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Abstract

Motivated by the study of genomes evolving by reversals, the primary topic of this

thesis is “successful pressing sequences” in simple pseudo-graphs. Pressing sequences

where first introduced by Hannenhali and Pevzner in 1999 where they showed that

sorting signed permutation problem can be solved in polynomial time, therefore

demonstrating that the length of a most parsimonious solution to the genome in-

version only rearrangement problem can be determined efficiently.

A signed permutation is an integer permutation where each entry is given a sign:

plus or minus. A reversal in a signed permutation is the operation of reversing a

subword and flipping the signs of the subword’s entries. The primary computational

problem of sorting signed permutations by reversals is to find the minimum number

of reversals needed to transform a signed permutation into the positive identity per-

mutation. Hannenhalli and Pevzner showed that the signed sorting problem can be

solved in polynomial-time in contrast to the problem of sorting unsigned permuta-

tions, which is known to be NP-hard in general. At the core of the argument given

by Hannenhali and Pevzner is the study of successful pressing sequences on vertex

2-colored graphs.

The connection between permutation sorting and phylogenetics dates back to at

least the 1930’s, when two biologists, Dobzhansky and Sturtevant, wrote a series of

papers in which they argued that the relationships between possible gene arrange-

ments within a given chromosome encode critical information about the evolutionary

history of species containing those genomes. In particular, they introduced the idea

that the degree of disorder between the genes in two genomes is an indicator of the
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evolutionary distance between two organisms. This has inspired extensive work in

the fields of computational biology, bio-informatics and phylogenetics. In particular,

researchers have pursued the question of how a common ancestral genome may have

been transformed by evolutionary events into distinct, yet homologous, genomes. In

mathematics and computer science, we often represent genomes as signed permuta-

tions (signed since DNA is oriented between two strands) and evolutionary events are

encoded as operations on signed permutations. Among the most studied operations

are block transpositions, prefix-reversals, and reversals, all of which correspond to

common evolutionary mechanisms.

In addition to the study of pressing sequences in simple pseudo-graphs, in this

thesis we discuss related topics such as Cholesky factorizations of matrices over finite-

fields, a sampling algorithm to generate simple pseudo-graphs uniformly at random,

and the complexity of the “pressing space” of a simple pseudo-graph (the space of all

successful pressing sequences of a simple pseudo-graph). This work includes collab-

orative work with Dr. Joshua Cooper (Mathematics, University of South Carolina),

M.S. graduate Erin Hanna (Mathematics, University of South Carolina), and M.S.

candidate Peter Gartland (Mathematics, University of South Carolina).
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Chapter 1

Origin of Pressing Sequences in Graphs

1.1 Introduction

In the late 1930’s, two biologists, Dobzhansky and Sturtevant, wrote a series of pa-

pers in which they argued that the relationships between possible gene arrangements

within a given chromosome encode critical information about the evolutionary history

of species containing those genomes (see, e.g., [12, 27]). In particular, they introduced

the idea that the degree of disorder between the genes in two genomes is an indica-

tor of the evolutionary distance between two organisms. This has inspired extensive

work in the fields of computational biology, bio-informatics and phylogenetics (see,

e.g., [14]). In particular, researchers have pursued the question of how a common an-

cestral genome may have been transformed by evolutionary events into distinct, yet

homologous, genomes. Genomes are sets of chromosomes and chromosomes are built

from deoxyribonucleic acid (DNA). DNA is a double-stranded molecule where each

strand is oriented (corresponding to the direction that the ribosome reads the DNA)

in opposite order. This means that in any of the DNA strand you have a footprint

of all genes on the chromosomes: a gene is either in the order of the DNA strand

(meaning the ribosome reads the gene from this strand) or the ribosome reads it from

the other strand and what you see on the chromosome is the reverse-complement of

the gene sequence. For this reason, in mathematics and computer science, we often

represent genomes as signed permutations (the signs corresponding to the orienta-

tions of the strands) and evolutionary events are encoded as operations on signed
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permutations. Among the most studied operations are block transpositions (e.g., [2,

17, 30]), prefix-reversals (e.g., [7, 8, 15, 18]), and reversals (e.g., [1, 23, 16, 17, 20, 26,

28]), all of which correspond to common evolutionary mechanisms.

1.2 Genome Mutations

The genome of a species can be thought of as a set of ordered sequences of genes.

Each molecule is called a chromosome, and the set of all chromosomes is what we

will call the genome. Chromosomes are made of deoxyribonucleic acid (DNA), a

double-stranded molecule in which each strand is a long succession of nucleotides.

DNA is made up of two complementary strands. During replication, these strands

are separated and two copies of DNA are produced. Cellular proofreading and error-

checking mechanisms ensure that the results are near-identical, but allow for some

minor point mutations. There are three different kinds of point mutations: insertions,

deletions, and substitutions. An insertion occurs when a nucleotide is inserted (added)

to the sequence; a deletion occurs when a nucleotide is removed (subtracted) from

the sequence; a substitution occurs when a nucleotide is removed from the sequence

and replaced with another.

A large-scale genetic mutation is referred to as a genetic rearrangement. While

point mutations happen with some frequency during replication and typically have

a minor effect on the outcome of the organism, genetic rearrangements happen in-

frequently, have a large effect on the outcome of the reproduction, and therefore

are a common metric used to estimate the evolutionary distance between organisms

([12, 27]). The most commonly studied rearrangements include deletions, transposi-

tions, inversions, duplications, reciprocal translocations, fusion, fission, and horizontal

transfer. ([14]).

• Deletions: A segment of the genome is lost.
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• Translocation: A segment of the genome moves to another location.

• Inversion: A segment of the genome is reversed and the strands are exchanged.

• Duplication: A segment of DNA is copied and inserted in the genome.

• Reciprocal translocation: two broken off chromosomal pieces (each containing

a telomere) are exchanged.

• Fusion: Two chromosomes are joined into one.

• Fission: One chromosome splits into two.

• Horizontal transfer: A segment of the genome is copied from one genome to

another.

Originating from Greek words meaning same (homo) and proportion (logos), the

term homology is use to describe the relationship between two objects that are similar

in position or structure, but not necessarily in function. In mathematics, homology

is a general way of associating a sequence of algebraic objects to other mathematical

objects such as topological spaces. In genetics, two objects are said to be homol-

ogous when their genetic sequences derive from a common origin. Observe that in

the inversion model no genetic information is deleted or introduced, it is simply re-

arranged. Thus, in this model, we consider two genomes to be homologous when

they who present the same genetic information but in different orders. We attempt

to understand how the two organisms may have evolved from a common ancestor by

inversion rearrangements.

In its simplest form, the genome rearrangement problem is formulated as follows:

given a pair of genomes and a set of possible evolutionary events, find a most likely

set of events that transforms one genome into the other. This thesis is motivated

by studying the genome rearrangement problem restricted to inversions. Since rear-

rangements are relatively rare events, scenarios minimizing their number are more
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likely to be close to reality ([14]). Thus, we may rephrase the genome rearrangement

problem as such: given a pair of genomes and a set of possible evolutionary events,

find a shortest set of events transforming one genome into the other; in particular, in

the inversion model we are tasked with finding a shortest sequence of inversions that

transform one genome into another.

In the following sections we describe breakpoint graphs, and their corresponding

overlap graphs. We will introduce successful pressing sequences on the bicolored

graphs. In [20], the authors use successful pressing sequences on overlap graphs

to demonstrate that the genome rearrangement problem restricted to inversions is

solvable in polynomial-time. In particular, if we let N(A,B) be the minimum number

of inversion operations need to transform genome A into homologous genome B, then

for some integer k, N(A,B) can be computed in O(nk) where n is the number of

nucleotides in either genome. However, knowing N(A,B) does not necessarily tell us

which sequence of N(A,B) edits can transform A into B; nor does it tell use how

many such sequences exist. This question has been explored in [4] and in [9], and is

the entry point for this thesis were we continue to explore this question as well as

some related questions about sampling and complexity.

1.3 Breakpoint Graphs

In this section we introduce breakpoint graphs. This construction comes from [20]; a

simplified version of the argument can be found in [3]. We begin by observing that,

in the restricted view of evolution via reversals, a pair of genome can be considered

homologous only if they contain the same set of nucleotides but appearing in different

orders and in different orientations. Thus, given a pair of homologous genome with

n nucleotides, we can label the nucleotides of one with the positively-signed identity

permutation:

id = (+1,+2, . . . ,+n)
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and the other with a signed permutation

σ = (±σ1,±σ2, . . . ,±σn)

where σi is positive if and only if the nucleotide it represents is oriented in the same

direction as the nucleotide that corresponds to it in the identity labeled genome.

Example 1.1. Suppose we have a (very simplified) pair of homologous genomes, A

and B, as illustrated in Figure 1.1.

Figure 1.1 Homologous Genomes

We will label the 4 entries of genome B by (+1,+2,+3,+4). Genome A is then

represented with the signed permutation (+4,−1,+2,+3). The genome rearrange-

ment problem is to find a minimum number of evolutionary events (in this case

reversals) to transform A into B, let that number be N(A,B). The following set of

permutation reversals demonstrate that N(A,B) ≤ 5:

(+4,−1,+2,+3) ; (+4,−2,+1,+3)

(+4,−2,+1,+3) ; (−1,+2,−4,+3)

(−1,+2,−4,+3) ; (+1,+2,−4,+3)

(+1,+2,−4,+3) ; (+1,+2,−4,−3)

(+1,+2,−4,−3) ; (+1,+2,+3,+4)

The previous example illustrates that it is possible to upper-bound the number

of inversions needed to transform one genome into another, however, these upper-
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bounds may be far from optimal. This lead to the creation of overlap graphs. We

begin first by replacing each entry of σ with a pair of entries according to the following

rule: if σi is positively signed then replace σi with 2 · σi− 1, 2 · σi, otherwise, when σi

is negatively signed we replace σi with 2 · σi, 2 · σi − 1.

Example 1.2. Suppose we have the same genomes as in the previous example.

Genome A was represented with (+4,−1,+2,−3) is now represented with

(7, 8, 2, 1, 3, 4, 6, 5). Genome B was represented with (+1,+2,+3,+4) is now repre-

sented with (1, 2, 3, 4, 5, 6, 7, 8). The reversal process in the previous example now

becomes:

(7, 8, 2, 1, 3, 4, 5, 6) ; (7, 8, 4, 3, 1, 2, 5, 6)

(7, 8, 4, 3, 1, 2, 5, 6) ; (2, 1, 3, 4, 8, 7, 5, 6)

(2, 1, 3, 4, 8, 7, 5, 6) ; (1, 2, 3, 4, 8, 7, 5, 6)

(1, 2, 3, 4, 8, 7, 5, 6) ; (1, 2, 3, 4, 8, 7, 6, 5)

(1, 2, 3, 4, 8, 7, 6, 5) ; (1, 2, 3, 4, 5, 6, 7, 8)

Observe that in every reversal the pairs of the form {2k− 1, 2k} are not separated at

any point. The permitted reversals now are any reversals over a contiguous interval

that has an even number of permutation entries to the left and to the right of it.

We will now proceed to describe how to build the breakpoint graphs from a pair of

permutations. Let σ and τ be unsigned permutations. By relabeling we may assume

that τ is the identity.

τ = (1, 2, . . . , 2n) and σ = (σ1, σ2, . . . , σ2n)

We will construct a plane graph (a graph embedded into the plane) with vertex set

V = {0, 1, 2, . . . , 2n, 2n+1} drawn, in lex order, along a straight line (say the x-axis).

Let A = {{2k, 2k+1} | 0 ≤ k ≤ n} and B = {{σ2k, σ2k+1} | 0 ≤ k ≤ n} where σ0 = 0
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and σ2n+1 = 2n + 1. Let the edge set of the graph be E = A ∪ B, draw the edges

of A as arcs above the x-axis with constant curvature, and draw the edges of B in a

rectilinear fashion.

Example 1.3. Consider the permutations σ = (7, 8, 2, 1, 3, 4, 5, 6) and τ =

(1, 2, 3, 4, 5, 6, 7, 8). The breakpoint graph of σ and τ (Figure1.2) has vertex set

{0, 1, . . . , 9}, rectilinear edges {{0, 7}, {8, 2}, {1, 3}, {4, 5}, {6, 9}} and curved arcs

{{0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 9}}. Observe that arcs a1 = {x, x + 1} and a2 =

{y, y + 1} will cross in the breakpoint graph if exactly one of x and x + 1 appear

between y and y+1 in σ. Equivalently, if exactly one of y and y+1 appear between x

and x+ 1 in σ. Any proper drawing of the breakpoint graph will have 4 arc crossings

(crossings of the interior portion of the arcs).

Figure 1.2 The Breakpoint Graph of σ and τ

The problem of sorting signed permutations can be translated into performing a

sequence of operations on the breakpoint graph which transform it into the identity

breakpoint graph which has only trivial cycles. Before proceeding we introduce some

terminology associated with breakpoint graphs.

Definition 1.4. A breakpoint in a permutation occurs whenever two adjacent ele-

ments are non-consecutive.
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Definition 1.5. The cycle number of a breakpoint graph, c(G), is the number of

cycles in any proper drawing of the breakpoint graph. The breakpoint graph in

Figure 1.2 has cycle number c = 2.

Definition 1.6. The orientation of an arc is determined by the parity of the sum of

their respective position. In particular, the arc a = {x, y} is positively oriented if the

sum of the number of vertices drawn to the left of x and y is even; otherwise we say

that the arc is negatively oriented.

Observe that the goal of sorting signed permutations is to eliminate all breakpoints

(implying that all the edges are positively oriented) by using the least number of

reversals. In [2], Bafna and Pevzner showed that the reversal distance, d(G), in a

breakpoint graph (the minimum number of reversals needed to transform the graph

into the identity graph) satisfies the inequality d(G) ≥ |V (G)|+1−c(G). Equivalently,

d(G) ≥ b(G) − c′(G) where c′(G) is the number of cycles that contain four or more

vertices.

Definition 1.7. A cycle in a breakpoint graph is said to be an hurdle if all of its arcs

are negatively oriented.

In [20], Hannenhali and Pevzner showed that the reversal distance, d(G), in a

breakpoint graph is

d(G) = b(G)− c(G) + h(G) + f(G)

where b(G) is the number of breakpoints in the non-identity permutation, c(G) is

the cycle number of of the graph, h(G) is the number of hurdles in the graph, and

f(G) ∈ {0, 1} is an indicator of he number of fortresses in a graph (we will not define

fortresses here except to say that they are a sort of hurdle that protects another

hurdle). The argument that Hannenhali and Pevzner used relies on the construction

of overlap graphs from breakpoint graphs.
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1.4 Overlap Graphs

From a breakpoint graph we may construct an overlap graph in the following man-

ner. Let B = (V (B), E(B)) be a breakpoint graph with V (B) = {0, 1, . . . , 2n + 1}.

Consider that B is already embedded into the plane. Let G = (V,E) be a bicol-

ored graph with V = {v0, v1, . . . , vn} and {vi, vj} ∈ E if arcs ai = {2i, 2i + 1} and

aj = {2j, 2j+1} cross in the drawing of B. Color v ∈ V blue if degG(v) ≡ 1 (mod 2).

Example 1.8. Consider the permutations σ = (7, 8, 2, 1, 3, 4, 5, 6) and

τ = (1, 2, 3, 4, 5, 6, 7, 8). Let B be the breakpoint graph of σ and τ (see Figure 1.2).

The overlap graph of σ and τ is illustrated in Figure 1.3.

Figure 1.3 The Overlap Graph of
σ and τ

In the following chapter we will introduce simple pseudo-graphs which are the

generalization of overlap graphs. The operation of pressing in a simple pseudo-graph

corresponds to making a reversal in a breakpoint graph, and a successful pressing

sequence corresponds to a most-parsimonious sequence of reversals that transform on

permutation into the other.
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Chapter 2

Uniquely Pressable Graphs

2.1 Introduction

A signed permutation is an integer permutation where each entry is given a sign:

plus or minus. A reversal in a signed permutation is the operation of reversing a

subword and flipping the signs of the subword’s entries. The primary computational

problem of sorting signed permutations by reversals is to find the minimum number

of reversals needed to transform a signed permutation into the positive identity per-

mutation. Hannenhalli and Pevzner showed that the signed sorting problem can be

solved in polynomial time (see [3, 20]) in contrast to the problem of sorting unsigned

permutations, which is known to be NP-hard in general (see, e.g., [6]). At the core

of the analysis given in [20] is the study of “successful pressing sequences” on vertex

2-colored graphs, which we refer to as “bicolored” graphs. In [9], the authors dis-

cuss the existence of a number of nonisomorphic such graphs which have exactly one

pressing sequence, the “uniquely pressables". In this paper we use a combination of

graph theory and combinatorial matrix algebra over F2 to characterize and count the

set of uniquely pressable bicolored graphs.

This topic originated in computational phylogenetics, where Hannenhalli and

Pevzner showed that certain bicolored graphs correspond to pairs of genomes and

that the reversal distance between these genomes is the minimum length of a success-

ful pressing sequence of said graph. In this interpretation, uniquely pressable graphs

correspond to pairs of genomes linked by a unique minimum-distance putative evo-
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lutionary history. The connection between permutation sorting and phylogenetics

dates back to at least the 1930’s, when two biologists, Dobzhansky and Sturtevant,

wrote a series of papers in which they argued that the relationships between possible

gene arrangements within a given chromosome encode critical information about the

evolutionary history of species containing those genomes (see, e.g., [12, 27]). In par-

ticular, they introduced the idea that the degree of disorder between the genes in two

genomes is an indicator of the evolutionary distance between two organisms. This

has inspired extensive work in the fields of computational biology, bio-informatics and

phylogenetics (see, e.g., [14]). In particular, researchers have pursued the question of

how a common ancestral genome may have been transformed by evolutionary events

into distinct, yet homologous, genomes. In mathematics and computer science, we

often represent genomes as signed permutations (since DNA is double-stranded and

hence oriented) and evolutionary events are encoded as operations on signed permu-

tations. Among the most studied operations are block transpositions (e.g., [2, 17,

30]), prefix-reversals (e.g., [7, 8, 15, 18]), and reversals (e.g., [1, 23, 16, 17, 20, 26,

28]), all of which correspond to common evolutionary mechanisms.

We continue the study of sorting by reversals by investigating its graph-theoretic

generalization, “pressing sequences”, in graphs. Previous work in the area (see [4,

9, 14, 20]) has employed the language of black-and-white vertex-colored graphs in

discussing successful pressing sequences. For various reasons (such as simplifying

definitions and notation), we find it more convenient to replace the black/white

vertex-coloring with looped/loopless vertices. Thus, the object of study will be

simple pseudo-graphs: graphs that admit loops but not multiple edges (sometimes

known as “loopy graphs”). However, for the purposes of illustration we borrow

the convention from [4, 9] and elsewhere that the loops of a simple pseudo-graph

are drawn as black vertices. Given a simple pseudo-graph G, denote by V (G)

the vertex set of G; E(G) ⊆ V (G) × V (G), symmetric as a relation, its edge set;

11



and G[S] = (S, (S × S) ∩ E(G)) the induced subgraph of a set S ⊂ V (G). Let

N(v) = NG(v) = {w ∈ V (G) : vw ∈ E(G)} the neighborhood of v in V (G). Observe

that v ∈ N(v) iff v is a looped vertex.

Figure 2.1 A simple pseudo-graph:
G = ({v1, v2, v3}, {v1v1, v1v3})

After this introduction, the discussion is arranged into four sections. In Section

2, we develop some terminology and notation, and give a useful matrix factorization

which we refer to as the “instructional Cholesky factorization” of a matrix (over F2),

and discuss some of its properties. In Section 3, we present our main result, Theo-

rem which characterizes the uniquely pressable graphs as those whose instructional

Cholesky factorizations have a certain set of properties. In Section 4 we explore some

consequences of the main theorem, such as the existence of a cubic-time algorithm for

recognizing a uniquely pressable graph, a method for generating the uniquely press-

able graphs by iteratively appending vertices to the beginning or end of a pressing

sequence, and a counting argument which shows that there exist, up to isomorphism,

exactly (3− (−1)n)/2 · 3bn/2c−1 uniquely pressable graphs on n non-isolated vertices.

In the final section we discuss some open questions in this area. Before proceeding

to Section 2 we list some basic notation for later use. Other terminology/notation

employed below can be found in [5] or [11].

• We often write xy to represent the edge {x, y} for concision. In particular if

x = y then xy is a loop.

• [n] := {1, 2, . . . , n} and [k, n] := {k, k + 1, . . . , n} for all k, n ∈ N.

12



• When S = V (G)\{x} we write the induced subgraph of G on S, G[S], as G−x.

In general, G− S denotes G[V (G) \ S].

• For integers x and y, x ≡ y (mod 2) is abbreviated as x ≡ y.

• For a square matrix M with rows and columns identically indexed by a set X,

for all x ∈ X, Mx̂ denotes the submatrix ofM with row and column x removed.

• When {xλ}λ∈Λ ⊂ F2 ∪ Z, the notation ∑λ∈Λ xλ denotes addition over Z of xλ,

where xλ = xλ if xλ ∈ Z and xλ is the least non-negative integer representation

of xλ in Z if xλ ∈ F2. When referring to addition modulo 2 we use symbols ⊕

and ⊕. For example, if x1 = x2 = 1 ∈ F2 and x3 = 3 ∈ Z then
3∑
i=1

xi = 1 + 1 + 3 = 5 and
3⊕
i=1

xi = 1⊕ 1⊕ 1 = 1.

2.2 Pressing and Cholesky Roots

Definition 2.1. Consider a simple pseudo-graph G with a looped vertex v ∈ V (G).

“Pressing v” is the operation of transforming G into G′, a new simple pseudo-graph

in which G[N(v)] is complemented. That is,

V (G′) = V (G), E(G′) = E(G)4 (N(v)×N(v))

We denote by G(v) the simple pseudo-graph resulting from pressing vertex v in V (G)

and we abbreviate G(v1)(v2)···(vk) to G(v1,v2,...,vk). For k ≥ 1 we abbreviate (1, 2, . . . , k)

as k so that when V (G) = [n] for some n ≥ k then we may simplify G(1,2,...,k) to Gk.

G0 and G() are interpreted to mean G.

Given a simple pseudo-graph G, (v1, v2, . . . , vj) is said to be a successful pressing

sequence for G whenever the following conditions are met:

• {v1, v2, . . . , vk} ⊆ V (G),

• vi is looped in G(v1,v2,...,vi−1) for all 1 ≤ i ≤ k,
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• G(v1,v2,...,vk) = (V (G), ∅)

In other words, looped vertices are pressed one at a time, with “success” meaning

that the end result (when no looped vertices are left) is an empty graph. From

the definition of “pressing” v we see that once a vertex is pressed it becomes iso-

lated and cannot reappear in a valid pressing sequence. It was shown in [9] that if

G(v1,v2,...,vk) = (V (G), ∅) = G(v′1,v′2,...,v′k′ )
then k = k′, i.e., the length of all successful

pressing sequences for G are the same. We refer to this length k as the pressing length

of G.

