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Abstract 

The Bi2Te3/FeTe heterostructure intersects several phenomena and key classes of 

materials in condensed matter physics: topological insulators, superconductivity, 

magnetism, and the physics of interfaces. While neither the topological insulator (BiTe) 

nor the iron chalcogenide (FeTe) are themselves superconductors, superconductivity 

forms in a thin 7nm interfacial layer between the two. The restricted dimensionality and 

the extraordinarily conductive normal state, possibly sourced by the topologically 

protected surface states, have led to the observation of novel phenomena such as the 

Likharev vortex explosion and transitions in behavior resulting from the interplay 

between current induced depairing and the Berezinski-Kosterlitz-Thouless regime. The 

measured depairing current density provides information on the magnetic penetration 

depth and superfluid density, which in turn sheds light on the nature of the normal state 

that underlies the interfacial superconductivity. We observe a transition in the current-

resistance and temperature-resistance curves that quantitatively agrees with the Likharev 

vortex-explosion phenomenon. In the limit of low temperatures and high current 

densities, we were able to demonstrate the regime of complete vortex-antivortex 

dissociation arising from current driven vortex-antivortex pair breaking. 
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CHAPTER 1: 

INTRODUCTION TO SUPERCONDUCTIVITY

Superconductivity was first discovered by Dutch physicist Heike Kamerlingh 

Onnes in 1911.  He was looking at transport behavior of elements at extremely low 

temperatures, using a liquid helium reservoir. While studying mercury, he noticed that 

the electrical resistance of mercury seemed to disappear at 4.2K. After reheating the 

material, the effect dissipated. He had stumbled onto something that is one of the most 

common parameters when categorizing superconductors, namely the critical temperature 

(TC). He coined the term “superconductivity and won the Nobel Prize of Physics in 1913 

for his work. This was so groundbreaking because it had previously been believed by 

many physicists that all electron movement would halt as a material approached absolute 

zero.  

Walther Meissner and Robert Ochsenfield found that after this critical 

temperature, superconductors are perfectly diamagnetic. The materials expel all magnetic 

field during their transition to superconducting state. The experiment was conducted in 

1933 using Tin (Sn) and Lead (Pb).  Below that critical temperature, they discovered 

almost all the interior magnetic field was negated. This was an indirect result because 

they noticed the field at the boundary had increased.  This was called the Meissner Effect. 

This state is linked to the superconducting state and can be broken by applying a 

significant enough external field. This is another important parameter in the field, known 

as the “Critical Field” (BC or HC). 
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On theoretical front, Ginzburg-Landau theory came about in the late 1930’s as a 

mix of Landau Theory and the Ginzburg criterion. This attempted to establish meaningful 

mathematical model for the phase transition that superconductors go through, without 

considering microscopic and subatomic effects. The general idea is to use the free energy 

of the system and its second order transition to show that it can be expressed as a 

complex order field, with parameter ψ. Classically it would reduce to zero at the 

transition, but with the complex portion, it becomes non-zero. This established the basis 

for two important parameters. The first is the Superconducting Coherence Length (ξ), 

which determines the scale on which small perturbations in the supercurrent density are 

allowed, without breaking the state. The second is the penetration depth (λ), which is 

linked to the Meissner effect and sets the scale over which external fields decay at the 

boundary of the superconductor. This also was used to determine the existence of two 

types of superconductors, Type-I and Type-II. Depending on whether the ratios of the 

length scales was less than or greater than 1
√2

⁄  . Type-1 fully expels external fields 

where type-II has a mixed state that allows some penetration.  

Soon after in a 1957 paper “Microscopic Theory of Superconductivity”; Bardeen, 

Cooper, and Schrieffer developed what is now one of the most commonly used theories 

in superconductivity. BCS –Theory is used to interpret the majority of superconductors 

by taking the Ginzburg-Landau model a step further and using the microscopic 

interactions. They proposed that the superconducting state could be explained as a 

macroscopic quantum state. In this theory, the electrons condense from a fermion gas to a 

boson like state where the electrons are paired. These are known as “Cooper Pairs”. This 

binding occurs based on a small attraction between electrons, caused by interaction with 
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phonons in the lattice as they pass through. In the superconducting state, this causes the 

paired state to have an energy level lower than the fermi energy of the system, effectively 

binding them. 

Also in 1957, Alexi Abrikosov wrote “The Magnetic Properties of 

Superconducting Alloys” which introduced the concept of a supercurrent vortex inside 

type-II superconductors. This is currently called a fluxon (0) and is a quantized amount 

of magnetic flux. All superconducting vortices will have the same total amount of flux, 

only varying sizes through different materials at different temperatures. This size is based 

on the characteristic lengths from Ginzburg-Landau Theory. 

There was little progress in the experimental regime of superconductivity for the 

next few decades. Only a handful of new ones were found, and mostly were simply pure 

elements or Niobium with one additional. Suddenly, in the 1980s, there was an explosion 

in research associated with the field. Specifically, with Klaus Bechgaard synthesizing the 

first carbon based superconductor at the University of Copenhagen. This was the first real 

step toward producing complex superconductors with various non superconducting 

elements. This caused a massive surge with many material science groups testing all sorts 

of various composites. The first significant find was in 1986, when Bednorz and Muller 

published a paper “Possible high Tc superconductivity in the Ba−La−Cu−O system”.   

Soon after that, there was the discovery of YBCO, the first “High Temperature” 

superconductor. It was found at the University of Alabama at Huntsville in 1987. 

Suddenly, the effect exists far above liquid nitrogen temperatures. 

  



 

4 

CHAPTER 2: 

RELEVANT THEORETICAL BACKGROUND 

This will only include the specifically relevant theoretical basis regarding the 

discussion and findings in the published work. First is the definition of some terms that 

exist throughout. Superconducting coherence length (ξ) is the length scale over which 

small distributions of super current are allowed to exist. It comes from Ginzburg-Landau 

theory and is defined as: 

 

ξ = √
ħ2

2𝑚|𝛼|
 

 

(1) 

Where ħ is the reduced Planck constant, m is the mass of the charge carrier (a 

cooper pair in this case), and α is a parameter from the Ginzburg-Landau field equations. 

The GL parameter is of particular interest here and how it changes near the critical 

temperature. There, it goes as: 

 α(T) ∝ α0(𝑇 − 𝑇𝑐) (2) 

As we approach the critical temperature, the coherence length grows 

exponentially large. This is the main cause of the explosion phenomenon. 

The Superconducting Penetration Depth (λ) also comes out of Ginzburg-Landau 

theory. This factor determines the length scale over which external magnetic fields can 

persist and decay into the body of a superconductor. It is defined as: 
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λ = √
𝑚

4µ0𝑒
2𝜓0

2 

(3) 

Here, µ0= 4π × 10−7 H. m−1 is the permeability constant, e is the charge of an 

electron, and ψ0 is the value of the Ginzburg-Landau field parameter in the absence of an 

applied field. For clarification, the GL parameter is related to α and β as: 

 
|ψ|2 = −

α

β
 

(4) 

These are combined to give the general Ginzburg-Landau parameter κ. This is the 

ratio of the two length scales and leads to the two various regimes with Type-I 𝜅 < 1 √2⁄  

and with Type-II  𝜅 < 1 √2⁄  

 

2.1 THE MEISSNER EFFECT AND LONDON EQUATIONS 

 Superconductors firmly within their condensed state experience a “perfect” 

diamagnetism. This phenomenon is called the Meissner effect (or Meissner–Ochsenfeld 

effect) named after the German physicists Walther Meissner and Robert Oschenfeld 

discovered it in 1933[13]. They found that superconductors below their critical 

temperature expel all external magnetic field. This was an accidental find because their 

measurement was of the external field. They found that the external field increased as all 

of the magnetic flux was pushed out of the sample, and packed tightly around the edges, 

increasing local field strength. This effect can be seen Figure 2.1. 
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Figure 2.1 Material above (Left) and below (Right) the critical transition temperature 

The first mathematical formalism for this effect came in 1935 from the London 

Brothers (Fritz and Heinz). Their interpretation of the superconducting state using the 

local electro-magnetic fields (E and B) along with basic qualities of the conductor (ns and 

Jd ) is one of the simpler views on the subject and more classical in nature. The two 

London equations can be shown:    

 𝜕𝒋𝑠
𝜕𝑡

=
𝑛𝑠𝑒^2

𝑚
𝐄 

(5) 

 

𝛁x𝒋𝑠 = −
𝑛𝑠𝑒^2

𝑚
𝐁 

(6) 

The first equation is a basic force equation, but novel for the fact that includes no 

limit on acceleration of the charge carriers (as long as the superconducting state is held). 

This leads to a ballistic acceleration of charges through the superconductor as long as an 

electric field persists. Where classically, Ohm’s law says that there must be some long-

time dependent relationship between E and J (or V and I). This effect is studied further in 

(Gabriel F Saracila, 2010) 
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The second equation regarding the magnetic behavior can be manipulated using 

Ampere’s Law into a general Laplacian Field equation: 

 𝛁x𝐁 = 𝜇0𝐣 (7) 

 

∇2𝐁 =
1

2 𝐁 

(8) 

This implies a solution where: 

 

 ≡ √
𝑚

𝜇0𝑛𝑠𝑒
2

 

(9) 

So, the magnetic field inside the superconductor must decay exponentially with the rate 

set by : 

 
𝐵(𝑥) = 𝐵0𝑒

−𝑥
𝐿

⁄
 

(10) 

This comes out as the Magnetic Penetration Depth (). This sets the length scale 

over which this rapid exponential decay occurs inside a superconductor at the boundaries. 

This is the basis of the Meissner Effect. It also had a definitive dependence on the current 

distance from other critical parameters (Tc and jd). 

