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ABSTRACT 

 

 One of the most ubiquitous steps in neuroimaging is the normalization of brain 

images. The process of normalization attempts to match any given brain to a standardized 

template image (e.g. the MNI 152 image). However, clinical images such as those from 

stroke participants present many challenges when we attempt to warp them to the space 

of template images, which are typically representative of neurologically healthy 

individuals. Many software packages exist to facilitate normalization of brain images, but 

most have limited options available to compensate for brain injury, which is often 

disruptive to these algorithms. Of the injury compensation methods that do exist, they are 

varied across software packages. The current study aimed to assess the contemporary 

methods available in state of the software commonly used across the field. Specifically, 

we assessed SPM12’s new tissue filling procedure on masked clinical images, and 

LINDA, a fully automated lesion segmentation algorithm combined with ANTs 

normalization. Across normalization methods, we compared each software package’s 

default injury compensation strategy to the nonstandard enantiomorphic lesion healing 

procedure. We created an artificial dataset of more than 10,000 images representing 

stroke related injury, and assessed each normalization method (SPM’s unified 

segmentation, DARTEL, ANTs) on multiple performance metrics. Overall, we found that 

the optimal injury compensation strategy for clinical images varied by the normalization 

method used, and the metric it was evaluated on. Finally, we present evidence of each 
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normalization method and brain injury compensation technique’s effect on predicting 

behavior deficits from brain injury using support vector regression. Our results show that 

prediction accuracy (and error) can be affected by the normalization technique used.   
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CHAPTER 1

 

INTRODUCTON 

1.1 OVERVIEW 

All group neuroimaging analyses rely on the “normalization” of brain images to a 

common space in order to make statistical inferences. These normalization routines 

attempt to match the variations in the size, shape and cortical folding pattern across 

individuals. These automated normalization routines can be disrupted by the presence of 

brain injury (Brett et al., 2001). Successful normalization of brain injury is critical to 

guide optimal surgery (Bonilha et al., 2007) make inferences about critical brain regions, 

predict recovery and guide therapy. Several strategies have been proposed to allow the 

robust normalization of images from brain injured individuals. Here we compare several 

of these methods, including promising recent developments in order to identify the best 

method for this task. We provide several different performance metrics to help evaluate 

these different routines. 

Normalization is useful in that it provides a standardized coordinate system to be 

used to compare neuroanatomy across individuals and research institutions (Grabner et 

al., 2006). Normalization techniques are also useful to determine which brain areas are 

typically activated by a cognitive task (in group statistics), which brain areas typically 

atrophy in dementia, and which brain areas are related to certain behavior deficits when 
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damaged. There are many different tools available to normalize neuroimaging data from 

individuals with brain injury. These different tools use different mathematical methods 

that tend to trade-off various strengths and limitations that influence the robustness of the 

algorithm (how often it fails catastrophically), and average accuracy. For example, 

methods that have more degrees of freedom can in theory provide a better fit from one 

brain image to the next, but can also be adversely influenced by small features that will 

yield poor results. A common theme of the popular normalization methods is the 

expectation to use an “average” brain as a standard template. Each individual’s brain is 

warped to match the size, orientation, and shape of this reference image. Typically, a 

template is based on hundreds of individuals, but the appropriate template may vary from 

one use case to another (e.g. a child has a smaller brain, and tissue composition than an 

adult; Sanchez, Richards, & Almli, 2012), and from one software package to another. For 

example, both SPM (Statistical Parametric Mapping Software, Wellcome Department of 

Imaging Neuroscience, University College, London, UK, www.fil.ion.ucl.ac.uk/spm/), 

and FSL (FMRIB’s Software Library; Jenkinson, Beckmann, Behrens, Woolrich, & 

Smith, 2012) include common template images relevant to most researchers, but also 

include unique template images created independently from other institutions. 

Neuroimagers generally accept that these template images represent a sample of 

neurologically healthy individuals from the population with typical neuroanatomy. Some 

templates are exceptions to this rule, for example the average template constructed by 

Pustina and colleagues (2016), which consisted of 115 elderly control participants and 93 

patients with various diseases such as Parkinson’s and dementia (though no individual 

had focal damage).  
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Outside of research needs, generally healthy individuals are not likely to undergo 

magnetic resonance imaging (MRI) without a justified cause. It is far more likely that 

individuals undergo MRI scanning for clinical purposes either ordered by their physician 

or as part of the patient’s participation in medical research. This dichotomy of needs 

between clinical and healthy neuroimaging represents a missing link between the efforts 

of most neuroimaging standardization practices (e.g. generating brain templates), and 

their application to clinical data from brain injured patients. Individuals with brain 

damage such as stroke, tumor, or severe atrophy are by definition not anatomically 

normal, and therefore precisely matching their anatomy to any standardized template 

image is more challenging compared to working with neurologically healthy individuals 

(Brett, Leff, Rorden, & Ashburner, 2001; Fiez, Damasio, & Grabowski, 2000).  

Over the years, different groups have advocated a variety of methods for 

normalizing scans of injured brains. The present goal is to directly compare these 

methods to quantify their performance. Further, by understanding the novel contributions 

of different clinical normalization techniques, we can investigate a hybrid approaches that 

could outperform previous methods. 

1.2 BASICS OF IMAGE REGISTRATION 

Normalization is merely a specialized application of general image registration 

(Friston et al., 1995). Image registration (aka. “image matching”, or “co-registration”) is 

widely used in many computer vision applications (e.g. special effects, or animation; Le, 

Ma, & Deng, 2012), and is not limited to medical image analysis. Regardless of the field 

of application, image registration can be applied to variations of the same scene (e.g. 

correcting for camera shake between two successive frames of a movie) or to completely 
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different scenes (e.g. matching photographs from the faces of two different individuals). 

A crucial realization is that in the first case there is an objectively perfect solution (the 

two images of the same scene can in theory be perfectly aligned), while in the second 

case we can make the faces similar in alignment but there is no objective perfect solution 

(e.g. Marilyn Monroe's mole has no optimal size or position on another person's photo). 

In either case, many registration algorithms are designed to minimize a “cost function”, 

which measures the difference between images based on the mathematical algorithm used 

(e.g. sum of squared differences).  

Brain normalization is special in the sense that an individual’s brain is matched to 

an averaged template image, rather than to an image from a separate participant. Similar 

to the face example above, there is no perfect solution to match an individual brain to a 

template. For example, a method that attempts to carefully align folds will necessarily 

cause distortions in the brain volume, whereas a method that attempts to match the size of 

the gray matter will yield poorer sulcal matching. Different methods choose different 

tradeoffs in making these matches. A nice analogy is warping the spherical shape of the 

earth onto a 2-dimensional rectangle (as most maps are displayed). The Mercator 

projection emphasizes preserving angles, while the Peters projection emphasizes 

preserving surface area. Neither transform is correct, they just use a different cost 

function to decide what features are important. In contrast, other forms of image 

registration used in neuroimaging align one image from an individual to a different image 

from the same individual (e.g. motion correction, eddy current correction, T1w to T2w 

co-registration). In such cases, there is an objectively perfect solution to align the same 

individual’s anatomy. In all of these cases, image registration techniques are used to put 
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one image (the moving image) in the space of another (the reference), and to match gross 

anatomical features from one image to the next. Normalization facilitates later image 

processing stages and image based group statistics (Brett et al., 2001). Image registration 

(including normalization) is a fundamental part of most neuroimaging workflows 

(Jenkinson & Smith, 2001), and is crucial to making generalized inferences related to a 

sample and its population, and comparisons between groups. To make the most accurate 

inferences about brain-behavior relationships in group clinical settings, it is only logical 

that we strive to use image registration methods with the best image matching results, and 

those that preserve important anatomical spatial relationships. 

When an individual’s brain image has been registered to a template (normalized), 

the newly created image of that individual now conforms to “template” or “normalized” 

space. Any template can be used in theory. For example, one could choose a template that 

most closely represents the population of interest (minimizing distortion), or one could 

choose a universal template that allows comparison to other neuroimaging centers and 

earlier work. Most research has been reported following the latter approach, using the 

contemporary MNI152 template (Grabner et al., 2006) that roughly matches the 

coordinate system used by Talairach & Tournoux, (1988). This template is widely used 

as a standardized coordinate system across neuroimaging studies. The benefit of a 

standardized coordinate system is the ability to generalize and compare experimental 

results across samples, across time periods, and across research labs that use varying 

participants, techniques, and machinery (Brett et al., 2001).  

One of the seminal standardized templates was developed by Talairach and 

Tournoux (1988), based on the brain of a single individual mapped post-mortem and 
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meticulously dissected into slices and photographed. These photographs were used to 

make a detailed atlas of this individual’s neuroanatomy that has since been used as a 

reference when viewing clinical neuroimaging data to identify normal versus abnormal 

anatomy, and in viewing neuroimaging data from healthy volunteers alike.  

Although it was highly detailed, the Talairach neuroanatomical atlas was not 

representative of any particular population since it consisted of data from only one 

deceased individual, nor did the images have similar contrast to popular neuroimaging 

modalities. In contrast, the MNI152 template is an average in vivo representation 

generated from a large population of neurologically healthy individuals who participated 

in MRI scanning for research purposes. It is a standard template included with many 

neuroimaging tools. The MNI152 template was originally created by linearly 

transforming 152 individual brain images to a previous reference image known as 

MNI305 (Collins, Neelin, Peters, & Evans, 1994), and then simply averaging the 

resulting images that were in a unified image space. However, recent versions of this 

template have been constructed differently, and the preferred method now makes use of 

nonlinear image registration techniques which are better able to match the complex 

folding patterns of the human cortex (yielding a less blurry template). This leads us to the 

next important concept in image registration. 

When neuroimagers choose an image registration method, there are typically two 

categories of techniques: linear, and nonlinear (Brett et al., 2001; Ripollés et al., 2012). 

Linear techniques have the advantage of robustness, simplicity, and speed given their 

small degrees of freedom (Jenkinson & Smith, 2001). Linear methods can also make use 

of a minimal set of transforms, or a full set. For example, a minimal set of transforms 
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would simply move a target image left, right, up, down, forward, and back (translation), 

in addition to moving about the pitch, roll, and yaw axes (rotation) in relation to the 

reference image. This limited set of linear transforms is widely known as “rigid body” 

transformation, and is notable in that it does not manipulate the overall shape or size of 

the brain image that is being warped to match a template image. This means that the size 

of the brain, and the anatomical spatial relationships remain unchanged. Rigid body 

transformations are ideally suited for motion correction in time series data such as fMRI 

where we are scanning a single individual across time with a single image modality. In 

this situation, we do not expect the individual’s brain to grow or shrink in any appreciable 

way. In contrast, a full set of linear transforms includes those of the rigid body method, in 

addition to a scaling, and a shearing transformation (often collectively referred to as 

affine transformation). Scaling manipulates the overall size of the brain image being 

warped, and shearing manipulates the shape (i.e. stretching the anatomy in a linear 

manner to better match the reference brain’s features). While scaling and shearing can 

change the overall size of the image, these are applied equally to the whole image. An 

area that is twice as big as another will remain twice as big afterwards (they are both 

scaled equally). Likewise, any three points that were co-linear prior to the linear 

transform remain so afterwards (Affine transformation - Encyclopedia of Mathematics). 

These properties are both the strength and weakness of this transform. It is unable to 

deform local features without deforming global features in the same manner. This 

constrains the method, which limits its ability to fit fine details (like complex cortical 

folding), but also tends to limit its ability to eliminate real details (Andersen, Rapcsak, & 

Beeson, 2010). Note that each of the four linear transforms (translation, rotation, scaling, 
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and shear) can be applied independently in each of the three dimensions of an image. 

Therefore, this warping can be concisely defined with 12 parameters (e.g. it has 12 

degrees of freedom). In sum, the linear transforms provide a robust but relatively crude 

match between images. Because they are rapid and robust, these transforms are typically 

computed prior to more aggressive approaches. Therefore, we adopted the phrase “linear-

only normalization” to refer to an algorithm that terminates after only computing these 12 

parameters when registering one image to another.  

The more advanced, and often more accurate (though fragile) image registration 

methods are nonlinear (Ashburner & Friston, 1999). These methods offer a reduced 

image registration error (aka “cost function”) between a target image and its reference, 

and are able to more accurately match the intricacies of anatomical differences. This 

enhancement is in part due to their increased degrees of freedom, which range from 

thousands to millions (Klein et al., 2009; Ripollés et al., 2012). Although the advanced 

nonlinear methods generally outperform purely linear registration methods, the improved 

registration comes at the cost of increased computational complexity and time (Klein et 

al., 2009), as well as the danger of local over-fitting. However, the benefit of improved 

anatomical precision can often outweigh this increased complexity, especially in a 

clinical research setting. This improvement in image registration extends to the process of 

normalization to template images as well.  

1.3 CHALLENGES PRESENTED BY BRAIN INJURY 

In a clinical research setting, even in the acute phase of symptom onset, we may 

wish to better understand how the injured anatomy from a group of participants differs 

compared to a control sample. It is also important to assess the similarity of injury across 
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a group of clinical images to understand the relationship between injuries and deficits 

(Stamatakis & Tyler, 2005). Given that brain injury can often result in physical or 

cognitive deficits, neuroimagers use methods such as voxel based morphometry (VBM; 

Ashburner & Friston, 2000, 2001) to measure anatomical differences between participant 

groups or across timepoints. We may also use methods such as voxel-based lesion 

symptom mapping (VLSM; Bates et al., 2003; Rorden, Karnath, & Bonilha, 2007), which 

require overlapping lesion images in the same stereotaxic coordinate space to examine 

commonalities among damaged neuroanatomy, and related behavior deficits (Brett et al., 

2001). In fields such as chronic stroke research, we must necessarily normalize brain 

images to a standard space to perform statistical comparisons on those images. 

Unfortunately, the efforts of most registration methods are developed and validated using 

brain imaging data from healthy volunteers with typical anatomy. This presents a 

problem when researchers wish to warp a clinical image (i.e. brain injury due to stroke) 

to a template. The clinical image may have many anatomical structures missing, or 

partially damaged, which will result in increased error when matching to a template 

(Brett et al., 2001; Crinion et al., 2007).  

The effect of abnormal, or missing anatomy in the case of stroke can have a 

significant impact on a normalization method’s cost function. A cost function between 

two brain images, such as the sum of squared differences, or correlation ratio (among 

others), will produce extreme values in areas of low signal due to missing tissue 

compared to the tissue signal in the template image. Normalization algorithms work by 

iteratively deforming the input image by a small amount and seeing if this improves or 

hurts the costs function of the image with respect to the template, in the case where the 
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change leads to an improvement the change is stored for the next iteration. Cost function 

algorithms will attempt to minimize the difference between two images across these 

iterations. In the case of missing tissue, these algorithms can be lured into making 

catastrophic deformations of the image (Brett et al., 2001). Linear only normalization can 

be robust to the presence of a brain lesion, or other abnormality, but such methods only 

result in crude matches in overall brain shape and size to the reference template. Linear 

only methods do not deliver the desired level of precision when we wish to make 

generalizable claims about brain-behavior relationships in clinical neuroimaging.  

Linear only methods may lack precision in favor of robustness, but the more 

precise non-linear methods can be used in conjunction with an initial linear fit (Brian B. 

Avants, Tustison, & Song, 2009). In the presence of normal anatomy, this combination of 

linear and non-linear methods can lead to a greater match to the template brain image. 

However, when tissue is missing or abnormal, even the non-linear normalization methods 

can give distorted results (Brett et al., 2001; Kim, Patel, Avants, & Whyte, 2015). Often 

the nonlinear methods will shrink the brain lesion or abnormal tissue, which indeed does 

result in a better match to the template, but introduces the new issue of lesion erosion as 

well as distortions in neighboring tissue surrounding the lesion. However, when the brain 

injury is compensated for, the effects of lesion erosion are minimized, or alleviated (Brett 

et al., 2001; Ripollés et al., 2012).  