Definition 2.2. An ordered simple pseudo-graph, abbreviated OSP-graph, is a simple

pseudo-graph with a total order on its vertices. In this paper, we will assume that

the vertices of an OSP-graph are subsets of the positive integers under the usual

ordering “<”. An OSP-graph G is said to be order-pressable if there exists some

initial segment of V (G) that is a successful pressing sequence, that is, if it admits a

successful pressing sequence (v1, v2, . . . , vk) satisfying v1 < v2 < · · · < vk and vk < v′

for all v′ ∈ V (G) \ {v1, v2, . . . , vk}. An OSP-graph G is said to be uniquely pressable

if it is order-pressable and G has no other successful pressing sequence.

Lemma 2.3. If G is a connected OSP-graph that is uniquely pressable then the press-

ing length of G is |V (G)|.

Proof. Suppose not. Then at some point in the pressing sequence two vertices become

isolated and unlooped by one press. Call these vertices a and b, and suppose a is the

vertex pressed. Then at this point in the pressing sequence a and bmust have identical

neighborhoods and hence b can replace a in the pressing sequence, contradicting that

the pressing sequence is unique.

We say a component of G is trivial if it is a loopless isolated vertex.
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Proposition 2.4. [9] A simple pseudo-graph G admits a successful pressing sequence

if and only if every non-trivial component of G contains a looped vertex.

Corollary 2.5. If G is a uniquely pressable OSP-graph with at least one edge then G

contains exactly one non-trivial component C and the pressing length of G is |V (C)|.

Proof. Let G = ([n], E). Let C1 and C2 be (possibly distinct) non-trivial connected

components of G. Let C3 = G− (V (C1)∪ V (C2)) so that G is the (possibly disjoint)

union of C1, C2 and C3. As G is uniquely pressable it has unique pressing sequence

σ = n. Observe that pressing a vertex only makes changes to its closed neighborhood,

a set which is contained within a single connected component. Let σi be the restriction

of σ to the vertices of Ci, i = 1, 2, 3. Then σi is a successful pressing sequence for

G[Ci]. If C1 6= C2 then G is the disjoint union of G[C1], G[C2] and G[C3], where the

last one may be empty. Then pressing the vertices of G[C2] followed by pressing the

vertices of G[C1] followed by pressing the vertices of G[C3] gives a successful pressing

sequence for G, contradicting the uniqueness of σ. It follows that C1 = C2 and σ3 = ∅,

and therefore G contains exactly one non-trivial connected component.

This shows that in order to understand uniquely pressable OSP-graphs, it suffices

to understand connected, uniquely pressable OSP-graphs.

Notation 2.6. CUPn is the set of connected, uniquely pressable ordered (<N) simple

pseudo-graphs on n positive integer vertices.

Definition 2.7. Given an OSP-graph G = ([n], E) define the adjacency matrix A =

A(G) = (ai,j) ∈ Fn×n2 by

ai,j =


1 if ij ∈ E,

0 otherwise.
.

Note that A(G) is always symmetric. Previous work in the area refers to such ma-

trices as augmented adjacency matrices as the diagonal entries are nonzero where
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the vertices are colored black; since we have used looped vertices instead, the term

“augmented” is not necessary. Define the instructional Cholesky root of G, denoted

U = U(G) = (ui,j) ∈ Fn×n2 , by

ui,j =


1 if i ≤ j and j ∈ NGi−1(i),

0 otherwise.
.

Observe that the jth row of U is given by the jth row of the adjacency matrix

of Gj−1, and that ui,j = 1 precisely when the act of pressing i during a successful

pressing sequence of G flips the state of j. Thus, U provides detailed “instructions”

on how to carry out the actual pressing sequence. In Proposition 2.10 we justify use

of the name Cholesky.

Definition 2.8. For an order-pressable graphG = ([n], E) with instructional Cholesky

root U = (ui,j) we define the dot product of two vertices i, j ∈ V (G) as the dot product

over F2 of the ith and jth columns of U :

〈i, j〉G =
n⊕
t=1

ut,iut,j.

We define the (Hamming) weight of a vertex j ∈ [n] by

wtG(j) =
n∑
t=1

ut,j

and observe that wtG(j) ≡ 〈j, j〉G.

Figure 2.2 wt(1) = 1, wt(2) = 2, wt(3) = 2,
wt(4) = 4, 〈1, 2〉 = 1, 〈1, 3〉 = 0, 〈1, 4〉 = 1,
〈2, 3〉 = 1, 〈2, 4〉 = 0, 〈3, 4〉 = 0
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Definition 2.9. The weight of a column C in a matrix M , written wtM(C), is the

sum of the entries in column C (again, as elements of Z).

Observe that if U is the instructional Cholesky root of G then the column weights

of U correspond to the vertex weights of G.

Proposition 2.10. If G = ([n], E) is an OSP-graph with successful pressing sequence

1, 2, . . . , k, adjacency matrix A, and instructional Cholesky root U then UTU = A.

Proof. Let UTU = B = (bi,j) and A = (ai,j). Observe that bi,j is the result (modulo

2) of dotting the ith and jth columns of U . Hence bi,j = 〈i, j〉G.

For i, j ∈ [n], let Si,j = {t ∈ [k] : ij ∈ E(Gt−1)4E(Gt)} and Ti,j = {t ∈ [k] : ti ∈

E(Gt−1) and tj ∈ E(Gt−1)}.

Observe that Si,j lists the times during the pressing sequence that the pressed ver-

tex results in the state of edge ij being flipped. This occurs if and only if both i and

j are in the neighborhood of the vertex being pressed. Hence Si,j = Ti,j. The state of

the edge/non-edge ij in Gk is determined by its original state in G and by the number

of times the state of the edge/non-edge ij was flipped during the pressing sequence.

However, Gk = ([n], ∅) so ij /∈ E(Gk) and therefore the number of times that the

state of the edge/non-edge ij is flipped during the pressing sequence must agree in

parity to with the original state of the edge/non-edge ij. It follows that |Si,j| ≡ ai,j.

On the other hand Ti,j = {t ∈ [n] : ut,i = ut,j = 1} list the common 1’s in columns

i and j of the instructional Cholesky root. Hence |Ti,j| has the same parity as dot-

ting the ith and the jth column of U . It follows that bi,j = 〈i, j〉G ≡ |Ti,j| = |Si,j| ≡ ai,j.

Since the matrix entries are elements of F2, we have bi,j = ai,j for i, j ∈ [n] and

therefore UTU = A.
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Observation 2.11.

Given an OSP-graph G with adjacency matrix A and instructional Cholesky root U :

ij ∈ E(G) if and only if 〈i, j〉G = 1, since ai,j is the result of dotting the ith and jth

columns of U . In particular i is looped in G if and only if wtG(i) ≡ 1.

In the theory of complex matrices, decompositions of the form A = UTU are

known as “Cholesky” factorizations, so we repurpose this terminology here. While a

symmetric full-rank matrix over F2 has a unique Cholesky decomposition (see [9]),

a matrix M ∈ Fn×n2 of less than full rank may have more than one Cholesky de-

composition. On the other hand, the adjacency matrix A of an OSP-graph G with

successful pressing sequence 1, 2, . . . , k has a unique instructional Cholesky root U as

the first k rows are determined by the sequence of graphs G,G1, G2, . . . , Gk−1 and

the remaining rows (should they exist) are all zero. Throughout the paper we will

take advantage of this by referring interchangeably to a pressable OSP-graph G, its

(ordered) adjacency matrix A, and its instructional Cholesky root U .

Example 2.12. Consider the F5×5
2 matrixM and its (unique) instructional Cholesky

root U :

M =



1 0 0 0 1

0 1 0 1 0

0 0 0 0 0

0 1 0 1 0

1 0 0 0 1


and U =



1 0 0 0 1

0 1 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


.

The following matrices also offer Cholesky factorizations for M :

1 0 0 0 1

0 1 0 1 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 1


,



1 0 0 0 1

0 1 0 1 0

0 0 0 0 1

0 0 0 0 1

0 0 0 0 0


,



1 0 0 0 1

0 1 0 1 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 1


,
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

1 0 0 0 1

0 1 0 1 0

0 0 0 1 0

0 0 0 1 0

0 0 0 0 0


and



1 0 0 0 1

0 1 0 1 0

0 0 0 1 1

0 0 0 1 1

0 0 0 0 0


.

Definition 2.13. Consider a pressable OSP-graph G = (V,E) where V = {vi}i∈[n]

has the order implied by its indexing. For each j ∈ [n] we say that vj has full weight

in G provided wtG(vj) = j.. In particular if V (G) = [n] under the usual ordering then

vertex j has full weight if and only if wtG(j) = j if and only if j ∈ NGi−1(i) for all i ∈

[j].

The following notation will be used to simplify inductive arguments.

Notation 2.14. For a given OSP-graph G = ([n], E) with looped vertex j denote by

G(j) = G(j)−j the result of pressing vertex j and then deleting it from the vertex set.

Furthermore we let Gj denote the result of pressing and deleting vertices 1, 2, . . . , j

in order from G.

Lemma 2.15. If G ∈ CUPn has instructional Cholesky root U then G1 ∈ CUPn−1

and the instructional Cholesky root of G1 is U1̂.

Proof. Let G = ([n], E) ∈ CUPn with instructional Cholesky root U . The unique

successful pressing sequence of G is n which is realized by

G,G1, G2, . . . , Gn

and hence G1 admits a successful pressing sequence: 2, 3, . . . , n. Furthermore, if

(v1, v2, . . . , vn−1) is a successful pressing sequence of G1, then (1, v1, v2, . . . , vn−1) is a

successful pressing sequence of G. By uniqueness it follows that vi = i + 1 for each

i ∈ [n− 1]. Then G1 admits exactly one successful pressing sequence 2, 3, . . . , n, and

therefore so does G1. It follows that G1 ∈ CUPn−1. Let V be the instructional

19



Cholesky root of G1. The first row of G1 is given by the neighborhood of 2 in G1

and in general the jth row of V is given by NG1(2,3,...,j)(j + 1). However

NG1(2,3,...,j)(j + 1) = NGj
(j + 1)

for each j ∈ [n − 1]. Therefore the jth row of V is the (j + 1)th row of U with the

first entry deleted, since 1 is not a vertex in G1. V is the principal submatrix of U

restricted to rows and columns 2, 3, . . . , n.

Proposition 2.16. [9] An OSP-graph G = ([n], E) has pressing sequence n if and

only if every leading principal minor of its adjacency matrix is nonzero.

Lemma 2.17. Let G = ([n], E) ∈ CUPn with instructional Cholesky root U and let

H = G − n be the induced subgraph of G on [n − 1]. Then H ∈ CUPn−1 and the

instructional Cholesky root of H is Un̂.

Proof. If n = 1 then H = (∅, ∅) which has only the empty sequence as a successful

pressing sequence and its instructional Cholesky root is the empty matrix. Let n > 1.

Observe that NH(1) = NG(1) − {n} so 1 is a looped vertex in H and therefore may

be pressed to obtain H1. For all j ∈ [n− 1]:

NH1(j) =


NH(j)4NH(1), 1j ∈ E(H)

NH(j), 1j /∈ E(H)

=


(NG(j)4NG(1))− {n}, 1j ∈ E(H)↔ 1j ∈ E(G)

NG(j)− {n}, 1j /∈ E(H)↔ 1j /∈ E(G)

=


NG1(j)− {n}, 1j ∈ E(G)

NG1(j)− {n}, 1j /∈ E(G)
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Assume Hi = Gi − n for some 1 ≤ i < n − 1. Then i + 1 is looped in Gi, implying

that it is looped in Hi, so for all j ∈ [n− 1]:

NHi+1(j) =


NHi

(j)4NHi
(i+ 1), {j, i+ 1} ∈ E(Hi)

NHi
(j), {j, i+ 1} /∈ E(Hi)

=


(NGi

(j)4NGi
(i+ 1))− {n}, {j, i+ 1} ∈ E(Gi)

NGi
(j)− {n}, {j, i+ 1} /∈ E(Gi)

=


NGi+1(j)− {n}, {j, i+ 1} ∈ E(Gi)

NGi+1(j)− {n}, {j, i+ 1} /∈ E(Gi)

By induction it follows that n − 1 is a valid pressing sequence for H and Hi =

Gi − {n} for all i ∈ [n − 1]. We proceed to show that n − 1 is the only successful

pressing sequence for H. Let A be the adjacency matrix of G (under the ordering

n) and let U be its instructional Cholesky root. Let σ = (v1, v2, . . . , vn−1) be a valid

pressing sequence for H and let τ = (v1, v2, . . . , vn−1, n). Let P be the permutation

matrix that encodes τ . Then An̂ is the adjacency matrix ofH under the usual ordering

< and Pn̂An̂Pn̂T is the adjacency matrix of H under the ordering given by σ. Let V

be the instructional Cholesky root of H under σ. Observe that by Proposition 2.16,

det(A) 6= 0 and so det(PAP T ) = det(P ) det(A) det(P T ) = det(A) 6= 0. Furthermore,

PAP T =


Pn̂

0
...

0

0 · · · 0 1




An̂

∗
...

∗

∗ · · · ∗ 1




Pn̂

0
...

0

0 · · · 0 1



T

=


Pn̂An̂Pn̂

T

∗
...

∗

∗ · · · ∗ ∗


=


V TV

∗
...

∗

∗ · · · ∗ ∗


.
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Recall that H has n − 1 as a successful pressing sequence and so every successful

pressing sequence must have length n − 1. It follows that all the diagonal entries of

(upper/lower-triangular matrices) V and V T must be 1, implying that every leading

principal minor of PAP T is non-zero. By Proposition 2.16, τ is a successful pressing

sequence for G. By uniqueness τ = n and hence σ = n − 1. We may conclude that

H ∈ CUPn−1.

Corollary 2.18. Let G ∈ CUPn with instructional Cholesky root U . Then any prin-

cipal submatrix of U on k consecutive rows and columns is the instructional Cholesky

root of a CUPk graph.

Proof. Follows by iteratively applying Lemmas 2.15 and 2.17.

Corollary 2.19. If U is the instructional Cholesky root of G ∈ CUPn then U must

have all 1’s on the main diagonal and super-diagonal.

Proof. Let H = ([2], E) ∈ CUP2. Since it is connected, {1, 2} ∈ E; since it is

order-pressable, 1 must be looped; and since it is uniquely pressable, NH(1) 6=

NH(2). Therefore CUP2 = {([2], {{1, 1}, {1, 2}})} which corresponds to instruc-

tional Cholesky root

1 1

0 1

. The result holds by application of Corollary 2.18.

2.3 Characterizing Unique Pressability

Definition 2.20. For an upper-triangular matrix M ∈ Fn×n2 with columns C1, C2,

. . ., Cn with respective column weights w1, w2, . . . , wn, we say:

• Cj = (c1,j, c2,j, . . . , cn,j)T has Property 1 if


ci,j = 1, j − wj < i ≤ j

ci,j = 0, otherwise
.

• M has Property 1 if each of its columns have Property 1.

• M has Property 2 if 1 = w1 ≤ w2 ≤ · · · ≤ wn
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• M has Property 3 if wi > 2 implies wi+2 > wi, for i ∈ [n− 2].

• M has Property 4 if, whenever some non-initial column has odd weight, then it

must have full weight and so must each column to its right.

In other words, Property 1 is the condition that the nonzero entries in each column

are consecutive and end at the diagonal; Property 2 is the condition that the weights

of the columns are nondecreasing; and Property 3 is the condition that any column

must have weight greater than that of the column two indices to its left if the latter

has weight more than 2. Note also that Property 4 implies that any even-indexed

column must have even weight; otherwise, it would have full weight, i.e., weight

equal to the column index, which is even, a contradiction. LetMn = {M ∈ Fn×n2 |

M satisfies Properties 1, 2, 3 and 4}. Observe that if M ∈Mn then Mn̂ ∈Mn−1.

Lemma 2.21. Let n > 1 andM ∈ Fn×n2 with columns and rows indexed by 1, 2, . . . , n.

If M ∈Mn then M1̂ ∈Mn−1.

Proof. Let M = (ci,j)i,j∈[n] so that M1̂ = (ci,j)2≤i,j≤n. Let w1, w2, .., wn be the column

weights ofM . Let the columns and rows ofM1̂ be C2, . . . , Cn with weights w′2, . . . , w′n,

respectively. Observe that w′j = wj − c1,j for each 2 ≤ j ≤ n. It is immediate that

M1̂ inherits Property 1 from M . By Property 4 we know that the second column

of M (as well as any even-indexed column of M) has even weight, it follows that

w2 = 2 and so w′2 = 2 − c1,2 = 1. Suppose towards a contradiction w′i > w′i+1 for

some 2 ≤ i ≤ n− 1. Then

w′i + 1 > w′i+1 + 1 ≥ w′i+1 + c1,i+1 = wi+1 ≥ wi ≥ w′i

and so w′i = wi. Then

w′i+1 < w′i = wi ≤ wi+1 = w′i+1 + c1,i+1 ≤ w′i+1 + 1

and so wi+1 = w′i+1 + 1. Hence we have

wi+1 = w′i+1 + 1 < w′i + 1 = wi + 1 ⇒ wi+1 ≤ wi.
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It follows that wi+1 = wi and therefore column i + 1 does not have full weight. By

Property 1 of M we have c1,i+1 = 0 and therefore w′i+1 = wi+1, a contradiction. It

follows that M1̂ has Property 2.

Suppose now that 2 < w′j for some 2 ≤ j ≤ n−2. Then wj ≥ w′j > 2 so wj+2 > wj

by Property 3 of M . If wj = wj+2 − 1 then either column j or column j + 2 has odd

weight which implies wj+2 = j + 2 by Property 4 of M . But then wj = j + 1 which

is not possible. Therefore,

wj < wj+2 − 1

and

w′j ≤ wj < wj+2 − 1 ≤ w′j+2

which shows that M1̂ has Property 3. To show Property 4 suppose w′k ≡ 1 for some

k > 2 (2 is the initial column of M1̂). Observe that

w′k + 1 ≥ wk ≥ w′k.

If wk = w′k then wk ≡ 1 and not full weight, contradicting Property 4. Hence

wk = w′k + 1

and c1,k = 1. It follows from Property 1 that wk = k > 2. Hence w′k > 1 and since

w′k ≡ 1 then w′k ≥ 3 and wk ≥ 4.

By applying Property 3 of M we get k + 2 ≥ wk+2 ≥ wk + 1 = k + 1. Since

1 ≡ w′k = k − 1 we have that wk+2 is the weight of an even-indexed column, and so

wk+2 ≡ 0 and wk+2 = k + 2.

By arguing inductively, for all j ∈ [b(n− k)/2c]:

0 ≡ k + 2j ≥ wk+2j ≥ wk+2(j−1) + 1 = k + 2j − 1 ≡ 1

hence wk+2j = k + 2j.

It follows that for all j ∈ [b(n− k)/2c]:

w′k+2j = (k + 2j)− c1,k+2j = k + 2j − 1.

24



Furthermore, for all j ∈ [0, d(n− k − 1)/2e], wk+2j+1 ≥ wk+2j = k + 2j and so

wk+2j+1 = k + 2j + c1,k+2j+1. Therefore, for all j ∈ [0, d(n− k − 1)/2e]:

w′k+2j+1 = wk+2j+1 − c1,k+2j+1 = k + 2j.

It follows that, inM1̂, all the columns of index at least k have full weight and therefore

M1̂ has Property 4.

Observe that the previous lemma can be extended to any matrix M ∈ Mn by

relabeling the rows and columns. We now proceed to our main theorem, which

characterizes the set CUPn. This in turn provides a characterization of all the

uniquely pressable simple pseudo-graphs (up to isomorphism), since the unique non-

trivial, connected component of a simple pseudo-graph can always be relabeled to be

a CUP graph.

Notation 2.22. For an OSP-graph G let L(G) = {v | v ∈ V (G) is a looped vertex}.

Theorem 2.23. Let G = ([n], E) with instructional Cholesky root U . Then G ∈

CUPn if and only if U ∈Mn.

Proof. For n = 1 the conditions ofM1 are only met by G = ([1], {(1, 1)}) which in

turn is the only full-length uniquely pressable OSP-graph on vertex set [1]. Let n > 1

and assume towards an inductive argument that the statement holds for n − 1. We

begin by showing sufficiency, that is if U ∈ Mn then G ∈ CUPn. Choose and fix

U = (ui,j) ∈ Mn. Let G = ([n], E) be the OSP-graph with instructional Cholesky

root U . By Properties 1 and 2, ui,i = 1 for each i ∈ [n]. This implies that vertex i is

looped in Gi−1 for each i ∈ [n]. It follows that n is a successful pressing sequence for

G. We will show it is the only successful pressing sequence for G. Fix a successful

pressing sequence σ = σ1, . . . , σn for G. If σ1 = 1 then G(σ1) has adjacency matrix

A(G1) = UT
1̂ U1̂
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By Lemma 2.21, U1̂ ∈ Mn−1 and therefore G(σ1) ∈ CUPn−1 by the inductive

hypothesis. Hence G(σ1) has exactly one pressing sequence, and, since G(σ1) = G1,

the sequence is (2, 3, . . . , n). We may conclude that if σ1 = 1 then σ = n. Assume, by

way of contradiction, that σ1 = t > 1. We will show that G(t) contains a non-trivial

loopless component and therefore is not pressable. Since t is a looped vertex it must

have odd weight, and therefore full weight by Property 4. Let k = min
2≤i≤n

{i | wtG(i) ≡

1} and let

L = [2, k − 1], R = [k, n], L = L ∪ {1}, and R = R ∪ {1}.

By Property 4 of U , all the vertices in R have full weight. For all i ∈ [n] and r ∈ R:

〈i, r〉G =
n⊕
k=1

uk,iuk,r =
r⊕

k=1
(uk,i · 1)⊕

n⊕
k=r+1

(uk,i · 0) = min {wtG(i),wtG(r)} .

By Property 4, if wtG(i) ≡ 1 then i ∈ R. It follows that for all r ∈ R,

NG(r) =


L(G) ∩ [r − 1], if r ≡ 0

L(G) ∪ [r, n], if r ≡ 1
⊆ L(G) ⊆ R.

Then

L
(
G(t)

)
= L(G)4NG(t) ⊆ R.

