
University of South Carolina University of South Carolina

Scholar Commons Scholar Commons

Theses and Dissertations

Spring 2019

Randomization Analysis Driven Software Randomization Analysis Driven Software

Steph-Yves Louis

Follow this and additional works at: https://scholarcommons.sc.edu/etd

 Part of the Biostatistics Commons

Recommended Citation Recommended Citation
Louis, S.(2019). Randomization Analysis Driven Software. (Master's thesis). Retrieved from
https://scholarcommons.sc.edu/etd/5116

This Open Access Thesis is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of Scholar Commons. For more information, please contact
digres@mailbox.sc.edu.

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/etd
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F5116&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/210?utm_source=scholarcommons.sc.edu%2Fetd%2F5116&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/5116?utm_source=scholarcommons.sc.edu%2Fetd%2F5116&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digres@mailbox.sc.edu

RANDOMIZATION ANALYSIS DRIVEN SOFTWARE

by

Steph-Yves Louis

Bachelor of Science

Belmont Abbey College, 2015

Submitted in Partial Fulfillment of the Requirements

For the Degree of Master of Science in Public Health in

Biostatistics

The Norman J. Arnold School of Public Health

University of South Carolina

2019

Accepted by:

James Hardin, Director of Thesis

James Hussey, Reader

Robert Moran, Reader

Cheryl L. Addy, Vice Provost and Dean of the Graduate School

ii

© Copyright by Steph-Yves Louis, 2019

All Rights Reserved.

iii

ACKNOWLEDGEMENTS

 I would like to thank my God Yahweh and Savior Jesus-Christ for their merciful

grace during my studies and throughout this project. It is my hope that they find joy and

take glory in the accomplished work that I hereby dedicate to them. Indeed, neither the

work nor the completion of this project would have been possible without the two of

them. Again, thank you!

I would like to thank Dr. James Hardin who stood as the best mentor I could have

obtained for my thesis. I thank him for his guidance, support, and recommendations.

Particularly, I am mostly grateful for his continuous feedbacks and motivation to

combine my acquired knowledge in Biostatistics, sense of creativity, and love of coding

to obtain this finished piece of art. Additionally, I would like to also thank Dr. Hussey

and Dr. Moran for their advice, support, and suggestions so as to further improve the

quality of the resulting work. Thank you all for having agreed to be on my committee.

I would like to thank my family and former co-workers at S.C.T.C.S who have

encouraged me throughout this hard but rewarding journey. My beautiful wife Christina,

my mother Hermione, and my former mentors Dr. Frazier and Mrs. Maria especially

played a key role for they never stopped pushing me to finish the race! Finally, I would

like to thank my father Alain, Christian, Harnel, Doubea, Cameron, Jean-Luc, Dr.

Ortaglia, and Mrs. Jamie for either their prayers, feedbacks, or support. Even if you don’t

find your name mentioned, do not be offended, for if you made any contribution, thank

you!

iv

ABSTRACT

The application of a method of randomization for a clinical trial frequently

summarizes to using Simple Randomization. Even though the latter method provides

favorable characteristics, if the collected sample is not large enough, it still presents the

highest chance of imbalance both marginally in the treatment groups and locally in terms

of the covariates. Methods of Permuted Block Randomization, Urn Randomization,

Stratified Permuted Block Randomization, and Minimization represent popular

alternative methods that one should consider depending on the goal of the study. A

comparison of the previously mentioned methods is carried to evaluate their performance

with samples that are not considered large. Additional goals of our study are to also

assess the performance of our newly implemented methods of Minimizations based on

the performances of the established methods.

The found results show that the existing Minimization had the lowest imbalance

amongst the previously established methods. Our newly implemented methods of

Kolmogorov-Smirnov Minimization and Minimization with increasing Factor showed to

be superior to the already established methods when the objective is to randomize on

subjects’ variables. The found results also served the purpose of additional reference to

build a free software that any user may employ to appropriately randomize subjects.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iii

ABSTRACT ... iv

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

LIST OF ABBREVIATIONS .. ix

CHAPTER 1: INTRODUCTION ..1

CHAPTER 2: LITERATURE REVIEW ...5

2.1 SIMPLE RANDOMIZATION ..5

2.2 PERMUTED BLOCK RANDOMIZATION ..6

2.3 URN-DESIGN ...9

2.4 STRATIFIED PERMUTED BLOCK RANDOMIZATION...........................11

2.5 MINIMIZATION ...12

2.6 RANK MINIMIZATION ..14

CHAPTER 3: DESCRIPTION OF METHODS ..17

3.1 STRONG PATTERN...17

3.2 VARIABLES ...17

3.3 SIMULATION ...18

3.4 PERFORMANCE INDICATOR ...20

CHAPTER 4: NEW RANDOMIZATION PROCEDURES ...23

4.1 MINIMIZATION WITH INCREASING FACTOR23

vi

4.2 IMPORTANT DETAILS ON CUSTOM RANK-MINIMIZATION..............23

4.3 KOLMOGOROV-SMIRNOV MINIMIZATION ..24

CHAPTER 5: RESULTS ...26

5.1 PERFORMANCE ON DATA WITH STRONG PATTERN26

5.2 PERFORMANCE ON DATA WITH RANDOM PATTERN32

CHAPTER 6: SOFTWARE ...39

CHAPTER 7: DISCUSSION ...44

REFERENCES ..47

APPENDIX A. PYTHON CODES USED ..48

vii

LIST OF TABLES

Table 1.1: classification of the existing randomization ...3

Table 2.1: possible treatment assignment from simple randomization................................6

Table 2.2: possible treatment assignment from permuted block randomization9

Table 2.3: possible treatment assignment for stratified block randomization12

Table 3.1: illustration of strong pattern..17

Table 3.2: summary of enrollment for any given study ...20

Table 5.1: comparison of results for marginal imbalance ratio ...27

Table 5.2: comparison of results for imbalance ratio in binary covariate28

Table 5.3: comparison of results for imbalance ratio in 5-level covariate29

Table 5.4: comparison of results for imbalance ratio in continuous covariate30

Table 5.5: comparison of results for imbalance ratio in continuous covariate31

Table 5.6: comparison of results for marginal imbalance ratio ...33

Table 5.7: comparison of results for imbalance ratio in binary covariate34

Table 5.8: comparison of results for imbalance ratio in 5-level covariate35

Table 5.9: comparison of results for imbalance ratio in continuous covariate36

Table 5.10: comparison of results for imbalance ratio in continuous covariate37

viii

LIST OF FIGURES

Figure 2.1: illustration of 4 blocks with size 6...7

Figure 2.2: illustration of 5 blocks with random sizes ...8

Figure 2.3: illustration of an urn design with x and y fixed at 2 and 2 for 6 subjects10

Figure 2.4: summary of covariates information for 10 subjects ..13

Figure 2.5: calculation in the minimization process ..13

Figure 2.6: illustration of assignments, weights, and height for 7 subjects15

Figure 2.7: calculation in rank-minimization for 2 continuous covariates16

Figure 3.1: sample distribution of binary covariate for 1000 subjects19

Figure 3.2 sample distribution of 5-level covariate for 1000 subjects19

Figure 3.3: sample distribution of continuous covariate for 1000 subjects20

Figure 4.1: illustration of application for the KS-test ..25

Figure 6.1: illustration for the Homepage in RADS ..40

Figure 6.2: illustration of input details and descriptions in RADS40

Figure 6.3: illustration of additional options of data entry in RADS.................................41

Figure 6.4: illustration of randomization in RADS on 1-to-1 basis41

Figure 6.5: Illustration of subject randomizer in action ...42

Figure 6.6: illustration of randomization in RADS for pre-recorded information42

Figure 6.7: flowchart used for the backbone of RADS randomizer engine43

ix

LIST OF ABBREVIATIONS

I-MIN .. Minimization with Increasing Factor

KS-MIN .. Kolmogorov-Smirnov Minimization

MIN .. Minimization

PB ... Permuted Block Randomization

R-MIN ...Mixed Rank-Minimization

RCT ... Randomized Clinical Trial

SRA ... Simple Randomization

SPB .. Stratified Permuted Block Randomization

UD ... Urn Design

1

CHAPTER 1

INTRODUCTION

In many fields, especially in Public Health, the utilization of a randomization

method for the recruitment of subjects in a study is extremely important. Randomization

helps decreasing the chances of bias while also increasing the likelihood that each subject

will receive an equal chance of enrolling into any treatment group (Suresh, 2011). With

the use of an appropriate randomization method, one should expect the following effects:

better comparability among the treatment groups marginally, better comparability of the

treatment groups with respect to known and unknown covariates, and improved validity

for the statistical tests (Suresh, 2011).

There exist numerous procedures that one may apply to randomize subjects.

Depending on the aimed number of subjects to be collected and the importance of

balance, the randomization methods will differ with the consideration of their algorithms,

their benefits, and their disadvantages. Amongst the known randomization methods and

their implemented algorithms figure the simple or complete randomization (SRA), the

permuted block randomization (PB), the urn design (UD), the stratified permuted block

randomization (SPB), and the minimization (MIN) (Suresh, 2011).

The simplest and most popular randomization method is the simple randomization

(SRA). In general, its application simply resolves to using either a coin, or a dice, or any

simple computer generating sequence to randomly allocate subjects to treatment groups.

(Kim, 2014). Though easily implemented, the application of simple randomization

2

does not consider the information from prior assignments or covariates. Permuted block

Randomization (PB) describes another randomization method which consists of creating

boxes filled with randomly generated assignments. As in the simple randomization, the

permuted block randomization does not make any adjustments for the subjects’ variables

(Kim, 2014).

The urn design (UD) represents a restricted method of the simple randomization.

Due to its flexible properties, one may classify the former as an appropriate compromise

between the simple randomization and the permuted block randomization (JM, JP, & LJ,

1988). The stratified permuted block randomization (SPB) defines a well-known

procedure of randomization that is considered when one desires the randomization to also

affect the subjects’ variables. Though relatively simple, the application of the stratified

permuted block randomization leads to increasing inefficiency and complexity as the

number of variables increases. Lastly, minimization (MIN) is a widely studied and

implemented randomization method which considers all prior information to assign a

treatment to a new subject. Various recommendations can be found in the literature on

the use of the five previously mentioned randomization methods.

Neither the simple randomization nor the Urn Design randomization is

recommended when the sample is small (Dettori, 2010) (JM, JP, & LJ, 1988). With the

implementation of block randomization, one should adjust for the possibilities of

selection-bias and possible dissimilarity of the treatment groups with respect to the

covariates (Suresh, 2011). Given a study in which the investigator wants to also

randomize on the subjects’ variables, then one ought to consider applying stratified

permuted block randomization or minimization. However, one should limit the number of

3

variables and the levels contained within each variable before using the stratified

permuted block randomization. On the other hand, Pocock and Simon’s minimization

method is recommended for use in studies with especially small samples (Tu, Shalay, &

Pater, 2000).

 In Table 1.1, we classify the different randomization schemes based on their

attributes for being predictable, adaptive (use prior information), and adoptive of

variables information (use variables). Because the performances of the five

randomization methods have not been exhaustively investigated on their handling of

random data showing a strong defined pattern, we carry a simulation study and here forth

report the results obtained.

Table 1.1 Classification of the existing randomization

 SRA PB UD SPB MIN

Predictable Х ✓ Х Х Х

Adaptive Х Х ✓ X ✓

Uses

Variables

information

Х Х X ✓ ✓

We have also implemented two new methods based on the existing minimization

procedure. The first implemented method is called minimization with increasing factor (I-

MIN). The latter is obtained by slightly modifying the algorithm of the existing

minimization to make its constant random factor of 0.75 increase as the number of

enrolled subjects increases. The other implemented randomization method is called

Kolmogorov-Smirnov minimization (KS-MIN) which is obtained by incorporating a 2-

sample Kolmogorov-Smirnov test to also randomize covariates of continuous data.

