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ABSTRACT

 The unique phenomena in acoustic metamaterial at the Dirac-like cone, and at the 

exceptional spawning ring could transform the field of engineering with multiple new 

applications that were never possible before. Localized conical dispersion called Dirac 

cone at the Brillouin Zone boundaries are the well-known phenomena demonstrated by 

photonics and phononic metamaterials. However, Dirac cone-like dispersion at the center 

of the Brillouin zone (where wave number, k = 0) [1] is rare and only happens due to 

accidental degeneracy at finite frequencies in two-dimensional periodic crystals (PCs), 

with or without microarchitectures. Accidental degeneracies are generally the ‘sweet spots’ 

where the time-reversal symmetry of the material breaks down and might have tremendous 

applications in engineering, which are not fully realized yet. Additionally, unlike 

Topological insulators, which is one of the most currently discussed topics in condensed 

matter physics, we have developed an acoustic topological conductor which helps to 

conduct acoustic pressure energy along the crystals, keeping the topology protected. 

Exploiting these behaviors of Dirac cones and spawning rings at the origin and boundaries 

of the Brillouin zone, a directional and bifurcation lens were designed which will propagate 

sound wave in specific directions at multiple frequencies. 

 In this study, it is shown that even simplest geometrical microarchitecture of the 

Phononic Crystals (PnCs) in a periodic structure can be modulated to obtain the accidental 

degeneracies at different frequencies, while the frequency of a nondispersive ‘deaf’ band’ 
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obtained from any arbitrary periodic structure made of similar PnCs remains unaltered. 

Exploiting this behavior of the Dirac cones at the origin of the Brillouin zone, a ‘deaf band’ 

based predictive modulations of the PnCs are realized and multiple occurrences of the 

Dirac like points are demonstrated.  

 Moreover, a formation of dual Dirac cones at the center of the Brillouin zone, at 

different frequencies has also never been reported in the literature. Generation of multiple 

Dirac like cones at the center and the edge of a Brillouin zone, which is rare and, usually, 

non-manipulative is also demonstrated in this article. By deploying variable angular 

position of the square PVC resonator as a unit cell in a phononic crystals (PC) system, the 

locations of the degenerated double Dirac cones have been manipulated at various 

frequency points. A baseline periodic structure having a square array of cylindrical 

polyvinylchloride (PVC) inclusions in air media is studied numerically in this study, which 

was previously studied for band gaps and wave bifurcation. Detailed numerical study of 

the PnCs showed that by predictively adjusting the PnCs parameters, even an accidental 

triple degeneracy of dispersion at Γ point (k = 0) can be achieved. The claims were further 

validated using numerical experiments on a metamaterial slab composed of designed PnCs 

which demonstrates the unique Dirac cone phenomena e.g. orthogonal wave transport, 

negative refractive index material, and wave vortex. 
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CHAPTER 1 

INTRODUCTION

Wave dispersion behavior at Dirac frequencies enables capabilities of extraordinary 

wave transport and manipulation of the acoustical waves [1-5]. Dirac frequencies are 

identified from the dispersion curves in specially designed periodic media called 

metamaterials. Dirac points can occur at the Brillouin boundary [1] or at the center of the 

Brillouin zone [6], identified in a reciprocal wave number space (k) in a periodic media. In 

photonics that concerns electromagnetic waves, exhibits Dirac phenomenon at the Fermi 

level, were energy, E is linearly proportional to the electromagnetic wave vector k. As the 

Dirac equation describes relativistic spin ½ particles, the band structure near fermi level at 

the hexagonal corners of Graphene exhibits linear Dirac dispersion and is explained by 

massless Dirac equation [7]. This point is called the Dirac point and the conical shaped [7] 

dispersion pattern is called the Dirac cone. Dirac cone at Brillouin boundary exhibits 

electronic transport phenomena like, Zitterbewegung oscillation [8], Klein tunneling [9, 

10], anti-localization [11, 12] and integer quantum Hall effect [13]. These behaviors 

resulted the breaking of the time reversal symmetry and also helped to find zero refractive 

index materials [14]. Researchers have realized and experimentally proved these behaviors 

in photonic crystals in presence of external magnetic field. However, limited activities can 

be found in phononics, where alternative to a magnetic field does not exists.  
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Despite this fact, Dirac cones were found at the intersection of two bands at the 

corners of the Brillouin Zone, when triangular and hexagonal honeycomb periodic 

phononics metamaterial were designed. Dirac cones in PnCs were first shown in 2008 [1], 

which was at the X/M point (at the boundary of the Brillouin zone) having a double 

degeneracy. Few other researchers reported that the Dirac cones also yield phenomena like 

object cloaking [6], and super-anisotropy [2, 3]. Researchers used two-dimensional PnCs 

and through transmission of acoustic waves near Dirac point they found the pseudo-

diffusion behavior and Zitterbewegung effect, equivalent to photonics present in acoustics. 

As the phenomena from photonics are replicated in phononics, it is realized that the 

phononics should also have accidental degeneracies at the center of the Brillouin Zone (i.e. 

@ 𝑘ሬ⃗ = 0), like it was reported in photonics[15, 16]. Recently finding a Dirac cone at the 

center of the Brillouin Zone has become a challenge. It has been found that at the center of 

the Brillouin Zone accidental degeneracy may result a triple degenerate eigenstate, having 

two linear bands forming a cone, and a flat band, which is a conical singularity, intersecting 

them at the center of the Brillouin Zone [6]. Despite having linear bands for both Dirac 

points at the Brillouin boundary and at the center of the Brillouin zone, they apparently do 

not reflect the same physics. Dirac point at the center of the Brillouin Zone occurs due to 

accidental degeneracy but Dirac cone at Brillouin Zone boundary occurs due to 

deterministic degeneracy. That is why the point at Brillouin Zone boundary is called Dirac 

point and the linear dispersion is called Dirac cone. Whereas the point at the center of the 

Brillouin Zone is called the “Dirac-like point” and the dispersion cone is called the ‘Dirac-

like cone” [2, 4].  
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In photonics, researchers proposed the first-principles theory by studying the 

Dirac–like cone dispersion at any symmetric point in the Brillouin zone, independent of 

frequency and lattice structure [4]. A theoretical model was developed to predict the 

existence of the linear dispersion. For photonic crystal, a non-zero, mode coupling integral 

between the degenerate Bloch states guarantees Dirac-like point, regardless of the type of 

degeneracy[17]. Recently, a study has been conducted with phononics on tunable 

topological PnCs where Dirac–like cone was generated by tuning the physical parameter. 

To simulate the quantum Hall effect (topological insulator) equivalent to the spinning 

electrons inside the material and propagating the waves around the boundary of the material 

block, they proposed circular air duct PnCs where air flow can be rotated by injecting 

forced air flow inside due to the absence of the magnetic field in phononics[18, 19]. It was 

a successful attempt but complicated. However, it is argued that if with a simplest baseline 

PnCs (which are already established for band gap study), is it possible to design the 

geometry of the PnCs without injecting forced air flow but still can predictively generate a 

Dirac-like cone. It is found that pivoting on the ‘deaf-band’ this prediction is possible even 

in a simplest PnCs system, presented in this article.  

In this article we considered a simple arrangement of cylindrical Polyvinyl Chloride 

(PVC) rods as PnCs immersed in air that was previously studied for band gaps and wave 

bifurcation[20-22]. With a C4v symmetry, the lattice constant of the unit cell was 

considered as, a = 1 inch.  The initial arbitrary radius of the resonator was set to r = 0.193a. 