However, 〈1, t〉 = 1 because t has full weight, so 1 ∈ L(G) ∩NG(t) and

L
(
G(t)

)
⊆ R.

Similarly, for r ∈ R

NG(t)(r) = NG(r)4NG(t) ⊆ R

since 1 ∈ NG(r) ∩NG(t). It follows that the induced subgraphs G(t)
[
L
]
and G(t) [R]

are contained not connected by a path in G(t). By applying Corollary 2.19, observe

that 2 /∈ NG(t) and 2 ∈ NG(1), so

NG(t)(1) = NG(1)4NG(t) 3 2,
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and therefore G(t)
[
L
]
contains an edge but no loops. It follows that G(t) does not

admit a successful pressing sequence, a contraction. Therefore σ1 6> 1.

We now proceed to show necessity: if G ∈ CUPn, then U ∈Mn. Let G ∈ CUPn

with instructional Cholesky root U = (ui,j). By Lemmas 2.15 and 2.17 we have that

G1, G− n ∈ CUPn−1 and therefore by the inductive hypothesis U1̂, Un̂ ∈Mn−1. For

simplicity we let H = G − n and wi = wtG(i) for i ∈ V (G) throughout the rest of

this proof. It suffices to show the following four conditions hold for U :

(I) Property 1 holds for the nth column,

(II) wn ≥ wn−1,

(III) If wn−2 > 2 then wn > wn−2,

(IV) If wn 6= n then the first column of M is the only one with odd weight.

We have four cases to consider.

First Case: u1,n = u2,n = 1. Since u2,n = 1 then Property 4 of U1̂ gives us ui,n = 1

for all 2 ≤ i ≤ n. It follows that wn = n and therefore (I), (II), (III), and (IV) hold.

Second Case: u1,n = u2,n = 0. (I) holds by Property 1 of U1̂. Recall that the

diagonal and super-diagonal entries of U must be 1 by Corollary 2.19 so we need not

consider the case where n ≤ 3. For n = 4 we have two matrices to consider,

V1 =



1 1 0 0

0 1 1 0

0 0 1 1

0 0 0 1


and V2 =



1 1 1 0

0 1 1 0

0 0 1 1

0 0 0 1


.

V1 satisfies (I) - (IV). V2 /∈ CUP4 since (3, 4, 1, 2) is also a successful pressing se-

quence. Thus we may assume n ≥ 5 to show (II), (III) and (IV) hold.
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Claim 2.24. u1,n−1 = 0

Proof of Claim 2.24. Assume towards a contradiction that u1,n−1 = 1. Property 1 of

Un̂ tells us that

wn−1 = wtUn̂
(n− 1) = n− 1

and so

wtU1̂
(n− 1) = wn−1 − u1,n−1 = n− 2.

By Property 4 of U1̂, since u2,n = 0, then

wtU1̂
(n− 1) ≡ 0.

It follows that

wn−1 = n− 1 ≡ 1.

Recalling that u1,n = u2,n = 0, by Property 2 of U1̂ we have

n− 2 ≥ wtU1̂
(n) ≥ wtU1̂

(n− 1) = n− 2

and so

wn = wtU1̂
(n) = n− 2 ≡ 0.

Let

k = min
1<i≤n

{i | wi ≡ 1}.

Since G ∈ CUPn and k 6= 1 then G(k) is not a pressable graph. We will use this to

arrive at a contradiction. Since wn ≡ 0,

L(G) = L(H).

By the minimality of k, by Property 4 of Un̂, and since n− 1 ≡ 1:

L(H) = {1} ∪ {k, k + 2, . . . , n− 1}.
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Observe that

〈k, n〉G =
n⊕
i=1

ui,kui,n =
2⊕
i=1

(ui,k · 0)⊕
k⊕
i=3

(1 · 1)⊕
n⊕

i=k+1
(0 · ui,n) ≡ k − 2 ≡ 1

and for i ∈ [n− 1]

〈k, i〉G = 〈k, i〉H ≡ min(wtH(k),wtH(i))

and so

NG(k) = {1} ∪ [k, n].

It follows that

L(G(k)) = L(G)4NG(k) = {k + 1, k + 3, . . . , n− 2, n}.

Since NG(k)∩ [k−1] = {1}, the only potential edge in G [[k − 1]] affected by pressing

k is the loop on 1. Furthermore G [[k − 1]] ∈ CUPk−1 by Corollary 2.18 so we may

conclude that G(k) [[k − 1]] is connected. If k 6= n− 1 then 〈k+ 1, n〉G ≡ k− 1 ≡ 0 so

NG(k + 1) = {1, k}

and so

NG(k)(k + 1) = NG(k)4NG(k + 1) = [k + 1, n].

Then it follows that G(k) [[k + 1, n]] is a connected graph with looped vertex (k + 1).

Observe that

〈1, n〉G = 0, 〈1, k〉G = 〈k, n〉G = 1

and so

〈1, n〉G(k) = 1

Therefore, if k 6= n − 1, G(k) is a connected graph with at least one looped vertex,

contradicting the fact that G ∈ CUPn. We must conclude that k = n − 1. Then

NG(k) = {1, n− 1, n} and so pressing k only affects four pairs of vertices:

{(1, 1), (1, n), (n− 1, n− 1), (n, n)}.
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Once again, since G [[k − 1]] is connected, G(k) [[k − 1]] must be connected as well

(although possibly without loops). However

〈n, n〉G = 0, 〈1, n〉G = 0, and 〈1, k〉G = 〈k, n〉G = 1

so

〈1, n〉G(k) = 1 and 〈n, n〉G(k) = 1.

It follows that G(k) is a connected graph with at least one looped vertex, namely n.

This implies G(k) is a pressable graph, contradicting that G ∈ CUPn. Claim 2.24 is

established.

Claim 2.25. u1,n−2 = 0

Proof of Claim 2.25. Assume towards a contradiction that u1,n−2 = 1. By Property

1 of Un̂

wn−2 = wtUn̂
(n− 2) = n− 2.

By Claim 1

wtUn̂
(n− 1) < n− 1

and so by Property 4

wtUn̂
(n− 2) ≡ 0

and therefore n ≡ 0. We then have

wtU1̂
(n− 2) = wn−2 − u1,n−2 = n− 3 ≡ 1

which contradicts Property 4 of U1̂ since u2,n = 0. This establishes Claim 2.25.

We may now assume u1,n−2 = u1,n−1 = 0 and proceed to show (II)-(IV). (II)

follows from Property 2 of U1̂ since

wn = wtU1̂
(n) ≥ wtU1̂

(n− 1) = wn−1.
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To verify (III), observe that if wn−2 > 2 then

wtU1̂
(n− 2) > 2 ⇒ wn = wtU1̂

(n) > wtU1̂
(n− 2) = wn−2

by Property 3 on U1̂. (IV) is established by observing that

u1,n−1 = 0 ⇒ wtUn̂
(n− 1) < n− 1 ⇒ wtUn̂

(i) ≡ 0 for all 2 < i < n

by Property 4 of Un̂ and so

wi = wtUn̂
(i) ≡ 0 for all 2 < i < n.

Third Case: u1,n = 0, u2,n = 1.

By Property 1 of U1̂ we have that ui,n = 1 for all 2 ≤ i ≤ n. It follows that wn = n−1

and so (I) and (II) hold. Furthermore, since wn−2 ≤ n− 2 then (III) holds. To verify

(IV), we need to show that L(G) = {1}.

Claim 2.26. L(G) 6= {1, n}.

Proof of Claim 2.26. Assume, by way of contradiction, that L(G) = {1, n}. Since

G ∈ CUPn and n 6= 1 then G(n) must contain a non-trivial loopless component C.

Choose and fix p ∈ V (C). Since C is non-trivial we may assume p 6= 1. Since H ∈

CUPn−1 there must exist a path from p to a looped vertex in H. Since L(H) = {1}

this looped vertex must be 1. Choose such a path P ,

P = v0 . . . v`

where p = v0 and v` = 1. Observe that

〈1, n〉G = 0

so 1 is a looped vertex in G(n) as well. Then some interior edge of P must be removed

upon pressing n as otherwise p would have a path to a looped vertex in G(n). Let

j = min
0≤i<`
{i | 〈vi, n〉G = 1}
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then

P ′ = v0Pvj

is a path from p to a looped vertex in G(k), a contradiction. This establishes Claim

2.26.

Claim 2.27. If n ≡ 0 then L(G) = {1}.

Proof of Claim 2.27. Let n ≡ 0. Assume, by way of contradiction, that L(G) 6= {1}

and let

k = min
3≤i≤n−1

{i | wi ≡ 1}.

Choose a non-trivial loopless component C of G(k) and a vertex p ∈ V (C) \ {1}.

Recall that u1,n = 0 and u2,n = 1. Then

〈n, n〉G =
n⊕
i=1

ui,n ≡ n− 1 ≡ 1 and 〈k, n〉G =
n⊕
i=1

ui,k ≡ k − 1 ≡ 0

implies

〈n, n〉G(k) = 1

so n 6= p. For any j ∈ [k+ 1, n− 1] \L(G), since H ∈ CUPn−1 and wk ≡ 1, Property

3 implies that 〈k, j〉H = 1, whence

〈j, j〉G = 0 and 〈k, j〉G = 1 implies 〈j, j〉G(k) = 1

so j is looped in G(k) and therefore p /∈ [k+1, n−1]\L(G). If j ∈ [k+1, n−1]∩L(G)

then j ∈ [k + 2, n− 1] and

〈j, j − 1〉G = 0 and 〈k, j − 1〉G = 〈k, j〉G = 1 implies 〈j, j − 1〉G(k) = 1

so p /∈ [k + 1, n− 1] ∩ L(G). Therefore

p ∈ [2, k − 1].

32



Since G [[k − 1]] ∈ CUPk−1 then there exists a path P in G [[k − 1]] connecting p to

a looped vertex; since L (G [[k − 1]]) = L(G) ∩ [k − 1] = {1} then the looped vertex

must 1.

P = v0 . . . v`

where v0 = p and v` = 1. Note that

NG(k) ∩ V (P ) = {1}

because, if i = min{j : vj ∈ NG(k)} is not 1, then vi is looped in G(k) and in the same

component (namely, C) with p, a contradiction. Then all the interior edges of P are

unaffected by pressing k (although the loop on 1 is removed). If 2 ∈ V (P ) then

P ′ = v0P2n

is a path from p to n in G(k). If 2 /∈ V (P ) then

P ′ = v0Pv`2n

is a path from p to n in G(k). Since n is looped in G(k) this contradicts that C is a

non-trivial loopless component. Claim 2.27 is established.

By Claims 2.26 and 2.27 we have only one case left to consider. Let n ≡ 1 and

assume, by way of contradiction, that L(G) 6= {1}. Let

k = min
3≤i≤n−1

{i | wi ≡ 1}.

Choose a non-trivial component C of G(k) and a vertex p ∈ V (C)\{1}. Observe that

n− 1 ≡ 0 so wtG(n− 1) ≡ 0 by Property 4 of H. Then, by Property 4 of H

〈n− 1, n− 1〉G ≡ n− 1 ≡ 0 and 〈k, n− 1〉G ≡ k ≡ 1

which implies

〈n− 1, n− 1〉G(k) = 1
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so n− 1 6= p. Similarly,

〈n− 1, n〉G = 1 · 0⊕
n−1⊕
i=2

1 · 1 ≡ n− 2 ≡ 1 and 〈k, n〉G = 1 · 0⊕
k⊕
i=2

1 · 1 ≡ k − 1 ≡ 0

implies

〈n− 1, n〉G(k) = 1

so n 6= p as it is connected to a looped vertex. If j ∈ [k + 1, n− 2] \ L(G) then

〈j, j〉G = 0 and 〈k, j〉G = 1 implies 〈j, j〉G(k) = 1

so p /∈ [k + 1, n− 2] \ L(G). If j ∈ [k + 1, n− 2] ∩ L(G) then j ∈ [k + 2, n− 2] and

〈j, j − 1〉G = 0 and 〈k, j − 1〉G = 〈k, j〉G = 1 implies 〈j, j − 1〉G(k) = 1

so p /∈ [k + 1, n− 2] ∩ L(G). It follows that

p ∈ [2, k − 1].

Since G [[k − 1]] ∈ CUPk−1 has only 1 as a looped vertex then G [[k − 1]] contains a

path

P = v0 . . . v`

where v0 = p and v` = 1. Since NG(k) ∩ [k − 1] = {1} none of the interior edges are

removed upon pressing k. If 2 ∈ V (P ) we have

P ′ = v0P2n(n− 1)

is a path to a looped vertex in G(k) and if 2 /∈ V (P ) then

P ′ = v0Pv`2n(n− 1)

is a path to a looped vertex in G(k). This contradicts that C is a loopless component

in G(k). We conclude that L(G) = {1} and therefore establish (IV).
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Fourth Case: u1,n = 1, u2,n = 0.

We show that this case cannot occur. Assume it does to reach a contradiction. Since

u2,n = 0 then by Property 4 only the initial column of U1̂ has odd weight. It follows

that

wn = wtU1̂
(n) + 1 ≡ 1.

Let k = min
2≤i≤n

{i | wi ≡ 1}.

Claim 2.28. k 6= n

Proof of Claim 2.28. Assume, by way of contradiction, that k = n. Then L(G) =

{1, n}. Since G ∈ CUPn we may conclude that G(n) contains a non-trivial loopless

component C. Choose and fix p ∈ V (C) \ {1}. Since H = G [[n− 1]] ∈ CUPn−1

there exists a path P in H that connects p to a looped vertex, namely 1. Let

P = v0 . . . v`

where v0 = p and v` = 1. Observe that

〈v`, n〉G = 〈1, n〉G = 1

and let

m = min
0≤i≤`
{i | vi ∈ NG(n)}.

If m < ` then

P ′ = v0Pvm

is a path to a looped vertex in G(n), contrary to assumption. Assume m = ` and let

q = v`−1.

1 = 〈v`, v`−1〉G = 〈1, q〉G

so u1,q = 1. By Property 1 of Un̂, ui,q = 1 for all i ∈ [q] and so wq = q. Let

r = min
2≤i≤n

{i | ui,n = 1}.
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Since 〈q, n〉G = 〈v`−1, n〉G = 0 then

0 =
n⊕
i=1

(ui,qui,n) = (1 · 1)⊕
r−1⊕
i=2

(ui,q · 0)⊕
q⊕
i=r

(1 · 1)⊕
n⊕

i=q+1
(0 · 1)

and therefore

〈q, n〉G = 0 = 1⊕
q⊕
i=r

1

which implies r ≤ q. Furthermore q 6= n− 1 since otherwise we would have

wn−1 = wq = q = n− 1

and

n− 1 ≥ wn = u1,n + wtU1̂
(n) = 1 + wtU1̂

(n) ≥ 1 + wtU1̂
(n− 1) = 1 + (n− 2)

which would imply

wn = n− 1 = wq ≡ 0

contradicting that n is a looped vertex. Thus q 6= n− 1 and so q+ 1 < n which gives

us that wq+1 ≡ 0 by Property 4 of U1̂ and the fact that u2,n = 0. However,

q = wq = wtUn̂
(q) ≤ wtUn̂

(q + 1) = wq+1 ≤ q + 1

implies wq+1 = q since q + 1 ≡ 1 and therefore u1,q+1 = 0 by Property 1 of Un̂. Then

〈q, q + 1〉G =
n⊕
i=1

(ui,q · ui,q+1) = (1 · 0)⊕
q⊕
i=2

(1 · 1)⊕ (0 · 1)⊕
n⊕

i=q+2
(0 · 0) = 1

and

〈q + 1, n〉G = (0 · u1,n)⊕
r−1⊕
i=2

(ui,q+1 · 0)⊕
q+1⊕
i=r

(1 · 1)⊕
n⊕

i=q+2
(0 · ui,n)

and so

〈q + 1, n〉G =
q+1⊕
i=r

1 = 1⊕
q⊕
i=r

1 = 〈q, n〉G = 0

Observe that

〈2, q + 1〉G =
2⊕
i=1

ui,q+1 = 1
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so

P ′ = q(q + 1)2

is a path in G whose q(q + 1) and (q + 1)2 edges are unaffected by pressing n (since

(q + 1) /∈ NG(n)) and since

〈2, 2〉G =
2⊕
i=1

ui,2 = 0 and 〈2, n〉G =
2⊕
i=1

ui,n = 1

P ∗ = pPqP ′2

is a path from p to a looped vertex in G(n), contrary to assumption that p is contained

in a loopless component of G(n). This contradicts that G ∈ CUPn and establishes

Claim 2.28.

We proceed under the assumption that

k = min
2≤i≤n

{i | wi ≡ 1} < n,

once again in search of a contradiction. Observe that we need not consider the case

where n ≤ 3 since the super-diagonal entries must be all 1. Furthermore, if n = 4

we have only two matrices to consider, both of which have an additional successful

pressing sequence given by (4, 3, 2, 1):

1 1 0 1

0 1 1 0

0 0 1 1

0 0 0 1


and



1 1 1 1

0 1 1 0

0 0 1 1

0 0 0 1


.

Assume n ≥ 5. By Property 4 of Un̂ we have u1,n−1 = 1 and so by Property 1 and 2

of Un̂

n− 1 ≥ wn = wtU1̂
(n) + 1 ≥ wtU1̂

(n− 1) + 1 = (n− 2) + 1 = n− 1

which gives us wn = n− 1. Observing that wtU1̂
(n) = n− 2 and u2,n = 0 we conclude

from Property 4 of U1̂ that n − 2 ≡ 0, so n is looped in G. Since G ∈ CUPn then
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G(n) must contain a non-trivial loopless component, say C. Choose and fix a vertex

p ∈ V (C) \ {1}. Observe that G [[p]] ∈ CUPp by Corollary 2.18. If p ∈ L(G) then

pressing n must remove its loop so

〈2, p〉G = 0 and 〈2, n〉G = 〈p, n〉G = 1

which implies that 〈2, p〉G(n) = 1 and 2 ∈ L(G(n)), contradicting that C is loopless. It

follows that p /∈ L(G) and therefore, in G [[p]], we have a path P from p to a looped

vertex b:

P = v0 . . . v`

where v0 = p, v` = b, and vi is loopless in G [[p]] for 0 < i ≤ `. Observe that

NG(n) ∩ {v1, v2, . . . , v`} = ∅ since otherwise we would have a looped vertex in C. It

follows that the interior edges of P are unaffected by pressing n in G and therefore

it must be the case that pressing n in G removes the loop from b = v`. By Property

4 on Un̂ looped vertices in H have full weight. Observe that

n⊕
i=1

(ui,bui,n) = (1 · 1)⊕ (u2,b · 0)⊕
n⊕
i=3

(ui,b · 1) ≡


1, if b = 1

1 + (b− 2), if b 6= 1

Since 1 = 〈b, n〉G =
n⊕
i=1

(ui,bui,n) this implies that b = 1. (Otherwise, b is even but

looped in G, contradicting Property 4.) Observe that w3 = 3 would imply w4 =

wtUn̂
(4) = 4 by Property 4 of Un̂, and then wtU1̂

(4) ≡ 1 but u2,n = 0, contradicting

Property 4 of U1̂. Then

w3 = wtUn̂
(3) = 2

by Property 2 of Un̂ and so

〈3, 3〉G = 0 and 〈3, n〉G = 1 implies 〈3, 3〉G(n) = 1

and so 3 /∈ V (P ). Furthermore

〈1, 3〉G = 0 and 〈1, n〉G = 〈3, n〉G = 1 implies 〈1, 3〉G(n) = 1.
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Therefore

P ′ = v0Pv`3

is a path to a looped vertex in G(n). This implies G /∈ CUPn contrary to assumption.

Therefore Case 4 cannot occur.

2.4 Recognition and Enumeration

A straightforward and very slow way to check if a simple pseudo-graph on n vertices

is uniquely pressable is to check the pressability of each one of its n! orderings. Here

we offer a substantially faster algorithm.

Algorithm 1: Find a Pressing Order

1: input: Adjacency matrix A with entries ai,j for i, j ∈ [n]

2: output: Re-indexed matrix P TAP

3: M ← A

4: P ← 0n×n

5: t← 1

6: while t ≤ n do

7: maxDegree← 0

8: indexMaxDegree← 0

9: i← 1

10: while i ≤ n do

11: degi ← 0

12: if mi,i = 1 then

13: degi ←
∑n
j=1mi,j

14: if degi > maxDegree then

15: maxDegree← di

16: indexMaxDegree← i

17: i← i+ 1
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18: if indexMaxDegree = 0 then

19: if ∑n
`=1

∑n
j=1 m`,j > 0 then

20: return False {Not a Pressable Graph}

21: else

22: k ← indexMaxDegree

23: pt,k ← 1

24: t← t+ 1

25: for ` ∈ [n] do

26: for j ∈ [n] \ {k} do

27: m`,j ← m`,j ⊕ (mk,j ·m`,k)

28: for j ∈ [n] do

29: mk,j ← 0

30: return P TAP

Algorithm 2: Construct instructional Cholesky root

1: input: Adjacency matrix A with entries ai,j for i, j ∈ [n]

2: output: Instructional Cholesky matrix U

3: U ← 0n×n

4: k ← 1

5: while k ≤ n do

6: if ak,k = 1 then

7: for j ∈ [n] do

8: uk,j ← ak,j

9: for i ∈ [k + 1, n] do

10: for j ∈ [n] do

11: ai,j ← ai,j ⊕ (ak,j · ai,k)
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12: k ← k + 1

13: else

14: k ← n+ 1

15: return U

Algorithm 3: Does this instructional Cholesky correspond to a uniquely pressable

OSP?

1: input: Instructional Cholesky matrix U with entries ui,j for i, j ∈ [n]

2: output: True or False

3: j ← 1

4: while j ≤ n do

5: i← 1

6: while i ≤ j do

7: if ui,j = 0 then

8: i← i+ 1

9: else if ∑j
`=i u`,j < j − i+ 1 then

10: return False

11: j ← j + 1

12: j ← 1

13: while j < n do

14: if ∑j
`=1 u`,j >

∑j+1
`=1 u`,j+1 then

15: return False

16: else if j ≤ n− 2 and ∑j
`=1 u`,j > 2 and ∑j+2

`=1 u`,j+2 = ∑j
`=1 u`,j then

17: return False

18: else if ∑j+1
`=1 u`,j+1 ≡ 1 and ∑j+1

`=1 u`,j+1 6= j + 1 then

19: return False

20: else
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21: j ← j + 1

22: return True

Corollary 2.29. The unique pressability of G can be decided in time O(n3).

