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ABSTRACT 

The paradigm shift in cancer treatments from traditional chemotherapeutics to 

targeted therapies has rapidly improved prognoses for patients for whom cancer was 

once a death sentence. This is especially true in the case of targeted immune therapies 

which activate the body’s own natural defense system to fight cancer. Despite these 

advances, however, cancer remains the second leading cause of death in the United 

States. The promise of targeted therapeutics has faced significant hurdles in providing 

effective cancer treatments, namely the limited percentage of susceptible cancers for 

each treatment, high cost burden, high toxicities, and significant risk of treatment induced 

resistance. As a result, targeted therapies are often combined into a cocktail of multiple 

drugs, including other targeted therapeutics and chemotherapies. These hurdles have led 

to a resurgence of interest in natural products to treat cancer. Natural products tend to 

be cheap, safe to use, and capable of targeting multiple cellular pathways at once. Multi-

targeting natural products which simultaneously affect multiple cellular processes 

including angiogenesis, metastasis, immune response, and apoptosis are uniquely 

positioned to provide a robust treatment for cancer when used alone or in combination 

with current targeted therapeutics. 

 This study investigates the anticancer properties of two natural products, 

clusianone and deacetylnemorone. The compounds were screened against 60 cancer cell 

lines to determine the growth inhibitory properties of the compounds. Both compounds 
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were found to inhibit cancer cell growth across all nine of the tissue types screened at 

doses of 10 µM or less. Clusianone subsequently induced cell death in 25 of the cell lines 

screened at 100 µM concentrations, while deacetylnemorone only induced cell death in 

one melanoma cell line SK-MEL-5 at 10 µM. Clusianone was further shown to target 

tubulin polymerization and induce dose dependent apoptosis in non-small cell lung 

cancer. The compounds were additionally assayed in vitro to determine their effects on 

angiogenesis, macrophage polarization, and cancer cell invasion. Both compounds were 

shown to reduce tube formation between endothelial cells, a crucial step in angiogenesis, 

and inhibit cancer cell invasion into cell free gaps. Finally, clusianone was shown to 

increase the expression of TNF-𝛼 and IL-6 in THP-1 derived macrophages, suggesting 

polarization to an M1, anticancer state. The multi-targeting nature described may allow 

these compounds to simultaneously induce cell death directly in tumor cells, starve 

tumors by reducing their blood supply, limit the invasion of cancers into healthy tissue, 

and stimulate the immune system to attack cancer cells. This multipronged attack would 

provide treatments which are less susceptible to resistance when used alone in addition 

to enhancing the effects of targeted therapies when used in combination. Clusianone and 

deacetylnemorone are therefore promising drug leads for anticancer therapy.
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CHAPTER 1 

INTRODUCTION 

The treatment of cancer has been revolutionized by the advent of targeted 

therapies. These therapies take advantage of our ever-evolving understanding of cancer 

biology and cellular pathways, by specifically interacting with key cancer associated 

proteins. This represents a dramatic shift from traditional chemotherapeutics, which 

were used to induce cell death in a wide range of cancer cell types through a variety of 

mechanisms, from causing DNA damage to interfering with microtubule function. 

Targeted therapies have expanded the universe of suitable cancer treatments from the 

primarily cytotoxic molecules of traditional chemotherapies to a range of therapies which 

may induce cell death, activate the immune system to attack cancer cells, or inhibit the 

formation of new vasculature to the tumor environment. Due to the targeted nature of 

these therapies, they can be tailored to very specific cancer morphologies, increasing 

efficacy in applicable patients. 

Despite these advances, however, cancer remains the second leading cause of 

death in the United States1. The results gleaned from the clinical use of targeted therapies 

have been disappointing due to the major setbacks associated with their use. One major 

hurdle is the cost associated with the treatments. The low population of patients 

treatable with each developed therapy in combination with the expense of drug 

development can lead to prohibitive treatment cost to the patient. This is particularly 
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apparent in the case of the chimeric antigen receptor T-cell (CAR-T cell) therapy 

tisagenlecleucel, which is made by isolating a patient’s T-cells and genetically engineering 

them to target cancer cells when re-introduced into the body. This personalized 

treatment, while effective, costs approximately $475,0002. 

Another major setback for targeted cancer treatments is the limited number of 

patients treatable with each developed therapy. As targeted therapeutics are engineered 

to affect a specific molecule, tumors with little expression or limited reliance on the target 

protein of a particular therapy cannot be effectively treated with that therapy. For 

example, the anti-programmed cell death protein 1 (PD-1) therapy nivolumab, is a 

targeted therapy which blockades the immune checkpoint process leading to cancer cell 

evasion from the immune system. However, this therapy has been shown to be 

ineffective at treating cancers with low mutational burden or low immunogenicity3. 

Arguably one of the most problematic hurdles faced by targeted therapies is 

acquired resistance to treatment. Many of these therapies are initially effective for 

applicable patients but quickly lose efficacy as the patient is treated. This could be due to 

increased expression of cancer stem cells, upregulation of unrelated cellular survival 

pathways, or alterations in the structure or expression of the target protein in response 

to the treatment. Targeted therapies from kinase inhibitors to angiogenesis inibitors, such 

as sorafenib and bevacizumab, have been limited by the development of resistance4-6. As 

a result of these challenges, targeted therapies are often combined with other unique 

targeted therapies or traditional chemotherapeutics to increase their efficacy and limit 
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the occurrence of treatment resistance. This thesis investigates the potential of natural 

compounds to be used in these cancer treatment cocktails. 

Natural products possess the unique ability to influence multiple cellular targets 

simultaneously. As a result, these compounds are suggested for use in conjunction with 

targeted therapy/chemotherapeutic mixtures synergizing with multiple components of 

the cocktail, affecting unrelated cancer related pathways, and reducing the possibility for 

developed resistance. In the following chapters, the potential of natural products for the 

treatment of cancer is evaluated. In Chapter 2, a literature review is provided to give a 

brief background on the use of natural products to treat cancer. Specifically this review 

details the use of multi-targeting natural products to target cancer stem cells, inhibiting 

the invasion, metastasis, and drug resistance of cancer. Following this literature review, 

two specific compounds which were screened for anti-cancer properties from a library of 

natural products are presented. Chapter 3 details the use of the abietane diterpenoid, 

deacetylnemorone, to simultaneously inhibit cancer cell growth, inhibit cancer cell 

invasion, inhibit angiogenesis, and re-sensitize treatment resistance cancers to 

chemotherapy. Chapter 4 discusses the acylphloroglucinol, clusianone, a natural 

compound capable of inducing apoptosis in non-small cell lung cancer, inhibiting 

angiogenesis, and modulating the immune system. Potential mechanisms of action for 

clusianone are also discussed in this chapter. Finally, the findings of this study are 

summarized in Chapter 5.  
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CHAPTER 2 

THE USE OF NATURAL PRODUCTS TO TARGET CANCER STEM CELLS1 

2.1 ABSTRACT 

 The cancer stem cell hypothesis has been used to explain many cancer 

complications resulting in poor patient outcomes including induced drug resistance, 

metastases to distant organs, and tumor recurrence. While the validity of the cancer stem 

cell model continues to be the cause of much scientific debate, a number of putative 

cancer stem cell markers have been identified making studies concerning the targeting of 

cancer stem cells possible. In this review, a number of identifying properties of cancer 

stem cells have been outlined including properties contributing to the drug resistance and 

metastatic potential commonly observed in supposed cancer stem cells. Due to cancer 

stem cells’ numerous survival mechanisms, the diversity of cancer stem cell markers 

between cancer types and tissues, and the prevalence of cancer stem cell markers among 

healthy stem and somatic cells, it is likely that currently utilized treatments will continue 

to fail to eradicate cancer stem cells. The successful treatment of cancer stem cells will 

rely upon the development of anti-neoplastic drugs capable of influencing many cellular 

mechanisms simultaneously in order to prevent the survival of this evasive 

subpopulation. Natural compounds represent a historically rich source of novel, 

                                                            
1 Taylor, W.F. and Jabbarzadeh, E. 2017. Am J Cancer Res. 7: 1588-1605. 
 Reprinted here with permission of publisher. 
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biologically active compounds which are able to interact with a large number of cellular 

targets while limiting the painful side-effects commonly associated with cancer 

treatment. A brief review of select natural products that have been demonstrated to 

diminish the clinically devastating properties of cancer stem cells or to induce cancer stem 

cell death is also presented. 

2.2 INTRODUCTION 

Modern chemotherapy, radiotherapy, and other antineoplastic regimens have 

made the treatment of many solid tumors possible and have given hope to those 

diagnosed with cancer. However, the prognosis for many cancer patients remains bleak 

due to the high rate of cancer recurrence and multiple drug resistance (MDR) seen after 

initial chemotherapy treatments. Metastatic cancers affecting multiple organ systems are 

particularly difficult to treat and oftentimes demand the partial or complete surgical 

resection of multiple tissues. Cancer stem cells (CSCs) potentially explain many of the 

shortcomings of established chemotherapy treatments.  

CSCs are distinguished as a small population of tumor cells which are able to form 

phenotypically diverse tumors, as wells as self-renew and differentiate. They are 

described as belonging to a group of tumor initiating cells (TICs) which may or may not 

possess stem-like characteristics, but debate remains as to how large a proportion of TICs 

are indeed stem-like. Additionally, it is not clear whether or not the plasticity of tumor 

cells allows any cell to become stem-like and gain the capability to recapitulate 

heterogeneous tumors. The role of CSCs in tumor formation was first identified by Bonnet 

and Dick in the late 90s 7. In this paper, the CD34+/CD38- subpopulation of cells from acute 
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myeloid leukemia were shown to form tumors in immunodeficient NOD/SCID mice with 

higher efficiency than the CD34+/CD38+ subpopulation. The ability of CSCs to 

asymmetrically divide, allowing the CSC to self-renew as well as differentiate to produce 

a heterogeneous tumor containing multiple cell phenotypes, was also identified. Since 

this discovery, the CSC hypothesis has been tested rigorously, and evidence that CSCs play 

a crucial role in tumor development for many different cancers has been reported. These 

include breast carcinoma8, 9, colorectal carcinoma 10, head and neck squamous cell 

carcinoma 11, hepatocellular carcinoma 12, 13, lung carcinoma 14, ovarian adenocarcinoma 

15, glioblastoma 16,  and pancreatic carcinoma 17 among others.  

According to the CSC model, cancer recurrence after treatment is due to the 

superior resistance of CSCs to cellular toxins and insults. While current treatments are 

capable of eradicating the bulk of the tumor mass, the lingering CSCs are able to form 

new, fully developed tumors from a small number of cells or even a single cell. CSCs are 

thought to resist treatment through several cellular mechanisms including the 

overexpression of drug efflux pumps, quiescence, and detoxifying enzymes18. A high 

population of CSCs within a tumor has subsequently been linked to MDR and a poorer 

prognosis for cancer patients 19. Furthermore, the cellular machinery of CSCs has been 

shown to allow for epithelial-mesenchymal transition (EMT), a process by which epithelial 

cells lose their cell-to-cell and/or cell-to-matrix adhesion and can survive in a migratory 

state 20. By undergoing EMT, migrating to other organs, and reattaching by mesenchymal-

epithelial transition (MET), CSCs are hypothesized to initiate the formation of metastatic 

tumors. 
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Current methods for the treatment of cancer have been demonstrated to be 

insufficient in eliminating CSC populations from a number of cancer types. CD133+ glioma 

CSCs have been shown to resist radiation therapy to a higher degree than their CD133- 

counterparts 21. Breast CSCs exhibit a similar resistance to radiotherapy in addition to 

common chemotherapy treatments 22, 23. Furthermore, the CSC population in residual 

breast cancer tumors has been shown to increase significantly following chemotherapy 

treatments, nearly doubling the tumorigenic potential of the residual cancer cells in 

immunodeficient SCID mice 23. Treatments targeting a specific molecule or surface marker 

are likely to fail to eliminate CSCs due to the multiple survival pathways activated in CSCs 

in addition to the ambiguity of CSC markers across different tissue types, the presence of 

commonly used CSC markers in healthy tissues, and the often required combination of 

markers used to denote CSC populations. Treatments capable of reducing CSC 

populations will therefore require the development of novel, diverse, and multi-targeted 

approaches for cancer treatment. Due to the numerous, still poorly understood 

characteristics of CSCs, the discovery of CSC targeting therapies will likely be the result of 

opportunistic screening of new or known compounds against CSC populations. 

Natural products may be the key to discovering novel treatments demanded by 

the difficulty of treating CSCs. Natural products (NPs) have been a historically rich source 

of biologically active compounds for the pharmaceutical industry. The value of NPs in 

medicine is a result of their ability to influence multiple signaling pathways 

simultaneously while producing diminished, benign side effects. The success of these 

compounds, especially as they relate to cancer treatment, has led researchers to 
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investigate the effect of a number of NPs on CSCs. Figure 2.1 summarizes the role of CSCs 

in cancer formation, metastasis, and relapse in addition to the potential role of natural 

products in their treatment. In this review, properties distinguishing CSCs as well as 

properties which give rise to the drug resistance associated with CSCs are identified. A 

brief review of select NPs which have been shown to target CSCs is also provided.  

2.3 IDENTIFYING CANCER STEM CELLS 

One of the major challenges facing cancer stem cell research is accurately defining 

which tumor cell subpopulations are stem like. The gold standard for identifying CSCs 

remains the ability of a small number of cells to generate a fully developed tumor when 

injected into immunocompromised mice, but the cost, time, and labor associated with 

animal studies have led to the search for markers of stem like cancer cells. Many putative 

CSC markers have been proposed and subsequently identified as targets for 

chemotherapeutics. However, the expression of these markers has been shown to be 

inconsistent across CSCs from different tissues and tumor phenotypes 24, 25. Additionally, 

many of the reported CSC markers are possessed by healthy stem cells and even non-

cancerous, non-stem-like cells, posing a challenge to the development of targeted 

therapies based upon these markers. 

Oftentimes, a combination of supposed CSC markers is required to denote the CSC 

population. For example, a common population of cells within breast cancer that has been 

deemed breast cancer stem cells are CD44+/CD24-/ESA+ 8. The most notable among these 

putative markers are the surface proteins CD44 and CD133 which have been used to 

identify CSCs in a wide array of cancer types. In addition to these supposed markers, 
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certain properties of CSCs have also been use to distinguish them from the rest of the 

tumor population. For example, cells known as the side population (SP) have been shown 

to possess a high percentage of TICs 13, 15, 16. Tumors cells within the SP are distinguished 

by their ability to exclude Hoechst 33342 fluorescent stain which is typically assessed via 

flow cytometry.  

Investigators have attempted to isolate populations of CSCs using these properties 

combined with flow cytometric techniques or selective growth environments. Using these 

purified populations of CSCs, their tumorigenic properties and specific responses to drug 

candidates can be better investigated. Low purity of isolated populations, the ability of 

CSCs to differentiate into phenotypically diverse populations, and disagreement over 

which markers should be used to identify CSCs still pose major hurdles to many of these 

techniques. A brief review of common CSC markers and characteristics used to identify or 

isolate CSC populations is provided below. 

2.3.1 CD44 

Cluster of differentiation 44 (CD44) is a very commonly utilized marker for CSCs. 

CD44 proteins are integral membrane glycoproteins which play a role in cell attachment 

to the extracellular matrix by binding to hyaluronan (HA). CD44 is often used in 

combination with other markers to denote CSCs; however, in cases such as head and neck 

squamous cell carcinoma, CD44 has also been used alone to identify cancer cells capable 

of self-renewal and differentiation 11. The expression of this marker has been used as a 

putative marker for cancer stem cells in such tissues as breast 8, ovarian 26, pancreatic 27, 

and bladder 28 along with many others. CD44 regulates the growth, migration, and 
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invasion characteristic of CSCs in addition to modifying the extracellular matrix of tissues 

to support new tumor formation 29, 30.  Interestingly, cells expressing CD44 also produce 

a higher amount of the cytokine transforming growth factor beta (TGF-ß) which has been 

shown to aid EMT 31. Further, HA-CD44 binding activates protein kinase Ce, which in turn 

phosphorylates the stem cell maintenance transcription factor, Nanog. Nanog then 

begins a signaling cascade which results in the upregulation of ATP binding cassette B1 

(ABCB1), a drug efflux pump, contributing to MDR 30. Reducing the population of CD44 

expressing cells in tumor populations, therefore, has the potential to diminish the CSC 

population and limit invasion, metastases, and drug resistance in a broad spectrum of 

cancers. 

2.3.2 CD133 

Cluster of differentiation 133 (CD133) is a pentaspan surface membrane protein 

that is also commonly used as an indicator of CSCs.  Interest in this marker as an indicator 

of CSC was generated by its original use as a hematopoietic stem cell marker 32. CD133 

has been identified as a CSC marker in glioblastomas 31 as well as colorectal 10, ovarian 33, 

34, hepatocellular 12, lung 14, and pancreatic 35 cancers. CD133 is localized to membrane 

protrusions and microvilli, but little is known about the function of this protein in cells or 

CSCs in particular. It is apparent that while CD133 can be used to distinguish CSC 

populations, it may not play a direct or critical role in cancer formation or CSC 

maintenance. A study demonstrating this point showed that a CD133+ colon cancer 

population was able to differentiate and self-renew even when CD133 expression had 

been knocked down 36. What is clearer is that CD133 has been positively correlated with 
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poor outcomes for cancer patients. A meta-analysis of 603 gastric cancer patients from 8 

different studies revealed that CD133 overexpression was linked to lymph node 

metastasis, distant metastasis, higher drug resistance, an increased relapse rate, and a 

lower 5-year survival rate 37. The widespread presence of CD133 in putative CSC 

populations across numerous tissues, coupled with the poor prognosis of patients 

overexpressing CD133, validates this marker as a dependable marker for CSCs as well as 

a potential cancer drug target. 

2.3.3 CD24 

Cluster of differentiation (CD24) is yet another surface marker used to demarcate 

CSC populations. CD24 is a notable CSC marker as both its presence 17 and absence 9, 38 

has been used to denote CSC phenotypes depending upon the tissue. CD24 is a surface 

expressing glycoprotein, also known as heat stable antigen (HSA), which was initially 

identified as a marker for hematopoietic subpopulations, typically B-cells. Numerous 

functions have been suggested for this protein, including signaling and cell attachment, 

and its expression can be seen in various cell types, most commonly acting as a marker of 

differentiation for hematopoietic and neuronal stem cells. CD24 is often seen in the 

context of adaptive immune response in which its expression can be seen in pre or 

immature-B cell populations or in activated T-cells 39. The function of CD24 in tumor cells 

may be explained by the association of the marker with P-selectin, a molecule expressed 

by platelets and vascular endothelium, which may play an important mechanistic role in 

cancer cell adhesion and metastasis. In addition to acting as positive or negative marker 

for CSCs, depending upon the tissue of origin, the expression of CD24 has also been 
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associated with poor prognosis, larger tumors, and lymph node metastasis in a range of 

cancers, demonstrating its influence on clinical outcomes 40-42.  

