradigm. As 

such, contrary to the original hypothesis of this study, the psychometric properties of the 

seven-item Brief-BESTest were found to perform best in youth with VIs when two latent 

factors were operationalized within the CFA framework (i.e., dynamic and static 

balance). Thus, from a theoretical perspective, researchers and practitioners should 

consider aligning/interpreting individual item scores from the Brief-BESTest within a 

static-dynamic framework in youth with VIs (i.e., two-dimensional). Given the totality of 

the evidence, the construct validity of Brief-BESTest scores in youth with VIs was 

deemed acceptable. 

Further, it is critical to note that the covariance between the static and dynamic 

latent factors was significant to the model (loading = .85) suggesting a strong relationship 

between the two latent factors. Such a finding suggests that (when using the Brief-

BESTest in youth with VIs) static and dynamic balance factors are highly related at the 

latent level, a finding that contradicts previous correlational static-dynamic findings 

(Drowatzky  & Zuccato, 1967; Hempel & Fleishman, 1955; Tsigilis et al., 2001).  

Both the Fall-R and the Fall-L items assessed the reactive postural response 

balance system, albeit bilaterally. However, the Fall-L item was dropped from the CFA 

analyses due to minor multicollinearity concerns with the Fall-R item. The Fall-L and 

Fall-R redundancy occurred as the scores for the Fall-L and Fall-R items were similar 
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(Fall-L: M = 1.91, SD = .72; Fall-R: M = 1.87, SD = .76) suggesting that there was 

limited variability between the right and left sides (on average) in youth with VIs. 

Therefore, it is suggested that the Brief-BESTest could be used as a seven-item (i.e.., 

exclude Fall-L) and/or an eight-item (i.e., include Fall-L) balance battery in youth with 

VIs. By removing the Fall-L item, assessors could lose variability among certain 

individuals when calculating a total score. Further, by keeping the Fall-L item, 

multicollinearity could occur. Therefore, if the eight-item Brief-BESTest is utilized, 

assessors should proactively investigate for multicollinearity when applicable. Yet, for 

BESTest-related balance batteries, it has been suggested that only the lowest score of a 

bilaterally scored item should be used (King & Horak, 2013). Thus, future validity 

analyses should examine using the lowest score of the Fall-R/Fall-L and Single-R/Single-

L items which would provide equal representation of the six operationalized Brief-

BESTest balance systems when calculated a cumulative score (i.e., six items and six 

systems vs. eight items and six systems).  

Last, the convergent validity of the Brief-BESTest was examined using total 

scores from various balance assessments (i.e., AR-YBT, 360-degree turn, sway, ABC 

Scale). Overall, results suggested that the Brief-BESTest had strong-to-moderate 

monotonic associations with the utilized dynamic (i.e., AR-YBT, 360-degree turn), static 

(i.e., quiet stance postural sway), and psychological (i.e., ABC Scale) balance 

assessments in youth with VIs (ρ = .67 to -.36, p < .001). Given the magnitude and 

significance level of the correlations with the Brief-BESTest, these outcomes contradict 

past static-dynamic balance associational investigations (Burton & Davis, 1992; 

Drowatzky  & Zuccato, 1967; Tsigilis et al. 2001) suggesting that the Brief-BESTest 
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measured balance performance in a holistic/utilitarian manner in youth with VIs. These 

results are supported by Huang and Pang (2017) who recently found strong convergent 

validity for Brief-BESTest total scores in individuals with chronic stroke. In conclusion, 

total Brief-BESTest scores (i.e., the sum of all the Brief-BESTest items) in youth with 

VIs were determined to have an acceptable level of convergent validity.  

Conclusion 

 Validity is a continuum rather than a binary categorization (i.e., yes/no). Thus, 

given the results of the current analyses, it was concluded that Brief-BESTest scores in 

youth with VIs presented with sufficient degrees of construct and convergent validity and 

therefore can be used to assess multidimensional balance in youth with VIs. It is 

important to note that certain items performed suboptimally compared to other Brief-

BESTest items (i.e., Foam, ceiling effect) or where somewhat redundant at times (i.e., 

Fall-R/Fall-L, mildly multicollinear). However, all of the Brief-BESTest items were 

viewed as useful and enabled a comprehensive multidimensional investigation of balance 

in youth with VIs.  

Limitations 

 Limitations of this study include the use of a convenience sample and an 

acceptable but smaller sample size then typically suggested for EFA and CFA analyses. 

Also, the B4 categorization was the least represented vision level within the sample (8%) 

and a majority of the sample was White (70%). Last, the Brief-BESTest only contained 

one to two items per system (i.e., factor) making it unfeasible to examine the factorability 

of all six systems (i.e., hierarchical CFA) which would have enabled an in-depth 
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investigation of the systems framework for postural control (Sibley, Beauchamp, Van 

Ooteghem, Straus, & Jaglal, 2015) in youth with VIs. 

Implications for Practice 

Based on the results of this study, the Brief-BESTest (which is practitioner-

friendly, inexpensive, and quick) should be viewed as a viable balance assessment in 

youth with VIs. In youth with VIs, the Brief-BESTest can be used to assess specific 

balance profiles (i.e., six operationalized systems) which could be used to inform targeted 

learning/therapeutic outcomes or goals (e.g., Individualized Education Program). Both 

total and individual Brief-BESTest scores in youth with VIs could be used in 

correlational (e.g., physical activity levels) and experimental study designs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

73 

Table 3.1 

Brief-BESTest Descriptive Statistics for Youth with VIs 

Assessment Mean SD Median Skew Kurtosis SE 

UpGo 2.77 .44 3.00 -1.61 1.45 .04 

Fall-R 1.87 .76 2.00 -1.02 1.17 .08 

Fall -L 1.91 .72 2.00 -1.29 2.13 .07 

Foam 2.83 .57 3.00 -3.60 12.80 .06 

Hip 1.44 .92 1.00 -.04 -.89 .09 

Reach 2.01 .90 2.00 -.83 .07 .09 

Single-R 1.28 1.02 1.00 .44 -.93 .10 

Single-L 1.18 .99 1.00 .55 -.73 .10 

Total 15.29 4.52 16.00 -.77 .79 .45 
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Table 3.2 

Zero-order Spearman Inter-item Correlations for the Brief-BESTest in Youth with VIs 

Item UpGo Fall-R Fall-L Foam Hip Reach Single-R 

Fall-R 

.38*** 

(.20, .54) 

Moderate  

      

Fall-L 

.44*** 

(.27, .59) 

Strong 

.73*** 

(.62, .81) 

Very Strong 

     

Foam 

.18 

(-.02, .36) 

Negligible 

.23* 

(.04, .41) 

Weak 

.28** 

(.09, .45) 

Weak 

    

Hip 

.35*** 

(.17, .51) 

Moderate 

.34*** 

(.15, .50) 

Moderate 

.33*** 

(.15, .50) 

Moderate 

.22* 

(.03, .40) 

Weak 

   

Reach 

.34*** 

(.15, .50) 

Moderate 

.52*** 

(.37, .65) 

Strong 

.40*** 

(.22, .55) 

Strong 

.34*** 

(.16, .50) 

Moderate 

.41*** 

(.24, .56) 

Strong 

  

Single-R 

.42*** 

(.25, .57) 

Strong 

.40*** 

(.22, .55) 

Strong 

.45*** 

(.28, .59) 

Strong 

.25* 

(.06, .42) 

Weak 

.41*** 

(.23, .56) 

Strong 

.55*** 

(.40, .67) 

Strong 

 

Single-L 

.35*** 

(.17, .51) 

Moderate 

.34*** 

(.15, .50) 

Moderate 

.42*** 

(.24, .57) 

Strong 

.32*** 

(.14, .49) 

Moderate 

.53*** 

(.37, .66) 

Strong 

.54*** 

(.39, .67) 

Strong 

.73*** 

(.62, .81) 

Very Strong 

Note. Parenthesis are 95% CIs. ρ interpretations are in italics.  * = ≤ .05, ** = ≤ .01, *** = ≤ .001 
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Table 3.3 

One-factor Minimum Residual/Oblimin EFA Loadings for the Brief- 

BESTest in Youth with VIs 

Item Item # Loading h2 u2 

Fall-L 3 .75 .56 .44 

Fall-R 2 .74 .54 .46 

Reach 4 .72 .51 .49 

Single-R 6 .68 .46 .54 

Single-L 7 .67 .44 .56 

UpGo 1 .61 .38 .62 

Hip 5 .57 .33 .67 

Foam 8 .48 .23 .77 

Note. Variables sorted by standardized loading in descending order.  
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Table 3.4 

WLSMV CFA Global Fit Indices for the (7-Item) Brief-BESTest in Youth with VIs 

Model Factors Estimator χ2 df χ2/df CFI TLI SRMR RMSEA 

1 1 

DWLS 16.54 14 1.18 .998 .996 .075 
.04 

(.00, .11) 

Robust 28.90* 14 2.06 .98 .97 .075 
0.10 

(.05, .16) 

2 2 

DWLS 11.17 13 .86 1.00 1.00 .068 
.00 

(.00, .09) 

Robust 19.85 13 1.53 .99 .98 .068 
.07 

(.00, .13) 

Note. Data were specified as ‘ordered’ (i.e., ordinal). Robust values bolded for emphasis. RMSEA CIs set at 90%. * =  

≤  .05 
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Table 3.5 

WLSMV CFA Local Fit Indices for the (7-Item) Brief-BESTest in Youth with VIs 

Item/Factor Path Estimate SE z Standardized R2 

UpGo Dynamic 1.00   .79 .63 

Fall-R “ .93 .14 6.47*** .74 .54 

Reach “ 1.09 .15 7.44*** .86 .75 

       