 

2.2 GINZBURG-LANDAU THEORY 

 This phenomenological theory was proposed in 1950, and is a special case of 

more general Landau Theory. In this case, the free energy (F) is thought as the functional 

of a generalized field that describes all possible phases and transitions. Introduced by 

Ginzburg and Landau, the order parameter Ψ is zero in the high temperature phase, 

outside the superconducting state and Ψ ≠ 0 below Tc, when the state transitions. The 
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order parameter must contain information describing the new ordered phase. They 

postulate that Ψ is small and only slightly varies with position. Because of this, the 

theoretical model works best close to the transition temperature (Tc) where the order 

parameter is very small. 

The difference between the normal and superconducting free energy in the 

presence of a magnetic field in a superconductor in terms of the order parameter |Ψ| is: 

 

 

 

(11) 

In small fields with low gradients we see the Free Energy Densities: 

 

 

(12) 

This free energy is minimized for 

 

 

(13) 

And when α<0<β. Here |∞|2is an “infinitely” large inside the bulk material. Including 

the presence of gradients and fields and writing Ψ = |Ψ|e−iϕ we get 

 

 

(14) 

where the second term gives the kinetic energy associated with super-currents. In London 

theory is constant. Equating the second term of the equation with the energy density 

found by London we get:   

 

 

(15) 
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Leading to: 

  

 

(16) 

 Replacing  the result agrees with the definition of the London penetration 

depth, but the density, mass and charge values are now effective. Experimental results 

gave that e∗ ≈ 2e, m∗ = 2m, and 2. With  and equations (2.24),(2.25) and 

(2.29), we find the Ginzburg-Landau parameters to be: 

 

 

 

(17) 

 

 

 

(18) 

 

 

(19) 

Solving the GL differential equations, expressions for the coherence length ξ and the 

penetration depth λ are found. Most important, the Ginzburg-Landau parameter κ is 

defined as 

  

 

(20) 

With Φ  is a flux quantum. They found that the value 

 separates superconductors of type I and Type II. 
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2.3 BCS THEORY 

Named after the founders in 1957 John Bardeen, Leon Cooper, and John Robert 

Schrieffer (BCS) was the first theory to discuss superconductivity in terms of small scale 

interactions as opposed to large scale field or wave states. Specifically, the carriers within 

a superconductor condensed into a superfluid of paired electrons (Cooper Pairs).  

In London theory, the rigidity of the wave function would be ensured if the 

excited states of the superconductor were separated from the ground state by an 

energy gap, which explains also the anomaly in the specific heat. It took almost fifty 

years for the problem of superconductivity to be solved and explain the gap. In 1957, 

Bardeen, Cooper and Schrieffer established a new theory, which successfully 

explains superconductivity at temperatures close to absolute zero. Their theory is 

referred to as BCS theory. 

This is seen to be on the order of around a few meV per electron. Such a gap is a 

relatively small effect (quantitatively) that yields a significant qualitative effect. 

Thus, the Coulomb correlation energy is larger and can be ruled out (if some effect is 

associated with an energy too large, then that effect is not the cause of 

superconductivity). If we change the isotope of which the superconductor is made of, 

the critical temperature changes. Spin-spin and spin-orbit interactions do not change 

with changes in the isotope, so they should be neglected. So superconductivity has 

something to do with interactions between electrons and phonons. In 1950, Frohlich 

[13] was the first in suggesting the importance of electron-lattice interaction that was 

confirmed by the discovery of the isotope effect [18] [19] , i.e., the proportionality of 

Tc and Hc to M−1/2 for isotopes of the same element. In 1956, Cooper showed that even 

a weak attraction can bind pairs of electron into a bound state and the Fermi sea of 
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electrons is unstable against the formation of a least one bound pair, regardless of 

how weak the interaction is, so long as it is attractive. According to this theory, as 

one electron passes by positively charged ions in the lattice of the superconductor, the 

lattice distorts and the center of positive charge shifts. Virtual phonons are emitted 

and form a cloud of positive charges around the electron. After the electron passes, 

but before the lattice springs back to its normal position, a second electron is drawn 

to the cloud. It is through this process that two electrons, which should repel one 

another, get connected. As one electron of a Cooper pair passes close to an ion in the 

lattice, the attraction between them causes a vibration. This vibration can be passed 

from ion to ion until the other electron of the Cooper pair absorbs the vibration. The 

net effect is that the electron has emitted a phonon and the other electron has 

absorbed the phonon. 

The Coulomb interaction among two electrons gives the interaction energy in space 

as: 

𝑉𝑐 =
4𝜋𝑒2

|𝑘⃗ 1 − 𝑘⃗ 2|
2
+ 𝑇𝐹

2
 

(21) 

in the Thomas-Fermi approximation, where λ2
TF is the screening parameter. Calling V 

the potential due to electron-phonon interaction, in order to get attraction, we need 

Vc + V < 0. It is more favorable if  . 

 

Figure 2.2: Two electrons processes mediated by phonons 
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With this, we write the Hamiltonian in k-space as: 

 
𝐻 = ∑𝜖(𝑘)𝑏𝑘

∗𝑏𝑘
 

𝐾

+ ∑ 𝑉(𝐾)𝑏𝑘
∗𝑏𝑘

 𝑏𝑘1−𝐾
∗ 𝑏𝑘2+𝐾

 

𝐾,𝑘1,𝑘2

 
(22) 

Where the first term represents the kinetic energy of the electrons measured from 

the Fermi level and b∗ and b are the creation and annihilation operators. The second 

term V (K) is the electron-phonon interaction. Dealing with fermions, they must obey 

the anti-commutation relations [bk,b∗
k0] = bkb∗

k0 + b∗
k0bk = δkk0 Canonical 

transformations introduced by Bogoliubov [32] show pairing properties i.e. they link 

the state (k+) with the state (k--).  

These are: 

 β𝑘
∗  =  𝑢𝑘𝑏𝑘

∗ − 𝑣𝑘𝑏−𝑘   (23) 

 β−𝑘
∗  =  𝑢𝑘𝑏−𝑘

∗ + 𝑣𝑘𝑏𝑘  (24) 

 β𝑘
  =  𝑢𝑘𝑏𝑘

 − 𝑣𝑘𝑏−𝑘
∗   (25) 

 β−𝑘
  =  𝑢𝑘𝑏−𝑘

 + 𝑣𝑘𝑏𝑘
∗

 (26) 

Here uk and vk are the transformation coefficients and β𝑘
  , β𝑘

∗  have the same anti-

commutation relations for fermions if u2
k +vk

2 = 1. Using the anti-commutation 

properties and the fact that for the ground state: βk (no objects in the ”vacuum” can be 

annihilated) will lead to the new Hamiltonian at zero temperature: 

 
𝐻 = 2∑𝜖(𝑘)𝑣𝑘

2

𝑘

+ ∑𝑢𝑘
 𝑣𝑘

 𝑢𝑘′
 𝑣𝑘′

 

𝐾,𝑘

+ 
(27) 
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+∑{2𝜖(𝑘)𝑢𝑘𝑣𝑘 + (𝑢𝑘
2 − 𝑢𝑘

2)∑𝑉(𝐾)𝑢𝑘′𝑣𝑘′

𝐾

}

𝑘

𝛽𝑘
∗ 𝛽−𝑘

∗   

We make the third term equal zero (in order to find the energy of the ground 

state we choose uk and vk to eliminate this term which has the creation operators) and 

the BCS assumption that the attractive potential V (K) = −V (constant) between an 

energy range ±ħω. Now we define: 

 

∆0≡ −𝑉 ∑ 𝑢𝑘′𝑣𝑘′

ħ𝜔

−ħ𝜔

 

(28) 

when 1=u2
k + vk

2  yields: 

 

 

(29) 

and 

 

 

(30) 

Substituting back in (2.16) gives 

 

 

(31) 

and changing the momenta into an integral over, we get 

 

 

(32) 

so 
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(33) 

for weak-coupling N(EF )V << 1 . This parameter ∆0 represents the binding energy of 

a Cooper pair. Going back to (2.15) we get: 

 

 

(34) 

The eigenstate |0 > has a lower energy than the full Fermi sphere of electrons. 

This state is the vacuum of the operators βk, βk
∗ , according to its definition βk

∗ creates 

an electron in the state k with amplitude µk and at the same time destroying an 

electron in the state − k with amplitude νk (hole). The excitations of the 

superconducting state are thus rather peculiar quasi-particles which change from 

being electrons to being holes as they pass through the Fermi level. In the range of 

energy ∆0 each quasi-particle is a mixture of an electron in k and a hole in − k. The 

energies of these excitations are just 

 
 

(35) 

Even at the Fermi surface where  is the energy gap above 

the superconducting ground state and the excitations consist of the breaking of pairs. 

At finite temperature, the critical temperature is defined as the temperature at which 

∆(T) goes to zero. In this case E(k)ε(k), and the excitation spectrum becomes the 

same as in the normal state. It leads to the famous BCS relation  
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The temperature dependence of the gap is found as  for weak-

coupling superconductors. In strong-coupling theory ∆ becomes complex and energy 

dependent according to tunneling measurements. 

2.4 ABRIKOSOV VORTICES 

Vortices deserve special mention here, as a significant portion of our findings deal 

with their life and death cycles within the superconducting state. In a Type-II 

superconductor, some magnetic flux is allowed through the bulk of the material once an 

applied magnetic field surpasses the lower critical field limit (Bc1). The flux penetrates 

the material in small holes. In order to maintain this field, small portions of supercurrent 

circulate the “core” of the vortex. These were first predicted by Alexi Abrikosov in 1957 

(Abrikosov, 1957). 

 

Fig 2.3 Top-Down View of Vortices 

 

Fig 2.4 Side View of Vortex Cores 
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This creates a pockets of the quantum system pushed into the normal state, with 

small supercurrents circling around it to counteract the local field. These are Abrikosov 

Vortices and have an approximate core width equal to 2ξ. Also called fluxons, they are a 

quantized amount of magnetic flux given as ф0 = ℎ
2𝑒⁄  . This amount of flux is the same 

regardless of what material they exist in and permeate through. At the boundary of these 

vortices, there is a gradient of supercurrent density (ns in the below figure 2.3.3) that 

increases as you go further from the core (r), at a rate based on the coherence length. The 

local magnetic field decays as you enter the superconductor.  