2.3.4 ESA OR EPCAM 

 Epithelial specific antigen (ESA), also known as epithelial cell adhesion molecule 

(epCAM) has been used to identify CSCs from breast 9, colorectal 43, and pancreatic 17 

cancer. As the name implies, ESA is a surface marker typically expressed on epithelial cells, 

which regulates cell-to-cell adhesion. ESA is overexpressed in a majority of epithelial 

cancers, such as colorectal cancer, and as a result it has been the subject of numerous 

studies and targeted chemotherapy strategies. ESA has further been linked to the 

migratory and invasive capabilities of breast cancer and is highly expressed in breast 

cancer metastases 44. By disrupting the expression of ESA, the migration and invasion of 

cancer cells in vivo can be diminished. The upregulation of this transmembrane 

glycoprotein, as a result, may play a role in the metastatic potential of proposed CSCs. 

2.3.5 ALDH ACTIVITY 

 Increased aldehyde dehydrogenase (ALDH) activity has been used to identify CSCs 

with little technical difficulty. ALDH can refer to any number of enzymes classified as 

aldehyde dehydrogenases which act to catalyze the oxidation of aldehydes entering or 

produced within the body. By oxidizing aldehydes, these enzymes transform potentially 

deleterious compounds into carboxylic acids, preparing them for cellular metabolism. In 

this way they act to detoxify the cell. ALDH enzymes are highly expressed in liver cells, but 

their expression has also been used to distinguish numerous progenitor cells including 

hematopoietic stem cells 45 and neural stem cells 46 among others. ALDH enzymes are 
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therefore theorized to contribute to stem cells’ robust ability to survive chemical stresses 

throughout the body. The cytoprotective effect of ALDH enzymes utilized by these stem 

cell populations, however, can also be used to protect CSCs from chemotherapy 

treatments. 

ALDH activity has been used to identify CSCs of various tissues including colon 47, 

breast 48, head and neck squamous cell carcinoma 49, ovarian 50, and lung 51. ALDH1 is 

commonly proposed to be the source of ALDH activity in CSCs, and its expression has been 

widely used as a CSC marker. However, unspecific ALDH activity can also be utilized to 

categorize cells as CSCs using the ALDEFLUOR assay. The ALDEFLUOR assay contains 

BODIPY-aminoacetaldehyde (BAAA) which enters intact, viable cells and is oxidized by 

ALDH enzymes producing fluorescent BODIPY-aminoacetate (BAA). This fluorescence can 

be detected using fluorescent microscopy or flow cytometry. The non-cytotoxic nature of 

ALDEFLUOR additionally enables sorting of live CSC populations via fluorescence-

activated cell sorting (FACS). Identification of CSCs using ALDH activity assays is a powerful 

tool for cancer researchers due to this ability to separate viable subpopulations combined 

with the association of ALDH activity with MDR.  

2.3.6 HOECHST 33342 EXCLUSION 

Hoechst 33342 is a stain capable of permeating intact cell membranes, which 

produces blue fluorescence when bound to nuclear DNA. This property is used to visualize 

nuclei, similar to 4’,6-diamidino-2-phenylindole, dihydrochloride (DAPI), while 

maintaining cell viability. Stem cells and other cells overexpressing drug efflux pumps 

possess the unique ability to exclude this stain, and as a result Hoechst 33342 exclusion 
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has been used to label various progenitor cells such as hematopoietic stem cells 52. The 

drug efflux pumps responsible for Hoechst 33342 dye exclusion may further contribute to 

MDR in cancer cells. Hoechst 33342 excluding cells, also known as the side population 

(SP), of tumors have therefore been investigated as a source of drug resistant CSCs. SP 

cells have been shown to exhibit stem-like properties in hepatocellular 13, lung 53, ovarian 

15, breast 8 and other cancers as well as exhibiting enhanced drug resistance. Like the 

ALDEFLUOR assay, segregation of hypothesized CSCs using Hoechst 33342 exclusion can 

be combined with FACS techniques to isolate a viable CSC populations based upon a 

characteristic associated with MDR. 

2.3.7 EMT CAPABILITY 

 Epithelial-mesenchymal transition (EMT) is the process undergone by epithelial 

cells in which the cells alter their morphology, lose their polarity, and break cell-cell or 

cell-matrix adhesions. In this way, the cells gain mobility and invasive potential. EMT is an 

essential process during development and wound healing, allowing epithelial cells to 

produce a population of mobile cells able to migrate to target locations and reestablish 

basal and apical polarity once there 20. CSCs are hypothesized to possess enhanced EMT 

capability, enabling the cells to survive in the absence of cellular adhesion in addition to 

enhancing their resistance to apoptosis. CSCs having undergone EMT are thought to then 

reattach and produce metastatic tumors or circulate throughout the body in a dormant 

state, only to become active years later and cause distant cancer relapse to occur. The 

ability of CSCs to undergo EMT can be investigated by determining the expression of EMT 

related proteins such as Twist, Snail, or N-cadherin 54.  
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More commonly, however, EMT capability is assessed by removing any 

opportunity for cellular attachment. This can be accomplished through the use of non-

adherent well plates, stirred bioreactors, serum-free growth conditions, or encapsulation 

in hydrogels. When in these conditions, cells without EMT capability will die leaving only 

cells that have undergone the transition. The remaining cells often grow in what are 

referred to as tumorspheres which have been shown to be enriched in CSCs in numerous 

tissues 55-57. A major drawback of using these selective growth environments is the 

relatively low purity of CSCs in the resulting population. Further, CSCs within 

tumorspheres of a large enough size are likely to differentiate into phenotypically diverse 

cells. Still, drug discovery efforts directed at limiting the EMT capability of CSCs should be 

encouraged as this ability lies at the heart of the spread and recurrence of cancer that 

plagues many patients. 

2.4 DRUG RESISTANCE IN CANCER STEM CELLS 

While resistance to chemotherapy treatments is not necessary to define CSCs, 

drug resistance is commonly associated with CSC populations. In fact, when resistance to 

a drug is induced, an increase in the percentage of cells possessing CSC markers has been 

observed 58. Resistance to specific chemotherapy agents in cancer cell lines is typically 

promoted in vitro by exposing the cells to gradually increasing doses of the drug or by 

exposing the cells to several cycles of clinically relevant chemotherapy doses followed by 

drug free media to mimic the treatment patients actually receive. The enrichment of CSCs 

following chemotherapy regimens observed both in vitro and in clinical studies 19 has 

enormous implications on drug discovery efforts and future cancer treatment. Without 
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the ability to target and kill CSCs, chemotherapy treatments will continue to leave 

patients at risk for tumor recurrence and developed drug resistance. The following 

proteins and properties of CSC are thought to contribute to drug resistance in CSCs and 

therefore represent ideal targets for future chemotherapy or chemotherapy sensitizing 

drug discovery efforts. It is important to note, however, that healthy stem cells share 

many of the properties imparting drug resistance to CSCs, and as a result targeting these 

properties may lead to unwanted side-effects on otherwise healthy tissues.  

2.4.1 ABC TRANSPORTERS 

ATP-binding cassette (ABC) transporters are transmembrane proteins that serve a 

crucial cytoprotective role for healthy stem cells throughout the body. The function of 

these proteins is to pump toxic compounds from the cell body before their deleterious 

effects can occur. These pumps are able to act on a large variety of compounds including 

many chemotherapeutic agents. The expression of ABC transporters has been used to 

indicate CSC phenotypes in multiple tissues and also plays a role in developing the 

multiple drug resistance (MDR) typical of CSCs 59. Members of the ABC transporter family 

that appear to be highly expressed in CSCs include, but are not limited to, ABCB1, ABCG2, 

and ABCB5 60. The expressions of these proteins have been suggested as markers for CSCs, 

but the lack of appropriate antibodies makes their detection more difficult than 

previously discussed markers. The ability of the SP to exclude Hoescht 33342 is a result of 

ABC transporters, specifically ABCG2, making SP isolation an indirect method of CSC 

isolation based upon ABC transporter expression 60.  
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 Many of the ABC transporter proteins have been “discovered” multiple times in 

the context of chemotherapy resistance leading to confusion in their identification. For 

example, ABCG2 is often referred to as breast cancer resistance protein (BCRP) alluding 

to its ability to confer MDR to breast tumor cells. ABCG2 expression has been identified 

in the drug resistant subpopulations of many cancer models including K562 chronic 

myeloid leukemia cells 61 and MCF7 breast adenocarcinoma to name a few 62. The cell 

lines in these experiments were made resistant through selection with various 

chemotherapies such as doxorubicin. 

 ABCB1 is another ABC transporter with multiple aliases. ABCB1 has been referred 

to by the names multidrug resistance protein 1 (MDR1), cluster of differentiation 243 

(CD243), and most commonly P-glycoprotein 1 (P-gp). ABCB1 contributes to the efflux of 

many widely used chemotherapeutic agents including anthracyclines, vinca alkaloids, and 

taxanes making it a highly clinically relevant MDR protein63. Reduction of the expression 

of ABCB1 has been shown to lead to an increased chemotherapy sensitivity of colorectal 

CSCs in addition to MDR cell lines of differing origin63. By targeting ABC transporters, the 

unique resistance of CSCs can theoretically be reversed, sensitizing them to traditional 

chemotherapy treatments.  

2.4.2 ALDH ENZYMES 

 Another strategy CSCs employ in order to exhibit MDR is the rapid metabolization 

of the chemotherapy agents they are subjected to. As mentioned previously, the presence 

of ALDH enzymes and their activity is a commonly used marker to identify CSCs. ALDH 

enzymes exert their effect by oxidizing aldehyde groups of drug molecules, preparing 
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them for future cell metabolism and thus detoxifying the cell. ALDH enzymes may also 

play a role in the differentiation of healthy and malignant stem cells. Inhibition of ALDH 

activity in ALDHhi/CD44+ putative breast CSCs convincingly resulted in a loss of MDR 64. 

Interestingly, the inhibition of ALDH activity using diethylaminobenzaldehyde (DEAB) 

further sensitized these CSCs to radiation therapy. By eliminating ALDH activity from 

tumors, the breakdown of chemotherapeutic agents within the tumor will be slowed 

resulting in a more effective treatment. Cytotoxic compounds which do not act as 

substrates for ALDH enzymes or that reduce their activity may have a unique ability to 

induce apoptosis in CSCs and act as more effective long-term treatments. 

2.4.3 PRO-SURVIVAL SIGNALING AND STEM CELL MAINTENANCE 

 CSCs hijack many of the pro-survival signaling cascades and maintenance proteins 

seen in healthy stem cells. In this way, CSCs have a tendency to survive cellular stresses 

capable of eliminating differentiated cancer cells in a similar fashion to non-malignant 

stem cells. For example, mechanistic target of rapamycin (mTOR) and signal transducer 

and activator of transcription 3 (STAT3) play a role in the maintenance and proliferation 

of healthy and cancer stem cells. The activation of phosphatase and tensin homolog 

(PTEN) and subsequent inhibition of mTOR and STAT3 results in a significant decrease in 

CSC viability and overall tumor drug resistance 65.  

 The stem cell maintenance proteins Wnt, Hedgehog, and Notch are also 

upregulated in CSCs. These molecules play a major role in maintaining the stem-ness of 

CSCs and activating the expression of stem cell related transcription factors such as 

octamer-binding transcription factor (Oct4) and Nanog as well as influencing EMT 66. Stem 
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cell maintenance proteins such as these ensure CSCs will continue to asymmetrically 

divide, allowing the CSC phenotype to persist in a number of harsh conditions. 

Dysregulation of these pathways is hypothesized to promote gradual CSC differentiation 

leading to decreased tumor viability in response to chemotherapeutics, making them an 

attractive target for the treatment of both bulk tumors and CSCs. 

2.4.4 QUIESCENCE 

Cellular quiescence is defined by a reduced occurrence of mitotic divisions within 

a cell population. Quiescence is recognized as a trait of most somatic stem cells, allowing 

them to survive in a state of relative dormancy and reduce the accumulation of DNA 

mutations over time 67. While debate remains as to whether or not chemotherapy agents 

have a diminished effect on quiescent cells, experiments on leukemia stem cells have 

shown that forcing these cells out of their dormant state results in increased drug 

sensitivity 68. The hypothesis behind this pathway for MDR is that diminished cellular 

metabolism, failure to proceed throughout the entirety of the cell cycle, and lack of DNA 

multiplication allows CSCs to avoid activating the targets of many chemotherapeutic 

toxins. Quiescence of CSCs not only potentially influences MDR, but also enables CSCs to 

remain dormant at the site of the original lesion or migrate throughout the body for years 

before attaching and initiating new tumors. Targeting the quiescence of CSCs has the 

potential to increase the efficacy of current therapeutic methods against CSCs within the 

original tumor as well as prevent CSCs from entering dormant states capable of initiating 

new tumors in patients in remission.  
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2.5 NATURAL PRODUCTS TARGETING CANCER STEM CELLS 

Natural products (NPs) have played an important role in medicine for much of 

recorded human history. The earliest recorded use of medicinal plants dates back 

approximately 5000 years to a list of Sumerian drug recipes written on a clay tablet, but 

there is evidence that Neanderthals may have used plants for medicinal purposes as far 

back as 60,000 years ago 69, 70. Even today many people in the world rely on medicinal 

plants for their healthcare needs. It is estimated that 70-95% of people in most developing 

countries use traditional medicine for their primary healthcare needs 71. Traditional 

Chinese and Ayurvedic medicine have historically served as primary healthcare for many 

people in developing nations, and both systems have drawn the attention of 

pharmocognosists from around the world.  

Active compounds from various organisms have had great success as 

pharmaceuticals. This is especially true in the case of cancer chemotherapeutics. Between 

1981 and 2006, 63% of anticancer drugs being used came from NPs, were inspired by NPs, 

or were synthesized from a natural pharmacophore 72. The most profitable chemotherapy 

drug in history, taxol (or paclitaxel), is a natural product derived from the bark of the 

Pacific Yew Tree 73. Taxol was discovered through a random screening of approximately 

15,000 species of plants 49, but targeted screening of known medicinal plants for 

anticancer properties has also been historically successful. For example, the vinca 

alkaloids vincristine and vinblastine have been used clinically in cancer therapies for over 

50 years 74. These compounds were isolated from the rosy periwinkle, Catharanthus 

roseus, a plant used in both traditional Chinese medicine and Ayurvedic medicine. 
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Bacteria have also been a source of successful anticancer agents. Anthracyclines, such as 

doxorubicin, are isolated from certain Steptomyces bacteria and have been used to treat 

breast cancer for decades 75. 

With advances in technologies such as high throughput screening (HTS) and 

combinatorial chemistry in the 90’s, the cancer related drug discovery efforts of many 

pharmaceutical companies shifted to targeted therapies 76. These targeted, receptor 

specific therapies relied upon small synthetic molecules or antibodies that could act as 

“magic bullets” to treat specific cancer cells. Combinatorial chemistry has allowed vast 

libraries of new chemical entities to be generated synthetically which can be tested 

against disease related targets. Thousands of compounds from combinatorial chemistry 

libraries can be analyzed every day using HTS 77. In addition, advances in proteomics and 

genomics have enabled researchers to attempt to model molecules that can interact with 

specific biological targets. The initial success of these targeted therapies including Gleevec 

and Herceptin led many to believe that traditional NP based drug discovery had become 

obsolete 51.  

However, the limited number of successful drug candidates from targeted 

therapies, the relatively small number of cancers successfully treated with new therapies, 

and the higher risk of cancer developing a resistance to treatment created a renewed 

interest in natural product drug discovery in the late 2000’s 52. The limited efficacy of 

targeted therapies is of increased likelihood in CSCs, due to the lack of agreed upon 

universal CSC markers and the many survival mechanisms which they employ. Numerous 

NPs and their derivatives have shown early clinical success or have received FDA approval 
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for the treatment of cancer since the recent renewal in their interest 52, 78. Despite the 

obstacles facing the screening of NPs using HTS, they have shown many advantages over 

synthetic chemical entities. Natural products are thought to possess “privileged 

structures” that are specialized to interact with biological targets allowing them to 

influence multiple cellular pathways simultaneously. This ability is crucial in combatting 

cancer and CSCs, as the robust survivability of cancer is often the result of many different 

mechanisms. Additionally, the chemical character and diversity of NPs is more favorable 

than that of synthetic molecules. When compared to synthetic libraries, NP libraries tend 

to have more chiral centers, higher steric complexity, fewer heavy atoms, more solvated 

hydrogen-bond donors and acceptors, and a larger variety of molecular properties 54. 

Furthermore, historic use of a medicinal plant from which a NP is isolated can speak to 

the safety of compound for human consumption and the potential to limit side-effects.  

The continued ability of natural compounds to compete with synthetic chemical 

entities has shown that NP based drug discovery is still relevant and capable of advancing 

the treatment of cancer. It is likely that the successful screening of NPs for cancer killing 

potential can be successfully applied to screening for CSC targeting agents. A few 

promising NPs have been utilized to target CSCs in vivo and in vitro. Figure 2.1 depicts the 

role that such NPs may play in preventing cancer metastasis and recurrence. These 

compounds may have the potential to sensitize CSCs to conventional treatments, directly 

induce cell death in CSCs, force CSCs to differentiate, or prevent CSCs from entering a 

dormant and more resistant state. A brief review of these compounds can be found 
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below. The reader of this review is directed to other reviews for a more comprehensive 

list of NPs capable of targeting CSCs 18, 79, 80.  

2.5.1 POLYPHENOLS 

 Many natural products used as pharmaceuticals can be classified as polyphenols. 

Polyphenols are structurally defined by the presence of aromatic benzene rings bonded 

to hydroxyl groups, but they encompass a number of structurally diverse compounds. 

These subgroups include flavonoids, stilbenes, tannins, lignans, and phenolic acids among 

others. Polyphenols of various groups have been demonstrated to regulate inflammation, 

angiogenesis, cell growth, invasiveness, and apoptosis in vitro 81. As a result, they have 

been studied extensively in the context of cancer prevention and metastasis. Recently, 

these investigations have been extended to determine the effect of polyphenols on CSCs. 

The polyphenols resveratrol and curcumin are notable examples of NPs that have been 

shown to exhibit cytotoxic effects on CSCs. 

2.5.1.1 RESVERATROL 

 Resveratrol is a polyphenolic stilbene derivative most commonly found in the skin 

of grapes and berries. It has undergone extensive examination for its anti-inflammatory 

and antioxidant properties in addition to many other useful biological properties. These 

attributes give resveratrol the attractive potential to act as a cancer chemopreventative. 

Resveratrol has been shown to induce apoptosis and promote S-phase arrest of select 

cancer cells. This potential was demonstrated in Hep G2 hepatocyte carcinoma cells in 

vivo at concentrations ranging from 10 to 50 µM 82. At concentrations higher than 50µM, 

however, resveratrol induced G1/G0 arrest which was confirmed in a separate study using 
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a number of ovarian cancer cell lines 82, 83. Resveratrol has further been shown to induce 

cell death through a non-apoptotic mechanism at concentrations between 50 and 100 

µM in a ovarian cancer cell lines 83. This variety of mechanisms demonstrates the ability 

of resveratrol, like other NPs, to influence numerous biological mechanisms 

simultaneously making it an attractive anticancer agent. 