Single-R Static 1.00   .86 .74 

Single-L “ 1.05 .08 13.30*** .90 .81 

Foam “ .84 .13 6.56*** .72 .52 

Hip “ .76 .08 9.36*** .66 .44 

       

Dynamic/ Covariance .85 .07 7.92*** .85 -- 

Static       

Note. *** = ≤ .001 
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Table 3.6 

Descriptive Statistics for Five Balance Assessments (Total Scores) in Youth with VIs 

Assessment Mean SD Median Skew Kurtosis SE 

Brief-BESTest 15.29 4.52 16.00 -.77 .79 .45 

AR-YBT 2.49 1.13 2.00 .02 -1.40 .11 

Turn 355.49 104.25 362.65 -.05 .18 10.37 

Sway .11 .18 .06 5.32 36.69 .02 

ABC Scale 82.78 11.30 85.00 -.85 .83 1.12 
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Table 3.7 

Zero-order Spearman Correlations for Five Balance Assessments (Total Scores) in 

Youth with VIs 

Item Brief-BESTest AR-YBT Turn Sway 

AR-YBT 

.67*** 

(.54, .76) 

Strong 

   

Turn 

.48*** 

(.32, .62) 

Strong 

.41*** 

(.23-.56) 

Strong 

  

Sway 

-.36*** 

(-.52, -.17) 

Moderate 

-.13 

(-.31, .07) 

Negligible 

-.08 

(-.27, .12) 

Negligible 

 

ABC Scale 

.46*** 

(.30, .60) 

Strong 

.44*** 

(.27, .59) 

Strong 

.27** 

(.08, .44) 

Weak 

-.21* 

(-.39, -.02) 

Weak 

Note. Parenthesis are 95% CIs. ρ interpretations are in italics.  * = ≤ .05, ** = ≤ .01, *** 

= ≤ .001 
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Figure 3.1 Side-by-side original (left) and modified (right) YBT stance platform.  

Note. On the modified stance platform, note the cylindrical shape (i.e., rolled tape) taped 

on top of the stance line used to provide tactile/haptic feedback. 
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Figure 3.2 Side-by-side original (left) and modified (right) YBT reach platform.  

Note. On the modified reach platform, note the multi-colored taped on the front side of 

the platform used to provide visual contrast. 
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Figure 3.3 Two-factor WLSMV CFA model selected for the (7-item) Brief-BESTest in 

youth with VIs.  

Note. Dyn = Dynamic; Sta = Static; U = UpGo; F.R = Fall-R; R = Reach; S.R = Single-

R; S.L = Single-L; F = Foam; H = Hip 
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CHAPTER 4: STUDY 2 

A COMPARISON OF MULTIDIMENSIONAL BALANCE IN YOUTH WITH 

AND WITHOUT VISUAL IMPAIRMENTS

Introduction 

When youth with and without VIs have been compared, most studies have 

concluded that youth with VIs have some form of impaired balance performance 

(Bouchard & Tetreault, 2000; Engel-Yeger, 2008; Gipsman, 1981; Grbovic & Jorgic, 

2017; Häkkinen et al., 2006; Houwen et al., 2008; Leonard, 1969; Navarro et al., 2004; 

Pereira, 1990; Ribadi et al., 1987; Uysal & Düger, 2011; Wyver & Livesey, 2003). 

However, comparisons to peers without VIs have been inconsistent (Case et al., 1973; 

Johnson-Kraemer et al., 1992), lacked empirical rigor (Houwen et al., 2009b), or have 

used unidimensional or oversimplified balance assessments (Horak, 2006).  

Balance is an act, not a state (Reed, 1989) and can be defined as “a 

multidimensional concept, referring to the ability of a person not to fall” (Pollock et al.,  

2000, p. 405). Further, balance is a complex and contingent skill which has led 

researchers to question the nature of balance and balance assessment (Burton & Davis, 

1992; Horak, 2006; Skaggs & Hopper, 1996; Reed, 1989; Overlock & Jun, 2004). In 

recent years, researchers have introduced a ‘systems-based’ framework which has led to 

the creation of multidimensional balance assessments (Horak et al., 2009; Sibley et al., 

2015).  
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One such example is the Brief-Balance Evaluation Systems Test (Brief-BESTest; 

Padgett et al., 2012). Recently, Brief-BESTest scores from youth with VIs were found to 

have internal consistency reliability as well as construct and convergent allowing for the 

novel investigation of balance system performance in youth with and without VIs validity 

(Pennell et al., in prep). Thus, the purpose of this study was to compare total and 

individual item Brief-BESTest scores between youth with and without VIs. It was 

hypothesized that youth with VIs would score significantly lower (p < .05) than youth 

without VIs on the individual item and total scores from the Brief-BESTest. 

Methods 

Participants and Setting 

Using convenience sampling, youth with and without visual impairments (N = 

287) were recruited from Camp Abilities Brockport (NY) Saratoga Springs (NY), Starke 

(FL), Governor Morehead School for the Blind (NC), and several schools within a K-12 

school district (SC). Descriptive information for the sample was as follows: Mage = 13.80 

years ± 2.32, Mmaturityoffset =  1.15 ± 1.89, Mheight = 1.59 meters (m) ± .13, Mweight = 59.60 

kilograms (kg) ± 19.76, MBMI = 23.24 kg/m2 ± 5.98, and MBMI% = 65.52 ± 28.13. Fifty-

nine percent of the participants were boys (n = 170). Regarding race, 18% were Black (n 

= 51), 19% were Other (n = 56), and 63% were White (n = 180). Concerning visual 

classification, 55% did not have a visual impairment (n  = 158) while 45% (n = 129) had 

a visual impairment (B4 = 22, B3 = 37, B2 = 32, B1 = 38). Thirty-six percent of youth 

with visual impairments had a comorbidity (n = 46).  
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Instrumentation 

 Demographics. A self-report demographic and visual information questionnaire 

was completed by the participant or by a parent/guardian while the participant was 

present. 

 Anthropometrics. Standing height as well as weight were assessed while 

barefoot. Standing height and weight were used to determine BMI percentiles (United 

States Department of Health and Human Services, 2010). Predicted maturity offset (i.e., 

years before or after peak height velocity [PHV]) was estimated with the Moore-1 or the 

Moore alternative sex-specific equations (Moore et al., 2015). Subsequently, an estimate 

of age at PHV was calculated (i.e., predicted maturity offset - age; Mirwald et al., 2002).  

 Brief-BESTest. The Brief-BESTest had not been investigated in youth with (or 

without) VIs previously, therefore, a comparison group of youth without VIs was 

required in order to interpret Brief-BESTest scores. Further, the Brief-BESTest had 

increased utility compared to past balance assessments as it enabled the specific 

examination of multiple balance performance constraints/mechanisms as posited by the 

systems framework for postural control (Horak, 2006; Horak et al., 2009; Sibley, 

Beauchamp, Van Ooteghem, Straus, & Jaglal, 2015). 

The Brief-BESTest was used to assess six balance systems (i.e., eight items). The 

Brief-BESTest has been found to be reliable and valid in separate populations (Jácome et 

al., 2016; O’Hoski et al., 2015; Padgett et al., 2012). The six systems and the eight 

respective items are as follows: (a) biomechanical constraints—hip/trunk lateral strength 

(Hip), (b) stability limits—functional reach forward (Reach), (c) transitions—standing on 

one leg on each side (Single-R; Single-L) (d) reactive—lateral compensatory stepping on 
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each side (Fall-R; Fall-L), (e) sensory orientation—standing with eyes closed on foam 

(Foam), and (f) stability in gait—timed “up and go” (UpGo). Participants were digitally 

recorded performing the Brief-BESTest and retroactively scored using an ordinal scale 

(i.e., 0-3) for each item. Each of the eight test items were combined to create a composite 

score between 0 and 24. Higher scores represented better balance performance. Total test 

time ranged around 10 minutes per participant. 

Procedures 

Internal Review Board approval was granted by the University of South Carolina 

for this study. Research sites which agreed to participate in this study included Camp 

Abilities Brockport (NY), Saratoga (NY), Starke (FL), Governor Morehead School for 

the Blind (NC), and several schools within a K-12 school district (SC). At each site for 

youth with visual impairments (VI), participants were recruited in a face-to-face format 

where signed parental and/or participant consent and demographic questionnaires were 

completed. At the Governor Morehead School, data collection occurred during one-hour 

timeslots in the evening (i.e., after school). At Camp Abilities, data collection occurred 

during one-hour timeslots in the morning or evening. All data were collected in 2017 and 

2018. 

At each site for youth without VIs (i.e., the K-12 school district in SC) 

participants were recruited at an intermediate and middle school by sending home 

consent forms which were returned to the site-specific physical education teacher(s). One 

high school site also participated, however, only passive consent was required at the high 

school. At the K-12 schools, data collection occurred during the participants regularly 

schedules physical education course (i.e., morning or afternoon).  
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During data collection, participants were anthropometrically assessed and then 

completed the Brief-BESTest while barefoot. The Brief-BESTest was digitally recorded 

and retroactively coded. 

Analysis 

Data screening/preparation. All analyses were conducted using R statistical 

software (R Core Team, 2013). Prior to statistical analyses the aggregated data was 

assessed for missingness. Percent, patterns, and mechanisms of missingness were found 

to be satisfactory for imputation (Bennett, 2001; Dong & Peng, 2013; Kang, 2013; Rubin, 

1976). Missing cells were imputed using the missForest package (Stekhoven & 

Bühlmann, 2012). Estimated error levels for the imputation were satisfactory (Oba et al., 

2003;  Stekhoven & Bühlmann, 2012). Following the completion of the imputation, the 

dataset was screened for normality and outliers to inform subsequent statistical analyses. 