 

Figure 2.5 Shows the relative qualities of the supercarrier density ns  

and the B-field as how they relate with distance r from the center of the vortex core. 

This local field decays as a zeroth order Bessel function:  

 

 

(36) 
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(37) 

The field within the core is more generally shown as: 

 

 

(38) 

Where  is the Ginzburg-Landau parameter, and is greater than 1
√2

⁄  for Type-II 

superconductors. 

2.5 DISSIPATION FROM FLUXON INTERACTION 

As previously discussed, much of the dissipation or resistance seen within the 

transition of Type-II superconductors comes from the interaction between the vortices 

and the current travelling through the superconductor. Although this was shown to be 

false by E Bruner Hansen, the force on the vortices looks just like a Lorentz force related 

by: 

 

𝐅𝐿𝑜𝑟𝑒𝑛𝑡𝑧 = 𝐣 x 

0

c
 

(39) 

As the current flows across the vortices, they receive a perpendicular acceleration 

that causes them to flow. This new movement creates a localized time variant B field and 

introduces Maxwell’s equation for Faraday Induction: 

 

 x 𝐄 = −
𝜕𝐁

𝜕𝑡
 

(40) 
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This motion creates an electric field opposite the direction of the current, or a 

reverse emf. As the reverse emf opposes the current and tracks proportionally with the 

applied current, it is seen as a resistance within the sample.  

2.6 LIKAHREV CONDITION FOR VORTEX EXPLOSION 

A novel phenomenon related to the Abrikosov Vortex was established by 

Konstantin Likharev in 1979 (Likharev, 1979). He proposed that these vortices can 

essentially “explode” if constrained too tightly. This condition is when the 

superconducting coherence length is on the same length scale as the boundary to which 

the vortex is constrained. Visually: 

 

Figure 2.6 Shows the relationship between the confining dimension (d) and the effective 

width of the vortex. 

In Figure 2.6, ‘d’ is the constraining width (in thin films, it’s usually denoted as 

the thickness or depth of the film). As the size of the vortex approaches that of its 

container, the supercurrent required to maintain that magnetic flux is squeezed. As 

discussed previously, the coherence length is dependent upon the “strength” of the state. 

This state can be weakened by additional energy in the form of a higher temperature or a 
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higher local current density. So, as the super current is squeezed, the density grows, 

which increases the size of the vortex. This further squeezes the current and starts a 

feedback loop. This quickly leads to the phenomenon of “vortex core explosion”. The 

condition for which this occurs is 4.4 ξ ≤ d. 

2.7 BKT THEORY 

 

2.7.1 GENERAL KT SUPERFLUID STATES 

The Kosterlitz–Thouless transition (BKT transition) is a phase transition in the 

two-dimensional (2-D) XY model. It is a transition from bound vortex-antivortex pairs at 

low temperatures to unpaired vortices and anti-vortices at some critical temperature. 

Established by physicists John M. Kosterlitz and David J. Thouless. KT transitions can be 

found in several 2-D systems in condensed matter physics that are approximated by the 

XY model, including Josephson junction arrays and thin disordered superconducting 

granular films.  

The XY model is a two-dimensional vector spin model that possesses U(1) or 

circular symmetry. This system is not expected to possess a normal second-order phase 

transition. This is because the expected ordered phase of the system is destroyed by 

transverse fluctuations, i.e. the Nambu-Goldstone modes (see Goldstone boson) 

associated with this broken continuous symmetry, which logarithmically diverge with 

system size. This is a specific case of what is called the Mermin–Wagner theorem in spin 

systems. Rigorously the transition is not completely understood, but the existence of two 

phases was proved by McBryan & Spencer (1977) and Fröhlich & Spencer (1981). 

In the XY model in two dimensions, a second-order phase transition is not seen. 

However, one finds a low-temperature quasi-ordered phase with a correlation function 
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(see statistical mechanics) that decreases with the distance like a power, which depends 

on the temperature. The transition from the high-temperature disordered phase with the 

exponential correlation to this low-temperature quasi-ordered phase is a Kosterlitz–

Thouless transition. It is a phase transition of infinite order. 

In the 2-D XY model, vortices are topologically stable configurations. It is found 

that the high-temperature disordered phase with exponential correlation decay is a result 

of the formation of vortices. Vortex generation becomes thermodynamically favorable at 

the critical temperature Tc of the KT transition. At temperatures below this, vortex 

generation has a power law correlation. 

Many systems with KT transitions involve the dissociation of bound anti-parallel 

vortex pairs, called vortex–antivortex pairs, into unbound vortices rather than vortex 

generation. In these systems, thermal generation of vortices produces an even number of 

vortices of opposite sign. Bound vortex–antivortex pairs have lower energies than free 

vortices, but have lower entropy as well. In order to minimize free energy, F=E-TS, the 

system undergoes a transition at a critical temperature, Tc. Below Tc, there are only 

bound vortex–antivortex pairs. Above Tc, there are free vortices. 

The thermodynamic argument for the V-aV pair creation regime. Given the 

energy of a vortex is E0*ln(R/r). Here E0 depends on the system which the vortices are 

created, R is the limiting size of the system (smallest of l,w, OR d) and r is the size of the 

vortex (~). In the 2-D planar system, the number of spacial states (Nx) goes as (R/)2. 

The entropy then goes as: S=kBln(Nx).  

 𝑆 = 𝑘𝐵𝑇 ln(𝑁𝑥) =  2𝑘𝐵𝑇 ln (𝑅 ⁄ ) 
(41) 

Inserting into the Free Energy Equation: 
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 𝐹 = 𝐸 − 𝑇𝑆 =  E0 ∗ ln (𝑅 ⁄ ) −  2𝑘𝐵𝑇 ln (𝑅 ⁄ ) 
(42) 

 𝐹 = (E0 −  2𝑘𝐵𝑇) ln (𝑅 ⁄ ) 
(43) 

So, when the free energy is greater than 0, it is not energetically favorable for V-

aV pairs to form. However, when F<0, it is statistically favorable for their generation. 

The junction at which they will or will not form can be found at F = 0: 

 𝐹 = (E0 −  2𝑘𝐵𝑇) = 0 (44) 

 E0

2𝑘𝐵
=  𝑇 ≡ 𝑇𝑉  

(45) 

We define this as TV, which is the lower bound of the BKT region. 

2.7.2 BEREZINSKII–KOSTERLITZ–THOULESS TRANSITION (BKT) 

The BKT transition is a specific application of the more general KT superfluid 

vortices then applied to superconducting systems of similar context. The main system 

concerning our research is a 2-D virtual superconducting layer at the interface between a 

topological insulator and Chalcogenide. In this two dimensional system, we see these 

Vortex-antiVortex (V-aV) pairs statistically generated based on the favorability of their 

energy states and the thermal fluctuations in the material.  

Above the BKT region, the superconductors will be normal, therefore no vortices 

will form without some condensed carriers formed. Within the BKT region, the carriers 

have condensed to form the superconducting state and there is enough energy to 

thermally unbind these pairs. As we track below some lower bound TBKT the V-aV pairs 

are still thermally generated, however there is not enough free energy to thermally unbind 

them. Since dissipation in Type-II superconductors is generally the result of interaction 
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with fluxon vortices, we will see dissipation (resistance) effects within the regime that do 

not follow traditional theoretical models.  

 

 

 

 

 

 

 

 

 

 

These virtual pairs, when unbound and subjected to an applied current, will move 

based on effectively a “Lorentz Force” law as previously discussed. This means in the 

unbound state we have additional measured dissipation. When the pairs are bound, below 

the BKT transition, they do not create this dissipation. Upon reaching the edge of the 

substrate they are either destroyed due to an inability to keep up the circulating 

supercurrent or are simply annihilated through collision with other vortices. These virtual 

pairs always exist below the BKT transition level, and are thermally activated. However, 

as we will discuss later, they can also become unbound through applying a “depairing” 

current to the system.  

I I 

virtual pairs 

Figure 2.7 While in the BKT transition, virtual Vortex-antiVortex  

pairs are statistically generated AND thermally unbound 
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CHAPTER 3 

INTERFACIAL SUPERCONDUCTIVITY AND BT/FT 

The particular system in our experiment is a layered superconductor. There 

is a layer of bismuth telluride, which is itself a topological insulator, and a layer of 

iron telluride, an iron chalcogenide. While neither one independently is a 

superconductor, there is a manifestation of superconductivity at the interface 

between a topological insulator and an iron-chalcogenide compound. This is a very 

curious phenomenon, and helpful for probing many recent theoretical predictions 

surrounding these two, very new classes of materials. Our collaborators report 

electric transport measurements on a Bi2Te3/FeTe heterostructure that was 

fabricated using van der Waals epitaxy.  

 

Figure 3.1 Electronic Transport measurements of the individual components of the 

system as compared to the Interfacial System 
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Induced by the BiTe epitaxial layer, the combination revealed 

superconductivity, with thicknesses even down to one quintuple layer. Though 

there is no clear-cut evidence that the observed superconductivity is induced by the 

topological surface states. The two-dimensional nature of the observed 

superconductivity with the highest transition temperature around 12K was verified 

by the existence of a Berezinskii–Kosterlitz–Thouless transition and the diverging 

ratio of in-plane to out-plane upper critical field on approaching the 

superconducting transition temperature. With the combination of interface 

superconductivity and Dirac surface states of BiTe, the heterostructure studied in 

this work provides a novel platform for realizing Majorana fermions. (Qing Lin He, 

2014) 

 

 

Figure 3.2 HADDF image showing the sharpness of the gap between the two layers 
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Figure 3.3 (Top) Current density dependent voltage of the Bi2Te3(7 QLs)/FeTe 

heterostructure at different temperatures. The inset shows its temperature-dependent 

critical current density. (Bottom) Tc(onset) versus the thickness of Bi2Te3 thin film in 

units of QL. The dash line is a guide to the eyes 
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Figure 3.4 The normalized R–T curve of Sample A is plotted in four regions covering 

from GL, BKT, FSE to SC. The inset shows the same curve in a logarithmic plot. The red 

curve is a fit with the interpolating an inhomogeneity effect model, while the black curve 

is a fit based on the infinite-size limit. 
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CHAPTER 4 

EXPERIMENTAL SETUP AND PROCEDURE 

4.1 SAMPLE PREP 

 

4.1.1 PHOTOLITHOGRAPHY 

 The first step in the photolithography was applying a layer of photoresist. 