4

The final goal of this study is to combine the recommendations found in the

literature and the results obtained from our project to create a user-friendly randomization

software. Named R.A.D.S. for Randomization Analysis Driven Software, this software

would request very little input information to provide the user a recommended method

that one can automatically use in that software. Made for both Windows and Mac, the

beta version of the software is available for download and usage.

5

CHAPTER 2

LITERATURE REVIEW

SRA, PB, UD, SPB, and MIN describe well-known randomization methods that

one may apply to randomize subjects. Depending on the objective of the investigator, the

goal of minimal imbalance may be negatively affected with the application of the

inappropriate procedure. For the sake of simplicity, the imbalance of the randomization

methods is only evaluated for 2 treatment groups. We hereby define imbalance as the

absolute value of the difference in number of subjects between the two groups. For the

number of subjects 𝑁 and the groups 𝐴 and 𝐵, the marginal imbalance 𝐼 can also be

formulated as:

 𝐼 = |𝑁𝐴 − 𝑁𝐵| (1)

Below we fully describe the five randomization methods on which we based our project.

2.1 Simple Randomization

Simple randomization stands as the most used randomization method because of

its attractive properties and simple implementation in practice. SRA provides 3 main

benefits: fully random outcome, very simple algorithm, and freedom to use any statistical

analysis on the resulting randomized data. Notably, SRA reduces to recording the results

of a fair coin toss to afterward assign a treatment according to that toss result (Hedden,

Woolson, & Malcom, 2006). Considering 10 sequential tosses of a fair coin to randomly

allocate 10 subjects in either group A or group B, resulting heads (H) could mean

6

allocations to group A while resulting tails (T) allocations to group B. A possible

sequence of coin toss results can be seen in Table 2.1.

As stated in the literature, the consideration of SRA also comes with the important

detriment of considerable imbalance when the sample collected is relatively small <100

(Kang, Ragan, & Park, 2008). Another disadvantage of SRA derives from the fact that it

cannot use any of the subjects’ information to do its randomization. For instance, in a

sample of 50 subjects, a plausible effect of applying this randomization scheme could be

that only 9 subjects are assigned in group A while 41 subjects to group B. In this

scenario, the calculation for the marginal imbalance |41 − 9|, results to 32.

Table 2.1. Possible treatment assignment from simple randomization

 S
u
b
j.

 1

S
u
b
j.

 2

S
u
b
j.

 3

S
u
b
j.

 4

S
u
b
j.

 5

S
u
b
j.

 6

S
u
b
j.

 7

S
u
b
j.

 8

S
u
b
j.

 9

S
u
b
j.

 1
0

Fair-Coin Toss

Result

H H H H T T T H T H

Corresponding

Allocation

A A A A B B B A B A

2.2 Permuted Block Randomization

Permuted block randomization defines a popular procedure that generally

prevents the issue of considerable imbalance which results from SRA. Additionally, the

implementation of its simple algorithm in practice further contributes to making this

method appear more favorable than SRA.

To implement the method of PB in a study, one first selects an appropriate block

size, a multiple of the treatment number, that will dictate how many treatments that a

7

single block may contain. In the literature, it is advised to opt for smaller block sizes

because the risks of imbalance are much higher with the use larger blocks (JM, JP, & LJ,

1988). For instance, if one considers a study with only 2 possible treatments, smaller

block sizes could include 4, 6, or 8 while large block sizes could describe 16 or 24.

Afterwards, the process resolves to randomly filling each block with an equal number of

each treatment type. The former step may be repeated as often as needed, as

demonstrated in Figure 2.1, to enroll the right number of subjects in a study.

Figure 2.1. Illustration of 4 blocks with size 6

The PB method requires that the blocks are made prior to the subjects’ enrollment

in the study. Hence, as subjects enroll, each will receive the assignment matching one’s

order of enrollment. Considering a scenario of a two-armed randomized clinical trial

(RCT) in Figure 2.1, with groups A and B and the block size fixed at 6, the random

allocation to group B would be given to the 9th enrolled subject, A for the 10th, B for the

11th, etc.

The first downside of PB describes the fact that it does not utilize any of the

subjects’ information to provide treatment allocations. In addition to ignoring subjects’

data, PB also presents the drawback of high predictability for the last assignment when a

8

constant block size is known. As a result, the latter disadvantage introduces the risks of

selection bias into the study (Efird, 2011).

Again referring to the study in Figure 2.1, if treatments A, B, A, B, and A, from

block #4, had already been assigned, then one can determine that the next assignment of

B would be allocated to the following subject (Tu, Shalay, & Pater, 2000). Possible

solutions to the problem of high predictability involve either the usage of random block

sizes as seen in Figure 2.2 or the usage of larger block sizes. While the application of

random or larger block sizes makes it harder to accurately determine correctly determine

the next assignment, larger blocks present the disadvantage of increasing the risks of

marginal imbalance. Nevertheless, the risks of imbalance in terms of the covariates

remain regardless of which type of PB is applied.

Figure 2.2. Illustration of 5 blocks with random sizes

For instance, we assume that males (M) and females (F) get enrolled in a two-

armed RCT, with set block size of 6. At the end of the 11th subject’s enrollment, a

probable sequence of the subjects’ gender along with the treatment is given below in

Table 2.2. Even though the marginal imbalance of the treatments is kept to a minimum,

𝐼 = |6 − 5| = 1 , one may observe the resulting non-comparability of the treatments with

9

respect to the covariate of gender. Notably, the only 2 females in the sample are enrolled

in group B and one also notices that there are twice as much males in group A than there

are treatment B.

Table 2.2. Possible treatment assignment from permuted block randomization

 S
u
b
j.

 1

S
u
b
j.

 2

S
u
b
j.

 3

S
u
b
j.

 4

S
u
b
j.

 5

S
u
b
j.

 6

S
u
b
j.

 7

S
u
b
j.

 8

S
u
b
j.

 9

S
u
b
j.

 1
0

S
u
b
j.

 1
1

Gender M M M F F M M M M M M

Treatment

Assignment

A A A B B B A A B A B

2.3 Urn Design

Considered as the most studied method of randomization from the Bias-Coin

Randomization class, UD involves a procedure that provides more flexibility on ways to

influence the outcome of balance for the two branches of the R.C.T. study (Wei &

Lachin, 1988). The literature frequently refers to Friedman’s urn model to describe this

randomization scheme (Wei & Lachin, 1988). Simply put, the algorithm of UD consists

of selecting two numbers 𝑋 and 𝑌 and then use them in the following manner.

An equal number of balls of each type is initially placed into an urn from which

selections will occur. For our given scenario, we pick two types of balls (blue and purple:

one corresponding to each treatment group). Hence, the urn will contain 𝑋 blue balls and

𝑋 purple balls. Specifically, we assign a selection of a blue ball (B) to the allocation to

group A while the selection of a purple ball (P) to the allocation to group B. With the

random selection of a ball with replacement, the corresponding subject is allocated to the

10

appropriate treatment, and then 𝑌 balls of the opposite type are added into the urn. This

method of randomization is referred to as 𝑈𝐷(𝑋, 𝑌).

The choice 𝑋 dictates how similarly the urn design should behave compared to

complete randomization during the early stages of enrollment. On the other hand, the

choice of 𝑌 dictates how the algorithm preserves balance (Wei & Lachin, 1988). Unless

𝑌 equals to 0, the probability of enrollment into any group will vary and it will be higher

for the treatment group with the smaller number. In Figure 2.3, we illustrate an example

of implementing the urn design for 6 subjects using 𝑈𝐷(2,2).

Before the enrollment of the first subject, there are 2 blue and 2 purple balls inside

the urn. Once the first subject gets enrollment into the RCT study, a random Purple ball is

picked and placed back in the urn, an allocation for group B is given to the subject, and

then two blue balls are added into urn. This process increases the chances of the next

subject to get allocated to treatment B from 50% to 67%. The same algorithm applies to

randomly allocate a treatment group to each subsequent subject. It is recommended to use

the urn design when the aim of marginal balance is wanted, yet not warrantied (JM, JP, &

LJ, 1988).

Figure 2.3 Illustration of an urn design with x and y fixed at 2 and 2 for 6 subjects

11

2.4 Stratified Permuted Block Randomization

The method of stratified block randomization is analogous to the block

randomization in the aspect that it uses assignment blocks of a pre-determined size

(Suresh, 2011). The main difference between PB and SPB is that the latter adjusts for use

of covariates. Besides the selection of block sizes, one must also identify the covariates of

interest that one desires to incorporate in the study. The next step requires the

combination of the covariates of interest, which would create all the strata by which the

randomization will occur.

Considering the same RCT study described in the methods above, one could use

the stratified randomization to make the randomization use the information for the

designated covariates. To explain this method, we decide to use 2 binary covariates:

gender (Male and Female) and diabetes (yes: if someone suffers from it and no:

otherwise). Hence, the combination of the binary variables of sex and diabetes result in

the four following strata: Male & Diabetes, Male & No-Diabetes, Female & Diabetes,

and Female & No-Diabetes; each stratum contains the same block size set at 6. For each

one of the strata, we then create many blocks containing an equal number of allocations.

Table 2.3. below provides an illustration of the blocks within each stratum.

Once the strata are generated, subjects subsequently enroll into the study, they are

first matched into a stratum and then, they get assigned the treatment group that

corresponds to the order of their enrollment within that stratum. Notably, the method of

stratified randomization reduces to applying PB inside each stratum. The disadvantage of

this method is that it cannot accommodate a large number of strata; in fact, one should

12

limit the number of strata to a maximum of 𝑁/𝐵 where 𝑁 is total sample size and 𝐵 the

designated block size (Tu, Shalay, & Pater, 2000).

Table 2.3. Possible treatment assignment for stratified block randomization

Strata Block 1 Block 2 Block 3 Block 4 Block 5 …

Male &

Diabetes

BABABA AAABBB BABABA BAABBA … …

Male &

No-

Diabetes

BBABAA ABABBA ABBBAA ABBAAB … …

Female &

Diabetes

BABBAA BABBAA BABAAB BAABAB … …

Female &

No-

Diabetes

BBBAAA BBBAAA BABABA ABBBAA … …

2.5 Minimization

First developed by Taves in 1974, Pocock and Simon later generalized this

randomization method by modifying its algorithm (Tu, Shalay, & Pater, 2000). Only

Pocock’s and Simon’s minimization are used in our project. The procedure can be

explained in the following manner. Assume, for a given study, that we decide to collect

the subjects’ information on Race (3 levels), Gender (2 levels), and disease (2 levels).

We may further assume that the goal is to randomly allocate a treatment to a new subject

who is a Male, Black, with no-disease. Figure 2.4. displays the summarized information

of the first 10 subjects already allocated in the hypothetical study.

The process involves the consideration of separately assigning the new subject

group A and B, calculating an imbalance score by each variable, calculating a total

imbalance score, and then finally assign the group that has the smallest imbalance, with

13

respect to a randomly generated probability. In Figure 2.5., we provide an illustration of

the calculation in MIN to determine the next treatment.

Figure 2.4 Summary of covariates information for 10 subjects

Figure 2.5 Calculation in the minimization process

The first step requires the imbalance measure for each covariate assuming that the

subject is assigned to a particular group. Once all the local imbalance scores are

calculated, they are subsequently summed to obtain a total imbalance which leads to the

14

comparison of those total imbalances (for both group A and B). If the total imbalances

are different, the group that presents the smallest total imbalance is preferred. Lastly, a

random value 𝑃 from a Uniform distribution (0, 1) gets generated for the new subject.