Total and item Brief-BESTest scores were assessed for univariate normality using 

the Shapiro-Wilk test. All variables of interest were found to be non-normal (p < .001). 

Royston’s multivariate normality test confirmed a lack of multivariate normality for the 

individual Brief-BESTest items (H = 753.04, p < .001). As such, homogeneity of 

variance was assessed using modified Flinger-Killeen tests which are robust to non-

normal data. Issues of heteroscedasticity of variance for all variables of interest were 

found (p < .05). Further, homogeneity of the variance-covariance matrix was not 

confirmed using Box’s M test (p < .001). Outliers were determined using the ‘fence’ 

method (±1.5 * interquartile range; interquartile range = type 7). Five (1.74%) 

participants were identified as outliers due to their total score. All outliers were deemed 

relevant to the sample, therefore, none of the outliers were removed from the dataset. 
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Last, the absence of multicollinearity was confirmed (det = .05 where <.00001 = 

multicollinearity issues, Field, 2000; all variance inflation factors were < 4, Vatcheva et 

al., 2016).  

Descriptives. Measures of central tendency and spread were calculated for all 

applicable variables. 

Difference tests. A one-way analysis of variance (ANOVA) was used to assess 

for a difference between youth with and without VIs for total Brief-BESTest scores. 

Next, a one-way multivariate analysis of variance (MANOVA) was used to assess for 

differences for each of the Brief-BESTest items: UpGo, Fall-R, Fall-L, Reach, Hip, 

Single-R, Single-L, and Foam. Due to the aforementioned normality and  

homoscedasticity concerns, α was set to .01 (Tabachnick & Fidell, 2019).Omega-squared 

(ω²) was used to determine effect sizes (Yigit & Mendes, 2018). Omega-squared is fairly 

analogous to eta-squared (η2; Sechrest & Yeaton, 1982), therefore, common eta-squared 

cutoffs were used where values ≥ .14, .06, and .01, equated to large, medium, and small 

effects (Stevens, 2002) as previously defined within the social/behavioral sciences 

(Cohen, 1998; Ialongo, 2016). Further Pillai’s trace (V) was used for the MANOVA 

(Olson, 1974) with the same eta-squared effect size cutoffs as eta-squared is equivalent to 

Pillai’s trace (Norman & Streiner, 2014). Subsequent Games-Howell post hoc analyses 

were run. 

Confounding variables in youth with VIs. It is reasonable to assume that 

characteristics such as biological sex, age-band, vision level, et cetera could have a 

confounding influence on balance performance in youth with VIs. Within the current 

study, age-band was particularly important to investigate given the wide range of ages 



 

89 

within the sample (i.e., eight to 20 years). As such, data for youth with VIs were 

subsetted from the master data set (n = 129). Differences by vision level (i.e., B1, B2, B3, 

B4) were examined. Multiple screening analyses (i.e., side-by-side boxplots, point-

biserial or zero-order Spearman correlations, Wilcoxon-Mann-Whitney or Kruskal 

Wallis) were run to identify potential confounding variables for Brief-BESTest total 

scores by vision level. Potential covariates of interest that were examined included: 

biological sex (i.e., boy, girl), age-band (i.e., 8-11, 12-14, ≥ 15), BMI% categorization 

(i.e., underweight, normal, overweight, obese), and the presence of a comorbidity (i.e., 

yes, no). After addressing the necessary assumptions, a one-way analysis of covariance 

(ANCOVA) was run with α set to .05.    

Results 

Total and item score descriptive results for the Brief-BESTest in youth with and 

without VIs can be found in Table 4.1. Total Brief-BESTest scores between youth with 

and without VIs were statistically significant (F = 225.13, p < .001, ω² = .44, ω² 95% CI 

= .36, .51,  ∆ = -5.53, p < .001). Concerning the eight individual Brief-BESTest items, the 

one-way MANOVA analysis was statistically significant (F = 43.07, p < .001, V = .55). 

Games-Howell post hoc analyses highlighted significant differences between all Brief-

BESTest tasks except for the Foam task (see Table 4.2).  

Using Wilcoxon-Mann-Whitney or Kruskal Wallis analyses for the subsetted 

sample of youth with VIs, significant differences were found by comorbidity 

categorization and level of vision. Using point-biserial or Spearman correlations, again, 

only comorbidity categorization and level of vision were significant (see Table 4.3). 

Based on these results, age-band, biological sex, and BMI% categorization were 
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eliminated as potential confounding variables for Brief-BESTest total scores in youth 

with VIs.  

Brief-BESTest total scores in youth with VIs were found to lack normality (p < 

.001), however, using the Brown-Forsythe Levene test, Brief-BESTest scores for youth 

with VIs were found to have equal variance by vision level (p = .62). Five (3.88%) 

participants were identified as outliers based on their total Brief-BESTest scores. All 

outliers were deemed relevant to the sample, therefore, none of the outliers were removed 

from the dataset. Finally, using total Brief-BESTest scores, an ANCOVA was run using 

vision level as the primary factor with the presence of a comorbidity as the covariate. 

Both vision level (F = 3.60, p = .016, ω² = .04) and comorbidity (F = 51.21, p < .001, ω² 

= .27) were significant to the model.   

Discussion 

The purpose of this study was to compare total and item Brief-BESTest scores 

between youth with and without VIs. The findings of the current study suggested that 

youth with VIs had significantly lower Brief-BESTest total scores than youth without 

VIs. Further, seven out of eight Brief-BESTest item scores (i.e., five out of six balance 

systems) were significantly lower in youth with VIs. This discussion will address each 

result as situated within its respective postural control system with an emphasis on effect 

size (ω²) results.   

Transitions—anticipatory postural adjustment (Single-R; Single-L). The 

Single-R/Single-L items assessed postural compensations following an anticipated 

postural transition/destabilization (Horak et al., 2009). Importantly, Single-R (ω² = .46, 

95% CI = .38, .53) and Single-L (ω² = .50, 95% CI = .42, .56) were the most impaired 
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balance system in youth with VIs based on effect sizes. Using similar assessments, 

Häkkinen and Navarro and colleagues (2006, 2004) previously found that youth with VIs 

had impaired unipedal stance times when compared to youth without VIs. In fact, others 

have concluded that vision may play a more substantial role in static (as opposed to 

dynamic) balance tasks in youth with VIs (Bouchard 1996; Houwen et al., 2008). Within 

the current sample, a potential mechanism for these findings could be missing/conflicting 

visual information (as vision assists with specifying body position; Hatzitaki et al., 2002; 

Riach & Hayes, 1987), fear of falling, and/or limited experience, development, and/or 

control of the ankle complex, neuromuscular co-contraction, or core (i.e., lumbopelvic-

hip complex) stability. Importantly, Single-R and Single-L were purported to assess 

anticipatory postural adjustments (i.e., activation prior to perturbation), however, 

compensatory postural adjustments initiated by sensory feedback signals after a 

perturbation were also at play (Alexandrov et al., 2005; Park et al., 2004; Santos, 

Kanekar, & Aruin, 2010). Although the contribution of anticipatory/compensatory 

postural adjustments cannot be elucidated within the current study, one could speculate 

that impaired unipedal anticipatory and/or compensatory postural adjustment strategies 

could impede or constrain the performance of other unipedal static or dynamic (e.g., 

hopping) tasks in youth with VIs. 

Biomechanical constraints (Hip). The Hip item measured functional hip 

strength/postural alignment for standing (Horak et al., 2009) and was the second most 

impaired balance system in youth with VIs based on effect size (ω² = .26, 95% CI = .18, 

.35). Overall, it is suggested that youth with VIs may have difficulties maintaining a 

vertical trunk while abducting their hip when compared to youth without VIs. Potential 
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mechanism for this issue could be impaired hip mobility or strength, neuromuscular co-

contraction, and/or core stability. These results provide additional support of the Single-R 

and Single-L findings suggesting that future interventions may want to emphasize the 

development of static (and likely dynamic) unipedal balance in youth with VIs. 

Stability limits (Reach). The Reach item measured how far participants were 

willing to shift their center of mass over their base of support (Horak et al., 2009) and 

was the third most impaired balance system in youth with VIs based on effect size (ω² = 

.20, 95% CI = .13, .28). It could be suggested that youth with VIs may have constraints 

which limit them from shifting their center of mass into precarious positions. This 

phenomenon could be described as a stability-mobility trade-off (Horvat et al., 2003; 

Ray, 2004; Ray et al., 2007) whereby youth with VIs are not willing to compromise their 

typical posture for a more dynamic and unstable postural state (i.e., postural 

hesitance/cautiousness). Biomechanical (e.g., mobility, strength, size) and/or 

psychological (e.g., fear; Hauck, Carpenter, & Frank, 2008) mechanisms may have been 

potential culprits for this outcome.  

Stability in gait (UpGo). The UpGo item assessed coordination between 

locomotor and sensorimotor programs (Horak et al., 2009) and was the fourth most 

impaired balance system in youth with VIs based on effect size (ω² = .16, 95% CI = .09, 

.24). This finding was not entirely surprising as individuals with VIs have been found to 

have altered gait strategies compared to those without VIs (Ray et al., 2007; Pogrund & 

Rosen, 1989; Rosen, 1989; Sleeuwenhoek, Boter, & Vermeer, 1995). Again, this 

provides evidence that youth with VIs may exhibit compensatory strategies and/or 

increased cautiousness during postural tasks as previously discovered in adults with VIs 
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(Horvat et al., 2003; Ray, 2004; Ray, Horvat, Croce, Mason, & Wolf, 2008; Ray et al., 

2007).  