For this, we used a simple dropper to apply photoresist AZ-1350JF on top of a 

cleaned sample. Then, a spin coater WS-650SZ-6NPP/LITE from Laurell 

Technologies Corp 4.2 was used to thin the drop into a layer for lithography. The 

spinner is compact and packed with advanced features like programmable/storable 

speed control, high-performance drive up to 12,000 RPM. It uses pressurized air to 

drive the pneumatic vacuum generator and protect its motor. A similar operation 

was used to create the specialized masks we made for this experiment. 

Spinner Operation 

1. Turn on the power supply of the spinner and compressor. 

2. Make sure the outlet pressure of the compressor is in the range of 60 ∼ 70psi. 

3. Press "Select Process" and use the up-down buttons to choose the saved set 

up process or create a new one. 

4. Press "Edit Mode". Check all the settings. If you want to modify, press "tab 

<" and then move the flashing cursor to choose the parameter to change. 
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5. Press "Run Mode". Confirm the settings. 

 

Figure 4.1 Spin Coating Machine 

6. Open the lid and mount the right vacuum chuck. The 3mm chuck is a good 

choice for the sample. For the slide, the specific chuck should be used. 

7. Put the sample or slide on top of the chuck. Carefully align the center of the 

sample at the rotational axis of the platform. 

8. Press "Vacuum". The Vac reading on the screen should rise from 0 to about 

23. If not, check the compressor and the contact between the chuck and 

sample. If the O-ring of the chuck is leaking, replace it. 

9. Drip the photoresist or other chemicals on the top of the sample. Make certain 

that the chemical covers the whole surface without any bubbles. None of the 

chemicals should get into the hole of the chuck. If that happens, it may 

damage the motor. Therefore, it’s very important to confirm the vacuum in 

last step to make sure the seal is good. 

10. Close the lid. 
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11. Now the LED of the "Start" button should be illuminated. 

12. Press "Start". The rotation will start. Wait for it to finish. If something goes 

wrong, press "Stop". 

13. After it stops, open the lid. 

14. Press "Vacuum". The Vac reading drops down to 0. 

15. Take out the sample. 

16. If finished all the coating, put a protecting cap on the chuck and close the lid. 

Turn off the power supply and the compressor. 

 

4.1.2 PATTERN EXPOSURE 

After coating the samples, we used the Olympus DP-11 microscope system in 

order to expose the photoresist. We used various masks to pattern our bridge (Figure 4.2), 

contact pads, and delineate everything. I rewrote the process in order to optimize sample 

stability and minimize the amount of handling/etching time required. The general process 

is as follows: 

1. Prepare the developer (AZ-400K) bath, water bath, and drying station. 

2. Insert main bridge pattern into the appropriate slot, centered in view finder.  

3. Focus the pattern such that its edges are focused and then zoom in just a bit.  

4. Remove protective UV and yellow filters from the microscope. 

5. Expose main bridge pattern by turning up the intensity of the bulb, slowly, until 

reaching maximum.  
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6. Expose this pattern for approximately ¼ of the required time (e.g. for a 20x 

exposure that usually takes ~45 seconds, so 10-15 seconds).  

7. Restore filters and transfer to development. 

8. Develop pattern for approximately ¼ the required development time (for single 

coating, this is about 5 seconds).  

9. Using this faint outline of our pattern, return to the microscope for exposure.  

10. Using the various other slides and shields, delineate the main contact pads (more 

discussion in Appendix 1) by exposing for the full required duration. 

11. Develop delineation for ~½ time. 

12. Return and expose full pattern. 

13. Develop until the pattern is fully visible. 

14. Bake remaining photoresist pattern for an additional two minutes to strengthen the 

resist. 

This process allows the delineating lines to be over exposed and weakened 

compared to the bridge pattern. When ion-milling, this helps guarantee isolation of the 

various contact pads and connections to the sample. I found the resist would often break 

down under etching and this seems to have corrected the issue. 

 

Figure 4.2 Schematics of our two more commonly used bridge geometries 



 

31 

 

4.1.3 ION MILLING SYSTEM 

 When the sample has been properly exposed, we move on to etching the pattern. 

We do this by inserting it into our Ion Beam Milling System (IBMS-100). It injects 

Argon gas into an evacuated system. It has an up to ~2.5keV energy beam that it uses to 

bombard the sample with a variable current, useful in the range of 80-120uA. The 

required strength of the beam depends on the toughness of the material being etched. It is 

imperative to test the system to determine the lowest useful energy, as too much beam 

energy can break down the injection needle, bias plates, or photoresist. After determining 

the required energy, the argon injection rate can be adjusted to maximize the milling rate 

for that particular energy. 

 

Figure 4.3 Argon atoms bombard the film after accelerating through High Voltage plate. 

The unprotected part will be etched and the parts with photoresist will remain intact. 

This process is preferable to other methods like acid etching because it reduces 

undercutting and is generally safer due to the non-interactive nature of the Argon gas and 

vacuum which etching is done in. One drawback is that the process can heat the sample 
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(ranges 15-25K) so any films with temperature sensitivity may not be optimum. Our 

procedure is as follows: 

Operation for Oxford ion gun 

1. Make sure everything is at off position. The flow control valve should be at 0 and 

 the green knob should be open. The lid of IBMS-100 should be also closed. 

2. Carefully put the sample at the marked position inside ion milling chamber. 

3. Mount the gun head with matching the marker positions at both ends. 

4. Turn on the rough pump. 

 

Figure 4.4: Oxford ion gun and IBMS-100 

5. Open the turbo rough valve fully. 

6. Switch the vacuum gauge to turbo position and monitor it. Wait for it to drop 

under 20 mTorr. 

7. Turn on the turbo pump. Push the switch "ON" and it will return to middle. At 

first, the yellow LED is on. When the green one in on after about 2 minutes, that means 

the turbo pump is in full speed. The turbo should be used only under full speed. 
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8. Fully close the turbo rough. Pay attention here. The panel is not flat so the knob   

may touch the panel when it’s closing. Go for one more turn when it has touched the 

panel. 

9. Open the chamber rough and switch the vacuum gauge to chamber position. 

10. Let it drop to under 100 mTorr. 

11. Close the chamber rough and switch the vacuum gauge again back to turbo. 

12. Open the turbo rough again. Wait the reading drop back to 20 mTorr. 

13. Check the chamber pressure and make sure it’s less than 1000 mTorr. If not, make 

sure it’s not leaking or repeat pumping the chamber by the rough pump with closing the 

turbo rough. 

14. Slowly and carefully open the high vacuum valve while monitoring the turbo back 

end vacuum. It should not be over 100 mTorr. 

15. Let it pump for about 20 minutes. 

16. Open the argon gas cylinder and switch the manifold (Fig. 4.5) to old ion gun. 

Adjust the low pressure gauge to be 10 psi. 

17. Set the flow control valve to be 6.1. Wait about 20 minutes to let the pressure to 

be stable. 

18. Make sure the beam probe has been connected to the gun head. Turn on the power 

of the ion gun. 

19. Adjust the beam current. The beam current should be able to reach 100µA with 

the beam energy less than 2.5keV. Never use higher energy. It’s normal if the current is 

less than expected at the beginning since it usually will rise after it’s heated up. If it failed 

to reach 100µA, check the pressure. Adjusting the high vacuum valve may be helpful. 
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20. When it’s done, turn off the ion gun power supply. Close the gas cylinder and the 

flow valve. 

21. Close the high vacuum valve. Now it’s ready to vent the chamber. 

After the above procedures, the pump station is still on with turbo pump at full 

speed, turbo rough open and the following valves closed: chamber rough, high vacuum 

and flow control valve. To completely shut it down, the turbo pump should be turned off 

first and then the rough pump should run for another half hour to let the turbo pump slow 

down; it should also be cooled down by fan. Then close the turbo rough. It’s ok to shut 

down the rough pump now.  However, if it’s necessary to take another ion milling soon, 

it’s better to keep the turbo running. To do one more ion milling, just start from Step 7. 

(Liang, 2013)  

4.1.4 APPLYING CONTACTS 

Arguably the most intense step, applying contacts to these samples is like 

performing open heart surgery on a Lilliputian...with a toothpick. The most common way 

of applying wires to microbridge samples is using a contact wire bonding setup, often 

using wires made of Aluminum. We found this problematic as it can drastically increase 

contact resistance (orders of magnitude larger than the resistance of the bridge itself), can 

potentially damage the material (arms are often sharp and lead to fine cracks in some 

crystals), and the connections are easily disturbed or broken.  

Instead, we use Indium as a bonding agent. It is very soft and reduces damage to 

the sample itself. As it does create a chemical bond with most metals, indium contact 

resistance is less than an Ohm (some in the mOhm range). We place copper wires within 

indium pads on the sample and have particularly low resistances along with solid 
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physical connections. One drawback from this process is that there are multiple junctions 

(Sample-Indium-tin-copper) that can introduce thermal offset voltages.  