The aforementioned 𝑃 is then compared to a fixed probability 𝑃∗ , ranging from 0

to 1, that should be set by the investigator before the study begins. In our scenario, we set

𝑃∗ at 0.75, the lowest recommended value by the literature (Pocock & Simon, 1975).

Henceforth, the new subject gets assigned to either group A or group B based on the

following criteria:

a) If 𝑃 ≤ 𝑃∗, then finally assign the preferred group to the subject

b) Else, do a coin-toss to randomly assign either group A or group B to the subject.

Assuming that the randomly generated 𝑃 equals 0.63, applying MIN leads to the

assignment of group B for the 11th subject. While this method appears favorable, its

algorithm presents the downfall that one must categorize all continuous data. An existing

alternative to this issue is the method of method of R-MIN which is briefly described

below.

2.6 Rank Minimization

The rank-minimization represents a set of simple calculations to carry to avoid the

required step of discretization for numerical data. Thanks to its simplicity and allowance

of more variability within the data, the algorithm for the rank-minimization is preferred to

minimization when dealing with continuous data (Stigsby & Taves, 2010). In our project,

we slightly modify the algorithm of the rank-minimization to accommodate both

categorical and continuous data. In Figure 2.6., we provide a sample of continuous

15

variables that we should use to explain the use of Rank Minimization to allocate a

treatment to the 7th subject enrolling in a study.

Given a new subject with a weight of 145 lbs. and height of 61.2 in., the rank

minimization involves the calculations of an imbalance score based on the rank-sums.

Similarly to the method of minimization, the first step of the algorithm requires the

consideration of two independent scenarios corresponding to an allocation to group A and

another to group B. Figure 2.7. illustrates the calculation of the imbalance for each

scenario.

Figure 2.6 Illustration of assignments, weights, and height for 7 subjects

In both of the assignment considerations, one must rank all of the numerical

values, including the new subject’s covariates. The new subject’s weight of 145 lbs. and

height of 61.2 in. correspond to ranks of 3 and 4. The next step involves summing the

ranks for each covariate by group assignment.

For instance, considering the assignment to group A, the sum of ranks of weight

for group A is 20 and group B is 8. The sum of ranks of height for group A is also 20

while the one for group B is 8. On the other hand, the sum of the ranks when considering

16

group B are 17 and 11 for weight, and 16 and 12 for height. The subsequent steps involve

the calculation of the average of the sum of the ranks, the calculation of the deviation

from the mean for the sums of ranks, the squaring of the latter numbers, and finally the

summation of the squared deviations within each group assignment consideration. Since

the resulting imbalance scores for group A and B are 144 and 26, group B would be

preferred. Even though the rank-minimization method presents the benefits of allowing

the investigator to randomize continuous data without discretization, its calculations

become more complex as more patients enroll.

Figure 2.7 Calculation in Rank Minimization

17

CHAPTER 3

DESCRIPTION OF METHODS

3.1 Strong Pattern

The first goal of this project is to investigate the performance on the 5

randomization methods of SRA, PB, SPB, UD, and MIN in the presence of data with a

strong pattern. Our term of strong pattern defines an apparent pattern in the subjects’

covariates that is observed throughout the enrollment process. An example of a strong

pattern is illustrated in Table 3.1. For instance, an example of a strong pattern in the

enrollment of 250 subjects for a given study could define the repetitive enrollment of

approximately 6 females for every male. Though very hypothetical, an investigator may

indeed have to deal with a similar case in the real practice.

Table 3.1 Illustration of strong pattern

S
u
b
j.

 1

S
u
b
j.

 2

S
u
b
j.

 3

S
u
b
j.

 4

S
u
b
j.

 5

S
u
b
j.

 6

S
u
b
j.

 7

S
u
b
j.

 8

S
u
b
j.

 9

S
u
b
j.

 1
0

…

Sequence F F F F F F M F F F …

3.2 Variables

To carry our investigation, we use methods that are comparable to the ones found

in the literature (Stigsby & Taves, 2010). Our benchmark of good performance is defined

18

as the perfect balance amongst treatment groups, both marginally and with respect to the

covariates. For simplicity, the performances of the randomization methods are only

evaluated for 2 treatment groups for the sample sizes of 25, 50, 105, 150, and 215. The

choice of our designed sample sizes corresponds accordingly to the types of sample sizes

described in the literature as small, moderate, and large (small [25, 50]; moderate [105,

150]; and large [215]). Additionally, the 3 variables used for our research describe a

binary variable, a categorical variable of 5-levels, and a continuous variable (JM, JP, &

LJ, 1988).

For the data with a strong pattern: the binary variable was generated so that the

weights of 0.75 and 0.25 be given randomly to the two levels. The variable with 5 levels

had weights of 0.1, 0.15, 0.45, 0.25, and 0.05 also randomly given to the different values.

Lastly, we generated the continuous variable from a skewed-normal distribution

(skewness of 0.632, mean of 50, and standard deviation of 5.5). Additionally, the latter

was also discretized into a categorical variable of 4 levels corresponding to the quartiles

of the generated sample.

For the data with a truly random pattern: neither the binary nor the 5-level

categorical variables were given weights. We also generated the continuous variable from

a normal distribution (mean of 50, and standard deviation of 5.5) which was likewise

discretized into 4 levels according to the quartiles of the sample.

3.3 Simulation

We used the general-purpose programming language of Python. All the python

modules created for this study are written in Python 3.x and the codes used can be found

19

below in Appendix A. Our results can be reproduced by using the Random module seed

of 10621 and the Numpy module seed of 1921. Once we prepared our program, we

carried each simulation 1000 times. For each simulation run, we recorded the marginal

imbalance score for the groups and for the 3 covariates. We applied the same procedure

on our randomly generated data that were not forced to show patterns.

In the three figures below: Figure 3.1, Figure 3.2, and Figure 3.3, we provide an

illustration of 1 sample of 1000 observations for the binary variable, the 5-level

categorical variable, and the continuous variable.

Figure 3.1 Sample distribution of binary covariate for 1000 subjects

Figure 3.2 Sample distribution of 5-level covariate for 1000 subjects

20

Figure 3.3 sample distribution of continuous covariate for 1000 subjects

3.4 Performance Indicator

Throughout our study, we employ the simple mathematical method of the range to

obtain the groups marginal imbalance and the imbalance scores for the covariates

(Pocock & Simon, 1975). We may consider a simple study for which the information on

gender, disease, and race of 501 enrolled subjects are collected and listed below in Table

3.2. For this example, we do not make any consideration on the particular method of

randomization that was employed.

Table 3.2 Summary of enrollment for any given study

 Gender Disease Race Total

Male Female Yes No Black Other White

Group A 105 140 49 196 60 90 95 245

Group B 115 141 51 205 60 80 116 256

Total 220 281 100 401 120 170 211 501

 We calculate the imbalance for the groups by taking the absolute value of the

difference between the numbers in each group: 𝑅𝑔𝑟𝑜𝑢𝑝 = |𝑁𝑎 − 𝑁𝑏| = |245 − 256| =

21

11; 𝑁𝑎 & 𝑁𝑏 the numbers in each assignment group and 𝑅𝑔𝑟𝑜𝑢𝑝 is the group range. The

same concept also applies for each level within a given covariate. The range measure for

Males is given by 𝑟𝑚𝑎𝑙𝑒𝑠 = |𝑁𝑚𝑎𝑙𝑒𝑠,𝑎 − 𝑁𝑚𝑎𝑙𝑒𝑠,𝑏| = |105 − 115| = 10 ; 𝑟𝑚𝑎𝑙𝑒𝑠 is the

range of males in the sex covariate. The range of non-diseased subjects is evaluated as:

 𝑟𝑛𝑜𝑑𝑖𝑠𝑒𝑎𝑠𝑒 = |𝑁𝑛𝑜𝑑𝑖𝑠𝑒𝑎𝑠𝑒,𝑎 − 𝑁𝑛𝑜𝑑𝑖𝑠𝑒𝑎𝑠𝑒,𝑏| = |196 − 205| = 9. Once we measure the

range of each level within a covariate, we then sum all of its ranges. This overall measure

is obtained by applying the summation below:

 ∑ 𝑟𝑖
𝑘
𝑖=1 (2)

where 𝑟 is the range of a level within a covariate and 𝑖: 1,2, … , 𝑘 are the different levels.

Thus, the total group imbalance is the range of the groups and the imbalance for a given

covariate is the sum of the ranges for each one of its level.

In our given example, the total imbalance for the groups is given as 𝐼𝑔𝑟𝑜𝑢𝑝 = 11;

𝐼 is the imbalance measure. The imbalance for gender is measured as: 𝐼𝑔𝑒𝑛𝑑𝑒𝑟 =

|105 − 115| + |140 − 141| = 10 + 1 = 11. The imbalance for disease is: 𝐼𝑑𝑖𝑠𝑒𝑎𝑠𝑒 =

|49 − 51| + |196 − 205| = 2 + 9 = 11. Last, we get the race imbalance as: 𝐼𝑟𝑎𝑐𝑒 =

|60 − 60| + |90 − 80| + |95 − 116| = 0 + 10 + 21 = 31.

In our study, we further scale these imbalance scores as a ratio by dividing them

by the total number of subjects in the study: 𝐷 =
𝐼

𝑁
; 𝐼 is the imbalance and 𝑁 is the total

number of subjects. Hence, the marginal imbalance ratio for the groups is given as 𝐷 =

|256−245|

501
=

11

501
. The imbalance ratio for gender is:

𝐷𝑔𝑒𝑛𝑑𝑒𝑟 =
|105−115|+|140−141|

501
=

11

501
. The imbalance ratio for disease is:

𝐷𝑑𝑖𝑠𝑒𝑎𝑠𝑒 =
|49−51|+|196−205|

501
=

11

501
. The imbalance ratio for race is:

𝐷𝑔𝑒𝑛𝑑𝑒𝑟 =
|60−60|+|90−80|+|95−116|

501
=

31

501
.

To measure the imbalance of the numerical covariate, we performed a 2-Sample

Kolmogorov Smirnov test on the sample obtained for group 0 and for group 1, and then

22

used 1 – 𝑝. 𝑣𝑎𝑙𝑢𝑒 as indicator of the dissimilarity. Assuming that a given covariate of

weight listed values of 101.41, 95.7, 110 for group 0 and values of 116.12, 103.5, 73.4,

85.8, 106 for group 1; then doing a Kolmogorov Smirnov test would yield a p-value of

0.8254. Hence, an imbalance ratio between the groups 0 and 1, in terms of weight is:

𝐷𝑤𝑒𝑖𝑔ℎ𝑡 = 1 − 0.8254 = 0.1746.

23

CHAPTER 4

NEW RANDOMIZATION PROCEDURES

4.1 Minimization with Increasing Factor

In the literature, it is recommended to set the value of 𝑃∗, as seen in the existing

minimization method, between 0.75 and 1.00; implying that the algorithm behaves more

deterministically as that value increases. Our custom version of Pocock and Simon’s

minimization differs from the original in the fact that we allow our value of 𝑃∗ to keep

increasing as the number of patients who enroll in the study approaches a fixed number

𝑁∗ that one sets prior to the enrollment of the first patient. For this altered version of

minimization, we initially set 𝑃∗ at 0.75 and then at each subject’s enrollment

𝑃∗ increases by either 0 or by
3

4×𝑁∗ . In other words, after each new patient’s allocation to

either group A or group B, 𝑃∗ may only randomly increase by
0.25

𝑁∗ . Notably, this method

is nearly identical to earlier minimization’s scheme.