Reactive postural response (Fall-R; Fall-L). The Fall-R/Fall-L items assessed 

automatic stepping responses following an external perturbation (Horak et al., 2009). 

Effect sizes for the Fall-R (ω² = .05, 95% CI = .01, .11) and Fall-L (ω² = .03, 95% CI = 

.01, .09) were small but suggested that youth with VIs may have had slightly impaired 

sensorimotor feedback loops (Jacobs & Horak, 2007) when compared to youth without 

VIs. In youth without VIs, motor responses speed (i.e., reaction time measures) were 

found to associate with medio-lateral postural responses during a dynamic balance task 

(Hatzitaki et al., 2002). Therefore, it is reasonable to hypothesize that youth with VIs may 

have larger lateral plane automatic postural response latencies and/or utilize a more 

involved change-in support strategy (e.g., taking multiple steps; Pollock et al., 2000) 

compared to youth without VIs. However, further examination of these relationship is 

needed. Additional neuromuscular mechanisms such as strength and power could also be 

at play (Ray, 2004) which could lead to decreased response capacities to perturbations 

(e.g., increased movement reaction times) in youth with VIs. It is important to note that 

previous research examining associations between balance, strength, and power have 

conflicted (Forte, Boreham, De Vito, Ditroilo, & Pesce, 2014; Muehlbauer, Gollhofer, 

Granacher, 2015). Yet, strength and power training have been shown to improve balance 

performance in various populations (Filipa, Byrnes, Paterno, Myer, & Hewett, 2010; Lee 

& Park, 2013; Orr et al., 2006) providing evidence that a certain threshold of efferent 

neuromuscular interdependence likely exists between balance, strength, and power 

performance.   
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Sensory orientation (Foam). The Foam item measured sensory integration 

Horak et al., 2009). The Foam item was the only Brief-BESTest task that was not 

statistically significant as highlighted be the very small effect size (ω² = .01, 95% CI = 

.00, .05). This outcome highlighted that both youth with and without VIs were able to 

appropriately re-weight their visual, proprioceptive, and vestibular dependencies (Horak, 

2006) signifying that sensory integration may not be constraining balance performance in 

youth with VIs. This result suggested that having a VI (in of itself) may not be a primary 

sensory modality of concern for balance performance in youth with VIs. However, it is 

important to note that the Foam item was a controlled static balance task, therefore, 

conclusions cannot be made at this time concerning sensory strategies used in more 

dynamic/functional tasks when comparing youth with and without VIs (e.g., traversing a 

dimly lit outdoor courtyard).   

Conclusion 

The results of this study align with previous studies suggesting that balance 

performance is impaired in youth with VIs when compared to youth without VIs. Within 

the current sample, youth with VIs were found to perform worse in both dynamic (i.e., 

UpGo, Fall-R, Fall-L, Reach) and static (Single-R, Single-L, Hip) balance tasks equating 

to differences in five out of the six proposed balance systems (Horak et al., 2009). 

However, the prognosis of these differences should not be viewed as unsurmountable as 

having a VI may not be the primary mechanism of concern regarding balance deficits 

(Horvat et al., 2003). Indeed, Nakata and Yabe have posited that having a VI in youth 

“may affect a volitional act mediated through the motor cortex” (p. 36). Further, as 

Horvat and colleagues previously concluded, “it appears that [a] lack of vision, although 
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important for efficient movement [i.e., balance], can be compensated for largely by a 

high level of somatosensory and vestibular function” (2003. p. 700) a conclusion that 

echos the re-weighting hypothesis elucidated by Peterka (2002). 

It has been suggested that during early development, youth with VIs motorically 

lag behind peers who do not have VIs (Brambring, 2006a; Schneekloth, 1989). 

Schneekloth (1989) suggested that early motor development discrepancies in youth with 

VIs were due to (a) motor passivity (i.e., unwillingness to explore), (b) self-manipulation 

as opposed to environmental-manipulation, and (c) immature play behaviors—all of 

which were likely influenced by congenital vision loss. However, youth with VIs have 

been shown to compensate as they age either due to verbal and/or physical guidance 

(Brambring, 2006a; Sleeuwenhoek et al., 1995). Further, after the age of seven, 

dominance of the visual system typically decreases for postural tasks (Assaiante &, 

Amblard, 1995; Riach & Hayes, 1987; Shumway-Cook & Woollacott, 1985) allowing 

another (albeit delayed) window of opportunity for youth with VIs to motorically 

develop. Such evidence was also noted by de Sousa Santos, Bakke, de Oliveira and 

Sarinho (2018) who found that youth with VIs began to top out the Pediatric Balance 

Scale (Franjoine, Gunther, & Taylor 2003) after the age of seven.  

Further, previous interventions have successfully improved balance in individuals 

with VIs (Elsman et al., 2019; Paravlic et al., 2016; Sravani & Metgud, 2014; Suveren-

Erdogan, 2018; Suveren-Erdogan, Er, & Suveren, 2018). Thus, it may be that 

environmental and sociological barriers are primarily responsible for the differences in 

balance performance identified within the current study (e.g., less motor development 

affordances/participation, over protection; United States Department of Health and 
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Human Services, 2018a, Lieberman & Houston-Wilson, 1999; Sugden & Wade, 2013) 

which could be fostering negative spirals of disengagement and/or impaired 

neuromuscular, motoric, and health-related trajectories in youth with VIs. Thus, while 

having a VI could be viewed as disadvantageous for balance performance, having a VI 

may be more of the why than the how for these youth.   

Importantly, the utility of the Brief-BESTest allowed for the identification of 

specific and operational postural discrepancies (i.e., mechanisms/systems/constrains) as 

opposed to more general conclusions. Based on the implications of this study and the 

potential for youth with VIs to adapt, it is likely that interventions which target functional 

dynamic/static balance, total body neuromuscular development, and suprapostural tasks 

and skills (e.g., object control skills, simultaneous cognitive processing) would likely 

remediate the balance system discrepancies found within the current sample (in absence 

of certain comorbidities). To this point, it is important that researchers and practitioners 

acknowledge that the presence of a comorbidity as well as the severity of an individual’s 

VI are significant confounding variables that should be considered when using the Brief-

BESTest with youth with VIs.   

Limitations 

 One limitation of this study was the use of a convenience sample. Specifically, all 

youth with VIs were from New York, Florida, and North Carolina. In contrast, youth 

without VIs were from South Carolina due to access and feasibility factors. Also, it is 

possible that task novelness (e.g., Reach) or decreased participant motivation influenced 

the results of this study.   
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Implications for Practice 

 Practitioners should be comfortable acknowledging that youth with VIs tend to 

have balance performance deficits in multiple systems when compared to youth without 

VIs. However, a lack of visual information in of itself should not be viewed as an 

unyielding sensorimotor constraint as balance performance can be improved in youth 

with VIs. Therefore, screening, assessing, and/or developing balance systems in youth 

with VIs should be standard practice in educational and therapeutic settings. Based on the 

current sample, practitioners should be aware that lower vision levels and (especially) the 

presence of a comorbidity may be impactful confounding variables concerning balance 

performance and/or interventions in youth with VIs. 
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Table 4.1 

Brief-BESTest Descriptive Statistics for Youth with and without VIs 

Assessment Group Mean SD Median Skew Kurtosis SE 

UpGo VI 2.73 .46 3 -1.25 .15 .04 

 WO 3.00 .00 3 .00 .00 .00 

Fall-R VI 1.88 .72 2 -.92 1.22 .06 

 WO 2.15 .41 2 .50 4.85 .03 

Fall-L VI 1.89 .68 2 -1.22 2.30 .06 

 WO 2.09 .35 2 .47 9.49 .03 

Reach VI 1.92 .86 2 -.72 .05 .08 

 WO 2.62 .50 3 -.64 -1.22 .04 

Hip VI 1.36 .95 2 -.18 -1.11 .08 

 WO 2.34 .65 2 -.87 1.33 .05 

Single-R VI 1.21 1.03 1 .52 -.86 .09 

 WO 2.71 .56 3 -1.75 2.06 .04 

Single-L VI 1.09 .94 1 .60 -.49 .08 

 WO 2.63 .59 3 -1.32 .69 .05 

Foam VI 2.86 .51 3 -4.03 16.61 .05 

 WO 2.95 .32 3 -5.99 34.05 .03 

Total VI 14.95 4.21 15 -.60 .83 .37 

 WO 20.49 1.77 21 -.98 1.57 .14 

Note. VI = youth with VIs; WO = youth without VIs. 
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Table 4.2 

Games-Howell Post Hoc and Effect Size Results for each Brief-BESTest Item in Youth with and without VIs 

 UpGo Fall-R Fall-L Reach Hip Single-R Single-L Foam 

∆ 
-.27*** 

(-.35, -.19) 

-.27*** 

(-.41, -.13) 

-.20** 

(-.33, -

.07) 

-.70*** 

(-.87, -.53) 

-.97*** 

(-1.17, -.78) 

-1.50*** 

(-1.70, -1.30) 

-1.53*** 

(-1.72, -1.35) 

-.09 

(-.19, .01) 

ω² 

.16 

(.09, .24) 

Large 

.05 

(.01, .11) 

Small 

.03 

(.01, .09) 

Small 

.20 

(.13, .28) 

Large 

.26 

(.18, .35) 

Large 

.46 

(.38, .53) 