 

 

 

Figure 4.5: Size comparison of my wedding ring to size of contacts (tiny dots) 

4.2 MEASUREMENT SYSTEM 

4.2.1 PT 405 CRYOSTAT 

The detailed diagram of PT405 cryostat and magnet is in Figure 4.6. PT405 

is a two stage pulse tube cryocooler. It works with Cryomech CP950 compressor 

which requires water cooling to function. When it’s running, the helium is 

compressed and then expands in the cold head. The expansion first happens in first 

station that will also cool down the gas and then in the second stage to drop the 

temperature lower. Therefore, the two stage cryocooler can provide lower 

temperature, but the path of the gas running through will be longer and so the 

frequency of compression and expansion will be lower (∼ 1.4Hz). This results in 

the fluctuation of the temperature. 
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To get the temperature stable, we have to use the sound trigger system in 

Sec. 4.2.3. 

 

Figure 4.6: PT405 cryostat with GMW 3473-50 magnet. 

The water cooling GMW 3473-50 magnet is installed on a rotor. It can be 

turned horizontally. Two ferromagnetic iron cores can be pulled out while 

mounting the sample. The maximum field is about 1.25T. One Hall magnetic sensor 

is placed on one of iron pole face to measure the field strength between the iron 

faces. The sample holder is on the end of an extension copper rod from the second 

stage of the pulse tube. The holder is also in between the magnet poles so that it 

changes the applied magnetic field on the superconductors. 
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Figure 4.7: Schematic of PT405 and its magnet. The inset is the sample holder.  

The internal positions of sensors and heater are also present. 

By choosing different sizes of copper plates, we can adjust the cooling 

power from the cooling stage to the top copper plate. Our goal is to use a 50W 

heater to heat up the top plate and change the temperature at the sample platform as 

well. To calculate the length required of the bottom copper plate, we start from the 

heat conduction formula: 

 𝑞 =  −𝑘(𝑇1 −  𝑇0)/𝑑 (46) 

where q is the heat flux and k is the thermal conductivity coefficient. For OFHC 

copper, k ≃ 300W · m−1 · K−1 at 100K. T1 and T0 are the temperatures at two ends.  

4.2.2 GMW MAGNET 

For applying external magnetic field to the sample, we use GMW electromagnet, 

model 3473-50, was used to generate the magnetic field at the sample. The sample was 
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placed between two poles of 150 mm diameter; the gap between poles was around 35 

mm. Figure 6.9 shows a picture of the magnet. A Power Ten, model I62B-4050A 

provides power to the electromagnet. The maximum current is 50A resulting in a field of 

around 1.3 Tesla. 

An HGT2100 Hall probe was used to measure the magnetic field at the sample. A 

fixed dc-current of 1.008mA was sent to the Hall probe. The transverse voltage was 

measured by a Keithley model 2000 multimeter. It gives the transverse resistance, which 

is proportional to the magnetic field. The proportionality coefficient of our hall probe is 

~194 Ohms/Tesla. The Hall probe’s offset was calibrated using Helmholtz coils. The 

transverse voltage of these, as the current in the coils is increased, is given in Figure 6.10. 

The offset was found to be 0.75mV. So B is calculated using the formula: 

 

 

(47) 

The magnetic field remained consistent and very stable during all measurements. 

It gave a standard deviation around of 6.5 × 10−5 T (Gabriel F Saracila, 2010) . The 

profile of the field in the area of the sample probe can be seen as following: 

 
Figure 4.8 Radial Field Profile 
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Here we see the field as a function of the radial distance from the center of the 

two poles. The field has no real variance within the two poles (maximum variance of less 

than 1 cm from center). The transverse B-field profile was similarly well behaved. The 

maximum B variation is <1% and is much less in the sample area (+/- 0.5cm). 
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Figure 4.9: Longitudinal Field Profile 

  

4.2.3 TEMPERATURE CONSIDERATIONS 

Accurately measuring the temperature is the most difficult and important 

measurement for a variety of reasons. One of the most common issues comes in to play 

due to the pulsed nature of the cryostat cooling. Because our system “breathes” at a 

frequency of ~1.4Hz, this means there will be short term temperature fluctuations with a 

periodicity on that order. To combat this, we designed the system to have a significant 

amount of heat sinking, thermal isolation, and triggering based on this breathing cycle.  

To help keep as much heat out of the system, there are concentric layers of 

aluminum and steel to help keep radiative heat transfer to a minimum. We also set the 

sample location to be on a significant amount of copper sinking and far away (0.5M) 
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from the tug of war between the cold head and the power resistor used to heat the 

chamber. This acts as a capacitor of heat energy which diminishes the fluctuation 

considerably. 

In order to further minimize the effect of this temperature fluctuation, we have 

synchronized our measurement system to the breaths of the compressor using a very 

simple microphone setup. We listen to the sounds and delay our entire system’s 

measurements based on how far into the cycle is optimum. The best delay depends on 

many properties of the sample and should be done empirically whenever a new material 

is used.  

 
Figure 4.10: Trigger by Sound diagram 

  

Another consideration was long term temperature instability. Though our current 

setup allows us to negate short term variation in temperature, there was significant long 

term drift associated with our setup. Because the temperature is “set” by changing the 
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power sent to our heater controller, this allows for long term swings in temperature just 

based on ambient room temperatures and the cooling power of the compressor (affected 

by the temperature of the water that is cooling it). Shown here, is a two day run where we 

were attempting to measure something at the same temperature (long slow RvsB): 
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Figure 4.11: Long-term Temperature Instability 

  

 In order to correct for this, I wrote a temperature control program (Appendix B) in 

order to stabilize long term random shifts in cooling power. Essentially, it takes a 

weighted average of the most recent points, finds the general dT/dV of the heater and 

adjusts according to how far away from the temp it should be. This not only helps cancel 

out long term shifts, but the implementation specifically rejects large overcorrections. So, 

there is some very minor short term variance increase, but the long term effects are 
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considerably more helpful. Here, on the same relative scale, is the temperature shift after 

the correction program was tuned: 
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Figure 4.12: Corrected Temperature Control 

4.2.4 DC MEASUREMENT 

We use a very simple 4-probe measurement technique. There is a voltage source 

that flows into some large-variable ballast resistor to stabilize the current. Then it flows 

through a large standard resistor (~10,000 Ohms) for which we know the resistance to be 

stable and precise. Then it flows down the mounting platform to our sample and back to 

the supply. One addition that many people overlook is our use of a current reversal relay 

system that allows us to measure the current/voltage relationship in both directions. This 

is helpful because there are often significant voltage offsets (mostly thermal emf) that can 

be discarded by looking at the forward-reverse currents.  
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Figure 4.13: Circuit of DC 4-probe measurement. The Double Pole Double  

Throw(DPDT) relay is operated by the DAC card in the computer. 

In this experiment, we were working with a very thin sample, and so wanted to 

extend our lower current measurement capabilities. One way we accomplish this is by 

using a buffer system within the Keithley meters themselves. We take repeated readings 

that are stored and then averaged by the meters themselves in order to minimize the 

amount of random fluctuation in the voltage signal.  

This did not appear to be quite enough to get into the nA range like I had wanted. 

So, I designed a simple filtration circuit to help stamp out high frequency noise and 

stabilize the signal. Made more difficult because of the current reversal portion, simply 

throwing capacitors on there was not an option because the voltage needed to be able to 

respond fast enough to the switch. Here is an oscilloscope scan of the noise level that we 

started with: 

 

Figure 4.14: DC signal noise pre-filter 
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The jump in the middle of Figure 4.14 is the current switching directions, so the 

total signal size here is approximately 250 mV with noise at +500mV. This is a 

demonstrable set to show the noise to already be quite high (need levels 5-6 orders of 

magnitude lower), even at low signal levels (applied current is ~10uA). After some 

calculation and testing, the circuitry I came up with is shown here: 

 

Figure 4.15 RLC Circuit with values R1=7Mohm, L1=.13mH, C1=50nF, L2=RFChoke, 

C2, 0.5uF 

 

Figure 4.16 DC Noise Filter 
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Figure 4.17: Corrected DC Noise 

From Figure 4.17, we see a drastic reduction in the size of the noise relative to the 

signal (and overall). Note the change in scale from 200mV-100mV per box. Empirically, 

this results in a significant noise drop, shown in Figure 4.16 across a 50Ohm resistor. 

This allowed us a much more trustworthy data acquisition setup, particularly given the 

very low signal sizes required for this experiment. Resistance on the order of 10 Ohms 

maximum and currents pushing into the nA ranges required extremely precise voltage 

measurements accurate to the nV scale. 

We have some preliminary resistance vs temperature (at various currents) curves 

that show some promising results. One thing that this experiment requires is an 

estimation and improvement of how low in current we can go while still making sense of 

the data. I’ve improved our measurement system in a few ways, and determined a lovely 

relationship between safe currents and the resistance of the sample we’re attempting to 

measure. This was found using data shown in Figure 4.18 and 4.19. Considered 

differently, a way to estimate our uncertainty at a given measurement of resistance and 

current for signal size:  𝐼𝑠𝑎𝑓𝑒 =  1.7279 ∗ 10−7𝑒(−𝑅
7.07011⁄ ) 
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Figure 4.18: Low current extension comparison 

 

Figure 4.19: Error percentages vs Current for various resistors 
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4.2.5 PULSED QUASI DC 

Our group uses a pulsed current setup that allows us to get to current densities 

higher than many other groups in our field. Measurements involving high current 

densities—which in the present case enter the current-induced depairing regime—cause 

both bulk dissipation (because the system becomes resistive) and heat generation at 

contacts. Both forms of these heating can be reduced by a using a short-duration, low-

duty pulsed signals instead of the continuous signals, while continuing to maintain a 

conventional four-probe configuration to exclude contact resistances and thermal offsets. 