1.4 CLINICAL NEUROIMAGING ANALYSIS TECHNIQUES 

Many groups have developed techniques to overcome the challenges presented by 

brain injury (particularly stroke research). The methods include cost function masking 

(CFM) (Brett et al., 2001), enantiomorphic lesion filling (Nachev et al., 2008), variations 
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of unified segmentation normalization (Ashburner & Friston, 2005; Seghier, 

Ramlackhansingh, Crinion, Leff, & Price, 2008), using an age matched template for 

stroke datasets (Christopher Rorden, Bonilha, Fridriksson, Bender, & Karnath, 2012), and 

a fully automated method using machine learning combined with diffeomorphic non-

linear normalization (Pustina et al., 2016). Note though, that unified segmentation 

normalization, and some other high DOF normalization methods can work when applied 

directly to images with lesions, but prior evidence shows they often benefit by including 

CFM (Andersen et al., 2010; Brett et al., 2001) or lesion filling (Nachev et al., 2008). 

Otherwise, lesion erosion and displacement can be quite severe depending on the method 

(Ripollés et al., 2012).  

To this day, CFM (Brett et al., 2001) is a popular method still applied to clinical 

neuroimaging data, and is implemented in many software packages. CFM works by 

simply limiting the mathematical operations of minimizing the cost function to non-

lesioned brain areas. To facilitate the masking procedure, researchers must supply an 

image mask that is typically created manually by hand using medical image viewing 

software. This mask is binary in most cases, having zeros at the location of the lesion, 

and ones elsewhere. Areas indexed by a zero will have no effect on the cost function 

calculations, and therefore not influence the image registration procedure. However, note 

that other abnormal anatomy such as enlarged ventricles due to stroke will affect the 

image registration procedure if not included in the image mask. This may be desirable, as 

the nonlinear routines will tend to shrink these ventricles toward a normal size, enlarging 

the lesion to better match its volume prior to necrosis. The CFM procedure results in 

decreased root mean squared (RMS) displacement values compared to unmasked 
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procedures, indicating that voxels within the brain images were less deformed overall, as 

well as near the masked part of the image when compared to unlesioned versions of the 

same images (Brett et al., 2001).  

The RMS displacement measure is a standard metric used in the field. One 

popular technique is to create simulated lesions in healthy brains, and compare the 

normalization of a healthy brain to the same brain with a lesion inserted. In this case, 

displacement reveals how much the lesion perturbed the normalization parameters from 

the gold standard case of warping a completely healthy brain. The RMS displacement 

across the brain can be represented as a single number, with lower values indicating less 

overall deviation from a reference. This is explained in greater detail in the subsequent 

methods section. 

Although CFM is still widely used in clinical neuroimaging, and a readily 

available method in most neuroimaging software packages, it does have limitations. 

Lesion size, or the size of the masked region can dramatically affect normalization 

results. A larger lesion mask necessarily means that less of the image is useable in cost 

function calculations, and therefore larger lesions are correlated with more error in 

normalization procedures (Brett et al., 2001; Crinion et al., 2007; Nachev et al., 2008). 

CFM traditionally requires the user to supply a manually traced lesion mask, making the 

normalization process time consuming, and less objective compared to fully automated 

methods used on brain imaging data from healthy individuals, which do not require 

additional user generated input. A notable advantage of CFM is that it is not limited in 

the region in which the mask is applied, meaning that any type of injury or abnormality 
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can be omitted from the template matching procedure. Other lesion compensation 

techniques can be limited to unilateral injury only.  

To overcome the main limitation of omitting image data due to CFM, Nachev et 

al. (2008) devised a solution which relies on the brain’s natural symmetry between the 

left and right hemispheres. Their solution, known as enantiomorphic normalization, also 

relies on a user supplied lesion mask, but differs from CFM in that the mask is used to 

“fill” the lesioned parts of the brain image from the undamaged hemisphere. Essentially, 

the lesion mask is mirrored to the undamaged hemisphere, and image intensities from the 

undamaged hemisphere are used to replace tissue in lesioned regions. By replacing the 

lesioned parts of the image with data from the opposite hemisphere of the same 

individual, the authors state quite frankly that this filled in estimated data is better than no 

data at all (as in CFM). This “healed” brain image is then run through any normalization 

algorithm just as a healthy brain image would be, and the lesion can be restored after 

normalization is complete. Using the whole-brain RMS (voxel displacement) measure of 

performance, the authors show that the enantiomorphic normalization method 

significantly outperforms unassisted normalization methods, as well as the CFM 

procedure on a dataset of stroke participants, and on a dataset where artificial lesions 

were injected into otherwise normal brain images. Although this mirror image method 

clearly outperformed CFM as measured by RMS values, it also has its limitations. 

Namely, it is subject to the same bias as CFM given that the lesion masks are 

traditionally generated manually by the user (however automated methods do exist, and 

are discussed later). Also, the mirroring process implies that regions in the undamaged 

hemisphere are representative of the missing tissue from the lesioned area. In general this 
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assumption will work in many cases, but there have been measured asymmetries between 

the left and right hemispheres (Toga & Thompson, 2003). From first principles though, 

filling in the lesioned area should benefit normalization to a template image more so than 

omitting entire regions using CFM. In addition, the enantiomorphic method is limited to 

cases where there is no bilateral damage in homologous brain regions, since the mirroring 

process will be ineffective if a user replaces damaged tissue with equally damaged tissue 

from the opposite hemisphere. This can be especially problematic in the presence of 

extremely enlarged ventricles. The method is thus generally limited to unilateral brain 

injury. A minor criticism of the enantiomorphic method as presented by Nachev et al. 

(2008) is that their comparison to CFM can be viewed as slightly unfair. In their 

comparison they enlarged each lesion mask by 10% prior to normalization, but kept the 

volume of the enantiomorphically replaced tissue much closer to the original lesion 

volume (with the exception of smoothing near the edges). The choice to dilate (enlarge) 

lesion masks by 10% ignores a previous report suggesting that minimal lesion dilation 

provides ideal results with CFM (Brett et al., 2001). Lastly, the effect of lesion size on the 

precision of the enantiomorphic normalization method is similar to the effect of CFM, in 

that as lesion size increases so does the RMS displacement. Figures 4B and 5B from 

Nachev et al. (2008) suggest a linear relationship in that as lesion size increases, so does 

the measured voxel displacement which could be explained by hemispheric asymmetry 

(and related mismatches) becoming more apparent as the replaced region increases in 

size. As a final note, while the enantiomorphic method seems intuitively to be useful, the 

authors did not provide software to emulate their method, and they examined its 

effectiveness using SPM2 which is no longer state-of-the-art. Here we revive this clever 
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method, provide an open source implementation, and examine its relevance with the 

current generation of normalization tools. 

Both the CFM and enantiomorphic lesion filling techniques rely on supplying an 

additional mask image to existing normalization strategies. However, the unified 

segmentation normalization method introduced in SPM5 (Ashburner & Friston, 2005) is 

often used on clinical data as well. This method does not explicitly require a lesion mask 

to operate, but can be significantly enhanced by providing one when working with 

clinical data (Andersen et al., 2010; though see Crinion et al., 2007). Historically, 

normalization (aligning a brain to a template) and segmentation (classifying the 

proportion of gray matter, white matter and cerebral spinal fluid for each voxel) were 

seen as independent operations. In contrast, unified segmentation normalization (referred 

to as the unified method) creates a virtuous cycle: improving the accuracy of 

normalization provides a better estimate of where we expect to see different tissue. 

Likewise, improved segmentation allows us to better normalize one individual's gray 

matter to a gray matter template. Finally, estimating both normalization and segmentation 

can help provide better estimates of field inhomogeneity, which in turn benefit the 

estimation of the other parameters (Ashburner & Friston, 2005). An extension of the 

unified method is DARTEL, which (at least with healthy populations) can further refine 

the normalization of segmented images (Ashburner, 2007). Additionally, DARTEL was 

considered a top performing method in an assessment of automated normalization of 

brain injured images (Ripollés et al., 2012).  

To explicitly test how well the unified method works with stroke imaging data, 

Crinion et al. (2007) tested it against the standard linear and non-linear normalization 
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(without segmentation) methods included in SPM5. On average, the unified 

normalization procedure significantly outperformed all other methods assessed, 

indicating that it is both effective, and can work in the absence of user generated lesion 

masks. Additionally, the authors explicitly compared the unified method both with and 

without CFM. There was no significant difference, indicating that unified segmentation 

normalization could perhaps be a well suited method for automatic normalization of 

stroke neuroimaging data without user defined masks. However, precisely delineated 

lesion masks are often necessary for lesion symptom mapping analyses common in stroke 

research, and this method does not provide the user with such as lesion map even though 

it is capable of normalizing clinical images. However, as noted by Andersen et al. (2010), 

the images (Crinion et al., 2007) may not accurately represent real pathological brains 

since lesions were synthesized from real patients but artificially placed into otherwise 

healthy brain images (same data as Brett et al., 2001). Unfortunately, the use of 

artificially lesioned brain images cannot be avoided in most studies that measure the 

performance of brain normalization methods on clinical data. One concern raised by 

Andersen et al. (2010) is that artificial lesion masks injected into healthy brain tissue may 

omit other pathological features resulting from stroke such as enlarged ventricles and 

widened sulci in perilesional areas. Considerations must be taken into account, such as 

matching the healthy imaging participants for age compared to their lesion “donors”; a 

point we address in the current experiment. 

A novel aspect of the Crinion et al. (2007) paper is their performance metric that 

measured the average displacement of particular anatomical landmarks defined prior to 

normalization, rather than just relying on RMSD (which is measured across every voxel 
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in the brain). Choosing specific landmarks in each individual’s image and then measuring 

their proximity after normalization (in template space) is far more informative than 

RMSD alone. RMSD can give the false impression of good normalization depending on 

the method used. Lower RMSD values when comparing the same brain with and without 

injury should indicate that the lesion had little effect and the result closely matched the 

gold standard, unlesioned brain. However, one could also observe low RMSD values in 

cases where the normalization found a poor solution in both images, or in cases where the 

normalization parameters are too constrained. In the current experiment, we extent the 

clever landmark displacement measure to the lesioned images, whereas Crinion et al. 

only measured it in their neurologically healthy control group.    

Building on the promising results for automated tissue segmentation combined 

with image normalization, Seghier et al. (2008) modified the unified normalization 

procedure (Ashburner & Friston, 2005) by adding an additional tissue class that can be 

used to define abnormal tissue intensities (specifically tuned for stroke data). This tissue 

class is defined as the mean intensity of the known WM and CSF classes. In addition to 

this artificial tissue class, the segmentation algorithm is given additional constraints that 

control how tissue misclassifications are to be handled. For example, misclassified GM 

within the boundaries of the a priori WM tissue map from the template image will get 

reclassified as abnormal (“extra”) if they have both lower than expected GM probability 

values, and low probability of being WM. By adding this extra tissue class for lesion 

identification, and modifying the segmentation computations the authors show moderate 

DICE coefficients (measure of similarity) between manually traced and automatically 

identified lesion maps. Importantly, this addition to SPM’s unified normalization method 
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is able to output a lesion map, which can be useful for further VLSM analyses. While this 

modified segmentation procedure is promising, it also has some limitations. First, the 

tissue priors for GM, WM, and CSF are computed using subjects from the International 

Consortium for Brain Mapping (ICBM) which are younger than the typical stroke 

participant (Karnath, Berger, Küker, & Rorden, 2004). This could lead to age related 

tissue mismatch. Second, the average template images for the tissue priors were 

generated using linear only registration methods, which have been proven to be less 

precise in matching complex cortical folds (Klein et al., 2009). This could generate an 

oversimplified template for tissue priors. Lastly, the authors do not explicitly note that 

they achieved better normalization results after segmenting lesioned anatomical images 

using their enhanced method. One would assume that the results would be similar to 

previous tests of the unified segmentation normalization procedure, given that the actual 

normalization process was not modified in Seghier et al. (2008), but rather tissue 

segmentation was just enhanced. It is likely that most users simply use the automatically 

defined lesion tissue map as a mask to facilitate CFM normalization to a template as is 

traditionally done with these earlier versions of the SPM software.  

In an attempt to definitively assess the efficacy of SPM’s unified method on 

stroke neuroimaging data, Andersen et al. (2010) performed a similar analysis to Crinion 

et al. (2007) with the major difference of applying the method to real, unaltered data and 

simulated (artificially lesioned). The authors manually traced each participant’s lesion 

both precisely (taking 1-8 hours per image), and roughly (taking 5-30 minutes per 

image). Using only the unified normalization method as implemented in SPM5, they 

compared voxel displacement results (RMSD) across conditions where the precise and 
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rough lesion masks were used in addition to a no mask condition (no CFM). They found 

that with the no mask condition where cost function masking was omitted, the RMSD 

was significantly higher compared to all conditions where CFM was used. This indicates 

that applying CFM to the unified method indeed reduces the normalization error, 

contrasting the results of Crinion et al., (2007). They did not see any significant 

differences between precise lesion masks and roughly sketched lesion masks, indicating 

that the precision of manual lesion tracing has little to no effect on the unified 

normalization procedure as measured by RMS displacement from a reference image. 

However, in practice it is perhaps wasteful to not make a precise lesion mask. It would be 

expected that rough lesion drawings would not have much specificity in a VLSM 

analysis. VLSM analyses are often of great interest to stroke researchers who use 

neuroimaging methods to infer brain-behavior relationships across a group of brain 

injured participants. Together, these results suggest that although a virtuous cycle of 

segmentation and normalization can enhance normalizing clinical neuroimaging data, 

CFM was still required for best performance in these earlier versions of SPM.  

In a dual effort to further improve the results obtained using unified segmentation 

normalization with stroke datasets, and to provide an appropriately aged template image, 

Rorden et al., (2012) created the Clinical Toolbox. This toolbox is distributed as an add-

on for the SPM neuroimaging software. The Clinical Toolbox includes an alternative 

template image to be used in the unified normalization process that was generated using 

an older sample of participants with a mean age of 72.9 years old. Participants in stroke 

studies are typically 60 years old or greater (Karnath et al., 2004; Karnath, Rennig, 

Johannsen, & Rorden, 2011), but are routinely normalized to the MNI152 template 
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generated from participants with an average age of 25 years old (SPM source 

documentation). This age related difference results in anatomical discrepancies present in 

older individuals but absent in younger individuals such as general widespread cortical 

atrophy, widening sulci, and larger ventricles (Rorden et al., 2012; Salthouse, 2011). By 

using a standardized template that accounts for general age related effects, perhaps a 

more accurate registration between a stoke participant and the age matched template can 

be computed. Indeed, Rorden et al. (2012) show that the aged template combined with 

unified normalization and CFM resulted in significantly reduced RMS displacement 

values compared to linear only normalization, and unified normalization using the 

MNI152 template without CFM. However, there was no statistical difference between the 

aged template combined with unified normalization with CFM, and the MNI152 template 

combined with unified normalization with CFM. In summary, within their sample there 

was no significant effect of template (older vs. younger) on normalization results when 

combined with CFM, but CFM resulted in less normalization error overall, further 

supporting Andersen et al. (2010). The average RMS (4.89 mm) for the aged template 

method was numerically lower than the RMS values computed using the standard 

MNI152 template (4.96 mm) indicating only a small performance boost, but perhaps far 

more validity given that similarly aged brains were compared. It is possible that the lack 

of statistical difference is due to the inherent smoothness of template images being 

generated from many individuals.  

Again, the RMS performance metric may not accurately assess the quality of 

normalization across methods. It may be more applicable with a method, when testing 

variations of parameters. If a normalization does very little to change an image, then both 
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the reference deformation field and its comparison will be similarly displaced, resulting 

in lower RMS values overall. Therefore, a performance metric such as landmark 

displacement should be employed such as that used in Crinion et al. (2007).  