Large 

.50 

(.42, .56) 

Large 

.01 

(.00, .05) 

Small 

Note. * = ≤ .05, ** = ≤ .01, *** = ≤ .001 
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Table 4.3 

Screening of Potential Confounding Variables in Youth with VIs (n=129) 

Variable ∆ Test Statistic Corr. Test Correlation 

Sex WMW 1806 P-BI -.12 

Comorbidity “ 3168*** “ .55 

Age-band KW 4.28 SP -.03 

BMI% “ 4.29 “ .08 

Vision level “ 14.97** “ .29 

Note. WMW = Wilcoxon-Mann-Whitney, KW = Kruskal-Wallis, P-BI =  

point-biserial, SP = Spearman. * = ≤ .05, ** = ≤ .01, *** = ≤ .001
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CHAPTER 5: STUDY 3 

ASSOCIATION BETWEEN MULTIDIMENSIONAL BALANCE AND THE 

LOCOMOTOR SUBSCALE OF THE TGMD-3 IN YOUTH WITH VISUAL 

IMPAIRMENTS  

Introduction 

Balance (i.e., stability) has been categorized as a fundamental motor skill 

(Gallahue et al. 2012), however, the role of balance as a fundamental motor skill has been 

downplayed and/or under-investigated in the field of motor development (Rudd et al., 

2015). For example, there is no balance subscale in the Test of Gross Motor Development 

(TGMD; Ulrich, 2000; Webster & Ulrich, 2017) which is arguably one of the most 

popular fundamental motor skill assessment batteries in the United States (and 

elsewhere). 

Due to issues of measurement and/or the pluralism of balance (Burton & Davis, 

1992; Overlock & Jun, 2004; Skaggs & Hopper, 1996), linear relationships between 

balance assessment scores and other balance, locomotor, and object control scores have 

been described as negligible to weak in magnitude (Drowatzky  & Zuccato, 1967; 

Hempel & Fleishman, 1955; Metgud & Honap, 2018; Tsigilis et al., 2001). Similar 

interpretations have led some researchers to question the role of balance in movement 

(Klavina et al., 2017; Singh et al., 2015; Ulrich & Ulrich, 1985; Winstein, Gardner, 

McNeal, Barto, & Nicholson, 1989). As poignantly concluded by Reed (1989, p. 5), “the 

phenomena of posture have not fit in well with most accounts of movement.” 
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However, the conclusion that balance and movement are not associated has been 

regularly contended (Chew-Bullock et al., 2012; Logan, Robinson, & Getchell, 2011; 

Loovis & Butterfield, 2000; Mache & Todd, 2016; Wang, Long, & Liu, 2012). Further, 

balance-based skills have been shown to perform adequately alongside locomotor, object 

control, and other balance-like skills in various motor skill batteries (Bruininks & 

Bruininks, 2005; Kiphard & Shilling, 1974; Luz et al., 2016; Rudd et al., 2015; Schulz, 

Henderson, Sugden, & Barnett, 2011) supporting the stance put forth by Reed (1989, p. 

21) who posited that  “a key factor in constraining motor variability into functional action 

is [the] adaptable and flexible nesting of movement and posture.”  

 Youth with VIs are 50% more likely to become obese as they age (Weil et al., 

2002) and trend with decreased levels of health-related fitness, physical activity, and 

locomotor/object control/balance competence (Augestad & Jiang, 2015; Häkkinen et al., 

2006; Houwen et al., 2008; Houwen et al., 2009a; Uysal & Düger, 2011). Importantly, 

balance is a lifespan motor skill (Assaiante & Amblard, 1995; Haddad, Rietdyk, Claxton, 

& Huber, 2013) which underpins a vast majority of human movements (Burton & Davis, 

1992; Stoffregen, 2016). Therefore, multidimensional balance skills (Horak, 2006) could 

be influencing/constraining the health- and movement-based outcomes plaguing youth 

with VIs (Newell, 1986; Riccio & Stoffregen, 1988).  

To the authors’ knowledge, only one study has explicitly examined associations 

between balance and fundamental motor skills in youth with VIs (Metgud & Honap, 

2018). Using the kicking and jumping skills from the Adapted Physical Education 

Assessment Scale (APEAS; Seaman, 1982), the balance error scoring system (BESS; 

Riemann, Guskiewicz, & Shields, 1999), and the stork balance stand test, Metgud and 
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Honap (2018) found statistically significant correlations when combining youth with 

partial and complete blindness (p < .001; BESS: rkick = -.42, rjump = -.33; stork: rkick = .45, 

rjump = .42). Interestingly, the authors interpreted the magnitude of the significantly 

significant associations as weak and concluded that there was “no correlation of static 

balance with fundamental motor skills in children with visual impairments” (Metgud & 

Honap, 2018, p. 69). However, caution is warranted regarding this generalization as the 

correlations were statistically significant, the magnitude of the correlations could be 

interpreted as strong to moderate (Cohen, 1988; Dancey & Reidy, 2004; Evans, 1996), 

and not all fundamental motor skills/balance systems were represented within the study. 

Given (a) the controversies surrounding balance (e.g., measurement issues, low 

associations), (b) general uncertainties surrounding the relationship between balance and 

locomotor/object control skills, and (c) the negative health- and movement trajectories 

faced by youth with VIs, novel multidimensional balance investigations are warranted. 

As balance has been posited as an immediate prerequisite for locomotion (Adolph, 2008; 

Nardini & Cowie, 2012) it is logical to first examine the association between balance and 

locomotor performance in youth with VIs.  

Thus, the purpose of this study was to examine associations between Brief-

BESTest scores and the TGMD-3 locomotor subscale scores in youth with VIs. It was 

hypothesized that all item and total score bivariate correlations between the Brief-

BESTest and the TGMD-3 locomotor subscale would be significant (p < .05) in youth 

with VIs. 
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Methods 

Participants and Setting 

Using convenience sampling, participants (N = 96) were recruited from Camp 

Abilities Brockport (NY), Saratoga Springs (NY), and Starke (FL). Descriptive 

information for the sample was as follows: Mage = 12.98 years ± 2.28, Mmaturityoffset =  -.04 

± 1.84 years, Mheight = 1.55 meters (m) ± .14, Mweight = 52.73 kilograms (kg) ± 19.16, 

MBMI = 21.34 kg/m2 ± 5.53, and MBMI% = 62.94 ± 31.43. Concerning visual classification, 

22% (n = 21) were B4, 33% (n = 32) were B3, 17% (n = 16) were B2, and 28% (n = 27) 

were B1. Fifty-four percent of the participants were boys (n = 52) while 28% of the 

sample (n = 27) had a comorbidity.  Regarding race, 15% were Black (n = 14), 16% were 

Other (n = 15), and 70% were White (n = 67).  Seventy-five percent, 20%, and 5% of the 

sample attended public, schools for the blind, or private schools, respectively.  

Instrumentation 

 Demographics. A self-report demographic and visual information questionnaire 

was completed by the parent/guardian of each participant while the participant was 

present. 

 Anthropometrics. Standing height as well as weight were assessed while 

barefoot. Standing height and weight were used to determine BMI percentiles (United 

States Department of Health and Human Services, 2010). Predicted maturity offset (i.e., 

years before or after peak height velocity [PHV]) was estimated with the Moore-1 or the 

Moore alternative sex-specific equations (Moore et al., 2015). Subsequently, an estimate 

of age at PHV was calculated (i.e., predicted maturity offset - age; Mirwald et al., 2002).  
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 Brief-BESTest. The Brief-BESTest was used to assess six balance systems (i.e., 

eight items). The Brief-BESTest has been found to be reliable and valid in separate 

populations (Jácome et al., 2016; O’Hoski et al., 2015; Padgett et al., 2012). The six 

systems and the eight respective items are as follows: (a) biomechanical constraints—

hip/trunk lateral strength (Hip), (b) stability limits—functional reach forward (Reach), (c) 

transitions—standing on one leg on each side (Single-R; Single-L) (d) reactive—lateral 

compensatory stepping on each side (Fall-R; Fall-L), (e) sensory orientation—standing 

with eyes closed on foam (Foam), and (f) stability in gait—timed “up and go” (UpGo). 

Participants were digitally recorded performing the Brief-BESTest and retroactively 

scored using an ordinal scale (i.e., 0-3) for each item. Each of the eight test items were 

combined to create a composite score between 0 and 24. Higher scores represented better 

balance performance. Total test time ranged around 10 minutes per participant. 

Test of Gross Motor Development-3. The TGMD-3 (Webster & Ulrich, 2017) is 

a norm-referenced process-oriented assessment used to evaluate fundamental motor skill 

competence in youth aged 3 years to 10 years and 11 months. However, it has been stated 

that the TGMD-3 could be used as a criterion-referenced assessment for those above the 

age of 10 years and 11 months who do not ‘top out’ the assessment (Ulrich, 2017). 

Further, TGMD-3 scores  have been shown to be reliable and valid in youth with VIs 

(Brian et al., 2018). 

  Youth with VIs were tasked with completing the locomotor subscale of the 

TGMD-3 (i.e., run, gallop, hop, skip, horizontal jump, slide). For the TGMD-3, two 

scored trials were completed for each skill. For each trial, a criterion was scored a one if 

the criterion was performed correctly or a zero if the criterion was not present. Therefore, 
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each skill was worth 6 to 8 points. The total locomotor subscale was worth 48 raw points. 

Higher scores represented better locomotor performance. Raw TGMD-3 points were used 

for analyses.  