Proof. Let G = (V,E) be a simple pseudo-graph on n vertices. Let G′ = ([n], E ′)

be the result of relabeling of V (G) so that G′ is order-pressable. If G is uniquely

pressable then the instructional Cholesky root of G′ is inMn. Observe that for each

k ∈ L(G′) \ {1},

NG′(k) = {1} ∪ [k, n]

since by Property 4 each ` ∈ [k, n] has full weight and therefore 〈k, `〉G′ ≡ k ≡ 1.

However, for each k ∈ L(G′) \ {1} and ` ∈ [k, n], 〈1, `〉G′ = 1 by Property 4, and

〈1, 2〉G′ = 1 and 〈2, k〉G′ ≡ 2 ≡ 0.

Thus, NG′(1) ⊇ {2} ∪NG′(k) ) NG′(k).

Therefore 1 is the unique looped vertex of largest degree. It follows that to

find a (potentially unique) pressing order it suffices to iterate the process of finding

the looped vertex of largest degree and pressing it. Index the vertices of graph G

arbitrarily and define A = (ai,j) ∈ Fn×n2 , the adjacency matrix of the graph. We

proceed to describe three algorithms which have been included in the appendix.

Algorithm 1 finds a successful pressing sequence for G (given that one exists)

by finding the looped vertex of largest degree and pressing it; this has running time

O(n3), as it amounts to performing in-place Gaussian elimination on an n×n matrix.

Algorithm 2 computes the instructional Cholesky root of an ordered adjacency ma-

trix and once again is done by performing Gaussian elimination. Finally, Algorithm

3 checks if an upper-triangular matrix has the properties of Mn which is done by

computing no more than n partial sums for each of n columns and comparing them

sequentially. Algorithm 3 also has running time O(n3).
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Corollary 2.30. Let n > 0. Let G = ([n], E) and let H = ([n + 1], E(H)) be the

result of adding a vertex “n + 1” adjacent to each looped vertex in G, with a loop at

n+ 1 if and only if n is even. If G ∈ CUPn, then H ∈ CUPn+1.

Proof. Suppose G ∈ CUPn with adjacency matrix A and instructional Cholesky root

U = (ui,j). Observe that H = ([n+ 1], E(H)) where

E(H) =


E(G) ∪ {(i, n+ 1) | i ∈ L(G)} ∪ {(n+ 1, n+ 1)}, if n ≡ 0

E(G) ∪ {(i, n+ 1) | i ∈ L(G)}, if n ≡ 1

Let V =


U

1
...

1

0 · · · 0 1


and observe that

V T · V =


A

b1,n+1

...

bn,n+1

bn+1,1 · · · bn+1,n bn+1,n+1


where bn+1,i = 1 if and only if wtV (i) ≡ 1 if and only if i ∈ L(G) or i = n + 1 ≡ 1.

It follows that V TV is a Cholesky factorization for the adjacency matrix of H. Since

G ∈ CUPn then U has 1’s along the diagonal and so U and V are full rank matrices.

Since Cholesky factorizations are unique for full-rank matrices [9] then V must be

the instructional Cholesky root of H. V inherits the properties of Mn in its first

n columns from U . Furthermore the last column of V has full weight n + 1, so

V ∈Mn+1, and therefore H ∈ CUPn+1.
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Corollary 2.31. Let n > 0. Let G = ([2, n + 1], E) and H = ([n + 1], E(H)) be

the result of removing all the edges, including loops, from G[L(G)], adding a looped

vertex “ 1” adjacent to all of L(G). If G ∈ CUPn then H ∈ CUPn+1.

Proof. Let G ∈ CUPn, recall that by Property 4 (of its instructional Cholesky root)

the looped vertices in G form a clique. The only looped vertex in H is 1 so if H

admits a successful pressing sequence it must begin with 1. However H(1) = G since

pressing and deleting 1 creates an edge between any two vertices in L(G). It follows

that H has exactly one successful pressing sequence: n + 1. H ∈ CUPn+1.

Notation 2.32. CUP[n] is the set of connected, uniquely pressable ordered<N simple

pseudo-graphs on vertex set [n].

Corollary 2.33. Up to isomorphism, the number of connected, uniquely pressable

simple pseudo-graphs on n > 1 vertices is

∣∣∣CUP[n]

∣∣∣ =


3(n−2)/2, n is even

2 · 3(n−3)/2, n is odd.

Proof. For n = 2, the result holds since

CUP[2] = {([2], {(1, 1), (1, 2)})} .

We proceed by induction. Let n ≥ 2 be even and assume
∣∣∣CUP[n]

∣∣∣ = 3(n−2)/2. Choose

and fix G = ([n], E) ∈ CUP[n] with adjacency matrix A and instructional Cholesky

root U = (ui,j). Let G′ = ([2, n+ 1], E ′) be a re-indexing of G given by i 7→ i+ 1 for

all i ∈ [n]. Let H1 = ([n+ 1], E1), H2 = ([n+ 1], E2) where

E1 = E ∪ {(i, n+ 1) | i ∈ L(G)} ∪ {(n+ 1, n+ 1)}

and

E2 = E ′4 ((L(G′) ∪ {1})× (L(G′) ∪ {1})) .
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By Corollaries 2.30 and 2.31, H1, H2 ∈ CUP[n+1]. H1 has at least two looped vertices

(1 and n+ 1) and H2 has only one looped vertex (1), so H1 6= H2. Furthermore, the

instructional Cholesky roots of H1 and H2 include U as a principal submatrix on

consecutive rows and columns so it is not possible that we would have gotten H1 or

H2 by applying Corollaries 2.30 or 2.31 to other graphs in CUP[n]. It follows that

∣∣∣CUP[n+1]

∣∣∣ ≥ 2 ·
∣∣∣CUP[n]

∣∣∣ = 2 · 3(n−3)/2.

Consider now any H ∈ CUP[n+1] with instructional Cholesky root V = (vi,j). If

v1,n+1 = 0 then let G′ = H(1) and let G be the re-indexing of V (G) given by i 7→ i−1

for all i ∈ [2, n+1]. By Lemma 2.15, G ∈ CUP[n] and therefore H can be constructed

from G using Corollary 2.31. If v1,n+1 = 1 then vi,n+1 = 1 for all i ∈ [n + 1] because

of Property 4 by appeal to Theorem 2.23. Let G = H − {n + 1}. By Lemma 2.17,

G ∈ CUP[n] and hence H can be obtained by applying Corollary 2.30 to G. It follows

that ∣∣∣CUP[n+1]

∣∣∣ ≤ 2 ·
∣∣∣CUP[n]

∣∣∣ = 2 · 3(n−3)/2.

We count
∣∣∣CUP[n+2]

∣∣∣ in a similar, though slightly more complicated, manner. Given

G ∈ CUP[n], let H1 be result of two successive applications of Corollary 2.30. Let

H2 be the result of applying Corollary 2.30 followed by Corollary 2.31, let H3 be

the result of applying Corollary 2.31 followed by Corollary 2.30, and let H4 be the

result of applying Corollary 2.31 twice successively. We first show that H2 = H3 and

then argue that H1, H2, H4 are pairwise distinct. Let V2 and V3 be the instructional

Cholesky roots of H2 and H3, respectively. Then

V2 =



1 b1,2 · · · b1,n 1

0
...

0

U

1
...

1

0 0 · · · 0 1


= V3
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where b1,i = 1 whenever it is positioned above a column of odd weight in U . Therefore

H2 = H3. Observe that H1 has at least two looped vertices, 1 and n+ 1, whereas H2

and H4 have only one looped vertex “1”. Since n is even, vertex n in G is loopless by

Property 4. Then the instructional Cholesky root of H4 has the form

V4 =



1 1 b1,3 · · · b1,n+2

0 1 b2,3 · · · b2,n+2

0
...

0

0
...

0

U


where b1,n+2 = b2,n+2 = 0 and so H4 6= H2. It follows that

∣∣∣CUP[n+2]

∣∣∣ ≥ 3 ·
∣∣∣CUP[n]

∣∣∣ = 3((n+2)−3)/2.

Choose and fix H ∈ CUP[n+2] with instructional Cholesky root V = (vi,j). Let

G1 = (H − {n+ 2}) − {n + 1}, G′2 = H(1) − {n + 2}, and G′3 = H(1,2). Let G2 and

G3 be (order-preserving) re-indexings of G′2 and G′3 so that V (G2) = V (G3) = [n].

By (repeated) applications of Lemmas 2.15 and 2.17; G1, G2, G3 ∈ CUP[n]. Let

α = v1,n+1 + v1,n+2. If α = 2 then v1,n+1 = v1,n+2 = 1 and by Property 1, vi,n+1 = 1

for all i ∈ [n+ 1] and vi,n+2 = 1 for all i ∈ [n+ 2]. Then H can be constructed from

two applications of Corollary 2.30 to G1. If α = 1 then v1,n+1 = 0 and v1,n+2 = 1 by

Property 4. Furthermore, Property 4 implies that 1 is the only looped vertex, since

n + 2 is even and v1,n+1 = 0. Observing that n + 2 must be a full weight vertex, we

conclude that H can be constructed from G2 by application of Corollaries 2.30 and

2.31 (in either order). Finally if α = 0 then v1,n+2 = 0 and by Property 4, and since n

is even, v2,n+2 = 0. Furthermore by Property 4 it follows that H and H(1) have each

only one looped vertex. Then H can be constructed from G3 by two applications of

Corollary 2.31. It follows that

∣∣∣CUP[n+2]

∣∣∣ ≤ 3 ·
∣∣∣CUP[n]

∣∣∣ = 3((n+2)−3)/2.
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Therefore
∣∣∣CUP[n]

∣∣∣ =


3(n−2)/2, if n is even

2 · 3(n−3)/2, if n is odd
.

Corollary 2.34. The number of uniquely pressable simple pseudo-graphs on n > 1

vertices up to isomorphism is

Tn =


(
5 · 3(n−2)/2 + 1

)
/2, if n is even(

3(n+1)/2 + 1
)
/2, if n is odd

Proof. There are three non-isomorphic uniquely pressable simple pseudo-graphs on 2

vertices: the edgeless (loopless) graph, the disconnected graph containing one looped

vertex and one unlooped vertex, and the connected graph containing one looped

vertex and one unlooped vertex. We proceed by induction on n. Observe that for

every k ≤ n and for every H ∈ CUPk, we can create a (distinct) uniquely pressable

graph G on n vertices by adding n − k isolated vertices to H. Similarly, if G is a

uniquely pressable graph, then it is either the edgeless (loopless) graph or it contains

exactly one non-trivial component which must be a CUPk graph for some k ≤ n.

Hence

Tn =
n∑
k=0

∣∣∣CUP[k]

∣∣∣ = Tn−1 +
∣∣∣CUP[n]

∣∣∣ .
The result follows by observing that

5 · 3((n−1)−2)/2 + 1
2 + 2 · 3(n−3)/2 = 5 · 3(n−3)/2 + 1 + 4 · 3(n−3)/2

2 = 3(n+1)/2 + 1
2

and

3((n−1)+1)/2 + 1
2 + 3(n−2)/2 = 3 · 3(n−2)/2 + 1 + 2 · 3(n−2)/2

2 = 5 · 3(n−2)/2 + 1
2
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Chapter 3

Autonomous Posets

3.1 Introduction

A simple pseudo-graph is a graph that admits loops but not multiple edges (sometimes

known as a “loopy graph”). Given a simple pseudo-graph G, denote by V (G) the

vertex set of G; E(G) ⊆ V (G) × V (G), symmetric as a relation, its edge set. Let

N(v) = NG(v) = {w ∈ V (G) : vw ∈ E(G)} the neighborhood of v in V (G). Observe

that v ∈ N(v) iff v is a looped vertex. For S ⊂ V , we denote by G[S] the vertex-

induced subgraph on S.

Definition 3.1. Consider a simple pseudo-graph G with a looped vertex v ∈ V (G).

“Pressing v” is the operation of transforming G into G′, a new simple pseudo-graph

in which G[N(v)] is complemented. That is,

V (G′) = V (G), E(G′) = E(G)4 (N(v)×N(v))

We denote by G(v) the simple pseudo-graph resulting from pressing vertex v in V (G)

and we abbreviate G(v1)(v2)···(vk) to G(v1,v2,...,vk). For k ≥ 1 we abbreviate (1, 2, . . . , k)

as k so that when V (G) = [n] for some n ≥ k then we may simplify G(1,2,...,k) to

Gk. G0 and G() are interpreted to mean G. To aid with inductive arguments, we let

G(v) = G(v) − v: the result of pressing v in G (which leaves it isolated, loopless, and

thenceforth unpressable) and then removing the pressed vertex.

Given a simple pseudo-graph G, (v1, v2, . . . , vj) is said to be a successful pressing

sequence for G whenever the following conditions are met:
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• {v1, v2, . . . , vk} ⊆ V (G),

• vi is looped in G(v1,v2,...,vi−1) for all 1 ≤ i ≤ k,

• G(v1,v2,...,vk) = (V (G), ∅)

In other words, looped vertices are pressed one at a time, with “success” meaning that

the end result (when no looped vertices are left) is an empty graph. This topic orig-

inated in computational phylogenetics, where Hannenhalli and Pevzner showed that

certain simple pseudo-graphs correspond to pairs of genomes and that the reversal

edit distance between these genomes is the minimum length of a successful pressing

sequence of said graph [20]. In phylogenetics, the simple pseudo-graph corresponds

to a pair of homologous genomes and its successful pressing sequences corresponds

to a most plausible (i.e., parsimonious) evolutionary history between the genomes

(see [12, 27]). In the present work we look at the set of simple pseudo-graphs whose

pressing sequences correspond to the linear extensions of a single poset. Since linear

extensions can be efficiently sampled asymptotically uniformly, this shows that press-

ing sequences, and hence the evolutionary histories of the pairs of genomes giving rise

to said pseudo-graphs, can be sampled near-uniformly.

Definition 3.2. An ordered simple pseudo-graph, abbreviated OSP-graph, is a simple

pseudo-graph with a total order on its vertices. In this paper, we will assume that the

vertices of an OSP-graph are subsets of the positive integers under the usual ordering

“<”. An OSP-graph G is said to be order-pressable if there exists some initial segment

of V (G) that is a successful pressing sequence.

Definition 3.3. It was shown in [9] that pressing the vertices of a simple-pseudo-

graph is essentially equivalent to performing Gaussian elimination with no row swaps

on its adjacency matrix; therefore, the length of any successful pressing sequence of a

simple pseudo-graph is the F2-rank of its adjacency matrix. Thus, we define the rank
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Figure 3.1 Left to right: an OSP-graph G; G(1), the result pressing 1 in
G; and G2, the result of pressing and then removing vertices 1 and 2 in
G. Loops are drawn a shaded vertices.

of a simple pseudo-graph to be the F2-rank of its adjacency matrix. The rank of a

simple pseudo-graph on n vertices can vary from 0 (in the case that it is an edgeless

simple pseudo-graph) to n (such as is the case in Figure 1). We say G is full-rank if

its adjacency matrix is invertible over F2.

Call a matrix M “Cholesky" if there exists an upper-triangular matrix U so that

M = UTU . In [9] a proof was given that Cholesky decompositions of full-rank, F2

matrices are unique; in [10] it was shown that for every OSP-graph and adjacency

matrix A there exists a particular Cholesky decomposition of A that encodes the

pressing instructions for G.

Definition 3.4. Let G be OSP-graph with adjacency matrix A (whose rows and

columns are ordered by the identity permutation). The instructional Cholesky root of

G (over F2) is the upper triangular matrix U where for all (i, j) ∈ [n]× [n], U [i, j] = 1

if and only if ij ∈ E(Gi−1). In [10] it was shown that U satisfies that UTU = A,

therefore is a Cholesky decomposition of G.

The reason this matrix is called “instructional” is that it contains the instructions

for how vertices affect one another during the corresponding pressing sequence: the

(i, j) entry is 1 iff pressing i flips the state of j. Since the (instructional) Cholesky
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matrices are upper-triangular we may also regard U as the adjacency matrix of a

directed acyclic graph with vertex set {v | v is pressed at some point in the success-

ful pressing sequence}. Furthermore, the transitive closure of this digraph can be

considered as a poset. Although it is possible to define these instructional posets for

less-than-full-rank OSP-graphs, presently we are only concerned with the posets of

full-rank OSP-graphs.

We refer to the set of looped vertices in a graph G by L(G) and the set of successful

pressing sequences for G as Σ(G).

Lemma 3.5 ([9], Theorem 9). Let G be a full-rank OSP-graph and σ ∈ Σ(G). Let

A be the adjacency matrix of G with rows and columns ordered by σ. σ ∈ Σ(G) if

and only if A has a Cholesky decomposition over F2.

Definition 3.6. Let G be a full-rank OSP-graph and σ ∈ Σ(G). Let U be the in-

structional Cholesky root of A=adj(G), with rows and columns ordered identically

by σ, and D the digraph with vertex set V (G) and adjacency matrix U . The in-

structional poset of G under σ is Poset(G, σ) = (V (G),�) where y � x (equivalently

x � y) if there is an x to y path in D, i.e., Poset(G, σ) is the transitive closure of D.

We say P is generated by G, or equivalently G is a generator of P , if Poset(G, σ) =

P for some σ ∈ Σ(G). If σ is the natural order given by G (typically the identity

permutation) we simply write Poset(G). We denote the set of instructional posets of

an OSP-graph G by S(G).

Example 3.7. Let P be a poset on the element set [4] = {1, 2, 3, 4} with cover

relations 1 � 3, 2 � 3, 3 � 4. Then any OSP-graph that generates P must have an

adjacency matrix A = UTU where U is of the form



1 0 1 ∗

0 1 1 ∗

0 0 1 1

0 0 0 1


. It follows that P

51



Figure 3.2 An order-pressable graph G and the Hasse diagrams
of the two posets it generates.

has four generators, as shown below.

Figure 3.3 The Hasse diagram of P and its four generators.

We finish this section with two more lemmas from [9] which we will need below.

Lemma 3.8 ([9], Proposition 1). Let G be an OSP-graph. Σ(G) 6= ∅ if and only if

every component of G containing two or more vertices contains a looped vertex.

Lemma 3.9 ([9], Theorem 9). Let G be a full-rank OSP-graph and σ ∈ Σ(G). Let A

be the adjacency matrix of G with rows and columns ordered by σ. σ ∈ Σ(G) if and

only if every leading principal minor (over F2) of A is non-zero.

3.2 Structure of Autonomous Posets

We denote the set of linear extensions of a poset P by LE(P).
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Lemma 3.10. If G is a full-rank OSP-graph then LE(P(G, σ)) ⊆ Σ(G) for all σ ∈

Press(G). That is, Σ(G) = ⋃
P∈S(G) LE(P).

Proof. Let G = ([n], E) be an OSP-graph of rank n ordered by successful pressing

sequence σ. By relabeling G we may assume σ is the identity permutation. Let A

be the adjacency matrix of G (with rows and columns ordered by σ) and U be its

instructional Cholesky root (identically ordered). Let D = ([n],−→E ) be the directed

acyclic graph (aka “DAG”) with adjacency matrix U . Let P = Poset(G) = ([n],�P )

and observe that if (a, b) ∈ −→E then a �p b.

Fix a linear extension τ = (τ1, τ2, . . . , τn) of P . By the previous observation, if

(τi, τj) ∈
−→
E then τi �P τj and hence τi must appear before τj in τ = (τ1, τ2, . . . , τn).

Thus, (τi, τj) ∈
−→
E implies i ≤ j ∈ N. By contraposition, we have that

i > j implies (τi, τj) /∈
−→
E .

Let P be the permutation matrix encoding τ . The previous assertion can be restated

as [
P TUP

]
i,j

= 0 for all i > j.

Then V = P TUP is an upper-triangular matrix and

V TV = (P TUP )T (P TUP ) = P TUTUP = P TAP.

Observe that P TAP is a full-rank symmetric matrix with a Cholesky decomposi-

tion given by V . It follows from Lemma 3.5 that τ is a successful pressing sequence

for G.

Definition 3.11. We say an OSP-graph G is an autonomous graph if Σ(G) =

LE(Poset(G)). We say P is an autonomous poset if there exists an autonomous

graph G that generates P . That is, if there exists an OSP-graph G such that

Poset(G, σ) = P for some σ ∈ Σ(G) and Σ(G) = LE(P).
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In our main theorem, we will show that the set of autonomous posets is precisely

the set of induced N -free and induced bowtie-free posets (referred to in [25] as “V-

posets”).

Definition 3.12. For a graphG and a vertex x /∈ V (G) we let x⊕G be the graph with

vertex set V (G)∪{x}, edge set E(G)4
(
L(G)∪{x}

2

)
, and L(x⊕G) = {x}. Equivalently,

x⊕G is the graph that results from adding a looped vertex x to V (G) and making it

incident to each looped vertex in G to get an intermediate graph H, then switching

the state of each edge (including loops and non-loops) in NH(x) \ {x}. We refer to

this process as left-appending x to G, we justify this terminology in the following

observation.

Observation 3.13.

Consider OSP-graphs G and H = x ⊕ G. Let τ = (τ1, τ2, . . . , τn+1) ∈ Σ(H). Since

L(H) = {x} we have that τ1 = x. Furthermore, pressing x switches the state of every

edge in NH(x) so H(x) = G. Thus, the successful pressing sequences of H are exactly

those resulting from left-appending x to the successful pressing sequences of G. If G

is order-pressable with instructional Cholesky root U , then x ⊕ G is order-pressable

and has instructional Cholesky root V that satisfies

V [i, j] =



U [i− 1, j − 1] if i, j ≥ 2

1 if i = 1 and j ∈ L(G)

0 otherwise.

Definition 3.14. For a graph G and a vertex x /∈ V (G) we let G ⊕ x be the graph

with vertex set V (G) ∪ {x}, edge set E(G) ∪ {lx | l ∈ L(G)}, and

L(G⊕ x) =


L(G) if |V (G)| is odd

L(G) ∪ {x} if |V (G)| is even
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Equivalently, G⊕x is the graph that results from adding a vertex x to V (G), making

it incident to each looped vertex in G, and, if the resulting graph has an odd number

of vertices, then we add a loop to x. We refer to this process as right-appending x to

G.

Figure 3.4 OSP-graphs x⊕G, G, and G⊕ x, respectively.

Recall that the instructional Cholesky root of an OSP-graph is unique. In par-

ticular, if H is a full-rank graph and V TV is a Cholesky factorization of A = adj(H)

then V must be the instructional Cholesky root of H; from this we get the following

observation.

Observation 3.15.

If G is order-pressable graph on n vertices and has instructional Cholesky root U

then G⊕ x is order-pressable and has instructional Cholesky root V where

V [i, j] =



U [i, j] if i, j ≤ n

1 if j = n+ 1

0 otherwise.

Lemma 3.16. If G is autonomous then so is x⊕G.

