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Abstract

Machine learning and deep learning methods have been increasingly applied to solve

challenging and important bioinformatics problems such as protein structure pre-

diction, disease gene identification, and drug discovery. However, the performances

of existing machine learning based predictive models are still not satisfactory. The

question of how to exploit the specific properties of bioinformatics data and couple

them with the unique capabilities of the learning algorithms remains elusive. In this

dissertation, we propose advanced machine learning and deep learning algorithms to

address two important problems: mislocation-related cancer gene identification and

major histocompatibility complex-peptide binding affinity prediction.

Our first contribution proposes a kernel-based logistic regression algorithm for

identifying potential mislocation-related genes among known cancer genes. Our algo-

rithm takes protein-protein interaction networks, gene expression data, and subcel-

lular location gene ontology data as input, which is particularly lightweight compar-

ing with existing methods. The experiment results demonstrate that our proposed

pipeline has a good capability to identify mislocation-related cancer genes.

Our second contribution addresses the modeling and prediction of human leuko-

cyte antigen (HLA) peptide binding of human immune system. We present an allele-

specific convolutional neural network model with one-hot encoding. With extensive

evaluation over the standard IEDB datasets, it is shown that the performance of our

model is better than all existing prediction models. To achieve further improvement,

we propose a novel pan-specific model on peptide-HLA class I binding affinities pre-

diction, which allows us to exploit all the training samples of different HLA alleles.
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Our sequence based pan model is currently the only algorithm not using pseudo se-

quence encoding — a dominant structure-based encoding method in this area. The

benchmark studies show that our method could achieve state-of-the-art performance.

Our proposed model could be integrated into existing ensemble methods to improve

their overall prediction capabilities on highly diverse MHC alleles.

Finally, we present a LSTM-CNN deep learning model with attention mechanism

for peptide-HLA class II binding affinities and binding cores prediction. Our model

achieved very good performance and outperformed existing methods on half of tested

alleles. With the help of attention mechanism, our model could directly output the

peptide binding core based on attention weight without any additional post- or pre-

processing.
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Chapter 1

Introduction
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1.1 Background

In 1902, Archibald Garrod published the paper The Incidence of Alkaptonuria: A

Study of Chemical Individuality which confirmed the inheritance of the disorder alka-

ptonuria (better known as black urine disease) in men. But it would wait 90 years

later, a mutation in HGD gene were demonstrated and elucidated as the genetic basis

of this disorder [9, 37]. The number of disease genes discovered has grown steadily in

past years [37]. The large-scale genome sequencing and high-throughput sequencing

provide a vast amount of data and bioinformatics has changed the way searching for

disease genes. In the work of [44], researchers rediscovered nearly all known cancer

genes of 21 tumor types in a large-scale genomic analysis. Beyond this, researchers

are targeting more specific underlying mechanisms of how disease gene affect the

proteins’ subcecullar locations [51, 77].

With the advent of genomic sciences, rapid DNA sequencing, combinatorial chem-

istry, cell-based assays, and automated high-throughput screening (HTS), the way we

design and discover drugs to diseases has also been dramatically shaped and enriched

[16]. With known drug target (usually protein receptor or enzyme) and associated

structure, virtual screening is a widely used computational technique to filter small

molecule candidates from a large number of libraries of compounds [30, 83]. Actually,

virtual screening has become an integral part of the drug discovery process [27]. Usu-

ally, virtual screening in drug discovery consists of docking, which decides where to

bind, and scoring, which reports the binding affinity of a protein-peptide interaction.

1.2 Scope of the Proposed Research

In this dissertation proposal, we focus on two specific topics:

1) As described before, there are quite a few effective models and methods which

can identify cancer genes. With so many cancer genes discovered, people are digging
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into them trying to find out what’s the effect of these cancer genes in cellular activi-

ties. In this work, we are interested in one type of cancer genes whose mutations or

abnormal expressions lead to mislocation of its translated proteins. And we propose

a computational pipeline to help identify mislocation related cancer genes.

2) Another part of our work is major histocompatibility complex-peptide (MHC-

peptide) binding prediction. More specifically, we are working on class I MHC-peptide

binding affinity prediction. The topic interests us because recent cancer immunother-

apy studies show that peptide-based vaccine is a promising for cancer treatment and

it requires a more reliable and improved computational tool to predict which peptide

will bind to MHC proteins [74, 56, 101, 79, 1]. In this dissertation, we present two

models to address this problem. The first one is an allele-specific model which out-

performs all existing methods. Next, we propose a pan-specific model which could

be used to predict on all known MHC class I alleles.

1.3 Structure of the Dissertation

In chapter 2, we present a pipeline of identifying mislocation-related cancer genes

and show the potential gene candidates we found in our experiments. In Chapter 3,

we introduce the CNN model we proposed for peptide-MHC I binding prediction and

show our performance comparison with other methods. In Chapter 5, we present our

sequence based pan-specific model and list the results on benchmark dataset. Finally,

we conclude our work and discuss future work in Chapter 6.
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Chapter 2

Mislocalization-related Disease Gene Discovery
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2.1 Introduction

Discovering disease or cancer genes and understanding their underlying pathologi-

cal mechanisms are the major challenges of biomedical research. In the past decades,

many efforts have been devoted to disease gene discovery using either high-throughput

techniques [45] or computational disease gene prediction methods [55, 17]. However,

these approaches usually report dozens or even hundreds of candidate genes while the

experimental validation of many candidates is often an expensive and time-consuming

task. To address this issue, many computational candidate gene prioritization algo-

rithms have been developed by exploiting the biomedical knowledge available about

the disease of interest and related genes [32]. For example, network information

and heterogeneous phenomic and genomic datadata sources have been used to rank

candidate genes [72, 105, 111, 22, 33]. A recent work [32] integrates a plethora of

phenomic and genomic data to pinpoint disease genes including disease phenotype

similarity derived from the Unified Medical Language System (UMLS) and seven

types of gene functional similarities calculated from gene expression, gene ontology,

pathway membership, protein sequence, protein domain, protein-protein interaction

and regulation pattern, respectively. Their methods thus covered a total of 7,719

diseases and 20,327 genes. However, such studies brought limited insights into the

pathological mechanisms due to their generic nature.

Protein Subcellular Location Prediction

The Eukaryotic cell, as the basic structural and functional unit of eukaryotic living

organisms, contains numerous proteins located in different subcellular organelles or

compartments, such as nuclei, mitochondria, cytoplasm, and Golgi apparatus (Fig-

ure 2.1). Binder et al. developed a comprehensive database to incorporate all data

sources of subcellular localization [11]. Protein translocation is key for a cell to func-

tion normally because proteins must be transported to their targeted compartment to
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exert their functions. The precise trafficking and translocation of cytosolic proteins to

their final destinations are crucial for the maintenance of appropriate cell functions

and activities. Proteins are typically directed to compartments by short peptide

sequences that act as targeting signals. Translocation to the proper compartment

allows a protein to form the necessary interactions with its partners and take part

in biological networks such as signaling and metabolic pathways. If a protein is not

localized to its correct intracellular compartment, either the reaction performed or

information carried by the protein does not reach the proper site, causing either inac-

tivation of central reactions or misregulation of signaling cascades, or the mislocalized

active protein has harmful effects by acting in the wrong place. This work is focused

on identifying cancer genes that may cause their translated proteins mislocation in

cells.

The protein sequence contains the information regulating protein trafficking [67].

Based on proteins’ target destinations, there are two major mechanisms of translo-

cation: post-translational translocation and co-translational translocation [29, 86,

78, 102]. Proteins translocating to peroxisomes, mitochondria or the nucleus are

called post-translational translocation [102, 85, 92, 94, 104]. For proteins translocated

into the endoplasmic reticulum during synthesis, a process known as co-translational

translocation is used [102]. Subcellular localization determines the access of proteins

to interacting partners and the post-translational modification machinery and enables

the integration of proteins into functional biological network [29].

However, proteins not always go to the correct locations and mislocalized proteins

can lead to disease like Alzheimer’s disease, kidney stones and cancers [29]. This is

because failure to be transported to the correct subcellular compartment can have

adverse effects, as protein location is fundamental to the functioning of cells and

regulatory control in the disease [65]. In [98], three major mechanisms were identified

that can lead to protein mislocation: mislocation through alterations of the protein

6



trafficking machinery [24], mislocation through altered protein targeting signals [43]

and mislocation through changes in protein interaction or modification [29].

Figure 2.1 Subcellular Protein Sorting

2.1.1 Related Work

In the past decade, high-throughput methodological approaches such as cancer genome

sequencing, RNA sequencing, cancer exome sequencing and functional genomics [55]

have led to the identification of multiple cancer-causing genes, genetic alterations and

deregulated pathways. Identifying and understanding the underlying mechanisms are

the foundation for cancer diagnostics, therapeutics, clinical-trial design and selection

of rational combination therapies [61, 66, 35, 107, 60, 95]. These hight-throughput

experimental approaches plus the computational disease gene prioritization tools can

greatly help to pin-down the range of cancer genes for experimental studies.

In a recent genome-wide study, Lawrence et al. [46] analyzed 4742 human cancers

and their matched normal-tissue exome sequences accross 21 tumor types. This large-

scale genomic analysis identified nearly all known cancer genes in 21 tumor types.

Additionally, out of 81 "novel" candidate cancer genes, 33 genes are not previously

7



reported as significantly mutated in cancer. Based on close examination, they found

at least 21 novel genes with strong and consistent connections to cancer. With more

cancer sequencing, it is expected that a comprehensive catalog of cancer genes can

be discovered to enable physicians to select best therapy fore each patient. However,

experimental studies of these newly identified candidate genes are needed to verify

and uncover the underlying mechanisms of these cancer-causing genes.

Lawrence et al.’s study [46] showed the power of tumor-normal pairs of the genome

sequence data for discovery of candidate cancer genes, which inspired us to explore

how to apply the tumor-normal pairs of gene expression data for identifying the cancer

genes that may lead to mislocalization of proteins. Actually, Pinto et al. showed that

dynamic redistribution of multitudinous proteins to different subcellular locations

in response to cellular functional state is a crucial characteristic of cellular function

that seems to be at least as important as overall changes in protein abundance [77].

Laurila and Vihinen [43] applied bioinformatics methods to investigate the effects of

known disease-related mutations on protein targeting and localization by analyzing

over 22,000 missense mutations in more than 1500 proteins with two complementary

prediction approaches. However, many of the localization prediction algorithms that

they used are not sensitive enough to capture the subtle sequence mutation to give

different localization predictions. Lee et al. [51] proposed an integrative computa-

tional framework for mapping conditional location and mislocation of proteins on

a proteome-wide scale. They mapped the locations of over 10,000 proteins in nor-

mal human brain and in glioma, out of which over 150 have a strong likelihood of

mislocation under glioma. Fifteen of these mislocations have been confirmed. The

most common type of mislocation occurs between the endoplasmic reticulum and the

nucleus.

High-throughput sequencing has almost identified all known and potentially new

cancer genes based on tomour-normal tissue sequences. It implies that the major

8



task now is on computational or experimental techniques to elucidate the underlying

pathologic mechanisms of these cancer-causing genes. In this work, we are interested

in discovering cancer genes which impact humans due to their mislocation within

the cell. Lee’s pipeline was proved successful in discovery of mislocalized proteins in

cancer. However the data needed in Lee’s pipeline were complex including sequences,

chemistry, motifs and gene function ontology [50, 51]. Considering the data source and

lacking of ready-to-use server or software, it is very difficult to use their pipeline to do

large scale screening. When predicting conditional localization, we found that in Lee’s

method the only evidence source that has changed between normal and disease status

is gene expression. It is thus natural to develop methods for conditional localization

prediction based only on the changing factor, gene expression. Compared to Lee’s

approach, our approach only depends on gene expression files and gene ontology,

which makes it applicable for broader range of cancers. As shown in Figure 2.2, our

pipeline used gene ontology and gene expression files to predict proteins’ subcellular

locations in disease/tumor and normal states. Based on predicted locations of two

states, we can identify proteins whose subcellular locations change dramatically. The

reason we only use gene expression data as input is that we are trying to predict the

condition-specific mislocations. If any gene in our candidates is a known cancer gene,

it may cause cancer due to its mislocation within the cell. Our work aims to open

a way to explore the complex relationship between protein subcellular locations and

disease phenotypes.

2.2 Methodology

The main idea of this study is to predict subcellular localizations of proteins in normal

and disease states cells and then filter proteins that are mislocated in disease state

cells. Then we can filter mislocation proteins translated from known cancer genes

and mark these cancer genes as mislocation-related genes. The overall procedure of
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Figure 2.2 Pipeline of KLR model for subcellular localization prediction. (a)
Based on expression values, maximal information coefficient was calculated of two
proteins. Then we got a co-expression matrix (N ×N) which was considered as a
condition-based PPI network. (b) In gene ontology database, we extracted
subcellular ontology information of any possible protein appeared in gene expression
profile to generate the subcellular location annotated matrix (M × 13). (c) KLR
predictor took two matrix as input to predict the probabilities on 13 subcellular
locations of each protein appeared in gene expression file. The result was a N × 13
subcellular location annotated matrix.

our approach:

1. Generate co-expression matrices using MIC [80] package based on gene expres-

sion files for normal and disease states.

2. Use KLR logistic regression model [48] to predict the conditional subcellular

locations of all proteins in both states.

3. Compare and rank the probability discrepancy of localizations of all proteins.

4. Filter and mark mislocation-related cancer genes.
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2.2.1 Material

Protein-protein Interaction Network

We generate the protein-protein interaction network based on two proteins inter-

action database: DIP (Released on 2014/04/27)[84] and HPRD (Version number:

Relase 9) [39]. DIP provides specific datasets for different species and we downloaded

Homo sapiens dataset which includes 3651 proteins and 5534 interactions. There are

11269 proteins and 36398 interactions in HPRD database (Table 2.1). Combining

two databases, we constructed a 12516 × 12516 PPI network matrix in which each

element mi,j represents the interaction status between protein i and j:

mi,j =


1 if protein i and j have interactions;

0 otherwise;
(2.1)

Table 2.1 Source of evidence data: protein-protein interactions.

Data source Proteins Interactions
DIP 3685 5570

HPRD 11269 39240
Summary 12516 40940

Subcellular Location Annotation Matrix

We obtained subcellular localization annotations of human proteins from GOC web-

site [5]. The datasets contains 44,900 annotated proteins. We then collected the

proteins that have at least one of 13 subcellular locations as shown in Table 2.2. We

screen the GOC database and 6270 proteins were found appearing in our PPI network

previously constructed. Then we have the subcelluar location annotation matrix in
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which each row is a protein p’s annotation array ap[l1, ..., l13] where:

ap[li] =


1 protein p is annotated at subcellular location li;

0 otherwise;
(2.2)

Table 2.2 Subcellular locations.
Gene ontology ID Location

GO:0005938 Cell cortex
GO:0005829 Cytosol
GO:0015629 Actin cytoskeleton
GO:0005794 Golgi apparatus
GO:0005783 Endoplasmic reticulum
GO:0005773 Vacuole
GO:0005730 Nucleolus
GO:0005777 Peroxisome
GO:0005739 Mitochondrion
GO:0005764 Lysosome
GO:0005813 Centrosome
GO:0005634 Nucleus
GO:0005886 Plasma membrane

Gene Expression Profiles and Co-expression Network

Five types of cancer gene expression profiles and normal human expression profiles

were downloaded from the NCBI Gene Expression Omnibus(GEO) Database (Ta-

ble 2.3). For each of these files, we applied KNN Impute to estimate the missing

values. The KNN Impute was downloaded from [97]. All expression profiles were

quantile normalized. If multiple probes were mapped to one gene, we use their av-

erage values to combine the records. For each dataset we obtained, we split samples

into two categories (if applicable): disease samples and normal samples. Then, we

generate corresponding co-expression matrices for both normal and disease samples,
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respectively. A co-expression score ci,j of two genes i and j is calculated:

ci,j =


0 MIC(Ei, Ej) < 0.5

1 otherwise
(2.3)

where Ei and Ej are observed expression values arrays of genes i and j respectively.

Her we use Maximal Information Coefficient (MIC) [80] to represent the correlation

of two genes’ expression levels.

Table 2.3 Gene Expression Profiles of 6 Cancers
Cancer GEO dataset Samples

Acute myeloid leukemia GSE9476, GSE9476 25 (disease), 38 (normal)
Bladder GSE3167, GSE48276, GSE3239, GSE1595 110 (disease), 21 (normal)
Breast GSE27567, GSE20437 61 (disease), 49 (normal)

Colorectal GSE21510 31 (disease), 25 (normal)
Diffuse large B-cell lymphoma GSE14938, GSE43677 32 (disease), 42 (disease)

2.2.2 KLR Logistic Regression Model

In our previous work, we developed a diffusion kernel-based logistic regression (KLR)

model to predict proteins’ subcecullar localizations based on the locations of all other

proteins within function linkage network. Our results showed that KRL has an out-

standing performance on prediction of proteins’ subcecullar localizations [63]. This

method has the unique advantage of considering the location labels of all related pro-

teins [49]. The diffusion kernel provides means to incorporate all neighbors (rather

than direct neighbors) of proteins in the network. It also allows each protein anno-

tated with multiple subcellular locations.

The protein subcellular localization prediction vis KLR model can be formulated

as follows. Given a protein-protein interaction network or a gene co-expression net-

work (briefly named network in later description) consists of N proteins X1, ..., XN

and n of them have location labels. In KLR model, the probability of one protein Xi
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without labels locating at a specific subcellular location is given by:

P (Xi) = 1
1 + e−γ+δM0(Xi)+ηM1(Xi)

(2.4)

In equation 2.4, γ, δ and η are parameters to be learned and M0(Xi) and M1(Xi) are

define as:

M0(Xi) =
∑

j 6=i and Xj=0
K(Xi, Xj) (2.5)

M1(Xi) =
∑

j 6=i and Xj=1
K(Xi, Xj) (2.6)

In M0(i) and M1(i), K(i, j) is the kernel function calculating the similarity between

two proteins in network and K(i, j) is defined as:

K(Xi, Xj) = eτL(Xi,Xj) (2.7)

where

L(Xi, Xj) =


1 if protein Xi interacts with protein Xj

0 otherwise
(2.8)

and τ is the diffusion constant, a hyper parameter. We trained our KLR model with

protein-protein network and subcelullar annotation matrix with Maximum Likelihood

Estimation. To prediction, the gene co-expression network and subceullar annotation

matrix will be used as input.