4.2 Important Details on Custom Rank-Minimization

For our custom Rank minimization (R-MIN), we combine the regular

minimization and the rank minimization. At the enrollment of a new subject, we calculate

the imbalance scores for the binary covariate and the 5-level covariate through the

minimization algorithm and the imbalance scores for the continuous covariate via the

24

rank minimization algorithm. To aggregate a single imbalance score for our mixed

minimization, we summed the imbalance scores of the binary covariate (𝐼1), the score of

the 5-level categorical covariate (𝐼2), and the log for the sum of the score of the

continuous covariate and
1

10
 (𝐼3 + 0.1). Here, the addition of 0.1 𝑜𝑟

1

10
 to the imbalance

score of 𝐼3 avoids taking the log of 0. Hence, the total imbalance for a given group

allocation equals to

 𝐼1 + 𝐼2 + log (𝐼3 + 0.1) (3)

To allocate a random group, we apply the same criteria that were explained in the

minimization algorithm.

4.3 Kolmogorov-Smirnov Minimization

The Kolmogorov-Smirnov Minimization (KS-MIN) test is almost identical to R-

MIN. The only difference between the two methods is that in the latter, we use a 2-

sample Kolmogorov-Smirnov test on the continuous variable (ENGMANN &

COUSINEAU). The 2-sample KS test is a non-parametric test for continuous data that

can may be used for two samples. Notably, the KS test assesses whether two independent

samples come from the same distribution. Referring to the same 7 subjects in Figure 2.7,

we explain our methodology on the application of the KS test for the covariate of height

in the Figure 4.1. below.

KS-MIN requires that the KS-test be applied on both sides, the imbalance scores

are then measured by subtracting the obtained p-values from 1. To obtain a single

imbalance score, we combine the imbalance scores of the categorical covariates and the

25

exponentiated imbalance score for the continuous variable. Contrasting the scenario of

our custom R-MIN above, a total imbalance for a given group allocation would equal to

 𝐼1 + 𝐼2 + exp (𝐼3) (4)

Beyond this point, the same steps that are stated above in our implemented R-MIN apply.

Figure 4.1 Illustration of application for the KS-test

26

CHAPTER 5

RESULTS

Below we provide the results from our simulation study, in which we evaluate the

performances of the randomization methods of simple randomization, block

randomization, stratified block randomization, bias-coin randomization, and the original

minimization. Furthermore, we also compare our new minimization with increasing

random factor and mixed Kolmogorov-Smirnov minimization to the performances of

minimization and mixed rank-minimization. We present the results in two sections: a) for

data forced to follow a pattern and b) data following any random pattern.

Furthermore, we also use the following notations to identify the randomization methods

studied as 1 of 3 types:

▪ Method that does not take covariates into account (*)

▪ Method that only takes discretized covariates into account (+)

▪ Method that takes both categorical and continuous covariates (x)

In the following tables, we list the results obtained for our simulation study

considering small samples (25 and 50), moderately small sample sizes (105 and 150), and

a large sample size of 215.

5.1 Performance on Data with Strong Pattern

Table 5.1 lists the results of the different methods considered in our simulation for

the imbalance ratio, between group 0 and group 1, without taking any covariates into

consideration. Table 5.2 and 5.3 present the imbalance ratio between group 0 and group 1

27

for the two categorical covariates (binary and 5-level), while Tables 5.4 and 5.5 list the

imbalance for the continuous covariate. In general, when only considering marginal

imbalance, the application of any Permuted Block Randomization method returned the

smallest results amongst all the methods across all sample sizes. The Minimization

procedures come in second with very similar results. The subsequent methods in order of

performance are Urn Randomization, Stratified Permuted Block Randomization, and then

Simple Randomization. As the sample sizes increase, one notices that the marginal

imbalance ratio decreases for all considered methods. In fact, the choice of a

randomization method beyond a sample size of 150 becomes less important since the

difference in imbalance ratio for different methods becomes negligible (see Table 5.1).

In Table 5.2 and Table 5.3, the imbalance for the categorical covariates are listed.

The Minimization Methods considerably outperformed the other randomization

procedures. Similarly to the marginal imbalance ratios, the imbalance ratios for the

categorical covariates also decrease as the sample sizes increase.

In Table 5.4 and Table 5.5, the imbalance ratio for the continuous covariate are

listed. Particularly, in Table 5.4, the values were discretized into 4 quartiles

(discretized)*, while in Table 5.5 the values were left as numerical. Except for the

Kolmogorov Smirnov Randomization, none of the other randomization algorithms

returned improved scores. The Kolmogorov Smirnov outperformed all the other methods

and showed decreasing scores as size increased.

Table 5.1. Comparison of results for marginal imbalance ratio

 Method of Randomization Ratio

for size

25

Ratio

for size

50

Ratio

for size

105

Ratio

for size

150

Ratio

for size

215

28

* Block Randomization of size: 4 4.00% 1.28% 0.95% 0.46% 0.47%

* Block Randomization of size: 6 4.00% 1.52% 1.12% 0.00% 0.47%

* Block Randomization of size: 8 4.00% 1.70% 0.95% 0.59% 0.47%

* Block Randomization of size: 16 6.74% 1.82% 1.63% 0.98% 0.79%

* Block Randomization of random

sizes

4.30% 1.10% 1.06% 0.40% 0.50%

* Urn Design: UD (1,2) 9.28% 6.41% 4.55% 3.69% 3.05%

* Urn Design: UD (2,1) 10.21% 6.80% 4.62% 3.75% 3.22%

* Urn Design: UD (10,2) 10.77% 6.97% 4.62% 3.79% 3.28%

* Simple Randomization 16.21% 11.24

%

7.71% 6.44% 5.37%

+ Stratified Block Randomization

of size: 4

14.40% 8.94% 4.52% 3.03% 2.17%

+ Stratified Block Randomization

of size: 6

14.39% 9.96% 5.61% 3.79% 2.52%

+ Stratified Block Randomization

of size: 12

15.70% 10.49

%

6.86% 5.10% 3.93%

+ Minimization 5.45% 2.23% 1.31% 0.69% 0.66%

+ Minimization with Increasing

Factor

4.89% 1.78% 1.12% 0.58% 0.58%

x Kolmogorov Smirnov

Minimization

5.35% 2.08% 1.28% 0.70% 0.65%

x Rank-Minimization 5.24% 2.25% 1.36% 0.79% 0.71%

Table 5.2. Comparison of results for imbalance ratio in binary covariate

 Method of Randomization Ratio

for size

25

Ratio

for size

50

Ratio

for size

105

Ratio

for size

150

Ratio

for size

215

* Block Randomization of size: 4 16.14

%

11.59

%

7.84% 6.87% 5.54%

29

Table 5.3. Comparison of results for imbalance ratio in 5-level covariate

 Method of Randomization Ratio

for size

25

Ratio

for size

50

Ratio

for size

105

Ratio

for size

150

Ratio

for size

215

* Block Randomization of size: 4 31.22

%

22.54

%

15.45

%

13.00

%

10.83

%

* Block Randomization of size: 6 15.89

%

11.35

%

7.53% 6.63% 5.35%

* Block Randomization of size: 8 16.01

%

11.02

%

7.67% 6.65% 5.43%

* Block Randomization of size: 16 17.03

%

11.44

%

7.86% 6.37% 5.75%

* Block Randomization of random

sizes

16.27

%

11.07

%

8.27% 6.29% 5.45%

* Urn Design: UD (1,2) 18.23

%

12.78

%

9.19% 7.37% 6.38%

* Urn Design: UD (2,1) 18.19

%

13.52

%

9.10% 7.68% 6.41%

* Urn Design: UD (10,2) 19.28

%

13.55

%

8.90% 7.68% 6.38%

* Simple Randomization 22.59

%

15.88

%

10.75

%

9.28% 7.57%

+ Stratified Block Randomization

of size: 4

19.95

%

12.63

%

6.21% 4.29% 2.97%

+ Stratified Block Randomization

of size: 6

21.10

%

14.03

%

7.99% 5.34% 3.63%

+ Stratified Block Randomization

of size: 12

22.01

%

14.82

%

9.53% 7.30% 5.50%

+ Minimization 7.77% 3.94% 1.95% 1.29% 0.93%

+ Minimization with Increasing

Factor

6.86% 3.32% 1.61% 1.10% 0.80%

x Kolmogorov Smirnov

Minimization

6.76% 3.52% 1.68% 1.15% 0.85%

x Rank-Minimization 7.24% 3.75% 1.75% 1.25% 0.87%

30

* Block Randomization of size: 6 31.77

%

22.75

%

15.35

%

13.19

%

10.75

%

* Block Randomization of size: 8 31.10

%

22.41

%

15.79

%

12.90

%

10.75

%

* Block Randomization of size: 16 31.34

%

22.43

%

15.76

%

12.98

%

10.96

%

* Block Randomization of random

sizes

31.50

%

22.55

%

15.39

%

13.02

%

10.69

%

* Urn Design: UD (1,2) 32.91

%

23.13

%

16.13

%

13.41

%

11.22

%

* Urn Design: UD (2,1) 32.84

%

22.90

%

16.10

%

13.58

%

11.17

%

* Urn Design: UD (10,2) 32.95

%

23.67

%

16.42

%

13.29

%

11.45

%

* Simple Randomization 34.72

%

24.90

%

17.38

%

14.56

%

12.15

%

+ Stratified Block Randomization

of size: 4

31.92

%

19.75

%

9.88% 6.82% 4.73%

+ Stratified Block Randomization

of size: 6

33.56

%

21.87

%

12.48

%

8.35% 5.58%

+ Stratified Block Randomization

of size: 12

33.70

%

23.57

%

15.14

%

11.65

%

8.75%

+ Minimization 19.22

%

10.63

%

5.26% 3.62% 2.66%

+ Minimization with Increasing

Factor

17.49

%

9.34% 4.48% 3.18% 2.20%

x Kolmogorov Smirnov

Minimization

16.33

%

8.62% 4.09% 2.83% 2.01%

x Rank-Minimization 17.48

%

9.01% 4.24% 2.95% 2.06%

Table 5.4 Comparison of results for imbalance ratio in continuous covariate

 Method of Randomization Ratio

for size

25

Ratio

for size

50

Ratio

for size

105

Ratio

for size

150

Ratio

for size

215

* Block Randomization of size: 4 26.84

%

20.03

%

13.37

%

11.28

%

9.30%

31

* Block Randomization of size: 6 26.15

%

19.86

%

13.48

%

11.33

%

9.44%

* Block Randomization of size: 8 27.78

%

19.50

%

13.58

%

11.11

%

9.44%

* Block Randomization of size: 16 27.97

%

19.62

%

13.53

%

11.57

%

9.16%

* Block Randomization of random

sizes

27.70

%

19.40

%

13.22

%

11.06

%

9.41%

* Urn Design: UD (1,2) 28.46

%

20.79

%

14.05

%

11.90

%

9.93%

* Urn Design: UD (2,1) 29.15

%

20.71

%

14.26

%

12.07

%

10.05

%

* Urn Design: UD (10,2) 28.63

%

20.86

%

13.90

%

11.85

%

10.07

%

* Simple Randomization 31.18

%

22.93

%

15.60

%

12.91

%

10.93

%

+ Stratified Block Randomization

of size: 4

27.50

%

18.18

%

8.81% 6.13% 4.18%

+ Stratified Block Randomization

of size: 6

28.62

%

19.96

%

11.01

%

7.65% 4.91%

+ Stratified Block Randomization

of size: 12

30.93

%

21.58

%

13.53

%

10.57

%

7.81%

+ Minimization 13.38

%

8.59% 3.77% 2.83% 1.76%

+ Minimization with Increasing

Factor

11.88

%

7.32% 2.95% 2.40% 1.41%

Table 5.5 Comparison of results for imbalance ratio in continuous covariate

 Method of Randomization Ratio

for size

25

Ratio

for size

50

Ratio

for size

105

Ratio

for size

150

Ratio

for size

215

32

* Block Randomization of size: 4
43.64

%

44.95

%

47.53

%

48.51

%

48.84

%

* Block Randomization of size: 6

46.84

%

48.48

%

46.82

%

48.30

%

49.47

%

* Block Randomization of size: 8
47.07

%

46.74

%

47.83

%

47.76

%

48.17

%

* Block Randomization of size: 16
46.26

%

46.67

%

49.12

%

47.95

%

47.92

%

* Block Randomization of random

sizes 45.97

%

46.92

%

48.11

%

46.67

%

48.97

%

* Urn Design: UD (1,2)
46.05

%

48.26

%

47.92

%

47.64

%

49.33

%

* Urn Design: UD (2,1)
45.58

%

46.66

%

48.63

%

47.33

%

47.53

%

* Urn Design: UD (10,2)
46.47

%

47.12

%

46.76

%

47.38

%

47.24

%

* Simple Randomization

46.44

%

47.44

%

49.02

%

46.72

%

46.74

%

x Kolmogorov Smirnov

Minimization 27.89

%

22.02

%

14.40

%

11.06

% 8.54%

x Rank-Minimization
44.47

%

42.82

%

42.98

%

43.38

%

46.12

%

5.2 Performance on Data with Random Pattern

Table 5.6 lists the results marginal imbalance of the different methods between

group 0 and group 1, without taking any covariates into consideration. Table 5.7 and 5.8