Last, but certainly not least, is a non-SPM attempt to provide better normalization 

to stroke neuroimaging data. The method is known as LINDA (Lesion Identification with 

Neighborhood Data Analysis) and was developed and tested by Pustina et al. (2016). The 

authors created a new algorithm that automatically defines the features of lesioned tissue 

in a typical T1-weighted MRI scan and uses that lesion mask as an input to a high DOF 

normalization technique implemented in the Advanced Normalization Tools (ANTs) 

software package (Brian B. Avants et al., 2009). The method makes use of a trained 

Random Forrest classifier to predict lesioned tissue, which is then used as a mask when 

images are normalized to a template. In general, the motivation is the same as that of the 

enhanced unified segmentation method by Seghier et al. (2008) implemented in SPM: to 

segment injured tissue, and enhance normalization. LINDA uses six empirically defined 

features (selected as a subset of 12 original features) in the clinical image that are related 

to the image geometry, hemispheric asymmetry, and deviation from a template of control 

subjects. The LINDA method also makes use of an iterative register-predict-register cycle 

where both normalization to the standardized template and prediction of lesioned tissue 

increase in accuracy. The cycle is also carried out across image resolutions that increase 

in detail from earlier to later stages (e.g. from 6 mm voxel sizes to 2 mm). LINDA 

normalizes images to a template constructed from elderly individuals combined with 

patients that have diseases such as Parkinson’s, mild cognitive impairment, and 

Alzheimer’s (Pustina et al., 2016). Recall from Rorden et al. (2012) that the use of a well 
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matched template may result in reduced normalization error in some cases. LINDA 

differs from previously mentioned methods in that it utilizes the ANTs high DOF SyN 

(B. B. Avants, Epstein, Grossman, & Gee, 2008) registration method which has been 

demonstrated to be “best in class” on many datasets consisting of neurologically healthy 

individuals (Klein et al., 2009). LINDA is perhaps the most complex procedure to 

facilitate normalization of lesioned images, and automatically define the lesion without 

user input. However, it still shares some similarities with previously mentioned 

techniques, and it is not without its own limitations. To facilitate the normalization 

procedure using the ANTs algorithms, CFM masking is still a necessity, however 

constrained cost function masking is used (CCFM), which infers the deformations needed 

in the lesioned area based on surrounding tissue (Kim, Avants, Patel, & Whyte, 2007) 

rather than just omitting the lesioned area. LINDA also has similar limitations to the 

enantiomorphic normalization method. Namely, most use cases will be restricted to 

unilateral lesions. Furthermore, LINDA makes use of a pretrained classifier when 

predicting new data that the model has not been exposed to. The pretrained classifier is 

limited to left hemisphere injury, but the authors do state that right hemisphere injured 

images can be successfully normalized (with predicted lesions) if the image is first 

flipped across the axial midline (but then subsequently flipped to its original state after 

processing). The authors do not compare other normalization techniques against LINDA, 

but they do explicitly compare the method used by Seghier et al. (2008) to segment 

lesions, which in turn can affect normalization when that lesion map is used as a cost 

function mask. LINDA results in an increased match to manually traced lesions (DICE 

0.696) compared to Seghier et al.’s (2008) enhanced unified segmentation technique 
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(DICE 0.44). This indicates a significant improvement in automated lesion segmentation 

(and has a smaller failure rate as measured by the inability to detect a lesion or poor 

normalization). Lastly, VLSM results from lesions identified using LINDA had similar 

statistical maps compared to hand drawn lesions (DICE of 0.6), but differed as a function 

of the behavior being assessed. For example, the peak statistical scores from each 

analysis (manual vs. automated lesion tracing) for the behavioral measure of auditory 

comprehension differed by 64 mm. Statistical peaks related to other behavior analyses 

differed as little as 5 mm. From this data alone, it is difficult to discern if some extreme 

spatial differences such as 64 mm are related to variance in lesions masks, or any number 

of interactions between lesion size, position, and behavioral variability as a factor of 

“mask type” (manually traced vs. automatically identified). 

1.5 THE CURRENT APPROACH 

To date, there is no universally accepted method to normalize clinical 

neuroimaging data in the stroke research community. However, the view expressed in the 

current article is that there may never be a method that performs well across the board of 

all performance metrics. Here we test multiple lesion compensation techniques within 

each method to provide evidence of each technique’s effect on the normalization 

procedure. We used a variety of performance metrics across all normalized images. Each 

method has its limitations, and corner cases where it may fail altogether (e.g. incorrectly 

set origin coordinates), but there are solutions to the clinical image normalization 

problem such as those mentioned above. Practitioners in the field have no updated 

comparison of normalization methods that directly measures the performance of each 

contemporary method on the same data. For example, no previous comparison study has 
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included LINDA since its publication in 2016. Additionally, no comparison studies on 

stroke image normalization have included the newly updated SPM12 software. In the 

most recent study (Ripollés et al., 2012) similar in design to our current experiment, 

SPM8 was used. Since that time, many improvements have been released in SPM12 that 

dramatically change normalization results from the unified segmentation method. 

Notably, the most recent version of SPM12 now performs an implicit lesion filling step 

on segmented images (SPM12 change log, Oct. 3, 2017), with the filled in regions 

derived from template tissue probability values. This is quite a radical change to the 

traditional CFM procedure. Now, zeroed out regions are implicitly filled in. This recent 

version of SPM12 directly rivals the enantiomorphic lesion filling method.  

Comparisons of multiple methods to accomplish the same goal are crucial to 

establish evidence for “best practices” within a field. There is a clear trend in 

neuroimaging (including clinical data) to develop and validate fully automated image 

processing pipelines. Very few methods exist that fulfill this desire, and the ones that do 

must be put to the test when considered for inclusion in future investigations. For this 

reason, we have specifically included the LINDA method in our comparisons. Many 

projects that make use of hundreds or thousands of datasets would benefit greatly from 

using state-of-the-art processing methods to normalize neuroimaging data from brain 

injured participants. In some cases, using the “best in class” methods can even enhance 

anatomical specificity when answering neuropsychological questions (Crinion et al., 

2007; Pustina et al., 2016). Additionally, we can combine multiple techniques that may 

result in more accurate normalizations, and in turn greater matching of anatomy among 

groups of images containing injured regions. One such novel combination is an 



 

25 

enantiomorphic version of LINDA which has been developed for the current experiment 

and tested for the first time in this series of comparisons. Our aim is to provide readers 

with empirical evidence of the effect each technique has on normalization of clinical 

images.  

The current article will compare the effects of brain injury on normalization 

methods using a variety of free, and commonly available tools. Since the most recent 

comparison of this kind (Ripollés et al., 2012), many advances have been made to some 

software packages commonly used. Each software package has its own injury 

compensation technique. However, typically there is only one option available to users. 

Here, we test each software’s normalization routines with their built-in lesion 

compensation strategy, in addition to a nonstandard lesion healing technique referred to 

as enantiomorphic normalization (Nachev, Coulthard, Jäger, Kennard, & Husain, 2008). 

That seminal work only described a proprietary implementation, and used a 

normalization method that is no longer considered state of the art (indeed it is referred to 

as “old Norm” in SPM12). Here we introduce an advanced open source implementation 

of this enantiomorphic technique that can be applied to any normalization tool. This 

allows us to test whether this novel healing method aids modern normalization. This 

work provides insight to which methods provide the most value to clinical neuroimagers.
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CHAPTER 2 

 

METHODS 

2.1 PARTICIPANTS 

Two sets of archived images from participants were included in this study. One 

group provided neuroimaging control data, and the other group of stroke survivors 

provided the lesion data. The control group consisted of 57 healthy participants (47 

female; mean age 55 years old; range 40-69 years old) that participated in a separate 

neuroimaging study at the Medical University of South Carolina (MUSC). The control 

group were recruited based on criteria that they were at risk for stroke. The stroke group 

consisted of 177 participants (69 female; mean age 60 years old; range 29-83 years old; 

mean months post stroke 36.2). Image data from the stroke group was collected between 

2006-2018 at the University of South Carolina (USC), and MUSC. All participants were 

informed of study procedures via approved Institutional Review Board documents and 

consented to participation. 

2.2 MRI DATA ACQUISITION 

 Data for healthy control participants were acquired using a 3 Tesla Siemens Trio 

MRI system with a 12-channel head coil. Whole brain T1-weighted (T1w) 3-

Dimenstional magnetization-prepared rapid gradient echo (MPRAGE) scans were
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 acquired for each individual with the following parameters: flip angle = 9°, TR = 2250 

ms, TE = 4.18 ms, voxel resolution = 1.00 mm isotropic, field of view = 256x256 mm, 

slices = 176, GRAPPA = 2.   

 Data for stroke participants were acquired using a 3 Tesla Siemens Trio MRI 

system with a 12-channel head coil or a 3 Tesla Siemens PRISMA MRI system with a 20 

channel head coil. On both systems, volumetric T1 and T2 weighted (T2w) MRI scans 

were obtained. The parameters for the Trio system are listed first. Settings for the T1w 

images were as follows: flip angle = 9°, TR = 2250 ms, TE = 4.15 ms, voxel resolution = 

1.00 mm isotropic, field of view = 256x256 mm, slices = 192, GRAPPA = 2. T2w 

scanning parameters were: 3D SPACE, voxel resolution = 1 mm isotropic, field of view 

= 256 x 256 mm, 160 sagittal slices, variable flip angle, TR = 3200 ms, TE = 352 ms, 

with no slice acceleration. Slice center and angulation were similar to the T1 image 

sequence.  

For the PRISMA system (stroke participants), the T1w images were acquired with 

the following parameters: flip angle = 9°, TR = 2250 ms, TE = 4.11 ms, voxel resolution 

= 1.00 mm isotropic, field of view = 256x256 mm, slices = 192, GRAPPA = 2. T2w 

scanning parameters were: 3D SPACE, voxel resolution = 1 mm isotropic, field of view 

= 256 x 256 mm, 160 sagittal slices, variable flip angle, TR = 3200 ms, TE = 567 ms, 

GRAPPA = 2. Slice center and angulation were similar to the T1 image sequence. 

2.3 SOFTWARE IMPLEMENTATIONS 

In order to accomplish the task of normalization, neuroimagers may choose to use 

a single software package, or even combine software packages and techniques across 

programming languages to suit their needs. There are many software packages and 
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techniques available, but the scope of this paper was limited to the selection of choices 

that have been routinely used in clinical research on brain damaged individuals with 

evidence of performance from previous comparisons. The complete listing of software 

used is: FLIRT, SPM12 old normalize with CFM, SPM12 old normalize with 

enantiomorphic lesion filling, SPM12’s unified method with tissue map filling, SPM12’s 

unified method with enantiomorphic lesion filling, SPM12’s unified method with 

DARTEL combined with masked tissue map filling, SPM12’s DARTEL unified method 

combined with enantiomorphic lesion filling, ANTs with LINDA and CCFM, and ANTs 

with LINDA and enantiomorphic lesion filling. 

In order to generate the artificial lesions we used a different normalization method 

than any being subsequently evaluated. The intention was to avoid a specific bias toward 

one of the methods. Specifically, we used FLIRT (FMRIB’s Linear Registration Tool) as 

the independent method (Jenkinson & Smith, 2001) to perform linear registration at the 

dataset creation stage. The use of FLIRT also avoids introducing unintended nonlinear 

deformations prior to the assessment of methods. 

All image processing was carried out on a high performance computing cluster 

(HPC). This clustered computing system enabled highly parallel processing for all 

normalization methods. In total, 10 computed nodes with 28 cores each were used 

enabling access to 280 CPUs. In most cases 2 CPUs were assigned to a specific subject to 

be processed, meaning that if all available CPUs were utilized then 140 subjects from the 

artificial dataset could be processed at a time. The speed benefit of parallel computing is 

critical to this project. If the same dataset were analyzed in serial on a typical laptop with 

2 CPUs the processing would take many months (nearly a year). Here, we were able to 
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process over 100,000 thousand images (~10,000 images x 10 normalization methods) in 

the timespan of one week. Additionally, all performance metrics were computed in 

parallel on the HPC. See Appendix A for an example a python script used to submit 

individual subject “jobs” to the HPC SLURM scheduler.  

2.4 DATASET CREATION 

 Similar to other comparison studies (Andersen et al., 2010; Brett et al., 2001; 

Crinion et al., 2007; Ripollés et al., 2012), we assessed the performance of each 

normalization technique on brain images with artificially injected lesions. A dataset of 

artificially lesioned images affords some advantages. In particular, we can directly 

compare normalization performance with and without a lesion within the same 

individual. This is not possible in data from participants where the lesion has occurred 

naturally, and no pre-injury scan exists. Furthermore, we can generate datasets that are 

orders of magnitude larger, since we can apply artificial lesions from every stroke 

participant’s image to every control participant’s image. If all combinations are 

exhausted, datasets that began with hundreds of images will combine to create thousands 

of images. This can enhance our estimations of normalization performance metrics 

(additional variability is introduced by the unique combinations of injected injury to 

control participant brain images), although many images will end up containing similar 

features (e.g. the same lesion placed in all healthy control images will now make them 

uniquely related as well).  

 The artificially lesioned brain images were created using similar procedures to 

previous studies (Brett et al., 2001; Crinion et al., 2007). However, some novel methods 

were incorporated. Importantly, the particular application of methods used for dataset 
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creation were not included in the subsequent comparison of techniques. This ensures that 

no normalization method benefits more because of its similarity to the toolset used to 

create the images. All processing (except for manual lesion tracing) was automated with 

custom developed Python functions that interact with multiple additional programs. First, 

lesions masks were manually traced by experienced neuroimagers on each stroke 

participant’s T2w image. Stroke related injury is often more apparent in these images. 

Next, each lesioned image, as well as the control image was reoriented to the stereotaxic 

coordinate system defined by the MNI152 template using FSL’s “reorient2std” program. 

This reorientation does not perform any calculations or data interpolation, but merely 

ensures all images conform to a standardized data organization format and orientation. 

The T1w lesion image and T1w control image are then cropped in the z (head-foot) 

direction to remove extraneous non-brain tissues (e.g. neck) using FSL’s “robustfov” 

program. Next, the lesioned T2w image is registered to the lesioned T1w image using 

FSL’s FLIRT program with default parameters (Jenkinson & Smith, 2001). This 

registration is applied to the manually traced lesion mask generated from the T2w image 

and results in a mask that now conforms to the space defined by the T1w image. Due to 

interpolation effects, the lesion is then re-binarized using a threshold of 0.5. Next, the 

lesion mask is smoothed using a full-width half maximum (FWHM) of 3 mm. Smoothing 

generates a gradient from 1 to 0 only near the edges of the mask (feathering). The lesion 

mask is then mirrored to the undamaged hemisphere of the lesioned T1w image and the 

enantiomorphic lesion filling method (Nachev et al., 2008) is used to “heal” the lesioned 

T1w image (this procedure differs from the one used prior to normalization and is 

outlined below). This step is crucial, and strays from previous methods used to create 
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artificially lesioned brain images. The enantiomorphic healing is necessary to facilitate a 

decent brain extraction (e.g. skull stripping) of the lesioned T1w image. Brain extraction 

is carried out using FSL’s “bet” (Smith, 2002) with a fractional intensity value of 0.4 

which is more conservative than the default value, thus preserving more true brain signal. 

The same brain extraction is also carried out on the control T1w image. Then, the 

lesioned T1w image (brain only) is linearly (12 DOF) registered to the control T1w brain 

using trilinear interpolation with FLIRT. By removing non-brain tissue prior to this 

registration step, we can ensure a more accurate brain-to-brain registration since the cost 

function will be driven by intracranial tissue instead of non-brain tissue (e.g. skull). These 

registration parameters are then used to register the lesion mask to the control T1w image 

space as well. The brain-to-brain registration parameters are also used to then register the 

whole head lesioned T1w image to the space of the control T1w image. Next, both T1w 

images are matched for intensity using mean scaling so that when tissue from the 

lesioned imaged is placed into the control image the result will not be abnormally dark or 

bright. The lesion mask is then smoothed using a FWHM of 8 mm, which facilitates a 

gradual blending of tissues near the edges of the lesion when it is injected into the control 

image. This large smoothing value also allows us to include portions of enlarged 

ventricles when they are present, further making the artificially lesioned brain more 

representative of the effects related to a natural lesion. Lastly, tissue from the lesioned 

T1w image within the mask is placed into the control T1w image, and blended via the 

gradient present near the edges of the mask.  