Density, Young’s Modulus and Poisson ratio of PVC solid rods were 1760 kg/m3, 2.9 GPa 

and 0.4, respectively. We show that even a simplest geometry is capable of generating 

Dirac-like points at the center of the irreducible first Brillouin Zone (BZ) at several 
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frequencies with different geometrical parameters. Here we report two Dirac-like cones at 

the center of the BZ using a same lattice structure by modulating the geometric parameters 

of the resonator. Numerical results indicate that these Dirac-like cones are formed due to 

triple degeneracy which simultaneously contains a double and a single degenerate states 

when these degenerated bands show linear dispersions at 𝑘ሬ⃗ = 0. Notably, a flat branch 

passes through each of these degenerate points with zero or approximately zero group 

velocity. Due to the symmetry breaking phenomena [23], we have shown that this flat 

branch does not transport any acoustic energy and exhibits spatial localization. Due to this 

non-transporting acoustical deafness behavior, this central flat band has been termed as 

‘deaf band’ [24]. When a plane wave incident on the PnCs, this flat band shows 

antisymmetric acoustic mode shape with respect to the incident energy propagation 

direction. Deaf band is a consequence of the zero-effective density of the system and is 

only excited with the incidence of non-zero k-parallel components [23]. In this work, we 

present a predictive nature of accidental degeneracy yielding Dirac–like dispersions 

exploiting the properties of ‘deaf band’. Here, we have portrayed the design of generation, 

modulation and control over Dirac-like cones. Also, the acoustic pressure field 

distributions are demonstrated over a range of Dirac frequencies[25]. Despite similar band 

structure at different Dirac-like points, here we demonstrate dissimilar behaviors at two 

Dirac frequencies as observed. Using the first Dirac frequency we have shown that the 

incident wave on the proposed PnCs is transported at an orthogonal direction as predicted 

by the dispersion mode shapes. Additionally, two 45° symmetric bent lines are observed 

which left a non-propagating zone insulated from the PnCs defects[26]. However, at the 

second Dirac frequency, a spiral wave guiding phenomenon is observed that repeats 
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convergence and divergence of acoustic pressure fields in the orthogonal directions with 

respect to the incident plane wave[27, 28]. Followed by the numerical simulations, an 

experimental setup was designed and realized for the verification of acoustic properties of 

the proposed structure. A good agreement was found between the numerical and 

experimental outcome. 

This study has seven primary chapters. Following the first chapter which is the 

Introduction, in the second chapter, analytical derivation to find the dispersion curves for 

the periodic media mentioned above is presented. In the third chapter, we have proposed a 

predictive Dirac-like point modeling of resonator to predict the occurrence of triple 

degeneracy and dedicated to two Regions of Dirac-like cones in the dispersion curve. We 

present and explain the orthogonal wave transport phenomena at the Dirac-like frequencies 

in the PnCs, which are predictively identified. Here we have showed multiple Dirac-like 

point behavior under plane wave actuation condition. The fourth chapter is the about the 

experimental validation and study of chapter 3. The fifth chapter is regarding generation of 

dual-Dirac points by using angle orientation tuning. Tunable topological conduction has 

been proposed and studied in chapter 6. Finally, conclusion and future works have been 

presented in chapter 7. 
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CHAPTER 2 

ANALYTICAL THEORY

 It is reported that the plane wave expansion method in 3D periodic structure in 

solid-fluid media with spherical PnCs is not convenient [29-32] due to convergence issues 

with smaller number of expansions. However, with increasing computing facility using 

higher number of expansions one could lead to convergence with careful sorting of the 

eigen modes and proper definition of structural factor [33]. In this study, long cylindrical 

PVC rods arranged in air matrix are considered, where the wave modes propagated in x-y 

plane orthogonal to the axis of the cylinders (i.e. z-axis) are decoupled from the waves in 

the z-direction and the analysis remains 2D. Such conditions with plane wave expansion 

method was solved and proved to be accurate in Al/air [34] and PVC/air system [35, 36], 

by incorporating sufficiently large number of reciprocal space vectors. The study reported 

in Ref [35] with plane wave expansion method was thoroughly verified [16] using finite 

element method simulation. Analytical solution of wave dispersion in periodic structure 

formed by solid circular PnCs in air media was previously studied using plane wave 

expansion method [35], briefly reviewed herein. The governing differential equation of 

wave motion in any media can be written as  

𝜎, +  𝑓  =  𝜌𝑢̈               (1)

 Utilizing standard index notations, we define 𝜎, as the derivative of the stresses 

with respect to the 𝑙th direction, 𝑓 as the body force in the nth directions, 𝜌 as the density 
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of the material and 𝑢̈ as the acceleration in the nth direction. In PVC-air setup, this will 

result in two governing differential equations.  

 Applying Bloch-Floquet condition [37] in reciprocal wave number space and 

adding �⃗�ଵ =
ଶగ

భ
 and �⃗�ଶ =

ଶగ

మ
  with the Eigen value wave number, we get the Bloch-

Floquet displacement function as follows,  

𝑢ଵ(𝐱, 𝑡) = ∑ ∑ 𝐴𝑒𝐤.𝐱𝑒𝐆.𝐱𝑒ିఠ௧
           (2)  

𝑢ଶ(𝐱, 𝑡) = ∑ ∑ 𝐵𝑒𝐤.𝐱𝑒𝐆.𝐱𝑒ିఠ௧
           (3) 

 Where j and m are integers. Similarly, differentiating the displacement function 

twice with respect to time, the acceleration can be found as follows, 

𝑢ଵ̈(𝐱, 𝑡) = −𝜔ଶ ∑ ∑ 𝐴𝑒(𝐤ା𝐆).𝐱𝑒ିఠ௧
          (4) 

𝑢ଶ̈(𝐱, 𝑡) = −𝜔ଶ ∑ ∑ 𝐵𝑒(𝐤ା𝐆).𝐱𝑒ିఠ௧
          (5) 

 where 𝑗 and 𝑚 take numbers from -h to +h, where h is also an integer, Di = a = 

lattice constant of the unit cell. The expression in Eq. (2) to Eq. (5) signifies summations 

over a range of values of 𝑗 and 𝑚. 

 Stress function in Eq. (1) is the multiplication of the constitutive properties of the 

media and the strain function which can be further derived from the derivative of the 

displacement functions in Eq. (2) and (3). Here, the constitutive properties are assumed to 

be the function of space and expressed using Fourier coefficients, in the periodic media. 

Hence, applying the Fourier transform on the constitutive function and writing 𝐶௧௦(𝑥)in 

terms of 𝐶௧௦
 we get  

𝐶௧௦(𝑥) =  ∑ ∑ 𝐶௧௦


𝑒
ቀ

మഏ

ವభ
௫భା

మഏ

ವమ
௫మቁ

ୀି

ୀି =  ∑ ∑ 𝐶௧௦


𝑒𝐆𝐩𝐪.𝐱        (6) 
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 Similarly, the derivative of the constitutive function with respect to space 𝑥  can be 

written as follows,  

డೞ (௫)

డ௫
= (−1)ାଵ  ∑ ∑ 𝑖𝐶௧௦

 ଶగ((ଶି)ା(ଵି))


𝑒𝐆𝐩𝐪.𝐱                         (7) 

Where, 𝐶௧௦


=  
ଵ


 ∫ 𝐶௧௦(𝑥)  𝑒ି𝐆𝐩𝐪.𝐱  

And can be expressed as  

𝐶௧௦


= 𝜁𝛿𝐆𝐩𝐪 + (𝜁 − 𝜁)𝐹(𝐺)                                      (8) 

where,  𝜁  𝑜𝑟 𝜁  is the volume fraction of the respective constituent media, 𝛿 is 

Kronecker delta symbol,  𝐹(𝐺) is called the structural factor of the PVC in air, can be 

expressed as [33] 2𝑓𝐽ଵ(𝐺𝑟)/G୮୯r, Where, 𝐽ଵ is the Bessel function of the first kind, 𝑟 is 

the radius of the PVC rods.  