present the imbalance ratio between group 0 and group 1 for the two categorical

covariates (binary and 5-level), while Table 5.9 and 5.10 list the imbalance for the

continuous covariate.

33

The results obtained from the randomization of data that do not follow any

specifically assigned pattern closely matched the results of the data with strong pattern.

As seen in the previous section of Performance for strong –patterned data, imbalance

scores improved for nearly all considered criteria, except for the continuous data.

Minimization provided the least imbalance scores when considering the categorical and

discretized covariates. Permuted Block Randomization had the lowest scores for the

marginal imbalance. The application of the Kolmogorov Smirnov Minimization returned

the best imbalance scores which consistently decreased as sample sizes increased.

Table 5.6. Comparison of results for marginal imbalance ratio

 Method of Randomization Ratio

for size

25

Ratio

for size

50

Ratio

for size

105

Ratio

for size

150

Ratio

for size

215

* Block Randomization of size: 4 4.00% 1.36% 0.95% 0.45% 0.47%

* Block Randomization of size: 6 4.00% 1.56% 1.15% 0.00% 0.47%

* Block Randomization of size: 8 4.00% 1.75% 0.95% 0.61% 0.47%

* Block Randomization of size: 16 6.59% 2.01% 1.63% 1.00% 0.79%

* Block Randomization of random

sizes

4.31% 1.04% 1.04% 0.37% 0.51%

* Urn Design: UD (1,2) 9.62% 6.41% 4.57% 4.02% 3.06%

* Urn Design: UD (2,1) 10.50

%

6.45% 4.65% 3.81% 3.19%

* Urn Design: UD (10,2) 11.02

%

6.63% 4.76% 3.88% 3.29%

* Simple Randomization 16.79

%

11.26

%

7.62% 6.50% 5.33%

+ Stratified Block Randomization

of size: 4

14.98

%

9.18% 4.41% 3.00% 2.14%

34

+ Stratified Block Randomization

of size: 6

14.93

%

9.68% 5.65% 3.91% 2.52%

+ Stratified Block Randomization

of size: 12

15.62

%

10.52

%

6.81% 5.30% 3.99%

+ Minimization 5.40% 2.14% 1.29% 0.70% 0.64%

+ Minimization with Increasing

Factor

4.71% 1.81% 1.21% 0.54% 0.57%

x Kolmogorov Smirnov

Minimization

5.10% 2.00% 1.30% 0.71% 0.63%

x Rank-Minimization 5.32% 2.38% 1.36% 0.75% 0.71%

Table 5.7 Comparison of results for imbalance ratio in binary covariate

 Method of Randomization Ratio

for size

25

Ratio

for size

50

Ratio

for size

105

Ratio

for size

150

Ratio

for size

215

* Block Randomization of size: 4 16.01

%

11.44

% 7.58% 6.67% 5.46%

* Block Randomization of size: 6 16.14

%

11.27

% 7.76% 6.61% 5.47%

* Block Randomization of size: 8 16.00

%

11.45

% 7.99% 6.73% 5.50%

* Block Randomization of size: 16 17.05

%

11.20

% 8.14% 6.75% 5.57%

* Block Randomization of random

sizes

16.28

%

11.33

% 7.95% 6.31% 5.32%

* Urn Design: UD (1,2) 18.33

%

12.83

% 9.09% 7.62% 6.24%

* Urn Design: UD (2,1) 18.35

%

13.61

% 8.96% 7.30% 6.54%

* Urn Design: UD (10,2) 19.23

%

13.03

% 9.14% 7.49% 6.38%

* Simple Randomization 22.98

%

16.08

%

11.06

% 9.26% 7.59%

+ Stratified Block Randomization

of size: 4
20.46

%

12.85

% 6.25% 4.35% 3.01%

35

+ Stratified Block Randomization

of size: 6
20.89

%

13.83

% 7.85% 5.34% 3.56%

+ Stratified Block Randomization

of size: 12
21.43

%

15.19

% 9.49% 7.54% 5.53%

+ Minimization
7.73% 4.12% 1.81% 1.31% 0.93%

+ Minimization with Increasing

Factor 6.75% 3.55% 1.71% 1.11% 0.80%

x Kolmogorov Smirnov

Minimization 6.61% 3.46% 1.68% 1.20% 0.80%

x Rank-Minimization
7.06% 3.82% 1.76% 1.21% 0.88%

Table 5.8. Comparison of results for imbalance ratio in 5-level covariate

 Method of Randomization Ratio

for size

25

Ratio

for size

50

Ratio

for size

105

Ratio

for size

150

Ratio

for size

215

* Block Randomization of size: 4 31.24

%

22.43

%

15.36

%

13.18

%

10.74

%

* Block Randomization of size: 6 31.18

%

22.28

%

15.30

%

12.83

%

10.87

%

* Block Randomization of size: 8 31.12

%

22.35

%

15.26

%

12.89

%

10.74

%

* Block Randomization of size: 16 31.81

%

22.33

%

15.55

%

13.27

%

10.93

%

* Block Randomization of random

sizes

30.85

%

22.42

%

15.50

%

12.97

%

10.56

%

* Urn Design: UD (1,2) 32.64

%

23.24

%

16.04

%

13.74

%

11.26

%

* Urn Design: UD (2,1) 32.94

%

22.97

%

16.33

%

13.37

%

11.51

%

* Urn Design: UD (10,2) 32.58

%

23.60

%

16.67

%

13.37

%

11.45

%

* Simple Randomization 35.02

%

25.02

%

17.29

%

14.69

%

11.95

%

36

+ Stratified Block Randomization

of size: 4
31.86

%

20.03

% 9.89% 6.87%

4.86%

+ Stratified Block Randomization

of size: 6
32.89

%

21.83

%

12.17

% 8.60%

5.53%

+ Stratified Block Randomization

of size: 12 34.10

%

23.24

%

15.05

%

11.76

%

8.79%

+ Minimization 19.14

%

10.57

% 5.33% 3.76%

2.56%

+ Minimization with Increasing

Factor

17.58

% 9.49% 4.66% 3.27%

2.28%

x Kolmogorov Smirnov

Minimization

15.92

% 8.65% 4.16% 2.89%

2.03%

x Rank-Minimization 17.34

% 9.18% 4.26% 3.04%

2.00%

Table 5.9. Comparison of results for imbalance ratio in continuous covariate

 Method of Randomization Ratio

for size

25

Ratio

for size

50

Ratio

for size

105

Ratio

for size

150

Ratio

for size

215

* Block Randomization of size: 4 27.42

%

19.59

%

13.29

%

11.21

%

9.48%

* Block Randomization of size: 6 27.44

%

19.72

%

13.39

%

11.35

%

9.48%

* Block Randomization of size: 8 27.26

%

19.52

%

13.40

%

11.36

%

9.26%

* Block Randomization of size: 16 28.01

%

20.11

%

13.78

%

11.21

%

9.40%

* Block Randomization of random

sizes
27.12

%

19.80

%

13.65

%

11.24

%

9.65%

* Urn Design: UD (1,2) 28.54

%

20.76

%

14.25

%

12.12

%

10.05

%

* Urn Design: UD (2,1) 28.22

%

21.03

%

14.16

%

12.29

%

9.95%

* Urn Design: UD (10,2) 29.42

%

20.62

%

14.25

%

11.97

%

10.06

%

37

* Simple Randomization 31.82

%

22.65

%

15.25

%

13.05

%

10.90

%

+ Stratified Block Randomization

of size: 4

27.91

%

17.82

% 8.93% 6.08%

4.13%

+ Stratified Block Randomization

of size: 6

28.68

%

19.64

%

11.03

% 7.59%

4.92%

+ Stratified Block Randomization

of size: 12

30.31

%

21.35

%

13.62

%

10.68

%

7.80%

+ Minimization 13.86

% 8.32% 3.63% 2.83%

1.77%

+ Minimization with Increasing

Factor

12.14

% 7.31% 2.91% 2.40%

1.42%

Table 5.10. Comparison of results for imbalance ratio in continuous covariate

 Method of Randomization Ratio

for size

25

Ratio

for size

50

Ratio

for size

105

Ratio

for size

150

Ratio

for size

215

* Block Randomization of size: 4

47.16% 45.98% 46.82% 45.45% 45.06%

* Block Randomization of size: 6

46.37% 46.21% 47.45% 46.75% 47.45%

* Block Randomization of size: 8

45.82% 47.52% 47.43% 47.48% 48.09%

* Block Randomization of size: 16

46.24% 47.01% 47.02% 48.57% 46.54%

* Block Randomization of random

sizes

45.88% 45.57% 48.60% 47.44% 48.02%

38

* Urn Design: UD (1,2)

46.18% 46.10% 48.36% 48.89% 46.80%

* Urn Design: UD (2,1)

47.19% 46.97% 47.88% 47.84% 49.64%

* Urn Design: UD (10,2)

46.37% 48.12% 47.93% 46.95% 48.24%

* Simple Randomization

47.41% 46.23% 47.52% 47.51% 48.17%

x Kolmogorov Smirnov Minimization

26.66% 21.62% 13.63% 10.62% 8.61%

x Rank-Minimization

42.63% 44.83% 43.05% 42.17% 43.63%

39

CHAPTER 6

SOFTWARE

Based on the obtained results, we implemented a software named RADS, which

stands for Randomization Analysis Driven Software. RADS is a stand-alone application

available for Windows and Mac OS X. Our freeware implements all the methods studied

in our project and it offers numerous options of utilization. Notably, one can use RADS

to randomly allocate subjects into a two-branch study. The main features of the software

are listed below:

• Group Allocation of subjects on a 1-to-1 basis (continuous enrollment)

• Group Allocation of subjects whose information are already recorded

• Save Randomization Allocation Project to later import and keep enrollment

• Blind Allocation Results to prevent Bias

• Equal Balance of Groups marginally and with respect to designated covariates

• Designated balance of groups, i.e. 4 subjects in group 0 to 2 subjects in group 1.