A Hewlett Packard HP 8015A Pulse Generator was used produce pulses of the desired 

shape and repetition frequency. A 50 Ohm cable carried the signal from the Pulse 

Generator the signal to the sample, and was terminated in a matching 50 Ohms 

impedance to avoid reflections. Since the sample’s resistance (being in the 

superconducting state) was essentially zero over the experimental range of interest, the 

current through the circuit was set by the output voltage of the pulse generator and did 

not vary with field or temperature (i.e., the sample did not influence the current very 

much). The current as a function of time 

I(t) could be obtained by measuring the voltage across a series resistor or 

inductor. Both I(t) and the voltage across the sample V (t) were displayed on a Lecroy 

Waverunner 204 Xi, 2 GHz Digital Storage Oscilloscope. The single-shot sampling rate 

of 10 Gs/sec was used and 2000 pulses were averaged to yield low-noise data. Rise time 

in V(t) and I(t) is around 50 ns (from 10 and 90 % of top). The system was tested and 

calibrated by mounting various known standard resistors in place of the sample. As an 

example, Figure 4.20 shows V (t) and I(t)*R for a 14 mΩ test resistor. 
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Figure 4.20: Oscilloscope Wave Forms for V (t) and scaled current I(t)R in pulsed 

current mode 

 

Figure 4.21: Four Probe Pulsed measurement circuit
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CHAPTER 5: 

RESULTS AND ANALYSIS 

 

5.1 GENERAL MEASUREMENTS 

 

5.1.1 CRITICAL TEMPERATURE 

First and foremost, we needed to get an accurate measurement of the critical 

temperature. Here in figure 5.1 we see the resistance-temperature behavior of our two 

BT/FT samples at a low enough current (~13uA) such that there is insignificant shift in 

Tc due to depairing. We see that both bridges match well, implying a relatively 

homogenous crystal structure across the entire wafer.  

We define our critical temperature to be at the onset of the superconducting state. 

Assuming the behavior of the “normal” state resistance would continue as the 

temperature drops, we extrapolate the curve out. Doing the same with the 

superconducting transition, we find the point which the two extrapolations meet and 

determine that to be the critical temperature. Shown in Figure 5.1, there is remarkable 

agreement between the two samples. As delicate as this material is, it shows great care 

was put into the lithography process. Due to them being measured separately, this is also 

great evidence in showing the long term stability of the measurement system. Pertaining 

to thermal cycling and the like, we see great agreement over the entire set of experiments 

which spanned several months. 



 

50 

6 12 18

0

3

6

Tc(sample A)=11.7K, peak at 12.6K

Tc(sample B)=11.8K, peak at 12.6K

HongKong3A and 

HongKong3B (scaled)

B=0T (mumetal shielded)

RvsTinZeroB.opj/Graph4

 

 

R
 (


)

T (K)

 

Figure 5.1 Resistance vs Temperature showing the SC state transition for the two 

samples used. 

 

5.1.2 CRITICAL MAGNETIC FIELD (BC2) 

 The upper critical field was also measured for the BTFT system. We did this by 

measuring the resistance-temperature relationship at various applied B field in both 

parallel and perpendicular orientations. We then take constant resistance “cuts” to 

determine the relationship between the applied magnetic field and the temperature at 

which that field pushes the sample to various percentages of Rn. Figures 5.2 through 5.5 

show this process step by step. First various Resistance Vs Temperature measurements 

were taken at various applied fields. Then we take these ‘cuts’ to determine and 

extrapolate RvsB for a very low T using WHH formalism. 
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Figure 5.2 Resistance vs Temperature curves in a parallel field orientation from 0T-1.2T 

at 0.1T intervals 
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Figure 5.3 cut line for the R-T curves at 50%Rn 

 

Figure 5.4 Parallel Bc2 vs Temperature, Bc2(0) found to be ~70T 
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Figure 5.5 Perpendicular Bc2 vs Temperature, Bc2(0) found to be ~17T 

 

5.2 DEPAIRING CURRENT DENSITY 

The depairing current density or pair-breaking current is one of intrinsic 

parameters that sets a fundamental limit to superconductivity survival. It is the current 

density at which the kinetic energy of the superconducting carriers becomes equal to 

the binding energy of the Cooper pairs. By increasing T, B and j, superconducting gap ∆ 

decreases. The boundary at T, B and j phase that ∆ vanishes, separates superconducting 

state from normal state and all these parameters attain their critical values Tc, Bc2 and jd 

respectively. Any of these functions can separately define critical boundary. 

Tc and Bc2 measurements are done routinely while jd is seldom measured due to 

technical difficulties associated with sample heating at high currents [10]. A series of 

useful reviews have been given on the calculation of the depairing current. These 
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theoretical calculations cover different regimes. The simple London equations are valid 

at Tc, but it failed at the lower temperature since it did not take into account the effect 

of the change in the order parameter with the current. The GL theory gives a good 

phenomenological treatment that works well close to Tc. For low temperatures, some 

other theories based on the microscopic theories were proposed. Here, jd can be 

obtained in a simple London approach by equating the kinetic energy and condensation 

energy density expressions: 

 

 

(46) 

In this derivation, it is assumed that ns is not affected by j when it gets closer to 

jd. This formula seems to be far from reality, because it does not consider the fact that 

density of electrons is changing. But gives us an idea that jd depends on both critical 

field and the penetration depth. Then, the velocity of the quasiparticle in a 

superconductor can be obtained by: 

 

 

(47) 

If we substitute above equation in (Eq. 36) and put the derivative of that equal to 

zero, we can find maximum value for vs and Js that beyond that there will not be any ψ 

that minimizes the free energy. 

 

 

(48) 
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The optimum of ψ0 that minimizes free energy at fixed vs is 

 

 

(49) 

By putting above equation in into Eq. 48, we get to corresponding supercurrent density, 

 

 

(50) 

For calculating maximum current we put  = 0 and we get . 

This current now can be identified as maximum possible value for current which is the 

depairing current: 

 

 

(481) 

 

Figure 5.6 Temperature dependence of jd from different theories.  

Replotted from Ref [17]. The solid curve is KL theory, the dashed one is Eq. 55 and the 

dot one is GL’s result. 
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If we combine the previous equation with London penetration depth equation (Eq 46), 

we eventually get 

 

 

(52) 

By considering t = T/Tc, λL(t) = λL(0)/p1 − (t)4 and ξ(t) = ξ(0)/ 1 − t for temperatures 

close to Tc, shift in Tc defined at a given B and j as a function of applied current can be 

calculated: 

 

 

(493) 

In this equation we can see the proportionality to j2/3. jd(0) is then equal to: 

 

 

(54) 

here Bc2(0) = Φ0/2πξ(0)2 is upper critical field at zero temperature. In the MKSA system, 

it becomes: 

 
𝑗𝑑(0) =  5.56 ∗ 10−3 𝜌

𝐵𝑐2(0)

𝜆2(0)
 

(55) 

Here jd is in A/m2, Bc2 is in Teslas and λ is in meters. In above equation, we took 

off the subscript of λL only to prevent confusion. Joule heating will give an apparent 

shift ∆Tc ∝ ρj2 if for any reason heat removal from the sample is ineffective. Different 

groups have done calculations for pair breaking current. Kuprianov and Lukichev 

among them had closer results to phenomenological expression. Phenomenological jd 

was calculated, by inserting temperature dependence of Bc and λ 

 

 

(56) 
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It is important to point out that the predictions on the temperature dependence of 

jd from these theories are the same when the temperature is near Tc. In Fig.7, the results 

of different theories are compared. 

In the limit of lower temperature and in the presence of a uniform velocity vs the 

quasiparticle energies shift by -hkFvs where kF is the wavevector at the Fermi surface. In 

superconducting state, ns stays roughly constant to the point vs is reaching its critical 

value vd. At that point the shift in energy will be equal to the energy gap and the 

velocity gets to vo = 2h/m∗ξ which is the maximum velocity of quasiparticles in GL’s 

framework [14]. 

 

 

(50) 

Here m is the mass of one electron and ξ is the coherence length. j is 

proportional to vs until it gets to vd where value of ns is dropping. For the limit , 

all electrons contribute to supercurrent js = 2ensvs. For temperatures close to Tc, the 

density of quasi particles is proportional to the order parameter |ψ|2 in GL frame, but at 

low temperatures a more microscopic calculation is required to take into account the 

effect of the modification on the quasiparticle density by the drifting velocity. The 

maximum that current can get is slightly higher than the value at vd. By a good 

approximation it can be said that jd ' e∗n∗
svd  and therefore: 

 

 

(58) 
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Magnitude of ξ can be calculated by knowing the value of Bc2. Here kF is a 

constant number and ∆ has temperature dependence. From the RHS of above equation 

the temperature dependence of jd is calculated 

 

 

(59) 

By using the RHS of magnitude of j0(d) in BCS frame and in MKSA system is estimated 

to be 

 
𝑗𝑑(0) =  9.2 ∗ 10−3 𝜌

𝐵𝑐2(0)

𝜆2(0)
 

(60) 

 

 

Figure 5.7 Resistance vs temperature for various applied currents 

 

Figure 5.7 shows resistive transitions in B =0 at various applied currents. Taking 

various resistance “cuts” Rc, as shown by the horizontal dashed lines, one can define the 

temperature that corresponds to a particular “resistive critical current” as the value where 

the curve for that particular applied current intersects the respective horizontal line. (As 
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will be discussed later in this section, as T is lowered below Tc, the normal-state 

conductance is nearly temperature independent and dominated by the normal 

conductance of the interface layer itself; the parallel conductance of the FeTe layer, 

which has a negative R(T) slope, provides a diminishing contribution below Tc.) Plotting 

these currents and temperatures for each criterion, as I2/3 versus T and simply I versus T, 

results in Figs. 5.7 and 5.8, respectively.  