Substituting the Eq. (2) through Eq. (7) in to Eq. (1) we get two equations as follows,  

∑ ∑ ∑ ∑ ቈ    𝐴𝐶ଵଵ


𝑒൫𝐤ା𝐆𝐩𝐪ା𝐆𝐣𝐦൯.𝐱 ቀ𝑘ଵ +
ଶగ

భ
ቁ ቂ−𝑘ଵ −

ଶగ

భ
−  

ଶగ

భ
ቃ +

 
ଵ

ଶ
𝐴𝐶


𝑒൫𝐤ା𝐆𝐩𝐪ା𝐆𝐣𝐦൯.𝐱 ቀ𝑘ଶ +

ଶగ

మ
ቁ ቂ−𝑘ଶ −

ଶగ

మ
−

ଶగ

మ
ቃ + 𝐵𝐶ଵଶ


𝑒൫𝐤ା𝐆𝐩𝐪ା𝐆𝐣𝐦൯.𝐱 ቀ𝑘ଶ +

ଶగ

మ
ቁ ቂ−𝑘ଵ −

ଶగ

భ
−  

ଶగ

భ
ቃ + +

ଵ

ଶ
𝐵𝐶


𝑒൫𝐤ା𝐆𝐩𝐪ା𝐆𝐣𝐦൯.𝐱 ቀ𝑘ଵ +

ଶగ

భ
ቁ ቂ−𝑘ଶ −

ଶగ

మ
−

ଶగ

మ
ቃ =

 −𝜌𝜔ଶ ∑ ∑ 𝐴𝑒(𝐤ା𝐆).𝐱𝑒ିఠ௧
                                         (9) 

 

∑ ∑ ∑ ∑  𝐴𝐶ଶଵ


𝑒൫𝐤ା𝐆𝐩𝐪ା𝐆𝐣𝐦൯.𝐱 ቀ𝑘ଵ +
ଶగ

భ
ቁ ቂ−𝑘ଶ −

ଶగ

మ
−  

ଶగ

మ
ቃ +

+ 
ଵ

ଶ
𝐴𝐶


𝑒൫𝐤ା𝐆𝐩𝐪ା𝐆𝐣𝐦൯.𝐱 ቀ𝑘ଶ +

ଶగ

మ
ቁ ቂ−𝑘ଵ −

ଶగ

భ
−

ଶగ

భ
ቃ +

                            + 𝐵𝐶ଶଶ


𝑒൫𝐤ା𝐆𝐩𝐪ା𝐆𝐣𝐦൯.𝐱 ቀ𝑘ଶ +
ଶగ

మ
ቁ ቂ−𝑘ଶ −

ଶగ

మ
− 

ଶగ

మ
ቃ +
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+ 
ଵ

ଶ
𝐵𝐶


𝑒൫𝐤ା𝐆𝐩𝐪ା𝐆𝐣𝐦൯.𝐱 ቀ𝑘ଵ +

ଶగ

భ
ቁ ቂ−𝑘ଵ −

ଶగ

భ
−

ଶగ

భ
ቃ =

 −𝜌𝜔ଶ ∑ ∑ 𝐴𝑒(𝐤ା𝐆).𝐱𝑒ିఠ௧
                                                  (10) 

 After mathematical simplification Eq. (9) and Eq. (10) result an eigen value 

problem and the size of the matrix depends on the number of terms used in the summation.  

The eigen value of the proposed system can be further solved for the wave dispersion 

relationship. However, adopting this Plane Wave Expansion (PWE) approach may result 

in convergence issue at some frequency points in solid-fluid mixed media[29-32, 38]. To 

circumvent this problem, finite element method can be utilized with acceptable accuracy. 

In this article, the band structure shown in Figure 1 has been constructed using COMSOL 

Multiphysics 4.3.  

 

 

Figure 2.1: (a) A single lattice of a = 1inch and r=0.193a, (b) Brillouin Zone depicting 
wave vector direction, (c) Band structure for the unit cell, (d) Band structure of the unit 
cell, showing ‘Region A’ and ‘Region B’, with two possible Dirac-like degenerated point, 
(b) and (c) Zoomed in view of ‘Region A’ and ‘Region B’. 
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CHAPTER 3 

DEAF BAND BASED PREDICTIVE MODULATION  

3.1  Background 

Unlike systematic essential degeneracies, accidental degeneracy depends on the 

geometrical parameters of the system. The term ‘accidental’ indicates two eigen functions 

belonging to the bases of two different irreducible representations that correspond to the 

same level of energy. Although geometrically symmetric, in case of accidental degeneracy, 

the obvious equivalent configuration of the irreducible representations is not always 

guaranteed. Hence, accidental degeneracy and the generation of the double or triple 

degeneracy occurs at certain specific configurations which are still under active research 

area. In this article, we have proposed a ‘deaf band’ based nearly predictive nature of the 

accidental degeneracies at the Dirac-like points, if the ‘deaf bands’ are identified from the 

dispersion behavior utilizing an arbitrary geometric structure.  

3.2 Deaf Band based modulation 

Determination of dispersion behavior is the first step of prediction methodology. 

First the possible frequency regions at Г (where the wave vector, 𝑘ሬ⃗ = 0) point are identified 

based on the ‘deaf’ bands. From the frequency-wavenumber plot for PnCs (r = 0.193a, 

11.7% volume fraction), the trend to generate probable Dirac-like points at different 

frequencies are determined. In this study, we identified two probable points near ~12.5 kHz 

and ~18.5 kHz where the possibilities of getting Dirac-like phenomenon was obvious 
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because of the existence of two double degenerate states. We named these regions 

as ‘Region A’ and ‘Region B’. More specifically, ‘Region A’ was within ~11.7 – 13.5 kHz 

band and ‘Region B’ was within ~17.5 – 19.7 kHz frequency band, as shown in Figure 

2.1d & e. Three bands in ‘Region A’ and ‘Region B’ are named ‘T’ and ‘B’ for the top and 

bottom bands, respectively with respect to the ‘deaf’ band. The acoustic pressure mode 

shapes with the deformation of the PVC rods are presented in Figure 3.1a for the ‘T’, ‘B’ 

and the ‘deaf’ bands. Investigating the air pressure wave modes of ‘T’, ‘B’ and the ‘deaf’ 

band we clearly see that ‘T’ and ‘B’ (two orthogonal quadrupole mode) has proper 

symmetry that can be excited by an incident plane wave along ΓX [100] and XM [010] 

direction, whereas the ‘deaf’ band mode (dipolar) is antisymmetric, with almost zero group 

velocity along the incident wave direction. The deformation pattern of the PVC rods from 

the height expression (Figure 3.1b1 & b2) for the ‘deaf’ band is dominated by the 

deformation of the rods along the incident direction with a very small translation (Figure 

3.1b2) along the XM direction, which is orthogonal to the Γ𝑋. Whereas, for ‘T’ and the ‘B’ 

band the PVC rods has quadrupole deformation with reduced radius but without translation 

along any direction (Figure 3.1b1). Thus the ‘deaf’ band cannot be excited by the normal-

incident plane wave due to the asymmetry. Moreover, superposition of ‘T’ and ‘B’ band 

air pressure near the possible Dirac frequency may overlaps to cause reduced transmission 

of the incident wave. A sample domain of 5 x 4 block of PnCs before tuning (i.e. with r = 

0.193a, 11.7% volume fraction) is investigated numerically within the band 10 kHz – 14 

kHz. Although the zero-group velocity band starts at ~12.55 kHz the transmission started 

to drop to below 50% close to ~12.0 kHz. Transmission further dropped due to the 

asymmetric ‘deaf’ band although there is no band gap along the ΓX [100] direction. Here 
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we will call the nearly zero group velocity band as the ‘deaf’ band as previously called in 

Ref [23, 39, 40].  