Proof. Let H = x ⊕ G. Since L(H) = {x} we have only one candidate vertex for

an initial press. Furthermore, by Observation 3.13, H(x) = G. It follows that any
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pressing sequence must start with x and then continue as a pressing sequence for G.

Therefore, the only instructional poset of H is that of G with a maximum element x

appended. This demonstrates that H is also autonomous.

Lemma 3.17. If G is autonomous then so is G⊕ x.

Proof. If |V (G)| = 1 and G is order-pressable then G is the graph on a single looped

vertex and G ⊕ x is the graph with one looped vertex, one unlooped vertex and

an edge between them; both of these graphs are uniquely pressable and therefore

autonomous. Assume now towards an inductive argument that |V (G)| > 1 and that

the inductive hypothesis holds for |V (G)| − 1. Let G = ([n], E) and H = G ⊕ x.

By Observation 3.15, every pressing sequence of G can be extended to a pressing

sequence for H by appending x to the end of the sequence. Therefore, we need only

show that |Σ(H)| = |Σ(G)| to conclude that H generates only one poset, namely,

Poset(G) with the addition of a minimal element x. Since NH(x) = L(G), the result

of pressing x (should it be looped) in H would be a loopless graph – by Lemma 3.8

such a graph cannot be successfully pressed. Thus, every successful pressing sequence

for H must begin with some element of L(H)\{x} = L(G). Choose and fix j ∈ L(G)

that is the initial vertex in a successful pressing sequence for H. Assume, by way

of contradiction, that j is not maximal in Poset(G). It follows that no successful

pressing sequence for G begins with j, hence (by Lemma 3.8) G(j) contains a loopless

component on two or more vertices; call this component C.

Consider now the result of pressing j in H. Since

NH(j) ∩ V (C) = L(G) ∩ V (C) = NH(x) ∩ V (C),

we have that every edge from x to V (C) is deleted upon pressing j and V (C) is a set

of unlooped vertices in H(j). Finally, observe that any vertex that is incident to x in

H(j) must be in a different component than C, as it was in G. It follows that H(j)

contains a non-trivial loopless component, contradicting that j was the beginning of a
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successful pressing sequence. Thus, the initial presses of H are those of G. Observing

that H(j) = G(j) ⊕ x the result follows from the inductive hypothesis.

Lemma 3.18. If P is an autonomous poset and k is a minimal element, then P − k

is also an autonomous poset. Furthermore, if S(G) = {P} then S(G−k) = {P−k}.

Proof. Let P is an autonomous poset on n elements. By relabeling, we may assume

that the elements of P are the integer set [n] = {1, 2, . . . , n}, so that (1, 2, . . . , n)

is a linear extension of P . By relabeling the minimal elements, we may assume the

element we remove is n.

Let G = ([n], E) such that G generates only P . Let A be the adjacency matrix of

G. By Lemma 3.9 and the fact that S(G) = {P}, for any permutation matrix P we

have that P TAP has all non-singular leading principal minors (i.e., is LPN) if and

only if P encodes a linear extension of P . Let A′ denote the (n− 1)× (n− 1) leading

principal submatrix of A. Choose and fix an (n − 1) × (n − 1) permutation matrix

P ′.

Suppose P ′TA′P ′ is LPN. Then P ′ 0

0 1


T  A′ ∗

∗ a


 P ′ 0

0 1

 =

 P ′TA′P ′ ∗

∗ a



is LPN if and only if

 P ′TA′P ′ ∗

∗ a

 is invertible, which occurs if and only if

 A′ ∗

∗ a

 is invertible. Since A is invertible, we may conclude that if P ′TA′P ′ is

LPN then  P ′ 0

0 1


T

· A ·

 P ′ 0

0 1


is LPN. It follows that every successful pressing sequence for a graph G′ with adja-

cency matrix A′ can be extended to a successful pressing sequence for G by appending
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n to the end of the sequence. Furthermore, the instructional Cholesky root of A′ is

the (n − 1) × (n − 1) leading principal submatrix of A; hence G′, the graph whose

adjacency matrix is A′, generates P − n.

Lemma 3.19. If P is an autonomous poset and k is a maximal element of P, then

P − k is also an autonomous poset.

Proof. Suppose P is autonomous and G is an OSP-graph such that S(G) = {P}. Let

U be the n×n intructional Cholesky root of G. Then the intructional Cholesky root of

G(1) is the (n−1)×(n−1) trailing principal submatrix of U . Thus, G(1) is a generator

of P − k. However, every successful pressing sequence of G(1) can be left-appended

by k to obtain a successful pressing sequences for G. Hence,
∣∣∣Σ (G(1)

)∣∣∣ = |Σ (G)|, so

that P − k is the only poset generated by G(1).

Lemma 3.20. Let P be an autonomous poset on n ≥ 3 elements. If P has a max-

imum element x and a minimal element z such that x covers z, then any graph G

that generates only P must satisfy |L(G)| = 1.

Proof. By assumption that x is maximum we have that P is connected; therefore, if

y ∈ P \ {x, z}, then x � y and y is incomparable to z. Suppose first that n = 3,

whence P = ({x, y, z},�) with x covering both y and z. If G is an OSP-graph that

generates P then the adjacency matrix A of G must have an instructional Cholesky

root U encoding the cover relations of P . Hence

U =


1 1 1

0 1 0

0 0 1

 and so A = UTU =


1 1 1

1 0 1

1 1 0

 .

As the result holds for n = 3, we proceed by induction on n ≥ 4. Choose a

minimal element y ∈ P \ {x, z}, let P ′ = P − y, and let G′ = G− y.

By Lemma 3.18, P ′ is autonomous and S(G′) = {P ′}. Furthermore, P ′ has a

maximum element x and a minimal element z such that x covers z, so we may apply
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the inductive hypothesis; |L(G′)| = 1, in particular, L(G′) = {x} (since it must be a

pressable vertex). It follows that L(G) ⊆ {x, y}. Assume, by way of contradiction,

that y ∈ L(G). If xy /∈ E(G) then pressing y would create a looped vertex in

every component of G(y), therefore there is a pressing sequence that begins with y,

contradicting that P is autonomous. Thus, we must conclude that xy ∈ E(G). Since

z is a minimal element covered by x, then z is an isolated looped vertex in G(x) and

hence NG(z) = NG(x). In particular, yz ∈ E(G).

Let S = NG(x) \ NG(y) and T = NG(y). Assume, towards a contradiction, that

S 6= ∅. Observe that sx, sz ∈ E
(
G(y)

)
for all s ∈ S and hence there is a connected

component in G(y) containing x and z (as well as the elements of S), and z is looped

in G(y). Every other connected component in G(y) was created by deleting an edge

between the vertices of T and hence contains an element of T which is now looped.

It follows that G(y) can be successfully pressed, which is a contradiction. Thus, we

may proceed under the assumption that S = ∅.

If v ∈ NG(y) \ NG(x) then v is looped in G(y), xy ∈ E
(
G(y)

)
, and every other

connected component in G(y) was created by deleting the edge between two unlooped

vertices and therefore would contain a looped vertex. It follows that NG(y) = NG(x),

therefore x and y can be interchanged in any successful pressing sequence. This

contradicts that G is autonomous, so we must conclude that y /∈ L(G), as desired.

Definition 3.21. Let P = (X,�) be a poset. We say (a, b, c, d) is an occurrence of

the pattern N in P if {a, b, c, d} ⊆ X and a � c, a � d, and b � d. We say (a, b, c, d)

is an induced occurrence of the pattern N in P if a � c, a � d, b � d and otherwise

a, b, c and d are pairwise incomparable.

We say (a, b, c, d) is an occurrence of the pattern bowtie in P if {a, b, c, d} ⊆ X

and a � c, a � d, b � c, and b � d. We say (a, b, c, d) is an induced occurrence of the

pattern bowtie in P if a � c, a � d, b � d and otherwise a, b, c and d are pairwise

incomparable.
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We say P is induced N-free if it contains no induced occurrences of the pattern

N . Similarly, P is induced bowtie-free if it contains no induced occurrences of the

pattern bowtie.

It is worth noting that the literature varies on the definitions of “N -free poset”. In

our terminology a poset may include an occurrence of the pattern N yet be induced

N - and bowtie-free. Such an example is the poset P = ([4], {1 � 2 � 3 � 4}).

Lemma 3.22. Autonomous posets are induced N-free.

Proof. Let P ′ be an autonomous poset and assume towards a contradiction (a, b, y, z)

is an induced occurrence of the pattern N in P ′. Let P = (X,�) be the result of

iteratively removing maximal and minimal elements from P ′ until a, b are the only

maximal elements and y, z are the only minimal elements. By Lemmas 3.18 and

3.19, P is an autonomous poset with an induced occurrence of the pattern N , namely

(a, b, y, z). Observe that if there exists (a′, b′, y′, z′) 6= (a, b, y, z) that induces the

pattern N in P then we may repeat the process of iteratively removing elements

until only a′, b′, y′, z′ are extremal elements; thus, we proceed under the assumption

that P has exactly one induced occurrence of the pattern N .

Choose x ∈ P such that x � y (hence x 6= y). By assumption that only a

and b are maximal in P we have that a � x or b � x. Since (a, b, y, z) is an induced

occurrence of the pattern N we have b 6� y and hence b 6� x, therefore a � x. Observe

that if x 6� z then (a, b, x, z) is an induced occurrence of the pattern N , contrary to

assumption. Thus, x � z (since x 6= z) and it follows that (x, b, y, z) is an induced

occurrence of the pattern N implying that x = a, therefore a covers y.

Now choose w ∈ P such that b � w, observe that w 6= a. Since b 6� y we have

w 6� y, hence w � z. If a � w � z then (a, b, y, w) is an induced occurrence of the

pattern N , contrary to assumption. Hence, a � w if and only if w = z. However, if
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w 6= z then (a, w, y, z) is an induced occurrence of the pattern N , again contrary to

assumption. Therefore, w = z and it follows that b covers z.

By assumption that P is autonomous there exists a graph G that generates only

P . Fix such a G. Since b ∈ P is maximal, there is a successful pressing sequence

beginning with b ∈ V (G); thus b ∈ L(G). A sequence σ′ = (σ1, . . . , σk) is successful

in G(b) exactly when σ = (b, σ1, . . . , σk) is successful in G. Since G generates an

autonomous poset then so does G(b) and hence P − b is autonomous. Further P − b

meets the description of Lemma 3.20 so L
(
G(b)

)
= {a}, therefore L (G) = {a, b} ∪

NG(b). Now observe that if v ∈ NG(b), then pressing b affects v and hence b � v. It

follows that NG(b) = {b, z}, therefore L (G) = {a, b, z}. We proceed to show that z

can be pressed in G, contradicting that S(G) = {P}

Suppose first that a /∈ NG(z). Then NG(z) \ {b} ⊆ L
(
G(z)

)
and bv ∈ E

(
G(z)

)
for all v ∈ NG(z) \ {b}. It follows that any component created by pressing z in G has

a looped vertex, and hence there is a successful pressing sequence starting with z in

Σ(G), a contradiction. Thus we must conclude that {a, b, z} ⊆ NG(z). Observe that

the only elements comparable to y in P are a and y itself. Thus in any successful

pressing sequence of G, a must be pressed before y and no other vertex affects (or is

affected by) y. Hence y /∈ L(G) and NG(y) = NG(a)\{y}. Then {a, b, y, z} ⊆ NG(z).

Since ab, by /∈ E(G) we have that ab, by ∈ E
(
G(z)

)
and hence a, b and y are path

connected and y ∈ L
(
G(z)

)
. Similarly, if v ∈ NG(z) \ {a, b, y, z} then bv ∈ E

(
G(z)

)
.

It follows that every non-trivial component created by pressing z in G contains a

looped vertex, therefore z is the initial press of for some σ ∈ Σ(G), a contradiction.

Before proceeding, we state the main theorem of [10], which will be used below.

Theorem 3.23 ([10], Theorem 1). Let G = ([n], E) be full rank with instructional

Cholesky root U . Then G is uniquely pressable (i.e., has exactly one pressing se-

61



quence) if and only if U has columns C1, . . ., Cn whose weights (number of nonzero

entries) are w1, . . ., wn respectively, satisfying:

• For each j, if Cj = (c1,j, c2,j, . . . , cn,j)T then


ci,j = 1, j − wj < i ≤ j

ci,j = 0, otherwise
.

• 1 = w1 ≤ w2 ≤ · · · ≤ wn.

• wi > 2 implies wi+2 > wi, for i ∈ [n− 2].

• If wi is odd for i > 1, then wj = j for all j ≥ i.

For an integer n, let Λ(n) denote the poset with element set [n] such that n − 2

covers n and i covers i + 1 for all i ∈ [n − 2]. The Hasse diagram of Λ(n) consist

of two minimal elements (n − 1 and n) below a chain of length n − 2. Let GΛ(n)

be the OSP-graph with vertex set V (G) = [n], edge set E(G) = {(i, i + 1) | i ∈

[n− 1]} ∪ {(1, 1), (n− 2, n)}.

Lemma 3.24. Λ(n) is an autonomous poset and GΛ(n) is the unique graph which

generates only Λ(n).

Proof. Observe that for n = 3 we have only one instructional Cholesky that generates

Λ(n);

U =


1 1 1

0 1 0

0 0 1

 .

It follows that the only graph that generates Λ(3) has adjacency matrix

A = UTU =


1 1 1

1 0 1

1 1 0


which is the adjacency matrix of GΛ(3).
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For n = 4 we need only consider instructional Cholesky roots of the form:

1 1 ∗1 ∗2

0 1 1 1

0 0 1 0

0 0 0 1


where ∗1, ∗2 ∈ {0, 1}. A quick check reveals that setting ∗1 = ∗2 = 0 yields a graph

with two successful pressing sequences (1, 2, 3, 4) and (1, 2, 4, 3), and otherwise the

resulting graph has 3 or more successful pressing sequences; hence the claim holds

for n = 4.

We proceed by induction on n ≥ 5. Let G be an OSP-graph that generates

only Λ(n). Since Λ(n) has maximum element 1, we have that 1 ∈ L(G) and G(1)

has instructional poset Λ(n) − 1. But Λ(n) − 1 is isomorphic to Λ(n − 1). By the

inductive hypothesis we have that G(1) is isomorphic to GΛ(n−1).

Let U be the instructional Cholesky of G under the identity permutation. Let

A = UTU and let U ′ be the (n − 1) × (n − 1) leading principal submatrix of U ,

A′ = U ′TU ′ and G′ = ([n − 1], E ′) the graph with adjacency matrix A′. Choose

and fix σ ∈ Sn such that σ(n) = n and let Pσ be the permutation matrix encoding

σ. Let Pσ′ be the (n − 1) × (n − 1) leading principal submatrix of Pσ′ and σ′ its

corresponding permutation. Observe that since G is full-rank then A is invertible.

Hence, σ′ ∈ Σ(G′) if and only if P T
σ′A

′Pσ′ is in LPN form, which occurs if and only if

P T
σ APσ is in LPN form, which in turn occurs if and only if σ ∈ Σ(G).

Since Σ(G) = {(1, 2, . . . , n − 2, n − 1, n), (1, 2, . . . , n − 2, n, n − 1)} we have that

the only successful pressing sequence of G′ is σ′ = (1, 2, . . . , n − 2, n − 1) and hence

G′ is a uniquely pressable graph (has only one pressing sequence). By Theorem 3.23,

if U ′[1, i] = 1 then U ′[2, i] = U ′[2, i+ 1] = 1 and hence for 2 ≤ i ≤ n− 2 if U [1, i] = 1

then U [2, i] = U [2, i+ 1] = 1 . However the intructional Cholesky root of G(1) is the

(n− 1)× (n− 1) trailing principal minor of U and G(1) is isomorphic to GΛ(n−1). It
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follows that U [2, i+ 1] = 0 for all 3 ≤ i ≤ n− 1 thus U [1, i] = 0 for all 3 ≤ i ≤ n− 1,

hence [3, n − 1] ∩ NG(1) = ∅. Observe that by relabeling n to n − 1 and vice-versa

we can make the same argument and conclude that n /∈ NG(1), therefore U [1, n] = 0.

We conclude that G = GΛ(n).

For an integer n we let X(n) denote the poset with element set [n] so that 1 covers

3, n− 2 covers n, and i covers i+ 1 for all i ∈ [2, n− 2]. The Hasse diagram of X(n)

consist of a chain of length n− 4 joining two minimal elements (n− 1 and n) to two

maximal elements (1 and 2).

Lemma 3.25. X(n) is not an autonomous poset.

Proof. Assume, by way of contradiction, that X(n) is an autonomous poset and let

G be any graph that generates only X(n). Every successful pressing sequence of G

must begin with 1, 2, 3 or 2, 1, 3. Thus, {1, 2} ⊆ L(G). Since 3 must be looped after

pressing 1 and 2, and since the instructional Cholesky root instructs that both 1 and

2 switch the state of 3 upon being pressed, then 3 ∈ L(G). Observe that X(n)−1 and

X(n)−2 are isomorphic to Λ(n−1) and hence G(1) and G(2) are isomorphic to GΛ(n−1)

and hence each have exactly one looped vertex. In particular, L
(
G(i)

)
= {j} for

{i, j} = {1, 2}. Since 1 and 2 are both maximal in X(n) then (1, 2) /∈ E(G). It follows

that NG(j) = NG(i)(j) for {i, j} = {1, 2}. Therefore, by considering the structure of

GΛ(n−1), we see NG(1) \ {1} = NG(2) \ {2} = {3}; furthermore, L(G) = {1, 2, 3}.

Consider the result of pressing 3 in G: (1, 2), (1, 4), (2, 4) become edges, 4 becomes

looped, and every other vertex incident to 3 in G becomes incident to both 1 and 2

in G(3). Thus, there is exactly one component in G(3) and it contains a looped vertex

at 4. By Lemma 3.8 there is a successful pressing sequence in G that begins with 3,

a contradiction. We conclude that X(n) is not an autonomous poset.
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Lemma 3.26. Autonomous posets are induced bowtie-free.

Proof. Let P be an autonomous poset. By Lemma 3.22, P is induced N -free. As-

sume, towards a contradiction, that (a, b, y, z) is an induced occurrence of the pattern

bowtie. By iteratively removing maximal and minimal elements, and by application

of Lemmas 3.18 and 3.19, we may assume a, b, y, and z are the only extremal elements

of P , and that P does not properly contain another occurrence of the pattern bowtie.

If the only elements of P are a, b, y, z then

U =



1 0 1 1

0 1 1 1

0 0 1 0

0 0 0 1


and hence

A =



1 0 1 1

0 1 1 1

1 1 1 0

1 1 0 1


which has a successful pressing sequence of (4, 3, 2, 1), contrary to assumption.

Choose and fix x ∈ P such that x /∈ {a, b, y, z}. Since x is not extremal in P

we may assume, without loss of generality, that a � x � y. If b � x 6� z then

(a, b, x, z) induces a bowtie, contrary to assumption. Similarly, if b 6� x � z then

(x, b, y, z) induces a bowtie. Observe that if b 6� x 6� z then (a, b, x, z) induces an

N , contradicting Lemma 3.22. Thus we must proceed under the assumption that

b � x � z.

Observe that the choice of x was arbitrary so any w ∈ P \ {a, b, y, z} must also

satisfy a � w � y and b � w � z. If x and w are incomparable then (a, b, x, w) and

(x,w, y, z) induce a smaller bowtie, contrary to assumption. Hence, any two elements
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in P \ {a, b, y, z} must be comparable, therefore P = X(m) for some m ≥ 5. This

contradicts Lemma 3.25.

3.3 Main Result

In [21] (and later in [25]) the authors gave a simple description of posets that are both

induced N -free and induced bowtie-free which we include here as Definition 3.27 and

Theorem 3.28.

Definition 3.27. A poset is called a V-poset if it can be generated by beginning with

the singleton poset and then iteratively applying any of the following three operations:

(1) a disjoint union,

(2) adding a new greatest element,

(3) adding a new least element.

Theorem 3.28 ([21], Theorem 4.3). A poset is induced N-free and induced bowtie-

free if and only if it is a V-poset.

Theorem 3.29. P is autonomous if and only if P is induced N-free and induced

bowtie-free.

Proof. By Lemmas 3.22 and 3.26, if P is autonomous then P is induced N -free

and induced bowtie-free. By Theorem 3.28 it suffices to show that V-posets are

autonomous.

A poset on one element is autonomous as it corresponds to the uniquely pressable

graph on a single looped vertex. We proceed by induction. Let n ≥ 2 and assume

that all V-posets on n−1 vertices are autonomous. Let P be a V-poset on n vertices.

If P is the disjoint union of multiple posets then each of its connected subposets is a
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smaller V-poset. By inductive hypothesis for each connected subposet there is a graph

that generates it and has only the pressing sequences dictated by said subposet. It

follows that in this case P is autonomous as well. Suppose now that P is connected.

It then follows that P has a unique maximal or a unique minimal element. Let P −x

be the result of removing a unique maximal or minimal element from P . Observe

that P − x is a V-poset and thus by induction is autonomous; let H be a graph such

that S(H) = {P − x}. By Lemmas 3.13 and 3.15, x⊕H or H ⊕ x generates only P

and therefore is autonomous.

3.4 V-poset Recognition

For a poset P we let nP and eP denote the number of vertices and edges in the

Hasse diagram of the poset, respectively. We let hP denote the sum of the heights of

components of P (the height of a poset is the length of its longest chain), cP denote

the number of components of P , andMP and mP denote the number of maximal and

minimal elements in P , respectively.

Lemma 3.30. If P is a V-poset then

eP = 2nP + cP −MP −mP − hP ≤ 2nP − 2

Proof. We show that eP = 2nP+1−MP−mP−hP for a connected poset; the equality

above follows by summing over components, and the inequality is immediate. Observe

that if nP = 1 then P is a poset one element and hence (2nP+1)−(MP+mP+hP) =

0 = eP . Assume towards an inductive argument that nP ≥ 2. Since P is connected

it must have a unique minimal or maximal element, say x, which we assume will be

maximal (as the argument is identical for a minimal element). Let Q = P − {x}.

Then, by applying the inductive hypothesis to Q,

eP −MQ = eQ = 2nQ + 1−MQ −mQ − hQ
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eP = 2nQ + 1−mQ − hQ = 2(nP − 1) + 1−mP − (hP − 1)

eP = 2nP −mP − hP

By noting that MP = 1, we have our result.

We now give a different edge count that uses width (referred to as wP in the

statement) instead of heights. While both of these edge counts are necessary for the

property of being a V-poset, even when taken together, they are not sufficient.