 

Figure 5.8 Current^2/3 vs Temperature at various Rc 

 

Figure 5.9 Current(I) vs Temperature at various Rc 
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As can be seen, there is a threshold around T ≈10 K below which the data follow 

the classic I2/3 ∝ T behavior expected for the temperature dependence of the depairing 

current [Fig. 5.9 (a)]; above 10 K, a linear I ∝ T behavior is followed [Fig. 24]. Figure 25 

shows a similar set of plots for sample B; the threshold temperature is seen to be around 

10.2 K. This cross over in the power law occurs at a temperature that appears to be close 

to the TBKT found by He et al.  (Qing Lin He, 2014). There are several possibilities for 

this cross over.  

 

Fig 5.10  Currents vs Temperature for Sample B 
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  With increasing current, resistance appears in a superconductor at zero external 

magnetic field chiefly through the two processes of pair breaking and flux flow associated 

with the perpendicular component of the self-field of the applied current. The self-field 

has the profile B⊥ self(x)=[μ0I/2πw]ln[(w+2x)/(w−2x)] across the width of the bridge 

(origin taken at the center of the bridge), with the logarithmic divergence cut off by the 

film thickness to B⊥ self(±w/2)=(μ0I/2πw)ln(w/d).  

Even this edge field is only ∼10 mT, which is dwarfed by Bc2 and even exceeded 

by the lower critical field Bc1 over most of the temperature range, so that pair breaking 

dominates over flux dissipation. However, the opposite is true closer to Tc where the self-

field of the fixed current I will exceed Bc1 and will lead to appreciable flux dissipation 

due to the penetration of vortices and anti-vortices at the opposite edges of the film and 

their subsequent annihilation in the middle of the strip. Since B⊥ self ∝ I, we expect, as 

observed experimentally, a linear dependence of the threshold I on T because of the 

linear temperature dependencies of Bc2(T) and Bc1(T) near Tc and the flux-flow formula ρ 

≈ ρn*B/Bc2 ∝ I∗/Bc2(1−T/Tc) leading to I∗ ∝− T for a fixed ρ, where Bc2 = dBc2/dT at T = 

Tc. As T is increased beyond TBKT, the plasma of dissociated Vortex-antiVortex pairs that 

appears above TBKT leads to a suppression in the order parameter and a consequent boost 

in the flux-flow resistivity. This may explain why the cross over between pair-breaking 

and self-flux-dissipation regimes appears to be tied to the BKT temperature. 

 The condition that the self-field at the edges exceeds Bc2(T) gives currents well 

above the values observed in our experiments, so we suggest the following scenario of 

the crossover based on the penetration of vortex semi-loops at the film edges. A rough 

estimate of the current level required to promote penetration of a vortex at the film edge 
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can be obtained from the energy balance between the work of the Lorentz force  

I0d/2w to form a vortex semi-loop of diameter equal to the film thickness d at the edge 

[11], and the self-energy of the vortex 2d/4πμ0λ2 at the film edge [12]. The condition 

I0d/2w 2d/4πμ0λ2 then yields I = I0(1−T/Tc). Here, I0  w0/2μ0λ2(0) ≈0.2 A for λ(0)=124nm 

estimated below from our experimental data. Another window on current induced 

depairing is provided by high pulsed current-voltage characteristics at various fixed 

temperatures. As shown in Figure 25, the current is able to drive the system completely 

normal at all temperatures. This provides one of the cleanest methods [13] for measuring 

the temperature dependence of the normal-state resistance Rn(T) below the transition. 

From Figure 5.10, it is seen that Rn is approximately the same for the different 

temperatures. This is typical of metallic systems in which Rn tends to approach a 

constant residual value as T →0; however, our measurement is sensitive enough to detect 

small variations in Rn (T), which will be plotted and discussed later. The transition in 

R(I) becomes rounded as T → Tc and naturally becomes flat and Ohmic for T > T c. 

Here, we will define the “resistive critical current” I∗ at a criterion of 90% of the Rn 

plateau, anticipating that I∗ ∼ Id as T →0, because this limit represents the current 

required to drive completely normal a fully condensed state.  

 However, the most important addition of this research is the added second order 

effect where there is also a “depairing” region where vortex and antiVortex pairs are 

pulled apart. This is a new phenomenon and does not have significant overlap with the 

depairing discussed here. At our values of the depairing current density near the 

transition, we are several orders of magnitude away from the V-aV and BKT regions.  
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Figure 5.11 Resistance Vs Current, various Temperatures, Near top of transition 

 

Figure 5.12 Depairing Current Vs Temperature Sample A 

 

Figure 5.13 Depairing Current Vs Temperature Sample B 
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Figures 5.9 and 5.10 show these measured I∗(T) functions for samples A and B, 

respectively. The observed intercepts of the linear portions, I0 =0.23 and 0.25 A are 

consistent with the rough estimate of I0 ≈0.2 calculated earlier. The dashed horizontal 

lines in panels (b) and (c) provide the values Id (T →0) 0.131 and 0.136 A. In order to 

obtain, more accurately, the intrinsic ρn and depairing current density Jd of the 7-nm-

thick superconducting interfacial layer itself, we need to subtract the small parallel 

current through the underlying FeTe.  

A separate measurement of pure FeTe deposited on ZnSe/GaAs, without the 

Bi2Te3 top layer, reveals the resistivity curve plotted in Fig. 4(a), which has an order of 

magnitude (∼100 μm) that is characteristic of many of high-temperature superconductors. 

The corrected jd (T =0) then works out to be 1.5×108 A/cm2 for both samples, which is a 

typical value (jd ranges/ 107–109 A/cm2 for most superconductors). Similarly, the Rn 

plateaus of Fig. 5.12 were corrected using the Fig. 5.13 (a) function, which leads to the 

intrinsic ρn(T) for the two samples shown in Fig. 513(b).  

This absolute value of ρn (T →0) ∼200 ncm represents an extraordinarily 

conductive normal state for a superconducting system. This information will be analyzed 

below to see what can be learned about the scattering rates, after obtaining information 

on the superfluid density and carrier concentration from jd. Before using the results shown 

above to extract intrinsic microscopic characteristics of the Bi2Te3/FeTe interfacial 

superconductor, we note that the combination of Bi2Te3 and FeTe band structures are 

likely to lead to multiple bands intersecting the Fermi level. As a result, extracting 

electronic parameters from experimental data generally requires formulas for jd, Hc2, and 

λ obtained for multiband superconductors [14,15].  
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However, using these formulas greatly increases the number of microscopic input 

parameters, which are currently not known. In addition to electronic parameters in 

different bands, these include at least four matrix elements of superconducting pairing 

constants, as well as other parameters that quantify the symmetry of the order parameter 

and details of microscopic pairing mechanism. To avoid these complications and to get a 

qualitative insight into the electronic parameters of BT/FT, we use a universal anisotropic 

Ginzburg-Landau (GL) theory, assuming only one dominant band. The values computed 

with these assumptions turn out to be self-consistent, thus providing some justification for 

this approach. We first use the anisotropic GL theory to extract the coherence lengths 

ξ(T) and ξ⊥(T), parallel and perpendicular to the interface, respectively. Now we have a 

perpendicular-to-interface B⊥c2(0) = 0/2πξ2(0)≈17 T and a parallel-to-interfaceBc2(0)= 

0/2πξ(0)ξ⊥(0)≈40T,leading to an in-plane ξ(0)≈4.4 nm and a perpendicular ξ⊥(0)≈1.9 nm. 

Note that in an interface superconductor of thickness d, the formula Bc2 = 0/2πξξ⊥ is 

applicable if ξ⊥(T) <d, whereas near Tc where ξ⊥(T) >d , we have Bc2 =0/2πξd. Our 

measured in-plane jd (0) can be related to the in-plane λ(0) and the perpendicular B⊥ 

c2(0) through [8] jd =(1 /μ0λ2)(20Bc2/27π)1/2, which gives λ(0)=124 nm. The 

corresponding zero-T Pearl screening length is (0)= 2λ2/d =4.4 μm.  

As emphasized in our earlier work [5,17], the combination of Bc2 and jd provides 

a useful method for obtaining a single-band λ purely from transport measurements, which 

directly gives an absolute value of λ(0) and is unaffected by magnetism in the material. 

We now utilize the information obtained about λ and ρn to estimate the carrier 

concentration, Fermi surface parameters, and mean free path characterizing the normal 

state of the interface layer, using the effective single-band approximation mentioned 
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above. From λ2(0)= m∗/μ0ns(0)e2 ≈ m/μ0ne2, applicable in the clean limit at T =0, we get 

n ≈1.8× 1021 per cm3, assuming that the effective electron mass m∗ equals the free 

electron mass, m, e is the electron charge, and the carrier concentration n equals the 

superfluid density ns.  

In a two-band superconductor, the penetration depth would depend on intraband 

densities and effective masses, according to λ−2 = e2μ0(n1/m1 +n2/m2), where the indices 

1 and 2 correspond to the respective bands [15]. The effective single-band value of n 

evaluated above is similar to n characteristic of high-temperature superconductors and 

about two orders of magnitude lower than n in highly conductive metals such as copper. 

This low value of n together with the very high normal conductivity implies a rather long 

scattering time τ and mean free path l. The Fermi wave number for this n computes to 

kF(3D)= m∗vF/ =(3π2n)1/3 =3.8× 109 m−1 and kF(2D)=(2πnd)1/2 =9.0×109 m−1 in three 

and two dimensions, respectively. In both cases, the Fermi wavelength λF =2π/kFd, 

validating the continuum approximation for states along the perpendicular direction and 

justifying the anisotropic 3D treatment of the normal state. Then from the Drude 

relationship ρ ≈ m/ne2τ, we then get τ ≈10 ps, which agrees well with the scattering rates 

(∼/0.05 meV = 13 ps) measured by Pan et al. [18] using spin- and angle-resolved 

photoemission spectroscopy. Combining this value of τ with the Fermi velocity vF = 

kF/m≈440 km/s, we get l = vFτ =4.2μm. The very long l, which well exceeds d, indicates 

that scattering from the faces that bound the superconducting layer is of a specular nature.  
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5.14 (a) Resistivity of pure FeTe with no BiTe layer. 