 Resveratrol may also be able to eliminate CSC populations from tumors. The 

compound has been shown in a study by Shankar et al to induce caspase-3/7 activated 

apoptosis in CD44+/CD24+/ESA+ pancreatic CSCs at 10 to 30 µM concentrations. The study 

also found that 10 to 20 µM resveratrol was able to inhibit both stem cell maintaining 

factors, such as Nanog and Oct-4, as well as anti-apoptosis proteins of the Bcl-2 family in 

the pancreatic CSCs. Additionally, EMT proteins, such as Snail and Slug, as well as the EMT 

capability of the pancreatic CSCs in non-adherent conditions was inhibited in response to 

10 to 20 µM of resveratrol. Further, the expression of the drug efflux pump ABCG2 was 

inhibited after administration of 10 to 30 µM of resveratrol, potentially sensitizing the 

cells to conventional chemotherapy treatments. The apparent ability of resveratrol to 

target CSCs and act as a chemopreventative and anti-inflammatory drug was further 

demonstrated using a mouse tumor model.  The frequency of tumor formation in KrasG12D 

mice, spontaneous pancreatic tumor forming mutants, was significantly diminished when 

treated with resveratrol for 10 months 84. The ability of resveratrol to induce apoptosis in 

CSCs as well as reduce their tumorigenic potential in vivo was additionally supported in a 

CD24-/CD44+/ESA+ model of breast cancer stem cells. In this study, apoptosis was induced 

in the breast CSCs through a FAS mediated pathway after incubation with 50 or 100 µM 
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resveratrol. The tumorigenic potential of the cancer stem cells was significantly 

diminished in female nude mice through the administration of either an oral gavage or 

intraperitoneal injection of 22.4 kg/body weight of resveratrol, giving significant evidence 

that resveratrol is able to disrupt tumor formation by targeting CSCs 85.  

 While resveratrol exhibits extremely promising anticancer effects in preclinical 

studies in vivo and in vitro, resveratrol has failed to translate this success to clinical trials. 

This is due, in large part, to extremely low bioavailability, high effective dosages, and the 

rapid metabolism of resveratrol to glucuronide, sulfate, and hydroxylate conjugates 86, 87. 

These conjugates, once absorbed into the bloodstream fail to provide the same health 

benefits as free resveratrol. As a result, there have been efforts to engineer resveratrol 

formulations or drug delivery systems aimed at increasing the bioavailability of 

resveratrol. These include formulations to stabilize resveratrol in the body, formulations 

to increase the aqueous solubility of resveratrol, and encapsulation of resveratrol in 

various lipids, micelles, or polymer structures with the aim of sustained, concentrated, 

and/or targeted release 86, 87.  

2.5.1.2 CURCUMIN 

 Curcumin is another polyphenol which has been thoroughly investigated for its 

anticancer properties. This compound is a major component of turmeric, a spice widely 

used in Indian and many Middle-Eastern cuisines.  Curcumin has been shown to exhibit 

an anti-inflammatory effect and promote apoptosis in cancer cells 88. It has been used in 

clinical trials demonstrating its safety at high doses and activity against pancreatic 
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neoplasms in human patients despite its low bioavailability 89. The antitumor properties 

demonstrated by curcumin have led to investigations of its potential to target CSCs. 

 Curcumin has been used to inhibit the formation of breast cancer mammospheres 

in vitro by 50% and 100% using 5µM and 10µM concentrations, respectively, 

demonstrating the ability of curcumin to inhibit CSC’s ability to undergo EMT 90. An 

analogue of curcumin, GO-Y030, was demonstrated to induce apoptosis, diminish 

tumorsphere formation, and inhibit STAT3 phosphorylation in ALDH+/CD133+ colon CSCs 

when used at 2 to 5µM concentrations. The ability of this analogue to target tumor 

initiating cells was further demonstrated using a NOD/SCID mouse model. When given a 

50 mg/kg intraperitoneal injection of GO-Y030, the average tumor weight resulting from 

a xenograft implantation of 1 x 105 CSCs was diminished by 58.10%  91. Curcumin has also 

been suggested as a supplement to current chemotherapy treatments. Curcumin in 

combination with FOLFOX, a commonly prescribed combination of leucovorin calcium, 

fluorouracil, and oxaliplatin, was able to decrease the viability and diminish EMT of colon 

CSCs to a higher extent than FOLFOX alone 92. 

While curcumin shows great potential as an anticancer agent and has been used 

in a number of clinical trials against cancer, it suffers similar shortcoming to resveratrol. 

Namely, the rapid metabolism and excretion of curcumin, along with its hydrophobicity, 

results in low bioavailability which has been demonstrated using mouse models 93, 94. 

Numerous drug delivery studies have been conducted to increase the bioavailability of 

curcumin including the use of adjuvants to interfere with metabolism, encapsulation in 

liposomes and nanoparticles, and the use of more stable structural analogues 95. 
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2.5.2 FLAVONOIDS 

 Flavonoids are a major class of polyphenolic secondary metabolites found in 

numerous medicinal plants. They are derived from flavone which contains two phenyl 

rings and one heterocyclic ring. Flavonoids are commonly found compounds throughout 

the plant kingdom, and as a result, they are widespread throughout the human diet. Due 

to their abundance in fruits, vegetables, nuts, spices, and herbs, a flavonoid rich diet has 

been suggested as a feasible means of cancer chemoprevention 96. Certain flavonoids 

including, quercetin and kaempferol, have been implicated as apoptosis inducers, 

antioxidants, inflammation regulators, and angiogenesis inhibitors. Further, certain 

flavonoids have been shown to have an effect on heat shock proteins, multiple drug 

resistance, adhesion, metastasis, and angiogenesis 97. The high number of CSC related 

properties which seem to be affected by flavonoids have led to their investigation as CSC 

targeting agents. A review of one such flavonoid, quercetin, is presented below.  

2.5.2.1 QUERCETIN 

 Quercetin is a flavonol secondary metabolite found throughout many species of 

plants.  Quercetin is a known anti-inflammatory agent and anti-oxidant which has been 

demonstrated to induce programmed cell death in many malignant cancer cell lines. 

Quercetin has been shown to interfere with a number of cellular pathways associated 

with the formation and maintenance of human cancers including down regulating P53, 

inhibiting tyrosine kinase, inhibiting heat shock proteins, and inducing type II estrogen 

receptor expression 98. Quercetin has further drawn attention as a potential CSC targeting 

therapeutic. 
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Not only has quercetin been shown to inhibit the proliferation of CD133+ colon 

CSCs at a concentration of 75µM, but it also increases the sensitivity of these cells to 

doxorubicin (Adriamycin). In fact, when combined with 50 µM quercetin, doxorubicin 

doses were more effective at inhibiting CSC proliferation in vitro than doxorubicin doses 

three times more concentrated but lacking quercetin 99. This finding demonstrates the 

potential of quercetin and other natural products to enhance the use of other 

chemotherapeutics to eliminate CSC populations. The use of lower doses of 

chemotherapeutic agents in combination with natural products such as quercetin may 

result in diminished off target toxicity while also inducing apoptosis in CSCs, improving 

patient outcomes, lowering the risk of cancer recurrence, and preventing metastasis 

formation. 

Other CSC models have been targeted using quercetin including CD44+/CD133+ 

prostate CSCs. At a concentration of 20 µM, quercetin lowers the viability of prostate 

tumor spheroids grown in non-adherent flasks as well as diminish the migratory, invasive, 

and colony forming potential of CD44+/CD133+ prostate CSCs 100. In this same publication, 

quercetin was shown to synergize with epigallocatechin gallate, a catechin found in tea, 

synergistically amplifying the above effects on these prostate CSCs. As is the case with 

many other NP’s, however, quercetin’s poor solubility, poor permeability, and instability 

result in diminished bioavailability 101. The relatively high dose of quercetin required to 

elicit a biological response in combination with these issues warrant further drug delivery 

efforts to increase the lifetime and concentration of the compound at the site of the 

neoplasm.  
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2.5.3 ALKALOIDS 

 Alkaloids are a class of pharmacologically active organic compounds distinguished 

by the presence of nitrogen and aromatic rings in the chemical structure. Alkaloids are 

produced throughout the plant kingdom, but are usually found in higher plants 102. Many 

alkaloids have been used throughout history in the medical field from quinine for the 

treatment of malaria to vinblastine for the treatment of multiple carcinomas. Several 

alkaloids have been used clinically in the treatment of cancer with great success, 

demonstrating their importance in the field. A small group of alkaloid compounds have 

even been shown to differentiate between healthy and cancerous DNA, inhibiting in vitro 

cancer DNA synthesis while leaving healthy DNA unaffected and resulting in a potential 

cancer treatment with diminished side-effects 103. New investigations on alkaloids are still 

being conducted showing further antineoplastic, anti-metastatic, and MDR inhibiting 

potential 82. These results suggest a potential for alkaloids to eliminate CSCs, and indeed, 

a number of compounds belonging to the alkaloid family have been shown to target CSCs 

in vitro and in vivo. Three promising anti-CSC alkaloids, dihydrocapsaicin, piperine, and 

berberine, are presented in the following sections. 

2.5.3.1 DIHYDROCAPSAICIN 

 Capsaicin is the secondary metabolite and alkaloid responsible for the hotness of 

many species of pepper. Dihydrocapsaicin (DHC), a saturated derivative of this 

compound, has exhibited numerous anti-neoplastic properties. DHC has been shown to 

induce dose-dependent and catalase regulated autophagic cell death in colon and breast 

cancer cells when used at concentrations between 50 and 400 µM 104. However, when 
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autophagic cell death was inhibited through treatment with the inhibitor 3-

methyladenine, DHC instead induced caspase-3 activated apoptosis in these cell lines. 

Further, when apoptosis was inhibited by the addition of peptide zVAD, autophagic cell 

death was enhanced. This ability to promote separate modes of cell death is a useful tool 

in targeting CSCs due to the many cell death evading pathways active in CSCs. This ability 

further highlights the potential of NPs to influence multiple cellular mechanisms and 

produce a robust cytotoxic effect on cancer cells. 

A review of CSC related patents revealed that DHC is further hypothesized to 

exhibit a cytotoxic effect on neural CSCs 79. In one of the patents collected in the review, 

US20090076019A1, a neurosphere assay was invented to screen potential drugs for 

activity against neural stem cells. As the percentage of putative CSCs are increased in 

cancer neurospheres, compounds capable of inducing cell death in these spheres can be 

thought of as agents targeting neural CSCs. DHC was identified in this patent as one of 

several lead compounds which showed an ability to target CD133+ neural CSCs. The high 

IC50 values of DHC, however, limit its use as an effective chemotherapeutic agent, 

especially when one considers the low bioavailability common for many NPs. Further 

research is warranted to determine if DHC or an analogue can target any phenotype of 

CSCs with higher efficacy than what has been shown. 

2.5.3.2 PIPERINE 

 Piperine is a promising antineoplastic alkaloid found in black and long pepper. The 

use of piperine has previously been suggested as a cancer chemopreventative, but it has 

also demonstrated the ability to induce cell cycle arrest, endoplasmic reticulum stress, 
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and apoptosis when exposed to colon cancer in vivo at concentrations between 75 and 

150 µM 105. The treatment of colon cancer cells with piperine has been shown to reduce 

the ability of the cells to form non-adherent spheres and colonies, suggesting the 

inhibiting effect of piperine on CSCs. The apoptotic effect of piperine has additionally 

been confirmed using prostate cancer cells 106.  

The ability of piperine to target stem cells specifically has been investigated in a 

breast tissue model. After pre-treatment with 5 to 10 µM piperine, the mammosphere 

formation potential, ALDH expression, and Wnt signaling of unsorted breast tissue was 

significantly diminished 90. Interestingly, the differentiated population of these cells was 

seemingly unaffected by the piperine treatment. The potential of piperine to target CSCs 

without affecting other cells is a fantastic example of the robust ability of NPs to influence 

molecular pathways while imparting only benign side effects. Piperine has additionally 

been suggested for use in combination therapies with compounds, such as resveratrol or 

curcumin, due to its ability to inhibit metabolic pathways. By slowing the glucuronidation 

of these compounds, piperine inhibits the metabolism and clearing of NPs and increases 

their bioavailability 107. By inducing a cytotoxic effect on CSCs and increasing the efficacy 

of other compounds, piperine acts as an ideal complementary medication to other NP 

chemotherapies.  

2.5.3.3 BERBERINE 

 Berberine is a tetracyclic, isoquinoline alkaloid found in the roots and stems of 

numerous plants. Berberine producing medicinal plants have been used as anti-

inflammatories in Ayurvedic medicine for years, and the compound has been shown to 
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induce dose-dependent apoptosis, initiated by reactive oxygen species generation, in a 

broad spectrum of cancers 108, 109. The apoptosis induced by berberine goes through an 

internal caspase-9 dependent pathway which results in a loss of mitochondrial membrane 

integrity. Like many natural products, the bioavailability of berberine is low in the body, 

limiting the potential of berberine as a drug. This obstacle is being overcome through the 

use of targeting liposomes as a drug delivery system 110. This delivery system 

encapsulated berberine into liposomes which were engineered to deliver the compound 

directly to the mitochondria of CD44+/CD24− breast cancer stem cells. Using this system, 

1-50 µM of berberine was able to produce dose-dependent apoptosis in breast CSCs. The 

drug was further able to induce the expression of the pro-apoptotic protein Bax and 

activate caspase-9 and caspase-3 leading to apoptosis in CSCs isolated from MCF-7 

mammospheres. 

Additionally, berberine has been used to inhibit the expression of ABC 

transporters responsible for MDR in CSCs 84. Diminishing MDR, especially in CSC 

populations, makes berberine an attractive complementary medicine when currently 

accepted cytotoxic agents are unable to kill cancerous cells. An in vivo mouse model in 

which MCF-7 breast CSCs were injected into female nude mice followed by an array of 

berberine treatments and formulations demonstrated this synergistic capability. A 

mixture of 10 mg/kg of berberine liposomes and 10 mg/kg of paclitaxel liposomes was 

able to reduce the average tumor size in these mice by 85.5% compared to the control 

after just 21 days 110. In this way, berberine could be used to either target CSCs alone or 

in combination with traditional chemotherapy agents. 
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2.5.4 OTHER 

 Many other natural compounds which do not fit into the classifications of 

polyphenols, flavanoids, or alkaloids have shown promise in targeting CSCs. Retinoids are 

an example of these compounds. Vitamin A, also known as retinol, generates a number 

of biologically active retinoids, including All-Trans Retinoic Acid (ATRA). ATRA has found 

clinical success in the treatment of acute promyelocytic leukemia under the trade name 

Tretinoin. The drug is marked by its successful induction of remission coupled with 

relatively mild side effects 111. The mechanism of action utilized by ATRA is through 

induction of cellular differentiation of leukemic and hematopoietic cells, and this 

differentiation induction has further been observed in other types of stem cells 112. The 

differentiation potential of retinoids presents a unique potential for cancer treatment, 

namely differentiating CSCs into a cell population more sensitive to classic 

chemotherapeutic regimens. Additionally, ATRA acts as an inhibitor of ALDH activity, 

potentially reversing a cause of MDR in CSCs 64. ATRA has thus been used to limit the 

tumorsphere formation ability and CSC percentage of breast cancer cells in vivo 113. 

 The lactone antibiotic brefeldin A is another NP that cannot be classified as a 

polyphenol, flavonoid, or alkaloid. It has shown anticancer potential in a number of cancer 

types including leukemia, colon, and prostate through p53 independent mechanisms 114, 

115. Brefeldin A is produced by certain fungal organisms and acts as a protein transport 

inhibitor, preventing proteins from traveling from the endoplasmic reticulum (ER) to the 

Golgi apparatus. Subsequently, brefeldin A initiates ER stress, potentially leading to its 

apoptotic effects. Recently, brefeldin A has been shown to preferentially induce cell death 
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in suspension cultures over adherent cultures of the human breast adenocarcinoma line 

MDA-MB-231. In the same publication, brefeldin A also down-regulated the expression 

of CD44, reduced the ability of the cells to form colonies in soft agarose, and reversed the 

EMT 116. Preferential killing of putative CSCs and inhibition of colony forming potential 

was similarly reported in the human colorectal cancer line Colo 205 117. This preferential 

killing has the potential to diminish CSC populations while limiting the side effects 

typically associated with chemotherapy. 

2.6 CONCLUSION 

 The cancer stem cell hypothesis, while still being investigated, presents 

explanations to many of the issues facing cancer treatment today. The CSC hypothesis 

explains the mechanisms underlying cancer recurrence, metastasis, and, to a degree, 

multiple drug resistance. Cancer treatments directed toward the eradication of CSCs 

could lead to higher survival rates and brighter prognoses for patients who fear cancer 

regression could occur at any time. Current cancer treatments are insufficient in regard 

to the eradication of CSC populations, likely due to the multitude of survival mechanisms 

utilized by CSCs and the lack of definitive, universal, single molecule targets that separate 

CSCs from healthy stem or somatic cells. Natural products have historically been an 

excellent source of bioactive compounds capable of targeting multiple pathways, and 

current investigations are underway to screen NPs for their effect on the CSC population 

of numerous cancer types. Many different NPs have exhibited a range of CSC inhibitory 

properties, and it is likely that more have yet to be discovered. As a result, NPs should 

continue to be screened as potential chemotherapy agents, complimentary treatments 
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for compounds already in clinical use, and cancer prevention molecules with special 

attention focused on their ability to target CSCs. Further, due to the limited bioavailability 

and rapid metabolism of many NPs, these drug discovery efforts must be coupled with 

continued efforts to engineer robust drug formulations and delivery systems. 
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2.8 FIGURES 

 

 

 

Figure 2.1: Illustration of the Cancer Stem Cell Model’s explanation for tumor formation, 

metastasis, and recurrence and the potential of natural products in their treatment. 

Cancer Stem Cells (CSCs) are either formed upon carcinogenesis of somatic cells or stem 

cells, or they are activated after a period of dormancy (1). These CSCs then asymmetrically 

divide resulting in a phenotypically diverse tumor consisting of both CSCs and non-stem-

like cells (2). Left untreated, the tumor will continue to grow and invade the surrounding 

tissue, and CSCs undergoing EMT may break off from the original tumor and travel to 

distant organs (3). The CSCs which reattach throughout the body can then initiate a new 

tumor, resulting in metastases (4). Using current treatment methods capable of inducing 
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cell death in the bulk of tumor cells, the CSCs are not destroyed due to their enhanced 

survival traits, such as quiescence and the expression of ALDH enzymes and ABC 

transporters (5). The remaining CSCs may then go on to recreate the original tumor, 

sometimes increasing the percentage of CSCs within the tumor and forming multiple drug 

resistant tumors (6). In other cases, the remaining CSCs will enter a state of dormancy 

within the body and remain undetected for long periods of time before reactivating and 

initiating the formation of a new tumor, thus resulting in cancer relapse in patients 

thought to be cancer free (7). As a result of these issues, new treatments are being 

investigated which can target CSCs. Natural products have shown the potential to induce 

cell death in CSCs, cause CSCs to differentiate, or sensitize CSCs to conventional 

chemotherapy treatments (8). Once the CSCs have been eliminated, the remaining tumor 

may diminish in size and can be subsequently eradicated through the use of conventional 

antineoplastic therapies (9). 
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CHAPTER 3 

A MULTI-TARGETING ABIETANE DITERPENOID WITH GROWTH INHIBITORY 

AND ANTI-ANGIOGENIC PROPERTIES RE-SENSITIZES CHEMOTHERAPY 

RESISTANT CANCER2   

3.1 ABSTRACT 

 Targeted therapies have become the focus of much of the cancer therapy research 

conducted in the United States. While these therapies have made vast improvements in 

the treatment of cancer, their results have been somewhat disappointing due to acquired 

resistances, high cost, and limited populations of susceptible patients. These hurdles 

often necessitate combining targeted therapies together, or using them in conjunction 

with chemotherapy in order to achieve an effective treatment. Using currently available 

treatments, an estimated 609,640 cancer related deaths will occur in the United States 

by the end of 20181. Compounds which target more than one cancer related pathway are 

rare, but have the potential to synergize with multiple components of these cancer 

treatment cocktails, increasing the cocktail’s efficacy and limiting resistance. Natural 

products, as opposed to targeted therapies, typically interact with multiple cellular 

targets simultaneously, making them a potential source of synergistic cancer treatments. 