Lemma 3.31. If P is a V-poset then

eP = nP + wP −MP −mP

Proof. As in the previous proof, we show that eP = nP + wP − MP − mP for a

connected poset; the equality above follows by summing over components since the

width of a disconnected poset is the sum of the width of its connected components

(i.e. the length of a maximal antichain). Observe that if nP = 1 then P is a poset one

element and nP +wP −MP −mP = 0 = eP . Assume towards an inductive argument

that nP ≥ 2. Since P is connected it must have a unique minimal or maximal element,

say x, which we assume will be maximal (as the argument is identical for a minimal

element). Let Q = P − {x}. Then, by applying the inductive hypothesis to Q,

eP = eQ +MQ = (nQ + wQ −MQ −mQ) +MQ

= nQ + wQ −mQ = nP − 1 + wP −mP = nP −MP + wP −mP .

We propose an algorithm for the recognition of autonomous posets that operates

on an arbitrary directed acyclic graph whose transitive closure is the poset in question.

As a subroutine, we employ an algorithm found in [29] that detects if a directed

acyclic graph contains an induced copy of the pattern N and, if the input is found

to be induced N -free, it also returns the transitive reduction of the input. The
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aforementioned subroutine is guaranteed to run in O(|V |+ |E|). Observe that by the

proof of Lemma 3.26, in order to determine if an induced N -free poset is a V-poset

we need only to verify that its transitive-reduction does not contain a sub-DAG that

is isomorphic to ([4], {(1, 3), (2, 3), (1, 4), (2, 4)}) (as done in Subroutine 2) and does

not contain sub-DAG whose transitive closure (interpreted as a poset) is isomorphic

to X(n), (n ≥ 5).

Lemma 3.30 shows that if we present the poset by the transitively-reduced directed

acyclic graph with cover relations as edges then the run-time is O(|V |). Observe that

in Subroutines 2 and 3 each edge is traversed at most twice, hence these algorithms

have run-time O(|V |+ |E|). Thus the presented algorithm has the same run-time as

Subroutine 1.

Algorithm 1

1: input: a directed acyclic graph D.

2: output: true or false. True if the transitive closure of D is a V-poset, False

otherwise.

3: Bool ← true

4: if IsSeriesParallel(D)[Bool]=False then

5: Bool ← false

6: else

7: D ← IsSeriesParallel(D)[DAG]

8: if IsBowtieFree(D)= false then

9: Bool ← false

10: else

11: if ClosureIsVPoset(D) = false then

12: Bool ← false

13: return Bool
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Subroutine 1: IsSeriesParallel()

1: input: a directed acyclic graph D.

2: output: (Bool, DAG). Bool= true when D has a series-parallel decomposition

and Bool= false otherwise, and DAG is the transitive reduction of D.

3: Algorithm found in [29]

4: return (Bool, DAG)

Subroutine 2: IsBowtieFree()

1: input: an induced N -free, transitively reduced directed acyclic graph D.

2: output: true or false. False if some induced subgraph of D is isomorphic to the

bowtie digraph ({a, b, c, d}, {(a, c), (a, d), (b, c), (b, d)}), True otherwise.

3: Bool ← true, Current ← ∅, Parents ← ∅, Visited ← ∅

4: for v ∈ V (D) do

5: if OutDegree(v) = 0 then

6: Current.Add(v)

7: while Current6= ∅ do

8: for v ∈ Current do

9: for u ∈ InNeighborhood(v) do

10: Parents.Add(u)

11: for v ∈ Parents do

12: if OutDegree(v) > 1 then

13: for u ∈ OutNeighborhood(v) do

14: if InDegree(u) > 1 then

15: Bool ← false (Break while loop)

16: Visited.Add(u)

17: for v ∈ Current do

18: Visited.Add(v)
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19: Current ← ∅

20: for v ∈Parents do

21: if v /∈ Visited then

22: Current.Add(v)

23: Visited.Add(v)

24: Parents ← ∅

25: return Bool

Subroutine 3: ClosureIsVPoset()

1: input: an induced N -free, induced bowtie-free, transitively reduced directed

acyclic graph D.

2: output: true or false. True if the transitive closure of D is a V-poset, False

otherwise.

3: Bool ← true, Current ← ∅, Parents ← ∅, Visited ← ∅, Multiple ← ∅

4: for v ∈ V (D) do

5: if OutDegree(v) = 0 then

6: Current.Add(v)

7: while Current 6= ∅ do

8: for v ∈ Current do

9: if v ∈ Multiple and InDegree(v) > 1 then

10: Bool ← false (Break while loop)

11: for u ∈ InNeighborhood(v) do

12: Parents.Add(u)

13: if v in Multiple then

14: Multiple.Add(u)

15: for v ∈ Parents do

16: if OutDegree(v) > 1 then

17: Multiple.Add(v)
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18: for v ∈ Current do

19: Visited.Add(v)

20: Current ← ∅

21: for v ∈Parents do

22: if v /∈ Visited then

23: Current.Add(v)

24: Parents ← ∅

25: return Bool
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Chapter 4

Cholesky Roots

4.1 Introduction

Over the complex field C, a square matrix M is said to have a Cholesky factorization

if there exists an upper-triangular matrix U so that U∗U = M , where ∗ denotes

the conjugate transpose of a matrix (or simply transpose when restricting to R).

For a prime power q, we say M has a Cholesky factorization if there exists an upper-

triangular matrix U so that UTU = M . Observe that not all matrices have a Cholesky

factorization. For example, only symmetric matrices have Cholesky factorizations

since

(U∗U)∗ = U∗(U∗)∗ = U∗U.

For a matrix with complex entries there are a multitude of equivalent characteriza-

tions that determine if a matrix allows a Cholesky factorization (see, e.g. [22]). One

particular example of this is the notion of positive-definiteness which, with some care,

can be extended to some finite fields. For a wonderful survey, and some surprising

results, on positive-definiteness over finite fields see [19]. In [9], the authors describe

a surprising connection between successful pressing sequences of an ordered simple

pseudo-graph (OSP-graph) and Cholesky factorizations of its ordered adjacency ma-

trices. In particular, they argue that an OSP-graph G with vertex set {v1, v2, . . . , vn}

can be pressed in order v1, v2, . . . , vn exactly when the adjacency matrix A of G,

with rows and columns ordered by v1, v2, . . . , vn, has a Cholesky factorization. This

equivalency only holds for OSP graphs satisfying that each vertex appears in (each)
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successful pressing sequence. In Chapter 2, we define a special instructional Cholesky

factorizations that extends the above equivalency to OSP graphs whose pressing se-

quences do not include every vertex.

In the following sections we explore how many distinct Cholesky factorizations

exist for a matrix with entries from F2.

4.2 A Bijective Argument

For all positive integer n, we let 1n and 0n denote the n × n, F2 multiplicative and

additive identity matrices (respectively). For r ≤ n, we let Un(r) be the set of n× n,

rank r, upper-triangular matrices with entries from F2. For n ≥ 1 and r ≤ n we

define

Xn(r) = {U ∈ Un(r) | U2 = 1n}

Yn(r) = {U ∈ Un(r) | U2 = 0n}

Zn(r) = {U ∈ Un(r) | UTU = 0n}

and

Xn =
∑

0≤r≤n
|Xn(r)|, Yn =

∑
0≤r≤n

|Yn(r)|, Zn =
∑

0≤r≤n
|Zn(r)|

Observation 4.1. For all n ≥ 1, Xn = Yn.

Proof. Let ϕ : Fn×n2 → Fn×n2 by ϕ(A) = A+ 1n. Then

U2 = 0n ⇔ (ϕ(U))2 = 1n

Theorem 4.2. For all n ≥ 1 and 0 ≤ r ≤ n:

|Yn(r)| = |Zn(r)|
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Proof. Observe that

Y1(0) =
{[

0
]}

= Z1(0),

and Y1(r) = Z1(r) = ∅ for all r 6= 0. We proceed by induction. Let n > 1 and assume

that |Yn−1(r)| = |Zn−1(r)| for all r ≤ n − 1. Choose and fix a rank r, n × n upper-

triangular matrix B. Observe that by Sylvester’s rank inequality Yn(n) = Zn(n) = ∅,

so we may proceed with the assumption that r < n. Let B′ be the n − 1 × n − 1

principal submatrix of B.

B2 =

 B′ v

0T b


 B′ v

0T b

 =

 B′2 B′v + bv

0T b2

 .
Then B ∈ Yn if and only if b = 0 and B′v = 0 and B′ ∈ Yn−1. However B′v = 0

if and only if v ∈ Null(B′), the null space of B′. If B′ ∈ Yn−1 then the column

space of B′, Col(B′), must be a subset of Null(B′). It follows that if B ∈ Yn then

v ∈ Col(B′) or v ∈ Null(B′) \ Col(B′).

It follows that for each r:

|YN(r)| = |YN−1(r)| · 2r + |YN−1(r − 1)| ·
(
2dim(Null(B′)) − 2r−1

)
|YN(r)| = |YN−1(r)| · 2r + |YN−1(r − 1)| ·

(
2N−r − 2r−1

)

Choose and fix a rank r, N×N upper-triangular matrix C. Let C ′ be the N−1×N−1

principal submatrix of C.

CTC =

 C ′T 0

wT c


 C ′ w

0T c

 =

 C ′TC ′ C ′Tw

wTC ′ wTw + c2

 .
C ∈ ZN if and only if wTw + c2 = 0 and wTC ′ = 0 and C ′ ∈ ZN−1. Equivalently

C ∈ ZN if and only if C ′ ∈ ZN−1 and

Cw =

 C ′T 0

1 1


 w

c

 = 0.
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This occurs if and only if w ∈ Null(C). Observe that if c = 0 then w ∈ Null(C)

exactly when w ∈ Row(C ′)∩Null(C) or w ∈ Null(C)\Row(C ′). On the other hand

if c = 1 then w ∈ Null(C) exactly when w ∈ Null(C) \Row(C ′) .

It follows that for each r:

|ZN(r)| = |ZN−1(r)| · 2r + |ZN−1(r − 1)| ·
(
2dim(Null(C)) − 2r−1

)

|ZN(r)| = |ZN−1(r)| · 2r + |ZN−1(r − 1)| ·
(
2N−r − 2r−1

)

Theorem 4.3.

Yn =


∑
j

[(
n

n/2−3j

)
−
(

n
n/2−3j−1

)]
2n2/4−3j2−j, if n is even

∑
j

[(
n+1

(n−1)/2−3j

)
−
(

n
(n−1)/2−3j−1

)]
2(n−1)2/4+(n−1)/2−3j2−2j, if n is odd

Proof. Theorem 1 in [13].

Corollary 4.4.

Zn =


∑
j

[(
n

n/2−3j

)
−
(

n
n/2−3j−1

)]
2n2/4−3j2−j, if n is even

∑
j

[(
n+1

(n−1)/2−3j

)
−
(

n
(n−1)/2−3j−1

)]
2(n−1)2/4+(n−1)/2−3j2−2j, if n is odd

Corollary 4.5. For all n ≥ 1, Yn(r) = Zn(r) = ∅ whenever r ≥ n/2.

Proof. If A ∈ Yn(r) then Col(U) ⊂ Null(U) where the inclusion is strict since

[0, . . . , 0, 1]T ∈ Null(U)\Col(U). That is r < n − r. Since there is a rank-preserving

bijection between Yn(r) and Zn(r) the result holds.

Corollary 4.6. Let A be a symmetric, rank r matrix with entries from F2. For each

k ∈ [n], let Ak be the leading principal submatrix of A. If A satistfies that det(Ak) = 1

if and only if k ≤ r (a.k.a. A is in leading principal minors non-negative form) then
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the number of distinct Cholesky factorizations for A is
∑
j

[(
n

n/2−3j

)
−
(

n
n/2−3j−1

)]
2n2/4−3j2−j, if n is even

∑
j

[(
n+1

(n−1)/2−3j

)
−
(

n
(n−1)/2−3j−1

)]
2(n−1)2/4+(n−1)/2−3j2−2j, if n is odd

where n is the corank of A.

Proof. Let r be the rank of A and let A1,1 be the principal r × r submatrix of A:

A =

 A1,1 A1,2

A2,1 A2,2

 =

 A1,1 A1,2

AT1,2 A2,2


If BTB = A is a Cholesky factorization of A then

BTB =

 BT
1,1 0

BT
1,2 BT

2,2


 B1,1 B1,2

0 B2,2

 =

 BT
1,1B1,1 BT

1,1B1,2

BT
1,2B1,1 BT

1,2B1,2 +BT
2,2B2,2


But A has an instructional Cholesky of the form

V TV =

 V T
1,1 0

V T
1,2 0


 V1,1 V1,2

0 0

 =

 V T
1,1V1,1 V T

1,1V1,2

V T
1,2V1,1 V T

1,2V1,2


By uniqueness of Cholesky decompositions of full-rank matrices over GF (2) we have

that B1,1 = V1,1. Then by invertibility we have

B1,2 =
(
V T

1,1

)−1
BT

1,1B1,2 =
(
V T

1,1

)−1
V T

1,1V1,2 = V1,2

and hence

V T
1,2V1,2 = BT

1,2B1,2 +BT
2,2B2,2 ⇒ BT

2,2B2,2 = 0

Then

CTC =

 V T
1,1 0

V T
1,2 CT

2,2


 V1,1 V1,2

0 C2,2

 = A

if and only if CT
2,2C2,2 = 0
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4.3 Asymptotic Behavior

Here we will look at the asymptotic behavior of Z. Let Cn = (2n
n )

n+1 denote the nth

Catalan number, let (x)k = x(x − 1) · · · (x − k + 1) denote the descending factorial,

and let

E2n =
∑
j

(
2n

n− 3j

)(
6j + 1

n+ 3j + 1

)
2−j(3j+1) −

∑
j

(
2n
n

)(6j + 1
n+ 1

)
2−3j2−j

Then

|E2n| =

∣∣∣∣∣∣Cn
∑
j

(
(n+ 1)3j+1

(n+ 3j + 1)3j+1
− 1

)
(6j + 1)2−3j2−j

∣∣∣∣∣∣
and

1 > (n+ 1)3j+1

(n+ 3j + 1)3j+1
= n+ 1
n+ 3j + 1 · · ·

n− 3j + 1
n+ 1 ≥

(
n− 3j + 1
n+ 1

)3j+1

However
(
n− 3j + 1
n+ 1

)3j+1
=
(

1 + −3j
n+ 1

)3j+1
=

3j+1∑
t=0

(
3j + 1
t

)
(−1)t

( 3j
n+ 1

)t

≥
1∑
t=0

(
3j + 1
t

)
(−1)t

( 3j
n+ 1

)t
= 1− 3j(3j + 1)

n+ 1 ≥ 1− 9j2

n+ 1

Hence

|E2n| ≤
Cn
n+ 1

∣∣∣∣∣∣
∑
|j|≤n/3

9j2(6j + 1)2−3j2−j

∣∣∣∣∣∣ ≤ Cn
7.671
n+ 1

Thus,

Z2n =
∑
j

[(
2n

n− 3j

)
−
(

2n
n− 3j − 1

)]
2n2−3j2−j

Z2n

2n2 =
∑
j

(
2n

n− 3j

)(
6j + 1

n+ 3j + 1

)
2−3j2−j

Z2n

2n2 =
∑

j

(
2n
n

)(6j + 1
n+ 1

)
2−3j2−j

+ E2n

Z2n

2n2 = Cn

∑
j

(6j + 1) 2−3j2−j

+ E2n

Cn


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Using Wolfram Alpha yields

lim
n→∞

∑
|j|≤n/3

(6j + 1)2−3j2−j ≈ 0.17755

and

lim
n→∞

E2n

Cn
≤ lim

n→∞

7.671
n+ 1 = 0

It follows that

Z2n ≈ 0.17755 · 2n2
Cn

Moreover,

X2n = Y2n = Z2n ≈ 0.17755 · 2n2
Cn
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Chapter 5

Uniform Sampling Algorithm

5.1 Introduction

In 1969, Jesse MacWilliams published a paper counting the order of the subgroup

of matrices U in GL(n, q) that satisfy UUT = I. In order to do so, he first gave

a recursive algorithm that counts the number of symmetric matrices with entries in

GF (q) of size t× t and rank r. By reversing this algorithm we are able to construct

a method for uniformly and efficiently sampling symmetric matrices of a given size

and rank over a finite field. In the context of simple pseudo graphs his means that we

can randomly construct a simple pseudo-graph on t vertices whose successful pressing

sequences will be of length r.

5.2 Algorithm for sampling

We begin with some notation that will be useful in understanding the construction

of sampling algorithm.

Notation:

q denotes a prime power,

GF (q) is the finite field of q elements,

GL(n, q) the group of n× n invertible matrices with entries in GFq,

O(n, q) the subgroup of matrices U in GL(n, q) that satisfy UUT = I,
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S(t, r, q) the group of symmetric matrices with entries in GF (q) of size t × t

and rank r,

N(t, r, q) the number of symmetric matrices with entries in GF (q) of size t× t

and rank r.

The following key lemma was proven in [24]. Nevertheless, we present a brief

proof here since it is instrumental in constructing the sampling algorithm.

Lemma 5.1. Let A be a symmetric t× t matrix of rank r with entries in GF (q) and

let Ni(A) denote the number of symmetric (t+ 1)× (t+ 1) matrices of rank r+ i with

entries in GF (q) that contain A as a leading principal submatrix.

Ni(A) =



qt+1 − qr+1, if i = 2

(q − 1)qr, if i = 1

qr, if i = 0

0, otherwise.

Proof. Fix A and consider a matrix of the form

 A yT

y y0

 where y is an 1 × t row

vector with entries in GL(q) and y0 ∈ GL(q). If y is not linearly dependent on the

rows of A then the resulting matrix has rank r + 2. There are qt − qr such choices

for y. Since we are free to choose any entry for y0 this yields N2(A) = q(qt − qr).

Suppose now that y is a linear dependent on A, that is y = nA for some 1× t vector

n. If y0 = nyT then the resulting matrix has rank r, otherwise if y0 6= nyT then the

resulting matrix has rank r + 1. Since there are qr choices for y in span(A) we have

N1(A) = (q − 1)qr and N0(A) = qr.

Observe that from this we obtain

N(t+ 1, r, q) = (qt+1 − qr−1)N(t, r − 2, q) + (q − 1)qr−1N(t, r − 1, q) + qrN(t, r)
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Fix t, q, r where t > 0, q a prime power, and 0 ≤ r ≤ t. Assume that for

all r′ ≤ r we can sample S(t, r′, q) uniformly at random. Consider the following

sampling algorithm for S(t+ 1, r, q). Let

pi =



qr N(t,r,q)
N(t+1,r,q) , i=0

(q − 1)qr−1N(t,r−1,q)
N(t+1,r,q) , i=1

(qt+1 − qr−1)N(t,r−2,q)
N(t+1,r,q) , i=2

and observe that

2∑
i=0

pi = qrN(t, r, q) + (q − 1)qr−1N(t, r − 1, q) + (qt+1 − qr−1)N(t, r − 2, q)
N(t+ 1, r, q) = 1.

Select i with probability pi then take a sample from S(t, r−i, q) uniformly at random,

call this matrix A. If i = 2, choose y uniformly at random from the qt − qr vectors

that are linearly independent of the rows of A, choose y0 uniformly at random from

{0, 1, . . . , q − 1}. Otherwise, if i 6= 2 choose, uniformly at random, a vector n with

entries in GF (q) and set y = nA. Furthermore, if i = 0 set y0 = nyT and if i = 1

choose y0 uniformly at random from {0, 1, . . . , q − 1} \ {nyT}.

Let A′ =

 A yT

y y0

 , by the proof of Lemma 5.1 A′ is a uniform selection among

the matrices in S(t+ 1, r, q) who contain A as a leading principal submatrix.

Fix positive integer n and integer 0 ≤ r ≤ n. If r = 0 there is only one matrix to

consider. Otherwise, choose i ∈ {0, 1, 2} with probability pi := pi(t, r, q) (above). Set

k = 1. While n > 1, repeat the following process:

• set ik = i

• replace t with t− 1

• replace r with r − i

• select and replace i ∈ {0, 1, 2} with probability pi
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• replace k with k + 1

Clearly this process ends since at each step t is reduced. If at the end of the process

r = 0, set A0 = [0]. Otherwise, choose a uniformly at random from {1, 2, . . . , q − 1}

and set A0 = [a]. for each i ∈ k, construct Ai+1 from Ai by uniformly increasing the

rank of Ai by ik−i. This results in a t× t matrix Ak−1 with rank r.

Choose and fix r ≥ 0 and t ≥ 0. Select A uniformly at random from S(t+ 1, r, q).

Observe that if t = 0 the algorithm selects with A with probability 1
q
. Assume t ≥ 1

and that the algorithm selects uniformly for all values up to t − 1. The probability

that the algorithm selects A is

P(A) = P(A|i = 0)P(i = 0) + P(A|i = 1)P(i = 1) + P(A|i = 2)P(i = 2)

Let B be the t× t leading principal submatrix of A.

P(A|i) = P(B ∈ S(t, r − i, q)) 1
N(t, r − i, q)

1
Ni(B)

where Ni(B) is the number of symmetric t + 1 × t + 1 matrices of rank (r − i) + i

that contain B as a leading principal submatrix.