• Provides user with the most best suggestion of method to employ for desired

purpose

• Export the results as a csv file

• Allow user to provide weights of importance for selected covariates

• Allow user to provide specific seed number to reproduce results

In figures 6.1, 6.2, 6.3, 6.4, 6.5, and 6.6 we provide snapshots of our software

40

Figure 6.1 Illustration for the Homepage in RADS

Figure 6.2 Illustration of input details and descriptions in RADS

41

Figure 6.3 Illustration of additional options of data entry in RADS

Figure 6.4 Illustration of randomization in RADS on 1-to-1 basis

42

Figure 6.5 Illustration of subject randomizer in action

Figure 6.6 Illustration of randomization in RADS for pre-recorded information

43

Figure 6.7 Flowchart used for the backbone of RADS randomizer engine

44

CHAPTER 7

DISCUSSION

The results obtained from our simulation study closely match the results found in

the literature. In our simulation, we evaluated the performance of the randomization

methods of SRA, PB, UD, SPB, and MIN.

In terms of marginal imbalance, PB performed the best. Amongst our selection of

choices for the block size, block size of 4 and 6 returned the smallest marginal imbalance

and block size 16 the largest, however, as stated in the literature, (JM, JP, & LJ, 1988),

we recommend the utilization of random blocks. Applying random blocks sizes represent

the best compromise for they considerably reduce the chances of selection bias and still

offer optimal performance. The difference between the mean marginal imbalance for

random blocks and the mean marginal imbalance of blocks 4 and 6 is very minimal.

Even though the Minimization methods returned slightly higher imbalance ratios

than PB, their performance was considerably better than the next UD. For methods that

are independent of subjects’ covariates, UD represents a good compromise between the

restricted PB and the non-restricted SRA. SPB and SRA in general had the worst

marginal imbalance. Since marginal imbalance decreases as sample size increases, it is

recommended to use SRA when the sample is larger than 200 for it is unlikely that a

considerable imbalance will occur (JM, JP, & LJ, 1988).

For the categorical covariates, the application of the Minimization-based methods

returned the best results. Particularly, our method of I-MIN slightly improved the

45

imbalance scores obtained from MIN that has a fixed standard probability of 0.75.

Additionally, we also observed a noticeable superior performance from the application of

our KS-MIN compared to the application of R-MIN. Notably, our implemented KS-MIN

provided better results than I-MIN.

For the continuous covariate, we compared the performances of the methods that

do not use the subjects’ covariates to the methods of Minimization. The first type of

Minimization (MIN and I-MIN) involved the discretization of the continuous covariate in

different quartiles while the second type of Minimization (KS-MIN and R-MIN)

randomized the continuous covariate as it was. For the discretized numerical covariate,

our I-MIN returned better results. The results obtained from SPB do not differ from the

methods of randomization independent of the covariates’ information until the sample

size of 105. Beyond a sample size of 100 (small size), we notice a considerable

improvement of performance for SPB for blocks 4 and 6. However, the application of

SPB with block size of 16 do not differ from the methods of reference. For the second

type of Randomization, the best method when comparing the distribution of the

continuous variable is our method of KS-MIN. The imbalance scores of the latter were

significantly lower than all other methods. Additionally, the scores obtained from the KS-

MIN method were the only ones to decrease over time.

Beyond the issues of performance, the choice of a randomization should involve

the possibilities of bias (selection and accidental), the complexity of the algorithm, and

the applicable statistical methods. Our implemented software RADS provides the means

to reduce selection bias while carrying all operations on the user’s behalf. While our

simulation study points that the methods of Minimization offer significantly better results

46

than the other methods in most scenarios, one must be aware that an important reason

why there is still some reluctance in their acceptation is due to the uncertainty of their

statistical analysis (Stigsby & Taves, 2010). In the case of the UD, PB, and SPB it is

possible to ignore the method of randomization and carry any analysis if the sample

comes from a homogenous population (JM, JP, & LJ, 1988). With SRA, one may carry

any statistical test for samples larger than 200 (JM, JP, & LJ, 1988). In our project we

only focused on the balance of the groups because, using a population based-model, the

equality of the groups would maximize power.

Our choice of the Kolmogorov Smirnov test to implement our method of

minimization and to also measure the imbalance of the numerical covariate relies on the

fact that its implementation in Python was reliable. Unlike other more powerful and

recommended tests like the Anderson-Darling test, the implementation of the

Kolmogorov Smirnov test did not have issues.

Our results have demonstrated the difference in performance of different

randomization methods under multiple scenarios. We advise one to more thoroughly

think of the implications of the desired method of randomization prior to carrying that

method, especially for the statistical methods that would be applicable for that method.

Additional investigation should also be done on the statistical implication of our methods

of Kolmogorov Smirnov Minimizations and Minimization with Increasing-Factor.

47

REFERENCES

Dettori J. (2010). The random allocation process: two things you need to know.

 EBSJ Evidence Based Spine-Care Journal, 7-9

Efird, J. (2011). Blocked Randomization with Randomly Selected Block Sizes.

International Journal of Environmental Research and Public Health, 15-20

E, S., & Cousineau, D. (n.d.). Comparing Distributions: The two-Sample

 Anderson-Darling Test as an alternative to the Kolmogorov-Smirnov Test.

 Journal of Applied Quantitative Methods.

Hedden, S.L., Woolson, R.F., & Malcom, R. (2006). Randomization in substance

abuse clinical trials. Substance Abuse Treatment, Prevention, and Policy

JM, L., JP, M., & LJ, W. (1988). Randomization in clinical trials: conclusions and

 recommendations. PubMed, 365-374.

Kang, M., Ragan, B.G., & Park, J.-H. (2008). Issues in Outcomes Research: An

 Overview of Randomization Techniques for Clinical Trials. Journal of

 Athletic Training, 215-221

Kim, J. (2014). How to Do Random Allocation (Randomization). Clinics Orthopedic

Surgery, 103-109

Pocok, S.J., & Simon, R. (1975). Sequential Treatment Assignment with

Balancing for Prognostic Factors in the Controlled Clinical Trial. Biometrics, 103-

115

Stigsby, B., & Taves, D. R. (2010). Rank-Minimization for balanced assignment

 of subjects in clinical trials. Contemporary Clinical Trials, 147-150.

Suresh, K. (2011). An overview of randomization techniques: An unbiased

 assessment of outcome in clinical research. Journal of Human Reproductive

 Services, 8-11

Tu, D., Shalay, K. & Pater, K. (2000). Adjustment of treatment effect for

 covariates in clinical trials: Statistical and regulatory issues. Drug Information

 Journal, 511-523

Wei, L. J. & Lachin, J. M. (1988). Properties of the Urn Randomization. Controlled

 Clinical Trials, 345-364

48

APPENDIX A

PYTHON CODES USED

simulator.py

• from random import seed; seed(10621)

• from numpy.random import seed as np_seed; np_seed(1921)

• from simple_randomization import *

• from block_randomization import *

• from stratified_block_randomization import *

• from biased_coin_randomization_urn import *

• from minimization import *

• from minimization_increasing import *

• from rank_minimization import *

• from minimization_kolmogorov_smirnov import *

• from populator import *

• import pandas as pd

• from random import randint, sample, choice

• from pandas import DataFrame

• from collections import OrderedDict

• from numpy import mean

•

•

• def machine_run(sample_type,sim_num,sample_size):

• sim_counter=0

• all_names, all_marg_imb, all_margratio_imb, all_cov_imb = [],[],[],[]

• all_cov1, all_cov2, all_cov3 = [],[],[]

• type_of, size_of=[],[]

• m1,m2='categ','numer'

• while sim_counter < sim_num:

• test=[]

• if sample_type== 'random':

• temp=populate_random(sample_size);test=temp[0];test2=temp[1]

• elif sample_type=='irregular':

• temp=populate_irregular(sample_size);test=temp[0];test2=temp[1]

• total_indx_lst_var=list(range(1,len(test[1:])+1))

• method1=sra()

49

• method2=block()

• method3=stratified_block()

• method4=biased_coin_urn()

• method5=minimization()

• method6=minimization_growing()

• method7=rank_minimization()

• method8=kolmo_smir_minimization()

•

• # SIMPLE RANDOMIZATION

• result1=method1.randomize(m1,test[:])

• result2=method1.randomize(m2,test2[:])

• # BLOCK RANDOMIZATION

• result3=method2.randomize(m1,2,test[:])

• result4=method2.randomize(m2,2,test2[:])

• result5=method2.randomize(m1,3,test[:])

• result6=method2.randomize(m2,3,test2[:])

• result7=method2.randomize(m1,4,test[:])

• result8=method2.randomize(m2,4,test2[:])

• result9=method2.randomize(m1,8,test[:])

• result10=method2.randomize(m2,8,test2[:])

• result11=method2.randomize(m1,'random',test[:])

• result12=method2.randomize(m2,'random',test2[:])

• # STRATIFIED RANDOMIZATION

• result13=method3.randomize(total_indx_lst_var,4,test[:])

• result14=method3.randomize(total_indx_lst_var,6,test[:])

• result15=method3.randomize(total_indx_lst_var,12,test[:])

• # URN DESIGN

• result16=method4.randomize(m1,1,2,test[:])

• result17=method4.randomize(m2,1,2,test2[:])

• result18=method4.randomize(m1,10,2,test[:])

• result19=method4.randomize(m2,10,2,test2[:])

• result20=method4.randomize(m1,2,1,test[:])

• result21=method4.randomize(m2,2,1,test2[:])

• # MINIMIZATION

• result22=method5.randomize(total_indx_lst_var,test[:])

• # GROWING MINIMIZATION

• result23=method6.randomize(total_indx_lst_var,test[:])

• # RANK MINIMIZATION

• result24=method7.randomize(total_indx_lst_var,test2[:])

• # KOLMOGOROV-SMIRNOV MINIMIZATION

• result25=method8.randomize(total_indx_lst_var,test2[:])

•

• # all_result=[result2]

•

50

• all_result=[result1,result2,result3,result4,result5,

• result6,result7,result8,result9,result10,

• result11,result12,result13,result14,result15,

• result16,result17,result18,result19,result20,

• result21,result22,result23,result24,result25]

•

• name_lst=[];all_imb=[];ratio_imb=[];covar_imb=[]

•

• for j in list(range(len(all_result))):

• name_lst.append(all_result[j][0])

• all_imb.append(all_result[j][1])

• ratio_imb.append(all_result[j][2])

• covar_imb.append(all_result[j][4])

•

• sim_counter+=1

• all_names.extend(name_lst)

• all_marg_imb.extend(all_imb)

• all_margratio_imb.extend(ratio_imb)

• all_cov_imb.extend(covar_imb)

•

• for j in list(range(len(all_cov_imb))):

• all_cov1.append(all_cov_imb[j][0])

• all_cov2.append(all_cov_imb[j][1])

• all_cov3.append(all_cov_imb[j][2])

• type_of.append(sample_type)

• size_of.append(sample_size)

•

• dict_of_results= OrderedDict([('method name', all_names),

• ('imbalance range', all_marg_imb),

• ('imbalance-range ratio ', all_margratio_imb),

• ('Variable 1', all_cov1),

• ('Variable 2', all_cov2),

• ('Variable 3', all_cov3),

• ('type', type_of),

• ('size', size_of)])

• df=DataFrame(dict_of_results)

• # df=df.set_index('method name')

• return df

• sim_num=1000

• irr_25=machine_run('irregular',sim_num,25)

• irr_50=machine_run('irregular',sim_num,50)

• irr_100=machine_run('irregular',sim_num,105)

• irr_150=machine_run('irregular',sim_num,150)

• irr_200=machine_run('irregular',sim_num,215)

51

•

• rand_25=machine_run('random',sim_num,25)

• rand_50=machine_run('random',sim_num,50)

• rand_100=machine_run('random',sim_num,105)