Procedures 

Internal Review Board approval was granted by the University of South Carolina 

for this study. Research sites which agreed to participate in this study included Camp 

Abilities Brockport (NY), Saratoga (NY), and Starke (FL). At each site, participants were 

recruited in a face-to-face format where signed parental and/or participant consent and 

demographic questionnaires were completed. At Camp Abilities, data collection occurred 

during one-hour timeslots in the morning or evening. During data collection, participants 

were anthropometrically assessed, completed the Brief-BESTest while barefoot, and then 

completed the locomotor subscale of the TGMD-3 while shod. The Brief-BESTest and 

the TGMD-3 locomotor subscale were digitally recorded and retroactively coded. All 

data were collected in 2018. 

Analysis 

Data screening/preparation. All analyses were conducted using R statistical 

software (R Core Team, 2013). Prior to statistical analyses the aggregated data was 

assessed for missingness. Percent, patterns, and mechanisms of missingness were found 

to be satisfactory for imputation (Bennett, 2001; Dong & Peng, 2013; Kang, 2013; Rubin, 

1976). Missing cells were imputed using the missForest package (Stekhoven & 

Bühlmann, 2012). Estimated error levels for the imputation were satisfactory (Oba et al., 

2003;  Stekhoven & Bühlmann, 2012). Following the completion of the imputation, the 

dataset was screened for normality and outliers to inform subsequent statistical analyses. 
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Individual Brief-BESTest and TGMD-3 locomotor subscale items and total scores 

were assessed for univariate normality using the Shapiro-Wilk test. All variables of 

interest were found to be non-normal (p < .05). Royston’s multivariate normality test 

confirmed a lack of multivariate normality for the individual Brief-BESTest (H = 391.25, 

p < .001) and TGMD-3 locomotor items (H = 166.02, p < .001). Outliers were 

determined using the ‘fence’ method (±1.5 * interquartile range; interquartile range = 

type 7). Zero outliers were identified for both the Brief-BESTest and the TGMD-3 

locomotor subscale. 

Descriptives. Measures of central tendency and spread were calculated for all 

applicable variables. 

Associations. Zero-order Spearman correlations (ρ) were used to assess the 

strength and direction of the monotonic relationship between composite and item scores 

for the Brief-BESTest and the TGMD-3 locomotor subscale. Absolute value two-tailed 

bivariate coefficients were classified as very strong (ρ ≥ .70), strong (.40 ≥ ρ ≤ .69), 

moderate (.30 ≥ ρ ≤ .39), weak (.20 ≥ ρ ≤ .29), or negligible (.00 ≥ ρ ≤ .19) (Dancey & 

Reidy, 2004). Multiple first-order partial correlations (ρyx1.x2) were run to identify 

potentially impactful confounding variables such as biological sex (i.e., boy, girl), age-

band (i.e., 8-11, 12-14, ≥ 15), BMI% categorization (i.e., underweight, normal, 

overweight, obese), and the presence of a comorbidity (i.e., yes, no). If identified as 

impactful, nth-order partial correlations were performed (e.g., second-order correlations; 

ρyx1.x2x3) between total scores.  
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Results 

Total and item score descriptive results for the Brief-BESTest and the TGMD-3 

locomotor subscale in youth with VIs can be found in Table 5.1. The zero-order 

Spearman correlation between Brief-BESTest and TGMD-3 locomotor subscale total 

scores was .60 (p < .001, 95% CI = .46, .72) (see Figure 5.1). Using first-order partial 

correlations (see Table 5.2), age, sex, race, and BMI% categorization did not influence 

the correlation between Brief-BESTest and TGMD-3 locomotor subscale total scores (ρ ≈ 

.60). However, first-order partial correlations using the presence of a comorbidity (ρ = 

.51, p < .001, 95% CI = .35, .64) and vision level (ρ = .52, p < .001, 95% CI = .35, .66) 

were more impactful. The second-order partial correlation simultaneously controlling for 

the presence of a comorbidity and vision level was .42 (p < .001, 95% CI = .24, .57). 

Zero-order correlations between individual Brief-BESTest and TGMD-3 locomotor 

subscale items ranged from -.09 to .55 (see Table 5.3).  

Discussion 

 The purpose of this study was to investigate associations between Brief-BESTest 

scores and the TGMD-3 locomotor subscale scores in youth with VIs. Concerning total 

scores, the zero-order monotonic association was .60 (95% CI = .46, .72; Dancey & 

Reidy, 2007) suggesting a strong relationship between multidimensional balance and 

locomotor competence in youth with VIs. The robustness of this finding was reinforced 

after controlling for vision level and the presence of a comorbidity (ρyx1.x2x3 = .42, 95% 

CI = .24, .57). Although causational investigations are needed, these results signify that 

balance (to some degree) may act as a co-requisite and/or constraint on the locomotor 

development of youth with VIs. These findings align with results from Metgud and 
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Honap (2018) who investigated associations between the stork stand, the BESS, and the 

kicking and jumping skills from the APEAS in youth with VIs (p < .001; BESS: rkick = -

.42, rjump = -.33; stork: rkick = .45, rjump = .42). However, it is crucial to note that Metgud 

and Honap (2018, p. 69) concluded that “there [was] no correlation of static balance with 

fundamental motor skills in children with visual impairments,” even though the values 

were statistically significant and could be described as strong to moderate in magnitude. 

Therefore, the subjective posture taken by Metgud and Honap (2018) should be 

interpreted with caution.  

 Concerning associations between the individual items of the Brief-BESTest and 

the locomotor subscale of the TGMD-3, results were mixed. For the TGMD-3, the gallop 

item had negligible associations with all Brief-BESTest items. Justifications for this 

outcome were difficult to determine, however, this result could have been due to 

measurement characteristics found within the Brief-BESTest and the TGMD-3 locomotor 

subscale (e.g., ordinal scalars, the criteria used for scoring the gallop and the Brief-

BESTest items were not compatible possibly due to low task specificity between the 

tasks). At present, the relationship between the TGMD-3 gallop and the items in the 

Brief-BESTest in youth with VIs can be described as dubious. All other TGMD-3 items 

were more promising (i.e., at least two or more moderate associations per item).  

For the Brief-BESTest, the Fall-R, Fall-L, and Foam items had negligible to weak 

associations with all TGMD-3 items. Within youth with VIs, the Foam item was 

negatively skewed (-4.33) and highly leptokurtic (19.81) highlighting a significant ceiling 

effect. Therefore, due to the lack of variability, it is unsurprising that the Foam item did 

not associate with the TGMD-3 items. Likewise, the lack of associations surrounding the 
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Fall-R and Fall-L items may be due to a lack of variability as both items were somewhat 

leptokurtic (Fall-R = 1.56; Fall-L = 2.60). Therefore, it is possible that the Foam, Fall-R, 

and Fall-L items may have not been sensitive enough to produce a significant amount of 

variability in youth with VIs. Initially, these results suggest that the reactive postural 

response (Fall-R, Fall-L) and sensory orientation (i.e., Foam) postural systems may have 

little to nil relationship with TGMD-3 locomotor subscale items. However, the results of 

this study were limited by the assessments used and the selected population of interest. 

Therefore, additional investigations are needed.  

 TGMD-3 items that had the largest associations with the Brief-BESTest items 

were the skip, which is rhythmically challenging, as well as the run, and the hop, which 

are both neuromuscularly challenging (e.g., requires strength, power, rapid/dynamic 

displacement of the center of mass). Likewise, the Single-L (anticipatory postural 

adjustment; static), UpGo (stability in gait; dynamic), and Reach (stability limits; 

dynamic) items generally performed best with the TGMD-3 items. Taken together from a 

monotonic standpoint, it appears the Single-L, UpGo, and Reach items were better 

related with the more challenging continuous skills of the TGMD-3 (i.e., skip, run, hop). 

These results were global trends, however, not all bivariate outcomes were statistically 

significant.  

Of the 48 possible zero-order bivariate correlations between the individual Brief-

BESTest and TGMD-3 locomotor subscale items, four (8%, p < .001) were strong, 13 

(27%, p < .01) were moderate, nine (19%, p < .05) were weak, and 22 (46%, p > .05) 

were negligible. Thus, the hypothesis that all of the correlations between the individual 

items of the two assessments would be statistically significant (p < .05) was not met. 
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However, hypothesized outcomes can be gleaned from these results. Specifically, the 

proceeding aspects of this discussion will focus upon the strong and moderate 

correlations found between certain Brief-BESTest (i.e., Single-L, Single-R, UpGo, 

Reach, Hip) and TGMD-3 locomotor subscale items (i.e., run, hop, skip, jump, slide).  

Single-L/Single-R. The Single-R item moderately correlated with the hop, skip, 

and jump items. Further, the Single-L item strongly correlated with the hop and skip and 

moderately correlated with the slide and run items. These results are surprising as both 

items are static balance tasks which traditionally have not correlated with dynamic tasks 

in multiple populations. Of specific interest was the Single-L task which had the best 

overall performance (of all Brief-BESTest items) with the TGMD-3 locomotor subscale 

items. Unsurprisingly, a large majority of the youth with VIs were right-foot dominant (n 

= 76, 79%; determined by asking participants which foot they would kick a soccer ball 

with). It is possible that the it was harder to stay balanced during the Single-L task for a 

majority of the participants (i.e., non-dominant foot) and therefore, was better at 

differentiating the monotonic relationship between the single-leg tasks and the TGMD-3 

locomotor subscale items. As the Single-R/Single-L items assessed anticipated postural 

transitions during a static balance task (Horak et al., 2009), it is possible that anticipated 

postural transitions are also important in more dynamic tasks in youth with VIs. 