2.3 Experiments

2.3.1 Case Studies: Discovery of Possible Mislocalized Cancer Related

Proteins Across Several Types of Cancers

We test our pipeline on gene expression files from 6 cancers’ data: Acute myeloid

leukemia, Bladder, Breast, Colorectal and Diffuse large B-cell lymphoma. The gene

expression files used are listed in Table 2.3. For each cancer, we filter potential

mislocalization-related genes from known cancer genes following below steps:
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1. Use proposed pipeline to get predicted probabilities of each protein in 13 sub-

cellular locations for both normal and tumor states. Let Pa indicates protein

a’s probabilities on 13 subcecullar locations under normal state and Pa[i] rep-

resents a’s probability locating on ith location of 13 subcellular locations. Let

P′
a represents its localization probabilities under disease state.

2. Calculate M Pa by subtracting P′
a from Pa. If M Pa[i] is a relatively large

negative value, it indicates that protein a may be missing from location i in

disease state. And if M Pa[i] is a relatively large negative value, it may imply

that the protein a may be mislocated to the subcellular location i in disease

state.

We reported the proteins with either at least 10% probability change or ranked within

top 4 proteins with at least 5% probability change. We observed that in most cases,

the cancer genes not selected in our method usually had much lower probability

change with a p-value of less than 0.002% for t test scores of all M P on a subcellular

location i. So the simple threshold approach adopted here to selecting mislocated

proteins is sufficient to distinguish the potential mislocalized cancer genes from other

genes. Table 2.4 lists potential candidate genes we filtered.

Acute Myeloid Leukemia

In Acute myeloid leukemia, we used 25 samples in tumor state and 38 samples in

normal state as our analysis data. They were all from hematopoietic cells. Our

pipeline identified two genes DNMT3A and STAG2 with high localization change

that are reported as cancer genes in [45]. DNMT3A, in our model, was predicted

mislocating from Golgi apparatus in disease cell (2.96%) comparing with normal cells

(6.29%). Another covered candidate gene is STAG2, which was predicted mislocating

to two locations: Nucleus where had 41.29% probability in normal and had probability
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Table 2.4 Potential mislocalized cancer gene candidates identified by proposed
method.

Cancer type Mislocalized protein
candidates

Missing protein candi-
dates

and subcellular places
mislocalized to

and locations missing
from

Acute myeloid leukemia STAG2 (Nucleus
[GO:0005634], En-
doplasmic reticulum
[GO:0005783])

DNMT3A (Golgi appara-
tus [GO:0005794])

Bladder DDX5(Nucleus
[GO:0005634]), ELF3
(Mitochondrion
[GO:0005739])

DDX5 (Endoplasmic
reticulum [GO:0005783]),
RB1 (Cell cortex
[GO:0005938])

Breast Cancer ERBB3 (Golgi appa-
ratus [GO:0005794]),
RBB2 (Golgi apparatus
[GO:0005794])

ERBB3 (Nucleolus
[GO:0005730], Cilium
[GO:0005929]), ERBB2
(Nucleolus [GO:0005730],
Cilium [GO:0005929])

Colorectal PIK3CA (Cytosol
[GO:0005829])

PIK3CA (Golgi appa-
ratus [GO:0005794]),
GOT1 (Peroxisome
[GO:0005777], En-
doplasmic reticulum
[GO:0005783])

Diffuse large B-cell lym-
phoma

CD70 (plasma mem-
brane [GO:0005886]),
CREBBP (Golgi appa-
ratus [GO:0005794]),
MAP2K1 (Cytosol
[GO:0005829])

B2M (Golgi appara-
tus [GO:0005794]),
EZH2 (Centrosome
[GO:0005813]), CREBBP
(Mitochondrion
[GO:0005739]), CD70
(Nucleus [GO:0005634])

64.45% in disease and Endoplasmic reticulum where had 5.52% probability in normal

and had probability 12.12%
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Bladder Tumor

Our results used 9 normal bladder tissue samples and more than 110 disease bladder

tissue samples. The cancer gene DDX5 was predicted to have a 36.19% probability

of being localized to Nucleus in normal tissues. The predicted probability of being

localized to Neucleus in disease tissues was 52.25% with an increase of more than

40%. At the same time, DDX5 had 8.60% probability in normal and 3.80% in disease

localizing on Endoplasmic reticulum with an decrease of more than 55%. So based

on this probabilities changes, we can make a speculation that in bladder tumor cell

DDX5 mislocalized from Endoplasmic reticulum to neucleus. Tumor suppressor gene

RB1 was predicted with a high probability change in its subcellular location from cell

cortex to other locations (3.39% in normal, 0.98% in disease). Recently a study [8]

showed that in breast cancer mutated RB1 will lead to their localization to nucleus.

We also observed in our prediction the increase of probability localization in nucleus

(48.23% in normal, 57.27% in disease). Our predicted localization change of RB1

maybe caused by its mutation. Also protein ELF3 was predicted mislocating to

Mitochondrion where its location probability changing from 8.16% in normal state to

15.31% in cancer state.

Breast Cancer

After analyzing 61 disease samples and 49 normal samples, We obtained several can-

didate proteins that probably mislocate under cancer states. At subcellular location

Cilium, protein ERBB2’s predicted localization probability decreased from 63.68%

(normal) to 55.87% (disease). Also its probability localization on Nucleolus had a

decreasing from 6.41% (normal) to 1.99% (disease). And at the same time, ERBB2’s

probability localization on Golgi apparatus had an increasing from 8.65% (normal)

to 11.37% (disease). These observations could indicate that some ERBB2 proteins in

breast cancer cells mislocalized from Cilium and Nucleolus to Golgi apparatus. Pro-
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tein ERBB3 had similar mislocation activity from Cilium (52.77% in normal, 44.78%

in disease) and Nucleolus (9.60% in normal, 3.05% in disease) to Golgi apparatus

(8.21% in normal, 10.75% in disease).

Colorectal Tumor

For colorectal tumor, we had 31 tumor samples and 25 normal samples. Protein

PIK3CA was observed in our prediction mislocating from Golgi apparatus (11.17%

in normal, 4.81% in disease) to Cytosol (27.74% in normal, 45.84% in disease). Pro-

tein GOT1 was predicted mislocating from Peroxisome where its location probability

decreased from 5.09% to 0.84% and from Endoplasmic reticulum where its location

probability decreased from 10.95% to 3.99%.

Diffuse Large B-cell Lymphoma

In Diffuse large B-cell lymphoma test, we used 42 normal samples and 32 disease sam-

ples. Protein CD70 was predicted missing from Nucleus (59.45% in normal, 35.96%

in disease) and at the same time its probability in Plasma membrane increased from

6.41% to 39.84%. So we speculated that some CD70 proteins may mislocate to Plasma

membrane from Nucleus in cancer cells. Protein CREBBP was also predicted hav-

ing mislocation activity that from Mitochondrion to Golgi apparatus. Its predicted

probability in Mitochondrion decreased from 25.64% in normal to 6.26% in disease

and the probability in Golgi apparatus increased from 3.95% to 7.62%. Besides,

protein MAP2K1 was observed mislocating to Cytosol (38.22% in normal, 66.17%

in disease). Protein B2M and protein EZH2 were predicted mislocating from Golgi

apparatus (12.90% in normal, 5.90% in disease) and Centrosome (23.92% in normal,

6.90% in disease), respectively.
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2.3.2 Rediscovery of Mislocalized Proteins in Glioma

In the work of Lee [51], a proteome-wide method was proposed to predict mislocalized

proteins under glioma tumor. They used sequence, chemical properties, motifs, and

function information of proteins as the basic features. Condition-dependent dynamic

network features were generated by assigning different weights to each neighbor of a

protein, depending on their similarity in gene expression profiles. Based on the basic

features and dynamic network features, they computed a CLM score for each protein,

listing the quantitative probability that the protein is located in each location under

each condition. Mislocations are identified by calculating differences in degrees of

probabilities across conditions. Their prediction result showed that their model can

successfully identify potential mislocation proteins under tumor conditions. However,

their approach requires many kinds of data resources which might not be available

for some proteins. Since the condition-dependent information is only contained in the

gene expression data, we wanted to test our model on the same gene expression data

to see if we can rediscover mislocalized proteins under glioma. We used GEO dataset

used by Lee’s team which contained normal, low and high states. In order to find

possible mislocalized proteins, firstly, our pipeline was used to predict location proba-

bilities of 13 subcellular locations of each protein for each status. For each protein, we

selected the location with highest probability as its predicted location in that status.

After we obtained a protein’s location probabilities in all normal and disease states,

we just picked up proteins having different locations under normal and disease states.

Totally, we found 230 proteins predicted as mislocalized proteins among 11500 pro-

teins. And for 157 proteins predicted as potentially mislocalized under glioma in Lee’s

paper, we rediscovered 31 proteins of them in our 230 predicted candidates having

same mislocation activity. Among rediscovered 31 proteins, TBX19 was experimen-

tally verified mislocation from endoplasmic reticulum to nucleus within glioma cell

in Lee’s paper. 31 proteins predicted by both Lee’s and our work with same misloca-

19



tion activities: PSPN, TMEM132A, ARF5, TIA1, TIMM8A, OBP2A, CIC, OLFM2,

CPSF3L, DUSP14, PPM1B, SEC13, SSBP3, PEX13, THPO, RCAN2, TTN, WNT6,

TBX19, DAP, GEM, ATIC, DCPS, PROC, PAX1, SSB, TYMS, CCDC116, FTL,

CBLL1 and PLK3.

2.4 Chapter Summary

In this work, we have developed an approach for discovering mislocation related can-

cer genes based on aberrant gene expression data and diffusion kernel based logistic

regression for subcellular localization prediction. Our approach is complementary to

high-throughput genomic sequencing approaches for cancer gene detection by pro-

viding the means for understanding the pathological mechanisms. The experiments

showed that our approach has identified several interesting cancer genes reported by

genomic study, by means of which the cancer may be related to their mislocalization

within the cell.
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Chapter 3

Peptide-HLA class I Binding Prediction With

Allele specific CNN model
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3.1 Introduction

Major Histocompatibility Complex (MHC) proteins located on cell surface play a

critical role helping immune system recognizing pathogens. MHC proteins bind to

peptide fragments derived from pathogens and display them on the cell surface for

recognition by the appropriate T cells [57]. There are two major types of MHC (named

human leukocyte antigen (HLA) for human): class I and class II. HLAs class I present

peptides from inside the cell while HLAs class II present antigens from outside of the

cell to T-lymphocytes [103]. Peptides binding to HLA-I proteins will be recognized

by Cytotoxic T lymphocytes, which is a fundamental activity of immune system.

As shown in 3.2, endogenous antigens are first cleaved into peptide fragments by

the proteasome, which are then generally translocated by the transporter associated

with antigen processing (TAP) into the endoplasmic reticulum (ER). Then, HLA-I

molecules bind certain peptides and present them to cytotoxic T lymphocytes (CTL)-

stimulating cellular immunity [110]. The schematic structure of HLA class I is shown

in Figure 3.1. As shown in the figure, HLA class I molecules are heterodimers contains

two polypeptide chains: α and β2-microglobulin. Only the α chain is polymorphic

and encoded by a HLA gene. The α1 and α2 domains hold to make up a groove for

peptides binding while the α3 domain interacts with the CD8 co-receptor of T-cells

[103].

The genomic regions encoding HLA class I are highly diverse. As of Aug. 2017,

IPD-IMGT/HLA database [82] contains more than 12,000 HLA class I alleles. How-

ever, binding specificities of most HLA-I alleles have not been experimentally char-

acterized because it costs immense amount of financing and time. Thus, a large

number of computation methods were proposed on peptide-HLA Class I binding pre-

diction [38, 108, 12, 71, 76, 26, 40]. Generally, current computational methods for

peptide-HLA class I binding affinity prediction can be grouped into two categories:

allele-specific and pan-specific models. Allele-specific models are trained with only
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Figure 3.1 Schematic representation of HLA class I. Reproduced from wikipedia

the binding peptides tested on a specific allele and a separate allele-specific binding

affinity prediction model is needed for each HLA allele. Allele-specific models have

the advantage of good performance when sufficient number of training peptide sam-

ples are available. In pan-specific models, binding peptides of different alleles are all

combined to train a single prediction model for all HLA alleles. Typically, a pan-

specific model uses binding affinity data from multiple alleles for training and could

predict peptide binding affinity for the alleles that may have or have not appeared

in the training data. In Figure 4.1, we show the difference between allele-specific

methods and pan-specific methods.

In this chapter, we propose an allele-specific convolutional neural network model

(DeepMHC) targeting peptide-HLA class I binding affinity prediction and we show

that our method obtains better performance than all existing methods. First, we

review state-of-the-art methods in Section 3.2. Then we introduce our proposed allele-

specific model in Section 3.3. At the end of this chapter, Section 3.4, we compare

our performance with existing methods and do analyzing of our results and proposed
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method.

Figure 3.2 Simplified diagram of HLA class I pathway. Reproduced from
wikipedia.org

3.2 Related work

Existing prediction models for peptide-MHC I binding prediction can be classified into

two major categories: allele-specific model and pan-specific model. Allele-specific

prediction models are trained with binding data to a single allele and the trained

model can only be used to predict peptides binding to this allele. NetMHC [58] and

SMM [76] are representative ones with competitive performance. In this chapter, we

propose an allele-specific method based on convolutional neural network (CNN). We

compare its performance with both allele-specific and pan-specific methods. Pan-

specific methods take binding data of multiple alleles in a same supertype [87] and

MHC contacting environment data to train a model and the trained model could

be used to predict on not only input alleles but also alleles with few or even no

known binders [110]. Currently, outstanding pan-specific methods for MHC-I include
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NetMHCPan [26] and PickPocket [108]. In next chapter, we’ll introduce a pan-specific

method.

3.2.1 Deep Neural Network Methods

Currently, we just find few publications involving with deep neural network:

HONN [42] applied a Gaussian restricted Boltzmann machine(RBM) based deep

neural network (DNN) and a semi-RBMs based feed-forward high-order neural net-

work(HONN) to peptide-MHC I binding prediction. A BLOSUM encoding is used

to encode peptides into 180-dimensional continuous vectors.

HLA-CNN [99] is a newly reported model applied convolutional neural network

on this problem. It used distributed representation encoding a amino acids peptide

into a 15-dimensional vector. Then encoded vectors are fed into a network consisting

of two convolutional layers and one fully connected layer.

JHU-CNN proposed a CNN model using one-hot encoding[10]. Their model uses

different size of 1D convolutional filters on input sequences and concatenates convo-

lutional layers’ output into a single tensor and then feeds this concatenated tensor

into a multiple-layer fully connected neural network.

Comparison with these methods are described in section 3.4.3.

3.3 Methodology

3.3.1 Peptide sequence encoding

We use one-hot encoding approach to transform a amino acid sequence into a tensor

representation. As shown in Figure 3.3, each amino acid of the peptide is encoded by

a sparse column vector of dimension 20 with corresponding component set to 1 and

remaining 19 components set as 0. With the one-hot representation, there are still

two different ways to map the encoded matrix to a tensor in implementation level.

One is to map the input matrix as a 20-channel 1-row 2D tensor (or 20-channel 1D
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tensor), as is done in our proposed approach. Another way is to map the input matrix

as a single channel 20-row 2D tensor. In section 3.4.5, we compare and analyze two

different encoding ways’ performance.

PAD PAD A L T L S P Y Y K PAD PAD

A 0 0 1 0 0 0 0 0 0 0 0 0 0

C 0 0 0 0 0 0 0 0 0 0 0 0 0
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T 0 0 0 0 1 0 0 0 0 0 0 0 0

V 0 0 0 0 0 0 0 0 0 0 0 0 0

W 0 0 0 0 0 0 0 0 0 0 0 0 0

Y 0 0 0 0 0 0 0 0 1 1 0 0 0

Figure 3.3 One-hot encoding example of protein sequence ALTLSPYYK.

3.3.2 Convolutional Neural Network

We proposed a CNN model composed of two stacked convolutional layers, one max-

pooling layer, and one fully connected layer as shown in Figure 3.4. Of two convolution

layers, both has 512 convolution filters of size 1× 2 and 1× 3 respectively. Adam [41]

is used as the optimization algorithm for training the networks.

The convolutional layers: For each convolutional layer, it has 512 filters. These

filters will scan the peptide sequence from left to the right on 20 channels. We use S

to denote the encoded single row, 20-channel 2D tensor from a peptide sequence. It

shape will be (1, 13, 20) where 13 is the padded encoding length for a peptide sequence

with 9 or 10 length. F represent one of the 512 convolution filter tensors with shape

(1, 2, 20) which indicates that every filter has a 1× 2 receptive field for each channel.

Then the output tensor D with a shape (1, 12) from a convolution operation between

S ⊙ F is calculated from:

Di,j =
20∑
c=1

1∑
m=i,p=1

2∑
n=j,q=1

Sm,n,cKp,q,c (3.1)
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Max-pooling layers: The pooling layers are used for summarizing the activa-

tions of adjacent neurons. Different from the convolution layers in which the con-

volution filters move along the sequence by stride size of 1 with overlapping, the

nonoverlapping pooling is applied with a stride size (1, N) to reduce the dimension of

the input sequence and thus the number of model parameters. Two commonly used

poolings are Average-Pooling and Max-Pooling. Here the max-pooling layers are used

in our CNN models for summarizing the activations of adjacent N neurons by their

maximum value. In our model, we chose 2 as the N value. For a input tensor A with

shape (1, L), the output tensor P with shape (1, L/N) is calculated from:

Pi,j = maxm∈[i,i+N ],n∈[j,j+N ](Am,n) (3.2)

A L T L S P Y Y K

0 0 1 0 0 0 0 0 0 0 0 0 0

Input Tensor
(1×13×20)

Max Pooling
1x2

Tensor
(1×12×512)

Convolution
512, 1x2

Tensor
(1×6×512)

Tensor
(1×4×512)

Convolution
512, 1x3

Encode

Raw Sequence

Flatten
Input vector

(2048)

… …

Fully Connected Layer 

Loss

Labeled Value

Parameter Updating

Output Value

BP

400
Hidden Neurons

(1) (2) (3) (3)* (4)

Figure 3.4 Network Architecture of Proposed CNN Model.

3.3.3 Datasets and Evaluation Metrics

To ensure fair comparison with existing approaches, we used the IEDB training

and test datasets released on the IEDB website. These datasets can be found at

http://tools.iedb.org/main/datasets/. We trained on MHC-I alleles with at least

about 2000 training samples from BD2013. The details of training datasets are listed

in Table 3.1. The evaluation dataset were downloaded from IEDB’s weekly bench-

mark dataset [96]. We download all dataset from 2014-03-21 to 2016-12-09 combining
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test samples according to alleles, sequence lengths and measure types. We separate

the evaluation datasets into two groups: one with affinity scores: IC50 and t1/2

(Table 3.3) and another one with binary affinity labels (Table 3.2).