One such natural product, deacetylnemorone, has been previously shown to inhibit 

                                                            
2 Taylor, W.F., Moghadam, S.E., and Jabbarzadeh, E. 2019. To be submitted to Scientific 

Reports. 
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cancer cell growth, but little is known about its ability to target other cancer related 

pathways. In this study, deacetylnemorone was screened for its ability to inhibit cancer 

cell growth, synergize with existing chemotherapy, inhibit cancer cell invasion, and inhibit 

angiogenesis. The compound was found to inhibit cell growth in a broad spectrum of 

cancer cell lines and selectively induce cell death in SK-MEL-5 melanoma cells. 

Interestingly, the growth inhibitory properties of deacetylnemorone was stronger in 

FdUrd resistant HCT 116/200 colorectal cancer cells when compared to the parent cell 

line. The compound also enhanced the effect of FdUrd in HCT 116/200 cells when used at 

concentrations as low as 0.3 µM, suggesting the compound could be used to reverse 

acquired chemotherapeutic resistance. Furthermore, deacetylnemorone was able to 

inhibit the formation of vascular tubes between endothelial cells, a crucial step in 

angiogenesis, in addition to inhibiting the invasion of SK-MEL-5 melanoma cells, indicating 

the compound could inhibit the processes required for cancer metastasis. Combined, 

these results demonstrate that deacetylnemorone affects multiple cancer-related targets 

related to tumor growth, drug resistance, and metastasis. Thus, the multi-targeting 

natural product, deacetylnemorone, has the potential to enhance the efficacy of current 

cancer treatments as well as reduce commonly acquired treatment resistance.  

3.2 INTRODUCTION 

Despite continuing advances in the treatment of cancer, it remains the second 

leading cause of death in the United States according to the Centers for Disease Control 

and Prevention1. In recent years, there has been a shift in research efforts focusing on 

cancer drug discovery from cytotoxic chemotherapy agents, which induce cell death in 
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rapidly dividing cells relatively indiscriminately, to targeted therapeutics, which influence 

specific cancer-related pathways. Targeted therapies including immune modulating 

therapies, such as monoclonal antibodies118, cytokines119, dendritic cell therapies120, 

chimeric antigen receptor T cells (CAR-T cells)121, and immune checkpoint blockade 

therapies122, as well as kinase inhibitors, such as cyclin dependent kinase inhibitors4, 

tyrosine kinase inhibitors5, and phosphoinositide 3-kinase (PI3K) inhibitors123 have 

changed the landscape of cancer treatment. Targeted therapies such as bevacizumab, 

sorafenib, ziv-aflibercept, and vandetanib have also emerged to inhibit angiogenesis, a 

process of new blood vessel formation essential to wound healing, that is sometimes 

hijacked by cancer to feed growing and newly formed tumors6, 124.  

While these targeted therapies have led to a surge of improved prognoses, they 

have also come with drawbacks limiting their success in treating patients. For example, 

immune modulating targeted therapies, including sipuleucel-T and tisagenlecleucel, 

activate the immune system against cancer by isolating immune cells from the patient’s 

body, altering their activity, and re-introducing the cells back into the patient2, 125. While 

these methods provide effective and innovative treatment, they can cost hundreds of 

thousands of dollars per injection2. Furthermore, this large price tag also comes with 

strong side effects, including neurotoxicity, high fever, and respiratory distress126. Other 

targeted therapies, such as the anti-programmed cell death protein 1 (PD-1) drug 

nivolumab are less patient-tailored but suffer from a high risk of developed resistance 

and a low population of susceptible patients127. Similarly, therapies targeting cancer cell 

growth, such as tyrosine kinase inhibitors, often suffer from acquired resistance following 
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the first few rounds of treatment. Angiogenesis targeting therapies come with their own 

set of complications as well. Like other targeted therapies, angiogenesis targeting 

therapies trigger treatment resistance, in part due to the plasticity of the tumor 

microenvironment manipulated by the tumor cells themselves6. Upregulation of pro-

angiogenic factors128, recruitment of pro-angiogenic cells129, and increased pericyte 

coverage130 has been observed in response to anti-angiogenesis treatments and may be 

responsible for anti-angiogenesis resistance. Additionally, angiogenesis-targeting 

therapies lead to increased hypoxia in the tumor microenvironment, resulting in 

increased tumor aggression and resistance to radiotherapy and chemotherapy131, 132.  

As a result of these challenges, targeted therapies are often administered in 

combination or in conjunction with chemotherapies in order to limit resistance and 

increase efficacy. Of course, angiogenesis-targeting therapies can also act against this 

combinatorial approach by limiting the drug delivery of other anti-cancer agents to the 

tumor6. The shortcomings of targeted therapies have led to a renewed interest in natural 

products for cancer treatment76. Compounds like natural products which are capable of 

targeting multiple cancer associated pathways may provide a more robust cancer 

treatment by limiting treatment acquired resistance, increasing the efficacy of multiple 

components of cancer therapy cocktails, and reducing the amount of drugs that are 

necessary to administer in order to achieve a positive treatment response. 

In addition to influencing multiple biological targets, natural products are typically 

low cost and are associated with limited side effects. They have played an historically 

important role in cancer treatment, making up or inspiring approximately 60% of cancer 
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treatments between 1981 and 200672. Before the advent of targeted therapies, 

cytotoxicity was the primary screening endpoint used to determine a natural product’s 

potential as a chemotherapy agent. Now, however, natural products are investigated for 

numerous anti-cancer properties, such as their potential to induce cancer cell death, 

inhibit cancer cell growth and invasion, modulate the immune system, and inhibit 

angiogenesis to name a few. A select set of natural products have been identified that 

affect multiple cancer-related pathways simultaneously. For example, curcumin133, 

emodin134, 135, and astragaloside IV136, 137, are thought to be capable of inducing apoptosis 

in cancer cells in addition to modulating the immune response to tumor formation. 

Curcumin138 has also been suggested, along with resveratrol139 and green tea catechins140, 

as compounds that combine anti-proliferative and anti-angiogenic effects141. The widely 

used natural product derived chemotherapeutic, taxol, which imparts its cytotoxic effect 

by disrupting the microtubule cytoskeleton of cancer cells, may owe some of its success 

as an anticancer agent to an ability to inhibit angiogenesis through vascular endothelial 

cell growth factor (VEGF) suppression at low concentrations142. By affecting multiple 

cancer related pathways simultaneously, natural products may be able to synergize with 

multiple components of commonly used mixtures of targeted therapies and 

chemotherapeutics, enhancing their efficacy and limiting resistance. However, of the 

natural products that exhibit multi-targeted effects against cancer, many suffer from low 

bioavailability and low efficacy at low concentrations, necessitating the continued search 

for lead compounds. 
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Deacetylnemorone is a natural product of the abietane diterpenoid family that 

has been isolated from plants belonging to the genus Salvia. Like others from this class of 

natural compounds, deacetylnemorone has been shown to exhibit growth inhibitory 

properties in cancer cells, namely cervical and prostate cancer143. However, the anti-

proliferative effect of this compound has not been widely established, nor has any 

mechanism of action been suggested. Furthermore, the effect of deacetylnemorone on 

other cancer related pathways has not been fully explored. Herein, the anti-proliferative 

effect of deacetylnemorone on multiple cancer tissue types, in addition to the effect of 

deacetylnemorone on angiogenesis and cancer cell invasion is studied. Cell cycle analysis 

was performed to gain insight into the compound’s mechanism of action. Finally, the 

ability of deacetylnemorone to enhance the cytotoxic effect of chemotherapy in 

treatment-resistant cancer cells was determined. 

3.3 MATERIALS AND METHODS 

3.3.1 DEACETYLNEMORONE SOURCE AND IDENTIFICATION 

The abietane diterpenoid, deacetylnemorone, was obtained through 

collaboration with the University of Basel. The structure of the compound, shown in 

Figure 3.1, was determined by 1D and 2D  nuclear magnetic resonance (NMR) in addition 

to time of flight mass spectrometry (TOF-MS). NMR analysis of deacetylnemorone was 

conducted using dimethyl sulfoxide (DMSO) as the solvent and a Bruker Avance III-HD 400 

MHz. 1H-NMR, 13C-NMR, H-H correlation spectroscopy (COSY), heteronuclear single 

quantum coherence (HSQC), and heteronuclear multiple bond correlation (HMBC) were 

performed for structural determinations. For mass spectrophotometry analysis, 
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deacetylnemorone was dissolved in methanol and analyzed using liquid chromatography-

mass spectrometry on a Thermo Orbitrap Velos Pro. The generated spectra can be seen 

in Figures A.1 and A.2. A stock solution of deacetylnemorone in DMSO at a concentration 

of 20mM was used for all cell culture experiments. 

3.3.2 NCI-60 SCREENING 

 Primary cytotoxicity screening of deacetylnemorone against 59 cancer cell lines 

was performed using the National Institutes of Health’s (NIH) National Cancer Institute-

60 (NCI-60) screening program144. This assay utilizes a Sulforhodamine B viability assay 

described by Shoemaker145 to assess the growth percent of 60 immortalized cancer cell 

lines across 9 tissue types. One dose, 10 µM, of deacetylnemorone was tested. Only data 

generated from 59 cell lines was reported, as the HOP-92 non-small cell lung cancer cell 

line was excluded from the one dose screen. Growth percent between 0% and 100% in 

response to a compound can be interpreted as growth inhibition, and a negative percent 

growth is interpreted as cell death. 

3.3.3 CELL CULTURE 

MG-63 (osteosarcoma), SK-OV-3 (ovarian adenocarcinoma), MDA-MB-231 (breast 

cancer), HCT 116 (colorectal carcinoma), HCT 116/200 (FdUrd resistant subclone of HCT 

116 cells), A2780ADR (doxorubicin resistant subclone of the ovarian carcinoma A2780), 

and HUVEC (normal human umbilical vein endothelial cells) were obtained and stored in 

liquid nitrogen until use. MG-63, SK-OV-3, MDA-MB-231, and HCT 116 cell lines were 

purchased from ATCC. A2780ADR cells were purchased from Sigma-Aldrich. HCT 116/200 

cells were generously provided by Dr. Franklin G. Berger from the Center for Colon Cancer 
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Research, where they were originally cultured146. Human umbilical vein cells (HUVEC) 

were purchased from Lonza. The culture media used for MG-63 was minimum essential 

medium (MEM;Corning) supplemented with 10% Fetal Bovine Essence (FBE;VWR) and 1% 

penicillin/streptomycin solution (Corning). The culture media for SK-OV-3 cells was 

McCoy’s 5A Medium (Sigma) supplemented with 10% FBE and 1% 

penicillin/streptomycin. The growth media for A2780ADR cells was Roswell Park 

Memorial Institute (RPMI) 1640 medium (Corning) supplemented with 10% FBE and 2mM 

L-glutamine (ThermoFisher). The growth media used for MDA-MB-231, HCT 116, and HCT 

116/200 cells was RPMI 1640 medium supplemented with 10% FBE and 1% 

penicillin/streptomycin. The growth media for HUVEC cells was endothelial cell growth 

medium-2 (EGM-2; Lonza BulletKit). All cells were maintained at 37 °C and 5% CO2. 

3.3.4 MTS ASSAY 

Cells were grown to approximately 80% confluency before being washed with 

phosphate buffered saline (PBS; Corning) and typsinized using a 0.25% trypsin, 2.21 mM 

Ethylenediaminetetraacetic acid (EDTA), and sodium bicarbonate solution (Corning). 

Trypsinized cells were suspended in culture media and centrifuged at 2500 rpm for 5 

minutes. Cell viability was confirmed using trypan blue (Gibco). Cells were then seeded 

into 96 well plates (VWR). MG-63, SK-OV-3, and A2780ADR cells were seeded at a density 

of 2,000 cells/well. MDA-MB-231 cells were seeded at a density of 5,000 cells/well. HCT 

116 and HCT 116/200 cells were seeded at a density of 4,000 cells/well. HUVEC cells were 

seeded at a density of 3,000 cells/well. For all cell types, 100 µL of cell culture media was 

used. The cells were then incubated for 24 hours at 37 °C and 5% CO2 to allow for cell 
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attachment. After cell attachment, the culture media was aspirated and replaced with 

media containing deacetylnemorone. The vehicle control was 0.5% DMSO (Macron Fine 

Chemicals) in culture media. Doxorubicin hydrochloride (DOX;Sigma), and 5-fluoro-2’-

deoxyuridine (FdUrd; Sigma), were used as positive controls. In combination studies, 

deacetylnemorone and FdUrd were added to the same culture media then added to the 

cells. At 48 and 72 hours, the cells were washed with PBS and culture media 

supplemented with 20% 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium (MTS) solution (Promega) was added to the cells. The cells 

were incubated for 2 hours, and the absorbance of each well at 490 nm was measured 

using a Spectramax 190 microplate reader. 

3.3.5 CELL CYCLE ANALYSIS 

The effect of deacetylnemorone on the cell cycle of SK-MEL-5 melanoma cells was 

determined using flow cytometry. First, cells were seeded into 6 well plates at a density 

of 250,000 cells per well suspended in 2 mL of media. The cells were allowed to attach 

overnight, then the media was replaced with media containing deacetylnemorone. The 

cells were trypsinized with 0.25% trypsin and collected along with the drugged media at 

6, 12, 24, 48, and 72 hours of treatment with deacetylnemorone. The detached cells were 

centrifuged at 2500 rpm for 5 minutes and washed with ice cold PBS twice. After 

centrifuging and discarding the supernatant, the pellet was suspended in 1 mL of ice-cold 

PBS, which was then added dropwise to 3 mL of ice-cold 70% ethanol in deionized water. 

The cells were fixed in this condition at 4° for at least 24 hours. After fixation, the cells 

were centrifuged, the supernatant was discarded, and the pellet was suspended in 
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FxCycle PI/RNase Staining Solution (Invitrogen) for 15 minutes. The final cell suspension 

was analyzed using a BD LSR II flow cytometer. The percentage of cells in the sub-G1, 

G0/G1, S, and G2/M phases of the cell cycle were determined using the resulting 

histograms. 

3.3.6 IN VITRO INVASION ASSAY 

Cell migration of SK-MEL-5 melanoma cells was investigated by making a cell-free 

gap with a 2 well culture- insert for 24 well plates (IbiTreat, Martinsried, Germany). The 

insert was made up of two wells that were separated by a thin wall. In each of the two 

wells of the insert, 70 µl of cell suspension containing 6×104 cells was added. Cells were 

allowed to reach confluency for approximately 24 hours. The 2 well inserts were then 

removed and any resulting cell debris was washed with PBS. Fresh culture media 

containing either the vehicle control or deacetylnemorone was added to the cells, and 

the plates were incubated at 37 °C and 5% CO2 for 24 hours. Images were taken at 6, 12, 

and 24 hours after the addition of the treated media using a phase contrast Nikon Eclipse 

Ti-E inverted microscope. Percent invasion was calculated by measuring the gap distance 

at each time point and using the formula 

invasion % = 
(𝑊0−𝑊𝑛)

𝑊0
∗ 100% , 

in which Wn is the width of the gap at the desired time point, and W0 is the initial width 

zero right after forming a cell-free gap. One representative well was stained and imaged 

after the final time point. The media was first replaced with 400 µL of Cell Stain Solution 

(Cell Biolabs, Inc) and the plates were incubated for 15 minutes at room temperature. 
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Each well was washed with deionized water and allowed to air dry. Images were taken 

using a phase contrast inverted microscope (Invitrogen EVOS FL Auto Cell Imaging).  

3.3.7 TUBE FORMATION ASSAY 

Growth factor reduced BD Matrigel (Corning) was stored at -20 °C. Before use, the 

Matrigel was thawed on ice at 4 °C overnight. Next, 50 µL of Matrigel was added to each 

well of an ice-cold 96-well plate and incubated at 37 °C and 5% CO2 for 30 minutes, 

allowing a gel to form. A suspension of 20,000 HUVEC cells in 100 µL of cell culture media 

treated with deacetylnemorone was added to each well. The vehicle control contained 

only HUVEC cells suspended growth media. The junctions, or tubes, between the 

endothelial cells were imaged using an Invitrogen EVOS FL Auto at 4x magnification and 

manually counted. 

3.4 RESULTS 

3.4.1 DEACETYLNEMORONE INDUCES CONCENTRATION DEPENDENT CELL DEATH IN 

IMMORTALIZED CANCER CELL LINES ALONE AND IN COMBINATION WITH FDURD 

 In order to determine the chemotherapeutic potential of deacetylnemorone, the 

compound was screened against 59 cancer cell lines using the NCI-60 cancer panel. This 

panel utilizes a sulforhodamine B cell viability assay to determine the percent growth of 

cells treated with a compound of interest for 48 hours compared to cells treated with a 

vehicle control. Only one concentration, 10 µM, of deacetylnemorone was screened 

(Figure 3.2). This concentration inhibited the cell growth of 55 of the 59 cell lines tested, 

including at least one cell line from each of the 9 tissue types investigated. Of the 55 cell 

lines whose growth was inhibited by deacetylnemorone, one melanoma cell line, SK-MEL-



 

49 

5, exhibited cell death in response to 10 µM of the compound. The growth percent of SK-

MEL-5 was -23.8% after 48 hours of treatment. While deacetylnemorone was capable of 

inhibiting the cell growth of each tissue type tested, it was particularly effective against 

melanoma, inhibiting the cell growth of four melanoma cell lines by at least 80%. This 

result suggested that the compound may be indicated for the treatment of melanoma. 

 To further assess the growth inhibition poperties of deacetylnemorone, a 3-dose 

MTS assay screen of 6 immortalized cancer cell lines was performed (Figure 3.3). The six 

cell lines examined were MG-63 (osteosarcoma), SK-OV-3 (ovarian cancer), MDA-MB-231 

(breast cancer), HCT116 (colorectal carcinoma), HCT 116/200 (colorectal carcinoma), and 

A2780ADR (ovarian cancer). In each cell line tested, dose-dependent cell growth 

inhibition was observed. This inhibition was significant in each cell line at concentrations 

less than or equal to 150 µM after 48 hours of treatment with deacetylnemorone. 