 Together, all the artificial lesioning steps are performed using an exhaustive 

pairwise combination of control images and lesioned images to generate a dataset of 
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more than 10,000 artificially lesioned images. The resulting dataset contains whole head 

images (including skull) with real lesions “donated” into a cohort of age matched, 

neurologically healthy control participants. All images were processed identically, and 

with minimal interpolation. Therefore, there should be no systematic difference 

introduced in the artificial dataset prior to comparing each normalization method and 

lesion compensation technique.  

2.5 SPM12 ENANTIOMORPHIC LESION HEALING PROCEDURE  

  Across all methods and participant images (both real and artificially lesioned) the 

enantiomorphic lesion filling process was identical. Each “healed” T1w image was 

created using the following steps in SPM12. First, voxels in the T1w anatomical scan 

within the lesion mask were set to a value of zero. Then the T1w image was segmented 

using SPM12’s segmentation routines. The segmentation produced native space tissue 

maps for gray and white matter (GM, WM). Next, the GM and WM tissue images were 

summed, and regions within the native space lesion mask were given a value of one. This 

combined tissue map image, and the original T1w image were then left-right flipped and 

saved as new NIFTI files. The flipped images were then registered to the original image 

so that they were midline aligned using SPM12’s Old Norm nonlinear registration 

procedure with trilinear interpolation (Ashburner & Friston, 1999). All other Old Norm 

settings remained at their default values. After the flipped images were registered to the 

original, the lesion mask was smoothed with a 4mm kernel and binarized using a 0.05 

threshold (5%). The smoothed mask was added to the original resulting in a slightly 

dilated new mask image. This new image was smoothed one final time with an 8mm 

kernel allowing for the edges to be feathered, which enabled a gradual blend in the 
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voxelwise multiplication step of filling in the lesioned area with tissue from the flipped 

image (e.g. the opposite hemisphere). Source code is available at 

https://github.com/neurolabusc/nii_preprocess. Note that this open source solution 

extends the proprietary method described by Nachev. In particular, the human brain is not 

perfectly symmetrical, and some individuals have very asymmetric brains. Here we use a 

non-linear method that can match tissue even in these cases. See Figure 2.1 for an 

example applied to an asymmetric brain and Figure 2.2 for an example where we apply 

the method to one of the artificial images in our data set. 

2.6 NORMALIZATION PROCEDURES OF LESIONED IMAGES  

 Normalization was performed using SPM12’s Old Normalize procedure, 

SPM12’s unified segmentation normalization, SPM12’s DARTEL, and with ANTs SyN 

in combination with LINDA. All normalization methods were assessed using 

enantiomorphic lesion filling. Other lesion compensation techniques assessed included 

SPM12’s tissue probability map lesion filling, or CFM with SPM’s Old Normalize, or 

CCFM with the ANTs SyN method used by LINDA. In total, 10 normalization methods 

with unique lesion compensation strategies were used. Within all normalization methods, 

enantiomorphic lesion filling was compared to each particular method’s implemented 

default alternative.  See Table A for a summary of each software implementation and its 

main parameters. 

Using SPM12’s Old Normalize procedure, each lesioned T1w image was input to 

the algorithm along with the corresponding weighting image. The weighting image was 

constructed by taking the binary lesion mask and subtracting 1, then multiplying by -1. 

This converts all zeros to a value of 1 and all ones to a value of zero. The weighting 
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image is necessary for the traditional CFM technique implemented in SPM12’s Old 

Normalize. Each image was aligned to the MNI152 T1w template distributed with 

SPM12. All other settings were kept at their default values. The transformation 

parameters from the normalization were saved, and subsequently applied to normalize the 

lesion mask as well. In the case of enantiomorphically healed images, no weighting 

image was supplied to the algorithm, but all other settings were the same as used with the 

CFM procedure. The normalization parameters were used to create a deformation field 

image for each technique, which saves the displacement needed to move each voxel from 

its native space image to the template is was warped to (in units of millimeters).  

SPM12’s unified segmentation normalization procedure was used in conjunction 

with the age appropriate template from the Clinical Toolbox (Rorden et al., 2012). Until 

recently (October 3rd, 2017) CFM was achieved in the unified procedure by zeroing out 

tissue in the anatomical scan (T1w) delineated by a lesion mask (SPM12 change log: 

https://www.fil.ion.ucl.ac.uk/spm/download/spm12_updates/README.txt). Once 

segmented, these resulting tissue maps would contain zeros at the location of the lesion. 

However, after this date, areas of the anatomical scan that have been zeroed out using a 

lesion mask are now filled in with the tissue values from the a priori tissue probability 

map (TPM) best representing the tissue of the missing anatomy. In the case of our 

experiment, these filled in values were taken from the tissue maps distributed with the 

Clinical Toolbox. Since this recent enhancement to SPM’s segmentation procedure, we 

cannot necessarily refer to the method of accounting for the lesioned area as CFM. 

Instead, we will refer to it as the “TPM filled” method, which rivals the older 

enantiomorphic lesion filling method (See Figure 2.3 for an example). Unified 
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segmentation normalization was performed with the now standard TPM filled method, 

and the enantiomorphic method. We also analyzed the data with both high regularization 

and medium regularization (default). For high regularization, the nonlinear warping 

parameters were two orders of magnitude higher than the default values, which is in line 

with previous work (Crinion et al., 2007). All other settings were kept at their defaults. 

Each normalization produced a normalized T1w image and its corresponding normalized 

lesion mask. Additionally, each normalization produced a deformation field used in 

subsequent analyses.  

 SPM12’s DARTEL (Ashburner, 2007) was used to normalize each image in the 

dataset as well. Each lesioned image was either “healed” prior to DARTEL operations 

using the enantiomorphic method described earlier, or filled in with TPM values resulting 

from the prior step of unified segmentation (the default method). DARTEL requires that 

images first be processed using the unified segmentation routines included in SPM. Here, 

we use the age appropriate tissue probability maps included in the Clinical Toolbox to 

facilitate segmentation (and TPM filling) in SPM prior to running the DARTEL 

procedure. A study specific template was first created in DARTEL for subsequent 

registrations. The study template was created from the same neurologically healthy 

subjects defined in Rorden et al. (2012), which were used to create the age appropriate 

template distributed in the Clinical Toolbox. Each subject’s segmented images (WM and 

GM) are then registered to the study template using DARTEL’s “warp to existing 

template” routines. We used the same registration parameters as Ripollés et al. (2012), 

who performed a parameter search to find optimal values for DARTEL since it had 

previously not been investigated. DARTEL also creates deformation fields that map the 
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world based transforms needed to move each voxel to its registered position in the 

template (measured in mm). Similar to the other methods listed, the deformation fields 

are used in subsequent analyses to measure performance across techniques.    

 The final normalization method assessed was SyN as part of ANTs in 

combination with LINDA. LINDA is the only method included that is advertised by its 

creators as a fully automated lesion segmentation and normalization procedure. First, 

LINDA defines parts of the lesioned image as lesion or not (no mask needed). Then, a 

register-predict-register cycle is carried out using higher resolution versions of the images 

in later cycles. LINDA makes use of the ANTs SyN normalization method, which shares 

some similarities to DARTEL. Since LINDA is a fully automated, and only requires that 

the user supply a T1w image, all processing steps are carried out without user interaction. 

This includes warping the identified lesion to template space. Here, we simply supply 

input images to LINDA’s algorithms. Note that all lesioned images in our dataset 

conform to the requirements of LINDA. Namely that lesions are unilateral, limited to the 

left hemisphere, and are a result of stroke. This is relevant given that LINDA uses a 

pretrained lesion classifier based on left hemisphere stroke which is a core component of 

its register-predict-register cycle. In the case of enantiomorphically healed images, 

LINDA’s lesion segmentation stages were skipped, and SyN normalization was used 

without CCFM.  

2.7 PERFORMANCE METRICS 

 The performance of each normalization method is determined by multiple factors 

including the voxelwise root mean square displacement (RMSD), the displacement of 

particular anatomical locations, the normalized cross correlation (NCC) within the lesion 
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and whole brain, and the prediction accuracy when the normalized brain images are 

supplied to support vector regression (SVR) classification analyses. For each 

performance metric a repeated measures analysis of variance (ANOVA) was performed 

to compare overall main effects. Pairwise comparisons were also conducted between 

enantiomorphic lesion filling and the alternative injury compensation technique within 

each normalization method. Lastly, prior to the ANOVA and paired comparison 

procedures, the data from the artificial dataset were aggregated across “patients”. This 

simply means that since each patient’s injury was represented in each control subject’s 

image, the aggregating procedure created an average “artificial patient”. This reduced the 

complexity of the analyses since the artificial dataset inherently created data typically 

analyzed using a mixed design. The aggregation was chosen to reduce the variability 

induced within each representation of a patient’s injury. Finally, the aggregated dataset 

more closely resembles a realistic dataset of a typical stroke study.  

The RMSD metric is a single value that summarizes the average difference in 

voxel displacement from one normalization to the next. Here we use it to measure the 

amount that a lesion perturbs a normalization. Specifically, we compare the 

normalization of a healthy individual’s brain to the normalization of the individual’s 

brain with an artificial lesion. If the lesion has no influence, all voxels will be warped to 

precisely the same location, so the RMSD measure would be zero. On the other hand, if 

the presence of the lesion disrupts the process, the voxels will be warped to different 

locations. Voxel displacement is measured in world space (millimeters). The RMSD is 

therefore a value describing the Euclidean distance of a voxel’s new position between 

images normalized with and without a lesion. Since this is a measure of distance 
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(displacement in mm) it is a metric considered separate from the cost function used to 

compute where that voxel was move to. In practice, RMSD measurements are impacted 

more by nonlinear regularization, rather than cost function used. To assess RMSD, each 

control participant’s brain image is normalized with, and without lesions inserted. The 

difference in amount of displacement between the lesioned, and unlesioned versions of 

the voxelwise deformation fields measures the impact that the lesion had on the 

normalization algorithm. A perfect solution would result in a value of zero, meaning the 

lesion had no influence on a match to the template image (compared to the unlesioned 

reference). Therefore, lower RMSD values within a method are clearly desirable. 

However, comparisons across methods may be heavily misleading. Specifically, good 

normalization routine that matches local features should be expected to be more 

influenced by lesions than a coarse normalization that ignores these features. Therefore 

we compare within each method between the available lesion compensation strategies.   

Similar to Crinion et al., (2007), the location of easily identifiable anatomical 

landmarks were recorded in each image from the neurologically healthy group in order to 

measure how well those particular points are aligned using each normalization method. 

We identified 18 landmarks across both cortical and subcortical anatomy. The complete 

list is: anterior commissure, left/right temporoparietal junction, posterior commissure, 

left/right anterior tip of the later ventricle, left/right posterior tip of the lateral ventricle, 

left/right calcarine fissure, left/right inferior frontal gyrus (pars obitalis), left/right central 

sulcus (superior portion near motor hand area), left/right anterior cerebellar lobe, and 

left/right inferior colliculus. First the origin of each neurologically healthy image was set 

to the anterior commissure using SPM12. Then, each easily identifiable landmark was 
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identified by a trained lab member, and verified for accuracy by a second member. 

Landmark identification was carried out using the MRIcron software (Chris Rorden & 

Brett, 2000). A three-dimensional coordinate point (x, y, z) corresponding to millimeters 

from the image origin is saved for each landmark. These millimeter coordinates are then 

converted to voxel indices and a 3x3x3 voxel cube is generated at each point and saved as 

a NIFTI image file with the same characteristics as the image the points were derived 

from. Each cube in this image was given a value ranging from 1..18 to indicate which 

landmark label it corresponded to, and all other voxels are given a value of zero. Since 

the landmarks were defined in each participant from the neurologically healthy group, we 

can measure their displacement regardless of the fact that lesions have been artificially 

injected. Computed normalization parameters from each normalization method (per 

participant) are applied to these saved landmark images using nearest neighbor 

interpolation which resulted in landmarks in the space of the template image. Once in 

template space, the average center of mass of each landmark cube was recorded as the 

average of each landmark’s x, y, and z indices in the normalized image. This resulted in 

18 sets of average coordinates (centroids). Similar to RMSD, normalization performance 

in the lesioned dataset was measured across methods as the average Euclidean distance 

(in mm) of each landmark from its associated centroid. Normalization methods that result 

in a smaller spread of these points (and therefor decreased distance from the centroid) are 

objectively better at aligning anatomy across individuals.   

The next metric, NCC, was computed both across the whole image, and within the 

average, normalized lesion mask per participant and method. For each input image, the 

mean was subtracted from each voxel prior to computing the NCC coefficient. The NCC 
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coefficient measures the similarity between two images, or in our case also between 

masked parts of a images. It is important to note that NCC itself is a common cost 

function, and was indeed used in ANTs with LINDA in the current study. Therefore, this 

performance metric can be confounded when the method used to register images is 

related. However, when compared within a method, this confound is not present since we 

only measure the effect of lesion compensation strategy. When measuring performance 

higher NCC scores indicate increased similarity, with a perfect score being 1. Average 

lesion masks for each lesion were created by summing all normalized versions of the 

binary lesion masks for each image created with the same patient, then dividing by the 

total number of images. Once averaged, this final mask image was then re-binarized 

using a threshold of 0.5. We obtained one average lesion per patient, per method. This 

ensured that the same mask was used to compute the within mask NCC score for each 

particular lesion image (e.g. from all images of an artificial patient) per method (reduces 

variability in comparisons), but also preserved the unique characteristics (accuracy of 

registration) inherent to each normalization method (e.g. average lesion s from SPM Old 

Norm are not identical to average lesions from SPM unified segmentation). Finally, the 

NCC metric is computed on pairs of images, so all combinations were exhausted for each 

method in both control participant images and the artificially lesioned images. 

 The final metric of normalization performance is the predictive ability each 

normalized lesion set had when estimating behavioral scores from normalized lesion 

masks in real patient images. We used support vector regression (SVR) as implemented 

in LIBSVM (Chang & Lin, 2011; Smola & Schölkopf, 2004). We used a subset of 159 

participants from the patient group for which we had recorded behavioral data. All 



 

41 

participants presented with language deficits as a result of left hemisphere stroke. Trained 

speech language pathologists assessed each patient using the Western Aphasia Battery 

(Shewan & Kertesz, 1980). Among other scores, this battery of tests produces a score 

referred to as the Aphasia Quotient (WAB AQ). The AQ score is a continuous value and 

indicates the severity of language impairment (in this case resulting from stroke). We 

predicted each participant’s AQ score using an SVR procedure similar to (Yourganov, 

Fridriksson, Rorden, Gleichgerrcht, & Bonilha, 2016). Specifically, we used a linear SVR 

kernel on normalized patient lesion masks where predictors consisted of voxels 

containing either a 1 or 0 for lesioned or unlesioned tissue in the mask images. Each 

normalization method was assessed separately using the SVR procedure. Model accuracy 

was evaluated using a leave-one-participant-out cross-validation procedure. The 

procedure set aside one participant, and used the lesion masks from all remaining 

participants to estimate the model coefficients. Then, the left out participant’s AQ score 

was predicted based on the trained model that consisted of all other participant’s lesion 

mask images and their known AQ scores. AQ scores were scaled to the range of 0..1, and 

the left out participant’s score (the test case) was scaled to the values of the training cases 

on every iteration. The leave one out prediction procedure was repeated iteratively, 

leaving out a new participant each time. SVR prediction accuracy was  measured as the 

Pearson correlation coefficient between actual and predicted WAB AQ scores for each 

patient (Smola & Schölkopf, 2004; Yourganov et al., 2016). In addition to the Pearson 

correlation coefficient, the residual values resulting from the SVR procedure were 

compared in a repeated measures ANOVA. Since the residuals are a measure of error, 

normalization methods that result in lower residual values for behavior prediction would 
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be more desirable. Similar to Ashburner, (2007), the idea is that better image 

normalizations should provide better prediction accuracies in neuroimaging data.   