Metrics we use to evaluate the performance are: area under the receiver oper-

ating curve (AUC), the Spearman rank correlation coefficient (SRCC) and Pearson

correlation coefficient (Pearson).

3.3.4 Allele-specific Training and Evaluation Protocol

The network structure is shown in Figure 3.4 and we use Mean Squared Error (MSE)

as the loss function. In the output layer, sigmoid activation is used to give the output

value. The labeled values in BD2013 are measured in IC50 which are distributed in

a huge real value space (0.0 v 80000.0). Considering this, we convert IC50 to pIC50

via equation 3.3 and we use pIC50 values as training labels in our experiments.

pIC50 = −log10(IC50) (3.3)

Training. First, we configure a CNN model described in section 3.3.2 and train

this model running up to 5000 epochs. Before each training epoch, training samples

are randomly split into training and validation sets following 9:1 ratio. The training

stops if the minimum validation loss haven’t reduced for 100 epochs (known as early

stop) or reaches 5000 epochs.

Cross-validation Evaluation. For each allele’s training data, we split them into

5 folds. For sequences in each fold held out as the test set, we applied the trained

CNN model to predict their affinity values. This process is repeated 5 times for all 5

folds. And then the Pearson correlation coefficients of all peptide samples of a MHC-I

allele are recorded.

Benchmark Evaluation. For each peptide sequence in the benchmark dataset,

we applied the 5 trained cross-validation models of peptide’s targeting allele and

predict 5 affinity values for one peptide sequence. And then the average of these
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predicted values from all 5 models is set as the final predicted pIC50 for the peptide

sequence. Finally, the predicted pIC50 values are converted back into IC50 values

based on Equation 3.3.

3.4 Experiments

3.4.1 Performance of DeepMHC on MHC-I Binding Affinity Prediction

Cross-validation Results

The 5-fold cross-validation performances of the CNN models on all MHC-I alleles

are listed in Table 3.1. The Pearson scores range from 0.48 to 0.92. Our CNN

models achieved Pearson scores of more than 0.8 for 27 out of the 37 alleles. We

also found that most of the low-performance scores are from the alleles with fewer

number of peptide sequences (< 1000), which indicates that sufficient number of

peptide sequences are required for our CNN models to achieve good performance. It

is also found that all these low-performance allele dataset consist of peptide sequences

of length 10.

Benchmark Testing Results

Results of benchmark dataset are showed in Table 3.4 for peptides of 9-length and

Table 3.5 for peptides of 10-length. We sorted results by the combination of alleles,

sequence lengths (9 or 10) and measure types (IC50 or t1/2). Methods in these two

tables are: NetMHCpan [26], SMM [76], ANN [71], ARB [12], NetMHCcons [38],

SMMPMBEC [40], IEDBconsensus [64] and PickPocket [108].

Table 3.4 shows the comparison results on 9-length sequences. Few methods listed

in IEDB weekly benchmark dataset are omitted in this table because it doest not have

either any best results or complete prediction results. From Table 3.4, we can safely

say that our method performs overall better than others for obtaining 6 highest AUC
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scores, 8 highest SRCC scores and 7 highest Pearson scores of 15 testing entries. And

in only 6 test entries, our model didn’t obtain any best results among three metrics.

Also the average scores of our methods are still the best which indicating that our

proposed convolution network model has a stable prediction capability and could fit

in different alleles. The state-of-the-art NetMHCpan utilized pan-specific strategy

and trained each alleles’s samples on a set of artificial neural networks with 22 to

86 hidden neurons with 3 types of input encoding ways and then pick the best 15

networks [26]. Comparing with NetMHCpan, our allele-specific method fixed a neural

network structure and encoded sequences in the same way but our model performed

better more than half of the all test cases comparing AUC scores. Of 4 test entries

where our model didn’t get best results on AUC scores, HLA-A*02:02 (IC50), HLA-

A*24:02 (IC50) and HLA-B*07:02 (IC50 and t1/2), our performance were still either

very close to best results or among the top 3. For alleles HLA-A*02:03 (IC50), HLA-

B*58:01 (IC50), HLA-B*68:01 (IC50 and t1/2), HLA-B*57:01(IC50), we analyze the

prediction results and give following possible reasons our model could not obtain

better performance.

• Sample size. In the Table 3.1, HLA-B*68:01 just has 2036 training samples of

9 length sequences. It is well known that in order to obtain a good prediction

capability for deep neural network, the training sample size should be large

enough letting the model to do the optimization for its tons of parameters. So

the trained model may not be fitted well on this kind of cases.

• Misleading testing data. In the training dataset BD2013, IEDB combines

KD (thermo-dynamic constant), IC50 and EC50 together representing as IC50

since IC50 and EC50 measurements can approximate KD. And we found in

weekly benchmark data, there are some sequences appeared in training data

but contradict to the training labels dues to different measuring techniques. For
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example, the sequence ELAAHQKKI targeting to allele HLA-A*02:03. In the

training data, it is labeled with value 2650 (radioactivity dissociation constant

KD). In the weekly testing data, it is labeled with value 1.0 (radioactivity half

maximal inhibitory concentratio IC50). When we were testing, our method and

all other benchmark methods significantly failed on predicting this sequence’s

IC50 value. Since we followed the same method in [96] marking sequence as

negative if its IC50 < 500.0 nm, this kind of samples would drag the AUC

scores down for all models. In test entry HLA-A*02:03 (IC50), our model gave

a highest related prediction with a 0.62 Pearson score and we found among

105 testing sequences, there are 14 sequences appeared in training data with

contradicting labels. This maybe a big reason we failed on this kind of cases.

Table 3.5 shows performance comparison of benchmark dataset on 10-length se-

quences. From this table we can find that our model performs much better than all

other comparing methods with 4/5 best AUC scores, 5/5 best SRCC scores and 2/5

best Pearson scores. And in test entries HLA-A*02-01(t1/2), HLA-A*02-03(IC50)

and HLA- A*68-02(IC50) we have a pretty large leading margin. Also, the alleles in

Table 3.5 where we almost obtained all the best results also are the same alleles in

Table 3.4 where we obtained some good results. This indicated that our model could

capture the basic feature representation across in different length sequences.

3.4.2 Performance of DeepMHC on MHC-I Binding Prediction

To evaluate how DeepMHC performs on binary MHC-peptide binding prediction,

we trained a set of convolution neural network models over the MHC allele peptide

datasets of length of 9 with binary binding labels. The architectures of these models

are exactly as described in previous section except that the binary entropy loss func-

tion instead of MSE is used and the outputs are binary labels instead of real-value

binding affinity. We then evaluate their prediction performance on the external test

31



datasets in Table 3.2. The prediction performances for all the datasets are shown in

Table 3.6.

First, we find that our DeepMHC models based on raw amino acid sequences

are competitive compared to other algorithms that depend on sophisticated feature

engineering. Out of 10 allele datasets, DeepMHC achieves top performance on 4

datasets, which is better than NetMHCpan, SMM and ANN methods. Out of the

remaining 6 datasets, DeepMHC obtains competitive results on 4 datasets (HLA-

A*02:01, HLA-A*68:01,HLA-B*07:02, HLA-A*31:01) with AUCs differences of less

than or equal to 0.04 compared to the top scores. But for cases like HLA-B*27:05 and

HLA-A*24:02, our performance is much worse, which can be partially attributed to

the reasons as mentioned in Section 3.4.1. To further explore the reasons, we plotted

the ROC curves of DeepMHC compared to NetMHCpan on these two datasets in

Figure 3.5. It is found that our models do not perform as well as NetMHCpan does

when the false positive rate is less than 0.2.

(a) HLA-B*27:05 (b) HLA-A*24:02

Figure 3.5 ROC curves of prediction results on benchmark data with binary labels
of allele HLA-B*27:05 and HLA-A*24:02.
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3.4.3 Comparison with Other DNN and CNN based approaches

HONN

Since there’s no available code for HONN, we trained another set of allele-specific

models on dataset BD2009 and tested these models on dataset BLIND. BD2009 and

BLIND were described in the HONN paper to train and evaluate the HONN model.

Table 3.7 shows the performances comparison between DeepMHC and HONN. The

AUC scores of HONN were directly obtained from its supporting material. From the

table we can say that on dataset BLIND, our model and HONN have a very similar

performance. Of all 29 test entries, on 15 test entries both model have same AUC

scores. In the rest entries, our model has 6 better results and HONN has 8.

JHU-CNN

JHU-CNN gives trained models and codes, we tested theirs models on the same

weekly benchmark dataset on all available alleles. The results are showed in Table

3.8. From this table, of all 20 testing entries, we obtained 12 better AUC scores, 13

better SRCC scores and 10 better PRCC scores. This shows that our method is a

better modeled structure for peptide-MHC I binding problem.

HLA-CNN

HLA-CNN tested their model on recent weekly benchmark data from IEDB. We

extract our prediction results for those testing sequences and compared the AUC and

SRCC. Results are shown in Table 3.9. The table displays a trend that HLA-CNN

performed better on AUC metric with 7 better AUC scores of 9 testing entries and

our model is better on SRCC metric with 7 better SRCC scores. A possible reason

is that HLA-CNN uses binary cross entropy as the loss function for their training.

Some studies indicated that cross entropy could improve performance of classification

[47].
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3.4.4 Transfer Learning on MHC Alleles with Small Number of Samples

A major issue in MHC-I binding prediction is that some alleles have small-size sample

sets. This makes it challenging to train accurate allele-specific prediction models. And

in deep learning, it is well known that a relative large dataset is critical for better

performance. An effective approach to address this issue is to use transfer learning,

which improves a learner from one domain by transferring information from a related

domain [13]. In this experiment, We would like to explore if transfer learning can

improve the prediction performance of DeepMHC on alleles with small number of

training samples. To verify this approach, we picked two alleles: HLA-A*02:01 and

HLA-A*02:02. We chose these two alleles because: i) According to [88], most HLA-

A alleles can be clustered in to 6 supertypes. HLA-A*02:01 and HLA-A*02:02 are

clustered into same supertype A02. So we can assume that HLA-A*02:01 and HLA-

A*02:02 share similar preference for binding peptide sequences to a certain degree. ii)

The HLA-A*02:01 dataset has the most training samples (9051) and HLA-A*02:02

has 2465 training samples. This is an idea situation to verify transfer learning’s

effectiveness.

We trained 5 models for HLA-A*02:02 following the same procedure described

before in a 5-fold cross validation way except that before we start to train a model,

we initialized the model’s weights of its first convolutional layer as the same weights

of first convolutional layer from one of the 5 pretrained models of allele HLA-A*02:01.

Figure 3.6 shows the performance comparison of affinity benchmark dataset of allele

HLA-A*02:02 on testing on models with and without transfer learning. We found

that the model trained with transfer learning has achieved a much better prediction

performance. The AUC has increased to 0.79 from 0.73; the SRCC reaches 0.72 from

0.66; and the Pearson improves from -0.03 to 0.01. If we compare these improved

metrics of allele HLA-A*02:02 with other methods’ reported in Table 3.4, this transfer

learning based model achieved the best results on test dataset HLA-A*02:02(IC50).
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Such significant performance improvement by transfer learning may be partially due

to the fact that we were actually doing a good initialization of weights for the first

convolutional layers by reusing the weights from the pretrained CNN models of HLA-

A*02:01. It is increasingly recongized that proper initiallization of the weights of the

convolution layers is critical for the CNN model to get better prediction performance

[62, 28].
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Figure 3.6 Performance comparison of benchmark dataset of allele HLA-A*02:02
testing on model without transfer learning (Without TL) and model with transfer
learning (With TL).

3.4.5 Comparison of Protein Sequence Encoding Schemas for One-Hot

Encoding

Unlike images naturally encoded as 2D multi-channel matrices, amino acid sequences

require us to chose proper encoding method to transfer them into tensors for deep

neural networks. In this section, we explore whether different encoding methods will

effect the prediction performance for peptide-MHC I binding prediction.

In previous experiments, we adopted a single row 20-channel encoding schema.

Here we are evaluating a single-channel 20-row encoding schema and compared its

35



performance to 20-channel encoding schema. For first encoding schema, a protein

sequences is encoded into a tensor object with width of 13, height of 1 and depth

(channel) of 20. In the single-channel encoding, the amino acids sequence is repre-

sented as a tensor with width of 13, height of 20 and depth of 1. For single-channel

encoding schema, we constructed a compatible CNN model for the input tensors.

As illustrated in Figure 3.7, we first encode a 9-length sequence into a 20 × 9 × 1

dimension input tensor. Each row encoded the corresponding amino acid position.

Then the input tensor was feed to (1) convolution layer which has 512 filters with 2

× 2 receptive field size. Next in layer (2), output tensor of (1) is applied by a Max

Pooling layer with a 2 × 2 window. After Max Pooling, another convolution layer

(3) with 252 filters of 2 × 2 receptive field size is applied to the pooling layer output.

Then do pooling operation. A flatten operation is applied on the layer (4)’s output

and a 1D vector with 1008 dimension is obtained. This vector is feed to the fully

connected layer (4) which has 200 hidden units.

We configured a model as described above and following same training and evalu-

ation procedure in section 3.3.4 for allele HLA-A*02:01. We tested the trained model

with 20-row encoding schema (2D matrix encoding) on benchmark dataset of allele

HLA-A*02:01 and compare it with our previous model’s performance. The results

are showed in Figure 3.8. As shown in the Figure, the 2D matrix encoding model

performs worse in all three metrics comparing with previous 20-channel encoding

model. A possible explanation is that when we encode a sequence into a 2D matrix,

we manually fixed the spatial relationships of 20 types amino acids. When a convolu-

tion filter is searching the frequent patterns in this 2D matrix, it will be influenced by

this pre-fixed spatial arrangement. In images, the spatial arrangement of pixel values

are natrual and meaningful. However, in our 2D matrix encoding, we had to chose 1

of C20
20 possible arrangements of 20 amino acids. If we initialize convolutional filters

with same strategy but with different arrangements of 20 types amino acids in en-
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coding matrix, the final filters learned may be dramatically different. By contrasting,

in the 20-channel model, a convolutional filter will have 20 receptive fields for each

channel and each field is search the feature patten in its channel independently. So if

we initialize convolutional filters with same strategy, no matter how we arrange the

relative order of 20 amino acids in terms of channels, the final filters learned should

be always similar. That is to say, 20-channel encoding schema model is more stable

during backpropagation.

Figure 3.7 Comparison results on benchmark dataset for allele HLA-A*02:01 on
models with different encoding method.
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Figure 3.8 Network Structure of Single-Channel 20-Row Encoding ethod.
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3.4.6 Exploring Network Structure’s Effect on Peptide-MHC I Binding

Prediction Performance

Before we fixing our final structure of CNN model in Figure 3.4, we did some exploring

of different network structures with variant depth and number of convolution filters.

Our experiments showed that for our problem a wider network performs much better

than a narrow network and the depth does not influence performance very much.

First, we evaluated how the number of filters of two convolutional layers affects

the prediction performance. We configured a set of CNN models as described in

Figure 3.4 but varied the number of filters of two convolution layers by setting it

as 25, 50, 100, 250 and 512. Then we trained and evaluated these models on allele

HLA-A*02:01 following same procedure described in section 3.3.4. The results are

showed in Figure 3.9. From the figure we can see that, the model with 512 filters

performs better than other models with large leading margins on all metrics: SRCC,

Pearson and AUC. In the convolution layer, the number of filters decides the diverse

and amount of features we want to capture. Each filter is supposed to capture a

basic feature representation of input tensors. The results implies that a wider model

is much more helpful improving performance for our targeting problem.

Then, we explored if a deeper network could improve the performance. The

model shown in Figure 3.4 consisting of 4 layers: conv-pool-conv-full. We constructed

another two types of model:

• 6-layer model: conv-pool-conv-pool-conv-full

• 7-layer model: conv-pool-conv-pool-conv-pool-conv-full

We trained and evaluated 6-layer model and 7-layer model with same procedure on al-

lele HLA-A*02:01. Results are shown in Figure 3.10 and no significant differences were

observed. A possible reason is that the dimension of our input tensor is 1×13×20.

After too many layers, the intermediate tensors will be very short in width. So after
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several layers, it may lost too much information and could not improve performance

much.
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Figure 3.9 Comparison of performance of models with different number of
convolutional filters on allele HLA-A*02:01.
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3.5 Chapter Summary

In this chapter, we proposed an allele-specific CNN model on peptide-MHC I binding

prediction and showed its leading performance comparing with existing methods. We

also analyzed few factors that may affect performance of our model. We found that

a wider neural network is good for our targeting problem and argued that 20-channel

encoding model is more stable comparing with 20-row encoding model.