Notably, the inhibitory effect of the compound was stronger in HCT 116/200 cells than it 

was in HCT 116 cells. The HCT 116/200 cell line was derived from the HCT 116 cell line 

through treatment with gradually increasing concentration of the chemotherapeutic 

agent FdUrd146. This treatment induced resistance to FdUrd in the cell line compared to 

HCT116 by selecting for a resistant variant of thymidylate synthase. By comparing the 

doxorubicin control groups from Figures 3.3D and 3.3E, it was observed that the 

HCT116/200 cell line had also developed a cross-resistance to doxorubicin. The high 

sensitivity of the chemotherapy resistant HCT 116/200 cell line to deacetylnemorone 

when compared to the parent cell line prompted an investigation of the combinatorial 

effect of deacetylnemorone with FdUrd (Figure 3.4). Three concentrations of 
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deacetylnemorone (3 µM, 30 µM, and 150 µM) were used to treat HCT 116/200 cells 

either alone or in combination with FdUrd. Each of these concentrations of 

deacetylnemorone significantly increased the growth inhibition of the 4µM FdUrd 

treatment. Both the deacetylnemorone-alone treatment and the combination treatment 

acted in a dose dependent manner. 

3.4.2 DEACETYLNEMORONE DELAYS PROGRESSION OF THE CELL CYCLE THROUGH S AND 

G2/M PHASES. 

 Due to the growth inhibitory properties of deacetylnemorone, cell cycle analysis 

was performed on SKMEL5 melanoma cells exposed to the compound to gain insight into 

the mechanism of action. SKMEL5 cells were treated with deacetylnemorone for 72 

hours, analyzing the DNA content of the cells at 6, 12, 24, 48, and 72 hours by propidium 

iodide (PI) staining followed by flow cytometry (Figure 3.5A). Using the generated 

histograms, the percentage of cells in the sub-G1, G0/G1, S, and G2/M phases of the cell 

cycle was determined (Figures 3.5B and 3.5C). Compared to the control, no increase in 

sub-G1 cells through the 72 hour treatment was observed, suggesting no apoptotic cell 

death was occurring. However, the treated group did exhibit a build-up of cells in the S-

phase of the cell cycle through 24 hours of treatment, accompanied by a decrease in 

G0/G1 cells. This was followed by gradual decrease in S-phase cells and a subsequent 

increase in G2/M cells from 24 to 72 hours of treatment. These trends could be explained 

by a slowing down of progress through the cell cycle for the first 24 hours of treatment, 

followed by a gradual release of cells from the S-phase and G2-M phase between the 24 
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and 72 hour period. It is possible that higher concentrations of the compound could 

completely arrest progress through the cell cycle. 

3.4.3 DEACETYLNEMORONE INHIBITS INVASION OF MELANOMA IN VITRO. 

 The effect of deacetylnemorone on melanoma cell invasion was also investigated. 

A cell free gap was created between two regions of SK-MEL-5 melanoma cells using 2-well 

cell culture inserts. When the culture inserts were removed, the cells were treated for 24 

hours with 0.3 µM, 3 µM, and 30 µM of deacetylnemorone. At 6, 12, and 24 hours the 

percent invasion into the cell free gap was measured (Figure 3.6). At each time point, the 

percent invasion of melanoma cells decreased as the concentration of deacetylnemorone 

increased. The inhibition of melanoma cell invasion was significantly lower (p < 0.05) than 

the control when the cells were treated with 30 µM deacetylnemorone at each of the 

tested time points (Figure 3.6B). Both the movement of the cell front and the migration 

of single cells into the cell free gap was inhibited as the concentration of 

deacetylnemorone was increased (Figure 3.6A). Trypan blue cytotoxicity assays were also 

performed at each time point, revealing the inhibition of cancer cell invasion occurred at 

lower concentrations of deacetylnemorone than was toxic to the cells (Figure A.3). 

3.4.5 DEACETYLNEMORONE INHIBITS TUBE FORMATION OF ENDOTHELIAL CELLS, A 

CRITICAL STEP OF ANGIOGENESIS. 

 The effect of deacetylnemorone on angiogenesis was investigated using a tube 

formation assay (Figure 3.7). The assay consisted of HUVEC endothelial cells grown on a 

Matrigel basement membrane in the presence of growth factors. Under these conditions, 

cellular projections called “tubes” will begin to form between the cells (Figure 3.7B).  In 
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this study, tube formation was allowed to occur for 8 hours under control conditions or 

with growth media treated with deacetylnemorone. The number of tubes or junctions per 

field were manually counted in triplicate for the groups treated with the control (culture 

media alone), 0.3 µM deacetylnemorone, and 3 µM deacetylnemorone, and a dose-

dependent decrease in tube formation between HUVEC endothelial cells was observed as 

the concentration of deacetylnemorone was increased (Figure 3.7A). The decrease for 

both the group treated with 0.3 µM deacetylnemorone and the group treated with 3 µM 

deacetylnemorone was significant (p ≤ 0.05) when compared to the control treated 

group. A representative image of the cells treated with 0.3 µM and 3 µM 

deacetylnemorone can be seen in Figures 3.7C and 3.7D respectively. The toxicity of an 8 

hour treatment of deacetylnemorone on HUVEC endothelial cells was also determined 

using the MTS assay. No significant difference (p ≤ 0.05) in cell viability between HUVEC 

cells treated with the vehicle control and the HUVEC cells treated with up to 30 µM 

deacetylnemorone was observed (Figure 3.7E), indicating the compound was not 

cytotoxic to HUVEC cells at the concentrations used to inhibit angiogenesis.  

3.5 DISCUSSION 

Multi-targeting natural products may create renewed vigor in the use of natural 

compounds for the treatment of cancer. Targeted therapies hold great promise for the 

future of cancer treatment but have been accompanied by numerous shortcomings, 

including high rates of resistance, low rates of susceptible patients, and high cost. Natural 

products that attack multiple cancer-related pathways may limit therapy-induced 

resistance and provide robust treatment when in combination with currently available 
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therapies. Deacetylnemorone was examined in this study to determine its ability to 

interfere with multiple cancer-related pathways, including cancer cell growth and 

proliferation, cancer cell invasion, and angiogenesis. 

 The growth inhibitory properties of deacetylnemorone were first examined by 

submitting the compound to the NCI-60 one dose cytotoxicity screen. At 10 µM, 

deacetylnemorone exhibited growth inhibitory properties across all nine of the tissue 

types examined. Within each tissue type a range of activity was observed, from no growth 

inhibition at all to inducing cell death in one melanoma cell line. These results suggest 

that the growth inhibitory effects of deacetylnemorone are not tissue-type dependent. 

However, the compound did appear to have a strong effect on multiple cell lines isolated 

from melanoma. SK-MEL-5 is a melanoma cell line that exhibited a 23.8% reduction in cell 

viability after 48 hours of treatment with deacetylnemorone. As a result, it appears that 

at concentrations near 10 µM, deacetylnemorone is selective in inducing cell death. The 

growth inhibition and cytotoxicity results across the 59 cell lines tested in the NCI-60 

screen were less potent than other compounds that have undergone NCI-60 screening, 

and thus further screening was not performed using the NCI-60 panel. However, dose-

dependent growth inhibition was demonstrated independently using an MTS viability 

assay on MG-63, SK-OV-3, A2780ADR, MDA-MB-231, HCT 116, and HCT 116/200 cells. 

Each of the six cell lines tested exhibited a dose-dependent response in cell viability to 

deacetylnemorone. In each case, the viability of the cells treated with 150 µM of 

deacetylnemorone was significantly less than the control (p ≤ 0.05). In the case of 

colorectal carcinoma (HCT 116 and HCT 116/200) and breast cancer (MDA-MB-231), a 
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significant decrease (p ≤ 0.05) compared to the control group at 30 µM of 

deacetylnemorone was observed. This confirmed the selectivity noted in the NCI-60 

screening.  

 Of particular interest was the seemingly greater sensitivity of the chemotherapy 

resistant HCT116/200 cells to deacetylnemorone compared with the parent HCT 116 cell 

line. Deacetylnemorone at 30 µM reduced the cell viability of HCT 116/200 after only 48 

hours compared to the 72 hours needed for the parent cell line. The compound also 

reduced the cell viability of the HCT 116/200 cell line to a greater extent than the parent 

cell line at both the 30 and 150 µM concentrations. The compound may therefore be 

targeting a cellular pathway that is responsible for the treatment-induced resistance of 

HCT 116/200 cells or was co-selected with the cellular pathway responsible for the 

treatment-induced resistance such as the percentage of cancer stem cells within the 

population147. In order to further explore this interesting result, deacetylnemorone was 

used in combination with the chemotherapy agent FdUrd to treat HCT 116/200 cells. The 

cell viability of HCT 116/200 was significantly lower when deacetylnemorone was used in 

combination with FdUrd than when FdUrd was used alone. This effect occurred at as little 

as 3 µM deacetylnemorone, a concentration lower than the minimum required to reduce 

cell viability when deacetylnemorone was used on this cell line alone. It is likely that a 

synergistic rather than simply a combinatorial effect occurred when deacetylnemorone 

was used alongside the chemotherapy. 

Next, cell cycle analysis was performed to gain insight into the mechanism of 

action for the cell growth inhibition of SK-MEL-5 melanoma cells. When compared to the 
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control, deacetylnemorone at 15 µM did not increase the percentage of cells in the sub 

G1 phase of the cell cycle, suggesting apoptotic cell death was likely not occurring. As a 

result, another mechanism of cell death, such as necrosis or autophagy, is likely 

responsible for any cell death observed at this dose148. Additionally, from 6 to 24 hours of 

incubation with deacetylnemorone, the percentage of cells in the G1 phase decreased 

with a corresponding increase in the S phase cells. After 24 hours, the percent of S-phase 

cells decreased and the percentage of cells in the G2/M phase increased. The increase in 

G2/M phase cells continued until 72 hours of incubation with deacetylnemorone, at 

which point the percentage of cells in the G2/M phase outnumbered the percentage of 

cells in the S-phase. This trend was not seen on cells treated with the vehicle control. 

These results suggest that deacetylnemorone may slow progression of the cell cycle 

through the S and G2/M phases. While the mechanism is unclear, this could be the result 

of DNA damage, inhibition of DNA synthesis, or inhibition of cell cycle regulating cyclins149

 With the cancer cell growth inhibition properties of deacetylnemorone 

established, the effect of the compound on other cancer-related pathways was then 

examined. Deacetylnemorone was observed to reduce SK-MEL-5 invasion at a 

concentration as low as 0.3 µM after 24 hours of treatment. The decrease in invasion was 

concentration dependent, and the decrease became significant (p ≤ 0.05) at 30 µM of the 

compound. Both the migration of the cell front and the invasion of single cells into a cell 

free gap between cell fronts were inhibited as deacetylnemorone was added to the cell 

culture media. The inhibition of cell front migration could be interpreted as an extension 

of the cell growth inhibition observed previously, as the cell front will migrate when the 
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cells divide. However, the decrease in single cells invading the cell free gap suggests that 

the cells were being inhibited from undergoing epithelial-mesenchymal transition (EMT). 

This process allows cancer cells to detach from their extracellular matrix, move freely 

within the body, and reattach in a new location, establishing metastatic growth150. Cancer 

cells undergoing this process may also be linked to innate chemotherapy resistance and 

an increased percentage of cancer stem cells147. The decrease of single cells in the cell 

free gap suggests a decrease in the number of cells that had migrated from one of the cell 

fronts. This inhibition is unique from cell growth inhibition and may lead to an ability of 

deacetylnemorone to inhibit the metastasis and chemotherapy resistance of melanoma. 

The final cancer-related pathway that was assayed for a response to deacetylnemorone 

was angiogenesis. At sub-cytotoxic concentrations of deacetylnemorone (0.3 and 3 µM), 

significantly less tube formation was observed between HUVEC endothelial cells. Tube 

formation is a crucial step in angiogenesis, which is required for both extended tumor 

growth and metastatic formation. By inhibiting the formation of tubes between 

endothelial cells, deacetylnemorone may cut off the blood supply to new and growing 

tumors and further inhibit metastasis.  

3.6 CONCLUSIONS 

Deacetylnemorone is a natural product of the abietane diterpenoid family. While 

limited growth inhibition studies have been performed to investigate the potential of this 

compound, it has remained an understudied lead compound for anti-cancer therapy. In 

this study, deacetylnemorone was shown to inhibit cell growth of a wide variety of cancer 

cell lines, induce non-apoptotic cell death in SK-MEL-5 melanoma, sensitize HCT 116/200 
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resistant colorectal carcinoma to chemotherapeutic treatment, inhibit the EMT and 

invasion of melanoma cells, and inhibit angiogenesis. These properties may give 

deacetylnemorone the ability to provide a robust, multi-targeted treatment for a range 

of cancers, which not only increases the efficacy of current cancer treatment 

combinations and reduces the risk of treatment-acquired resistance, but also re-sensitizes 

already resistant tumors to further chemotherapy use. Further examination is warranted 

to elucidate the mechanism by which each of deacetylnemorone’s anti-cancer effects are 

produced in addition to translating these in vitro results in vivo. Additionally, the ability 

of deacetylnemorone to target cancer stem cells specifically should be investigated as a 

potential mechanism for the ability of the compound to inhibit cell growth in 

chemotherapy resistant cell lines and inhibit EMT. In summary, deacetylnemorone is a 

multi-targeted natural product which has the potential to enhance currently utilized 

cancer treatments when used in combination with chemotherapeutic, anti-angiogenic, 

and other targeted therapies. 
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3.7 FIGURES 

 
 

 
 
 
Figure 3.1: The structure of the abietane diterpenoid, deacetylnemorone. 
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Figure 3.2: Waterfall plot of the growth percent of 59 cell lines in response to 10 µM of 
deacetylnemorone, determined by the NCI-60 one dose screening test. The tissue type of 
each cell line is denoted by color (Purple – Ovarian Cancer, Pale pink – Breast Cancer, 
Aqua – Prostate Cancer, Grey – CNS cancer, Gold – Renal Cancer, Bright Pink – Melanoma, 
Green – Colon Cancer, Blue – Non-small cell lung cancer, Red – Leukemia). 
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Figure 3.3: Percent viability of A) MG-63, B) SK-OV-3, C) MDA-MB-231, D) HCT 116, E) HCT 
116/200, and F) A2780ADR cells in response to various concentrations of 
deacetylnemorone after 48 and 72 hours of exposure, as determined by the MTS 
cytotoxicity assay. For all cell lines except A2780ADR, the concentration of doxorubicin 
was 2 µM. For the A2780ADR cell line the concentration of doxorubicin was 1 µM. * 
denotes a significant difference (p < 0.05) from the control group. ** denotes a significant 
difference (p < 0.05) from the previous concentration in addition to the control group. 
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Figure 3.4: The A) percent viability and B) cell number of the HCT 116/200 cell line in 
response to a 48 hour exposure of various concentrations of deacetylnemorone, alone or 
in combination with the chemotherapy agent FdUrd, as calculated using the MTS assay. * 
denotes a viability significantly lower than the control. ** denotes a viability significantly 
lower than the 4 µM FdUrd treatment. *** denotes a viability significantly lower than 
both the 4µM FdUrd treatment and the preceding natural compound concentration. In 
all cases, significance is defined by a two tailed t-test with p < 0.05. 
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Figure 3.5: Histogram of propidium iodide expression as measured by flow cytometry for 
SK-MEL-5 cells treated with either a vehicle control or 15 µM of deacetylnemorone. The 
histograms A.) were divided into four sections representing the sub-G1, G0/G1, S, and 
G2/M phases of the cell cycle. The histograms were used to calculate the percentage of 
analyzed cells treated with B) the vehicle control and C) 15 µM deacetylnemorone.  
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Figure 3.6: Invasion of SK-MEL-5 melanoma cells into a cell-free gap created using a 2-
well cell culture insert when incubated with different concentrations of 
deacetylnemorone for 24 hours. A) A representative image of the cells at 0 and 24 hours 
after insert removal and the addition of deacetylnemorone. B) The percent invasion of 
the cells after 6, 12, or 24 hours. A significant difference, p ≤ 0.05, from the control at the 
same time point is denoted by *.  
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Figure 3.7: A) The average number of junctions, or tubes, formed between HUVEC 
endothelial cells after 8 hours of incubation on growth factor reduced BD Matrigel, where 
* represents a significant difference (p < 0.05) from the control group. A representative 
bright field image is shown for treatment with B) growth media alone, C) 0.3 µM 
deacetylnemorone, and D) 3 µM deacetylnemorone. E) The percent viability of HUVEC 
endothelial cells in response to 8 hours of incubation with various concentrations of 
deacetylnemorone as determined by an MTS assay. The control group was treated with 
culture media alone, and the DMSO group was treated with 0.05% DMSO in culture 
media. 
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CHAPTER 4 

A MULTI-TARGETING NATURAL PRODUCT WITH CHEMOTHERAPEUTIC, 

IMMUNE-MODULATING, AND ANTI-ANGIOGENIC PROPERTIES3 

 

4.1 ABSTRACT 

Targeted therapies have changed the treatment of cancer, giving new hope to 

many patients in recent years, but also coming with serious hurdles. These hurdles have 

resulted in cancer remaining the second leading cause of death in the United States with 

over a quarter of these deaths coming as a result of lung and bronchus cancers. The 

shortcomings of targeted therapies including acquired resistance, limited susceptible 

patients, high cost, and high toxicities, has led to the necessity of combining these 

therapies with other targeted or chemotherapeutic treatments in order to reduce the 

required doses and increase efficacy. Natural products are uniquely capable of synergizing 

with targeted and non-targeted anticancer regimens due to their ability to affect multiple 

cellular pathways simultaneously. Compounds which provide an additive effect to the 

often combined immune therapies and cytotoxic chemotherapies, are exceedingly rare. 

Compounds of this nature would however provide a strengthening bridge between the 

two treatment modalities, increasing their effectiveness and improving patient 

                                                            
3 Taylor, W.F., Moghadam, S.E., Yanez, M, and Jabbarzadeh, E. 2019. To be submitted to 

Scientific Reports. 
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prognoses. In this study, clusianone, a natural acylphloroglucinol, was investigated for its 

anticancer properties. While previous studies have suggested clusianone and its 

conformational isomers are anti-cancer agents, very few cancer types have been 

demonstrated to exhibit sensitivity to these compounds and little is known about the 

mechanism by which clusianone inhibits cancer cell growth. In this study, clusianone was 

shown to inhibit the growth of 60 cancer cell types and induce significant cell death in 25 

cancer cell lines. The compound was further shown to modulate the immune system by 

polarizing macrophages to an M1 anti-cancer state. Mechanistic studies were also 

performed to demonstrate the effect of clusianone on non-small cell lung cancer, 

specifically. The compound was shown to induce G1 cell cycle arrest followed by 

apoptosis, as confirmed by flow cytometry and western blot analysis. Three direct targets 

of clusianone, namely tubulin polymerization, JAK3 kinase, and ALK (C1156Y) were 

identified. Clusianone was finally demonstrated to inhibit the invasion of non-small cell 

lung cancer and angiogenesis, suggesting an ability to prevent growth and metastasis of 

non-small cell lung cancer. The multi-targeted anticancer effect of clusianone on cancer 

cell growth, cancer cell invasion, immune regulation, and angiogenesis makes it a 

promising lead compound for drug discovery, especially as a combinatorial treatment 

alongside targeted therapies for lung cancer. 