UpGo. The UpGo item moderately correlated with the hop, skip, and slide items 

and had the strongest bivariate correlation within the correlation matrix (i.e., run; ρ = 

.55). This was not surprising as the UpGo item assessed the coordination between 

locomotor and sensorimotor programs (i.e., stability in gait; Horak et al., 2009). 

Historically, individuals with VIs have been found to have altered gait strategies (Ray et 
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al., 2007; Pogrund & Rosen, 1989; Rosen, 1989; Sleeuwenhoek et al, 1995) and it is 

logical to posit that an individual’s ambulation strategies (e.g., increased cautiousness: 

smaller steps, slower walking speed, etc.) could influence and/or constrain locomotor 

skill development. Additional support for this hypothesis was reinforced by the moderate 

to strong associations (ρ = .31 to .51) that were found between the UpGo item and a 

majority of the continuous locomotor tasks in the TGMD-3 locomotor subscale (i.e., run, 

hop, skip, slide). However, negligible correlations were found between the UpGo item 

and the gallop (i.e., continuous skill) and the jump (i.e., discrete skill) suggesting 

additional research is warranted.  

 Reach. The Reach item had a strong correlation with the skip item and a 

moderate relationship with the jump and slide items in the TGMD-3. As the Reach item 

assessed how far youth with VIs were willing to appropriately adjust/control their center 

of mass while shifting away from their base of support (Horak et al., 2009), it could be 

suggested that Reach performance represented a proxy measure of the stability-mobility 

tradeoff (Horvat et al., 2003; Ray, 2004; Ray et al., 2007). Due to the flight phases, 

coordination, and rhythm needed to complete a continuous skip, it could be suggested 

that those who were willing to push their limits of mobility (i.e., put themselves in a 

dynamic, less stable positions) were more likely to be successful at the skip. This could 

also be true for the slide (although to a lesser degree) as the slide—like the skip—is 

somewhat rhythmic in nature. However, this relationship was not found in other dynamic 

continuous items such as the run, gallop, or hop suggesting that different balance systems 

may be task- or skill-specific. The Reach was also moderately correlated with the jump. 

Interestingly, both the Reach and jump items are discrete tasks. Further, the jump (if 
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performed correctly) is a ballistic task forcing an individual to accelerate and decelerate 

(i.e., land) rapidly in the sagittal plane. Therefore, the Reach item may be providing 

preliminary evidence of a stability-mobility strategy being employed by youth with VIs 

during the horizonal jump.  

 Hip. Last, the Hip item which measured functional hip strength/postural 

alignment during standing (Horak et al., 2009) had a moderate correlation with  the run, 

hop, and skip items in the TGMD-3 locomotor subscale. This finding suggests that when 

youth with VIs have a pronounced biomechanical constraint during a static task at the 

hip, such a constraint could become exacerbated during dynamic, rhythmic, and/or 

neuromuscularly challenging locomotor tasks performed in the sagittal plane. That is, a 

‘kink in the kinetic/postural chain’ during a static task could become more pronounced 

when transitioning to a more dynamic task.  

Conclusion 

Based on previous research, balance assessment associations have been highly 

contentious. One study which previously investigated the associations between balance 

and other motor skills in youth with VIs only added to the controversy (Metgud & 

Honap, 2018). However, these findings suggest that total Brief-BESTest and TGMD-3 

locomotor subscale scores have a strong monotonic correlation in youth with VIs (i.e., 

total scores = global balance/locomotor competence). These findings affirm the 

supposition put forth by Ulrich and Ulrich (1985) who stated that correlational results 

between balance and locomotor and/or object control skills are likely heavily influenced 

by balance assessment specificity. As Burton and Davis (1992, p. 17) elaborated, 

“…although studies suggest that balance is a fairly unified general ability underlying the 
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performance of a variety of movement skills…there also is a considerable amount of 

research indicating that balance is specific to the task being performed.” In line with this 

conclusion, Reed (1989) stated that isolated environmental contexts and singular 

mechanisms regarding posture and movement are ‘biological fictions.’ Regarding the 

individual item bivariate correlations, the results were less than optimal, however, several 

interesting findings were uncovered which should provide an impetus for future 

investigations.  

Limitations 

 One limitation of this study was the use of a convenience sample. Specifically, all 

youth with VIs were from New York or Florid. Also, it is possible that task novelness 

(e.g., Reach) or decreased participant motivation influenced the results of this study. Last, 

it is important to note that these findings were found in youth with VIs, therefore, 

investigations concerning the relationship between multidimensional balance and 

locomotor competence in other populations are required.  

Implications for Practice 

 Multidimensional balance in youth with VIs should be viewed as a co-requisite to 

locomotor skills. Further, it is important for practitioners to acknowledge that specific 

balance systems may play a more prominent or withdrawn role in different locomotor 

skills (i.e., inter-task specificity vs. generality). Although the results of this study are 

correlational, it is reasonable to hypothesize that multidimensional balance can and/or 

does constrain locomotor development in youth with VIs which could contribute to a 

negative spiral of disengagement and/or impaired health- and movement-based outcomes 

(Stodden et al., 2008). However, further investigations are needed. As such, practitioners 
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should actively develop multidimensional balance skills in youth with VIs in tandem with 

other motor skills. Based on the current sample, practitioners should be aware that lower 

vision levels and (especially) the presence of a comorbidity may be impactful 

confounding variables concerning balance and/or locomotor performance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

116 

Table 5.1 

Brief-BESTest and TGMD-3 Locomotor Subscale Descriptive Statistics for Youth with 

VIs 

Assessment Mean SD Median Skew Kurtosis SE 

Brief-BESTest 15.71 3.27 15 .25 -.77 .33 

 UpGo 2.79 .41 3 -1.41 .00 .04 

 Fall-R 1.99 .55 2 -.38 1.56 .06 

 Fall-L 2.01 .51 2 -.45 2.60 .05 

 Reach 1.97 .81 2 -.64 .10 .08 

 Hip 1.47 .92 2 -.40 -.91 .09 

 Single-R 1.30 .99 1 .42 -.85 .10 

 Single-L 1.25 .94 1 .54 -.57 .10 

 Foam 2.93 .30 3 -4.33 19.81 .03 

TGMD-3 Loc. 26.29 8.36 27 -.48 -.32 .85 

 Run 5.08 2.56 6 -.59 -.80 .26 

 Gallop 4.01 2.40 5 -.59 -.95 .24 

 Hop 3.32 2.09 3 .40 -.37 .21 

 Skip 2.90 2.02 4 -.39 -1.24 .21 

 Jump 4.55 2.26 5 -.17 -.96 .23 

 Slide 6.43 2.14 7 -1.70 2.37 .22 
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Table 5.2 

Screening of Potential Confounding  

Variables using Spearman First-order  

Partial Correlations in Youth with VIs  

Variable Correlation 

Sex .60 

Comorbidity .51 

Age-band .61 

BMI%  .61 

Vision level .52 
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Table 5.3 

Zero-order Spearman Correlations for Brief-BESTest and TGMD-3 Locomotor Subscale Items in Youth with VIs 

Item Run Gallop Hop Skip Jump Slide 

UpGo 

.55*** 

(.39-.68) 

Strong 

.10 

(-.10, .30) 

Negligible 

.31** 

(.12, .48) 

Moderate 

.30** 

(.11, .47) 

Moderate 

.13 

(-.07, .32) 

Negligible 

.39*** 

(.20, .55) 

Moderate 

Fall-R 

.02 

(-.18, .22) 

Negligible 

.08 

(-.13, .27) 

Negligible 

.09 

(-.11, .28) 

Negligible 

.03 

(-.18, .22) 

Negligible 

.12 

(-.09, .31) 

Negligible 

.09 

(-.11, .28) 

Negligible 

Fall-L 

.10 

(-.11, .29) 

Negligible 

.09 

(-12, .28) 

Negligible 

.02 

(-.18, .22) 

Negligible 

.13 

(-.07, .32) 

Negligible 

.18 

(-.02, .37) 

Negligible 

.21* 

(.01, .40) 

Weak 

Reach 

.24* 

(.04, .42) 

Weak 

-.06 

(-.26, .14) 

Negligible 

.24* 

(.04, .42) 

Weak 

.42*** 

(.24, .57) 

Strong 

.34*** 

(.15, .51) 

Moderate 

.30** 

(.10, .47) 

Moderate 

Hip 

.33*** 

(.14, .50) 

Moderate  

.03 

(-.17, .23) 

Negligible 

.31** 

(.11, .48) 

Moderate 

.31** 

(.12, .48) 

Moderate 

.24* 

(.04, .42) 

Weak 

.25* 

(.05, .43) 

Weak 

Single-R 

.24* 

(.04, .42) 

Weak 

.06 

(-.15, .25) 

Negligible 

.36*** 

(.18, .53) 

Moderate 

.32** 

(.12, .49) 

Moderate 

.35*** 

(.16, .52) 

Moderate 

.26 

(.06, .44) 

Weak 

Single-L 

.32** 

(.13, .49) 

Moderate 

.09 

(-.11, .29) 

Negligible 

.46*** 

(.29, .60) 

Strong 

.44*** 

(.26, .59) 

Strong 

.25* 

(.05, .43) 

Weak 

.39*** 

(.21, .55) 

Moderate 

Foam 

.00 

(-.19, .21) 

Negligible 

-.09 

(-.28, .11) 

Negligible 

.02 

(-.18, .22) 

Negligible 

.23* 

(.03, .41) 

Weak 

.14 

(-.05, .33) 

Negligible 

.00 

(-.21, .19) 

Negligible 

Note. Parenthesis are 95% CIs. ρ interpretations are in italics. * = ≤ .05, ** = ≤ .01, *** = ≤ .001 
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Figure 5.1 Brief-BESTest and TGMD-3 locomotor subscale total score scatterplot in 

youth with VIs.  