40



Table 3.1 Training Datasets from IEDB

MHC Data
Type Length Seq

Count Pos Neg 5-fold CV
Pearson

HLA-A*02:01 IC50 9 9051 3273 5778 0.91
HLA-A*03:01 IC50 9 5488 1378 4110 0.87
HLA-A*11:01 IC50 9 4544 1363 3181 0.89
HLA-A*02:03 IC50 9 4428 1543 2885 0.90
HLA-B*15:01 IC50 9 4101 1187 2914 0.86
HLA-A*31:01 IC50 9 3945 1015 2930 0.89
HLA-A*01:01 IC50 9 3902 539 3363 0.81
HLA-B*07:02 IC50 9 3868 1061 2807 0.80
HLA-A*26:01 IC50 9 3766 409 3357 0.87
HLA-A*02:06 IC50 9 3733 1522 2211 0.88
HLA-A*68:02 IC50 9 3672 835 2837 0.90
HLA-B*08:01 IC50 9 3027 715 2312 0.86
HLA-B*58:01 IC50 9 2984 655 2329 0.88
HLA-B*40:01 IC50 9 2824 478 2346 0.89
HLA-B*27:05 IC50 9 2811 443 2368 0.92
HLA-A*30:01 IC50 9 2565 736 1829 0.89
HLA-A*69:01 IC50 9 2558 248 2310 0.82
HLA-B*57:01 IC50 9 2529 384 2145 0.84
HLA-B*35:01 IC50 9 2514 821 1693 0.92
HLA-A*02:02 IC50 9 2465 1119 1346 0.90
HLA-A*24:02 IC50 9 2395 496 1899 0.89
HLA-B*18:01 IC50 9 2315 230 2085 0.81
HLA-B*51:01 IC50 9 2239 233 2006 0.82
HLA-A*29:02 IC50 9 2110 532 1578 0.86
HLA-A*68:01 IC50 9 2036 830 1206 0.90
HLA-A*33:01 IC50 9 1929 387 1542 0.82
HLA-A*23:01 IC50 9 1915 410 1505 0.86
HLA-A*02:01 IC50 10 2753 1150 1603 0.79
HLA-A*03:01 IC50 10 1694 720 974 0.67
HLA-A*11:01 IC50 10 1680 755 925 0.79
HLA-A*68:01 IC50 10 1651 740 911 0.73
HLA-A*31:01 IC50 10 1640 576 1064 0.65
HLA-A*02:06 IC50 10 1623 679 944 0.52
HLA-A*68:02 IC50 10 1617 481 1136 0.68
HLA-A*02:03 IC50 10 1614 811 803 0.51
HLA-A*33:01 IC50 10 1560 315 1245 0.48
HLA-A*02:02 IC50 10 1445 658 787 0.73
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Table 3.2 Evaluation datasets with binary affinity labels
IEDB
reference MHC allele Measure

type
Peptide
length Count Positive

count
Negative
count

1027079, 1026941, 1027588, HLA-A*02-01 binary 9 491 165 3261028928, 1029824, 1026840
1026891, 1026840 HLA-A*24-02 binary 9 378 65 313

1026840 HLA-A*30-01 binary 9 349 8 341
315312 HLA-A*31-01 binary 9 10 4 6
1026840 HLA-A*68-01 binary 9 436 43 393

1028928, 1026840 HLA-B*07-02 binary 9 308 35 273
1029125 HLA-B*27-05 binary 9 21 14 7

1026897, 1026891 HLA-B*40-01 binary 9 38 14 24
1026897, 1026891, 1026840 HLA-B*58-01 binary 9 482 63 419

1026891 HLA-A*11:01 binary 9 22 19 3

Table 3.3 Evaluation datasets with binary affinity labels
IEDB
reference MHC allele Measure

type
Peptide
length Count Positive

count
Negative
count

1027079, 1026941, 1027588, HLA-A*02-01 binary 9 491 165 3261028928, 1029824, 1026840
1026891, 1026840 HLA-A*24-02 binary 9 378 65 313

1026840 HLA-A*30-01 binary 9 349 8 341
315312 HLA-A*31-01 binary 9 10 4 6
1026840 HLA-A*68-01 binary 9 436 43 393

1028928, 1026840 HLA-B*07-02 binary 9 308 35 273
1029125 HLA-B*27-05 binary 9 21 14 7

1026897, 1026891 HLA-B*40-01 binary 9 38 14 24
1026897, 1026891, 1026840 HLA-B*58-01 binary 9 482 63 419

1026891 HLA-A*11:01 binary 9 22 19 3
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Table 3.4 Performance of DeepMHC on binding affinity Prediction (IC50) compared to other algorithms (9-length, methods
without winning on any dataset are omitted)
MHC allele Measure type DeepMHC NetMHCpan SMM ANN ARB IEDBConsensus NetMHCcons PickPocket

AUC SRCC Pearson AUC SRCC Pearson AUC SRCC Pearson AUC SRCC Pearson AUC SRCC Pearson - - - AUC SRCC Pearson AUC SRCC Pearson
HLA-A*02:01 IC50 0.73 0.60 0.21 0.71 0.56 0.2 0.69 0.52 0.14 0.7 0.53 0.2 0.69 0.51 0.18 - - - - - - - - -
HLA-A*02:01 t1/2 0.82 0.58 0.23 0.81 0.56 0.16 0.81 0.55 0.07 0.8 0.56 0.18 0.8 0.56 0.05 0.73 0.60 -0.01 - - - - - -
HLA-A*02:02 IC50 0.73 0.66 -0.03 0.71 0.59 -0.03 0.7 0.55 -0.01 0.74 0.65 -0.04 0.74 0.5 -0.01 0.66 0.52 0.40 0.75 0.63 -0.04 0.71 0.52 -0.02
HLA-A*02:03 IC50 0.66 0.49 0.62 0.69 0.54 0.46 0.66 0.51 0.26 0.66 0.51 0.39 0.69 0.5 0.13 0.76 0.64 0.30 0.69 0.54 0.43 0.76 0.48 0.28
HLA-A*02:06 IC50 0.79 0.69 0.37 0.78 0.65 0.21 0.75 0.62 0.11 0.77 0.64 0.2 0.74 0.6 0.24 - - - 0.79 0.67 0.2 0.74 0.51 0.35
HLA-A*24:02 IC50 0.68 0.37 0.73 0.60 0.21 0.64 0.74 0.4 0.71 0.59 0.21 0.58 0.44 0.05 0.85 - - - - - - - - -
HLA-B*35:01 IC50 0.80 0.4 0.30 0.68 0.36 0.26 0.59 0.21 0.27 0.57 0.27 0.26 0.64 0.26 0.25 - - - - - - - - -
HLA-B*58:01 IC50 0.56 0.17 0.02 0.72 0.36 0.07 0.67 0.32 0.06 0.65 0.27 0.08 0.55 0.21 0.01 - - - - - - - - -
HLA-B*58:01 t1/2 0.69 0.31 0.05 0.55 0.16 0.12 0.61 0.15 0.11 0.63 0.22 0.16 0.59 0.18 0.06 - - - - - - - - -
HLA-A*68:01 IC50 0.75 0.60 0.08 0.84 0.63 0.10 0.79 0.62 0.03 0.84 0.65 0.18 0.77 0.53 0.14 - - - - - - - - -
HLA-A*68:01 t1/2 0.23 -0.50 -0.48 0.32 -0.32 -0.33 0.25 -0.42 -0.45 0.27 -0.41 -0.37 0.31 -0.39 -0.29 - - - - - - - - -
HLA-A*68:02 IC50 0.89 0.63 0.46 0.82 0.54 0.47 0.82 0.53 0.39 0.84 0.56 0.43 0.77 0.43 0.32 0.53 0.45 0.84 0.84 0.55 0.45 0.83 0.49 0.24
HLA-B*07:02 IC50 0.88 0.66 0.52 0.8 0.71 0.63 0.86 0.74 0.38 0.89 0.77 0.73 0.77 0.69 0.41 - - - - - - - - -
HLA-B*07:02 t1/2 0.94 0.78 0.56 0.95 0.86 0.45 0.96 0.79 0.4 0.96 0.84 0.42 0.78 0.53 0.27 - - - - - - - - -
HLA-B*57:01 IC50 0.75 0.33 0.37 0.82 0.5 0.4 0.73 0.26 0.34 0.85 0.4 0.35 0.59 0.1 0.38 - - - - - - - - -

Count Of Best 6 7 6 3 5 2 2 1 0 4 2 4 0 0 1 0 0 1 2 1 0 1 0 0
Avgerage 0.73 0.45 0.27 0.72 0.46 0.25 0.71 0.42 0.16 0.72 0.45 0.24 0.66 0.35 0.19 - - - - - - - - -
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Table 3.5 Prediction Performance of DeepMHC on the binding affinity (IC50) problems against other algorithms (10-length,
Omitted some methods having no best reults)

MHC allele Measure type DeepMHC NetMHCpan SMM SMMPMBEC IEDBCconsensus
AUC SRCC Pearson AUC SRCC Pearson AUC SRCC Pearson AUC SRCC Pearson AUC SRCC Pearson

HLA-A*02-01 t1/2 0.76 0.4 0.07 0.57 0.15 -0.13 0.56 0.14 -0.10 - - - - - -
HLA-A*02-01 IC50 0.69 0.58 0.09 0.68 0.46 0.09 0.66 0.50 0.16 0.62 0.5 0.15 0.66 0.50 0.09
HLA-A*02-03 IC50 0.80 0.39 -0.05 0.75 0.25 -0.06 0.73 0.32 0.00 0.7 0.31 -0.01 0.73 0.30 0.02
HLA-A*02-06 IC50 0.82 0.66 0.14 0.81 0.64 0.15 0.83 0.64 0.21 0.84 0.66 0.22 - - -
HLA-A*68-02 IC50 0.94 0.78 0.51 0.66 0.31 0.12 0.75 0.41 0.13 0.73 0.38 0.11 0.73 0.40 0.25

Count Of Best 4 5 1 0 0 0 0 0 1 1 1 1 0 0 0
Avgerage 0.80 0.56 0.15 0.69 0.36 0.04 0.71 0.40 0.08 - - - - - -
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Table 3.6 Prediction Performance of DeepMHC on binary peptide binding
prediction
MHC allele DeepMHC NetMHCpan SMM ANN

AUC SRCC Pearson AUC SRCC Pearson AUC SRCC Pearson AUC SRCC Pearson
HLA-A*02-01 0.87 0.60 0.59 0.89 0.63 0.66 0.88 0.62 0.14 0.88 0.61 0.64
HLA-A*11-01 0.63 0.16 0.53 0.58 0.09 0.49 0.60 0.11 0.37 0.61 0.14 0.4
HLA-A*24-02 0.81 0.41 0.24 0.89 0.51 0.63 0.87 0.48 0.23 0.89 0.51 0.65
HLA-A*30-01 0.89 0.20 0.15 0.80 0.16 0.16 0.79 0.15 0.06 0.77 0.14 0.17
HLA-A*31-01 0.88 0.64 0.55 0.92 0.71 0.74 0.92 0.71 0.34 0.92 0.71 0.7
HLA-A*68-01 0.85 0.36 0.27 0.87 0.38 0.47 0.86 0.37 0.11 0.87 0.38 0.52
HLA-B*07-02 0.90 0.44 0.42 0.92 0.46 0.57 0.93 0.47 0.09 0.93 0.47 0.71
HLA-B*27-05 0.88 0.62 0.70 0.96 0.75 0.79 0.91 0.67 0.69 0.94 0.72 0.78
HLA-B*40-01 0.89 0.65 0.35 0.89 0.66 0.42 0.88 0.63 0.26 0.88 0.64 0.48
HLA-B*58-01 0.89 0.45 0.39 0.88 0.44 0.53 0.89 0.45 0.08 0.87 0.44 0.59
Count of Best 4 3 1 6 6 2 3 3 0 1 1 6
Avgerage 0.85 0.45 0.42 0.86 0.48 0.55 0.85 0.47 0.24 0.86 0.48 0.56

Table 3.7 Prediction Performance of DeepMHC V.S. HONN on BLIND Dataset
(AUC scores)

Allele DeepMHC HONN Allele DeepMHC HONN
A*01:01-BLIND 0.89 0.89 A*30:01-BLIND 0.91 0.91
A*02:01-BLIND 0.92 0.92 A*30:02-BLIND 0.72 0.78
A*02:02-BLIND 0.90 0.86 A*31:01-BLIND 0.86 0.88
A*02:03-BLIND 0.96 0.96 A*33:01-BLIND 0.91 0.91
A*02:06-BLIND 0.87 0.87 A*68:01-BLIND 0.92 0.92
A*03:01-BLIND 0.89 0.92 A*68:02-BLIND 0.96 0.95
A*11:01-BLIND 0.94 0.94 A*69:01-BLIND 0.93 0.92
A*23:01-BLIND 0.85 0.86 B*07:02-BLIND 0.90 0.88
A*24:02-BLIND 0.79 0.81 B*08:01-BLIND 0.95 0.94
A*26:01-BLIND 0.92 0.92 B*15:01-BLIND 0.90 0.92
A*29:02-BLIND 0.86 0.89 B*27:05-BLIND 0.91 0.91
B*44:02-BLIND 0.84 0.91 B*35:01-BLIND 0.86 0.85
B*51:01-BLIND 0.92 0.92 B*39:01-BLIND 0.95 0.96
B*57:01-BLIND 0.95 0.95 B*40:01-BLIND 0.93 0.93
B*58:01-BLIND 0.96 0.96
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Table 3.8 Prediction Performance of DeepMHC V.S. JHU Proposed CNN model

Allele Measure Type JHU-CNN DeepMHC
AUC SRCC Pearson AUC SRCC Pearson

HLA-A*02:01 IC50 0.75 0.66 0.28 0.73 0.60 0.21
HLA-A*02:01 binary 0.80 0.49 0.49 0.87 0.60 0.59
HLA-A*02:01 t1/2 0.73 0.46 0.27 0.82 0.58 0.23
HLA-A*02:02 IC50 0.75 0.69 -0.04 0.73 0.66 0.03
HLA-A*02:03 IC50 0.68 0.54 0.70 0.66 0.49 0.62
HLA-A*02:06 IC50 0.86 0.77 0.42 0.79 0.69 0.37
HLA-A*24:02 IC50 0.58 0.32 0.43 0.68 0.37 0.73
HLA-A*24:02 Binary 0.75 0.32 0.38 0.81 0.41 0.24
HLA-A*68:01 IC50 0.58 0.22 0.14 0.75 0.60 0.08
HLA-A*68:01 Binary 0.74 0.25 0.26 0.85 0.36 0.27
HLA-A*68:01 t1/2 0.34 -0.39 -0.33 0.23 0.50 0.48
HLA-A*68:02 IC50 0.92 0.77 0.61 0.89 0.63 0.46
HLA-B*07:02 IC50 0.75 0.47 0.51 0.88 0.66 0.52
HLA-B*07:02 Binary 0.84 0.37 0.45 0.90 0.44 0.42
HLA-B*07:02 t1/2 0.78 0.51 0.39 0.94 0.78 0.56
HLA-B*35:01 IC50 0.65 0.29 0.20 0.80 0.40 0.30
HLA-B*57:01 IC50 0.66 0.27 0.25 0.75 0.33 0.37
HLA-B*58:01 IC50 0.66 0.34 0.32 0.56 0.17 0.02
HLA-B*57:01 Binary 0.82 0.37 0.40 0.89 0.45 0.39
HLA-B*58:01 t1/2 0.70 0.37 0.29 0.69 0.31 0.05

Table 3.9 Prediction Performance of DeepMHC V.S. HLA-CNN

Allele Measure Type Peptide Length Peptide Count DeepMHC HLA-CNN
AUC SRCC AUC SRCC

HLA-B*57:01 IC50 9 26 0.82 0.65 0.81 0.44
HLA-A*68:02 IC50 9 55 0.88 0.62 0.99 0.72
HLA-A*02:06 IC50 9 55 0.78 0.68 0.82 0.58
HLA-A*02:03 IC50 9 55 0.66 0.48 0.75 0.37
HLA-A*02:01 IC50 9 55 0.57 0.62 0.68 0.58
HLA-A*02:01 IC50 10 35 0.66 0.56 0.59 0.33
HLA-A*02:03 IC50 10 35 0.80 0.35 0.84 0.31
HLA-A*02:06 IC50 10 35 0.81 0.60 0.92 0.64
HLA-A*68:02 IC50 10 35 0.92 0.74 0.99 0.72

Average 0.77 0.59 0.82 0.52
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Chapter 4

Pan-specific model on peptide-HLA class I

binding affinity prediction
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4.1 Introduction

In Chapter 3, we introduced an allele-specific CNN-based model on the prediction of

peptide-HLA Class I binding. As discussed in Section 3.4 of last chapter, a major

con of allele-specific methods is that they could not be trained and be used to predict

on HLA alleles with few or zero samples since the peptide is the only input. Due to

the high polymorphism of HLA genes, as March 2018, there are more than 17,000

HLA alleles deposited in the IMGT/HLA database [81]. For many HLA alleles,

there are actually only a few or no experimentally determined binding affinity data

available. In contrast, a pan-specific method takes a pair of HLA allele and its binding

peptide as an input. In this way, binding pairs across all alleles can be integrated

as one training dataset. To achieve this goal, besides encoding the peptide, the

peptide-HLA binding context should also be represented in a proper way such that

the chosen machine learning model could utilize all pairs of binding samples. The

key idea behind pan-specific models is that besides encoding the peptide in a proper

way for the prediction model, the peptide-HLA binding context/environment is also

represented so that the machine learning models could be trained on all available

peptide-HLA binding samples [110]. In Figure 4.1, we show the difference between

allele-specific methods and pan-specific methods.

In this chapter, we will first discuss the existing pan-specific models and their

limitations in section 4.2. Then our proposed method is presented in section 4.3. We

test our model on benchmark dataset and compare the results with other methods in

section 4.4.

4.2 Related work

As of now, a number of pan-specific models have been proposed for both HLA class

I and class II alleles [110]. Pseudo-sequence based methods are currently most suc-
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Figure 4.1 Illustration of difference between allele-specific framework and
pan-specific framework. Left panel show the allele-specific framework where for each
allele, a model needs to be trained on available peptides. In the right panel, a
pan-specific model could takes into binding complex of all alleles together and a
universal model will be obtained.

cessful ones with high performance when trained on a large amount of HLA class I

binding affinity data. NetMHCPan [26] is the first pan-specific binding affinity pre-

diction algorithm that trains on a large number of peptide-HLA binding samples of

different HLA alleles. It proposed the pseudo sequence encoding method to represent

the binding context, in which an HLA sequence is reduced to a pseudo amino acid

sequence of length 34 based on a representative set of HLA structures with nonamer

peptides. Each amino acid in this pseudo sequence is selected if it is in contact with

the peptide within 4.0
◦
A (0.4 nm). The extracted interaction map is shown in Figure

4.2. this extracted 34-length pseudo sequence is a fixed list of location indexes of

amino acids. For any given HLA allele’s sequence, the corresponding 34 residues are

extracted and used to represent this HLA allele. In NetMHCPan, a HLA-peptide

binding sample is represented as a 43-length residue sequence: 9 from peptide and 34

49



from HLA. This sequence is then encoded in three different ways: one-hot encoding,

BLOSUM50 and a mixture of both. The encoded input is then used to train multiple

feed forward neural networks with 22 to 86 hidden neurons. Then the network with

the highest prediction performance (lowest square error) on the test set was selected

as the final prediction model [26]. NetMHCPan later has been improved several times

by training with additional training data. The latest version is NetMHCPan 4.0 [36].

This pseudo sequence encoding approach has also been used in PickPocket [108]

and Kim’s algorithm [23], but the two methods use different machine learning algo-

rithms for model training. In PickPocket, position-specific scoring matrices (PSSMs)

are first derived from peptides data. Then extract the position-specific vectors from

the PSSMs in association with pseudo-sequence to construct a pocket library. Each

pocket library entry is characterized by nine pairs, where each pair consists of a list

of pocket amino acids and a specificity vector. Kim et al. proposed a pan-specific

DCNN model for peptide-MHC class I binding prediction, in which pseudo sequence

encoding is adopted for HLA sequences and the DCNN model is setup as a 26-layer

classifier [23].