 

Figure 2.1: Enantiomorphic healing applied to an asymmetric brain. This is an 

improvement upon Nachev’s (2007) method. 
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Figure 2.2: Example of the Enantiomorphic healing method applied to one of the artificial 

images in our data set 

 

Figure 2.3: Example of SPM12’s new tissue probability map filling method in segmented 

tissue.  
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CHAPTER 3 

 

RESULTS 

3.1 LANDMARK DISPLACEMENT 

Repeated measures ANOVA analysis with Greenhouse–Geisser correction on 

landmark displacement scores showed a significant effect of normalization method F 

(3.96, 696.13) = 7276.99, p < .001, ηp
2 = .967. See Figure 3.1 for an illustration of each 

method’s average landmark distance from the centroid (averaged across all landmarks). 

Overall, SPM12 DARTEL ENAT and ANTs LINDA CFM had the lowest average 

displacement from landmark centroids (M = 4.86, SD = .11; M = 4.98, SD = .13 

respectively). SPM12 with high regularization (both with TPM lesion filling, and 

enantiomorphic lesion filling) resulted in the highest landmark displacement (M = 6.14, 

SD = .05; M = 6.05, SD = .06 respectively) indicating less precision in matching 

landmarks across images. Pairwise comparisons within each normalization method 

between enantiomorphic and the alternative lesion compensation technique showed 

significant differences in all pairs, but not always in the same direction. Within each 

method, enantiomorphic normalization outperformed the alternative (lower landmark 

displacement), with the exception of ANTs
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 LINDA with CCFM, which outperformed ANTs LINDA with ENAT. See Table 

3.1 for the paired comparison statistics.  

3.2 ROOT MEAN SQUARED DISPLACEMENT (RMSD) 

Repeated measures ANOVA analysis with Greenhouse–Geisser correction on 

RMSD showed a significant effect of normalization method F (2.59, 454.96) = 870.58, p 

< .001, ηp
2 = .83. Figure 3.2 shows each method’s average RMSD. The normalization 

methods with the lowest average RMSD values were SPM12 unified segmentation with 

high regularization using the TPM filling procedure (M = .286, SD = .17), along with 

both versions of SPM12 Old Norm which used ENAT and CFM methods to compensate 

for the lesion (M = .3, SD = .31; M = .34, SD = .22 respectively). The methods with the 

highest RMSD values were ANTs LINDA using CCFM (M = 1.41, SD = .11) and 

SPM12 DARTEL using the TPM filling procedure (M = 1.08, SD = .48). Pairwise 

comparisons within each method between enantiomorphic and the alternative showed 

significant differences in all pairs. Specifically, SPM12’s Old Norm using ENAT lesion 

filling resulted in significantly lower RMSD values compared to traditional CFM 

(replicating Nachev et al., 2008). However, using SPM12’s most recent unified 

segmentation method (with TPM lesion filling) resulted in significantly lower RMSD 

values compared to unified segmentation with enantiomorphically healed lesions. Finally, 

enantiomorphic lesion healing resulted in significantly lower RMSD values for SPM12 

DARTEL and ANTs with LINDA. The observed reduction of mean RMSD resulting 

from enantiomorphic lesion healing was most predominant in DARTEL and ANTs, 

which both make use of millions of degrees of freedom and diffeomorphic image 

registration. All comparison statistics are detailed in Table 3.2.  
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3.3 NORMALIZED CROSS CORRELATION (NCC) 

The NCC score was computed across methods for the control participant images 

and the artificially lesioned images. NCC scores were computed both within the average 

lesion mask per lesion (excluding the rest of the image), and within the whole image 

(including the lesion). Each image in the set was compared to every other image in the set 

(control and artificial lesion images were separate sets). For the control participant 

images without using lesion masks (whole image NCC) a repeated measures ANOVA 

analysis with Greenhouse–Geisser correction was used. Overall, there was a significant 

effect of normalization method F (1.89, 3015.5) = 12397.4, p < .001, ηp
2 = .89. ANTs 

resulted in the highest NCC score within control participants (M = .97, SD = .01), 

followed by SPM DARTEL (M = .81, SD = .07). SPM12 unified with high regularization 

(and TPM lesion filling) obtained the lowest NCC score (M = .67, SD = .08). Post hoc 

comparisons were significant across all pairs. Post hoc comparisons are reported in this 

case because there are no lesion compensation methods to compare within the control 

participants only. See Table 3.3 for detailed pairwise statistics, and Figure 3.3 for the 

illustration of each method’s performance.  

Again, repeated measures ANOVA analysis with Greenhouse–Geisser correction 

was used to analyze NCC scores from control participants, but this time within the 

average lesion masks per participant. There was a significant effect of normalization 

method on NCC scores within the mask region F (1.76, 289.9) = 975.36, p < 0.001, ηp
2 = 

.855. Figure 3.4 shows each method’s average NCC score for the masked region within 

control participants. The masked NCC scores were generally lower compared to 

unmasked scores, but overall, the pattern of results closely resembled that of the 
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unmasked control participant NCC scores. There was an exception to this pattern of 

results among ANTs LINDA both with CCFM and ENAT normalized lesion masks (both 

obtained lower scores within the lesioned region). SPM12 DARTEL with the unified 

TPM lesion filling had the highest average masked NCC score within the control 

participants (M = .85, SD = .03), followed by ANTs LINDA CCFM (M = .67, SD = .10). 

The methods with the lowest NCC scores (nearly identical) were SPM12 unified with 

high regularization, with both the unified TPM lesion filling, and enantiomorphic filling 

compensation methods (M = .52, SD = .07; M = .52, SD = .07 respectively). Pairwise 

comparisons within each normalization method between enantiomorphic and the 

alternative lesion compensation technique showed significant differences between 

SPM12 unified default regularization with TPM lesion filling and ENAT lesion filling 

(t(165) = 11.36, p < .001), SPM12 DARTEL with TPM lesion filling and ENAT lesion 

filling (t(165) = 11.17, p < .001), and finally ANTs LINDA CCFM and ANTs LINDA 

ENAT (t(165) = 17.2, p < .001). There was no significant difference among SPM12 Old 

Norm or SPM12 unified with high regularization between the lesion compensation 

methods used (See Table 3.4). 

For the artificially lesioned dataset, NCC scores were also computed both within 

the lesion mask, and across the whole image (inclusive of the lesioned region). There was 

a significant effect of normalization method on NCC scores for the whole image 

comparison F(2.02, 354.87) = 311097, p < 0.001, ηp
2 = 1 (repeated measures ANOVA 

analysis with Greenhouse–Geisser correction). The results closely resemble those of the 

control participant whole image NCC analysis. Overall, ANTS LINDA and SPM 

DARTEL had the highest average NCC scores indicating a better average match among 
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all normalized images, while SPM12 unified with high regularization had the lowest 

average NCC score for the whole image comparison (see Figure 3.5). The pairwise 

comparison between lesion compensation techniques within each normalization method 

showed significant results, with the exception of SPM Old Norm, for which there was no 

significant difference between techniques. For the other methods, enantiomorphic lesion 

filling outperformed the alternative techniques. However, the effect size of the increased 

NCC score is small across all comparisons.  

Within the artificially lesioned dataset a significant effect of normalization 

method was also found for the masked comparison of NCC scores F(1.61, 265.77) = 

278.5, p < 0.001, ηp
2 = .63. Again, these results aligned closely with those of the masked 

control participant analysis. SPM12 DARTEL with TPM filling had the highest NCC 

score (M = .81, SD = .05), followed by SPM12 Old Norm with ENAT (M = .8, SD = .06) 

and SPM12 Old Norm with CFM (M = .79, SD = .06). The methods with the lowest 

average NCC scores were ANTS LINDA ENAT (M = .65, SD = .09), and ANTS LINDA 

with CCFM (M = .69, SD = .11). Pairwise comparisons between lesion compensation 

techniques within each method showed significant differences within all pairs, but the 

direction of difference varied. For both SPM12 DARTEL and ANTS LINDA, the 

available alternative techniques (TPM lesion filling, and CCFM respectively) had 

significantly higher NCC scores in the masked region. For all other normalization 

methods, the enantiomorphic lesion filling technique significantly outperformed the 

compared alternative. See Figure 3.6 and Table 3.5 for details of the pairwise 

comparisons.  
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3.4 SUPPORT VECTOR REGRESSION (SVR) 

 Whereas the previous metrics aimed to quantify the quality of normalization, the 

goal of the SVR analysis was to assess the “real world” effects that normalization has on 

predicting behavior outcome from stroke related brain injury. All normalization methods 

and their lesion compensation techniques tested could predict WAB AQ scores as 

measured by the significant Pearson correlation coefficients between actual and predicted 

scores (see Table 3.6 and 3.7). However, to compare the error associated with the 

predicted scores within each method we performed a repeated measures ANOVA with 

Greenhouse–Geisser correction on the residuals obtained from each SVR analysis. Lower 

residuals are indeed related to higher correlation, but simply knowing which method is 

most predictive does not reveal any information about how the lesion compensation 

technique has influenced the error associated with the predictions. The ANOVA showed 

a significant effect of normalization method F(3.84, 607.3) = 5.55, p < 0.001, ηp
2 = .03 

(see Figure 3.7). SPM12 unified default regularization with ENAT and TPM lesion filling 

had the lowest residual average (M = .06, SD = .09; M = .06, SD = .09 respectively), 

while SPM12 DARTEL with ENAT (M = .09, SD = .12), and SPM12 Old Norm with 

CFM (M = .08, SD = .11) had the highest residual average. Pairwise comparisons 

between lesion compensation techniques within each normalization method showed a 

significant difference between SPM12 DARTEL TPM filling and SPM12 DARTEL with 

ENAT (t(158) = -3.83, p < 0.001, Cohens d = .29). All other comparisons between the 

lesion compensation techniques within each normalization method were not significant at 

an alpha level of .05 (Bonferroni corrected). 
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Table 3.1: Within Method Comparisons of Lesion Compensation on Landmark 

Displacement (mm) 

  95% CI.    

Method 

Mean 

Diff. Lower Upper t p d 

Old Norm  

CFM vs. ENAT 

.01 .00 .01 2.83 < .001 .33 

Unified High 

TPM vs. ENAT 

.09 .09 .1 21.23 < .001 1.63 

Unified Default 

TPM vs. ENAT 

.07 .06 .07 16.5 < .001 1.09 

DARTEL 

TPM vs. ENAT 

.18 .16 .19 17.8 < .001 1.48 

ANTs LINDA 

CCFM vs. ENAT 

-.10 -.12 -.09 -10.98 < .001 .74 
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Table 3.2: Within Method Comparisons of Lesion Compensation on RMSD (mm) 

  95% CI.    

Method Mean Diff. Lower Upper t p d 

Old Norm  

CFM vs. ENAT 
.04 .01 .07 2.88 0.0045 .15 

Unified High 

TPM vs. ENAT 
-.11 -.14 -.08 -6.81 < .001 .45 

Unified Default 

TPM vs. ENAT 
-.15 -.19 -.11 -7.22 < .001 .46 

DARTEL 

TPM vs. ENAT 
.51 .47 .55 27.55 < .001 1.23 

ANTs LINDA 

CCFM vs. ENAT 
.69 .66 .72 41.95 < .001 3.66 
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Table 3.3: Post Hoc Pairwise Comparisons Between Each Normalization Method and 

NCC Score in Control Participants 

  95% CI.    

Method Mean Diff. L U t p d 

Old Norm Unified High .12 .11 .12 82.19 < .001 1.65 

 Unified Default .07 .06 .07 42.42 < .001 0.96 

 DARTEL -.03 .03 .02 -26.55 < .001 0.49 

 ANTs -.19 .19 .19 -184.47 < .001 5.27 

Unified High Unified Default -.05 .05 .05 -106.38 < .001 0.47 

 DARTEL -.14 .15 .14 -107.69 < .001 1.86 

 ANTs -.30 .31 .30 -154.64 < .001 5.26 

Unified Default DARTEL -.10 .10 .09 -67.11 < .001 1.24 

 ANTs -.26 .26 .25 -126.21 < .001 4.06 

DARTEL ANTs -.16 .17 .16 98.58 < .001 3.20 
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Table 3.4: Within Method Comparisons of NCC Score from Control Participants Within 

the Masked Region 

  95% CI.    

Method Mean Diff. Lower Upper t p d 

Old Norm  

CFM vs. ENAT 
0 0 0 2.07 0.04 - 

Unified High 

TPM vs. ENAT 
0 0 0 -.34 .73 - 

Unified Default 

TPM vs. ENAT 
.01 .01 .01 11.36 < .001 1 

DARTEL 

TPM vs. ENAT 
.01 .01 .02 11.17 < .001 .5 

ANTs LINDA 

CCFM vs. ENAT 
.08 .07 .09 17.20 < .001 1.33 
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Table 3.5: Within Method Comparisons of NCC Score from Artificial Patients Within the 

Masked Region 

  95% CI.    

Method Mean Diff. Lower Upper t p d 

Old Norm  

CFM vs. ENAT 
-.01 -.01 0 -8.36 < .001 1 

Unified High 

TPM vs. ENAT 
-.02 -.02 -.02 -19.58 < .001 2 

Unified Default 

TPM vs. ENAT 
-.02 -.02 -.02 -14.09 < .001 1 

DARTEL 

TPM vs. ENAT 
.04 .04 .05 23.57 < .001 2 

ANTs LINDA 

CCFM vs. ENAT 
.04 .03 .05 11.91 < .001 1 
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Table 3.6: Within Method Comparisons of SVR Residuals 

  95% CI.    

Method Mean Diff. Lower Upper t p d 

Old Norm  

CFM vs. ENAT 
-01 0 .02 2.06 0.04 - 

Unified High 

TPM vs. ENAT 
0 0 0 .34 0.74 - 

Unified Default 

TPM vs. ENAT 
0 0 0 .85 0.4 - 

DARTEL 

TPM vs. ENAT 
-.02 -.03 -.01 -3.83 < .001 .29 

ANTs LINDA 

CCFM vs. ENAT 
0 -.01 .01 -.26 0.8 - 
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Table 3.7: Correlation Values Between Predicted and Actual WAB AQ Scores from the 

SVR Analysis 

Method r p 

Old Norm CFM  0.45 < .001 

Old Norm ENAT .65 < .001 

Unified High 0.58 < .001 

Unified High ENAT .59 < .001 

Unified Default .59 < .001 

Unified Default ENAT .62 < .001 

DARTEL .55 < .001 

DARTEL ENAT .45 < .001 

ANTs LINDA CCFM .56 < .001 

ANTs LINDA ENAT .56 < .001 
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Figure 3.1: Average landmark displacement from the group centroids (averaged across all 

landmarks). Error bars represent 95% CI. Lower values indicate better normalization.  

 

 
 

Figure 3.2: Average RMSD. Error bars represent 95% CI. Lower values indicate that the 

lesioned image was distorted similarly to the unlesioned reference image across all 

voxels.  
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Figure 3.3: Average NCC scores measured across all combinations of normalized control 

participant images. Error bars represent 95% CI. Higher values indicate a better match 

among normalized images.  

 

 
 

Figure 3.4: Average NCC score of control participant images within the masked region 

defined by the normalized masks per method. Error bars represent 95% CI. Higher values 

indicated a better match within the masked region. 
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Figure 3.5: Average NCC score of artificial patients within the whole image. Error bars 

represent 95% CI. Higher values indicate a better match across all images per method. 