P(B ∈ S(t, r − i, q)) = N(t, r − i, q)
N(t, r − 2, q) +N(t, r − 1, q) +N(t, r, q)

so

P(A) =
2∑
i=0

N(t, r − i, q)
N(t, r − 2, q) +N(t, r − 1, q) +N(t, r, q)

1
N(t, r − i, q)

1
Ni(B)pi

= 1
X

(
N(t, r, q)p0

N(t, r, q)N0(B) + N(t, r − 1, q)p1

N(t, r − 1, q)N1(B) + N(t, r − 2, q)p2

N(t, r − 2, q)N0(B)

)

= 1
X

 N(t, r, q)
N(t+ 1, r, q) + N(t, r − 1, q)

N(t+ 1, r, q) + N(t, r − 2, q)
N(t+ 1, r, q)

 = 1
N(t+ 1, r, q)

where X = N(t, r − 2, q) +N(t, r − 1, q) +N(t, r, q)

Below, we present the algorithm in more detail.
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Algorithm 1: NewRandomMatrix

1: input: An integer tuple: (n, r, q)

2: output: A n× n, rank r, symmetric matrix with entries in Fq

3: if n = 1 then

4: if r = 0 then

5: M =
[
0
]

6: else

7: x←RandomNonZero(Fq)

8: M =
[
x

]
9: else

10: for i in {0, 1, 2} do

11: pi ← ProbFrom(n, r, i)

12: Choose an element of {0, 1, 2} with probability (p1, p2, p3)

13: M ← NewRandomMatrix(n− 1, r − j, q)

14: M ← RankIncrease(M,j)

15: return M

Algorithm 2: RankIncrease

1: input: An n × n, rank r, symmetric matrix M with entries from Fq and an

integer j ∈ {0, 1, 2}

2: output: An (n+ 1)× (n+ 1), rank r+ j, symmetric matrix with entries from Fq

3: if j=2 then

4: V ← NotInSpanVector(M)

5: v ← RandomElement(Fq)

6: return

 v V T

V M


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7: else

8: V ← InSpanVector(M)

9: x = ∑n
i=1 riVi,1

10: if j=0 then

11: for i ∈ [n]: ri ← RandomElement(Fq)

12: v ← x

13: else

14: Choose v uniformily at random from Fq \ {x}

15: return

 v V T

V M



Algorithm 3: NotInSpanVector

1: input: An n× n matrix M of rank k with entries in Fq

2: output: An n× 1 vector in the complement of span(M)

3: L′ ← FindOutBasis(M)

4: Set ` = n− k and choose a random integer r from [1, q` − 1]

5: Cast r to a q-ary vector R

6: R← FIELD(R)

7: V ←InSpanVector(M)

8: return L′ ·R + V

Algorithm 4: InSpanVector

1: input: An n× n matrix M of rank k with entries in Fq

2: output: An n× 1 vector in the span of M

3: L← FindInBasis(M)
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4: for i ∈ [1, k] : ri ← RandomElement(Fq)

5: V =
[
r1 r2 · · · rk

]T
6: return L · V

Algorithm 5: FindOutBasis

1: input: a matrix M

2: output: a basis for the complement of M

3: B ←FindInBasis(M)

4: find C to complete B to an n× n basis

5: return C

Algorithm 6: FindInBasis

1: input: a matrix M

2: output: a basis for M

3: use in place Gaussian elimination to find column basis to find basis B

4: return B

Algorithm 7: ProbFrom(n,r,i)

1: input: Integer tuple (n, r, i)

2: output: A probability p

3: Denom ← Numb(n− 1, r, 0)+Numb(n− 1, r − 1, 1)+ Numb(n− 1, r − 2, 2)

4: return Numb(n− 1, r − i, i)/Denom
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Algorithm 8: Numb(n, r, i)

1: input: Integer tuple (n, r, i)

2: output: The number of symmetric (n+ 1)× (n+ 1) matrices of rank r + i with

entries in Fq that can be generated by appending the same vector as a row and

column, along with a corner entry, to any symmetric n × n rank r matrix with

entries in Fq

3: if i = 0 then

4: return NumbSymm(n,r,q) qr

5: else if i = 1 then

6: return NumbSymm(n,r,q) (q − 1)qr

7: else if i = 2 then

8: return NumbSymm(n,r,q) (qn+1 − qr+1)

Algorithm 9: NumbSymm

1: input: An integer tuple (n, r, q) where n ≥ r ≥ 0 and q is a prime power

2: output: the number of symmetric rank r n× n matrices over F2

3: k = br/2c

4: f(x) = q2x/(q2x − 1)

5: g(x) = qn−x − 1

6: return
(∏k

i=1 f(i)
) (∏r−1

i=1 g(i)
)

Algorithm 10: RandomNonZero

1: input: q

2: output: a random element of Fq \ {0}

3: return Random element from Fq \ {0}
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Chapter 6

The Pressing Space of a Graph

6.1 Introduction

In 1999, Hannenhali and Pevzner demonstrated that a shortest path of reversal ed-

its from one permutation to another can be determined in polynomial-time. The

polynomial-time argument is justified by observing that a set of permutations can

be converted into a simple pseudo-graph in polynomial-time (see the introduction of

this thesis) and then the length of such a conversion path is simply the rank (over

F2) of the adjacency matrix of the graph (which can be done in sub-cubic time). On

the other hand, this does not answer how many shortest path of reversal edits exist.

Thus, we propose the following question:

Question 6.1. What is the computational complexity of determining the number of

successful pressing sequences of a simple pseudo-graph?

For a full-rank, ordered simple psuedo-graph G on n vertices, there are n! per-

mutations to consider. Attempting to press G in order σ is equivalent to performing

Gaussian elimination without pivoting on the adjacency matrix of G, this can be done

in polynomial-time. Since the average graph has n!
2n successful pressing sequences, the

exhaustive method is not a practical computation technique for determining |S(G)|.

6.2 Block Pressing and Exponential Complexity

In what follows we will give a method that demonstrate that |S(G)| can be determined

in exponential-time. For simplicity of the argument we (re)introduce some notation
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here.

A pressable graph is a simple pseudo-graph with a looped vertex in every non-

trivial component. A vertex in a pressable graph is said to be stuck if it is looped

but pressing the vertex creates a loopless graph with at least one edge. A vertex in

a pressable graph is said to be eventually stuck if it is looped but pressing the vertex

creates a loopless component with at least one edge. A looped vertex that is not

eventually stuck is referred to as a pressable vertex. In [9], the authors showed that

if G is pressable graph then we can always find a pressable vertex by creating a set

X of looped vertices with the fewest possible number of neighboring looped vertices

and then selecting x ∈ X such that deg(x) is maximal in X.

Let V ′ ⊆ V (G) and let G′ = G[V ′] the induced subgraph of G. If G′ is a pressable

graph then we can find a pressing sequence by iteratively finding a pressable vertex

and pressing it. We say V ′ is block pressable if there exists a successful pressing

sequence σ′ of G′ that can be extended into a successful pressing sequence in G.

That is, if pressing V ′ in the order given by σ′ does not create any (eventually) stuck

vertices in G. For the following lemma we let Gσ′ denote the result of pressing the

vertices in appearing in σ′ in G.

Lemma 6.2. Let G = (V,E) be a simple pseudo-graph and let V ′ ⊂ V and suppose

G′ is block pressable. Then Gσ′ = Gτ ′for all σ′, τ ′ ∈ S(G′).

Proof. Let G = (V,E) be an ordered simple pseudo-graph and let G′ = (V ′, E ′) be

a block pressable subgraph of G. By re-indexing, we may assume that both G and

G′ are identity pressable. Let A be the adjacency matrix of G and A′ the adjacency

matrix of G′. Recall that a gaph is order pressable if and only if its ordered adjacency

matrix is in leading principal minors non-negative form ([9]).

Then

A =

 A′ B

BT C


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and both A and A′ are in leading principal minor form. Let τ ′ be any successful

pressing sequence of G′ and let Pτ ′ be the permutation matrix encoding τ ′. Then

P T
τ ′APτ ′

is in leading principal minor form. Consider

P T
τ APτ =

 Pτ ′ 0

0 I


T  A′ B

BT C


 Pτ ′ 0

0 I

 =

 P T
τ ′A

′Pτ ′ P T
τ ′B

BTPτ ′ C


Then the columns of P T

τ ′B are linearly dependent on P T
τ ′A

′Pτ ′ exactly when the

columns of B are linearly dependent on A′. It follows that τ ′ can be extended to

a successful pressing sequence of G.

Example 6.3. The vertices in G′ can be be pressed in two orders: (v1, v3, v2) and

(v3, v1, v2). The resulting graph is the same.

Figure 6.1 Block Pressing

Theorem 6.4. Let G be a full-rank, ordered simple pseudo-graph. Then |S(G)| can

be determined in exponential-time.

Proof. Let G = ([n], E) and let Bn be the boolean lattice on the set {1, 2, . . . , n}. Let

H = (V (H), E(H)) be the Hasse diagram of Bn.
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We define two functions iteratively, one on the elements of H and one on its cover

relations. f : E(H)→ Z and g : V (H) \ ∅ → Z defined iteratively by

f({∅, {x}}) =


1, if x is pressable in G

0, otherwise
and g({x}) = f({∅, {x}})

for each x ∈ [n].

For each S ⊂ [n] and y /∈ S let

f({S, S ∪ {y}}) =


1, if g(S) 6= 0 and y is pressable in G after pressing S

0, otherwise

and for each T ⊆ [n]

g(T ) =
∑
t∈T

f({T \ {t}, T})g(T \ {t})

Observe that when g(T ) 6= 0 it records the number of successful way to press the

vertices of the induced graph G[T ]. Hence g([n]) = |S(G)|. The number of points

considered by f is n2n−1 and the number of points considered by g is 2n. Each

function evaluation consisted of addition (linear time) and block pressing which is

polynomial-time. Therefore, the time complexity of computing g([n]) is O(2n).

6.3 The Pressing Game Conjecture

A sequence π = π1, . . . , πk is a subsequence of permutation σ = (σ1, . . . , σn) if

(σi1 , σi2 , . . . , σik , ) = (π1, . . . , πk) for some 1 ≤ i1 < i2 < · · · < ik ≤ n. The se-

quence π is a common subsequence to σ and τ if it is a subsequence of both σ and τ .

We let lcs(σ, τ) denote the maximum length of such a subsequence, that is

lcs(σ, τ) = max
π∈Sn

(|π| : π is a common subsequence to σ and τ)

Given two permutations, σ and τ , the edit distance between σ and τ , denoted d(σ, τ),

is the minimum number of entries that must be removed and replaced (in any position
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Figure 6.2 Computing the pressing number in exponential time

and order) from σ to achieve τ . A simpler formulation is

d(σ, τ) = n− lcs(σ, τ)

where |σ| = n = |τ |.

Let G = ([n], E) be an ordered simple pseudo-graph. The pressing space of G,

denoted S(G), is the set of all successful pressing sequences of G. From this we

create a family of metagraphs {Mk(G)} where V (Mk(G)) = S(G) and E(Mk(G)) =

{{σ, τ} | d(σ, τ) ≤ k}.

In [4] we find the following conjecture.

Conjecture 6.5. Every successful pressing sequence can be reached from every other

one by a sequence of edits that involve at most four deletions or insertions.

Using the terminology establish above the conjecture can be rephrased as M4(G)

is a connected graph for all ordered simple pseudo-graphs G. The conjecture has been

shown to be true on very specific types of graphs (see [4]), but remains unresolved in

general. The following example demonstrates that M3(G) is not connected.
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Example 6.6. Let G = (V,E) be a simple pseudo graph with V = {1, 2, 3, 4, 5, 6}

and E = {(1, 1), (1, 2), (1, 5)(2, 3), (3, 4), (3, 6), (5, 5), (5, 6)} where we use parenthesis

to avoid ambiguity on the looped vertices. With some effort we determine that

S(G) = {(1, 2, 3, 4, 5, 6), (5, 6, 3, 4, 1, 2)}. However,

d((1, 2, 3, 4, 5, 6), (5, 6, 3, 4, 1, 2)) = 4

since any longest increasing subsequence in (5, 6, 3, 4, 1, 2) is of length 2.

This previous example demonstrates that if the pressing game conjecture is true

(at distance 4) then it is best possible. While the relatively small size of the previous

example may cast some doubt on the conjecture, it has held up (so far) to all tests.

In the next section, we (joint work with Joshua Cooper and Peter Gartland) present

a weaker conjecture and a proposed method to resolve it.

6.4 The Weak Pressing Game Conjecture

Conjecture 6.7 (WPGC). Every successful pressing sequence can be reached from

another successful pressing sequence by a sequence of edits that involve at most four

deletions or insertions.

The previous conjecture is implied by the pressing game conjecture and can be

restate as such:

WPGC: M4(G) has no isolated points

In what follows, we give an argument as to why Conjecture 6.7 should be true.

In Chapter 2, we describe the set of uniquely pressable graphs by characterizing

their Cholesky roots. Below is the characterization again, but using some more

colloquial language.

An n×n upper-triangular matrix U is the Cholesky matrix of a uniquely pressable

graph provided
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i. U has ones along the diagonal and super-diagonal;

ii. in the upper-triangular portion of a matrix, a one is never above a zero;

iii. if column j contains J > 2 ones, then column j+ 1 contains at least J ones (for

all j < n− 1), and column j + 2 contains at least J + 2 ones, (if j ≤ n− 2);

iv. if column j > 1 has an odd number of ones, then column k has only ones above

the diagonal for each j ≤ k ≤ n.

Definition 6.8. We say that an n× n upper-triangular matrix U is minimally non-

uniquely pressable (hereafter referred to as MNUP(n)) if it is not the Cholesky matrix

of a uniquely pressable graph, but every one of its principal submatrices is. We say

G is a minimally non-uniquely pressable graph, or simple MNUP graph, if its identity

ordered instructional Cholesky is minimally non-uniquely pressable.

One can easily verify that there are no MNUP graphs on 3 vertices. Let M be

a MNUP(n) matrix for some n ≥ 3. Let U and V be the (n − 1) × (n − 1) leading

and trailing principal submatrices of M , respectively. Since U is uniquely pressable

we have that the first n− 1 columns of M satisfy uniquely pressable laws i, ii, iii, iv.

For simplicity of argument, for any matrix A let α(A) denote the entry in the first

row and last column of A. For i = 1, 2, let Xi be the n× n matrix with a 1 in the ith

row and nth column. We consider four cases.

Case 1: α(V ) = 0 and α(M) = 0. M inherits laws i and ii from U and V . If

α(U) = 0 thenM also abides to laws iii and iv, and therefore is a uniquely pressable.

This is contrary to assumption. We proceed under the assumption that α(U) = 1 and

M is in violation of either law iii or iv. Since α(U) = 1 we have that the penultimate

column of V is all ones above the diagonal. By law iii the last column of V has at

least n−2 ones as well. ThusM has exactly n−2 ones. Observe that if n is odd then

V would violate law iv, therefore n is even. Finally, observe that M +X2 satisfies all

the uniquely pressable laws.
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Case 2: α(V ) = 1 and α(M) = 1. By law ii, since α(V ) = 1, V contains all ones

in its final column. Observe that M then inherits every law (i, ii, iii, iv) from U . M

is not a MNUP(n).

Case 3: α(V ) = 1 and α(M) = 0. Observe that the final column of M must

contain n − 1 ones (by law ii on V ). Therefore M inherits laws i and ii from U

and V . If n is even then law iv is violated, but M + X1 does not violate any laws.

Otherwise, if n is odd then the only way that M can break laws iii and iv is if the

ante-penultimate column ofM contains n−2 ones. Observe that in this caseM +X1

does not violate any laws.

Case 4: α(V ) = 0 and α(M) = 1. M violates law ii. Assume, by way of

contradiction, that both M + X1 and M + X2 violate some law. Since M + X2

violates then it must be the case that the third row, nth column entry of M + X2 is

a zero (otherwise it is the same argument as in case 2). Then V contains at most

n− 3 ones in its final column. This implies, by law iii, that the penultimate column

of V contains at most n− 3 ones and the ante-penultimate column contains at most

max(2, n− 5) ones. By law ii, the final column of U contains at most n− 3 ones and

the penultimate column of U contains at most max(2, n−5) ones. These measurement

extend to M and therefore M satisfies all four laws, a contradiction.

Thus, we can make the following observation:

Observation 6.9. If M is a minimally non-uniquely pressable matrix then M +X1

or M +X2 is uniquely pressable.

Corollary 6.10. There are at most 3−(−1)n ·3bn/2c−1 minimally non-uniquely press-

able matrices on n vertices.

Conjecture 6.11. If G is a minimally non-uniquely pressable graph, then every

successful pressing sequence can be reached from another successful pressing sequence

by a sequence of edits that involve at most four deletions or insertions.
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Proposition 6.12. The Weak Pressing Game Conjecture on MNUPs is equivalent

to the Weak Pressing Game Conjecture.

Proof. Observe that if the Weak Pressing Game Conjecture is true, then it must also

be true on MNUPs. We proceed to show that it suffices to verify the conjecture on

MNUPs. Assume, by way of contradiction, that the Weak Pressing Game on MNUPs

does not imply the Weak Pressing Game Conjecture. Let U be the instructional

Cholesky matrix of a non-uniquely pressable graph G that is identity pressable but

no other pressing sequence within four edits of the identity is successful. Let U be

the instructional Cholesky of G. Observing that any 1×1 principal submatrix if U is

uniquely pressable and G, by assumption, is not uniquely pressable, we may conclude

that U contains a MNUP as a principal submatrix, choose one and call it M . Let

A = UTU and consider the block construction of A:
A1 A2 A3

AT2 MTM A4

AT3 AT4 A5


Since the WPGC holds on MNUPs, there is a permutation matrix P such that

P TMTMP is in pressing order and P can be converted into the identity permutation

by removing and subsequently inserting at most four rows and columns (simultaneous

operations on the same indexed row and column). However,

I 0 0

0 P T 0

0 0 I




U1 U2 U3

0 M U4

0 0 U5



T 
U1 U2 U3

0 M U4

0 0 U5




I 0 0

0 P 0

0 0 I

 =


A1 A2P A3

P TA2 P TMTMP P TA4

A3 A4P A5


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which can be successfully pressed by block-pressing A1, followed by block-pressing

MTM (in the order given by P ) and then block-pressing A5. However we now have a

new pressing order for G that is within four edits of the identity, a contradiction.

Conjecture 6.13. The MNUPs satisfy the Weak Pressing Game Conjecture.

In particular, we conjecture that ifM is a MNUP(n) it can be pressed by (exactly)

one of the following sequences:

• (n− 1, n, 2, 3, 4, . . . , n− 2, 1, 2), if M [1, n] = M [2, n] = 0;

• (`, `+ 1, n, 2 . . . , `− 1, `+ 2, . . . , n− 1, 1), if ` 6= n is the first column other than

1 with an odd number of ones;

• (n, 2, . . . , k − 1, k + 2, . . . , n, 1, k, k + 1) if M satisfies that M [i, n] = 0 if and

only if 2 ≤ i ≤ k + 1 for some even integer k;

• (n, 2, . . . , n− 1, 1) otherwise.
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Chapter 7

Future Directions and Open Questions

In this thesis we have explored several problems that are related to pressing sequences.

Some of them we have been able to solve, many of them we have explored, and a few

we have set on the back-burner. What follows are some future directions for this line

of research as well as some open questions. We begin by addressing the elephant in

the room.

Question 7.1. Is the pressing game conjecture true? (Conjecture: Every successful

pressing sequence can be reached from every other one by a sequence of edits that

involve at most four deletions or insertions.)

A very small first step in the direction towards proving the pressing game conjec-

ture would be to show that the Weak Pressing Game Conjecture holds up. Should

the pressing game conjecture be false, it may still be true that successful pressing

sequences can be reached by a relatively small edits.

Question 7.2. Is it true that for a (full-rank) simple pseudo-graph on n vertices

every successful pressing sequence can be reached from every other one by a sequence

of edits that involve at most p∗(n) deletions or insertions, where p∗(n) is polynomial

or less.

Another very open and quite interesting (at least to me) question is:

Question 7.3. What is the time complexity of determining the number of successful

pressing sequences of a simple pseudo-graph?
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We have shown that the complexity is no more than exponential. While this is an

improvement over the previous upper-bound of super-exponential (derived from linear

extensions), it is far from being computationally practical. Thus, if the complexity

cannot be lowered to polynomial, we propose the following question:

Question 7.4. Can the number of successful pressing sequences of a simple pseudo-

graph be approximated near-uniformly in polynomial time?

An affirmative to the previous question would likely lead to a near-uniform, effi-

cient sampling algorithm for successful pressing sequences.

In Chapter 2 we discussed enumeration of Cholesky roots for the zero matrix. As

a corollary we were able to discuss the number of distinct Cholesky factorizations of a

matrix (over F2) that is in leading principal minor non-negative form. This count only

offers a lower bound for the number of distinct Cholesky factorizations of a general

symmetric matrix over F2.

Question 7.5. How many Cholesky factorizations are there for a symmetric matrix

over F2? Can we generalize the results for Fq?

In Chapter 3 we demonstrate that the successful pressing sequences of an OSP-

graph are the linear extensions of a set of posets that arise from the instructional

Cholesky roots of the graph. An autonomous graph has the property that its suc-

cessful pressing sequences are all linear extensions of a single poset. In particular,

in the autonomous case, this poset can be viewed as the intersection of all of the

successful pressing sequences of the graph (interpreted as linear extensions). In the

case that the OSP-graph is not autonomous then the posets are the intersections

of pairwise disjoint families of successful pressing sequences. Thus, we have that if

G is an OSP-graph then the instructional posets of G partition Σ(G) into disjoint

sets S1, S2, . . . , Sk satisfying that LE (⋂Si) = Si for each i ∈ [k]. Observe that this
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partition is not sufficient to determine the instructional posets of a graph since, for

example LE (⋂{σ}) = {σ}.

Question 7.6. In general, how many distinct partitions of Σ(G) into disjoint sets

{Si}i exist such that LE (⋂Si) = Si for each i?
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Appendix A

Source Code and Examples

A.1 SageMath Code

I have appended this section to preserve some of the SageMath code that we use

to explore pressing sequences. Much of this code can be directly attributed to Josh

Cooper, and the less elegant code is a result of collaborative work between Peter

Gartland, Erin Hanna and I. Blakeley Payne (nae Hoffman) has also created some

code to that is similar to what has appeared here - while it does not appear here, it

is likely that her work inspired some of our work (thanks Blakeley!)

The symbol “#” is used to denote a comment, and “<<<” is used following a

line-break and means that the text which it precedes should be appended to the

previous line. Throughout the code a finite field GF (q) is assumed, prime power “q”

should be defined prior to executing such codes. In the sections that follows I have

included some sample outputs.