• rand_150=machine_run('random',sim_num,150)

• rand_200=machine_run('random',sim_num,215)

•

•

• full_result=pd.concat([irr_25,irr_50,irr_100,irr_150,irr_200,

• rand_25,rand_50,rand_100,rand_150,rand_200])

• # full_result=pd.concat([irr_100,irr_200])

•

• full_result.to_csv("C:\\Users\\StephYves\\OneDrive - University of South Carolina\\

Biostatistics\\MASTER's Thesis Work\\thesis\\results\\results.csv")

•

• df0=full_result.loc[(full_result['method name']=='Simple Randomization (numer)')&(

full_result['type']=='irregular')&(full_result['size']==150)]

• df1=df0['Variable 2']

• print(df1)

• print(mean(df1.tolist()))

• # full_result.loc[full_result['Variable 2']][full_result['method name'=='Simple Rando

mization (numer)']].tolist()

• # g_ratio_1=sorted(df1.iloc[:,2][(df2['size']==25)&(df2['method name']=='Simple Ra

ndomization')])

• # df1=df.loc[df['type']=='irregular']

• path="C:\\Users\\StephYves\\Downloads\\test_results_csv"

• df0.to_csv(path+"\\res.csv")

populator.py

• from random import shuffle

• from numpy.random import choice as np_choice

• from numpy.random import normal as np_normal

• from pandas import qcut

• from scipy.stats import skewnorm

•

• def populate_random(obs_num):

• entire_lst=[]

• all_obs_lst=list(range(obs_num))

• cov1=np_choice(list('01'),size=obs_num).tolist() # binary

• cov2=np_choice(list('abcde'),size=obs_num).tolist() # categorical 5 level

s

52

• cov3=np_normal(loc=50,scale=5.5,size=obs_num).tolist() # continuous mu

=50 and sd=5.5 ---normal

• cat_cov3=qcut(cov3,4,labels=['c1','c2','c3','c4']).tolist() # discretized continuo

us variable

• entire_lst=[[all_obs_lst,cov1,cov2,cat_cov3],[all_obs_lst,cov1,cov2,cov3]]

• return entire_lst

• def populate_irregular(obs_num):

• entire_lst=[]; all_cov_lst=[]

• all_obs_lst=list(range(obs_num))

• entire_lst.append(all_obs_lst)

• cov1=np_choice(list('01'),size=obs_num,p=shuffle([0.75,0.25])).tolist()

 # binary

• cov2=np_choice(list('abcde'),size=obs_num,p=shuffle([0.1,0.15,0.45,0.25,0.05])).t

olist() # categorical 5 levels

• cov3=skewnorm.rvs(4,loc=50,scale=5.5,size=obs_num)

 # continuous mu=50 and sd=5.5 --- skewnormal

• cat_cov3=qcut(cov3,4,labels=['c1','c2','c3','c4']).tolist() # dis

cretized continuous variable

• entire_lst=[[all_obs_lst,cov1,cov2,cat_cov3],[all_obs_lst,cov1,cov2,cov3]]

• return entire_lst

53

variable.py

• from scipy.stats import ks_2samp as ks2

• def measure_all_cov1(result_list):

• var_lst=result_list[1:-1]; var_counter=0; all_stratum_imbal=[]

• while var_counter < len(var_lst):

• unique_val=list(set(var_lst[var_counter]))

• val_counter=0;lev_imbal=[];tot_lev_imbal=[]

• while val_counter < len(unique_val):

• temp_indx=[i for i, e in enumerate(var_lst[var_counter]) if e==unique_val[val

_counter]]

• count_0=len([result_list[-1][i] for i in temp_indx if result_list[-1][i]==0])

• count_1=len([result_list[-1][i] for i in temp_indx if result_list[-1][i]==1])

• imbal_var=abs(count_0-count_1)

• lev_imbal.append(imbal_var)

• tot_lev_imbal.append(len(temp_indx))

• val_counter+=1

• all_stratum_imbal.append((sum(lev_imbal)/sum(tot_lev_imbal)))

• var_counter+=1

• return all_stratum_imbal

•

• def measure_all_cov2(result_list): # for mixe

d of both categ and numer

• categ_lst, var_counter, all_imbal =result_list[1:-2], 0, []

• numer_lst=result_list[-2]

• while var_counter < len(categ_lst):

• unique_val=list(set(categ_lst[var_counter]))

• val_counter, lev_imbal, max_lev_imbal=0, [], len(categ_lst[var_counter])

• while val_counter < len(unique_val):

• temp_indx=[i for i, e in enumerate(categ_lst[var_counter]) if e==unique_val[

val_counter]]

• count_0=len([result_list[-1][i] for i in temp_indx if result_list[-1][i]==0])

• count_1=len([result_list[-1][i] for i in temp_indx if result_list[-1][i]==1])

• imbal_var=abs(count_0-count_1)

• lev_imbal.append(imbal_var)

• val_counter+=1

• all_imbal.append(sum(lev_imbal)/max_lev_imbal)

• var_counter+=1

• numer_0=[numer_lst[i] for i in list(range(len(result_list[-1]))) if result_list[-

1][i]==0]

• numer_1=[numer_lst[i] for i in list(range(len(result_list[-1]))) if result_list[-

1][i]==1]

• ans=1-list(ks2(numer_0,numer_1))[-1]

• all_imbal.append(ans)

54

• return all_imbal

•

• def measure_categ(indx,variables,assignment):

• cov_0_imbal,cov_1_imbal=[],[]

• var_counter=0;

• while var_counter<len(variables):

• covariate=variables[var_counter]

• same_value=covariate[indx]

• same_value_lst_indx=[i for i, e in enumerate(covariate[:indx]) if e==same_valu

e]

• if len(same_value_lst_indx)==0:

• cov_0_imbal.append(1); cov_1_imbal.append(1)

• else:

• assignment_b4_lst=[assignment[i] for i in same_value_lst_indx]

• g0=assignment_b4_lst.count(0)

• g1=assignment_b4_lst.count(1)

• dif_0, dif_1=abs((g0+1)-g1),abs((g1+1)-g0)

• cov_0_imbal.append(dif_0); cov_1_imbal.append(dif_1)

• var_counter+=1

• return [sum(cov_0_imbal),sum((cov_1_imbal))]

55

biased_coin_randomization_urn.py

• from random import randint, shuffle, choice

• from variable_measure import measure_all_cov1, measure_all_cov2

•

• class biased_coin_urn(object):

• def __init__(self):

• self.type='Urn Design'

•

• def randomize(self,cov3,num,augmenter,some_list):

• imbalance,group_factor,type_rand,assignment_group =None,[0,1],'',[]

• bgin_lst_0, bgin_lst_1=[0]*num, [1]*num

• bgin_lst_0.extend(bgin_lst_1)

• assignment_pond=bgin_lst_0

• assignment_group.append(choice(group_factor))

• augmenter_lst=[x for x in group_factor if x not in assignment_group]*augmente

r

• assignment_pond.extend(augmenter_lst)

• for person_i in some_list[0][1:]:

• ind_augmenter_lst=[]

• assignment=choice(assignment_pond)

• assignment_group.append(assignment)

• ind_augmenter_lst=[x for x in group_factor if x!=assignment]*augmenter

• assignment_pond.extend(ind_augmenter_lst)

• some_list.append(assignment_group)

• imbalance=abs(assignment_group.count(0)-assignment_group.count(1))

•

• if cov3=='categ':

• var_imbal=measure_all_cov1(some_list);ratio_imbal=imbalance/len(assignm

ent_group)

• elif cov3=='numer':

• var_imbal=measure_all_cov2(some_list);ratio_imbal=imbalance/len(assignm

ent_group)

•

• ratio_imbal=imbalance/len(assignment_group)

• type_rand=self.type+" ({},{})--{}".format(num,augmenter,cov3)

•

• return [type_rand,imbalance,ratio_imbal,[],var_imbal]

56

block_randomization.py

• from random import randint, shuffle, choice

• from math import ceil as roundup

• from variable_measure import measure_all_cov1,measure_all_cov2

•

• class block(object):

• def __init__(self):

• self.type='Block Randomization'

•

• def randomize(self,cov3,num,some_list):

• group_factor,type_rand=[0,1],''

• num_total_assignments,assignment_group=len(some_list[0]),[]

• indx=num_total_assignments

•

• if isinstance(num,str):

• bk_type=num

• counter=0;block_size_lst=[]

• while counter < num_total_assignments:

• rand_block_size=2*choice([2,3,4])

• block_size_lst.append(rand_block_size)

• counter+=rand_block_size

• for size in block_size_lst:

• block_unit=int(size/2)*group_factor

• shuffle(block_unit)

• assignment_group.extend(block_unit)

• else:

• blk_num=num*2; bk_type=num*2

• full_blocks=int(num_total_assignments/blk_num)

• for unit_block in list(range(roundup(num_total_assignments/blk_num))):

• block_unit=int(blk_num/2)*group_factor

• shuffle(block_unit)

• assignment_group.extend(block_unit)

• assignment_group=assignment_group[:indx]

• some_list.append(assignment_group)

• imbalance=abs(assignment_group.count(0)-assignment_group.count(1))

• ratio_imbal=imbalance/len(assignment_group)

• if cov3=='categ':

• var_imbal=measure_all_cov1(some_list)

• elif cov3=='numer':

• var_imbal=measure_all_cov2(some_list)

•

• type_rand=self.type+" ({})--{}".format(bk_type,cov3)

•

57

• return [type_rand,imbalance,ratio_imbal,[],var_imbal]

minimization.py

• from random import choice

• from numpy.random import uniform

• from variable_measure import measure_all_cov1

•

•

• class minimization(object):

• def __init__(self):

• self.type='Minimization '

•

• def randomize(self,cov_indx_lst,some_list):

• group_factor=[0,1];assignment_group=[]

• temp_cov_lst=[some_list[i] for i in cov_indx_lst]

• num_to_randomize=1

• for first_x_ppl in list(range(num_to_randomize)):

• assignment_group.append(choice(group_factor))

• pers_counter=0

• while pers_counter < len(some_list[0][num_to_randomize:]):

• pers_b4_assignment_lst=[]

• full_lst_indx=pers_counter+num_to_randomize

• cov_0_imbal_lst=[]; cov_1_imbal_lst=[]; var_counter=0;

• while var_counter < len(temp_cov_lst):

• same_cov=temp_cov_lst[var_counter][full_lst_indx]

• same_cov_lst=[]

• same_cov_lst_indx=[i for i, e in enumerate(temp_cov_lst[var_counter][:ful

l_lst_indx]) if e==same_cov]

• if len(same_cov_lst_indx)==0:

• cov_0_imbal_lst.append(1); cov_1_imbal_lst.append(1)

• else:

• assignment_b4_lst=[]

• for loc in same_cov_lst_indx:

• assignment_b4_lst.append(assignment_group[loc])

• g0=assignment_b4_lst.count(0)

• g1=assignment_b4_lst.count(1)

• dif_0=abs((g0+1)-g1);dif_1=abs((g1+1)-g0)

• cov_0_imbal_lst.append(dif_0)

• cov_1_imbal_lst.append(dif_1)

• var_counter+=1

• pers_counter+=1

• sum_imbal_0=sum(cov_0_imbal_lst);sum_imbal_1=sum(cov_1_imbal_lst)

•

58

• pers_rand_num=uniform(0,1)

• if pers_rand_num< 0.75:

• if sum_imbal_0>sum_imbal_1:

• assignment_group.append(1)

• elif sum_imbal_0<sum_imbal_1:

• assignment_group.append(0)

• else:

• assignment_group.append(choice(group_factor))

• else:

• assignment_group.append(choice(group_factor))