4.2 INTRODUCTION 

In recent years, new hope has been given to patients diagnosed with cancer due 

to the emergence of targeted therapeutics151. However, due to the limitations of newly 

discovered targeted therapies, cancer remains the second leading cause of death in the 
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United States according to the Centers for Disease Control and Prevention152, 153.  Of the 

approximately 610,000 deaths caused by cancer in 2018, over 25% will be due to lung and 

bronchus cancers, making them the deadliest cancer type in the United States1. The use 

of targeted therapies has represented a paradigm shift from traditional 

chemotherapeutics (often derived from multi-targeting natural products) to molecules 

and antibodies affecting specific cellular functions. Within the category of targeted 

therapies, immune modulating therapies have been the source of many novel treatments. 

Monoclonal antibodies118, cytokines 119, dendritic cell therapies120, chimeric antigen 

receptor T cells (CAR-T cells)121, and immune checkpoint blockade therapies122 are among 

the immune modulating treatments that have been approved by the Food and Drug 

Administration (FDA) for the treatment of cancer.  

Each of these emerging technologies has led to an increase in treatment responses 

and survival times, however, major drawbacks have been identified for each. For 

example, the dendritic cell therapy, sipuleucel-T, which is made by isolating a patient’s 

antigen presenting cells, then activating the cells with prostatic acid phosphate and 

granulocyte-macrophage colony-stimulating factor, and finally reintroducing the cells 

back into the patient has been shown to be effective in treating early metastatic 

castration-resistant prostate cancer. However, sipuleucel-T treatment is extremely costly 

due to the personalized nature of the treatment and often must be combined with other 

treatments, including radiation or chemotherapy, to successfully treat the patient125. 

CAR-T cell therapies, including tisagenlecleucel and axicabtagene ciloleucel, similarly 

function by isolating T cells from a patient and genetically engineering them to express 
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the chimeric antigen receptor to target cancer cells. While tisagenlecleucel holds much 

promise for the treatment of leukemia, as well as the distinction of being the first FDA 

approved gene therapy treatment in the United States, it also comes with a record setting 

$475,000 price tag2. In addition, CAR-T cell therapies have been associated with 

neurotoxicities and cytokine release syndrome, leading to high fever, hypotension, 

hypoxia, and respiratory distress126. Other immune regulating treatments, including 

immune checkpoint blockade therapies such as nivolumab, tend to be more cost effective 

but less personalized to each patient. Nivolumab acts by inhibiting the programmed cell 

death protein 1 (PD-1) checkpoint which reduces the immune surveillance evasion of 

cancer cells. This therapy has been shown to have a higher objective response rate and a 

prolonged progression-free survival compared to traditional chemotherapy in melanoma 

patients3, yet the treatment is not effective in tumors with low mutational burden or 

lower immunogenicity. Additionally, resistance development is common even in settings 

with initially favorable responses127. As a result, these treatments are often used in 

combination with other therapies. Modulation of the activity of macrophages found 

within the tumor microenvironment has also garnered interest as a potential immune 

regulating cancer therapy, though the FDA has not currently approved a macrophage-

targeted therapy154. 

Targeted therapies used to disrupt the unregulated growth signals of mutated 

proto-oncogenes or disrupt angiogenesis have similarly changed the landscape of cancer 

treatment despite being accompanied by major drawbacks. For many years, the first-in-

line treatment for metastatic melanoma was the alkylating agent dacarbazine, until the 
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advent of the B-rapidly accelerated fibrosarcaoma (BRAF) inhibitor, vemurafenib. This 

targeted therapy increased the objective response rate to treatment from 5% to 48% in 

BRAFV600E mutant metastatic melanoma and paved the way for numerous BRAF and 

mitogen-activated protein kinase/extracellular signaling regulated kinases (MEK) 

inhibitors to be used in the treatment of the disease155. However, innate resistance to 

immune checkpoint blockade has been observed in 40–50% of metastatic melanoma 

patients, and BRAF/MEK inhibitors have only increased the median progression free 

survival of susceptible melanoma patients to 9–11 months due to the short lived efficacy 

156. Angiogenisis targeting therapies such as bevacizumab and sorafenib have been used 

to treat solid and metastatic tumor growth, but similarly suffer from acquired resistance, 

likely as a result of plasticity of the tumor microenvironment6. The disappointing 

performance of targeted therapies has led to a renewed interest in multi-targeting 

natural products76. 

  Natural products have a long history of use as cancer therapies, either being used 

for or inspiring approximately 60% of cancer treatments used between 1981 and 200672. 

These compounds tend to be safe and low cost in addition to targeting a number of 

cellular functions simultaneously. By targeting multiple cancer related pathways, natural 

compounds may be able to provide a robust, widely applicable treatment less susceptible 

to resistance. Natural products targeting the immune response in addition to inducing 

cancer cell death are uniquely positioned to synergize well with current treatment 

regimens. Compounds of this type may be able to limit the number of immune therapies 

and chemotherapies used in cancer treatment cocktails in addition to increasing their 
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efficacy. The number of compounds with combined chemotherapeutic and immune-

modulatory effects is limited, and many of these compounds are classified as natural 

products157. Notable examples include astragaloside IV 136, 137, curcumin133, emodin134, 135, 

and total saponins of panax ginseng158, 159. These compounds have been demonstrated to 

induce apoptosis in cancer cells while simultaneously altering cytokine expression or 

macrophage polarization. However, the low bioavailability and limited efficacy of these 

compounds warrants further drug discovery efforts for multi-targeting compounds. 

Clusianone and its configurational isomers are natural products that have been 

demonstrated to feature antimicrobial, anti-allergenic, schistosomicidal, and anti-

inflammatory effects160-163. Additionally, these compounds have been shown to induce 

cell death in glioblastoma, as well as lung, melanoma, breast, prostate, renal, cervical, and 

tongue cancer164-167.  Researchers have identified several potential molecular targets of 

clusianone, including microtubules, the mitochondrial membrane, cathepsins, and 

cyclins164, 166-168. It is likely that multiple molecules are targeted by clusianone due to the 

so-called “privileged structures” typically possessed by natural products. Limited in vivo 

studies have demonstrated the safety of a common configurational isomer of clusianone, 

7-epiclusianone, in vivo in administrations of up to 300 mg/kg of body weight in female 

albino mice160. Additionally, the chemical synthesis of clusianone and its configurational 

isomers have been explored, allowing for a high availability of the compounds169. As a 

result, clusianone is a promising lead compound for multi-targeted cancer treatment. 

However, screening of clusianone across a wide range of cancers has not yet been 

reported. Additionally, only limited studies of the molecular targets of clusianone have 
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been performed, and the direct interaction of clusianone and its purported targets has 

yet to be determined. Finally, the effect of clusianone on the anticancer immune response 

has not been explored. To address these knowledge gaps, herein the combined anticancer 

and immune modulatory effects of clusianone are examined. 

4.3 MATERIALS AND METHODS 

4.3.1 CLUSIANONE SOURCE AND IDENTIFICATION 

The acylphloroglucinol, clusianone, was obtained through collaboration with the 

University of Basel. We independently confirmed the identity of the compound by 1D and 

2D nuclear magnetic resonance (NMR) in addition to time of flight mass spectrometry. 

For NMR analysis, clusianone was dissolved in dimethyl sulfoxide (DMSO) and analyzed 

using a Bruker Avance III-HD 400 MHz. 1H-NMR, 13C-NMR, H-H correlation spectroscopy 

(COSY), heteronuclear single quantum coherence (HSQC), and heteronuclear multiple 

bond correlation (HMBC) spectrums were generated. For mass spectrophotometry 

analysis, clusianone was dissolved in methanol and analysed using liquid 

chromatography-mass spectrometry (LC-MS) on a Thermo Orbitrap Velos Pro. NMR and 

mass spectrometry (MS) data can be found in Figures A.4 and A.5. For all cell culture 

experiments, clusianone was diluted in dimethyl sulfoxide (DMSO; Santa Cruz 

Biotechnology) at a concentration of 20 mM before being diluted into the cell culture 

media specified for each cell line.  

4.3.2 CELL LINES AND REAGENTS 

The non-small-cell lung cancer cell line, NCIH460, was purchased from the 

Development Therapeutics Program, Division of Cancer Treatment and Diagnosis tumor 
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repository. THP-1 human monocytic cells were obtained from American Type Culture 

Collection (ATCC). All cells were stored in liquid nitrogen until use. THP-1 cells were 

maintained in Roswell Park Memorial Institute (RPMI-1640) medium (Corning) 

supplemented with 10% Fetal Bovine Essence (FBE; VWR), and 0.05 mM 2-

mercaptoethanol (Sigma-Aldrich). NCIH460 cells were maintained in RPMI-1640 media 

supplemented with 10% FBE and 2 mM L-glutamine (Sigma) in a 5% CO2, 37°C, humidified 

incubator. THP-1 cells were differentiated into M0 macrophages by culturing the cells 

with 100 ng/ml of 12-myristate 13-acetate (PMA; Sigma) for 24 h.  After differentiation, 

the cells were washed three times with serum free RPMI-1640 medium (Gibco) to remove 

non-differentiated cells.  

4.3.3 NCI-60 CELL LINE SCREENING 

Cytotoxicity screening was performed using the National Institute of Health’s 

(NIH) National Cancer Institute-60 (NCI-60) screening program144. The screening of 60 cell 

lines was performed by the NIH using a Sulforhodamine B cell viability assay, as described 

by Shoemaker145. After sufficient activity was observed using one dose of clusianone (20 

µM), the screening was repeated using a five-point dilution. Three concentrations, 

including the growth inhibition of 50% (GI50), total growth inhibition (TGI), and lethal 

concentration of 50% (LC50), were determined for each cell line in the screening assay 

using the five-dose data results. 

4.3.4 IN VITRO INVASION ASSAY 

Cell migration of NCIH460 cells was assessed by making a cell-free gap with a 

Culture-Insert 2 well 24 (IbiTreat) (Martinsried, Germany), consisting of two wells that 
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were separated by a wall. A total of 70 µL of cell suspension containing 6×104 NCIH460 

cells was added to each well. Cell migration of THP-1 M0 macrophages was assessed in 

the same manner using 75 µL of cell suspension containing 100,000 cells per well. Cells 

were given 24 hours to attach and reach confluency. Culture inserts were then removed 

and any cell debris was washed with phosphate buffered saline (PBS; Corning). The 

samples were supplemented with different concentrations of clusianone in cell culture 

media and incubated at 37 °C and 5% CO2 for 24 hours. Images were taken at different 

time intervals using a phase contrast Nikon Eclipse Ti-E inverted microscope. 

Quantification of the percent invasion was performed by measuring the gap distance 

using the following formula, 

𝑖𝑛𝑣𝑎𝑠𝑖𝑜𝑛 % =
(𝑊0 − 𝑊𝑛)

𝑊0
∗ 100% 

where 𝑊𝑛 is the average of three gap width measurements at 6, 12, or 24 hours, and 𝑊0 

is the initial width of the cell-free gap. The media was removed and 400 µL of Cell Stain 

Solution (Cell Biolabs, Inc) was added to each well. The staining solution was incubated 

with the cells for 15 minutes at room temperature. The solution was then aspirated and 

discarded. Each stained well was washed with deionized water, then the water was 

discarded and the cells were allowed to dry at room temperature. Images were taken 

using a phase contrast inverted microscope (Invitrogen EVOS FL Auto Cell Imaging).  

4.3.5 TUBE FORMATION ASSAY 

Growth factor reduced BD MatrigelTM (Corning) was stored at -20°C long term. 

Before use, the MatrigelTM was thawed on ice at 4°C overnight. Next, 50 µL of MatrigelTM 

was added to each well of a pre-chilled 96-well plate and incubated at 37°C and 5% CO2 
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for 30 minutes until the MatrigelTM had formed a gel. A suspension of 20,000 human 

umbilical vein cells (HUVEC) in 100 µL of cell culture media dosed with clusianone was 

added to each well. The vehicle control consisted of only HUVEC cells and growth media. 

At the end of the 8 hour time point, the cells were stained Cell Stain Solution as outlined 

in the in vitro invasion assay protocol. The junctions, or tubes, connecting the endothelial 

cells were photographed using an Invitrogen EVOS FL Auto at 4x magnification and 

counted manually. 

4.3.6 CELL CYCLE ANALYSIS 

The effect of clusianone on the cell cycle of NCIH460 cells was determined using 

flow cytometry. The cells were seeded in 6 well plates at a density of 250,000 cells per 

well with 2 mL of media and were incubated overnight to allow the cells to attach. The 

media was then removed and replaced with media supplemented with clusianone. At 6, 

12, 24, and 48 hours of treatment with clusianone the drugged media was collected and 

the cells were trypsinized with 0.25% trypsin (Corning). The detached cells were then 

combined with the media for each treatment and centrifuged at 2500 rpm for 5 minutes. 

The supernatant was discarded, and the pellet was washed and centrifuged with ice-cold 

PBS twice. The resulting pellet was suspended in 1 mL of ice-cold PBS, which was then 

added dropwise to 3 mL of ice-cold 70% ethanol in deionized water. The suspension was 

kept at 4°C for at least 24 hours to allow the cells to fix. Once all time points had been 

collected, the cells were again centrifuged and the resulting pellets were suspended in 

FxCycle PI/RNase Staining Solution (Invitrogen) for 15 minutes, then analyzed using a BD 
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LSR II flow cytometer. Propidium iodide (PI) expression was used to quantify the 

percentage of cells in the sub-G1, G0/G1, S, and G2/M phases. 

4.3.7 ANNEXIN V/PI APOPTOSIS ASSAY 

The ability of the clusianone to induce apoptosis in NCIH460 cells was determined 

using the FITC Annexin V/ Dead Cell Apoptosis Kit (Invitrogen). The cells were seeded in 6 

well plates at a density of 200,000 cells with 2 mL of media per well and were incubated 

overnight to allow the cells to attach. The media was then removed and replaced with 

media supplemented with clusianone or a vehicle control, 0.3% DMSO in RPMI 1640 

media supplemented with 10% fetal bovine essence and 2 mM L-glutamine. After 48 

hours of incubation, the media was collected, and the cells were trypsinized with 0.25% 

trypsin. The detached cells were then combined with the media for each treatment and 

centrifuged at 2500 rpm for 5 minutes. The supernatant was discarded, and the pellet 

was washed with ice cold PBS, centrifuged, and resuspended in Annexin V buffer 

(Invitrogen) at 1,000,000 cells/mL. Next, 100 µL of the cell suspensions were added to 

flow cytometry tubes, and 5 µL of Annexin V/FITC antibody and 1 µL of PI working solution 

(Invitrogen) were added to each sample. The samples were incubated for 15 minutes at 

room temperature and analyzed using a BD LSR II flow cytometer. 

4.3.8 WESTERN BLOTTING 

The effect of clusianone on apoptosis related proteins in NCIH460 cells was 

assessed using western blotting. The cells were seeded in T-25 flasks (VWR) at a density 

of 1.5x106 cells in 5 mL of media. The cells were allowed to attach for 24 hours. After the 

cells had attached, the media was replaced with media supplemented with either a 
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vehicle control or the designated concentration of clusianone. After 12 and 24 hours, one 

flask of each treatment group was selected, the media was removed and replaced with 

PBS, and the cells were detached by scraping. The cells were then centrifuged at 2500 

rpm for 5 minutes and the supernatant was discarded. The cells were then lysed by 

suspending the pellet in Radio-immunoprecipitation assay (RIPA) buffer (CST) 

supplemented with phenylmethylsulfonyl fluoride (PMSF) (Sigma-Aldrich) at a 

concentration of 400 µL/ 107 cells. The suspension was incubated on ice for 5 minutes, 

briefly vortexed, and sonicated for 45 seconds. The suspension was then centrifuged at 

14,000 g for 10 minutes at 4°C. The supernatant containing the extracted protein was 

collected. Protein concentration was determined by the bicinchoninic acid (BCA) assay 

following the manufacturer’s protocol. 

Protein extract was then diluted in RIPA buffer and 4x Laemmli sample buffer (Bio-

Rad), heated at 95°C for 5 minutes, cooled, and briefly centrifuged. Approximately 50 µg 

of protein was loaded into each well of 12% Mini-Protean TGX Stain-Free Gels (Bio-Rad). 

The gels were electrophoresed in sodium dodecyl sulfate (SDS) running buffer (CST) at 70 

V for approximately 90 minutes using a mini-protean tetra cell electrophoresis chamber 

(Bio-Rad). The proteins were transferred to a 0.2 µm pore size nitrocellulose membrane 

using Tris-Glycine transfer buffer (CST) in a Criterion wet blotter (Bio-Rad) at 70 V for 90 

minutes. The membrane was washed with Tris buffered saline (TBS) (CST) and blocked 

with 5% milk (CST) in TBS for 1 hour. The membrane was then washed with TBST and 

treated with primary antibody diluted 1:1000 in 5% bovine serum albumin (BSA) in TBS 

with Tween (TBST) at 4°C overnight. All primary antibodies were purchased from CST and 
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were sourced from rabbit. The membrane was again washed with TBST before incubating 

the membrane in anti-rabbit horseradish peroxidase (HRP)-linked secondary antibody 

(CST) diluted 1:2000 in 5% milk in TBST for 1 hour. The membrane was washed with TBST 

a final time, then incubated with SignalFire reagent for 2 minutes and imaged using a 

BioRad ChemiDoc MP Imaging system. If a membrane was re-probed for a different 

protein, the membrane was stripped using Restore western blot stripping buffer 

(Thermo). 

4.3.9 TUBULIN POLYMERIZATION ASSAY 

 Tubulin polymerization was assessed using the Tubulin Polymerization Assay Kit 

from Cytoskeleton as per the manufacturer’s instructions. Clusianone was diluted in 

DMSO at 20 mM before being diluted to a 10x solution in General Tubulin Buffer. 

Paclitaxel was used as the positive control. Absorbance correlating to the extent of 

polymerization was recorded every minute for a total of one hour. Each experimental 

group was repeated in triplicate. 

4.3.10 DISCOVERX KINASE PANEL 

 Clusianone was submitted to the DiscoverX KINOMEscan scanTK panel to 

determine its ability to directly inhibit the function of 135 tyrosine kinases. The assay is 

an active site-directed competition assay, which does not require the use of ATP to assess 

kinase function. One concentration of clusianone (20 µM) was tested in the panel, and 

the results were reported as the percent of remaining function for each kinase upon 

treatment with clusianone. 
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4.3.11 MACROPHAGE CYTOTOXICITY ASSAY 

Macrophage viability in response to clusianone treatment was assessed using 

CellTitter 96 Aqueous Non-Radioactive Cell Proliferation assay (Promega). THP-1 cells 

were seeded into 96-well tissue culture plates at a density of 100,000 cells/well with a 

total volume of 100 µL of complete growth media (RPMI-1640 media supplemented with 

10% Fetal Bovine Essence, and 0.05 mM 2-mercaptoethanol) with the addition of 100 

ng/ml of PMA in each well. Cells were incubated for 24 hours at 37°C and 5% CO2 to allow 

for cell differentiation to M0 macrophages. After differentiation, the cells were washed 

three times with serum free RPMI-1640 medium to remove non-differentiated cells. After 

cell differentiation, the cells were exposed to various concentrations of clusianone for 75 

hours. Then, the cells were washed with PBS, and culture media supplemented 20% 3-

(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium (MTS) solution (Promega) was added to the cells. The cells were incubated 

for 2 hours, and the absorbance of each well at 490 nm was measured using a Spectramax 

190 microplate reader. 