(b) Intrinisic resistivity of the interface for two samples 

 

5.3 V-aV DEPAIRING AND VORTEX EXPLOSION 

Fig. 5.14 (a) shows the extended R(I) (resistance-current) response, with the lower 

portion measured using continuous dc currents and the higher portion measured using fast 

pulsed signals. The temperature for these data is T=10.5 K, which is above TBKT. On the 

left of the graph, notice that the resistance plateaus to a finite value as I → 0, indicative of 

an Ohmic response. This is expected because of the plasma of unbound vortices and anti-

vortices that exists in thermal equilibrium above TBKT, even in the absence of the driving 

force of a current. Fig. 5.14 shows similar curves at T = 3.7 K ≪ TBKT.  
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Figure 5.15 Above the lower BKT regime bound, the R does not tend toward zero.  

Below, there is a secondary current dependent transition 

In this case R → 0 as I → 0, instead of reaching an Ohmic plateau, indicating that 

the vortex-antivortex pairs become bound and non-dissipative as the separating force of 

the current vanishes, since purely thermal dissociation vanishes for T <TBKT. Tracing this 

R(I) curve from lowest to highest I, the resistance rises with increasing I and momentarily 
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saturates to a constant value in the middle of the graph above I & 0.5 mA. In anticipation 

that this plateau corresponds to the condition when most of the vortex-antivortex pair 

population has become unbound from the force of the current, we will call this quantity 

IVPB ≈ 0.5 mA, the “vortex-pair-breaking current”. We can obtain a simple estimate of 

IVPB in the following way. The inter-vortex potential is given by: 

 

𝑈 =
𝑑

2𝜋𝜇0
(
0

4𝜋
)
2

(𝑙𝑛
|𝑟 − 𝑟 ′|


− 𝑙𝑛

𝑤


) 

(51) 

where λ is the magnetic penetration depth and Φ0 = h/2e is the flux quantum. The current 

density exerts a constant force jdΦ0 on the vortex, adding a potential −jdΦ0r to the 

equation. Defining the dimensionless interaction u = Ud πµ0 Φ0 4πλ2, and the 

dimensionless length x = |r − r′|/ξ, and including a factor x/(x + ξ) as a cutoff of the 

vortex-antivortex interaction at distances of the order of the coherence length, we can 

express the interaction as: 

 
𝑢 =

1

2

𝑥

(𝑥 + 1)
(𝑙𝑛

𝑥

𝑙
) − 𝑘𝑥 

(52) 

For k = 0, this has a single minimum at x = 0.718 (i.e., for |r− r′|  ξ), which 

represents the equilibrium separation of the paired vortices at zero current. For k > 0, the 

potential has a maximum for x > 1 outside the core and goes to −∞ beyond this peak. The 

vortices could dissociate by being thermally activated over or by tunneling through this 

peak. As the current (k) is increased, the peak becomes progressively reduced until it 

finally merges with the minimum. At this point the vortices are no longer bound, and this 

current can be interpreted as IVPB.  

A numerical calculation shows that this happens at k = 0.128. Taking λ = 

124×10−9 m and ξ = 4.4×10−9m [15],[22], this translates to a current density j = 6.28×109 
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A/m2. For our sample dimensions of w = 11.6 µm and d = 7 nm, we get a current 

IVPB=0.509 mA, in good agreement with the observed IVPB≈0.5 mA. The model used here 

is similar to the one used by Kadin, Epstein, and Goldman [27] who investigated the 

transport response in quench condensed HeZe alloy films at lower current densities and 

temperatures in a closer range to TBKT. Referring back to Fig. 1(b), upon further increase 

of the current beyond the plateau (I > 2 mA), there is once again a non-linear response as 

the current attains levels that are not only enough to dissociate the Vortex-antiVortex 

pairs but are high enough to break Cooper pairs. This is the regular (Cooper) pair-

breaking (depairing) regime; here the depairing current Id (∼0.1 A) signals entry into the 

normal state, upon which R(I) saturates to a constant (residual) value.  

A detailed investigation of the upper depairing regime was conducted. Fig. 5.14 

(a) and (b) show two extreme temperatures, one above TBKT (with R→constant as I→0) 

and the other at the bottom temperature of the cryostat and well below TBKT (with R→0 

as I→0). To better demarcate the progression that differentiates these behaviors, we 

measured a complete set of dc R(I) curves at a sequence of temperatures shown in Fig 

5.15. One observes two qualitative regimes: below some temperature Tv ∼ 6K, the curves 

are more closely bunched together and show a “fishtail” pattern with a convergence at 

IVPB & 0.5 mA; whereas above Tv ∼ 6K, the curves are more widely separated and with 

decreasing T seem to stall around ∼ 6K before falling more rapidly. To better identify 

this cross over temperature Tv, a complete temperature-resistance curve was measured at 

a low value constant current (53 µA) corresponding to the left side of the graph in Fig. 

5.17.  
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Figure 5.16 Set of Resistance vs DC current curves at various temperatures 

 

Figure 5.17 Resistance vs Temperature at low (~50uA) current 
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The result is shown in Fig. 5.16, which clearly shows a break below at Tv = 5.7 

K, similar to what was previously observed in MoGe3. To qualitatively understand this 

observation, we first note that the conditions of temperature (T ≪ TBKT) and current (I ≪ 

IVPB) are such that the BKT mechanism will not provide appreciable dissipation 

(negligible population of unbound vortex-antivortex pairs). In this case the small amount 

of residual resistance will arise mainly through the GV process (unbinding of edge 

nucleated vortices from their antivortex images outside the edge).  

The GV mechanism is facilitated by the Likharev exploded vortex condition [23], 

and thus the resistance is expected to decrease more rapidly below the vortex-explosion 

transition temperature Tv. To test the applicability of this Likharev vortex explosion 

phenomenon to the features observed here at Tv=5.7 K, we use the upper-critical-field 

measurements of He et al.5 to estimate the coherence length perpendicular to the plane: 

we have a perpendicular-to-interface B⊥c2(T=5.7 K) = Φ0/2πξ ≈ 17 T and a parallel-to 

interface Bc2(T=5.7 K) = Φ0/2πξ║ξ⊥ ≈ 27 T, leading to a perpendicular ξ⊥(T=5.7 K) ≈ 

1.78 nm. Multiplying this by 4.4 gives: 4.4ξ⊥(T=5.7 K) = 7.8 nm which agrees well with 

7 ± 1.1 nm thickness estimated by He et al.  

Upon further investigation, we have proposed a new mechanism for this drop in 

resistance below the vortex explosion temperature. As, it would generally make more 

sense that, as more vortices would be allowed to exist below this temperature, this should 

result in more flux flow and therefore more resistance. However, we see a quick dip 

down to zero.  
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Figure 5.18 Showing allowed transverse vortices (purple) and Vortex-antiVortex pairs in 

Red/Blue 

 Here we see the orientations pertaining to allowed vortices below this vortex 

explosion temperature. Vortex pair unbinding happens as either force is applied from the 

current induction, or when the temperature is enough such that their binding energy is 

already lower than their thermal energy. 

 

Figure 5.19 Vortex pairs bound outside the condensate (Left) and inside (right) 
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In Figure 5.18 at the left, the vortex pair completes its binding outside of the 

superconducting boundary. This is the usual way these pairs are thought to be bound. 

Pulling them apart stretches the linking B field until they are far enough apart or have 

enough energy to fully separate them, overcoming the binding energy. On the right, we 

have a similar pair, but since transverse vortices are allowed in this case, the V-aV pairs 

are connected inside the condensate. As these are pulled apart, the transverse cores must 

get longer to facilitate the movement.  

However, unlike flux outside the system in air, elongating these cores requires 

more energy from the system. They will remain attracted no matter how far we pull them, 

resulting in an infinite binding energy. Because of this, vortex pairs above the Tv will be 

significantly less likely to unbind. As they are stuck together, they will not flow and will 

not induce a back emf to generate resistance. The more pairs generated in this manner 

will reduce the net resistance of the system. 

 

5.4 SUMMATION 

There remain many open questions about this fascinating system and there may be 

other possible origins of the superconductivity besides the suggested doping effect, 

through charge transfer from the Bi2Te3 into FeTe. One proposed cause is that some 

physical torsion applied to the surface of a topological insulator, has enough of an effect 

on the surface band structure to allow for superconductivity [35]. However, the 

information obtained in this work provides connections between some key 

superconducting and normal-state parameters, and it is hoped that this will provide a 

foundation for future research into this class of systems. 
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Our measurements thus provide evidence for, taking the superconducting 

thickness from the Bc2(T) measurement of He et al. as well as from our IVPB measurement 

of this work, the second confirmation of the Likharev vortex explosion phenomenon, 

having been observed before only once in MoGe films [27]. This is the first evidence of 

Vortex explosion in an insulator-chalcogenide interface superconductor below the 

Berezinski-Kosterlitz-Thouless transition.  

The rather unique sets of experimental curves can be explained through the 

interplay between current driven unbinding of vortex-antivortex pairs and the Likharev 

vortex explosion effect. In this work we have provided a second demonstration of this 

effect and used it as a tool to provide an independent confirmation of the superconducting 

interface layer thickness, which was previously estimated from Bc2(T) measurements. 

This is novel as the virtual layer of the superconducting state cannot be measured with 

classical techniques, such as a profilometer or electron microscope.  

We also demonstrated here the concept of the vortex-pair-breaking current. 

Among other things, this also provides yet another tool for estimating the thickness of the 

superconducting interface layer. More interesting is the extreme current densities that 

materials with this interface property seem to allow, further pushing the boundary of 

power transmission with superconductors. With the recent interest in interfacial 

superconducting systems, these are new interesting effects realizable in such systems and 

they serve as useful investigative tools for improving our understanding of these systems. 
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