#############################################################

# Input0 : a vec to r ‘ ‘V’ ’ o f l ength n(n+1)/2

# Input1 : the cor re spond ing i n t e g e r ‘ ‘ n ’ ’

# Output : an n x n upper−t r i a n gu l a r matrix .

#############################################################

def t r i a n g u l a r i z e (v , n ) :

l o c = 0
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o u t l i s t = [ [ 0 f o r i in range (n ) ] f o r j in range (n ) ]

f o r i in range (n ) :

f o r j in range ( i , n ) :

o u t l i s t [ i ] [ j ] = v [ l o c ]

l o c += 1

return Matrix (GF(q ) , o u t l i s t )

#############################################################

# Input : a p o s i t i v e i n t e g e r n

# Output : l i s t o f upper−t r i a n gu l a r matr i ce s whose square i s

# the zero matrix

#############################################################

def s qua r e r o o t s o f z e r o (n ) :

s i z e = in t ( ( n+1)∗n/2)

Z = matrix (GF(q ) , n , n , 0 )

o u t l i s t = [ ]

f o r i in range (q^ s i z e ) :

S = t r i a n g u l a r i z e ( In t eg e r ( i ) . d i g i t s ( base=q ,

<<< padto=s i z e ) , n )

i f S^2 == Z :

o u t l i s t . append (S)

re turn o u t l i s t

#############################################################

# Input : a p o s i t i v e i n t e g e r n
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# Output : l i s t o f upper−t r i a n gu l a r matr i ce s that when

# mu l t i p l i e d by i t s t ranspose y i e l d s the zero matrix

#############################################################

def Cho l e sky roo t so f z e ro (n ) :

s i z e = in t ( ( n+1)∗n/2)

Z = matrix (GF(q ) , n , n , 0 )

o u t l i s t = [ ]

f o r i in range (q^ s i z e ) :

S = t r i a n g u l a r i z e ( In t eg e r ( i ) . d i g i t s ( base=q ,

<<< padto=s i z e ) , n )

i f S . t ranspose ( )∗S == Z :

o u t l i s t . append (S)

re turn o u t l i s t

#############################################################

# Input : a square matrix A

# Output : True i f the matrix i s presented in l ead ing

# p r i n c i p a l non−negat ive minors form , Fa l se o therw i s e .

#############################################################

def is_LPN_k(A) :

n = len ( l i s t (A) )

k = rank (A)

f o r j in range (1 , k+1):

M = A. matrix_from_rows_and_columns ( range ( j ) , range ( j ) )

i f not M. i s_ i n v e r t i b l e ( ) :

r e turn Fal se
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f o r j in range (k+1,n+1):

M = A. matrix_from_rows_and_columns ( range ( j ) , range ( j ) )

i f M. i s_ i n v e r t i b l e ( ) :

r e turn Fal se

re turn True

#############################################################

# Input : an i n v e r t i b l e square matrix A

# Output : True i f the matrix i s presented in l ead ing

# p r i n c i p a l non−negat ive minors form , Fa l se o therw i s e .

#############################################################

def is_LPN_full (A) :

n = len ( l i s t (A) )

f o r j in range (1 , n+1):

M = A. matrix_from_rows_and_columns ( range ( j ) , range ( j ) )

i f not M. i s_ i n v e r t i b l e ( ) :

r e turn Fal se

re turn True

#############################################################

# Input : a matrix A s a t i s f y i n g is_LPN_k(A)=True

# Output : the ‘ ‘ i n s t r u c t i o n a l ’ ’ Cholesky root o f A

#############################################################

def iChol (A) :

C=copy (A)
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n=len ( l i s t (C) )

B=matrix (GF(2 ) , n , n , 0 )

f o r i in range (n ) :

B[ i ]=C[ i ]

f o r k in range ( i +1,n ) :

C[ k]= C[ i , i ]∗C[ i ]∗C[ k , i ]+C[ k ]

r e turn B

#############################################################

# Input : A pa i r o f posets , P and Q, over the same element s e t

# Output : minimum ed i t d i s t anc e between l i n e a r ex t en s i on s

# o f P and Q

#############################################################

def poset_edi t_distance (P,Q) :

i f s e t (P. l i s t ( ) ) != s e t (Q. l i s t ( ) ) :

p r i n t ’The l a b e l s are not the same . ’

r e turn I n f i n i t y

n = len (P. l i s t ( ) )

LP = map( lambda L : [P . l i s t ( ) . index (x)+1 f o r x in L ] ,

<<< P. l i n ea r_ex t en s i on s ( ) )

LQ = map( lambda L : [P . l i s t ( ) . index (x)+1 f o r x in L ] ,

<<< Q. l i n ea r_ex t en s i on s ( ) )

sma l l e s t_d i s tance = I n f i n i t y

f o r extP in LP:

f o r extQ in LQ:

perm = Permutation ( extP ) . i n v e r s e ( )∗
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<<<Permutation ( extQ )

d = n − perm . longes t_increas ing_

<<<subsequence_length ( )

i f d < sma l l e s t_d i s tance :

sma l l e s t_d i s tance = d

return sma l l e s t_d i s tance

#############################################################

# Input : A symmetric n x n matrix A

# Output : True i f A has exac t l y one s u c c e s s f u l p r e s s i n g

# sequence , Fa l se o the rw i s e

#############################################################

def i s_un ique_fu l l (A) :

n = len ( l i s t (A) )

pres scount = 0

f o r p in Permutations (n ) :

P = p . to_matrix ( )

i f is_LPN_full (P . t ranspose ( )∗A∗P) :

pre s scount += 1

i f pre s scount > 1 :

re turn Fal se

i f pre s scount == 1 :

re turn True

e l s e :

r e turn Fal se
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#############################################################

# Input :A symmetric n x n matrix A

# Output : True i f A has exac t l y two s u c c e s s f u l p r e s s i n g

# sequences , Fa l se o the rwi se

#############################################################

def i s_tw i c e_pre s sab l e_ fu l l (A) :

n = len ( l i s t (A) )

pres scount = 0

f o r p in Permutations (n ) :

P = p . to_matrix ( )

i f is_LPN_full (P . t ranspose ( )∗A∗P) :

pre s scount += 1

i f pre s scount > 2 :

re turn Fal se

i f pre s scount == 2 :

re turn True

e l s e :

r e turn Fal se

#############################################################

# Input : an i n v e r t i b l e , symmetric n x n matrix A

# Output : the number o f s u c c e s s f u l p r e s s i n g sequences o f A

#############################################################

def pressing_number (A) :

n = len ( l i s t (A) )
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pres scount = 0

f o r p in Permutations (n ) :

P = p . to_matrix ( )

i f is_LPN_full (P . t ranspose ( )∗A∗P) :

pre s scount += 1

return pres scount

#############################################################

# Input : a p o s i t i v e i n t e g e r n and a p o s i t i v e i n t e g e r k<n

# Output : Permutations o f { 1 , . . . , n} o f l ength k extended to

# length n by appending the miss ing e lements in l ex order

#############################################################

def part ia lperm (n , k ) :

p e rm l i s t = Permutations (n , k )

o u t l i s t = [ ]

f o r p in pe rm l i s t :

p l i s t = l i s t (p)

f o r j in range (1 , n+1):

i f j not in p l i s t :

p l i s t . append ( j )

o u t l i s t . append ( Permutation ( p l i s t ) )

r e turn o u t l i s t

#############################################################

# Input : a symmetric n x n matrix A
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# Output : the number o f s u c c e s s f u l p r e s s i n g sequences o f A

#############################################################

def pre s s ingcount (A) :

n = len ( l i s t (A) )

k = A. rank ( )

pre s scount = 0

f o r p in part ia lperm (n , k ) :

P = p . to_matrix ( )

i f is_LPN_k(P. t ranspose ( )∗A∗P) :

pre s scount += 1

return pres scount

#############################################################

# Input : A symmetric n x n matrix A

# Output : the l i s t o f s u c c e s s f u l p r e s s i n g sequences f o r A

#############################################################

def p r e s s i n g l i s t p a r t i a l (A) :

n = len ( l i s t (A) )

k = A. rank ( )

p r e s s l i s t = [ ]

f o r p in part ia lperm (n , k ) :

#pr in t p

P = p . to_matrix ( )

i f is_LPN_k(P. t ranspose ( )∗A∗P) :

p r e s s l i s t . append (p)

re turn p r e s s l i s t
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#############################################################

# Input : An i n v e r t i b l e symmetric , n x n matrix A

# Output : the l i s t o f s u c c e s s f u l p r e s s i n g sequences f o r A

#############################################################

def p r e s s i n g l i s t (A) :

n = len ( l i s t (A) )

LIST=[ ]

f o r p in Permutations (n ) :

P = p . to_matrix ( )

i f is_LPN_full (P . t ranspose ( )∗A∗P) :

LIST . append (p)

re turn LIST

#############################################################

# Input : A graph G

# Output : The adjacency matrix o f G with e n t r i e s in GF(2)

#############################################################

def binaryadjmx (G) :

r e turn Matrix (GF(2 ) ,G. adjacency_matrix ( ) )

#############################################################

# Input : A matrix M and a non−negat ive i n t e g e r m

# Output : True i f M has exac t l y m s u c c e s s f u l p r e s s i n g
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# sequences , Fa l se o the rwi se

#############################################################

def has_number_of_PS(A,m) :

n = len ( l i s t (A) )

k = A. rank ( )

pre s scount = 0

f o r p in part ia lperm (n , k ) :

P = p . to_matrix ( )

i f is_LPN_k(P. t ranspose ( )∗A∗P) :

pre s scount += 1

i f pre s scount > m:

return Fal se

i f pre s scount == m:

return True

e l s e :

r e turn Fal se

#############################################################

# Input : a prime power q

# Output : a l i s t index ing the e lements o f GF(q )

#############################################################

def FIELD(q ) :

r e turn GF(q ) . l i s t ( )

#############################################################
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# Input : p o s i t i v e i n t e g e r s n and r

# Output : The number o f symmetric matr i ce s o f rank r and

# s i z e n over GF(q )

#############################################################

def NORMS(n , r ) :

i f min (n−1, r , n−r )<0:

re turn 0

e l s e :

k=f l o o r ( r /2)

f ( x)=q^(2∗x )/ ( q^(2∗x)−1)

g (x)=q^(n−x)−1

return prod ( f ( i ) f o r i in ( 1 . . k ) )∗ prod ( g ( i )

<<<fo r i in ( 0 . . r−1))

#############################################################

# Input : p o s i t i v e i n t e g e r s n and r and i n t e g e r i in {0 ,1 ,2}

# Output : the number o f symmetric matr i ce s o f s i z e n+1 which

# can be generated by i n c r e a s i n g rank by i =0 ,1 ,2

#############################################################

def NOM_gen(n , r , i ) :

i f i ==0:

re turn NORMS(n , r )∗q^r

e l i f i ==1:

re turn NORMS(n , r )∗ ( q−1)∗q^r

e l i f i ==2:

re turn NORMS(n , r )∗ ( q^(n+1)−q^( r+1))
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e l s e :

r e turn 0

#############################################################

# Input : p o s i t i v e i n t e g e r s n and r

# Output : DENOM(n , r ) i s used in the subrout ine s below

#############################################################

def DENOM(n , r ) :

r e turn NOM_gen(n−1,r ,0)+NOM_gen(n−1,r−1 ,1)

<<<+NOM_gen(n−1,r−2 ,2)

#############################################################

# Input : p o s i t i v e i n t e g e r s n and r and i n t e g e r i in {0 ,1 ,2}

# Output : p r o b a b i l i t i e s used in subrout ine s below

#############################################################

def prob_from (n , r , i ) :

i f i in range ( 0 , 3 ) :

r e turn max(NOM_gen(n−1,r−i , i )/DENOM(n , r ) , 0 )

e l s e :

r e turn 0

#############################################################

# Input : a symmetric matrix M
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# Output : in fo rmat ion about p ivot columns o f M used in

# subrout ine s below

#############################################################

def BASES(M) :

COMP=[]

n=len ( l i s t (M) )

PIV=M. p ivo t s ( )

RPIV=M. pivot_rows ( )

f o r i in range (n ) :

E=matrix (GF(q ) , n , 1 , 0 )

i f i not in M. pivot_rows ( ) :

e=copy (E)

e [ i ,0 ]=1

COMP. append ( e )

CB=[ ]

f o r p in PIV :

CB. append ( M. matrix_from_columns ( [ p ] ) )

P=[ ]

f o r p in PIV :

P. append (p)

re turn CB,COMP, P

#############################################################

# Input : a symmetric matrix M

# Output : a vec to r in the span o f M

#############################################################
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de f in spanvec to r (M) :

L = BASES(M) [ 0 ]

V = matrix (GF(q ) , l en ( l i s t (M) ) , 1 , 0 )

f o r i in range ( l en ( l i s t (L ) ) ) :

r = FIELD(q ) [ rand int (0 , q−1)]

V = V + r∗L [ i ]

r e turn V

#############################################################

# Input : a symmetric matrix M

# Output : a vec to r not in the span o f M

#############################################################

def not inspan (M) :

l = l en (BASES(M) [ 1 ] )

Y = matrix (GF(q ) , l en ( l i s t (M) ) , 1 , 0 )

s = q^ l − 1

i f s ==1:

w = 1

e l s e :

w = random_between (1 , q^ l −1)

W = w. d i g i t s (q , padto=l )

f o r i in range ( l ) :

Y = Y + FIELD(q ) [W[ i ] ] ∗BASES(M) [ 1 ] [ i ]

r e turn Y
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#############################################################

# Input : a symmetric matrix M

# Output : a vec to r that i s the sum of a randomly chosen

# vecto r in the span o f M and a randomly chosen vec to r not

# in the span o f M

#############################################################

def c oo l v e c t o r (M) :

re turn not inspan (M)+inspanvector (M)

#############################################################

# Input : a symmetric matrix M and an i n t e g e r k in {0 ,1 ,2}

# Output : a symmetric matrix o f s i z e one l a r g e r and rank

# inc r ea s ed by k

# Witty except i ons cour te sy o f Erin Hanna

#############################################################

def rankinc (M, k ) :

i f k==2:

r = M. rank ( )

i f r == M. nrows ( ) :

p r i n t " I can ’ t i n c r e a s e the rank by 2 ! "

e l s e :

v = coo l v e c t o r (M)

p = M. rows ( )

p [ 0 : 0 ] = (v . t ranspose ( ) )

P = matrix (p)

b = v . rows ( )
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b [ 0 : 0 ] = [ ( vec to r (GF(q ) , [ 0 ] ) ) ]

c = matrix (b)

G = P. t ranspose ( )

g = G. rows ( )

g [ 0 : 0 ] = ( c . t ranspose ( ) )

OMG = matrix ( g ) . t ranspose ( )

BLAH = GF(q ) . random_element ( )

OMG[ 0 , 0 ] = BLAH

return OMG

e l s e :

n = M. nrows ( )

eta = [ ]

f o r i in range (n ) :

r = GF(q ) . random_element ( )

eta . append ( r )

v = matrix ( eta ) ∗ M

p = M. rows ( )

p [ 0 : 0 ] = (v )

P = matrix (p)

b = v . t ranspose ( ) . rows ( )

b [ 0 : 0 ] = [ ( vec to r (GF(q ) , [ 0 ] ) ) ]

c = matrix (b)

G = P. t ranspose ( )

g = G. rows ( )

g [ 0 : 0 ] = ( c . t ranspose ( ) )

OMG = matrix ( g )

NY = matrix ( eta )∗v . t ranspose ( )
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i f k==0:

OMG[ 0 , 0 ] = NY[ 0 ] [ 0 ]

e l i f k==1:

x = NY[ 0 ] [ 0 ]

whi l e x == NY[ 0 ] [ 0 ] :

x = FIELD(q ) [ rand int (0 , q−1)]

OMG[ 0 , 0 ] = x

e l s e :

" you no do t h i s "

r e turn OMG

#############################################################

# Input : i n t e g e r s n , r , q

# Output : a uni formly randomly s e l e c t e d symmetric matrix o f

# s i z e n , rank r with e n t r i e s in GF(q ) , or a witty

# except ion message

#############################################################

def nrmx(n , r , q ) :

i f min (n−1,r , n−r )<0:

re turn "dummie "

e l i f n==1:

i f r==0:

M=matrix (GF(q ) , [ [ 0 ] ] )

r e turn M

e l i f r==1:

M=matrix (GF(q ) , [ FIELD(q ) [ rand int (1 , q−1 ) ] ] )
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r e turn M

e l s e :

r e turn " except ion in n==1 loop "

e l s e :

P = [ prob_from (n , r , 0 ) , prob_from (n , r , 1 ) ,

<<<prob_from (n , r , 2 ) ]

X = Gene ra lD i s c r e t eD i s t r i bu t i on (P)

j = X. get_random_element ( )

M=nrmx(n−1,r−j , q )

M = rankinc (M, j )

r e turn M
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A.2 Cholesky Roots of Zero

2× 2 square roots of zero:  0 0

0 0

 ,
 0 1

0 0



2× 2 Cholesky roots of zero:  0 0

0 0

 ,
 0 1

0 1



3× 3 square roots of zero:
0 0 0

0 0 0

0 0 0

 ,


0 1 0

0 0 0

0 0 0

 ,


0 0 1

0 0 0

0 0 0

 ,


0 1 1

0 0 0

0 0 0

 ,


0 0 0

0 0 1

0 0 0

 ,


0 0 1

0 0 1

0 0 0



3× 3 Cholesky roots of zero:
0 0 0

0 0 0

0 0 0

 ,


0 1 0

0 1 0

0 0 0

 ,


0 0 1

0 0 1

0 0 0

 ,


0 1 1

0 1 1

0 0 0

 ,


0 0 1

0 0 0

0 0 1

 ,


0 0 0

0 0 1

0 0 1


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4× 4 square roots of zero:

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,



0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,



0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0


,



0 1 1 0

0 0 0 0

0 0 0 0

0 0 0 0


,



0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0


,



0 1 0 1

0 0 0 0

0 0 0 0

0 0 0 0


,



0 0 1 1

0 0 0 0

0 0 0 0

0 0 0 0


,



0 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0


,



0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0


,



0 0 1 0

0 0 1 0

0 0 0 0

0 0 0 0


,



0 0 0 1

0 0 1 0

0 0 0 0

0 0 0 0


,



0 0 1 1

0 0 1 0

0 0 0 0

0 0 0 0


,



0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0


,



0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0


,



0 0 0 1

0 0 0 1

0 0 0 0

0 0 0 0


,



0 0 1 1

0 0 0 1

0 0 0 0

0 0 0 0


,



0 0 0 0

0 0 1 1

0 0 0 0

0 0 0 0


,



0 0 1 0

0 0 1 1

0 0 0 0

0 0 0 0


,



0 0 0 1

0 0 1 1

0 0 0 0

0 0 0 0


,



0 0 1 1

0 0 1 1

0 0 0 0

0 0 0 0


,



0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0


,



0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0


,



0 0 0 1

0 0 0 0

0 0 0 1

0 0 0 0


,



0 1 0 1

0 0 0 0

0 0 0 1

0 0 0 0


,



0 0 0 0

0 0 0 1

0 0 0 1

0 0 0 0


,



0 1 1 0

0 0 0 1

0 0 0 1

0 0 0 0


,



0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 0


,



0 1 1 1

0 0 0 1

0 0 0 1

0 0 0 0


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4× 4 Cholesky roots of zero:

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,



0 1 0 0

0 1 0 0

0 0 0 0

0 0 0 0


,



0 0 1 0

0 0 1 0

0 0 0 0

0 0 0 0


,



0 1 1 0

0 1 1 0

0 0 0 0

0 0 0 0


,



0 0 0 1

0 0 0 1

0 0 0 0

0 0 0 0


,



0 1 0 1

0 1 0 1

0 0 0 0

0 0 0 0


,



0 0 1 1

0 0 1 1

0 0 0 0

0 0 0 0


,



0 1 1 1

0 1 1 1

0 0 0 0

0 0 0 0


,



0 0 1 0

0 0 0 0

0 0 1 0

0 0 0 0


,



0 0 0 0

0 0 1 0

0 0 1 0

0 0 0 0


,



0 0 0 1

0 0 0 0

0 0 0 1

0 0 0 0


,



0 0 0 0

0 0 0 1

0 0 0 1

0 0 0 0


,



0 0 1 1

0 0 0 0

0 0 1 1

0 0 0 0


,



0 0 0 0

0 0 1 1

0 0 1 1

0 0 0 0


,



0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 1


,



0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 1


,



0 0 0 1

0 0 1 0

0 0 1 0

0 0 0 1


,



0 0 1 0

0 0 0 1

0 0 1 0

0 0 0 1


,



0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 1


,



0 1 0 0

0 1 0 0

0 0 0 1

0 0 0 1


,



0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 1


,



0 1 1 0

0 1 1 0

0 0 0 1

0 0 0 1


,



0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1


,



0 1 0 1

0 1 0 1

0 0 0 1

0 0 0 1


,



0 0 1 1

0 0 1 1

0 0 0 1

0 0 0 1


,



0 1 1 1

0 1 1 1

0 0 0 1

0 0 0 1


,



0 0 1 1

0 0 0 1

0 0 1 1

0 0 0 1


,



0 0 0 1

0 0 1 1

0 0 1 1

0 0 0 1


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A.3 Large Uniquely Pressable Matrices

In Chapter 2 we discuss the set of uniquely pressable graphs by characterizing their

Cholesky matrices. One can construct any uniquely pressable matrix by appending

a column of full-weight to the end (and completing the matrix to be square), or by

appending a new first row and writing a 1 in the entries of the first row exactly

when the column previously had odd weight. We refer to to these processes as right-

appending and left-appending (respectively). If n is even and U is a uniquely pressable

n×n matrix, then the process of left-appending and then right-appending commutes.

That is, all the (n+ 2)× (n+ 2) uniquely pressable matrices can be reached, without

repetition, by performing the three following operations to the set of n× n uniquely

pressable matrices: Left append twice, Right append twice, Left/Right append. Using

this and the SageMath code below we generate random uniquely pressable matrices.

de f LeftAppend ( l ) :

w=[1]

w. extend ( l )

f o r i in range (1 , l en (w) ) :

i f w[ i ]%2==1:

w[ i ]=w[ i ]+1

return w

de f RightAppend ( l ) :

x=copy ( l )

x . append ( l en ( l )+1)

re turn x
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de f RightRight ( l ) :

r e turn RightAppend (RightAppend ( l ) )

de f Le f tLe f t ( l ) :

r e turn LeftAppend ( LeftAppend ( l ) )

de f RightLef t ( l ) :

r e turn RightAppend ( LeftAppend ( l ) )

de f Le f tRight ( l ) :

r e turn LeftAppend (RightAppend ( l ) )

de f RandomUniqueEven (n ) :

i f n==2:

output =[1 ,2 ]

e l s e :

i=rand int (1 , 3 )

i f i ==1:

output=Le f tLe f t (RandomUniqueEven (n−2))

e l i f i ==2:

output=RightLeft (RandomUniqueEven (n−2))

e l i f i ==3:

output=RightRight (RandomUniqueEven (n−2))

re turn output

de f SendUniqueToMatrix (L ) :

n=len (L)
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M=matrix (GF(2 ) , n , n , 0 )

MM=copy (M)

f o r i in range (n ) :

f o r j in range (L [ i ] ) :

MM[ i−j , i ]=1

re turn MM

def RandomUniqueCholesky (n ) :

i f n%2==0:

re turn SendUniqueToMatrix (RandomUniqueEven (n ) )

e l i f n%2==1:

l=RandomUniqueEven (n−1)

i=rand int (1 , 2 )

i f i ==1:

l=LeftAppend ( l )

e l i f i ==2:

l=RightAppend ( l )

r e turn SendUniqueToMatrix ( l )
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Figure A.1 Random Unique Cholesky and Adjacency Matrix. N = 20

Figure A.2 Random Unique Cholesky and Adjacency Matrix. N = 100
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Figure A.3 Random Unique Cholesky and Adjacency Matrix. N = 500

Figure A.4 Random Unique Cholesky and Adjacency Matrix. N = 1500
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