From Figure 2.1, it is intuitive that if the band ‘T’ in ‘Region A’ is moved 

downward and the band ‘B’ in ‘Region B’ is moved upward, triple degeneracies are 

possible. Hence, optimizing or tuning geometric parameter could lead to the dispersion 

modes aiming to generate accidental triple degeneracy. Although it was shown that this 

antisymmetric mode cannot be excited [23, 31] in the incident direction, we found that after 

Figure 3.1: The band structure of the region A, with the transmission given at the right for 
frequencies from 11.5 – 13.5 kHz. It can be seen that the wave transmission lowers at deaf 
band frequency, due to having antisymmetric mode shape given. 

Transmittance [AU] 
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tuning at Dirac-like cone frequency,  due to the triple degenerate state, they starts to 

propagate along the orthogonal direction keeping the antisymmetric pattern along the 

incident direction, a sharp 45o bent line to the incident wave and the Berry-phase equal to 

zero [41] at the Dirac frequency. A close observation of ‘Region A’ reveals that the band 

‘B’ and the deaf band are already merged, however, the band ‘T’ maintains an apparent 

band gap with the deaf band which is shown in Figure 2.1e. An apparent solution could be 

to lower down this ‘T’ band with respect to frequency while unaltering the position of the 

deaf band which would generate a Dirac-like point. Now in step three, the geometric 

Figure 3.2: Accidental degeneracy at ‘Region A’ and “Region B’ (a) A unit cell for region 
‘A’ of PnCs of radius, r = 0.212a in air matrix, (b) Dispersion relation for region ‘A’ after 
increasing the radius, r = 0.193a to r = 0.212a where the T band lowered down with respect 
to Deaf band and having an accidental degeneracy. for the frequency, f = 12.551 kHz c) 
Zoomed in view of the ‘Region A’ Dirac-like point, d) A unit cell for region ‘B’ of PnCs 
of radius, r = 0.1408a in air matrix, (e) Dispersion relation after decreasing the radius, r = 
0.193a to r = ~0.1408a where the B band moved upward with respect to Deaf band and 
having an accidental degeneracy. for the frequency, ω = 18.512 kHz. f) Zoomed in view 
of the ‘Region B’ Dirac-like point.   
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parameter, radii in this case, has been optimized and increased from r = 0.193a to r = 0.212a 

of the resonators. This results in significant alteration of the ‘T’ band in terms of frequency 

position while keeping approximate (~+0.08%) fixed position of the ‘deaf band’ and the 

‘B’ band frequency at Γ point. The dispersion of the ‘T’ band altered to a local linear 

dispersion. Two branches of linear dispersion intersect at a triply degenerate point at k ⃗=0, 

forming a Dirac-like cone at f = ~12.551 kHz. Triple degenerated Dirac-like point at 

‘Region A’ has been shown in Figure 3.2c. 

Similar approach was adopted for ‘Region B’ (Figure 2.1d), the band ‘T’ and the 

‘deaf band’ had an intersection at Γ point forming a local band gap with the band ‘B’. 

Unlike ‘Region A’, since the gap was between the band ‘B’ and the double degenerated 

state, through optimization, the radii of the PVC rods were decreased from r = 0.193a to r 

= 0.1408a. This resulted in significant alteration of the dispersion of the band ‘B’ in terms 

of frequency position and formed local linear dispersion which intersected the ‘deaf band’. 

While the frequency position of band ‘B’ has been altered, the ‘deaf band’ and ‘T’ band 

frequencies were very close to the frequencies they were originally detected at the Γ point 

with ~1% perturbation. This created another Dirac-like point at a frequency of f = ~18.512 

kHz. Triple degenerated Dirac-like point at ‘Region B’ has been shown in Figure 3.2e. 

Notably, in both cases, it was evident that the ‘deaf band’ played an important role in 

pivoting the triple degeneracy. While an insignificant change (< ~0.08% in Region A and 

< ~1% in Region B) of ‘deaf band’ Dirac frequency at Γ point was observed, it rather 

helped ‘T’ and ‘B’ band to modulate predictively by altering the radii of the PnCs. Thus, 

if the radii of the resonators increased, the Γ point frequency of the ‘T’ band decreased, 

whereas if the radii of the resonators decreased, the Γ point frequency of the ‘B’ band 
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increased. All these alterations of frequency positions were relative to the Γ point 

frequencies of the ‘deaf band’. 

3.3 Numerical Simulations 

To prove whether the triple degenerated Dirac-like points based on ‘deaf bands’ are 

exhibiting the Dirac cone behavior, we simulated PnCs made of PVC rods in two 

configurations – one with r = 0.211a and the other with r = 0.1408a as shown in Figure 3.2.  

To demonstrate the wave transmission behavior, a frequency domain study was performed 

near the Dirac frequencies to obtain the acoustic pressure field distributions using  

Figure 3.3: Model for the numerical experiments, and analysis for plane
wave propagation through PVC PnCs having incident at 0 Degree and 45 
Degree angle, respectively (ГX and MГ direction, respectively) 
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commercially available COMSOL Multiphysics simulation software. A rectangular 

arrangement consisting of 57 x 10 solid PVC cylinders in air media were designed for the 

numerical simulations. The actuation of the PnCs arrangement was performed by a guided 

Figure 3.4: (a), (b) and (c) depicts the Equi-frequency surface (EFS) for T band, Deaf band 
and B band respectively for region A. Here, the frequency contour for Dirac-like frequency 
looks circular (in (b)), by proving the isometric behavior of acoustic wave at Dirac 
frequency. Whereas, all the other frequencies, the contours are not fully circular 
anisotropic). (d) An Equi-frequency Contour (EFC) of region A, (E) the absolute acoustic 
pressure field for plane wave generated in ГX direction for frequencies of f = 10kHz and f 
= 12.551 kHz respectively. Here we can see that, while the plane wave was propagating 
through the PnCs at f = ~10kH without changing any direction, the wave has been 
transported orthogonally in a converging – diverging pattern when propagated at the Dirac 
like frequency of f = ~12.551 kHz After reaching the end of the tunnel, the wave has again 
turned orthogonally keeping the plane wave pattern undisturbed along C1 and C2 channels. 
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plane wave source located at a distance of 0.112 m from the Air-PVC interface. As shown 

in Figure 3.3a and 3.3b, two different angles of incidence of the actuating plane waves on 

the PnCs were studied - (a) along 0o (ГX direction) and (b) along 45o (MГ direction), 

respectively. A plane wave radiation boundary condition was assumed at all the boundaries 

in these numerical simulations. To demonstrate the behaviors such as orthogonal wave 

transportation and negative refraction at Dirac-like frequency points, two channels namely 

C1 and C2 were routed, center lines of these routes were ~0.533 m away from the central 

line of the central channel as shown in Figure 3.3.  

Although both ‘Region A’ and ‘Region B’ demonstrated the orthogonal wave 

transport, which is an inevitable feature at Dirac frequency, each region has its own unique 

features that can be explained through the respective wave dispersion behavior. In this 

article, features of the Regions A are discussed exclusively.   

3.3.1 Region A: Proof and Features of Direct-Like Cone 

 Orthogonality in plane wave propagation was previously reported by the 

researchers [4, 7] at Dirac-point frequency, where the Dirac points exist at the boundary 

(X or M points) of the Brillouin zone of PnCs. However, here we report the orthogonal 

wave transportation at the Dirac-like frequencies at the Г point, where the wave vector, k 

⃗=0. At r = 0.212a of the PVC cylinder, a Dirac-like point is generated at the center of the 

Brillouin zone with a Dirac frequency of ~12.511 kHz, as shown in the dispersion curves 

in Figure 3.2 c.  