 

 
 

Figure 3.6: Average NCC score of artificial patients within the masked region defined by 

the average normalized masks per method. Error bars represent 95% CI. Higher values 

indicate a better match within the masked region.  
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Figure 3.7: Average residual value from the SVR prediction. Error bars represent 95% 

CI. Lower residuals indicate less prediction error.  
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CHAPTER 4

 

DISCUSSION 

 Overall, we have shown that within popular normalization software, there is more 

than one way to compensate for brain injury when registering a clinical image to a 

template. Specifically, we tested each normalization method’s default strategy to the 

nonstandard enantiomorphic technique. We found that the best performing technique 

differs across methods and the performance metric used. A major component of the 

current work is our use of multiple quantitative metrics for determining the quality of 

normalization. For example, if only assessing performance by lowest voxelwise RMSD 

value, our data show that the oldest methods (SPM12 Old Norm) have lower (i.e. better) 

scores, compared to ANTs and DARTEL, which is contradictory to the typical pattern of 

performance in healthy subjects (Klein et al., 2009). Within a method, the ideal lesion 

compensation strategy also differs. However, if performance is assessed by landmark 

displacement (a more intuitive measure), the lowest values (better) are produced by 

ANTs LINDA and SPM12’s DARTEL, which are both methods with evidence showing 

their superiority in studies of healthy subjects (Klein et al., 2009; Ripollés et al., 2012). 

Also, the within method landmark comparisons show that DARTEL benefits more from 

the enantiomorphic technique, whereas ANTs benefits more by using its default 

technique (CCFM). Additionally, our NCC results generally support the pattern of 

performance seen in the landmark results. The interpretation of our SVR behavior 
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prediction is less clear though. Each method can predict behavior well, meaning that all 

methods are useful in these types of analyses. A more in depth assessment with 

parcellated atlas maps might reveal more dramatic differences compared to voxelwise 

methods used in the current study. Additionally, prediction accuracy (and error rate) 

could be highly dependent on the behavior being assessed and that behavior’s suspected 

neuroanatomical substrates (Pustina et al., 2016).  

Our comparison study is timely in that no previous study of this nature has 

included SPM12 and its new TPM filling feature, nor have any included LINDA (Pustina 

et al., 2016) in combination with ANTs. A noted limitation of ANTs in a previous 

comparison (Ripollés et al., 2012), was its lack of a method, or addon for automated 

lesion identification. This limitation has since been directly address by LINDA, which is 

deeply integrated with ANTs. Further, apart from its debut release, no other study has 

directly compared enantiomorphic lesion healing to the available options included in 

other software. Assessing the performance of the most recent version of SPM12 is 

particularly important because its new default behavior for masked portions of images 

(filling in with TPM values) changes the status quo for all users who use the software for 

clinical neuroimaging analysis that previously relied on its earlier techniques. The 

assessment of LINDA is also important given the evidence of its improved superiority, 

and reliability compared to its popular predecessor, the ALI toolbox (Seghier et al., 

2008). As with previous studies that aim to compare normalization methods on clinical 

data (Andersen et al., 2010; Crinion et al., 2007), we used an artificially created dataset of 

brain images containing lesions resembling those of stroke patients. Although the term 

“artificial” accurately describes this dataset, the images closely resembled true clinical 
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images. This close resemblance to true stroke images is a result of the methods used to 

create the artificial lesions, and a result of injecting precisely delineated lesions from real 

patient data into a dataset of elderly participants. The use of control images from 

participants in a similar age range is not unique to our study. Andersen and colleagues 

(2010) also used a small sample of elderly control participants for their artificially created 

dataset, and Ripollés et al. (2012) also used some older participants to create their dataset, 

although the age range was quite wide (21-71 years old). Our control group is unique in 

that they are within a similar age range as the stroke participants, and were selectively 

recruited (in a previous study) for being at risk for stroke, but had not yet experienced 

one. Further, our dataset contained over 10,000 unique combinations of patient lesions 

injected into the control participants. An argument could be made that we have inflated 

the similarity of images in our dataset by injecting the same lesion from each stroke 

participant’s image into each control participant. However, by creating this dataset we 

have also introduced additional variability compared to only using patient data. Every 

image still retains the unique characteristics of the control participant (e.g. their specific 

anatomy outside of the lesioned area). Unfortunately, there does not seem to be a clear 

alternative method to creating datasets such as these, and any limitations inherent to these 

methods have also affected similar studies in the same manner (Andersen et al., 2010; 

Brett et al., 2001; Crinion et al., 2007; Ripollés et al., 2012). 

 Previous studies have heavily relied on RMSD as the metric of normalization 

performance (Andersen et al., 2010; Brett et al., 2001). We also include this measure in 

our analysis. However, this metric may not be ideal for comparisons across normalization 

algorithms (which we do not perform). For example, ANTs LINDA uses its SyN image 
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registration algorithm which can have millions of degrees of freedom, compared to 

SPM’s unified method which has about 1,000 degrees of freedom (Klein et al., 2009). 

Also, an approach such as the unified method makes many assumptions about the 

distribution of tissues within the brain (based on its a priori maps). Additionally, from 

first principles, SyN has more freedom to move voxels to fit the needs of the parameters 

defined by the cost function. Therefore, it should on average move voxels more in the 

lesioned image compared to the reference unlesioned image, which would result in higher 

RMSD values. The same argument applies to SPM’s DARTEL (also millions of DOF) 

when compared to normalization methods with lower degrees of freedom. In our data, we 

see that the methods with the most constraint on nonlinear warping (SPM Old Norm, and 

SPM unified with high regularization) obtain the lowest RMDS scores. This could in part 

be due to their decreased freedom of parameters, and therefore less overall influence on 

image warping. In our experiment, we only statistically test the RMSD within each 

normalization method between the method’s default lesion compensation technique, and 

the nonstandard enantiomorphic healing method. In these comparisons, we show that 

within SPM12’s Old Norm, enantiomorphic normalization results in lower RMSD 

compared to traditional CFM, which directly replicates the original Nachev et al. (2008) 

finding. However, in both versions of SPM12’s unified method (high and default 

regularization) the new standard SPM12 TPM filling technique results in lower RMSD 

values. The most contrasted RMSD results are in both SPM12’s DARTEL and ANTs 

LINDA, which benefit more from enantiomorphic lesion healing compared to the 

alternatives of SPM12’s unified TPM filling, and CCFM respectively. The benefit of 

enantiomorphic healing seen in both methods with millions of degrees of freedom could 
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be simply related to the mirrored tissue better fitting the needs of the cost function and 

thus resulting in less displacement in and around the lesioned area. In terms of RMSD, 

we recommend that users of ANTs and LINDA apply the enantiomorphic healing 

technique since their normalizations would benefit more. For users of SPM12’s unified 

method, the now default TPM filling is perhaps better suited for lesioned images if their 

only concern is RMSD (assuming the lesioned region has been zeroed out first). 

 In contrast to RMSD, the measure of landmark displacement is arguably less 

ambiguous to interpret. The main goal of brain image normalization is to align similar 

anatomical features between and individual and a template (Brett et al., 2001; Crinion et 

al., 2007; Friston et al., 1995). This is especially challenging in data from stroke 

participants with focal lesions. Similar to Crinion et al. (2007), we identified a set of 

landmarks (individual 3D coordinates) in each healthy individual. However, the previous 

authors measured the root mean squared error (RMSE) of landmark displacement within 

their healthy control group, and not in the lesioned images. Here we extended the 

landmark technique to our artificially lesioned dataset. This allowed us to measure the 

impact of landmark displacement in a the artificial dataset, which aimed to mimic a real 

stroke dataset. Again, this dataset affords us some advantages. We identified and 

recorded the location of each landmark in the healthy images prior to lesion injection. We 

also created warped landmark images (landmarks were the identified coordinates with 

3x3x3 voxel cubes placed inside these images). Rather than measure RMSE among 

landmarks, we measured the Euclidean distance of each participant’s warped landmarks 

from their respective mean landmark locations across the group. We did not perform a 

specific test of the reliability of landmark labeling in the control participant images, but 
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since they were all done by a single individual, and then visually verified, any prior error 

associated with labeling was identical in all methods that were tested. Overall the pattern 

of results are on par with the ranked order of normalization methods in Klein et al. 

(2009), in that both SPM DARTEL and ANTS achieved the lowest landmark 

displacement scores (see Figure 3.1), followed by SPM12’s unified method. Of the 

methods with the lowest (most desirable) mean distances, DARTEL with enantiomorphic 

lesion healing outperformed DARTEL with unified TPM filling, and ANTs LINDA with 

CCFM outperformed its enantiomorphic counterpart. Although our comparison included 

additional normalization methods, and we measured our landmark effects in lesioned 

images, we obtained results that agree with the pattern of results in Crinion et al. (2007). 

On one hand, these landmark results replicate their previous work, and on the other, our 

voxelwise RMSD result is at odds with the previous authors’ pattern of results for 

RMSD. However, the previous study was conducted with SPM5, and our current work 

used SPM12, which contains many improvements beyond just the unified method’s TPM 

filling procedure we have focused on. For users of each software package we recommend 

using the enantiomorphic procedure with DARTEL on lesioned images, and the default 

CCFM method if using ANTs. If using SPM12’s unified methods, we recommend the 

enantiomorphic procedure, as it results in less deviation from each group landmark 

compared to the SPM12 TPM filling procedure. Within Old Norm the effect size between 

the two lesion compensation strategies is quite small. Both methods yield similar results. 

 Inspired by Ripollés et al. (2012), we chose to measure the normalized cross 

correlation (NCC) within our datasets in addition to the RMSD and landmark 

displacement. The NCC score summarizes the similarity (or dissimilarity) between pairs 
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of normalized images (Ripollés et al., 2012; Tahmasebi, Abolmaesumi, Zheng, Munhall, 

& Johnsrude, 2009). This analysis extends that of Ripollés et al. (2012) who only 

calculated NCC within their control participant group. Here we measure NCC in both our 

control group and our artificially lesioned group. Within our control group, ANTs 

significantly outperformed all other methods, indicating that its normalization results in 

images more similar to each other in template space. The high NCC scores indicate that 

the underlying anatomy is well aligned given that incorrectly aligned anatomy in 

normalized space would in theory attempt to correlate gray matter areas with white 

matter areas (an extreme example), resulting in reduced NCC values. However, we must 

note the confound present by using NCC as our similarity metric. It could be the case that 

the ANTs method resulted in the highest NCC scores within the normalized control 

participant images because NCC was used as the cost function to match to the template 

during the normalization process. However, as most versions of the SPM12 algorithms 

use the sum of squared differences (SSD) cost function, and the unified method 

incorporates the mutual information cost function (MI), using other similarity metrics in 

this manner also present potential confounds. ANTs SyN with NCC is built into the 

design of LINDA so we chose to use it across our analyses for consistency with the 

intended use of the tool. However, independent investigations could explore using ANTs 

and SyN with other cost functions, so that NCC would not be confounded with any tool 

across both SPM12 and ANTs. This confound is only present in our comparison of 

normalized control participants.    

 SPM12’s DARTEL had high NCC scores (but less than ANTs), and was 

significantly higher than most other normalization methods. These results align with the 
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pattern seen in the landmark analysis where ANTs and DARTEL also resulted in the 

lowest deviation from the landmark means across participants in the created lesion 

dataset. Interestingly, SPM12’s Old Norm method obtained significantly higher NCC 

scores in the control participants compared to both versions of SPM12’s unified method 

we tested. This could be explained by the fact that Old Norm uses the SSD cost function, 

rather than the hybrid approach in the unified method. It may be the case that the hybrid 

approach is negatively impacted by the limits imposed by the a priori maps. If our results 

are limited to only SPM12’s unified method, DARTEL, and ANTs then the pattern of 

NCC scores replicates those of the control group NCC scores in Ripollés et al. (2012).  

The results of the lesion masked control participant analysis closely match the 

unmasked results with the major exception of ANTs with LINDA, which had lower NCC 

scores compared to the unmasked analysis. The masked comparison in control 

participants is mainly possible given our use of the artificially lesioned data, and its 

relationship to the control group. Masking and then computing NCC within the control 

participants gives us a general idea of how well the normalization methods have matched 

the tissue within the mask (how similar the signal is). In the masked analysis on controls 

both versions of ANTs with LINDA had lower scores than SPM12’s DARTEL (see 

Figure 3.4). However, we only statistically compare NCC within a method rather than 

across all methods and lesion compensation techniques. The dramatic difference seen 

between masked and unmasked analyses could be inherent to the LINDA method itself 

since it automatically delineates the lesions for every image, whereas all other methods 

used the same hand drawn lesions. By providing a new prediction for every image, 

LINDA introduced additional variability (SD = .1, compared to DARTEL’s SD = .03) 
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into the masked analysis that was absent from the hand drawn lesions. This could be an 

important consideration for future assessments of LINDA for fully automated analyses. 

This masked NCC score reduction could also be related to our dataset, rather than an 

inherent flaw in LINDA. Here, LINDA was forced to predict a new lesion for every 

image even when the same injury was present in the different control images. The hand 

draw lesions were not subject to this same iterative prediction variability. However, if a 

new lesion were to be hand drawn in each artificial image (such as LINDA needing to 

predict the lesion every time) we would expect that additional variability would be added 

to the other methods as well given the prior evidence that intra- and interrater reliability 

measurements of lesion identification is not perfect (Luby, Bykowski, Schellinger, 

Merino, & Warach, 2006). Importantly though, we only compare the NCC scores within 

each method. Among the comparisons, the enantiomorphic method generally resulted in 

lower NCC scores.  

 The whole image NCC scores for the artificial dataset closely resembled the 

pattern of NCC scores of the whole image analysis of the control group (see Figure 3.3). 

ANTs and SPM12’s DARTEL both obtained the highest NCC scores in the artificially 

lesioned images, indicating their ability to generate images in template space with high 

similarity. Again, this result also supports the landmark displacement data. NCC scores 

within the masked region of the artificial dataset somewhat matched the pattern of results 

of the mask control NCC scores. Again, in the masked condition SPM12’s DARTEL 

(with the default TPM filling procedure) obtained the highest NCC score, indicating a 

better match among normalized images, and it was significantly higher than its 

enantiomorphic counterpart. Similar to the masked control analysis, ANTS had lower 
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performance in the masked lesion data, likely due to the same limitations outlined 

previously. SPM12’s Old Norm also obtained high NCC scores in the masked lesion 

data, likely due to the same logic described in relation to the masked control data. Within 

Old Norm, enantiomorphic outperformed traditional CFM, indicating a better match 

among images analyzed with that technique. Within ANTs LINDA, the default CCFM 

outperformed its enantiomorphic comparison, but the scores for both ANTs LINDA 

versions were lower than DARTEL and SPM12’s Old Norm (see Figure 3.6). A future 

study of a less automated ANTs based normalization (no LINDA prediction) would likely 

show less variability in the masked NCC scores, and subsequently more closely resemble 

the unmasked results. The goal of including LINDA in this paper was to assess two 

versions of lesion compensation in normalization when those lesions were predicted 

using LINDA.  

 The above discussion relates to our use of three performance metrics seen in 

previous normalization comparisons in clinical data. We assessed the normalization of 

our artificially lesioned dataset using each of these metrics between multiple lesion 

compensation strategies. The current study is the first to comprehensively combine 

voxelwise RMSD, landmark displacement, and NCC scores into one unified assessment, 

where previously they have been reported separately, and not always on the same dataset 

(Andersen et al., 2010; Brett et al., 2001; Crinion et al., 2007; Nachev et al., 2008; 

Ripollés et al., 2012).  