4.3.12 ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA) 

 THP-1 cells were differentiated in a 24-well plate at a density of 300,000 cells/well 

with a total volume of 1.5 ml of culture media per well. After the 72 hours of treatment 

with clusianone the culture media was collected from all the experimental groups. The 

media was centrifuged at 2500 rpm for 5 min and stored at -20 °C. The concentrations of 

tumor necrosis factor alpha (TNFα) and interleukin-6 (IL-6) in the THP-1 media were 

evaluated using human IL-6 and TNFα  tetramethylbenzidine (TMB) enzyme-linked 
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immunosorbent assay (ELISA) development kits (Peprotech) according to the 

manufacturer’s protocol. Colorimetric changes were measured using a SpectraMax 190 

microplate spectrophotometer at 450 nm with wavelength correction set at 620 nm. 

Standard curves for each cytokine were run in parallel to convert the absorbance to 

concentration in each group. 

4.3.13 RNA EXTRACTION AND QUANTITATIVE REAL-TIME POLYMERASE CHAIN REACTION 

(RT-PCR)  

Total RNA was isolated using the Gene Jet RNA Purification kit (Thermo Scientific) 

according to the manufacturer’s instructions. The quantification of the ribonucleic acid 

(RNA) was measured using a Thermo Scientific Nanodrop 2000c spectrometer and 

considered pure if the ratio of absorbance at 260 nm/280 nm was ≥ 2. RNA isolates were 

stored at -20  ̊C until they were used for reverse transcription polymerase chain reaction 

(rt-PCR). The RNA was prepared as a template for complementary deoxyribonucleic acid 

(cDNA) synthesis using the iScript cDNA Synthesis kit (Bio-Rad). Quantitative rt-PCR 

analysis was performed with the synthesized cDNA and SYBER® Green PCR Supermix (Bio-

Rad). Gene expression was normalized to the housekeeping gene glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) and the control group, non-treated THP-1 M0 

macrophages (2-ΔΔC). Gene expression values were calculated by using the mean cycle 

threshold (CT) values of the samples. All primers (Table S1) were synthetized by 

Integrated DNA Technologies (Coralville). 
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4.4 RESULTS 

4.4.1 CLUSIANONE INHIBITS CELL GROWTH AND INDUCES CELL DEATH IN A WIDE 

SPECTRUM OF CANCERS. 

 To determine the cytotoxic potential of clusianone (Figure 4.1), the compound 

was screened against the 60 cancer cell lines of the National Cancer Institute’s NCI-60 

cancer panel. This panel utilizes a Sulforhodamine B assay to quantify the total cellular 

protein present after 48 hours of treatment with a compound of interest. The panel 

screens 60 unique cancer cell lines across 9 different tissue types including leukemia, non-

small cell lung cancer, melanoma, breast cancer, central nervous system (CNS) cancer, 

renal cancer, ovarian cancer, and prostate cancer. For each of the cell lines, the 

concentration of compound required to reduce the growth of cells to 50% that of the 

vehicle control (GI50), the concentration required to inhibit the growth of any amount of 

cells (TGI), and the concentration required to induce cell death of 50% of the seeded cells 

(LD50) was determined (Figure 4.2). 

 Clusianone inhibited the growth of all 60 cell lines in the NCI-60 cancer panel 

(Figure 4.2A) with an average GI50 of 2.7 µM. Clusianone did not, however, exhibit a high 

level of selectivity in inhibiting the growth of the cancer cell lines as the determined GI50 

concentrations only ranged from 1.63 µM to 3.89 µM. The selectivity of clusianone was 

higher in completely inhibiting cell growth. The majority of TGI concentrations for cell 

lines within the panel were less than 10 µM, however, two leukemia cell lines continued 

to grow after 48 hours of incubation with 101 µM of clusianone, the highest concentration 

tested (Figure 4.2B).  In addition to inhibiting the growth of many cancer cell lines, 
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clusianone exhibited an LD50 of less than 101 µM for 25 of the cell lines tested (Figure 

4.2C). Interestingly, the cytotoxicity of clusianone varied widely within each tissue type, 

with the exception of leukemia, for which no LD50 under 101 µM was observed. 

The full growth response data for each of the cell lines can be found in Table S2 As 

lung and bronchus cancers are projected to be responsible for over one quarter of all 

cancer-related deaths in the United States in 2018, the effect of clusianone on small cell 

lung cancer was investigated further. The non-small cell lung cancer cell line, NCIH460, 

was the most sensitive lung cancer cell line to clusianone. The GI50, TGI, and LD50 

concentrations of the NCIH460 cell line were 2.6 µM, 6.2 µM, and 35µM, respectively 

(Figure 4.3).  

4.4.2 CLUSIANONE INDUCES G1 ARREST FOLLOWED BY APOPTOSIS IN NCIH460 SMALL 

CELL LUNG CANCER CELLS 

 In order to gain insight into the mechanism of action of clusianone on NCIH460 

small cell lung cancer cells, the cell cycle of the NCIH460 cells over 48 hours under 

exposure to clusianone was analyzed by quantifying the amount of PI bound to DNA 

within the cells using flow cytometry (Figure 4.4). When the NCIH460 cells were treated 

with 35 µM of the compound the number of cells in the G1 phase of the cell cycle 

increased at 12 and 24 hours of incubation when compared to the vehicle control, 0.2% 

DMSO in RPMI 1640 media supplemented with 10% fetal bovine essence. Additionally, a 

depletion of cells in the S and G2/M phases of the cell cycle occurred after 24 hours when 

compared to the control and persisted after 48 hours. The percent of cells in the S phase 

decreased at a rate faster than the percent of cells in the G2/M phase decreased when 



 

82 

exposed to clusianone, suggesting that cells were progressing from the S phase to G2/M 

phase, but they were unable to progress from the G1 phase to S phase when exposed to 

clusianone. At the 48-hour time point, the percentage of cells in the G1 phase decreased 

when compared to the percent of cells in the G1 phase at 24 hours when exposed to 

clusianone. As the percent of cells in the S and G2/M phases continued to decrease over 

this same time period, this decrease in G1 phase cells can be explained by the increase in 

sub G1 cells seen from 24 hours to 48 hours of incubation with clusianone. These sub G1 

cells are hypothesized to be dead cells with cleaved DNA. 

 Annexin V/PI expression for the NCIH460 cells after 48 hours of incubation with 

7.6 µM, 15 µM, 35 µM, and 61 µM clusianone was determined to evaluate whether the 

cells observed in the sub-G1 phase had undergone apoptosis (Figure 4.5). As the 

concentration was increased the number of live cells decreased, confirming the dose 

dependent cytotoxicity of clusianone on NCIH460 cells.  In each of the clusianone-treated 

groups, the number of apoptotic and necrotic cells increased when compared to the 

vehicle control, 0.3% DMSO in RPMI 1640 media supplemented with 10% fetal bovine 

essence and 2 mM L-glutamine. The number of apoptotic, Annexin V positive cells 

increased as the concentration of clusianone was increased. Additionally, at lower 

concentrations, a population of PI positive and Annexin V low cells was observed (Figure 

4.5B and Figure 4.5C). This suggests that at lower concentrations, a population of NCIH460 

cells were in the process of exposing the Annexin V binding protein, phosphatidylserine, 

and therefore were in an earlier stage of apoptosis after 48 hours than were cells treated 

with a higher dose of clusianone.  
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 We also determined the caspase activity of the NCIH460 cells to confirm the 

occurrence of apoptosis after exposure to clusianone. The quantity of inactive/full length 

and active/cleaved forms of caspases 7, 8, 3, and 9 present with the NCIH460 cells was 

determined using western blotting (Figure 4.6). After 12 and 24 hours of exposure to 

clusianone, the full length form of caspases 7 and 8 decreased as the concentration of 

clusianone was increased, but the cleaved forms of these caspases were not detected. No 

trend was apparent from the quantity of caspase 3 detected at either time point. 

However, the ratio of cleaved caspase 9 to full length caspase 9 increased dramatically 

for NCIH460 cells treated with 7.6 µM or 15 µM of clusianone for 12 or 24 hours. 

Additionally, a dose- and time-dependent increase in the ratio of cleaved Poly (ADP-

ribose) polymerase (PARP) to full length PARP occurred under incubation with clusianone. 

The cleavage of caspase 9 and PARP further confirm that clusianone induces apoptosis in 

NCIH460 lung cancer. 

4.4.3 CLUSIANONE INHIBITS ANGIOGENESIS AND CELL MIGRATION OF NCIH460 CELLS 

 After determining clusianone’s ability to induce cell death at high concentrations, 

the ability of clusianone to inhibit cell migration of NCIH460 cells at low concentrations 

was assessed. A uniform cell gap was formed using a 2 well cell culture insert, and the 

cells were allowed to grow for up to 24 hours exposed to either a vehicle control or 

clusianone (Figure 4.7). After 24 hours, the cell-free gap had almost completely closed for 

cells treated with the vehicle control. In contrast, after 24 hours of incubation with 

clusianone the percent invasion of NCIH460 cells into the cell-free gap was significantly 

lower compared to the control for each concentration used, including 200 nM, a 
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concentration 10-times lower than the GI50 concentration. At each time point considered 

(6, 12, and 24 hours), a dose dependent decrease in invasion was observed. 

Similarly, the ability of clusianone to inhibit angiogenesis was indirectly assessed. 

HUVEC endothelial cells were incubated with or without clusianone on a growth factor 

reduced BD MatrigelTM basement matrix. Tube formation between the endothelial cells 

was assessed after 8 hours (Figure 4.8A). A dose dependent reduction of tube formation 

was observed when the cells were exposed to clusianone at concentrations between 0.2 

and 20 µM (Figure 4.8B). The reduction of tube formation became significant (p≤0.05) at 

20 µM clusianone. An MTS viability assay of HUVEC endothelial cells in response to 

clusianone for 8 hours revealed that the compound was not toxic at this time point (Figure 

4.8C). No significant difference in viability was observed in these cells even at the highest 

concentration of 20 µM clusianone. 

4.4.4 CLUSIANONE DIRECTLY TARGETS TUBULIN POLYMERIZATION, JAK3, AND ALK 

(C1156Y) 

 While the cytotoxic effect of clusianone on a number of cell lines has been 

previously reported, the direct effect of clusianone on its purported molecular targets has 

yet to be determined164-167. Due to the identification of microtubules as a potential target 

of clusianone in other lung cancer cell lines167, the effect of clusianone on tubulin 

polymerization was investigated using the cytoskeleton tubulin polymerization assay 

(Figure 4.9). While the nucleation time, i.e., the time required for tubulin to begin 

polymerizing, was not affected by the presence of clusianone, the rate at which the 

tubulin polymerized was significantly increased by 100 and 200 µM of clusianone (Figure 
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4.9A). The rate at which the tubulin polymerized is best represented by the Vmax value, 

which corresponds to the highest ratio of increase in the absorbance at 340 nm to time 

for each treatment group. We observed a dose dependent increase in Vmax, consistent 

with the increase in Vmax observed in the presence of the known microtubule stabilizing 

agent, paclitaxel170. 

 To determine the ability of clusianone to target tyrosine receptor kinases, a 

common target of cancer therapeutics, the compound was screened using the DiscoverX 

scanTK kinase panel. This panel determines the ability of a compound to inhibit the 

activity of 135 different tyrosine kinases. A reduction of kinase activity to 30% or below is 

considered significant in this one dose screen. At a concentration of 20 µM, clusianone 

significantly inhibited two kinases, anaplastic lymphoma kinase C1156Y (ALK C1156Y) and 

janus kinase 3 (JAK3).  The activity of ALK (C1156Y) and JAK3 were inhibited by 70% and 

75% respectively. ALK (C1156Y) is a mutation of the ALK tyrosine kinase, which has been 

associated with acquired resistance to the targeted ALK inhibitor, crizotinab, used for the 

treatment of small cell lung cancer171.  JAK3 is a kinase that plays a role in the immune 

response of several types of cells172. 

4.4.5 CLUSIANONE INCREASES THE EXPRESSION OF PRO-INFLAMMATORY CYTOKINES IN 

THP-1 MACROPHAGES 

 In order to determine the effect of clusianone on the immune response, the ability 

of clusianone to modulate macrophages was investigated. A shift in M0, naïve 

macrophages, to M1 polarized, pro-inflammatory and anticancer macrophages, is 

denoted by an increase in inflammatory cytokines, including TNFα and IL-6 among others. 
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We assessed the expression of these cytokines by THP-1 macrophages after 72 hours of 

incubation with clusianone (Figure 4.10). Both the gene expression of the cytokines and 

the concentration of the cytokine excreted into the cell culture media were determined 

by quantitative rtPCR (q-rtPCR) and ELISA, respectively. In order to ensure the 

concentrations of clusianone tested were safe for the macrophages, the viability and 

invasion capability of the macrophages under exposure to clusianone was tested and no 

significant changes were observed (Figure A.6). The gene expression of both TNFα and IL-

6 increased as the concentration of clusianone was increased. At 20 µM of clusianone, 

the gene expression of both cytokines had increased 60–70 fold over the expression of 

the control, untreated macrophages. While a dose dependent increase in the presence of 

each cytokine in the media of the cells also occurred, this increase was not significant 

when compared to the control. These results indicate that the M0 macrophages may 

polarize to anticancer M1 macrophages in the presence of clusianone. 

4.5 DISCUSSION 

 Natural products have been instrumental in the treatment of cancer and are 

currently garnering renewed interest as lead compounds for cancer therapies and 

complementary treatments due to the shortcomings of targeted therapeutics. 

Compounds which simultaneously affect immune regulation of cancer and induce cancer 

cell death may provide a uniquely well suited complementary treatment to current 

targeted therapy and chemotherapy regimens. Clusianone and its configurational 

isomers, particularly 7-epiclusianone, are natural products that have been shown to 

exhibit a wide array of biological effects. The anticancer effects of clusianone have been 
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previously investigated in a limited number of cancer cell lines164-167, but the mechanism 

of action and the molecular targets of the compound have not been fully investigated, 

nor has its ability to modulate the immune response to cancer.  

 In this study, clusianone was demonstrated to inhibit the growth of cancer cells 

across 9 tissue types and 60 individual cancer cell lines. A growth inhibitory effect was 

observed for each cell line, but an LD50 less than the highest concentration tested was 

only observed in 25 of the 60 cell lines tested. These 25 cell lines were composed of cell 

lines from each tissue type tested excluding leukemia. In combination, these effects 

suggest that clusianone could be used to slow the progression of many variations of 

cancer, but it will not be cytotoxic to all types of cells. As clusianone is likely to be safe in 

vivo at relatively high concentrations160 and the compound is selective in inducing cell 

death, clusianone has the potential to be safely used for the treatment of a diverse group 

of cancers. In particular, renal cancer, melanoma, central nervous system tumors, colon 

cancer, and non-small cell lung cancer appear to be sensitive to the cytotoxic effects of 

clusianone. It is unclear what factors determine the sensitivity of each cancer cell line to 

clusianone, and further study will be required to determine how to best predict sensitivity 

to clusianone within a particular cancer tissue. Clusianone’s anticancer effects have the 

biggest potential for clinical impact, however, on non-small cell lung cancer due to the 

high rate of lung cancer related death in the United States, the ability of the compound 

to induce cell death in non-small cell lung cancer cell lines, and the ability of clusianone 

to inhibit an ALK tyrosine kinase mutation responsible for acquired resistance to 

treatment. 
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 In order to further investigate the anticancer effect of clusianone on non-small cell 

lung cancer, additional experiments were performed on a lung cancer cell line which had 

exhibited sensitivity to the compound. The non-small cell lung cancer cell line that 

exhibited the greatest sensitivity to clusianone was NCIH460. Clusianone induced dose 

dependent cell death in this cell line with a GI50, TGI, and LD50 of 2.6 µM, 6.2 µM, and 

35µM, respectively. We determined that cell death in the NCIH460 cell line occurred after 

48 hours of treatment with 35 µM of clusianone. Cell cycle analysis revealed that the cell 

death was preceded by G1 phase arrest, and a subsequent reduction of S phase and G2/M 

phase cells. A similar G1 phase arrest has been observed after treatment of A549 lung 

cancer cells with 7-epiclusianone, suggesting that the configurational isomers have similar 

mechanisms of action for inducing cytotoxicity in lung cancer167. Furthermore, the cell 

death induced by clusianone in NCIH460 cells was shown to proceed through an apoptotic 

mechanism. As the concentration of clusianone was increased, more apoptotic cells were 

observed using flow cytometry. Apoptosis was confirmed by the cleavage of caspase 9 

and PARP, which participate in the caspase cascade leading to cell death after 

mitochondrial depolarization has occurred173, 174. We also observed a decrease in full 

length caspase 7 and caspase 8 expression upon treatment of NCIH460 cells with 

clusianone. The decrease in full length caspase 7 was further evidence that the caspase 

cascade leading to apoptotic cell death had been activated. The decrease in full length 

caspase 8 in addition to the activation of caspase 9 suggested that both the extrinsic, 

receptor mediated apoptosis pathway and the intrinsic apoptosis pathway were 
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activated174. This finding is not conclusive, however, as no cleaved caspase 8 was detected 

at either 12 or 24 hours of incubation with clusianone.  

In addition to inducing dose dependent apoptosis in non-small cell lung cancer, 

clusianone also inhibited the invasion of NCIH460, non-small cell lung cancer. Significant 

invasion inhibition was observed at a concentration as low as 200 nM. Further, clusianone 

was shown to significantly reduce the tube formation between HUVEC endothelial cells 

at a concentration of 20 µM. Tube formation is a critical step in the process of 

angiogenesis which is utilized by the wound healing process as well as by cancers to feed 

tumor growth124, 175. By inhibiting angiogenesis and tumor cell invasion, clusianone may 

act to inhibit continued tumor growth and metastasis of non-small cell lung cancer into 

healthy tissue. These effects were seen in concentrations less than the concentrations 

required to induce cell death, suggesting clusianone directly inhibits molecular targets 

associated with angiogenesis and invasion which were outside the scope of this study. 

 Mechanistic studies were however performed to elucidate the mechanism by 

which clusianone induces cell death in non-small cell lung cancer. For the first time, the 

direct effect of clusianone on cancer proliferation targets including microtubules and ALK 

(C1156Y) was determined. While 7-epiclusianone has been previously suggested to 

impact microtubule structure 167, the mechanism of this effect was unclear. This study 

demonstrated that clusianone acts by stabilizing and increasing the rate of polymerization 

of tubulin directly. This mechanism of action is one shared by chemotherapy agents, such 

as paclitaxel, though the concentration of clusianone required to impact the 

polymerization of tubulin was high compared to the concentration necessary to induce 
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growth inhibition or cell death on NCIH460 cells. As a result, it is likely that additional 

molecular targets are influenced by clusianone in order to impart its cytotoxic effects. We 

further determined that clusianone directly inhibits the function of two tyrosine kinases, 

ALK (C1156Y) and JAK3. While these molecular targets are not largely present within 

NCIH460 lung cancer, and thus are not likely to be involved with a mechanism of cell 

death, they do suggest clusianone may target non-small cell lung cancer cells with 

acquired resistance to kinase inhibitors. 