3.3.1.1 Orthogonal Wave Transportation - Propagation along 𝜞𝑿 

Wave guiding, and propagation pattern was studied inside and outside the PnC 

arrangement (Figure 3.4) near the estimated Dirac frequency. Figure 3.4 (e) shows the 
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acoustical pressure field distribution at a frequency at 10 kHz, slightly below the Dirac 

frequency, which is also similar above the Dirac frequency. This is consistent with the 

phenomena reported in Ref. [3, 6]. While the plane wave propagates in the direction of 

actuation without any distortion at a frequency slightly below or above the Dirac frequency, 

a drastic orthogonal wave transport (wave takes a 90° turn) was observed at Dirac 

frequency shown in Figure 3.4e. At the Dirac frequency only, a little acoustical energy 

propagates in the direction of actuation creating a partial band-gap like situation. As wave 

propagates inside the orthogonal transport became prominent leaving a 45° diversion line 

as shown in Figure 3.4e. However, wave again take 90o turn towards the original wave 

propagation direction in C1 and C2 channels leaving leaky plane waves, a result of negative 

refraction phenomena. From the acoustic transmission behavior through the cylinders 

generated numerically, an attenuation peak or a transmission loss along the incident plane 

wave direction (ΓX) is detected at the Dirac-like point frequency. This phenomenon 

happens to be due to the presence of the Deaf band, which can be explained by the 

particular symmetry of the states. have plotted Acoustic pressure eigenmode shapes of B 

band and Deaf band near Γ point of the first BZ for r = 0.193a. From the Acoustic pressure 

field mode pattern, of Fig 1, we see that B band has proper symmetry that can be excited 

by an incident plane wave along ΓX direction or [010] direction, whereas the Deaf band 

mode pattern planes travel perpendicular to the incident wave direction, having equal phase 

like B band. Hence, the Deaf band, being flat and having almost zero group velocity, cannot 
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exhibiting strong spatial localization and cannot be excited depending on mode symmetry 

compared to the source. Now, the term ‘deaf band’ has been reported several times by 

many authors, where we have found couple of genres of them. Initially, the band that acts 

indifferent upon planar wave front excitation has been referred as a symmetry forbidden 

band due to symmetry breaking. In this case, the group velocity of the band is not 

necessarily zero. Sanchez-Perez et al announced the term ‘deaf band; for the first time, 

Figure 3.5: (a) Band structure with mode shapes of T, deaf 
and B band for ΓX direction, (b) depicting the resemblance 
of the acoustic pressure distribution during orthogonal 
transportation with the ΓX deaf band mode shape, having the 
direction of excitation being ΓX (given in inset 
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showing a positively sloped band possessing wave attenuation property due to symmetry 

with incident planar wave. Whereas the second genre has been reported where the deaf 

band is flat with respect to wave vector i.e. deaf band possess zero or very small group 

velocity. The deaf band we are proposing here falls in the second genre where the 

transmission of incident planar wave attenuates due to symmetry breaking phenomena.  

[23, 39, 40, 42, 43] 

Next the reason for this behavior is explained using the local dispersion of the 

degenerated mode shapes at Γ point (Figure 3.5). The mode shapes here are the total 

absolute acoustic pressure mode shapes. ‘T’ band and the ‘B’ band mode shapes are 

quadrupolar modes, orthogonal to each other, however, the ‘deaf band’ mode is a dipolar 

mode. Hence, the T band and the B band nullifies each other, keeping the deaf band dipolar 

mode to dominate the wave propagation in the PnCs. Now, if we look at the wave 

transmission behavior from the acoustic pressure field at Dirac-like cone (Fig 3.5b), to keep 

the dominant dipolar mode alive a 45O bent line was inevitable which carries over the plane 

wave orthogonally. 

3.3.1.2 Formation of ‘No Zone’ - Propagation along ΓX  

 Fig. 3.6a & b shows the close view of the acoustical wave field pattern, when the 

incident plane waves transported orthogonally inside the PnCs leaving two 45° bent lines. 

As the acoustic energy diverts along these 45° bent lines, no or little amount of energy is 

left to divert at the intersection of these bent lines leaving some of the unit cells unaffected 

by the incoming waves. The region of PnCs where no acoustic energy is available at or 

near Dirac frequency is referred ‘No Zone’ in this article. 
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The formation of ‘No Zone’ starts from ~12.48 kHz, as shown in Figure 8, and the 

area of the ‘No Zone’ continues to increase as the frequency increases. At ~12.52 kHz, 

which is close to the Dirac frequency, where the largest number of unit cells were 

unaffected and hence the largest area of the ‘No Zone’ becomes prominent.  

3.3.1.3 Acoustic Cloaking - Propagation along ΓX 

 Since the ‘No Zone’ is fully unaffected by the influence of incoming or outgoing 

acoustical energy, presence or absence of any object placed in this area can be hardly 

Figure 3.6: (a) The bent line where the plane wave deviates orthogonally 
maintaining a 45O bent line (marked by pink dotted lines), (b) The zoomed-
out region, showing a 'No Zone' at the verge of 2 bent lines, making a small 
region untouched by the plane waves, (c) The gradual formation of the ‘No 
Zone’ with the increasing frequency towards the Dirac-like frequency of 
Region A. It is to be noted that, the largest ‘No zone’ was identified at the 
actuated frequency of f =~12.521 kHz. 
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identified. To concrete this claim, eight PVC cylinders located in a rectangular fashion at 

the center of the ‘No Zone’ were removed and plane waves were excited at 10 kHz, 12.535 

kHz and 14 kHz, respectively. Figure 3.7 shows that, at Dirac frequency, absence of 

acoustic energy at the center of the ‘No Zone’ has no effect on the wave field, which is 

affected below or above the Dirac frequency. This phenomenon has the potential for the 

application in acoustic clocking. 

Figure 3.7: Acoustic cloaking phenomena was observed in (a), (b) and (c), 
depicting the acoustic pressure field and the wave transportation at 
frequencies of ~10, ~12.535 and ~14 kHz, respectively shows that the 'No 
Zone' is evident at f=~12.535 kHz. Now, after removing the PVC PnCs in 
that particular No zone field, we achieved similar phenomenon as shown in 
Fig. 8c. 
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3.3.1.4 Orthogonal Wave Transportation - Propagation along MΓ 

 Waves were actuated in the MΓ direction i.e. along the 45O (numerical setup shown 

in Fig 3.3b with respect to the PVC PnCs orientation sweeping the frequency between 10 

kHz and 13 kHz. Actuating the bottom boundary shown in Fig 3.8a-d, we see that the plane 

wave traveled along the actuation direction below the Dirac-like frequency, f = 10kHz 

(Figure 3.8a). With increasing frequency from the ‘Region A’ Dirac-like point, the wave 

starts to propagate orthogonally. Similar phenomena reported in section 3.3.1.1, near the 

entrance of the C1 and C2 (tip of red lines), the orthogonal wave again transported 

orthogonally towards the C1 and C2 channels leaving the leaky plane waves at f=~12.225 

kHz (Figure 3.8b). At f = ~12.443 kHz (Figure 3.8c) and ~12.50 kHz (Figure 3.8d), the 

orthogonally transported waves have different behavior compared to section 3.3.1.1. Here 

waves get divided in to two tracks and made a hollow lobe to facilitate acoustic cloaking 

and created a wave vortex (or acoustic self-looping) with imaginary sources in the C1 and 

C2 channels.  

 Reason for such behavior can be explained using the local dispersion of the 

degenerated mode shapes at the Dirac frequency along the MΓ and ΓX direction. As 

discussed in section 3.3.1.1 with Fig. 3.5(a) the ‘deaf band’ mode is the dominant mode 

shape at the Dirac frequency along the ΓX direction which is along the 45O compared to the 

MΓ direction. But the deaf band mode is weaker in magnitude (Figure 3.5a) compared to 

the T and B band mode shapes along the MΓ direction. This unique combination helps the 

wave to take a 135 O bent (Figure 3.8e) which is a local orthogonal direction along the ΓX. 
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However, due to the further weaker deaf bands along the MΓ direction wave reveals 

to take another local 45O bent to keep the dominant deaf band mode shape along the ΓX 

direction, leaving the weaker MΓ deaf band mode shape at the boundaries (Figure 3.8g). 