 However, we performed an additional, novel analysis where the goal was to 

predict behavior from normalized lesion maps using support vector regression (Smola & 

Schölkopf, 2004; Yourganov et al., 2016). Crucially, the statistical procedure used for the 



 

71 

SVR analysis remained constant for each prediction. Instead, like the other analyses, we 

varied the way in which the data were normalized using the same methods performed on 

the artificially lesioned dataset. The SVR procedure was carried out on real patient data 

with associated WAB AQ scores (a measure of overall language impairment in the stroke 

participant group). Each normalization method could significantly predict WAB AQ 

scores as measured by the correlation of actual and predicted scores across participants 

(see Table 3.7). However, the method with the highest correlation coefficient and lowest 

residual average was SPM12’s unified method (default regularization) with 

enantiomorphic lesion healing, followed closely by its unified TPM filling counterpart 

(see Figure 3.7). In the comparison of residuals within each method, the only significant 

difference was between SPM12’s DARTEL with TPM filling, and its enantiomorphic 

counterpart, where the TPM technique resulted in lower residuals. Although each method 

could significantly predict WAB AQ scores (see Table 3.7), it is clear that the most 

desirable option is the one that results in the smallest error in prediction. The observed 

variability in correlation coefficients among the normalization methods was surprising. It 

is clear that normalization method has an overall effect on the associated error of 

predictions, but the low effect size implies that such differences are trivial. Of course, this 

claim is based on our data, and the specific prediction procedures used, but the effects of 

normalization can easily be extended to other behavior predictions. Additionally, 

differences between normalization methods as measured by residual error may become 

more apparent in region of interest (ROI) analyses which use parcellated, labeled atlases 

that represent percent of damage to regions, rather than using each voxel as a predictor. 

Although the downside of such an analysis could be less precision in anatomical 
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specificity of results, since many voxels are grouped into atlas regions. However, these 

analyses are quite common (Gleichgerrcht, Fridriksson, Rorden, & Bonilha, 2017; Shahid 

et al., 2018; Yourganov et al., 2016; Yourganov, Smith, Fridriksson, & Rorden, 2015), 

and would benefit from further testing of normalization methods and lesion compensation 

techniques. Furthermore, LINDA can produce a probabilistic map of its lesion prediction, 

which could serve as a more informative predictor in SVR, and similar analyses since 

each voxel identified as lesioned would have an associated probability. These probability 

values could implicitly map on to less necrotic tissue present at the boundaries of the 

focal injury.   

 In conclusion, we set out to test multiple methods of normalizing stroke 

neuroimaging data. Our purpose was not to definitively state which method was the gold 

standard, but rather illustrate that performance varies based on the method of assessment, 

and lesion compensation technique. We argue that good normalization is a tradeoff of 

sulcal alignment and preserving volume, this is analogous to representing a spherical 

surface as a 2D rectangular map. The Peters projection preserves volumes, the Mercator 

projection preserves directions. They represent tradeoffs. Likewise, the hunt for gold 

standard in normalization will depend on the question. For functional modules that are 

bound to sulci, more spatial distortion is desirable than functions that are more bound to 

volumetrics. Of the performance metrics used, both the landmark displacement and the 

SVR prediction have strong ties to the goals of most clinical imaging studies. One goal 

being to match a stroke individual’s anatomy to the healthy template anatomy, and the 

other being the prediction of behavior from imaging data. Given our data, we suggest 

users of ANTs and LINDA adopt the default methods of the software, and recommend 



 

73 

users of SPM12 to perhaps adopt DARTEL with enantiomorphic lesion healing. 

However, DARTEL may benefit by fine tuning parameters across studies and datasets. 

All other methods assessed are also valid for answering clinical neuroimaging questions, 

but the more advanced provide increased performance on the metrics most useful to 

clinicians.  
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APPENDIX A: SOFTWARE DETAILS AND PROGRAM CODE

 

Table A.1: Software Summary 

Method Cost Function 

Default Lesion 

Strategy Degrees of Freedom 

SPM12 Old Norm SSD CFM ~1000 

SPM12 US High reg Hybrid MI TPM filling ~1000 

SPM12 US Medium reg Hybrid MI TPM filling ~1000 

SPM12 DARTEL Hybris MI SSD TPM filling ~6.4M 

ANTs LINDA CC CCFM ~28M 
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Table A.2: Single Subject Run Rime, HPC Setup and Normalization Technique Details 

Method 

Run Time 

(min) CPUs used Regularization Deformation 

Old Norm CFM  ~0.4 2 Bending energy, basis 

cutoff  

Discrete cosine 

transforms 

Old Norm ENAT ~2.18 2 Bending energy, basis 

cutoff 

Discrete cosine 

transforms 

Unified High ~2.17 2 Bending energy, basis 

cutoff 

Discrete cosine 

transforms  

Unified High ENAT ~4.14 2 Bending energy, basis 

cutoff 

Discrete cosine 

transforms  

Unified Default ~2.27 2 Bending energy, basis 

cutoff 

Discrete cosine 

transforms  

Unified Default 

ENAT 

~3.87 2 Bending energy, basis 

cutoff 

Discrete cosine 

transforms  

DARTEL ~4.68 2 Linear-elasticity; MRes: 

full-multigrid (recursive)  

Finite difference model 

of a velocity 

field (constant over 

time, diffeomorphic)  

DARTEL ENAT ~5.95 2 Linear-elasticity; MRes: 

full-multigrid (recursive) 

Finite difference model 

of a velocity 

field (constant over 

time, diffeomorphic)  

ANTs LINDA 

CCFM 

~28 8 MRes Gaussian smoothing 

of the velocity field; 

transformation symmetry  

Bi-directional 

diffeomorphism 

ANTs LINDA ENAT ~30 8 MRes Gaussian smoothing 

of the velocity field; 

transformation symmetry  

Bi-directional 

diffeomorphism  

a. The HPC utilized a SLURM scheduler for job (subject) submission 

b. Regularization and deformation details are the same as Klein et al., (2009) 
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Code Sample 1: Python code sample illustrating how subjects were processed in parallel 

on the HPC. This example is specific to the SPM12 default unified TPM analysis, but is 

representative of all other subject processing scripts (python).  

 

import os 

import subprocess 

import time 

import shutil 

import sys 

import glob 

from subprocess import call 

import time 

 

# set up some constants 

STUDY        = "normalization_project" 

STUDYLEG     = "artificial_lesion" 

STUDYPART    = "spm_unified_tpm" 

HOMEDIR      = os.environ['HOME'] 

STUDYDIR   = os.path.join(os.sep, "data", "userdata", "hanayik", STUDY, 

STUDYLEG, STUDYPART) #does not have trailing slash 

SUBJDIRS     = [] 

CORESPERSUBJ = '2' 

NODESTOUSE   = '1' 

SLEEPTIME  = 1 # secs 

SLEEPTIMEWAITING = 20 # secs 

MAXQJOBS     = 200 

 

print('HOMEDIR: ' + HOMEDIR) 

print("STUDYDIR: " + STUDYDIR) 

studyContents = glob.glob(os.path.join(STUDYDIR, 'NS*')) 

studyContents.sort() # make list alphabetical 

print("SUBJ DIRS: ") 

for sc in studyContents: # loop through the list and find subj folders 

    if os.path.isdir(sc): # if its a folder then append it to the subj array 

        SUBJDIRS.append(sc) 

        print(sc) # print it for visual confirmation 

 

numjobs = len(SUBJDIRS) 

 

if not os.path.exists(os.path.join(HOMEDIR,"logs",STUDYPART)): 

    os.makedirs(os.path.join(HOMEDIR,"logs",STUDYPART)) 

 

if not os.path.exists(os.path.join(HOMEDIR,"logs",STUDYPART)): 

    os.makedirs(os.path.join(HOMEDIR,"logs",STUDYPART)) 
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# loop through subject folders and do processing 

qjobs = 0 

i = 0 

# run until the entire list of jobs "subjects" has completed 

while i < numjobs: 

 # check how many jobs are running 

    p = subprocess.Popen("squeue -u hanayik | wc -l", stdout=subprocess.PIPE, 

shell=True) 

    (output, err) = p.communicate() 

    if err is not None: 

        time.sleep(1) 

        continue 

    # convert num jobs string to float for calculation 

    qjobs = float(output) - 1 # minus one for header in output (counts as a line) 

     

    # if space available, submit a new job ("subject") 

    if qjobs <= MAXQJOBS: 

        print("{} jobs in queue".format(qjobs)) 

        print("space available, submitting job now...") 

        subj = SUBJDIRS[i] 

        thisSubj = os.path.basename(subj) 

        cmd = ["sbatch","-p","soph,jerlab","-N","1", "--job-name="+thisSubj,"-

n",CORESPERSUBJ,"--

output",os.path.join(HOMEDIR,"logs",STUDYPART,thisSubj+".out"),"--

error",os.path.join(HOMEDIR,"logs",STUDYPART,thisSubj+".err"),"--

wrap="+"python "+os.path.join(HOMEDIR,"run_sub_spm_unified_tpm.py")+" 

"+subj] 

        print(str(cmd)) 

        e = call(cmd) 

        if e != 0: 

            print("Some sort of error submitting to sbatch, will try again in a sec...") 

            time.sleep(1) 

            continue 

        time.sleep(SLEEPTIME) 

        i += 1 

    else: 

        print("queue full, waiting on space...") 

        time.sleep(SLEEPTIMEWAITING) 
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Code sample 2: Enantiomorphic lesion healing procedure (an enhanced, open source 

version recreated from the methods in Nachev et al., 2007) (matlab). 

 

function et1 = lesion_heal(t1, les) 

[p,n,x] = fileparts(t1); 

et1 = fullfile(p, ['e' n x]); 

if exist(et1, 'file') 

    return 

end 

%replace tissue in location of lesion (les) with homologous healthy tissue 

addpath('/home/hanayik/spm12/'); 

disp('added spm12 to path'); 

spm('defaults','fmri'); 

spm_jobman('initcfg'); 

spm_get_defaults('cmdline',true); 

spmDir = spm('Dir'); 

if ~exist('t1','var'), t1 = spm_select(1,'image','Select T1 images'); end; 

if ~exist('les','var'), les = spm_select(1,'image','Optional: select lesion map'); end; 

%load data 

hdr = spm_vol(t1); 

img = spm_read_vols(hdr); 

hdrLesion = spm_vol(les); 

imgLesion = spm_read_vols(hdrLesion); 

if ~isequal(size(img), size(imgLesion)), error('Dimensions do not match %s %s', les, t1); 

end; 

%save with zeros in lesion 

img(imgLesion ~= 0) = 0; 

[p,n,x] = spm_fileparts(t1); 

hdr.fname = fullfile(p, ['z',n,x]); 

spm_write_vol(hdr,img); 

%segment 

[c1t1, c2t1] = newSegSub(hdr.fname); 

t1LR = flipSub (t1); 

st1 = combineSub(c1t1, c2t1, les); 

st1LR = flipSub (st1); 

 

%template = 'sc1zT1_M2127_LIME.nii'; 

%source = 'LRsc1zT1_M2127_LIME.nii'; 

%other = 'LRT1_M2127_LIME.nii'; 

rt1LR = coreg12EstWriteSub(st1, st1LR, t1LR); 

et1 = insertSub(t1, rt1LR, les); 

 

function namFilled = insertSub(nam, namLR, lesion) 

%namLR donates voxels masked by lesion to image nam 

if isempty(nam), namFilled =''; return; end; 

hdrLesion = spm_vol(lesion); 
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imgLesion = spm_read_vols(hdrLesion); 

rdata = +(imgLesion > (max(imgLesion(:))/2)); %binarize raw lesion data, + converts 

logical to double 

spm_smooth(rdata,imgLesion,4); %blur data 

rdata = +(imgLesion > 0.05); %dilate: more than 5% 

spm_smooth(rdata,imgLesion,8); %blur data 

%now use lesion map to blend flipped and original image 

hdr = spm_vol(nam); 

img = spm_read_vols(hdr); 

hdr_flip = spm_vol(namLR); 

imgFlip = spm_read_vols(hdr_flip); 

if ~isequal(size(img), size(imgLesion)), error('Dimensions do not match %s %s', lesion, 

nam); end; 

rdata = (img(:) .* (1.0-imgLesion(:)))+ (imgFlip(:) .* imgLesion(:)); 

rdata = reshape(rdata, size(img)); 

[pth, nam, ext] = spm_fileparts(hdr.fname); 

hdr_flip.fname = fullfile(pth,['e' nam ext]);%image with lesion filled with intact 

hemisphere 

spm_write_vol(hdr_flip,rdata); 

namFilled = hdr_flip.fname; 

%insertSub() 

 

function resliced = coreg12EstWriteSub(template, source, other) 

%coregister source to match template image, apply to lesion (use 12-dof normalization 

instead of 6 dof coregister) 

if isempty(template) || isempty(source), return; end; 

fprintf('Nonlinear Coregistration of %s to match %s\n',source,template); 

matlabbatch{1}.spm.tools.oldnorm.estwrite.subj.source = {source}; 

matlabbatch{1}.spm.tools.oldnorm.estwrite.subj.wtsrc = []; 

if ~exist('other','var') || isempty(other) 

    matlabbatch{1}.spm.tools.oldnorm.estwrite.subj.resample = {[source]}; 

else 

    matlabbatch{1}.spm.tools.oldnorm.estwrite.subj.resample = {[other]}; 

end 

matlabbatch{1}.spm.tools.oldnorm.estwrite.eoptions.template = {template}; 

%n.b. masking tends to make problem worse 

matlabbatch{1}.spm.tools.oldnorm.estwrite.eoptions.weight = []; 

matlabbatch{1}.spm.tools.oldnorm.estwrite.eoptions.smosrc = 8; 

matlabbatch{1}.spm.tools.oldnorm.estwrite.eoptions.smoref = 9; 

matlabbatch{1}.spm.tools.oldnorm.estwrite.eoptions.regtype = 'mni'; 

matlabbatch{1}.spm.tools.oldnorm.estwrite.eoptions.cutoff = 25; 

matlabbatch{1}.spm.tools.oldnorm.estwrite.eoptions.nits = 16; 

matlabbatch{1}.spm.tools.oldnorm.estwrite.eoptions.reg = 1; 

matlabbatch{1}.spm.tools.oldnorm.estwrite.roptions.preserve = 0; 

matlabbatch{1}.spm.tools.oldnorm.estwrite.roptions.bb = [NaN NaN NaN; NaN NaN 

NaN]; 
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matlabbatch{1}.spm.tools.oldnorm.estwrite.roptions.vox = [NaN NaN NaN]; 

matlabbatch{1}.spm.tools.oldnorm.estwrite.roptions.interp = 2; 

matlabbatch{1}.spm.tools.oldnorm.estwrite.roptions.wrap = [0 0 0]; 

matlabbatch{1}.spm.tools.oldnorm.estwrite.roptions.prefix = 'r'; 

spm_jobman('run',matlabbatch); 

resliced = prefixSub('r',source); 

if ~isempty(other), resliced = prefixSub('r',other); end; 

%end coreg12EstWriteSub() 

 

function nam = prefixSub (pre, nam) 

[p, n, x] = spm_fileparts(nam); 

nam = fullfile(p, [pre, n, x]); 

%end prefixSub() 

 

function sab = combineSub(a, b, c) 

%sum two images, smooth with 4 voxel blur 

fprintf('Combining of %s %s\n', a, b); 

hdr = spm_vol(a); 

img = spm_read_vols(hdr); 

hdr = spm_vol(b); 

img = img+spm_read_vols(hdr); 

hdrc = spm_vol(c); 

imgc = spm_read_vols(hdrc); 

img(imgc > 0) = 1; 

%we can smooth in normalization 

%inimg = img + 0; 

%spm_smooth(inimg,img,4); %blur data 

[p,n,x] = spm_fileparts(a); 

hdr.fname = fullfile(p, ['c',n,x]); 

sab = hdr.fname; 

spm_write_vol(hdr,img); 

%end combineSmoothSub() 

 

function namLR = flipSub (nam) 

if isempty(nam), namLR = ''; return; end; 

hdr = spm_vol(nam); 

img = spm_read_vols(hdr); 