The pseudo sequence encoding is currently the dominating binding context en-

coding method in pan-specific peptide-HLA class I binding prediction. This encoding

method has its potential limitations: 1) its interaction map extraction step relies

on available MHC-peptide bound complex structures,which can not cover all alle-

les, especially considering the high polymorphism of HLA proteins; 2) the 34 contact

residues of the encoding is empirical and only covers part of the whole HLA sequence.

In next section, we propose DeepSeqPan, a deep neural network trained on pairs of

one-hot encoded raw peptides and HLA sequences. Our method does not require 3-D

structural data during training stage and it could obtain state-of-the-art performance

on standard benchmark.
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Figure 4.2 Interaction map of the HLA pseudo sequence in NetMHCPan.
Reproduced from original paper.

4.3 Method

4.3.1 Dataset

We use same training dataset BD2013 from IEDB as we did for DeepMHC. All

training samples are labeled with IC50 binding affinity values. The testing dataset is

downloaded from IEDB’s weekly benchmark dataset ranging from 2014-03-21 to 2018-

01-26 (http://tools.iedb.org/auto_bench/mhci/weekly). To address the concern that

duplicate peptides may exist in both the training and testing data downloaded from

IEDB, we removed all duplicate peptides from the testing dataset. The alignment-

ready HLA sequences were obtained from IMGT/HLA database [81]. We trained

our model on 9-length peptides binding to HLA-A, HLA-B and HLA-C alleles with

available HLA sequences. Totally, the training dataset contains 121,787 peptide-

HLA binding peptides covering 42 HLA-A alleles (72618 samples), 49 HLA-B alleles

(46915 samples) and 10 HLA-C alleles (2254 samples). The detailed information of

the training dataset are listed in Table 3.1
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4.3.2 Sequence Encoding

In this model, we use one-hot encoding for both peptide and HLA sequences. A

9-length peptide sequence is encoded into a 2D tensor with dimension 1 × 9 × 20

where the last dimension is the number of channels and each channel represents one

of 20 amino acids. Figure 4.3 illustrates the encoded peptide HLNPNKTKR as a

2D tensor with dimension 1× 9× 20. Since HLA class I sequences downloaded from

IMGT/HLA database have variable lengths, we chose the maximum length 372 as

the fixed dimension. Then we encode each aligned HLA sequence into a 2D tensor

with dimension 1 × 372 × 21. The extra channel represents gaps in HLA sequences

shorter than 372.

H L N P N K T K R

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Height (1)

Width (9)

Channel (20)

Amino acid
channels

A
C
D
E
F
G
H
I
K
L
M
N
O
P
Q
R
S
T
U
V
W
Y

Figure 4.3 Peptide encoding example. Sequence HLNPNKTKR is encoded into a
2D tensor with dimension 1 (height) × 9 (width) × 20 (channel). Each of 20
channels represents one amino acid type and we set a channel value to 1 if the
corresponding amino acid appears at this location of the input sequence.

4.3.3 DeepSeqPan

Architecture. As shown in Figure 4.4, the DeepSeqPan network consists of three

parts:
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(i) Peptide encoder and HLA encoder. The peptide and HLA encoders con-

vert a pair of one-hot encoded peptide and HLA sequences into two tensors

with a unified dimension 1 × 9 × 10. The output tensors of two encoders are

concatenated along the channel axis to generate an encoded feature tensor with

dimension 1 × 9 × 20. Then this concatenated tensor will be fed into the bind-

ing context extractor in (ii). The purpose of these two encoders is extracting

high-level features from raw sequences and encoding them into a feature tensor.

Different from the 34 pseudo amino acid sequence encoding approach in [26],

the features and information stored inside this feature tensor are learned by the

deep neural network automatically with its end-to-end training framework. The

encoder of the peptide consists of two blocks of convolutional, batch normaliza-

tion and LeakyReLu layers. As for the HLA encoder whose input sequence is

much longer than the peptide, we used a network configuration similar to the

VGG network [89].

(ii) Binding context extractor. The extractor takes into the encoded feature

tensor from (i) and outputs a 2560-dimension vector. This vector is actually

the binding context between a peptide and a HLA. This binding context ex-

tractor will be optimized automatically in the training stage through the back-

propagation algorithm and the extraction of the binding context is done by the

network itself without human involvement. Especially, in this extractor we use

Locally Connected layers (as illustrated LCBlock in Figure 4.4) instead of stan-

dard convolutional layers with weights sharing. The reason is that the encoded

high-level features in the feature tensor is position related, i.e. in the encoded

feature tensor with length 9, an extracted feature A located at position 1 should

have different effect as it appears at position 7. Locally connected layers have

the capability to capture features at specific locations since its filters at differ-

ent locations do not share weights, which has been proved to be powerful in
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DeepFace [93].

(iii) Affinity predictor and binding probability predictor. Another novel de-

sign of DeepSeqPan is that at the output layer, both the binding probabilities

and the IC50 value are used as output in final stage (iii). This is different

from all other DCNN based MHC binding prediction algorithms[23, 99] which

outputs either the binding probabilities or IC50 values. This design is not a

captain’s call. Actually, at first when we were training the DeepSeqPan that

only predicts IC50 values, we found it was very hard to train the network with

very slow convergence. So we added the binding probability predictor as an

additional source of supervision signal with the expectation that the backprop-

agation algorithm can train the network easier by taking advantage of two types

of losses: the classification loss and regression loss. Note that we can calculate

the binary binding probability for the training samples from their IC50 binding

affinity values via Equation (4.4). The underlying relationship between regres-

sion outputs and classification outputs is built up naturally. In the training

stage, the network needs to learn this underlying relationship in order to re-

duce the total loss. In that case, we argue that the classification predictor plays

as a regularizer by forcing the network to predict a more accurate IC50 values.

Layer configuration details. In Figure 4.4, there are several layers we need to give

more details:

• FC N : A fully connected layer with N hidden units.

• Dropout: We used 0.5 as the dropout rate.

• ConvBlock N : A ConvBlock N consists of 4 layers in following order:

1. A 2D convolutional layer with N filters of size 1× 3

2. A Batch normalization layer
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3. A 2D convolutional layer with N filters of size 1× 3

4. A Max pooling with kernel size 1× 2

• LCBlock N : A LCBlock N consists of 3 layers in following order:

1. A 2D Locally Connected layer with N filters of size 1× 2

2. A Batch normalization layer

3. A LeakyReLU activation layer

Loss function. The overall loss L is the sum of the regression loss LR and the

classification loss LC as illustrated in Equation (4.1).

L = LR + LC (4.1)

For IC50 predictor, we use mean squared error (MSE, Equation (4.2)) as the loss

function and for the binary binding predictor, the binary cross entropy loss (Equation

(4.3)) is used.

LR = 1
N

∑
||YIC50 − Y

′

IC50 ||
2 (4.2)

LC = −Plog(P ′)− (1− P )log(1− P ′) (4.3)

To get binary binding labels, we use standard 500 nM threshold to convert a IC50

value label into a binding label:

P =


1, if IC50< 500.

0, otherwise.
(4.4)

Training. We randomly split all training samples into a training set and a valida-

tion set following 4:1 ratio. Stochastic gradient descent (SGD) is employed as the

optimization algorithm enabled with momentum and learning rate decay. The ini-

tial learning rate is 0.001 and the momentum factor is 0.8. It is scheduled to halve
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the learning rate if validation loss hasn’t improved within 5 epochs. The minimum

learning rate is set to 0.00001. The training process stops if the validation loss has

not improved within 15 epochs. We used Keras [14] deep learning framework to

implement our DeepSeqPan algorithm.

ConvBlock 64

ConvBlock 128

ConvBlock 256

ConvBlock 512

ConvBlock 1024

Conv 1x2/512

BatchNorm

Conv  1x2/10
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HLNPNKTKR
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Figure 4.4 DeepSeqPan Network Structure. (i) Peptide and HLA encoders. (ii)
Binding context extractor. (iii) Affinity and binding predictors.

4.3.4 Metrics and label processing

Area under the curve (AUC) and Spearman’s rank correlation coefficient (SRCC) are

used as evaluation metrics to compare with the public benchmark results at IEDB
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website [96]. In pan-specific binding prediction modeling, the IC50 values of the

peptides span a large range [0, 80000]. To avoid gradient explosion issue in neural

network training, we convert IC50 to logIC50 via Equation 4.5. The logIC50 are then

used as labels during training. During inference stage, we convert the prediction

results back to IC50 values.

logIC50 = logeIC50 (4.5)

4.4 Experiments and results

4.4.1 Cross-validation on the training dataset

Standard five-fold cross-validation experiments are applied over the training dataset.

Since our network outputs both IC50 affinity values and binding probabilities, we

evaluated the performances on both outputs separately. We use AUC and SRCC

discussed in section 4.3.4 to measure the performance.

In table 4.1, All rows show the 5-fold cross-validation results of our algorithm

on the original training dataset. When the calculated the metrics on all samples,

DeepSeqPan achieved a high AUC of 0.94 for regression on IC50 and an AUC of

0.94 for binary binding classification. The corresponding SRCC is 0.73 (IC50) and

0.70 (binary binding) respectively. When evaluated over the samples of HLA-A, -B

and -C alleles separately, all the AUC scores are around or above 0.90 and all the

SRCC scores are above 0.60. More comprehensive metrics evaluated on each allele

are reported in Table 4.2. In this table, some AUC scores are N/A because of that in

training dataset, there are few alleles coming with 0 positive samples. Thus, it is not

applicable to compute AUC score. Also, we can find that some SRCC scores are also

N/A in Table 4.2. These happen if the number of an allele’s samples is < 2. It is not

applicable to calculate SRCC score without at least 2 data points. For allele HLA-
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A*02:10, the Spearmanr function gives N/A result because all samples are labeled as

same values which is also a non-calculable situation.

Besides performing cross validation on the original training dataset, we also did

a cross validation on a CD-HIT [52] filtered training dataset. The reason behind this

is that in the original training dataset, some peptides have high similarities. When

do cross validation on the original training dataset, these similar peptides may lead

to over estimating of our model’s performance. CD-HIT is a widely used tool to

cluster protein sequences based on their alignment similarities. We first use it to

group all peptides in our training dataset with sequence identity threshold 0.7, i.e.

if two peptides have similaritiy > 0.7, they will be clustered into on group. After

this step, 20,148 unique peptide sequences are grouped into 14,812 clusters. Then for

each cluster, we only keep peptide with the greatest number of samples. In this way,

we got a new training dataset for cross-validation, we name it training-cd-hit. Then

we did the normal 5-fold cross-validation on this training set. In Table 4.2, we listed

the performance of model trained on this filtered dataset (CD-HIT filtered rows). As

shown in the table, AUC scores are much better than model trained on all dataset

with all achieved 1.0. SRCC scores are slightly worse than the model trained on all

dataset. We can see that our model keeps the performance on the training-cd-hit

dataset.

4.4.2 Evaluation on benchmark dataset

To evaluate how our DeepSeqPan performs compared to other HLA-peptide binding

prediction algorithms, we applied it to the public IEDB weekly benchmark dataset

upon which a set of top algorithms have been evaluated with published results.

We trained a single DeepSeqPan model on all 9-length peptides in the training

dataset that bind to HLA-A, -B and -C alleles. Then this trained model was evaluated

on all available IEDB weekly benchmark dataset [96]. As we inform before, the IEDB
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benchmark dataset has been filtered by removing duplicate samples. We compared

the performance of DeepSeqPan with those of pan-specific models: NetMHCPan (2.8)

[25], NetMHCPan (3.0) [68] and PickPocket [108], the performances of allele-specific

models: SMM [76], NetMHC (3.4) [59], NetMHC (4.0) [2], ARB [12], MHCflurry [73]

and AMMPMBEC [96], and those of ensemble models (results are based on several

different models): IEDB Consensus [96] and NetMHCcons [38]. Metrics of compared

models are listed in Table 4.6. This table summarizes the performance of different

algorithms on 64 testing datasets from IEDB benchmark database. For each dataset,

we highlighted the highest AUC scores in yellow and highest SRCC scores in pink

and then counted the number of datasets upon which each algorithm achieved the

highest scores and put them at the last row of the table. We found that DeepSeqPan

achieved the highest AUC scores in 19 records out of total 64 testing records. In 45

records that DeepSeqPan didn’t achieve the highest AUC scores, there are 28 records

on which the AUC scores of DeepSeqPan are very close to the highest AUC scores

within a small margin around 0.1. In terms of SRCC, DeepSeqPan obtained the

highest scores on 13 records.

From Table 4.6, it can be found that different pan-specific and allele-specific meth-

ods have the best performance on datasets of various alleles, which implies the good

performance of the ensemble methods such as NetMHCcons since they make predic-

tion via combining results from multiple methods [96]. Our proposed DeepSeqPan

could thus be a complementary tool for existing pan-specific models and it is promis-

ing to include it into the state-of-the-art ensemble prediction models to improve their

performance.

4.4.3 Comparison with other DCNN models

To the best of our knowledge, Kim et lt.’s work [15] is the only pan-specific model

that employs DCNN architecture beside our proposed DeepSeqPan. It uses NetMHC-
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Pan’s pseudo sequence encoding for binding context modeling, in which a pair of

peptide-HLA binding sample is encoded into a 9 (height) × 34 (width) × 18 (chan-

nel) 2D tensor. Each "pixel" in this 2D tensor represents a contacting pair of a

peptide reside and a HLA residue. For two contacting residues, 9 physicochemi-

cal properties are used for each one and in total 18 values are encoded in chan-

nels. Their network structure is VGG-like and consists of 26 layers. They trained

their model with binding samples on HLA-A and HLA-B alleles and it used the

same dataset BD2013 as we did. To compare the performance of our DeepSeqPan

with Kim’s method, we evaluated the benchmark dataset with their online server

(http://jumong.kaist.ac.kr:8080/convmhc) on all its supporting alleles (HLA-A and

HLAB alleles). In total, we evaluated 54 benchmark datasets on Kim’s server and

compared with ours obtained in previous benchmark evaluation and the binary pre-

diction outputs were used to compare. Since Kim’s model was trained as a classifier,

we calculated AUC scores for each testing dataset and in Table 2 we showed the aver-

age AUC scores measured based on all HLA-A or HLA-B testing dataset respectively

(Detailed performance on each dataset is listed in Supplementary Files). Out of all

54 benchmark datasets, Kim’s model and our model both got an average AUC of

0.76. For HLA-A datasets, two model also obtained same average AUC of 0.74. Our

model slightly out performed Kim’s model on HLA-B alleles with an average AUC of

0.80. Overall, two models achieved similar performance and in terms of performance

on each allele as shown in Table 4.3, two models obtained better performances on

different sets of HLA alleles and none can dominate the other model.

4.4.4 Generalization of DeepSeqPan to binding predictions of new HLA

alleles

One major advantage of pan-specific models over allele-specific models for HLA-

peptide binding prediction is that it can make predictions on HLA alleles that are not
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included in the training dataset. This is especially useful for HLA alleles without any

samples with known binding affinity values. In order to evaluate this extrapolation

capability of DeepSeqPan, we setup a 3-fold blind cross validation. We first grouped

all alleles into 3 groups: HLA-A, -B and -C. In this blind test, each of 3 models were

trained on 2 groups of alleles and then tested on another group of alleles. We call

those trained model Blind models since they didn’t see any alleles from testing. All

samples are taken from the CD-HIT training dataset such that we can compare these

3 model’s performances with that of 5-fold cross-validation. The CD-HIT training

dataset was obtained from previous cross-validation experiment.

The comparison results are shown in Table 4.4. The columns under 3-fold blind

test are performance results of the Blind models. Columns under 5-fold cross val-

idations are results obtained from previous 5-fold crossvalidation on same training

dataset. Overall, the blind models perform worse than 5-fold cross validation as ex-

pected since in both 3 folds, the training datasets are much smaller comparing with

that of 5-fold cross validations. For example, when tested on HLA-A group alleles,

the model was trained on 43,462 samples while it was tested on 60,987 samples. The

number of testing samples is even larger than the number of training samples. Same

situations for HLA-B and HLA-C groups. However, as shown in Table 4.4, thereâĂŹre

several records in groups B and C where blind model achieved better or similar per-

formance (HLA-B*15:42, HLA-B*27:02, HLAB*42:02, HLA-B*45:06, HLA-B*52:01,

HLA-B*57:03, HLA-B*58:02 and HLA-C*04:01). We think this happened because

when the network trained on A-B dataset or A-C dataset, it could learned the basic

cross allele features with a number of samples (102,347 of A-B, 63,088 of A-C) even

only fed with raw sequences.
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4.4.5 The binding context vector: consistency and capability

One of key design features of our DeepSeqPan model (Figure 4.4 (ii)) is the binding

context vector aiming to capture high-level features that determine whether a peptide

and a HLA bind or not and if so, how strong the binding is. Another key feature

of our model is the dual outputs of the model: the binding affinity output and the

binary binding probability output.

Since the binding context vector is used as input for both predicted outputs, it

should be consistent for both the IC50 predictor and the binary binding predictor in

(iii): for the same binding context vector, both predictors should give consistent out-

puts. In other words, higher binding probability should correspond to higher binding

affinity values. To verify this consistency, we inspected IC50 and binary prediction

outputs of all samples from previous cross-validation and benchmark evaluation ex-

periments. The analysis results are shown in Table 4.5. First row of the table lists the

numbers of evaluated samples in the cross-validation and benchmark evaluation ex-

periments with 121,787 in cross-validation and 19,741 in benchmark evaluation. The

second row shows the number of consistent outputs. Given a sample pair of peptide

and HLA, we marked its predicted IC50 value and the predicted binding probability

as consistent if both values indicate binding or not binding. An IC50 value of < 500

or a binding probability of 0.5 or greater indicates the binding state. From the table

we can observe that high consistency exists between the regression and classification

outputs. For cross-validation experiments, the percentage of consistent outputs is

95.81% and for benchmark evaluation experiments, this percentage is 86.14%.

In last two rows of Table 4.5, we reported the number of correct predictions mea-

sured with the IC50 predictions and the binary prediction respectively. A predicted

IC50 value or a predicted binary binding probability value is marked as a correct

prediction if its real label and the prediction value indicate the same binding state:

binding or not binding. Given a sample, it will be marked as binding if its IC50 value
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is less than the threshold (500 nM). If the sample binding affinity is labelled with t1/2

type, measured minutes less than 120 indicates the binding state For binary binding

labels, a binary label of 1 means it is binding while a value of 0 means no binding. For

the predicted binary binding probability, a probability value of > 0.5 means binding.

From Table 4.5, we found that both affinity and binary binding outputs obtained

accuracies greater than 88% in cross-validation experiments. In benchmark experi-

ments, the accuracy rate is 59% for IC50 predictions and binary predictions have an

accuracy of 53%. The results showed that the consistency between IC50 predictions

and binary predictions is high, which means that the binding context vector extracted

by DeepSeqPan contains common effective features for determining binding states.