This hindrance continues, and the travelling wave rotated back to the entry point, creating 

a wave vortex, we call self-looping at the Dirac frequency leaving a small ‘No Zone’, where 

the divergence of the acoustic displacement field is zero.  

Figure 3.8: Plane wave transportation actuated at MΓ direction with respect to the PnCs 
arrangement for different frequencies. The orthogonal wave transport was observed at the 
frequencies around and at Dirac-like point. He we showed acoustic pressure field of wave 
actuated at (a) 10 kHz, (b) 12.225 kHz, (c) 12.443 kHz and (d) 12.502 kHz 
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3.3.2 Region B: Proof and Features of Direct-Like Cone 

 Similar phenomenon has been observed in the case of region-B too. The most 

interesting phenomenon starts emerging at the frequency of ~18.46 kHz (Which is very 

near (0.44%) to the Dirac-like frequency), when the orthogonally transported wave fronts 

form a converging-diverging phenomenon inside the periodic crystals. After increasing the 

column number of the PVC PnCs, we have confirmed that the convergent-divergent 

phenomenon keeps unchanged throughout the periodic materials. In Figure 3.9d-h, wave 

getting converged at a focal point and travelling in a spiral manner, inside the PnCs is 

observed. Interestingly, the plane wave that has been actuated in Kx direction, keeps 

propagating through the PnCs and after leaving the last row of PnC, maintain the plain 

wave-front pattern. In Fig 3.10, the plane wave front has been excited in MΓ direction, and 

a similar phenomenon has been observed. 

3.3.2.1 Orthogonal Wave Transportation - Propagation along ΓX 

 Wave guiding, and propagation pattern was studied inside and outside of the PnC 

arrangement (Figure 3.9d). The bottom boundary was excited with a normal displacement 

in ΓX direction, for a range of frequencies sweeping around the Dirac-like frequency 

~18.512 kHz. Figure 4d to h shows the acoustical pressure field distribution at frequencies 

from 18.119 – 18.512 kHz, and many propagation patterns are observed. Here, like region 

A, the plane wave starts travelling orthogonally before reaching the Dirac-like frequency,  

in Figure 3.9d. At f = 18.196 kHz, wave travels both in the actuation direction and in 

orthogonal direction. It is clearly observed that at the interface (the first row of PnCs) of 

the wave guide the plane waves remained plane. However, as propagated inside, the wave 
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 interacted with the further rows of PnCs and orthogonal transport of the wave became 

prominent. However, near the entrance of the C1 and C2, wave again transported 

orthogonally towards C1 and C2 channels leaving leaky plane waves, which is similar to a 

negative refraction phenomenon.  

After increasing the actuation frequency towards Dirac-like frequency, at f = 

18.336 kHz, the wave gets split into two beams, creating a non-affected PnC region at the 

center, shown in Figure 3.9e. The wave tends to reflect at the boundary after bouncing back 

towards the center of the PnC set, which is similar to a feedback phenomenon. The 

Figure 3.9: The unit cell of PnCs, (b) The first Brillouin zone structure, showing ГX 
direction of wave vectors (c) The band structure showing Dirac-like point degenerated at f 
=~18.512 kHz at ‘Region B’, (d) to (h) the absolute acoustic pressure field for plane wave 
generated in ГX direction for frequencies of f = ~18.196 kHz,18.336 kHz, 18.371 kHz, 
18.468 kHz and 18.5 kHz respectively. Here we can see that, the wave has been transported 
orthogonally in a converging – diverging pattern when propagated at the Dirac like 
frequency of f = ~18.512 kHz  
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orthogonally wave being split, keep changing the propagation pattern with the increasing 

frequency, like shown in Figure 3.9f. At f = 18.371 kHz, wave reflecting phenomenon at 

the two ends boundaries remains, but a unlike Figure 3.9e, a separate wave beam forms at 

the middle, merging the lower beam at an angle. The most interesting phenomenon starts 

emerging at the frequency of ~18.46 kHz, when the orthogonally transported wave fronts 

form a converging-diverging phenomenon inside the periodic crystals. After increasing the 

column number of the PVC PnCs, we have confirmed that the convergent-divergent 

phenomenon keeps unchanged throughout the periodic materials. In Figure 3.9g, wave 

getting converged at a focal point and travelling in a spiral manner, inside the PnCs is 

observed. Interestingly, the plane wave that has been actuated in Kx direction, keeps 

propagating through the PnCs and after leaving the last row of PnC, maintain the plain 

wave-front pattern. Finally, at the Dirac-like frequency, at f = 18.551 kHz, the orthogonal 

spiral propagation is distinct and obvious from Figure 3.9h. However, with the increase of 

the frequency towards Dirac-like frequency, the wave converging focal length inside the 

PnCs keep reducing and the wave beams that are being converged gets narrowed. That 

means, if we think of the wave beams as bands of two acoustic spectrums converging at a 

focal point, then the focal point can be modulated with increasing and decreasing operating 

frequency near Dirac point. Hence, channelized wave transport is realized herein, suitable 

for designing tailored wave propagation at and around Dirac-like frequency. 

3.3.2.2 Orthogonal Wave Transportation - Propagation along MΓ 

 Now, similarly, we investigated the wave transportation behavior sweeping the 

frequency range around the Dirac-like frequency of region B. This time, waves were 

actuated in the MΓ direction i.e. along 45o incident angle with respect to the PVC PnCs 
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orientation. We used the numerical setup shown in Fig 3.3b, where we have arranged the 

periodic crystals in such way that the actuation plane wave-front interact with the PnCs 

along MΓ direction (at 45o angle). Like section 3.3.1.4, we actuated the bottom boundary 

of Figure 3.10d. 

 Actuating the bottom boundary shown in Figure 3.10d, we see that the plane wave 

traveled along the actuation direction below the Dirac-like frequency, f = 18.411 kHz 

similar to section 3.3.1.4. With the increasing frequency at the ‘Region B’ Dirac-like point, 

the wave starts to propagate orthogonally. Like reported before in section 3.3.1.4, near the 

entrance of the C1 and C2, wave again transported orthogonally towards C1 and C2 

channels leaving leaky plane waves. In this case, actuating plane wave passes through the 

PnCs and keep propagating along the actuation direction (MΓ direction), leaving a small 

amount to travel orthogonally. With increase of frequency towards the Dirac-like 

frequency, like section 3.3.1.4, the orthogonal wave transportation dominates inside the 

PnCs, having a shift of the wave-front beam in any of the one direction.  

In case of f = 18.464 kHz, from Figure 3.10e, the shift is away from the actuation direction, 

at the verge of the last rows towards the C1 and C2 channels. Interestingly, a distinct pair 

of acoustic beams are observed at the center channel, leaving the PnCs, along the actuation 

direction, which gets decayed afterwards with the increase of frequency. When the 

frequency reaches f = 18.479 kHz, the wave-front beam shifts down, towards the actuation 

direction boundary, shown in Figure 3.9f. Hence, the wave transportation pattern keeps 

changing inside the PnCs from f = 18.464 kHz to f = 18.479 kHz, where the wave switches 
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it’s converging tendency from one side of PnC to the other side. Plane wave get converged, 

like section 3.3.1.4, at a frequency, very close to the Dirac-like frequency, in Figure 3.9g. 

Here, the plane wave does not break after leaving from the PnCs in channels C1 and C2. 