[pth, nam, ext] = spm_fileparts(hdr.fname); 

namLR = fullfile(pth, ['LR', nam, ext]); 

hdr_flip = hdr; 

hdr_flip.fname = namLR; 

hdr_flip.mat = [-1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1] * hdr_flip.mat; 

spm_write_vol(hdr_flip,img); 

 

function [c1t1, c2t1] = newSegSub(t1) 

template = fullfile(spm('Dir'),'toolbox','Clinical','TPM4mm.nii'); 
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if ~exist(template,'file') 

    warning('Unable to find template named %s',template); 

    template = fullfile(spm('Dir'),'tpm','TPM.nii'); 

    warning('falling back to template named %s',template); 

end 

[p,n,x] = spm_fileparts(t1); 

c1t1 = fullfile(p,['c1',n,x]); 

c2t1 = fullfile(p,['c2',n,x]); 

fprintf('NewSegment of %s\n', t1); 

matlabbatch{1}.spm.spatial.preproc.channel.vols = {t1}; 

matlabbatch{1}.spm.spatial.preproc.channel.biasreg = 0.001; 

matlabbatch{1}.spm.spatial.preproc.channel.biasfwhm = 60; 

matlabbatch{1}.spm.spatial.preproc.channel.write = [0 0]; 

matlabbatch{1}.spm.spatial.preproc.tissue(1).tpm = {[template ',1']}; 

matlabbatch{1}.spm.spatial.preproc.tissue(1).ngaus = 1; 

matlabbatch{1}.spm.spatial.preproc.tissue(1).native = [1 0]; 

matlabbatch{1}.spm.spatial.preproc.tissue(1).warped = [0 0]; 

matlabbatch{1}.spm.spatial.preproc.tissue(2).tpm = {[template ',2']}; 

matlabbatch{1}.spm.spatial.preproc.tissue(2).ngaus = 1; 

matlabbatch{1}.spm.spatial.preproc.tissue(2).native = [1 0]; 

matlabbatch{1}.spm.spatial.preproc.tissue(2).warped = [0 0]; 

matlabbatch{1}.spm.spatial.preproc.tissue(3).tpm = {[template ',3']}; 

matlabbatch{1}.spm.spatial.preproc.tissue(3).ngaus = 2; 

matlabbatch{1}.spm.spatial.preproc.tissue(3).native = [0 0]; 

matlabbatch{1}.spm.spatial.preproc.tissue(3).warped = [0 0]; 

matlabbatch{1}.spm.spatial.preproc.tissue(4).tpm = {[template ',4']}; 

matlabbatch{1}.spm.spatial.preproc.tissue(4).ngaus = 3; 

matlabbatch{1}.spm.spatial.preproc.tissue(4).native = [0 0]; 

matlabbatch{1}.spm.spatial.preproc.tissue(4).warped = [0 0]; 

matlabbatch{1}.spm.spatial.preproc.tissue(5).tpm = {[template ',5']}; 

matlabbatch{1}.spm.spatial.preproc.tissue(5).ngaus = 4; 

matlabbatch{1}.spm.spatial.preproc.tissue(5).native = [0 0]; 

matlabbatch{1}.spm.spatial.preproc.tissue(5).warped = [0 0]; 

matlabbatch{1}.spm.spatial.preproc.tissue(6).tpm = {[template ',6']}; 

matlabbatch{1}.spm.spatial.preproc.tissue(6).ngaus = 2; 

matlabbatch{1}.spm.spatial.preproc.tissue(6).native = [0 0]; 

matlabbatch{1}.spm.spatial.preproc.tissue(6).warped = [0 0]; 

matlabbatch{1}.spm.spatial.preproc.warp.mrf = 1; 

matlabbatch{1}.spm.spatial.preproc.warp.cleanup = 1; 

matlabbatch{1}.spm.spatial.preproc.warp.reg = [0 0.001 0.5 0.05 0.2]; 

matlabbatch{1}.spm.spatial.preproc.warp.affreg = 'mni'; 

matlabbatch{1}.spm.spatial.preproc.warp.fwhm = 0; 

matlabbatch{1}.spm.spatial.preproc.warp.samp = 3; 

matlabbatch{1}.spm.spatial.preproc.warp.write = [0 0]; 

spm_jobman('run',matlabbatch); 

%end newSegSub()  
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Code sample 3: RMSD calculation (matlab) 

 

function [rms_whole] = calc_def_rms(defA, defB) 

addpath('/home/hanayik/spm12/'); 

addpath('/home/hanayik/dicm2nii/'); 

mfilepth = mfilename('fullpath'); 

spmDir = spm('Dir'); 

brainmask = fullfile(spmDir,'canonical','single_subj_T1_mask.nii'); 

if nargin < 1 

    [ui_na, ui_pa, ~] = uigetfile('*.nii', 'Choose deformation Image'); 

    defA = fullfile(ui_pa, ui_na); 

    [ui_nb, ui_pb, ~] = uigetfile('*.nii', 'Choose deformation Image'); 

    defB = fullfile(ui_pb, ui_nb); 

end 

 

disp(defA); 

disp(defB); 

lesmask = ''; 

les_pattern_id = '_M'; 

bmask_pattern = 'BrainMask.nii'; 

if strfind(defA, les_pattern_id) 

    pth = fileparts(defA); 

    lesmaskfile = dir(fullfile(pth, 'cLesion*.nii')); 

    lesmaskfileALT = dir(fullfile(pth, 'Prediction3_native*.nii')); 

    if ~isempty(lesmaskfile) 

        lesmask = fullfile(pth,lesmaskfile(1).name); 

    elseif ~isempty(lesmaskfileALT) 

        lesmask = fullfile(pth,lesmaskfileALT(1).name); 

    end 

    %ANTS only 

    bmaskfile = dir(fullfile(fileparts(defB), bmask_pattern)); % if lesion found here, use 

BrainMask from other folder (syn only vs. Linda) 

    if ~isempty(bmaskfile) 

        brainmask = fullfile(fileparts(defB), bmaskfile(1).name); 

    end 

elseif strfind(defB, les_pattern_id) 

    pth = fileparts(defB); 

    lesmaskfile = dir(fullfile(pth, 'cLesion*.nii')); 

    lesmaskfileALT = dir(fullfile(pth, 'Prediction3_native*.nii')); 

    if ~isempty(lesmaskfile) 

        lesmask = fullfile(pth,lesmaskfile(1).name); 

    elseif ~isempty(lesmaskfileALT) 

        lesmask = fullfile(pth,lesmaskfileALT(1).name); 

    end 

    %ANTS only 
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    bmaskfile = dir(fullfile(fileparts(defA), bmask_pattern)); % if lesion found here, use 

BrainMask from other folder (syn only vs. Linda) 

    if ~isempty(bmaskfile) 

        brainmask = fullfile(fileparts(defA), bmaskfile(1).name); 

    end 

end 

%brainmask = fullfile(ui_pa,'BrainMask.nii'); % for ANTS 

niiA = nii_tool('load', defA); 

niiB = nii_tool('load', defB); 

niiM = nii_tool('load', brainmask); 

imgM = double(niiM.img); 

 

if ~isempty(lesmask) 

    niiLesM = nii_tool('load', lesmask); 

    imgLesM = double(niiLesM.img); 

else 

    %imgLesM = double(ones(size(niiM.img))); 

end 

 

 

sA = size(niiA.img); 

sB = size(niiB.img); 

pdA = round(niiA.hdr.pixdim(2:4),1); 

pdB = round(niiB.hdr.pixdim(2:4),1); 

 

if ~isequal(sA, sB) 

    error('Images must be same dimensions'); 

end 

 

if ~isequal(pdA, pdB) 

    error('pixle dimensions do not match between images'); 

end 

 

pixdim = round(niiA.hdr.pixdim(2:4),1); 

%%%%%%%%%%%%%%%%%%% whole brain (lesion + outside lesion) 

imgAx = niiA.img(:,:,:,:,1); 

imgAy = niiA.img(:,:,:,:,2); 

imgAz = niiA.img(:,:,:,:,3); 

 

imgBx = niiB.img(:,:,:,:,1); 

imgBy = niiB.img(:,:,:,:,2); 

imgBz = niiB.img(:,:,:,:,3); 

 

imgAx = imgAx(imgM ~= 0); 

imgAy = imgAy(imgM ~= 0); 

imgAz = imgAz(imgM ~= 0); 
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imgBx = imgBx(imgM ~= 0); 

imgBy = imgBy(imgM ~= 0); 

imgBz = imgBz(imgM ~= 0); 

 

dab = sqrt((imgAx-imgBx).^2 + (imgAy-imgBy).^2 + (imgAz-imgBz).^2); 

rms_whole = sqrt (mean (dab.^2)); 

save(fullfile(pth,'rms_whole.mat'), 'rms_whole'); 
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Code sample 4. Calculate landmark distance from average landmarks (matlab) 

 

function get_warped_landmark_loc(healthyLm, lesionLm) 

  

addpath('/home/hanayik/spm12/'); 

addpath('/home/hanayik/dicm2nii/'); 

maxNlandmarks = 18; 

disp(healthyLm); 

disp(lesionLm); 

  

niiH = nii_tool('load', healthyLm); 

niiL = nii_tool('load', lesionLm); 

  

sH = size(niiH.img); 

sL = size(niiL.img); 

if ~isequal(sH, sL) 

    error('Images must be same dimensions'); 

end 

  

pdH = round(niiH.hdr.pixdim(2:4),1); 

pdL = round(niiL.hdr.pixdim(2:4),1); 

if ~isequal(pdH, pdL) 

    error('pixle dimensions do not match between images'); 

end 

  

%For calculating landmark center of mass position: [x,y,z] = 

ind2sub(size(nii.img),find(nii.img == 1)); 

% should be 18 landmarks per image 

mxH = max(max(max(niiH.img))); 

mxL = max(max(max(niiL.img))); 

disp(mxH); 

disp(mxL); 

d = zeros(1,mxH); 

les_lm_com = zeros(mxH, 3); 

avgd = []; 

if mxH < maxNlandmarks 

    [p, nm, ex] = fileparts(lesionLm); 

    % save to same folder as lesion landmark image 

    lmdisplacementfile = fullfile(p, ['avg_lm_disp_' nm '.mat']); 

    save(lmdisplacementfile, 'avgd'); 

     

    les_lm_com_file = fullfile(p, ['les_lm_com_' nm '.mat']); 

    save(les_lm_com_file, 'les_lm_com'); 

    error('less than 18 landmarks found in image') 

end 

if mxL < maxNlandmarks 
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    [p, nm, ex] = fileparts(lesionLm); 

    % save to same folder as lesion landmark image 

    lmdisplacementfile = fullfile(p, ['avg_lm_disp_' nm '.mat']); 

    save(lmdisplacementfile, 'avgd'); 

     

    les_lm_com_file = fullfile(p, ['les_lm_com_' nm '.mat']); 

    save(les_lm_com_file, 'les_lm_com'); 

    error('less than 18 landmarks found in image') 

end 

  

for i = 1:mxH 

    [xH,yH,zH] = ind2sub(size(niiH.img),find(niiH.img == i)); 

    [xL,yL,zL] = ind2sub(size(niiL.img),find(niiL.img == i)); 

    cxH = mean(xH); cyH = mean(yH); czH = mean(zH); 

    cxL = mean(xL); cyL = mean(yL); czL = mean(zL); 

     

    disp(sprintf('Control mean x,y,z (%i): %d, %d, %d',i, cxH, cyH, czH)); 

    disp(sprintf('Lesion mean x,y,z (%i): %d, %d, %d',i, cxL, cyL, czL)); 

     

    % calculate 3D euclidean distance 

    d(1,i) = sqrt((cxH - cxL)^2 + (cyH - cyL)^2 + (czH - czL)^2); 

    les_lm_com(i,:) = [cxL cyL czL];  

     

end 

  

avgd = mean(d); % * voxel dimensions to get mm 

disp(sprintf('Average landmark displacement(mm): %d', avgd)); 

[p, nm, ex] = fileparts(lesionLm); 

  

% save to same folder as lesion landmark image 

lmdisplacementfile = fullfile(p, ['avg_lm_disp_' nm '.mat']); 

save(lmdisplacementfile, 'avgd'); 

  

les_lm_com_file = fullfile(p, ['les_lm_com_' nm '.mat']); 

save(les_lm_com_file, 'les_lm_com'); 
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Code sample 5. NCC calculation code (matlab) 

 

function [ncc, ncc_les] = computeWarpedLesionImgNCC_with_lesion(warpedListStr, 

maskfile, lestype, jobsavepth) 

addpath('/home/hanayik/dicm2nii/'); 

warpedList = strsplit(warpedListStr,',')'; 

disp(warpedList); 

disp(maskfile); 

n = size(warpedList,1); 

[pM, nM, eM] = fileparts(maskfile); 

nccfile = fullfile(jobsavepth, ['ncc_' lestype '_' nM '.mat']); 

if exist(nccfile,'file') 

    return; 

end 

ncc = zeros(n,n)+NaN; 

ncc_les = zeros(n,n)+NaN; 

compname = cell(n,n); 

poolobj = gcp('nocreate'); 

delete(poolobj); 

parpool(24); 

parfor i = 1:n 

    for j = 1:n 

        warpA = warpedList{i}; 

        warpB = warpedList{j}; 

        if strcmpi(warpA, warpB) % omit same file combos 

            ncc(i,j) = NaN; 

            ncc_les(i,j) = NaN; 

            compname{i,j} = NaN; 

            continue 

        else 

            disp(warpA); 

            disp(warpB); 

            niiA = nii_tool('load', warpA); 

            niiB = nii_tool('load', warpB); 

            niiA.img = double(niiA.img); 

            niiB.img = double(niiB.img); 

            niiMask = nii_tool('load', maskfile); 

            niiMask.img = double(niiMask.img); 

            if isequal(size(niiA.img), size(niiB.img), size(niiMask.img)) 

                disp('All image sizes are equal! yay!'); 

            else 

                disp('Image sizes not equal!') 

            end 

            imgA = niiA.img(:); 

            imgB = niiB.img(:); 

            imgM = niiMask.img(:); 
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            imgA(isnan(imgA))=0; 

            imgB(isnan(imgB))=0; 

            imgM(isnan(imgM))=0; 

            %%% this matches values returned by fslcc function 

            imgAd = imgA-mean(imgA); 

            imgBd = imgB-mean(imgB); 

            ncc(i,j) = sum(imgAd.*imgBd)/sqrt(sum(imgAd.^2).*sum(imgBd.^2)); 

  

            Ales = imgA(imgM > 0); 

            Bles = imgB(imgM > 0); 

            Alesd = Ales-mean(Ales); 

            Blesd = Bles-mean(Bles); 

  

            ncc_les(i,j) = sum(Alesd.*Blesd)/sqrt(sum(Alesd.^2).*sum(Blesd.^2)); 

             

            [pA, nA, eA] = fileparts(warpA); 

            [pB, nB, eB] = fileparts(warpB); 

             

            if strfind(warpA, 'eSubject') 

                disp('fixing ncc filename for ants enat results'); 

                sA = strsplit(warpA,'/'); 

                nA = ['e_' sA{end-2}]; 

            elseif strfind(warpA, 'Subject') 

                disp('fixing ncc filename for ants cfm results'); 

                sA = strsplit(warpA,'/'); 

                nA = sA{end-2}; 

            end 

             

            if strfind(warpB, 'eSubject') 

                disp('fixing ncc filename for ants enat results'); 

                sB = strsplit(warpB,'/'); 

                nB = ['e_' sB{end-2}]; 

            elseif strfind(warpB, 'Subject') 

                disp('fixing ncc filename for ants cfm results'); 

                sB = strsplit(warpB,'/'); 

                nB = sB{end-2}; 

            end 

             

            compname{i,j} = [nM '_' nA '_to_' nB]; 

        end 

    end 

end 

save(nccfile,'ncc','ncc_les','compname'); 
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