In Figure 4.5 we plotted the correlation between binary values and regression

values predicted on benchmark dataset. Each dot in this plot represents a testing

sampleâĂŹs two prediction values by DeepSeqPan. The x axis value is the predicted

logIC50 and the y axis value is the predicted binary binding probability. The Pearson

correlation value calculated is -0.97. We also fitted a linear function into these corre-

lation data and the fitted linear function is y = −0.1x+1.0. From the figure, it shows

that two output values have very strong correlation when both indicate very strong

binding or very weak binding (upper left part and lower right part). It displays weak

correlation when the two predicted values indicate the binding is neither strong or

weak.

Though the results show that the two output values have a pretty strong cor-

relation overall. There are some cases they will give contradicting predictions. We

think the major reason behind this is that in the training dataset, thereâĂŹre some

edge samples. Following the 500 nM hard convention value, for samples whose IC50

values are slightly above 500 (e.g. 502.03), their binary labels will be 0. And for

those samples whose IC50 values are slightly below 500 (e.g. 498.33), their binary

labels will be 1. After training, when the model does prediction on those similar
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edge samples in testing dataset, the predicted regression values and binary labels are

easy to contradict to each other. It can be seen that around hard convention line

(x = 6.20) in Figure 4.5, the correlation is almost weakest. In practical usage, users

should be careful on predicted regression values around 500 and measure the result

based on two outputs. But if users only care strong binding samples, according to

our correlation analysis on benchmark testing, the two values show strong correlation

in strong binding cases. That will not be a problem.

Figure 4.5 Correlation analysis between binary prediction values and regression
prediction values on benchmark dataset.

4.5 Chapter summary

In this chapter, we proposed, DeepSeqPan, a novel deep convolutional neural net-

work model for pan-specific HLA-peptide binding affinity prediction. This model is
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characterized by its capability of binding prediction with only the raw amino acid

sequences of the peptide and the HLA, which makes it applicable to HLA-peptide

binding prediction for HLA alleles without structural information. This is achieved

by a novel sequence-based encoding of the peptide-HLA binding context, a binding

context feature extractor, and the dual outputs with both binding affinity and binding

probability predictions. Extensive evaluation of DeepSeqPan on public benchmark

experiments showed that our model achieves state-of-the-art performance on a variety

of HLA allele datasets.

Our model contributes to the study of MHC-peptide binding prediction in a few

special ways. First, our experiments showed that it is possible to extrapolate the bind-

ing prediction capability to unseen HLA alleles, which is important for pan-specific

models. Second, our sequence-only based binding context encoding is complementary

to the pseudo sequence encoding, which is currently the only encoding method used

in pan-specific models for class I MHC-peptide binding affinity prediction. This has

the potential to further improve the state-of-the-art prediction models such as the

pan-specific model NetMHCSpan. It showed the importance of sufficient amount of

training data to achieve high prediction performance for deep learning models. More-

over, our proposed sequence-based DCNN architecture for protein-peptide binding is

universal and can be adapted to other similar binding problems such as protein-DNA,

protein-RNA and protein-ligand/drug bindings.
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Table 4.1 Cross validation results on original training data (All) and CD-HIT
filtered training data (CD-HIT filtered)

TrainingDataset Alleles Seq Count
IC50 Binary Binding

AUC SRCC AUC SRCC

All

All alleles 121,787 0.94 0.73 0.94 0.70
HLA-A 72,618 0.94 0.75 0.94 0.73
HLA-B 46,915 0.94 0.68 0.94 0.64
HLA-C 2,254 0.89 0.70 0.89 0.69

CD-HIT filtered

All alleles 104,449 1.00 0.71 1.00 0.68
HLA-A 60,987 1.00 0.73 1.00 0.71
HLA-B 41,360 1.00 0.66 1.00 0.62
HLA-C 2,102 1.00 0.69 1.00 0.68
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Table 4.2 5-fold cross validation measured for each allele (All training)

HLA
IC50 Binary

HLA
IC50 Binary

AUC SRCC AUC SRCC AUC SRCC AUC SRCC
A*01:01 0.93 0.57 0.94 0.55 B*15:09 0.88 0.47 0.89 0.47
A*02:01 0.95 0.81 0.95 0.81 B*15:17 0.93 0.69 0.94 0.69
A*02:02 0.93 0.86 0.93 0.86 B*15:42 0.82 0.04 0.65 -0.01
A*02:03 0.95 0.82 0.95 0.82 B*18:01 0.90 0.52 0.89 0.48
A*02:04 N/A N/A N/A N/A B*27:01 0.00 -1.00 0.00 -1.00
A*02:05 0.99 0.84 0.98 0.81 B*27:02 N/A -0.50 N/A -0.50
A*02:06 0.91 0.80 0.91 0.79 B*27:03 N/A 0.03 N/A -0.01
A*02:07 0.76 0.75 0.79 0.79 B*27:04 N/A 1.00 N/A 1.00
A*02:10 N/A N/A N/A N/A B*27:05 0.94 0.63 0.94 0.59
A*02:11 0.96 0.80 0.96 0.80 B*27:06 N/A -1.00 N/A -1.00
A*02:12 0.97 0.77 0.97 0.77 B*27:10 N/A N/A N/A N/A
A*02:16 0.98 0.68 0.98 0.68 B*27:20 0.56 0.52 0.54 0.56
A*02:17 0.68 0.41 0.69 0.41 B*35:01 0.90 0.72 0.91 0.71
A*02:19 0.96 0.66 0.96 0.66 B*35:03 0.87 0.50 0.90 0.54
A*02:50 1.00 0.88 0.99 0.87 B*37:01 0.48 0.01 0.61 0.13
A*03:01 0.93 0.73 0.93 0.72 B*38:01 0.98 0.81 0.98 0.80
A*03:02 0.69 0.57 0.68 0.57 B*39:01 0.93 0.62 0.93 0.61
A*03:19 0.87 0.55 0.87 0.56 B*40:01 0.97 0.63 0.97 0.59
A*11:01 0.95 0.77 0.95 0.76 B*40:02 0.90 0.76 0.90 0.75
A*11:02 1.00 0.77 1.00 0.77 B*40:13 0.64 0.48 0.61 0.46
A*23:01 0.93 0.71 0.92 0.68 B*42:01 0.94 0.77 0.94 0.77
A*24:02 0.90 0.67 0.90 0.66 B*42:02 0.84 0.64 0.82 0.63
A*24:03 0.96 0.70 0.96 0.68 B*44:02 0.95 0.60 0.94 0.55
A*25:01 0.98 0.47 0.99 0.47 B*44:03 0.94 0.82 0.95 0.82
A*26:01 0.93 0.52 0.93 0.49 B*45:01 0.92 0.67 0.91 0.66
A*26:02 0.96 0.74 0.96 0.74 B*45:06 0.81 0.14 0.71 0.17
A*26:03 0.93 0.52 0.94 0.54 B*46:01 0.92 0.44 0.93 0.44
A*29:02 0.88 0.65 0.87 0.63 B*48:01 0.92 0.49 0.92 0.50
A*30:01 0.91 0.70 0.92 0.70 B*51:01 0.92 0.58 0.92 0.55
A*30:02 0.82 0.63 0.82 0.62 B*52:01 0.58 0.29 0.50 0.18
A*31:01 0.93 0.74 0.93 0.74 B*53:01 0.92 0.78 0.93 0.77
A*32:01 0.85 0.71 0.85 0.72 B*54:01 0.90 0.73 0.90 0.73
A*32:07 0.81 0.53 0.82 0.53 B*57:01 0.96 0.62 0.96 0.59
A*32:15 0.51 0.38 0.50 0.36 B*57:02 0.84 0.66 0.80 0.62
A*33:01 0.92 0.73 0.92 0.73 B*57:03 0.97 0.74 0.97 0.75
A*66:01 0.83 0.41 0.84 0.35 B*58:01 0.95 0.69 0.96 0.68
A*68:01 0.90 0.79 0.90 0.79 B*58:02 0.55 0.51 0.59 0.55
A*68:02 0.92 0.70 0.92 0.69 B*73:01 0.64 0.36 0.66 0.37
A*68:23 0.77 0.53 0.78 0.54 B*81:01 0.92 0.76 0.93 0.76
A*69:01 0.94 0.51 0.94 0.53 B*83:01 0.93 0.53 0.93 0.53
A*74:01 0.70 0.45 0.61 0.33 C*03:03 0.80 0.59 0.79 0.58
A*80:01 0.94 0.55 0.95 0.55 C*04:01 0.52 -0.09 0.58 -0.15
B*07:02 0.95 0.72 0.95 0.72 C*05:01 0.91 0.74 0.92 0.75
B*08:01 0.91 0.66 0.91 0.65 C*06:02 0.89 0.74 0.89 0.74
B*08:02 0.96 0.42 0.96 0.44 C*07:01 0.84 0.61 0.84 0.61
B*08:03 0.92 0.35 0.95 0.38 C*07:02 0.74 0.42 0.73 0.41
B*14:01 0.74 0.43 0.74 0.44 C*08:02 0.64 0.28 0.63 0.25
B*14:02 0.84 0.51 0.85 0.43 C*12:03 0.62 0.28 0.61 0.29
B*15:01 0.90 0.67 0.90 0.67 C*14:02 0.67 0.28 0.67 0.29
B*15:02 0.77 0.53 0.77 0.53 C*15:02 0.79 0.52 0.80 0.55
B*15:03 0.90 0.75 0.90 0.75
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Table 4.3 Evaluation results of Kim’s DCNN and DeepSeqPan

MHC IEDB Ref Measure Type Count
AUC

Kim DeepSeqPan (Binary)
A*01-01 1028282 t1/2 6 1.00 1.00
A*02-01 1026371 t1/2 34 0.70 0.76
A*02-01 1026840 Binary 341 0.85 0.85
A*02-01 1026840 IC50 22 0.79 0.55
A*02-01 1026840 t1/2 22 0.69 0.58
A*02-01 1027079 Binary 15 0.80 0.80
A*02-01 1027471 Binary 43 0.79 0.88
A*02-01 1027588 Binary 18 0.70 0.82
A*02-01 1028285 t1/2 135 0.75 0.72
A*02-01 1028553 IC50 22 0.85 0.95
A*02-01 1028554 IC50 44 0.75 0.91
A*02-01 1028928 Binary 11 0.92 0.94
A*02-01 1029824 Binary 77 0.59 0.58
A*03-01 1028288 t1/2 221 0.84 0.85
A*03-01 1031253 IC50 14 0.96 1.00
A*11-01 1026891 Binary 16 0.71 0.67
A*11-01 1028287 t1/2 219 0.79 0.76
A*24-02 1026840 Binary 346 0.84 0.83
A*24-02 1026840 IC50 19 0.62 0.61
A*24-02 1026891 Binary 19 0.55 0.68
A*24-02 1028289 t1/2 423 0.73 0.74
A*30-01 1026840 Binary 347 0.87 0.85
A*30-02 1026840 Binary 360 0.73 0.72
A*30-02 1026840 IC50 56 0.51 0.55
A*30-02 1026840 t1/2 56 0.48 0.49
A*31-01 315312 Binary 8 0.94 0.88
A*66-01 315312 Binary 16 0.39 0.14
A*68-01 1026840 Binary 436 0.86 0.84
A*68-01 1026840 IC50 35 0.84 0.78
A*68-01 1026840 t1/2 35 0.42 0.33
B*07-02 1026371 t1/2 33 0.89 0.91
B*07-02 1026840 Binary 288 0.86 0.81
B*07-02 1028291 t1/2 136 0.82 0.82
B*07-02 1028553 IC50 22 0.84 0.90
B*07-02 1028554 IC50 52 0.80 0.80
B*07-02 1028928 Binary 11 1.00 1.00
B*07-02 1031253 IC50 13 1.00 1.00
B*15-01 1028293 t1/2 570 0.74 0.62
B*15-02 1027131 Binary 14 1.00 1.00
B*27-05 1029125 Binary 21 0.97 0.95
B*27-05 1031253 IC50 12 0.60 0.63
B*35-01 1028292 t1/2 363 0.81 0.74
B*35-01 1028554 IC50 56 0.47 0.58
B*40-01 1026891 Binary 19 0.83 0.81
B*40-01 1026897 Binary 15 0.80 0.80
B*44-03 1028554 IC50 46 0.54 0.80
B*57-01 1028554 IC50 53 0.87 0.89
B*57-01 1029061 IC50 17 0.90 0.95
B*58-01 1026840 Binary 433 0.87 0.85
B*58-01 1026840 IC50 34 0.77 0.53
B*58-01 1026840 t1/2 34 0.44 0.58
B*58-01 1026891 Binary 20 0.66 0.67
B*58-01 1026897 Binary 22 0.81 0.90
B*27-05 1031959 Binary 13540 0.60 0.60
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Table 4.4 Comparision results of 3-fold blind testing and 5-fold corss validations
on each alleles in trainign data with CD-HIT filtered. Highlited cells are higher
scores in that record.

Allele

5-fold cross validation 3-fold blind test

Allele

5-fold cross validation 3-fold blind test
IC50 AUC IC50 AUC IC50 AUC IC50 AUC

AUC SRCC AUC SRCC AUC SRCC AUC SRCC AUC SRCC AUC SRCC AUC SRCC AUC SRCC
A*01:01 1.00 0.57 1.00 0.55 0.55 0.13 0.55 0.10 B*15:09 1.00 0.47 0.99 0.49 0.37 -0.11 0.37 -0.10
A*02:01 1.00 0.81 1.00 0.80 0.68 0.35 0.72 0.41 B*15:17 1.00 0.69 1.00 0.69 0.73 0.38 0.73 0.39
A*02:02 1.00 0.85 1.00 0.85 0.71 0.43 0.72 0.46 B*15:42 1.00 0.06 1.00 0.00 0.59 0.00 0.60 0.01
A*02:03 1.00 0.80 1.00 0.79 0.69 0.35 0.71 0.40 B*18:01 1.00 0.50 1.00 0.46 0.45 0.05 0.44 0.01
A*02:04 - - - - - - - - B*27:01 - - - - - - - -
A*02:05 1.00 0.85 1.00 0.81 0.79 0.47 0.86 0.55 B*27:02 1.00 0.60 1.00 0.60 - 0.80 - 0.80
A*02:06 1.00 0.79 1.00 0.77 0.67 0.34 0.70 0.40 B*27:03 1.00 -0.05 1.00 -0.01 - -0.01 - -0.01
A*02:07 1.00 0.79 1.00 0.81 0.73 0.08 0.77 0.17 B*27:04 1.00 1.00 1.00 1.00 - -0.50 - -0.50
A*02:10 - - - - - - - - B*27:05 1.00 0.60 1.00 0.57 0.55 0.12 0.50 0.06
A*02:11 1.00 0.80 1.00 0.80 0.65 0.26 0.69 0.32 B*27:06 - 1.00 - 1.00 - -1.00 - -1.00
A*02:12 1.00 0.77 1.00 0.77 0.67 0.24 0.71 0.31 B*27:10 - - - - - - - -
A*02:16 1.00 0.68 1.00 0.69 0.60 0.11 0.65 0.17 B*27:20 1.00 0.50 1.00 0.47 0.36 -0.19 0.38 -0.29
A*02:17 1.00 0.38 1.00 0.38 0.61 0.26 0.61 0.27 B*35:01 1.00 0.69 1.00 0.68 0.58 0.13 0.60 0.16
A*02:19 1.00 0.65 1.00 0.65 0.65 0.20 0.68 0.22 B*35:03 1.00 0.50 1.00 0.54 0.48 -0.15 0.51 -0.10
A*02:50 1.00 0.86 1.00 0.87 0.44 -0.05 0.44 -0.06 B*37:01 1.00 0.37 1.00 0.25 0.53 -0.02 0.53 0.06
A*03:01 1.00 0.72 1.00 0.71 0.45 -0.08 0.42 -0.13 B*38:01 1.00 0.59 1.00 0.59 0.20 -0.29 0.24 -0.27
A*03:02 1.00 0.54 1.00 0.53 0.61 0.44 0.67 0.40 B*39:01 1.00 0.62 1.00 0.62 0.42 -0.09 0.42 -0.10
A*03:19 1.00 0.20 1.00 0.23 0.57 0.13 0.52 0.10 B*40:01 1.00 0.59 1.00 0.55 0.40 -0.03 0.40 -0.05
A*11:01 1.00 0.77 1.00 0.75 0.43 -0.09 0.42 -0.14 B*40:02 1.00 0.73 1.00 0.69 0.54 0.04 0.53 0.02
A*11:02 1.00 0.79 0.96 0.94 0.52 0.13 0.33 -0.19 B*40:13 1.00 0.56 1.00 0.56 0.44 -0.07 0.43 -0.10
A*23:01 1.00 0.68 1.00 0.64 0.60 0.21 0.61 0.22 B*42:01 1.00 0.83 1.00 0.83 0.41 -0.20 0.38 -0.21
A*24:02 1.00 0.67 1.00 0.66 0.61 0.20 0.62 0.21 B*42:02 1.00 0.43 1.00 0.41 0.97 0.48 0.91 0.35
A*24:03 1.00 0.67 1.00 0.65 0.67 0.29 0.68 0.30 B*44:02 1.00 0.56 1.00 0.51 0.36 0.02 0.37 0.01
A*25:01 1.00 0.48 1.00 0.48 0.58 0.10 0.62 0.14 B*44:03 1.00 0.79 0.99 0.79 0.45 -0.03 0.43 -0.06
A*26:01 1.00 0.50 1.00 0.47 0.64 0.19 0.66 0.18 B*45:01 1.00 0.65 0.99 0.63 0.49 -0.06 0.47 -0.09
A*26:02 1.00 0.76 1.00 0.75 0.61 0.20 0.62 0.20 B*45:06 1.00 0.09 1.00 0.08 0.45 0.09 0.43 0.09
A*26:03 1.00 0.52 1.00 0.53 0.64 0.18 0.66 0.20 B*46:01 1.00 0.41 1.00 0.42 0.74 0.21 0.75 0.21
A*29:02 1.00 0.62 1.00 0.59 0.54 0.11 0.54 0.10 B*48:01 1.00 0.54 1.00 0.54 0.57 0.06 0.60 0.10
A*30:01 1.00 0.67 1.00 0.67 0.50 0.06 0.51 0.07 B*51:01 1.00 0.54 1.00 0.51 0.52 0.05 0.53 0.05
A*30:02 1.00 0.64 0.99 0.62 0.51 0.04 0.51 0.02 B*52:01 1.00 0.36 1.00 0.04 0.67 0.07 0.75 0.29
A*31:01 1.00 0.73 1.00 0.73 0.45 -0.09 0.45 -0.08 B*53:01 1.00 0.70 1.00 0.70 0.47 0.03 0.49 0.05
A*32:01 1.00 0.67 1.00 0.68 0.72 0.43 0.72 0.43 B*54:01 1.00 0.70 1.00 0.69 0.52 -0.04 0.52 -0.03
A*32:07 1.00 0.33 1.00 0.31 0.38 -0.08 0.41 -0.03 B*57:01 1.00 0.59 1.00 0.56 0.77 0.35 0.78 0.35
A*32:15 1.00 0.27 1.00 0.24 0.71 0.26 0.71 0.24 B*57:02 1.00 0.84 1.00 0.82 0.67 0.64 0.67 0.65
A*33:01 1.00 0.71 0.99 0.71 0.36 -0.18 0.38 -0.18 B*57:03 1.00 0.46 1.00 0.40 0.64 0.51 0.61 0.49
A*66:01 1.00 0.42 1.00 0.39 0.46 0.10 0.50 0.10 B*58:01 1.00 0.64 1.00 0.63 0.70 0.34 0.71 0.34
A*68:01 1.00 0.78 1.00 0.77 0.43 -0.15 0.43 -0.19 B*58:02 1.00 0.43 0.98 0.47 0.86 0.50 0.85 0.48
A*68:02 1.00 0.66 1.00 0.66 0.66 0.27 0.67 0.29 B*73:01 1.00 0.51 1.00 0.48 0.54 0.05 0.55 0.12
A*68:23 1.00 0.54 1.00 0.54 0.49 -0.07 0.49 -0.07 B*81:01 1.00 0.81 1.00 0.78 0.37 0.03 0.43 0.15
A*69:01 1.00 0.50 1.00 0.51 0.69 0.22 0.73 0.27 B*83:01 1.00 0.55 1.00 0.55 0.37 -0.18 0.39 -0.15
A*74:01 1.00 0.68 1.00 0.68 0.46 0.07 0.54 0.20 C*03:03 1.00 0.60 0.99 0.58 0.42 -0.10 0.43 -0.09
A*80:01 1.00 0.57 1.00 0.57 0.49 -0.06 0.50 -0.05 C*04:01 - -0.06 - -0.10 0.58 0.10 0.57 0.10
B*07:02 1.00 0.71 1.00 0.71 0.42 -0.08 0.42 -0.08 C*05:01 1.00 0.75 1.00 0.74 0.50 0.00 0.52 0.03
B*08:01 1.00 0.66 1.00 0.65 0.47 -0.02 0.47 -0.02 C*06:02 1.00 0.67 1.00 0.67 0.63 0.21 0.64 0.21
B*08:02 1.00 0.47 1.00 0.48 0.47 -0.07 0.49 -0.06 C*07:01 1.00 0.65 1.00 0.65 0.39 -0.29 0.39 -0.29
B*08:03 1.00 0.37 1.00 0.39 0.56 0.04 0.61 0.07 C*07:02 1.00 0.51 0.99 0.46 0.38 -0.15 0.38 -0.16
B*14:01 1.00 0.30 1.00 0.31 0.57 -0.13 0.55 -0.15 C*08:02 1.00 0.20 0.97 0.15 0.48 0.13 0.47 0.10
B*14:02 1.00 0.41 1.00 0.33 0.52 0.18 0.48 0.11 C*12:03 1.00 0.29 0.99 0.27 0.59 0.16 0.59 0.19
B*15:01 1.00 0.66 1.00 0.66 0.67 0.30 0.67 0.30 C*14:02 1.00 0.09 0.99 0.07 0.43 -0.02 0.45 -0.04
B*15:02 1.00 0.56 1.00 0.55 0.66 0.30 0.67 0.34 C*15:02 1.00 0.50 1.00 0.49 0.29 -0.42 0.28 -0.43
B*15:03 1.00 0.69 1.00 0.69 0.66 0.21 0.65 0.19