After crossing the Dirac-like frequency, the wave gets segmented into 3 horn shaped 

patterns, keeping 2 linear portions of PnCs undisturbed on each side (Figure 3.9h). Hence, 

the wave transportation through PnC along MΓ direction shows verities of intriguing wave 

transportation and deviation phenomena. 

Figure 3.10: The unit cell of PnCs, (b) The first Brillouin zone structure, showing MГ 
direction of wave vectors (c) The band structure showing Dirac-like point degenerated at f 
=~18.512 kHz at ‘Region B’, (d) to (h) the absolute acoustic pressure field for plane wave 
generated in ГX direction for frequencies of f = ~18.196 kHz,18.336 kHz, 18.371 kHz, 
18.468 kHz and 18.5 kHz respectively. Here we can see that, the wave has been transported 
orthogonally in a converging – diverging pattern when propagated at the Dirac like 
frequency of f = ~18.512 kHz 
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3.3.2.3 Formation of ‘No Zone’ - Propagation along MΓ 

 Figure 3.11a-b shows the close view of the acoustical wave field pattern, when the 

incident plane waves transported orthogonally inside the PnCs leaving two 45° bent lines. 

To form these bent lines, the incoming plane waves take a conical shape, and at the outer 

edges of the 2D conic make 45° angle to each other allowing the diversion of acoustic 

energy. As the acoustic energy diverts along these 45° bent lines, no or little amount of 

energy is left to divert at the intersection of these bent lines leaving some of the unit cells 

unaffected by the incoming or diverting plane waves. The region of PnCs where no acoustic 

energy is available at or near Dirac frequency is referred to as ‘No Zone’ in this article. 

The formation of ‘No Zone’ is at ~18.411 kHz in Figure 3.11b, which is close to the Dirac 

frequency, where a number of unit cells were unaffected and hence this area of the ‘No 

Zone’ becomes prominent. In Figure 3.11b, we can see that the ‘No Zone’ takes a square 

shape rotated in a 45O rotation, where we have marked the ‘No Zone’ consisting of 9 PVC 

Figure 3.11: (a) The ‘No Zone’ that has been formed, at the center of the PnCs at f = 
~18.411 kHz, (b) The zoomed-in region, showing a 'No Zone' at the verge of 4 bent lines, 
making a small region untouched by the plane waves 
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crystals. As actuation frequency increases and goes towards the Dirac frequency, the ‘No 

Zone’ area becomes smaller and disappear eventually. 
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CHAPTER 4 

EXPERIMENTAL SETUP AND VALIDATION 

 An experimental design had been constructed to illustrate the Dirac-like features 

by modulating the radii of the PVC resonators. To validate the numerical results, it is 

sufficient to demonstrate orthogonal wave transportation and identify transmission 

coefficients at particular frequency points. Therefore, an experimental setup was 

constructed by commercially available extruded PVC rods as shown in Figure xx. A 

speaker capable of generating 12.551 kHz was excited using Tektronix function generator. 

To receive the transmitted wave out of the PnCs, dynamic pressure microphones were 

positioned at the designed output locations around the PnCs. 

 First, 140 commercially available extruded PVC cylinders, of r = 0.212a = 5.4 mm 

(The lattice constant a = 25.4 mm) were arranged in 10 x 14 matrix as shown in Figure 4.2.  

The PVC cylinders were cut in to 4” length elements and machined to have smooth surface 

to minimize the experimental errors. Before mounting all the PVC cylinders, we have bored 

140 bores in one side of the acrylic sheet of depth of 5 mm each approximately. Then, PnCs 

have been arranged the PnCs in 10 x 14 matrix and generated the acoustic pressure 

excitation from one side, like given in Figure 4.1. Acoustic pressure was created from one 

side (Figure 4.2a & b) using a speaker (Pyle Gear (PLG 3.2) 3.5” 2-way coaxial, 120-watt, 

4-ohm impedance) capable of generating frequencies up to 18 kHz was used. To absorb 

the acoustic energy at the boundaries to avoid reflection, acoustic dampers (foam sheets of 
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0.5-inch thick) were used along the boundary of the experimental setup (Figure 4.1d & e). 

Similar to the numerical study setup with absorbing boundary conditions, a channel made 

of foam was designed to guide the incident acoustic wave. The desired frequency ranges 

for validating orthogonal wave transportation at Dirac-like frequency is 12.5 – 12.7 kHz. 

A condenser pressure microphone (Sterling S30 Class-A FET 30 Hz-18 kHz) was used to 

detect the acoustic transmission (Figure 4.1 d & e), placed at an orthogonal (for OT) and 

incident (for IT) direction. The signal was collected, conditioned and processed using an 

acoustic signal conditioner.  

 Finally, the spectral analyses were performed to obtain the transmissibility at the 

IT and the OT locations. We have taken data from 2 different directions.  

1. Transmission in Incident direction (IT) 

2. Transmission in orthogonal direction (OT). 

Figure 4.1: The experimental setup making process, (a) Acrylic sheet bored into 140 bores 
of 5mm depth each (approximately), (b) Placing PVC rods in the bores, (c) Establishing all 
the connections for the experimental setup, (d) and (e) Final setup with acoustic damper 
while the microphone is placed at 2 different directions. 
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We have placed pressure microphones in both direction while allowing transmission 

through PnCs at 12.551 kHz. To help the acoustic energy gets absorbed and avoid reflected 

energy interference, acoustic damper has been used at the boundary of the PVC crystal 

setup. Foam sheet of 0.5-inch thickness has been used to serve this purpose. Like the 

numerical study setup, we have designed a guided channel for incident pressure wave to 

ensure the plane wave propagation phenomena. The angle of incidence of the plane wave 

needs to be along ΓX direction. If no channel is used, then the actuated wave become 

spherical wave which does not meet this requirement. Hence, we have used a channel made 

of foam for the actuating transducer. 

Figure 4.2c shows the normalized transmissibility along IT and OT from the numerical 

and experimental study. It is clearly evident that the wave transmission along OT is 

significantly high compared to IT at or around the Dirac cone frequency. The complete 

experiment was repeated more than 10 times and the normalized spectral data presented 

are with the 98% confidence interval (shaded red and blue band) observed during the 

Figure 4.2: (a) Schematic flowchart of the experimental setup, (b) Experimental setup, (c) 
The comparison of numerical and experimental results of acoustic transmission 
(normalized) excited along ΓX direction for region A. The peak transmission is seen at 
Dirac like frequency for both numerical and experimental analysis. 
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experiment. Hence, this is conclusive that ‘deaf’ band based engineered Dirac cone was 

achieved and the orthogonal transport at Dirac frequency is eminent.  

 A maximum amount of transmission is observed along OT direction at Dirac-like 

frequency, along with the IT transmission being lowest. From Figure 4.2c, the comparison 

of transmission coefficient of numerical and experimental study has been given, where 

90% of the data matches. Spectrum analysis was done to see the desired transmission 

coefficient for the range of frequencies actuated. We have run the experiment for frequency 

10 – 14.5 kHz. For the convenience of the reader and better result showcasing, a normalized 

transmission has been shown in Figure ___ for the range of 12 – 13 kHz of transmission.  
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CHAPTER 5 

DUAL DIRAC CONE GENERATION BY ANGLE BASED TUNING 

5.1 Background 

 Dirac cone and double-Dirac cone, which have tremendous prospect in wave 

guiding and manipulating phenomena, has been studied and discussed till date. However, 

formation of dual Dirac cones at the center of the Brillouin zone, at different frequencies 

has never been reported in literature. Generation of multiple Dirac like cones at the center 

and the edge of a Brillouin zone, which is rare and, usually, non-manipulative is 

demonstrated in this article. By deploying variable angular position of the square PVC 

resonator as a unit cell in a phononic crystals (PC) system, the locations of the degenerated 

double Dirac cones have been manipulated at various frequency points.  Gradual change 

in dispersion behavior as well as striking acoustic phenomena such as variable band gap, 

orthogonal wave transportation and wave trapping have been numerically demonstrated. 