Note. Regression models added for illustrative purposes: red = linear (y = 2.74 + 1.50x); 

green = robust linear (y = 3.93 + 1.45x); blue = quantile (tau = .5; y = 6.67 + 1.33x). 
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CHAPTER 6 

DISCUSSION 

The three studies contained within this dissertation contribute to the 

understanding of multidimensional balance in youth with VIs. Overall, these studies 

addressed gaps in the literature by examining multidimensional balance (as measured by 

the Brief-BESTest) in youth with VIs. Specifically, Study 1 examined the construct and 

convergent validity of Brief-BESTest scores in youth with VIs. Study 2 compared Brief-

BESTest scores between youth with and without VIs. Study 3 investigated associations 

between Brief-BESTest and TGMD-3 locomotor subscale scores in youth with VIs. It is 

believed that all three studies provided a natural progression of evidence (i.e., Study 1: 

validation, Study 2: comparison, Study 3: association) which embodied the overall scope 

of the dissertation.  

Vision and Multidimensional Balance 

 Balance is a task-specific lifespan motor skill that enables human motor 

development and movement (Assaiante & Amblard, 1995; Burton & Davis, 1992; 

Haddad et al., 2013; Leversen et al., 2012; Stoffregen, 2016). Although the complexities 

of balance have led to assessment issues and mixed results within the literature, the 

construct of multidimensional balance and assessing various operationalized balance 

systems in youth with VIs (or any other population) seems promising. The results of 

Study 1 have shown that multidimensional balance can be examined in youth with VIs 
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using the Brief-BESTest which, in turn, could influence current practices and enable a 

cascade of future research.  

 Within Study 2, youth with VIs were found to have decreased balance scores 

compared to youth without VIs. From a physiological standpoint, youth with VIs have 

two individual constraints which could influence their health- and movement-based 

trajectories: VI (i.e., structural constraint) and multidimensional balance (i.e., functional 

constraint) (Newell, 1986; Langley, 2001; Riccio & Stoffregen, 1988). Concerning VIs as 

a structural constraint, the visual system is known to contribute to balance performance 

along with proprioceptive and vestibular inputs. However, it has been posited that 

humans are capable of reweighting sensory information to compensate for sensory 

deficiencies (Peterka, 2002). Thus, having a VI is a structural constraint that can likely be 

overcome. Further, it is important to note that vision primarily provides proactive (i.e., 

feedforwarding) information (Huxham et al., 2001).Therefore, it could be postulated that 

balance and/or movement situations/tasks that do not  inherently rely on feedforwarding 

(e.g., identifying an icy patch on a sidewalk and averting such a hazard) are less likely to 

be negatively influenced by the presence of a VI.  

Likewise, multidimensional balance is a functional constraint that could be 

constraining youth with VIs as balance is a co-requisite for movement and skill 

development. Importantly, as a functional constraint, multidimensional balance can be 

improved with training (Elsman et al., 2019; Paravlic et al., 2016; Sravani & Metgud, 

2014; Suveren-Erdogan, 2018; Suveren-Erdogan et al., 2018) highlighting the importance 

of motor learning/development for balance performance (Huxham et al., 2001). As 

balance deficits appear to be common in youth with VIs when compared to their peers, 
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interventions are needed and have the potential to be successful. As youth with VIs are 

capable as becoming as skilled, active, and/or fit as those without VIs, significant 

emphases must also be placed on environmental (e.g., accessibility) and sociological 

barriers as youth can be excluded, have fewer friendships, or have differences in 

appearance due to their VIs (Sugden & Wade, 2013). Therefore, a major key moving 

forward appears to be the clever use of a dynamic constraints model  (i.e., child 

resources—environment—task model; Sugden & Wade, 2013).  

Study 3 was able to highlight that multidimensional balance is monotonically 

associated with locomotor competence. This culminating outcome contradicted past 

conclusions of the role of balance performance on skill/movement (Burton & Davis, 

1992; Metgud & Honap, 2018; Ulrich & Ulrich, 1985) thereby providing preliminary 

evidence to suggest that multidimensional balance may constrain movement- and health-

related outcomes in youth with VIs. However, future research is needed. 

Last, it is important to note that within Study 2 and 3, both age-band and 

biological sex were not confounding variables concerning Brief-BESTest scores in youth 

with VIs. Both age and sex are variables that can be important variables concerning 

balance performance, especially in younger children (Venetsanou & Kambas, 2011). Yet, 

in youth with VIs, balance performance has been shown to differ by sex (Johnson-

Kraemer et al., 1992), however, such an outcome is atypical as most studies have not 

found significant differences by sex (Leonard, 1969; Pereira, 1990; Ribadi et al. 1987; 

Rutkowska et al., 2015). From a developmental perspective, differences in balance 

performance have been found by age in youth with VIs (Ribadi et al., 1987; Rutkowska 

et al., 2015) although contradictory findings exist (Pereira; 1990). Thus, given the results 



 

123 

of Study 2 and 3, the Brief-BESTest can be used for both sexes and for a wide range of 

ages (i.e., 8-20 years) which will be helpful for researchers and practitioners who work 

with youth with VIs who are a low-prevalence population typically requiring age-

independent convenience sampling. However, additional research is needed in younger 

children (i.e.., > 8 years) as younger children typically begin developing adult like 

postural responses after the age of seven (Nougier et al., 1998; Shumway-Cook & 

Woollacott, 1985; Woollacott et al., 1989). 

Future Research 

 Concerning youth with VIs, this dissertation has validated a multidimensional 

balance assessment, provided evidence of balance deficits in multiple systems, and 

highlighted an association between multidimensional balance and locomotor scores. 

Therefore, it is suggested that the findings from these three studies should provide an 

impetus for future investigations as the Brief-BESTest can now be used for observational 

(e.g., balance profiles), correlational (e.g., health indicators), and experimental (e.g., 

intervention) studies ideally via random sampling.   

 Balance as a constraint. As previously described, youth with VIs trend with 

lower levels of health-related fitness, physical activity, and motor skill competence 

compared to peers without VIs. As balance is a co-requisite for movement, and balance 

performance is impaired in youth with VIs, it is plausible that balance could be operating 

as a functional constraint (Langley, 2001; Newell, 1986) on movement- and health-

related trajectories (Stodden et al., 2008). As such, novel investigations should examine 

balance as a mediating or moderating variable in youth with VIs (e.g., path analysis: 
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balance → physical activity, motor competence, exercise, and/or recreation → health-

related fitness and/or risk factors).  

 Inter-task specificity. An important finding of Study 3 was that the monotonic 

relationships between individual Brief-BESTest and TGMD-3 locomotor items were 

mixed. As such, it should be emphasized that the heterogenous monotonic associations 

within Study 3 may have been related to measurement issues (i.e., all assessments were 

limited by their own characteristics and assumptions). Thus, if researchers hope to 

replicate or extend (e.g., different assessments) the evidence provided within Study 3, it 

is likely that novel balance and/or locomotor assessments will need to be developed 

which consider inter-task requirements and specifications (perhaps through task analysis 

processes). Due to task-specific demands and/or goals, associations between balance and 

locomotor scores can and will likely continue to be highly variable (as they were in the 

current sample). However, researchers should maintain that balance systems are likely 

nested within movement (Reed, 1989). Meaning, lack of association between assessments 

does not mean a balance system is not enabling and/or contributing to the execution of a 

suprapostural task in some fashion.  

 Longitudinal studies/predictive validity. Currently, most studies (including the 

three studies within this dissertation) surrounding youth with VIs are cross-sectional in 

nature. Therefore, little is known in regard to the individualized developmental 

trajectories on youth with VIs across time (a significant limitation within the studies of 

lifespan motor development, physical activity, and health). Thus, studies that track 

multidimensional balance in individuals with VIs are needed. To this point, time-series 

studies that examine the extent to which a multidimensional balance score predicts scores 
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on a criterion measure (e.g., falls, injuries, physical activity) would provide practitioners 

with valuable heuristics for score interpretation.  

  Interventions. Balance interventions concerning youth with VIs have not 

utilized random sampling, randomization, attempted to improve multidimensional, and 

included retention data. Thus, highly rigorous clinical trials are needed so that cause-and-

effect and evidence-based best practices can be established.  

Conclusion 

This dissertation represented the first studies to (a) examine the construct and 

convergent validity of Brief-BESTest scores in youth with VIs, (b) compare Brief-

BESTest scores between youth with and without VIs, and (c) investigate associations 

between Brief-BESTest and TGMD-3 locomotor subscale scores in youth with VIs. 

Results demonstrated that the Brief-BESTest can be adopted by practitioners who work 

with youth with VIs, that youth with VIs appear to have impaired multidimensional 

balance performance, and that multidimensional balance is related to locomotor 

competence in youth with VIs.   

From a balance and motor development prospective, youth with VIs appear to lag 

behind their peers, therefore, proactive screening and assessment should be implemented. 

Youth with VIs can overcome motor delays in spite of their VIs if adequate motor 

interventions and/or supports are provided early and perpetually. Thus, these data have 

the potential to significantly impact balance assessment which could in turn influence 

(adapted) physical education curricula (e.g., Individualized Education Program goals) or 

therapeutic/rehabilitative decisions for youth with VIs. Information gleaned from this 

dissertation suggests that multidimensional balance could be posited as a significant (yet 
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modifiable) mechanism of action which could be constraining health- and movement-

based outcomes in youth with VIs. 
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