Table 4.5 Consistency inspection results

Cross Validation Benchmark Evaluation
Total samples 121787 19741

Consistent pred. 116688 (95.81%) 17004 (86.14%)
Correct IC50 pred. 108064 (88.73%) 11690 (59.21%)

Correct Binary pred. 107239 (88.05%) 10487 (53.12%)
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Table 4.6 Evaluation on benchmark database. Red/Yellow highlighted number(s) are best AUC/SRCC scores in that record.
Sorted by IEDB Ref ID.

HLA Type

Pan-specific Allele-specific Ensemble
DeepSeqPan NetMHCpan 2.8 NetMHCpan 3.0 PickPocket SMM NetMHC 3.4 NetMHC 4.0 ARB SMMPMBEC MHCflurry IEDB Consensus NetMHCcons
AUC SRCC AUC SRCC AUC SRCC AUC SRCC AUC SRCC AUC SRCC AUC SRCC AUC SRCC AUC SRCC AUC SRCC AUC SRCC AUC SRCC

B*27-03 Binary 0.58 0.14 0.92 0.71 - - 0.88 0.64 - - - - - - - - - - - - - - 0.92 0.71
A*66-01 Binary 0.11 -0.45 - - 0.54 0.04 0.68 0.20 0.68 0.20 - - 0.25 -0.29 - - 1.00 0.57 0.86 0.41 0.64 0.16 0.61 0.12
A*31-01 Binary 0.88 0.65 - - 0.88 0.65 0.88 0.65 0.88 0.65 - - 0.88 0.65 - - 0.88 0.65 0.88 0.65 0.88 0.65 0.88 0.65
B*07-02 t1/2 0.93 0.66 0.93 0.81 - - - - 0.93 0.72 0.93 0.77 - - 0.72 0.44 - - - - - - - -
A*02-01 t1/2 0.75 0.41 0.75 0.42 - - - - 0.77 0.45 0.76 0.45 - - 0.75 0.45 - - - - - - - -
B*07-02 Binary 0.83 0.29 0.87 0.32 - - - - 0.88 0.33 0.88 0.33 - - 0.85 0.31 - - - - - - - -
C*07-01 Binary 0.67 0.15 0.78 0.25 - - - - 0.65 0.13 0.76 0.23 - - - - - - - - - - - -
C*07-01 IC50 0.32 -0.29 0.54 -0.18 - - - - 0.39 -0.01 0.61 0.17 - - - - - - - - - - - -
A*30-01 Binary 0.83 0.17 0.81 0.16 - - - - 0.79 0.15 0.77 0.14 - - 0.71 0.11 - - - - - - - -
B*58-01 Binary 0.84 0.36 0.86 0.38 - - - - 0.87 0.40 0.85 0.37 - - 0.84 0.36 - - - - - - - -
B*58-01 IC50 0.52 0.19 0.72 0.38 - - - - 0.70 0.38 0.68 0.33 - - 0.57 0.26 - - - - - - - -
B*58-01 t1/2 0.56 0.03 0.54 0.15 - - - - 0.53 0.08 0.54 0.16 - - 0.50 0.12 - - - - - - - -
A*30-02 Binary 0.72 0.35 0.77 0.42 - - - - 0.73 0.36 0.75 0.40 - - 0.65 0.25 - - - - - - - -
A*30-02 IC50 0.64 0.21 0.47 0.01 - - - - 0.54 0.12 0.59 0.13 - - 0.64 0.27 - - - - - - - -
A*30-02 t1/2 0.43 0.15 0.50 0.05 - - - - 0.50 0.07 0.55 0.19 - - 0.52 0.15 - - - - - - - -
A*68-01 Binary 0.82 0.33 0.87 0.38 - - - - 0.86 0.37 0.87 0.38 - - 0.78 0.34 - - - - - - - -
A*68-01 IC50 0.76 0.44 0.84 0.63 - - - - 0.79 0.62 0.84 0.65 - - 0.77 0.53 - - - - - - - -
A*68-01 t1/2 0.40 -0.13 0.32 -0.32 - - - - 0.25 -0.42 0.27 -0.41 - - 0.31 -0.39 - - - - - - - -
A*24-02 Binary 0.81 0.34 0.85 0.39 - - - - 0.82 0.36 0.85 0.38 - - 0.83 0.37 - - - - - - - -
A*24-02 IC50 0.54 0.16 0.63 0.18 - - - - 0.76 0.39 0.61 0.19 - - 0.45 0.03 - - - - - - - -
A*02-01 Binary 0.82 0.42 0.89 0.52 - - - - 0.88 0.51 0.87 0.49 - - 0.88 0.51 - - - - - - - -
A*02-01 IC50 0.69 0.31 0.72 0.36 - - - - 0.68 0.37 0.63 0.29 - - 0.74 0.45 - - - - - - - -
A*02-01 t1/2 0.74 0.33 0.73 0.43 - - - - 0.74 0.37 0.67 0.29 - - 0.69 0.46 - - - - - - - -
C*07-02 Binary 0.60 0.17 0.65 0.25 - - - - 0.74 0.39 0.75 0.41 - - - - - - - - - - - -
A*11-01 Binary 0.21 -0.33 0.43 -0.08 - - - - 0.50 0.00 0.46 -0.04 - - 0.14 -0.41 - - - - - - - -
B*58-01 Binary 0.59 0.16 0.88 0.64 - - - - 0.76 0.44 0.88 0.64 - - 0.84 0.58 - - - - - - - -
B*40-01 Binary 0.81 0.54 0.92 0.73 - - - - 0.86 0.62 0.91 0.71 - - 0.87 0.64 - - - - - - - -
A*24-02 Binary 0.50 0.00 0.63 0.19 - - - - 0.57 0.09 0.53 0.05 - - 0.55 0.07 - - - - - - - -
B*58-01 Binary 0.77 0.32 0.74 0.28 - - - - 0.81 0.37 0.75 0.30 - - 0.67 0.20 - - - - - - - -
B*40-01 Binary 0.82 0.49 0.75 0.38 - - - - 0.84 0.52 0.75 0.38 - - 0.75 0.38 - - - - - - - -
A*02-01 Binary 0.77 0.46 0.77 0.46 - - - - 0.68 0.31 0.75 0.43 - - 0.68 0.31 - - - - - - - -
B*15-02 Binary 1.00 0.71 1.00 0.71 - - 1.00 0.71 0.91 0.58 1.00 0.71 - - 1.00 0.72 1.00 0.71 1.00 0.71 1.00 0.71 1.00 0.71
A*02-01 Binary 0.94 0.49 0.84 0.38 - - - - 0.83 0.36 0.81 0.34 - - 0.81 0.35 - - - - - - - -
A*02-01 Binary 0.87 0.63 0.83 0.56 - - - - 0.84 0.58 0.82 0.55 - - 0.75 0.43 - - - - - - - -
C*03-03 IC50 1.00 0.77 0.68 0.68 - - 0.64 0.47 0.68 0.46 0.68 0.46 - - - - 0.76 0.67 - - 0.68 0.46 0.68 0.56
A*01-01 t1/2 1.00 0.84 1.00 0.90 - - 1.00 0.90 1.00 0.81 1.00 0.90 - - 1.00 0.75 1.00 0.90 - - 1.00 0.79 1.00 0.90
A*02-01 t1/2 0.78 0.49 0.76 0.52 - - 0.82 0.59 0.79 0.56 0.74 0.51 - - 0.79 0.49 0.78 0.55 - - 0.78 0.56 0.76 0.53
A*11-01 t1/2 0.80 0.58 0.90 0.76 - - 0.80 0.51 0.90 0.75 0.90 0.74 - - 0.87 0.67 0.90 0.75 - - 0.91 0.76 0.91 0.76
A*03-01 t1/2 0.81 0.50 0.85 0.58 - - 0.77 0.48 0.86 0.56 0.85 0.57 - - 0.85 0.54 0.86 0.57 - - 0.86 0.58 0.86 0.59
A*24-02 t1/2 0.74 0.48 0.79 0.56 - - 0.81 0.60 0.80 0.57 0.78 0.57 - - 0.76 0.50 0.80 0.58 - - 0.80 0.59 0.80 0.60
A*26-01 t1/2 - -0.5 - -0.5 - - - 0.50 - 0.50 - -0.5 - - - 0.50 - 0.50 - - - 0.50 - -0.50
B*07-02 t1/2 0.83 0.67 0.89 0.78 - - 0.81 0.69 0.88 0.76 0.87 0.76 - - 0.80 0.63 0.88 0.76 - - 0.88 0.76 0.89 0.78
B*35-01 t1/2 0.79 0.52 0.83 0.62 - - 0.83 0.60 0.81 0.58 0.83 0.62 - - 0.74 0.45 0.81 0.58 - - 0.82 0.59 0.84 0.64
B*15-01 t1/2 0.59 0.19 0.74 0.43 - - 0.61 0.22 0.71 0.40 - - - - 0.59 0.20 0.71 0.40 - - 0.70 0.38 0.74 0.43
B*40-01 t1/2 - 0.98 - 0.96 - - - 0.93 - 0.86 - 0.98 - - - 0.73 - 0.93 - - - - - 0.98
B*07-02 IC50 0.89 0.81 0.89 0.66 - - 0.89 0.62 0.89 0.62 0.92 0.76 - - 0.88 0.55 0.88 0.62 - - 0.92 0.72 0.91 0.72
A*02-01 IC50 0.88 0.52 0.92 0.62 - - 0.83 0.58 0.85 0.59 0.91 0.70 - - 0.90 0.69 0.83 0.62 - - 0.84 0.62 0.92 0.64
B*07-02 IC50 0.71 0.61 0.77 0.62 - - 0.74 0.70 0.85 0.66 0.88 0.70 - - 0.76 0.65 0.86 0.70 - - 0.88 0.70 0.86 0.73
B*57-01 IC50 0.80 0.43 0.86 0.62 - - 0.85 0.44 0.77 0.33 0.94 0.52 - - 0.63 0.12 0.77 0.29 - - 0.87 0.43 0.92 0.56
B*35-01 IC50 0.64 0.20 0.68 0.36 - - 0.50 0.28 0.59 0.21 0.57 0.27 - - 0.64 0.26 0.53 0.20 - - 0.65 0.30 0.64 0.36
B*44-03 IC50 0.77 0.31 0.61 0.46 - - 0.64 0.43 0.75 0.47 0.65 0.56 - - 0.56 0.25 0.76 0.55 - - 0.64 0.51 0.64 0.55
A*02-01 IC50 0.75 0.44 0.89 0.70 - - 0.88 0.51 0.89 0.58 0.82 0.62 - - 0.76 0.51 0.86 0.55 - - 0.84 0.58 0.89 0.69
B*07-02 Binary 1.00 0.50 1.00 0.50 - - 1.00 0.50 1.00 0.50 1.00 0.50 - - 1.00 0.50 1.00 0.50 - - 1.00 0.52 1.00 0.50
A*02-01 Binary 1.00 0.67 0.94 0.60 - - 0.92 0.56 0.94 0.60 0.94 0.60 - - 0.94 0.60 0.94 0.60 - - 0.94 0.60 0.94 0.60
B*57-01 IC50 0.83 0.63 0.88 0.60 - - 0.86 0.72 0.88 0.64 0.81 0.64 - - 0.40 0.12 0.81 0.65 0.90 0.67 0.83 0.64 0.83 0.57
B*27-04 Binary 0.89 0.63 0.94 0.72 - - 0.83 0.53 - - - - - - - - - - - - - - 0.94 0.72
B*27-06 Binary 0.75 0.42 0.75 0.42 - - 0.80 0.50 - - - - - - - - - - - - - - 0.75 0.42
B*27-05 Binary 0.89 0.63 0.96 0.75 - - 0.91 0.67 0.91 0.67 0.94 0.72 - - 0.88 0.62 0.96 0.75 0.89 0.63 0.91 0.68 0.96 0.75
A*02-01 Binary 0.55 0.07 0.55 0.07 - - 0.55 0.08 0.57 0.10 0.57 0.11 - - 0.52 0.04 0.57 0.10 0.57 0.11 0.57 0.11 0.56 0.09
B*38-01 IC50 - -0.70 - 0.00 - - - -0.10 - -0.10 - -0.10 - - - -0.50 - -0.10 - 0.30 - -0.10 - 0.00
B*07-02 IC50 1.00 0.93 - - 1.00 0.97 1.00 0.87 1.00 0.96 - - 1.00 0.98 - - 1.00 0.97 1.00 0.91 1.00 0.97 1.00 0.97
A*03-01 IC50 0.93 0.87 - - 0.93 0.78 0.96 0.71 0.87 0.69 - - 0.96 0.79 - - 0.91 0.75 0.76 0.56 0.91 0.74 0.91 0.76
B*27-05 IC50 0.77 0.67 - - 0.63 0.59 0.60 0.49 0.63 0.44 - - 0.69 0.58 - - 0.60 0.46 0.57 0.48 0.63 0.49 0.66 0.62
B*27-05 Binary 0.60 0.16 - - 0.60 0.16 0.60 0.16 - - - - - - - - - - - - - - 0.60 0.16

Highlighted 19 13 23 19 3 2 10 7 16 10 16 14 3 2 4 6 8 5 5 3 10 5 16 15
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Chapter 5

Attention-like LSTM-CNN network on

peptide-HLA class II binding affinity and

binding core prediction
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5.1 Introduction

As we introduced before, besides HLA class I, another import subgroup of HLA is

HLA class II. The HLA class II are also heterodimers, like HLA class I. But in class

II, both α and β chains are encoded by HLA genes and are interaction with binding

peptides. Figure 5.1 illustrates the structure of HLA class II. The α1 and β1 regions of

the chains come together to make a membrane-distal peptide-binding domain [103].

The peptide binding groove, is made up of two α-helixes walls and β-sheet [34]. Since

the binding groove of HLA class II is open at both ends (while class I is closed at

both ends), the peptides binding to HLA class II are longer, between 15 and 24 amino

acid residues long [53].

Figure 5.1 Schematic representation of HLA class II. Reproduced from wikipedia

Comparing with HLA class I, there are much less methods proposed on peptide-

HLA class II binding prediction, both allele-specific and pan-specific. And the per-

formance of those models are considerably inferior to that of HLA class I methods

[4]. There are several reasons make the class II prediction model more challenging:
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• The peptides binding to HLA class II are longer and thus have more dynamic

lengths. This requires models have a capability to encode variant lengths input

sequences.

• In HLA class I, an HLA allele has only one protein sequence and different alleles

have same lengths. But in class II, an HLA allele has two protein sequences

and each sequence may have very variant length.