5.2 Angle based Tunable engineered PnCs 

 An angle based tunable engineered PnCs system has designed and reported here 

also. Generation of triply degenerated point at the center of Brillouin Zone (BZ) or  Γ point 

is the result of accidental degeneracy. Though we have reported a way of making this 

accidental degeneracy a predictive or deterministic degeneracy in Chapter 3, but the actual 
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reason of this accidental degeneracy remains unknown.  That is why, converting this 

‘accidental’ phenomenon into a deterministic manner is the real challenge now. We have 

proposed a tunable engineered PnC system, where multiple Dirac-like points can be 

degenerated at Γ point. By tuning the solid resonator orientation with respect to the BZ.  

Similar to Chapter 3 study, keeping the mass constant, a simple square resonator has been 

designed, made of PVC, having a side of s = 0.342a. Here also the lattice constant has been 

considered as 1 inch (a = 1 inch). Square PVC inclusions were immersed in air media. A 

dispersion band structure was calculated numerically in a 2D study and multiple regions 

have been observed where a doubly-degenerated mode and a single mode is prevailing.   

After careful tuning of the structure by rotating clockwise changes the dispersion behavior 

of the crystals and helps to get degenerated into triply-degenerated points at multiple 

frequency locations for Γ.  

Initially, the square PVC resonator, has been at an angle of 0 degree with respect to 

the lattice structure. Tuning the resonator by rotating it at an interval of 10 degrees, we 

Figure 5.1: Sample band structure for square resonator of PVC inside air media, having a 
dimension of r = 0.342a where a = 1 inch. 
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found the band structure changing and the double degenerate modes generating with the 

single mode for some frequencies. The desired modes of getting triple degeneracy is shown 

in Figure 5.1. Carefully tuning the resonator, we obtain both the regions gets degenerated 

for the angle of 9.75 Degree of the resonator.   

From Figure 5.2, the proper generation of Dirac-like cone can be observed for 𝜃 =

9.7 𝐷𝑒𝑔. Generation of two Dirac-like cones at 2 close frequencies has never been reported 

before. Quadro-degenerated points have been reported where 4 bands intersect at a Dirac 

point, claiming that as a double Dirac-like cone. Here we have demonstrated the formation 

of dual Dirac cones at 2 different frequencies. The validation of the existence of Dirac-like 

point has also been confirmed by numerical frequency domain study for the structure.  The 

frequency domain study has been done where the structure has been designed where 

orthogonal transportation can be realized. Cloaking effect can be easily observed by 

channeling PnCs orthogonally. Additionally, multiple Dirac cones can also be observed the 

corner of the BZ (M point) for this exact orientation. So, a single orientation of PVC 

Figure 5.2: Gradual clockwise angular tuning is changing the wave dispersion, creating a 
dual Dirac cone formation at Γ point. 
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resonator can exhibit multiple Dirac cones and Dirac-like cones simultaneously, which can 

be used for wide verities of applications in air media.  

  

Figure 5.3: The triply degenerated point at Γ after tuning the 
resonator for 𝜃 = 9.7 𝐷𝑒𝑔. Perfect orthogonal transportation can 
be observed at the acoustic pressure filed distribution when 
excited at the Dirac-like frequency. 
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 Figure 5.3 shows the acoustic pressure field distribution of plane wave, excited at 

a frequency f = 12.505 kHz. This frequency is the Dirac frequency for the first Dirac-like 

point of the dual Dirac cone. Proper transmission along multiple orthogonal bends can be 

observed from Figure 5.3 which validates the existence of real Dirac-like point. An acoustic 

pressure excitation at a magnitude in terms of normal displacement of 0.1 m, has been 

given at the left boundary shown, and the wave manages to transmit along the orthogonal 

directions for 4 consecutive bends without getting decayed. 
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CHAPTER 6 

ACOUSTIC TOPOLOGICAL CONDUCTION 

6.1 Background 

 Topological insulator has been one of the intriguing topic of research for the past 

decade. The ability of transporting electrons only along the edge of a surface, prohibiting 

the transportation at the middle, is the prime phenomenon of topological insulators. 

Regardless of any deformation of the boundary, the edge transportation remains 

uninterrupted. That is why, they are called topologically protected. Recently, materials 

possessing topological properties have been found in nature. This has been one of the 

breakthrough discovery in the history of condensed matter physics. Till date, topological 

insulator has been researched in the area of photonics and condensed matter physics. In 

case of phononics and acoustics, this area is still to be covered and very less work have 

been done in this aspect. Like the way topological insulator is crucial in directional energy 

transportation, counter phenomena of topological insulator can also be considered as 

important.\ 

 6.2 Methodology 

 Topological insulator helps to conduct electrons along the boundary of the material, 

where the rest of the material acts as an insulator, prohibiting conduction. Similarly, there 
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might be a phenomenon where the material acts like a conductor, keeping the boundary 

protected from the conduction. Here, the boundary exhibits insulating phenomena, keeping 

all the conduction away from the edge. We have developed a basic acoustic model where 

this phenomenon has been observed and that is why, we have proposed this phenomenon 

as “topological conduction”. The counter phenomenon of topological insulator made us 

name it a topological conductor. If a PnC matrix is excited from one end at a certain 

frequency, the matrix acts like a topological conductor, keeping the edge safe from the 

acoustic energy propagation.  

 Acoustic energy excited at a frequency of 18.947 kHz creates topological 

conduction. We have generated the plane wave from the left boundary, shown in Figure 

6.1. Here, the wave keeps travelling inside the PnCs, keeping the edge protected. A 

negligible amount of energy is leaking outside the PnCs which can be treated as a 

computational error. Now the material can be topologically protected when the edge 

Figure 6.1: The band structure for the model of topological conduction phenomenon. A 
perfect topological conductor developed has been showed here where the acoustic energy 
is trapped and conducting inside the PnCs, keeping the boundaries unharmed and protected.
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deformation does not vary the topological property of the material. We have changed the 

PnC matrix size and shape to observe the topological property of this topological 

conductor. We have found that, regardless of any shape and size, the topological properties 

remain unharmed and the PnCs remain topologically protected. Due to further study and 

finding for my PhD dissertation, I will keep this study up-to here.    

 

 

 



44 

CHAPTER  7 

CONCLUSION AND FUTURE WORKS 

 In this study, we have analytically solved the dispersion behavior of PVC PnCs in 

air media, having multiple probable triple degeneracy at the Dirac-like point at 𝑘ሬ⃗ = 0. We 

pivoted our study on two ‘deaf bands’ that are identified as probable governor of the Dirac–

like cones. There we selected two frequency regions, to study further if the accidental 

degeneracies occur by modulating the physical parameter of the resonators. A predictive 

optimization process discussed in this article leads us to find the region of the Dirac-like 

cone based on the zero-group velocity flat bands, or the ‘Deaf bands’. With this unique 

phenomenon depending on the deaf band, we fabricated two numerical experiments to 

determine the behaviors of the Dirac-like points, to test if the regions identified are actually 

the Dirac-like points. After test, we demonstrated that the orthogonal wave guidance at the 

Dirac points are evident in Region A and Region B. In this article, however, only the 

Region A Dirac point behaviors are discussed with several other phenomena like, 

orthogonal wave transport, channeling plane waves along the offset axes, acoustic No 

Zone, acoustic clocking, acoustic vortex or self-looping leaving imaginary acoustic sources 

at offset locations. Mode identification, relation between the mode shapes and their role in 

the above mentioned unique wave propagation behavior are logically analyzed and 
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discussed in this article. This this study, it will help us in the future to further find the 

intriguing wave guiding properties of Dirac cone in acoustic metamaterials. 
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