• some_list.append(assignment_group)

• imbalance=abs(assignment_group.count(0)-assignment_group.count(1))

• var_imbal=measure_all_cov1(some_list);ratio_imbal=imbalance/len(assignment

_group)

•

 return [self.type,imbalance,ratio_imbal,[],var_imbal]

minimization_increasing.py

• from random import choice

• from numpy.random import uniform

• from variable_measure import measure_all_cov1

•

• class minimization_growing(object):

• def __init__(self):

• self.type='Growing Minimization '

•

• def randomize(self,cov_indx_lst,some_list):

• group_factor=[0,1];assignment_group=[];tot_people=len(some_list[0])

• temp_cov_lst=[some_list[i] for i in cov_indx_lst]

• num_to_randomize=1;start_prob=0.75

• for first_x_ppl in list(range(num_to_randomize)):

• assignment_group.append(choice(group_factor))

• pers_counter=0

• while pers_counter < len(some_list[0][num_to_randomize:]):

59

• pers_b4_assignment_lst=[]

• full_lst_indx=pers_counter+num_to_randomize

• cov_0_imbal_lst=[];cov_1_imbal_lst=[]

• all_similar_cov_lst=[]; cov_assignment_dif=[]

• var_counter=0; temp_cov_container=[]

• while var_counter < len(temp_cov_lst):

• same_cov=temp_cov_lst[var_counter][full_lst_indx]

• same_cov_lst=[]

• same_cov_lst_indx=[i for i, e in enumerate(temp_cov_lst[var_counter][

:full_lst_indx]) if e==same_cov]

• if len(same_cov_lst_indx)==0:

• cov_0_imbal_lst.append(1); cov_1_imbal_lst.append(1)

• else:

• assignment_b4_lst=[]

• for loc in same_cov_lst_indx:

• assignment_b4_lst.append(assignment_group[loc])

• g0=assignment_b4_lst.count(0)

• g1=assignment_b4_lst.count(1)

• dif_0=abs((g0+1)-g1);dif_1=abs((g1+1)-g0)

• cov_0_imbal_lst.append(dif_0)

• cov_1_imbal_lst.append(dif_1)

• var_counter+=1

• start_prob+=choice([0,0.25/tot_people])

• pers_counter+=1

• sum_imbal_0=sum(cov_0_imbal_lst);sum_imbal_1=sum(cov_1_imbal_lst

)

•

• pers_rand_num=uniform(0,1)

• if pers_rand_num<start_prob:

• if sum_imbal_0>sum_imbal_1:

• assignment_group.append(1)

• elif sum_imbal_0<sum_imbal_1:

• assignment_group.append(0)

• else:

• assignment_group.append(choice(group_factor))

• else:

• assignment_group.append(choice(group_factor))

• some_list.append(assignment_group)

• imbalance=abs(assignment_group.count(0)-assignment_group.count(1))

• var_imbal=measure_all_cov1(some_list);ratio_imbal=imbalance/len(assign

ment_group)

•

 return [self.type,imbalance,ratio_imbal,[],var_imbal]

60

minimization_kolmogorov_smirnov.py

• from random import choice, uniform

• from scipy.stats import ks_2samp as ks2

• from variable_measure import measure_all_cov2, measure_categ

• from math import exp

•

•

• def measure_numer_kolmo(pers_count,variable,assignment):

• cov_0_imbal,cov_1_imbal=0,0

• current_val=[variable[pers_count]]

• values_b4=variable[:pers_count]

•

• var_0=[values_b4[i] for i in list(range(len(values_b4))) if assignment[i]==0]

• var_1=[values_b4[i] for i in list(range(len(values_b4))) if assignment[i]==1]

•

• var_0_scene0=var_0+current_val

• var_1_scene1=var_1+current_val

•

• ans_for_0=1-list(ks2(var_0_scene0,var_1))[-1]

• ans_for_1=1-list(ks2(var_1_scene1,var_0))[-1]

•

• cov_0_imbal=exp(ans_for_0)

• cov_1_imbal=exp(ans_for_1)

• return [cov_0_imbal,cov_1_imbal]

•

• class kolmo_smir_minimization(object):

• def __init__(self):

• self.type='Kolmogorov Smirnov Minimization'

•

• def randomize(self,cov_indx_lst,some_list):

• group_factor=[0,1];assignment_group=[]

• num_to_randomize=2

• assignment_group.extend(group_factor) #forced assignment

• pers_counter=0

• while pers_counter < len(some_list[0][num_to_randomize:]):

• full_lst_indx=pers_counter+num_to_randomize

• cov_0_imbal_lst, cov_1_imbal_lst=[],[]

• categ_ans= measure_categ(full_lst_indx,some_list[1:3],assignment_group)

• numer_ans= measure_numer_kolmo(full_lst_indx,some_list[3],assignment_gr

oup)

• cov_0_imbal_lst.append(categ_ans[0]);cov_1_imbal_lst.append(categ_ans[1])

61

• cov_0_imbal_lst.append(numer_ans[0]);cov_1_imbal_lst.append(numer_ans[

1])

•

• sum_imbal_0, sum_imbal_1 =sum(cov_0_imbal_lst), sum(cov_1_imbal_lst)

• pers_rand_num=uniform(0,1)

• if pers_rand_num< 0.75:

• if sum_imbal_0>sum_imbal_1:

• assignment_group.append(1)

• elif sum_imbal_0<sum_imbal_1:

• assignment_group.append(0)

• else:

• assignment_group.append(choice(group_factor))

• else:

• assignment_group.append(choice(group_factor))

• pers_counter+=1

•

• some_list.append(assignment_group)

• imbalance=abs(assignment_group.count(0)-assignment_group.count(1))

• var_imbal=measure_all_cov2(some_list); ratio_imbal=imbalance/len(assignme

nt_group)

• return [self.type,imbalance,ratio_imbal,[],var_imbal]

rank_minimization.py

• from random import choice, uniform

• from scipy.stats import rankdata as rank

• from numpy import mean as avg

• from math import log10

• from variable_measure import measure_all_cov2, measure_categ

•

• def measure_numer_rank(indx,variable,assignment):

• full_values=variable[:indx+1]

• rank_lst=rank(full_values).tolist()

• ranks_b4=rank_lst[:-1]

• assigned_ind_0=[i for i, e in enumerate(assignment) if e==0]

• assigned_ind_1=[i for i, e in enumerate(assignment) if e==1]

•

• rank_0=[ranks_b4[i] for i in assigned_ind_0]

• rank_1=[ranks_b4[i] for i in assigned_ind_1]

• if_rank0=rank_0+[rank_lst[-1]]

• if_rank1=rank_1+[rank_lst[-1]]

•

62

• mean_rank_sum_0=avg([sum(if_rank0),sum(rank_1)])

• mean_rank_sum_1=avg([sum(rank_0),sum(if_rank1)])

• d0= (sum(if_rank0)-mean_rank_sum_0)**2

• d1= (sum(if_rank1)-mean_rank_sum_1)**2

•

• sq0, sq1=[d0]*2,[d1]*2

• imb_0=log10(sum(sq0)+0.1); imb_1=log10(sum(sq1)+0.1)

• cov_0_imbal=imb_0

• cov_1_imbal=imb_1

• return [cov_0_imbal,cov_1_imbal]

•

• class rank_minimization(object):

• def __init__(self):

• self.type='Rank Minimization'

•

• def randomize(self,cov_indx_lst,some_list):

• group_factor=[0,1];assignment_group=[]

• num_to_randomize=1;assignment_group.append(choice(group_factor))

• pers_counter=0

• while pers_counter < len(some_list[0][num_to_randomize:]):

• full_lst_indx=pers_counter+num_to_randomize

• cov_0_imbal_lst, cov_1_imbal_lst=[],[]

• categ_ans= measure_categ(full_lst_indx,some_list[1:3],assignment_group)

• numer_ans= measure_numer_rank(full_lst_indx,some_list[3],assignment_gro

up)

• cov_0_imbal_lst.append(categ_ans[0]);cov_1_imbal_lst.append(categ_ans[1])

• cov_0_imbal_lst.append(numer_ans[0]);cov_1_imbal_lst.append(numer_ans[

1])

• sum_imbal_0, sum_imbal_1 =sum(cov_0_imbal_lst), sum(cov_1_imbal_lst)

• pers_rand_num=uniform(0,1)

• if pers_rand_num< 0.75:

• if sum_imbal_0>sum_imbal_1:

• assignment_group.append(1)

• elif sum_imbal_0<sum_imbal_1:

• assignment_group.append(0)

• else:

• assignment_group.append(choice(group_factor))

• else:

• assignment_group.append(choice(group_factor))

• pers_counter+=1

•

• some_list.append(assignment_group)

• imbalance=abs(assignment_group.count(0)-assignment_group.count(1))

63

• var_imbal=measure_all_cov2(some_list); ratio_imbal=imbalance/len(assignme

nt_group)

•

• return [self.type,imbalance,ratio_imbal,[],var_imbal]

simple_randomization.py

• from random import choice

• from variable_measure import measure_all_cov1, measure_all_cov2

• from numpy.random import randint

•

•

• class sra(object):

• def __init__(self):

• self.type='Simple Randomization'

•

• def randomize(self,cov3,x_list):

• some_list=x_list

• assignment_group=randint(2,size=len(x_list[0])).tolist()

• some_list.append(assignment_group)

• imbalance=abs(assignment_group.count(0)-assignment_group.count(1))

• ratio_imbal=imbalance/len(assignment_group)

• if cov3=='categ':

• var_imbal=measure_all_cov1(some_list)

• elif cov3=='numer':

• var_imbal=measure_all_cov2(some_list)

• type_of=self.type+' ({})'.format(cov3)

•

• return [type_of,imbalance,ratio_imbal,[],var_imbal]

stratified_block_randomization.py

• from random import randint, shuffle

• from math import ceil as roundup

• from numpy import prod

• from itertools import product as cart_prod

• from variable_measure import measure_all_cov1

•

• class stratified_block(object):

• def __init__(self):

• self.type='Stratified Block Randomization'

64

•

• def randomize(self,indx_list_of_covariates,block_size,some_list):

• group_factor,type_rand=[0,1],''

• num_total_assignments=len(some_list[0]);

• temp_lst_string=str([list(set(some_list[i])) for i in indx_list_of_covariates])[1:-

1]

• temp_lst_string_function='cart_prod('+temp_lst_string+')'

• temp_lst=eval(temp_lst_string_function)

• all_stratum_lst=[list(item) for item in temp_lst]

• num_of_stratum=len(all_stratum_lst)

• full_block_num=int(roundup(num_total_assignments/block_size))

• assignment_group=[]; strata_assignments=[]

•

• for indx in list(range(num_of_stratum)):

• temp_subgrp=[]

• for unit_blck in list(range(full_block_num)):

• block_unit=int(block_size/2)*group_factor

• shuffle(block_unit)

• temp_subgrp.extend(block_unit)

• strata_assignments.append(temp_subgrp)

• for i in some_list[0]:

• ind_characteristics=[some_list[j][i] for j in indx_list_of_covariates]

• indx=all_stratum_lst.index(ind_characteristics)

• assignment_group.append(strata_assignments[indx][0])

• del strata_assignments[indx][0]

• some_list.append(assignment_group)

• imbalance=abs(assignment_group.count(0)-assignment_group.count(1))

• var_imbal=measure_all_cov1(some_list);ratio_imbal=imbalance/len(assignment

_group)

• type_rand=self.type+" ({})".format(block_size)

•

• return [type_rand,imbalance,ratio_imbal,[],var_imbal]

	Randomization Analysis Driven Software
	Recommended Citation

	tmp.1566493901.pdf.sf90m