Due to the increasing role of immune targeted therapies in lung cancer, the ability 

of clusianone to modulate the immune system within the tumor microenvironment was 

also investigated176. Macrophages are immune cells that play a role in T-cell activation in 

addition to engulfing pathogens and dead cells. Within the tumor microenvironment, 

tumor associated macrophages (TAMs) can be formed, which resemble macrophages 

polarized to an M2, anti-inflammatory state and aid in tumor growth and evasion from 

the immune system177. While some studies have suggested eliminating TAMs as a 

therapeutic strategy, others have hypothesized that polarizing macrophages to the M1 

state within the tumor microenvironment will not only eliminate the tumor-supportive 

functions of TAMs but will also activate the immune system against the tumor178. In this 

study, clusianone was shown to increase the gene expression of TNFα and IL-6 within THP-

1 derived macrophages, potentially polarizing the cells to an anticancer, pro-

inflammatory M1 state. This regulation of macrophages suggests that clusianone might 

be a useful complementary treatment when combined with current first-in-line immune 
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therapies. This is especially true in the case of CAR-T cell therapy, in which macrophage 

dysfunction is the source of some of the most serious side effects126. 

Future studies will be required to determine the effectiveness of clusianone as a 

cancer therapy. More mechanistic studies should be performed to elucidate the primary 

targets for clusianone’s cytotoxic and immune regulatory properties. Of particular 

interest to future studies should be the effect of clusianone on non-small cell lung cancer 

due the high mortality rates of this malignancy and the compound’s ability to induce 

apoptosis and inhibit invasion of non-small cell lung cancer cell lines. With this 

information, the groundwork will be laid to perform in vivo determinations of the efficacy 

of clusianone in inducing cancer cell death and regulating the immune response. Special 

notice should be paid to the effect of clusianone on the polarization of macrophages 

within the tumor microenvironment in these in vivo experiments. Additionally, the 

synergistic effect of clusianone when combined with currently approved cancer immune 

therapies should be investigated.  

Clusianone is a promising lead compound for anticancer therapies due to its 

combined apoptotic, anti-angiogenesis, anti-invasion, and immune-regulating properties. 

The natural product was shown to have three direct molecular targets in this study, with 

more targets likely undiscovered. The multi-targeting nature of clusianone stands to 

provide a complementary treatment to emerging targeted oncology therapeutics, which 

suffer from limited efficacy when used alone as well as toxicities and acquired resistance. 

Additionally, clusianone may combine growth inhibitory and cytotoxic effects on cancer 

cells with a modulation of the tumor microenvironment to oppose the formation and 
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spread of cancer when used alone. In summary, clusianone may provide a robust and 

multipronged treatment for cancer, especially non-small cell lung cancer. 

4.6 FIGURES 

 

Figure 4.1: The structure of the polyprenylated acylphloroglucinol natural product, 
clusianone. 
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C) 

 
Figure 4.2: Waterfall plot of the A) GI50, B) TGI, and C) LC50 of clusianone for 60 cell lines 
as determined by the NCI-60 five dose screening assay. The tissue type of each cell line is 
denoted by color (Purple – Ovarian Cancer, Pale pink – Breast Cancer, Aqua – Prostate 
Cancer, Grey – CNS cancer, Gold – Renal Cancer, Bright Pink – Melanoma, Green – Colon 
Cancer, Blue – Non-small cell lung cancer, Red – Leukemia). The GI50, TGI, and LC50 was 
set to 100 µM if the true concentration was higher than what was tested in the five dose 
screen. 
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Figure 4.3: Percent growth of NCIH460 non-small cell lung cancer cells after 48 hours of 
treatment with clusianone in the NCI-60 panel. The NCI-60 panel is a sulforhodamine B 
based screening method of 60 immortalized cancer cell lines. The GI50, TGI, and LD50 
concentrations of clusianone for the NCIH460 cells were determined to be 2.6 µM, 6.2 
µM, and 35µM, respectively. 
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Figure 4.4: Cell cycle flow cytometry experiment showing the A) histogram of propidium 
iodide expression of NCIH460 cells after four different time points of treatment with 
either a vehicle control or clusianone. The histograms were divided into 4 regions 
representing the sub-G1, G1/G0, S, and G2/M phases of the cell cycle. The percentage of 
cells in the sub-G1, G1/G0, S, and G2/M regions is shown for both B) the cells treated with 
the vehicle control and C) the cells treated with 35 µM of clusianone. 
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Figure 4.5: Annexin V/propidium iodide expression of NCIH460 cells exposed to A) a 
vehicle control, B) 7.6 µM clusianone, C) 15 µM clusianone, D) 35 µM clusianone, or E) 61 
µM clusianone for 48 hours. The expression scatterplots were divided into four quadrants 
representing double negative cells, annexin V positive cells, propidium iodide positive 
cells, and double positive cells. Double negative cells were considered live cells, annexin 
V positive cells were considered early apoptotic cells, propidium iodide cells were 
considered necrotic, and double positive cells were considered late apoptotic cells. The 
divided histograms were used to express the percentage of cells that were live, early 
apoptotic, late apoptotic, or necrotic within each treatment group F). 
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Figure 4.6: Expression of apoptosis-related proteins in NCIH460 cells after treatment with 
clusianone as determined by electrophoresis followed by western blot analysis. Cells were 
treated with clusianone for 12 or 24 hours before loading 50 µg of isolated protein into 
each well.  
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Figure 4.7: Invasion of NCIH460 cells into a cell free gap created using a 2 well cell culture 
insert consisting of two wells that were separated by a wall. After the cells reached full 
confluency, the culture insert was removed and the cells were treated with either a 
vehicle control or clusianone for 24 hours. A) Representative images of each treatment 
group after 24 hours in addition to B) graphs depicting the % invasion of each treatment 
group after 6, 12, and 24 hours. All data are statistically presented as the mean ± standard 
error. Multiple t-tests were performed using Graph-Pad Prism 7.03 (La Jolla, CA, USA) to 
determine the significance between each experimental group. P values of less than 0.05 
were considered to be significant. (* denotes significant difference compared to the 
control group in the same time point.) 
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Figure 4.8: Tube formation between HUVEC endothelial cells after 8 hours of incubation 
on growth factor reduced BD MatrigelTM with or without clusianone. A representative 
image of the cells treated with the vehicle control, 0.2 µM, 2 µM, and 20 µM clusianone 
is shown in part A). The average number of junctions counted per field is graphed in part 
B). The viability of HUVEC cells after 8 hours of incubation with clusianone as determined 
by MTS assay is shown in part C). 
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Figure 4.9: The extent of tubulin polymerization when exposed to clusianone as 
determined by absorbance at 340 nm for 1 hour. A) The average absorbance of three 
repetitions of the tubulin polymerization assay treated with clusianone, paclitaxel, or a 
vehicle control, and B) the average calculated Vmax for each treatment group (* 
represents P ≤ 0.05 compared to the control, ** represents 0.05 ≤ P ≤ 0.01 compared to 
the control, and *** represents 0.01 ≤ P ≤ 0.001).  
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Figure 4.10: Inhibition of 135 tyrosine kinases treated with 20 µM of clusianone 
determine using the DiscoverX scanTK kinase panel. The panel uses an active site-directed 
competition assay, which does not require the use of ATP to assess kinase function. Data 
is presented as a percentage of function after treatment as compared to a vehicle control. 
A kinase with a remaining function of 30% or less is considered to be significantly 
inhibited. The significantly inhibited kinases, JAK3 and ALK(C1156Y), are highlighted. 
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Figure 4.11. Gene and cytokine expression of macrophages treated with clusianone. RNA 
expression of THP-1 M0 Macrophage was determined after 72 hours of treatment with 
clusianone for A) TNFα and B) IL-6 by quantitative real-time PCR. Gene expression was 
normalized to the housekeeping gene GAPDH and the control group, non-treated THP-1 
M0 macrophages (2-ΔΔC). Cytokine concentration in culture media was determined for 
C) TNFα and D) IL-6 by ELISA assay. P values of less than 0.05 were considered to be 
significant. (* denotes significant difference compared to the control group.) 
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CHAPTER 5 

SUMMARY 

Targeted cancer therapies are revolutionizing cancer treatment, but their full 

potential has not been realized due to the occurrence of treatment induced resistance, 

the limited number of patients they can treat, and the high cost often associated with 

them. Natural products may offer a safe, low cost solution to these problems in a number 

of ways. Biologically active natural products tend to influence multiple cellular pathways 

simultaneously, making them a source of compounds which can provide a multipronged 

attack on cancer cells. When combined with the treatment cocktails containing multiple 

targeted therapeutics and chemotherapeutics, natural products may be able to synergize 

with multiple components of the treatments in addition to interfering with other cancer 

related pathways, such as those responsible for resistance and metastasis. 

One way in which natural products may increase the efficacy of targeted cancer 

therapies and chemotherapeutics is by inhibiting the growth and function of a small 

population of cells called cancer stem cells. These cells have been suggested to be 

responsible for acquired drug resistance, metastasis, and tumor recurrence after 

remission. A collection of natural products including polyphenols, alkaloids, flavonoids, 

and others, have been shown to reduce cancer stem cell populations within tumors,
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reduce invasion and metastasis, and reduce the tumor initiating potential of isolated 

cancer cells. Many of these compounds have additionally been shown to target multiple 

cancer related cellular pathways from inducing cell cycle arrest and apoptosis to 

modulating inflammation. Using the lessons learned from the success of targeted 

therapeutics, natural products can be screened for their ability to influence combinations 

of cancer related pathways which will provide robust and effective treatment, especially 

when combined with currently used clinical treatments. 

In this study, two natural products were screened for their multi-targeted effect 

on cancer pathways. The first compound was the abietane diterpenoid, 

deacetylnemorone. This compound was found to reduce growth inhibition in a wide array 

of cancer types in addition to selectively inducing cell deal in SK-OV-3 melanoma cells at 

10 µM. The growth inhibitory properties of the compound were shown to be due, in at 

least part, to the ability of deacetylnemorone to delay progression of the cell cycle 

through the S and G2/M phases. Deacetylnemorone was also shown to increase the 

sensitivity of HCT 116/200 colorectal cancer cells to FdUrd, a chemotherapeutic agent 

which it had developed a resistance to. The compound was further shown to inhibit two 

pathways which lead to tumor growth and metastasis, namely invasion and angiogenesis, 

at concentrations as low as 0.3 µM. EMT inhibition was suggested from the invasion 

results by a reduced number of single cells found invading the cell free space. 

Deacetylnemorone’s ability to reduce treatment induced resistance and inhibit EMT may 

suggest that the compound is capable of targeting cancer stem cells.  
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The second compound investigated was clusianone. Clusianone was 

demonstrated to induce dose dependent growth inhibition and cell death in cancers 

across 8 solid tumor cell lines. The compound was investigated further in the context of 

lung cancer due to the sensitivity of lung cancer cell lines to the compound in addition to 

the exceedingly poor prognoses of lung cancer patients to this day. Specifically, 

clusianone was shown to induce G1/G0 arrest followed by apoptotic cell death in NCI-

H460 non-small cell lung cancer when used at 35 µM concentrations. Activation of the 

apoptotic cell death pathways was demonstrated using both Annexin V/propidium iodide 

expression flow cytometry and western blotting of caspases and PARP. At lower 

concentrations, from 0.2 to 20 µM, the multi-targeting compound was also shown to 

inhibit angiogenesis and invasion of NCI-H460 cells. For the first time, specific molecular 

targets of clusianone were also identified. The compound stabilized tubulin 

polymerization, similar to the chemotherapeutic paclitaxel, between 20 and 200 µM, 

potentially contributing to its growth inhibitory properties. Clusianone also significantly 

inhibited the function of the kinases ALK (C1156Y) and JAK3, suggesting the compound 

may target treatment resistant small-cell lung cancers as well as modulate the immune 

system. Indeed, immune modulating properties were demonstrated through the 

polarization of macrophages from an M2 to an M1 anticancer state, evidenced by an 

increased expression of TNF-𝛼 and IL-6, in response to exposure to the compound from 

0.2 to 20 µM. 

The results from this study have shown deacetylnemorone and clusianone to be 

compounds capable of influencing multiple cancer related pathways simultaneously, 
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including angiogenesis, immune regulation, invasion, cell growth, and apoptosis. Future 

studies will be necessary to fully determine the mechanism of action for each of these 

anticancer effects, in addition to screening of other cancer related pathways. More 

importantly, translation of these results to animal models of cancer will need to be 

performed. These in vivo experiments should include investigations of clusianone and 

deacetylnemorone used in combination with currently used targeted therapies and 

chemotherapeutics, to confirm their synergistic effects. By combining these compounds 

with currently used treatments, clusianone and deacetylnemorone may lower the hurdles 

of resistance to current therapies in addition to expanding the population of treatable 

patients. 
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APPENDIX A 

SUPPLEMENTARY TABLES AND FIGURES 

Table A.1: Primers used for quantitative real-time polymerase chain reaction. 

Gene 5’-3’ primer sequences: (F: forward R: reverse) 

TNFα 

F: CTG CTG CAC TTT GGA GTG AT 

R: AGA TGA TCT GAC TGC CTG GG 

IL-6 

F: AGC CAC TCA CCT CTT CAG AAC 

R: GCC TCT TTG CTG CTT TCA CAC 

GAPDH 

F: GTG GAC CTG ACC TGC CGT CT 

F: GGA GGA GTG GGT GTC GCT GT 
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Table A.2: Percent growth of the 60 cell lines examined in the NCI-60 five dose screening 
method. The cancer cell lines are organized by tissue type. 
 
 
 

Leukemia (% Growth) 

CCRF-CEM 103 102 103 
 

-7 

HL-60(TB) 94 94 95 -43 -38 

K-562 98 91 96 10 15 

MOLT-4 95 96 89 -4 -1 

RPMI-8226 96 101 90 -33 -34 

SR 94 99 100 5 1 

Concentration 
(logM) 

-8.0 -7.0 -6.0 -5.0 -4.0 

 

Non-Small Cell Lung Cancer (% Growth) 

A549/ATCC 96 103 101 6 -70 

EKVX 87 90 85 -7 -34 

HOP-62 92 95 96 -10 -44 

HOP-92 98 102 89 -29 -57 

NCI-H226 98 104 96 -12 -44 

NCI-H23 96 95 92 -5 -36 

NCI-H322M 96 94 94 -10 -57 

NCI-H460 107 110 103 -28 -69 

NCI-H522 93 86 81 -12 -21 

Concentration 
(logM) 

-8.0 -7.0 -6.0 -5.0 -4.0 

 

Colon Cancer (% Growth) 

COLO 205 97 98 94 -22 -42 

HCC-2998 94 103 97 -26 -73 

HCT-116 92 94 87 -44 -71 

HCT-15 94 97 90 1 -64 

HT29 98 97 97 -7 -51 

KM12 100 101 99 4 -40 

SW-620 106 106 104 12 -41 

Concentration 
(logM) 

-8.0 -7.0 -6.0 -5.0 -4.0 
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CNS Cancer (% Growth) 

SF-268 97 95 94 -29 -75 

SF-295 85 91 89 -39 -51 

SF-539 88 93 99 -38 -80 

SNB-19 98 104 100 3 -20 

SNB-75 72 79 75 3 -48 

U251 106 104 102 2 -54 

Concentration 
(logM) 

-8.0 -7.0 -6.0 -5.0 -4.0 

 

Melanoma (% Growth) 

LOX IMVI 95 96 96 -22 -55 

MALME-3M 89 95 83 -47 -79 

M14 90 95 90 -23 -67 

MDA-MB-435 92 96 95 -5 -70 

SK-MEL-2 93 92 82 -23 -38 

SK-MEL-28 90 95 92 -21 -80 

SK-MEL-5 94 96 85 -86 -92 

UACC-257 100 108 102 -14 -32 

UACC-62 96 96 85 -57 -73 

Concentration 
(logM) 

-8.0 -7.0 -6.0 -5.0 -4.0 

 

Ovarian Cancer (% Growth) 

IGROV1 102 98 97 6 -33 

OVCAR-3 103 100 97 -22 -70 

OVCAR-4 89 99 80 -9 5 

OVCAR-5 88 91 87 10 -37 

OVCAR-8 107 106 106 1 -8 

NCI/ADR-RES 100 99 99 2 -31 

SK-OV-3 95 100 99 -11 -8 

Concentration 
(logM) 

-8.0 -7.0 -6.0 -5.0 -4.0 
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Renal Cancer (% Growth) 

786-0 86 93 83 -33 -38 

A498 100 103 98 -60 -51 

ACHN 93 99 93 1 -13 

CAKI-1 88 93 92 3 -37 

RXF 393 101 101 97 -35 -77 

SN12C 101 99 96 2 -31 

TK-10 92 88 93 5 -21 

UO-31 88 88 85 -1 -18 

Concentration 
(logM) 

-8.0 -7.0 -6.0 -5.0 -4.0 

 

Prostate Cancer (% Growth) 

PC-3 93 94 88 -6 -60 

DU-145 100 100 97 -12 -57 

Concentration 
(logM) 

-8.0 -7.0 -6.0 -5.0 -4.0 

 

Breast Cancer (% Growth) 

MCF7 86 88 88 1 -11 

MDA-MB-231/ATCC 102 110 103 -9 -42 

HS 578T 101 106 105 -3 -18 

BT-549 94 100 88 -64 -80 

T-47D 79 89 85 -8 -14 

MDA-MB-468 99 100 96 -21 -44 

Concentration 
(logM) 

-8.0 -7.0 -6.0 -5.0 -4.0 
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A) 

 
B) 
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C) 

 
 
D) 
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E) 

 
 
 
Figure A.1: The A) 1H-NMR, B) 13C-NMR, C) H-H COSY, D.) HSQC, and E) HMBC spectra of 
the abietane diterpenoid, deacetylnemorone (in DMSO-d6). 
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A) 

 
B) 

 
 
Figure A.2: The A) negative ion mode time of flight-mass spectrometry and B) negative 
mode HR-MS spectra of deacetylnemorone used to determine molecular weight. 
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Figure A.3: Viability of SK-MEL-5 cells after 6, 12, or 24 hours of incubation with 
deacetylnemorone. The cells were seeded in 2 well culture inserts within 12 well culture 
plates and allowed to reach confluency before being treated with deacetylnemorone. 
Viability was determine by manually counting cells excluding trypan blue using a 
hemocytometer. (Note no data was collected for the 30µM concentration at 24 hours). 
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A) 

 
B) 
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C) 

 
D) 
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E) 

 
 

 
Figure A.4: The A) 1H-NMR spectrum, B) 13C-NMR spectrum, C) H-H COSY spectrum, D) 
HSQC spectrum, and E) HMBC spectrum of clusianone in DMSO. 
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Figure A.5: Time of flight mass spectrum determination of molecular weight for 
clusianone. 
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Figure A.6: Cell viability and invasion of macrophages in response to incubation with 
clusianone. The effect clusianone on A) the viability of THP-1 macrophages, as determined 
by the MTS assay, after 72 hours of exposure to a vehicle control or 0.2, 2, or 20 µM of 
clusianone, and B) the percent wound closure of THP-1 macrophages into a cell-free gap 
after 24-hour exposure to a vehicle control or 0.2, 2, or 20 µM of clusianone are shown. 
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APPENDIX B 

PERMISSION TO REPRINT 

The following screenshot from the website for American Journal of Cancer Research is 

provided for proof of permission to reprint “The use of natural products to target cancer 

stem cells” as a chapter of this thesis. 
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