• As we know the peptides binding to HLA class II are much longer. However,

only a small part (usually 9-length amino acid residues, called binding core) of it

will be fitted into the binding groove [110]. Given a peptide, researchers are also

interested in the binding core prediction besides affinity prediction. Currently,

only few methods offer identification of the binding core given a peptide.

In this chapter, we propose an attention LSTM model addressing on the peptide-

HLA class II binding prediction problem. Our model is a pan-specific model which

could give both affinity prediction and binding core prediction. In Section 5.2, we

first introduce related works in this area. In next Section 5.2, we give the details of

our proposed model. We compare our method on benchmark dataset and show the

result in Section 5.4. Finally, we summarize our work in Section 5.5.

5.2 Related work

Like prediction models in HLA class I, existing models on class II binding prediction

can be grouped into either allele-specific or pan-specific. NN-align [69], TEPITOPE

[91], ARB [12], SVRMHC [100] and MHCpred [21] are some allele-specific meth-

ods. As for pan-specific methods, TEPITOPEpan [109] and NetMHCIIpan [70] are

currently available models.

ARB, as a quantitative statistical method, uses a derived Average Relative Binding

(ARB) matrix that directly predict IC50 values allowing combination of searches
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involving different peptide sizes and alleles into a single global prediction. In ARB,

the author assumes individual side chains of a peptide’s amino acids contribute to

binding independently. If a residue r appears at position i in a peptide, it’s assumed

to contribute a constant amount of Ei,r to the free energy of binding of this peptide.

Ei,r was estimated as:

Ei,r = 10(Pi,r−Qi,r) (5.1)

where Pi,r is the geometric average binding affinity of peptides containing residue r

at position i and Qi,r is the geometric average binding affinity (IC50) of the remaining

peptides [12]. Given a training dataset, an ARB matrix could be derived. With this

ARB matrix, the binding affinity score of a peptide is estimated through:

S =
L∏
i=1

Ei,r (5.2)

In above equation. L is the length of this peptide.

In SVRMHC, the author developed a support vector machine regression (SVR)

model to predict binding affinities. For peptide sequence encoding, user tried one-hot

encoding and 11-dimension feature vector introduced in [54]. On exploring different

configuration combinations of SVR kernels and encoding method, it chose the best

performance model as the final model [100].

MHCpred introduced a partial least square (PLS) based additive model. An

additive model assumes that the binding affinity of a peptide could be presented as a

sum of the contributions of the amino acids at each position and certain interactions

between them [21]. In MHCpred, each peptide was represented by a binary bit string

of 180 bins (9 positions × 20 amino acids). One-hot encoding was used to encode each

amino acid of a peptide. After construction of the matrix, an iterative self-consistent

PLS-based algorithm was used to fit a scoring function.

A vanilla feed-forward artificial neural network was introduced in NN-align. It

could give predictions of both binding cores and binding affinities. In NN-align,
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each peptide was encoded with Blosum matrix. During training, a peptide will be

processed to generate all possible 9-length subsequences. The core of a given peptide

was identified as the highest scoring of all 9 mers contained within the peptide. Given

a binding core, the weights were updated to lower the sum of squared errors between

the predicted binding score and the measured binding affinity target value [69]. An

ensemble method was employee by NN-align in which a group of neural networks

with 2, 10, 20, 40 and 60 hidden neurons was built. And for each type of network,

10 duplicates with different starting weights were trained. In total, 50 networks were

created. The author chose 10 networks with highest performance to assemble the final

prediction model. The binding core of a given peptide was assigned by a majority

vote of the networks in the ensemble [69].

TEPITOPEpan is a pan-specific method which utilized position-specific weight

matrix (PSSM) and 3D structure to compute the binding affinities. It first gener-

ated pseudo sequences of all HLA-DR alleles based on 32 structures of HLA-peptide

complexes. For each complex, it extracted the contacting residue positions on HLA

alleles. Totally, 45 residue positions were extracted to represent an HLA allele. Then

the pocket similarity and weight between any two alleles’ pseudo sequences were cal-

culated via method introduced in [108]. Finally, given any pair of a peptide and an

HLA allele, the binding affinities was estimated via a weighted summary based on 11

available alleles’ PSSMs [109].

Another pan-specific model, NetMHCIIpan also used pseudo sequence method to

encode HLA alleles. Similar to TEPITOPEpan, the pseudo sequence were extracted

from a series of 3D complexes. In NetMHCIIpan, the author extracted 34 amino acid

residue locations to represent an allele: 15 from the α-chain and 19 from β-chain. The

input sequences were encoded with three methods:(i) one-hot encoding, (ii) Blosum

encoding, and (iii) a mixture of two. A group of networks with 22, 44, 56 and 66

hidden units were trained and the binding affinity were scored as the average of all
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networks [70]. NetMHCIIpan preprocessed all peptides with alignment matrix and

assigned each nonamer a normalized binding affinity. In this way, it could predict the

binding core given a long peptide.

In this chapter, we propose a pan-specific model which only requires raw inputs of

peptides and HLA alleles sequences. With the help of attention LSTM, each peptide-

HLA sample only needs to be fed into the network one time to predict both affinity

and binding core. In next section, we give the details of our proposed model.

5.3 Method

5.3.1 Attention LSTM

Initial long short-term memory (LSTM) model was proposed by Hochreiter and

Schmidhuber [24]. The LSTM has been found extremely successful in many areas

especially in natural language process [6, 20, 19]. A simplified LSTM cell is illus-

trated in Figure 5.2. The most critical part of the cell is the state unit which has a

self-loop. By making the weight of this self-loop gated, the time scale of integration

can be changed dynamically [18]. The forward process is calculated as follow:

it = σ(Wiixt +Wifht−1 + bi) (5.3)

ft = σ(Wfixt +Wffht−1 + bf ) (5.4)

ot = σ(Woixt +Wofht−1 + bo) (5.5)

ct = ft • ct−1 + it • tanh(Wcixt +Wcfht−1 + bc) (5.6)

ht = ot • tanh(ct) (5.7)

Even LSTM show its power in many NLP problems, researchers found that using

a fixed-size representation, usually the last output of a LSTM model, to capture the

semantic information of a very long sentence is very difficult [18]. One way to solve

this problem is to train a sufficiently deep LSTM model and train it for a long time,
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Figure 5.2 Simplified illustration of a LSTM cell. Reproduced from wikipedia

which has been demonstrated in [15, 7]. In 2015, Bahdanau et al. introduced atten-

tion mechanism on machine translation problem. In original attention mechanism,

the LSTM reads the whole input first and then outputs the translated word one at

a time while each time it focusing on a different part of the input. The model was

designed such that it could automatically learn which part to focus. To achieve this

goal, several implementations have been proposed to calculation the attention weight

vector. Another benefit of attention LSTM is that by visualizing this attention weight

vector, we could have a directly feeling about which part of the input the model is

focusing on for the prediction.
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Figure 5.3 Architecture of our proposed model. (a) The overall structure. (b) The
detail illustration of the attention LSTM module. (c) Dimensions of inputs and
intermediate tensors/vectors.

5.3.2 Proposed method

We propose a attention-like LSTM model to predict the binding affinities and binding

cores of peptide-HLA class II. Since our problem is a sequence-to-value problem,

which is totally different from machine translation’s sequence-to-sequence problem.

We design a novel network architecture to calculate the peptide’s attention weight

vector from a LSTM module and output binding affinity in the final stage. The

overall architecture of our proposed model is shown in Figure 5.3.

Sequence encoding

We still use one-hot encoding as we did in Chapter 3 and Chapter 5. Figure 4.3

illustrates the one-hot encoding. A peptide or protein sequence is encoded as a
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tensor with shape: 1 × L × 20. L is the max length of HLA sequences or peptide

sequences. In our model, the max length of HLAs is 275 and that of peptides is 25.

If a sequence’s length is shorter than L, we pad 0 at the end.

Architecture

Our model consists of three modules as shown in Figure 5.3 (a):

• Encoder. A input of our model contains three parts: HLA α-chain sequence,

HLA β-chain sequence and peptide sequence. Each sequence was encoded us-

ing one-hot encoding. For each input sequence, we construct an attention-like

LSTM encoder of which the detail is shown in Figure 5.3 (b). We setup the

LSTM with 100 hidden states and behave in a bi-directional way. As shown in

the figure, we collect two outputs: the last hidden state and output values of

all amino acids residues. The output tensor has dimension L× 200 where L is

the max length of HLA chains or peptides. The last hidden state (a 200-dim

vector) is then fed into a fully connected (FC) layer with L hidden units where

L is the max length of HLA chains or peptides. After FC layer, we apply Soft-

Max activation function on this L-length vector. In this way, we could obtain

an attention weight vector with same length as input sequence and the sum of

all values equal to 1. Here, we want to point out several processing we did: (i)

we masked the all output by assigning all padding positions with 0 manually

(shown as a MASK layer after All output in Figure 5.3 (b)), (ii) the hidden state

we use was valid final hidden state, i.e. the hidden state of the last valid input

instead of padded final input, and (iii) before applying SoftMax, we mask the

output vector from FC layer by assigning all padding elements with 0 manually

(shown as a MASK layer after FC layer in Figure 5.3 (b)). An example for (ii),

if a peptide has 15 amino acids, it would be encoded as a 25 × 20 tensor. We

use the 15th hidden state as the output hidden state instead of the 25th one
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since the 15th one is the valid one. We did these processing because we want

the LSTM only focus on valid input and ignore the padding noises. After we

have the attention weight, we do a batch matrix-multiply (BMM) between all

output and attention weight. Then we can get our weighted output with size

L. For all three input sequences, after going through their encoders, we will

get three weighted output vectors with same dimension 200 and three (we only

plotted peptide’s one in the figure) attention weight vectors of which two have

dimension 273 for HLA chains and one has dimension 25 for peptide.

• Context extractor With three output vectors obtained from encoder, we first

concatenate three vectors as a tensor with dimension 200×3. Then we feed this

tensor into a CNN network consisting of two 1D convolutional layers. The first

layer is configured with 256 filters of size 3 and the second CNN layer has 64

filters of size 3. For both two layers, we use LeakyRelu [106] as the activation

function. Finally, we flatten the output of 2nd CNN layer as 25,600 dimension

vector.

• Predictor In the last stage of our model, we use two vanilla fully connected

layers to output the final IC50 value. First layer has 200 hidden units and second

one has 1 hidden unit. We place dropout layer [90] between two FC layers. For

the 2nd FC layer, we use tanh as the activation function.

Training Strategy

We fed the network with a batch of 512 samples and employed Early Stop to con-

trol the training. The samples are randomly split into training group and validation

group following 9:1 ratio. We stopped training if validation loss hasn’t improve in 5

continuous epochs. Mean squared error (MSE) was used as the loss function. For op-

timizer, we used basic stochastic gradient descent (SGD) algorithm. We implemented

our model with PyTorch Framework [75].
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5.3.3 Dataset

The training dataset is collected by [3]. This dataset contains about 130,000 train-

ing samples over 72 HLA class II alleles. The IC50 labels were normalized in the

original dataset and all of them are in a scale of 0.0 ∼ 1.0. For testing, we use

the standard weekly benchmark dataset [4] from 2016-12-31 to 2017-12-29 which can

be accessible at http://tools.iedb.org/auto_bench/mhcii/weekly/. We group

testing samples by its allele and measure type. Totally, we have 44 testing groups.

For each group, we use area under the curve (AUC) and Spearman’s rank correlation

coefficient (SRCC) as metrics by following the convention.

5.4 Experiment

5.4.1 Evaluation on standard benchmark

We trained a model following the description in Section 5.3.2. Then we tested

our model on the standard benchmark dataset which contains 44 testing groups.

The evaluation results of other methods are included in the original benchmark

dataset. We calculated AUC and SRCC for each testing group. The results are

listed in Table 5.1. Our proposed method obtained highest AUC scores in 19 testing

groups and highest SRCC scores in 17 testing groups. Another pan-specific method

NetMHCIIpan-3.1 obtained highest AUC and SRCC scores in 18 and 20 testing

groups, respectively. All other allele-specific methods and the ensemble method did

not perform good enough to compare. Specially, we found that our method performs

very well on alleles: HLA-DRA*01:01/DRB1*15:02, HLA-DRA*01:01/DRB1*13:01,

HLA-DQA1*03:03/DQB1*04:02 and HLA-DQA1*01:02/DQB1*05:01.

The results showed that our proposed method could outperform existing methods

on certain alleles. For the rest alleles, our model also could achieve competitive

performance. This benchmark testing demonstrate that the model we proposed could
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capture the complex pattern relationship between HLA chains and peptide based on

one-hot encoded information. Since two pan-specific methods outperform each other

on different alleles, it’s intuitive to ensemble these two methods in practical usage.

5.4.2 Estimate the binding core

A benefit of our proposed model could directly estimate the binding core based on

attention weight vector obtained from attention LSTM (as shown in Figure 5.3 (a)).

We use Algorithm 1 to identify the binding core from attention weight vector. Basi-

cally, we find the 9-length subsequence with maximum attention weight and we think

this subsequence is the binding core. Comparing with NetMHCIIpan which predicts

on every possible 9-length subsequence of a peptide and select the one with highest

predicted binding affinity as binding core, our model is a neat one-shot prediction.

Algorithm 1 Binding core identification algorithm
1: procedure binding_core(attnV ec, L) . L: length of the peptide
2: maxWeight← 0
3: core← 0
4: i← 0
5: while i < L− 9 + 1 do
6: coreWeight← ∑

attnV ec[i : i+ 9]
7: if coreWeight > maxWeight then
8: maxWeight← coreWeight
9: core← i

10: return core . Return the starting index of predicted binding core

To verify our model’s binding core prediction capability, we tested our trained

model obtained in Section 5.4.1 on 47 HLA class II - peptide complexes structures.

These structures and observed binding cores were collected by [31]. The prediction

results are shown in Figure 5.4. For each peptide, we underscored the observed

binding core portion. The correctly predicted amino acids are green highlighted. For

false positive predicted amino acids, they are red highlighted. And false negative

predicted amino acids are blue highlighted. Of 47 records, 24 binding cores are
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correctly predicted. In 10 structures, our predicted binding cores are either right or

left offset with one amino acid. The predicted binding cores are either right or left

offset with two amino acids in 9 records. Two predicted binding cores show 3 amino

acids offset and two show 4 amino acids offset.

5.5 Summary

In this chapter, we proposed an attention-like LSTM-CNN model on class II HLA-

peptide binding prediction problem. We tested it on the benchmark dataset and

obtained state-of-the-art performance. Among 44 testing groups, we outperformed

other methods on 19 groups for AUC and 17 groups for SRCC. Also, as a sequence

based method, our method could be applied on all alleles with known sequences. With

attention mechanism, our method could directly output the binding core prediction

without feeding all possible 9-mers of a peptide. As currently the only non pseudo

sequence based pan-specific method, we successfully applied attention LSTM network

in this area and obtained one of the best performances. We argue that by ensemble

with existing method, researchers could get much better prediction results.
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Figure 5.4 Binding core prediction results on 47 HLA class II - peptide complex
structures. The observed binding core from 3D structure is underscored. For the
binding core predicted by our model, the correctly predicted amino acids are green
highlighted, the false positive amino acids are red highlighted, and the false negative
amino acids are blue highlighted.
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Table 5.1 Benchmark evaluations results. Highlighted cells are highest scores in that test group.

Allele (Alpha/Beta) Count Type

Pan specific Allele specific Ensemble
Our Method NetMHCIIpan-3.1 NN-align Comblib matrices SMM-align Tepitope (Sturniolo) Consensus IEDB
AUC SRCC AUC SRCC AUC SRCC AUC SRCC AUC SRCC AUC SRCC AUC SRCC

DQA1*01:02/DQB1*05:01 825 IC50 0.778 0.554 0.596 0.215 - - - - - - - - - -
DQA1*01:02/DQB1*06:02 10 IC50 0.438 -0.115 0.813 0.224 0.813 0.273 0.250 -0.236 1.000 0.382 - - 0.750 0.224
DQA1*01:03/DQB1*06:03 357 IC50 0.842 0.425 0.809 0.424 - - - - - - - - - -
DQA1*02:01/DQB1*03:01 818 IC50 0.777 0.532 0.814 0.588 - - - - - - - - - -
DQA1*02:01/DQB1*03:03 759 IC50 0.823 0.631 0.760 0.537 - - - - - - - - - -
DQA1*02:01/DQB1*04:02 765 IC50 0.758 0.453 0.519 0.039 - - - - - - - - - -
DQA1*03:01/DQB1*03:02 18 IC50 0.500 0.149 0.973 0.550 0.964 0.622 0.830 0.423 0.946 0.722 - - 0.991 0.702
DQA1*03:03/DQB1*04:02 567 IC50 0.692 0.299 0.482 -0.080 - - - - - - - - - -
DQA1*05:01/DQB1*03:02 834 IC50 0.803 0.582 0.771 0.574 - - - - - - - - - -
DQA1*05:01/DQB1*03:03 564 IC50 0.822 0.581 0.812 0.614 - - - - - - - - - -
DQA1*05:01/DQB1*04:02 747 IC50 0.718 0.435 0.577 0.140 - - - - - - - - - -
DQA1*06:01/DQB1*04:02 565 IC50 0.726 0.343 0.497 -0.056 - - - - - - - - - -
DRA*01:01/DRB1*01:01 69 Binary 0.809 0.479 0.837 0.521 0.833 0.515 0.661 0.248 0.786 0.443 0.229 -0.420 0.787 0.444
DRA*01:01/DRB1*01:01 1070 IC50 0.827 0.644 0.799 0.635 0.781 0.596 0.696 0.428 0.737 0.507 0.282 -0.457 0.748 0.535
DRA*01:01/DRB1*03:01 1001 IC50 0.775 0.509 0.855 0.710 0.789 0.598 - - 0.784 0.576 0.247 -0.516 0.797 0.606
DRA*01:01/DRB1*03:01 79 Binary 0.537 0.062 0.624 0.208 0.587 0.146 - - 0.618 0.196 0.432 -0.113 0.600 0.168
DRA*01:01/DRB1*04:01 104 Binary 0.640 0.242 0.763 0.455 0.770 0.466 - - 0.692 0.333 0.222 -0.481 0.694 0.336
DRA*01:01/DRB1*04:01 179 IC50 0.732 0.379 0.838 0.579 0.805 0.503 - - 0.667 0.339 0.439 -0.193 0.676 0.337
DRA*01:01/DRB1*04:04 861 IC50 0.865 0.681 0.861 0.711 0.797 0.592 - - 0.783 0.582 0.173 -0.632 0.802 0.615
DRA*01:01/DRB1*07:01 1071 IC50 0.855 0.687 0.878 0.761 0.871 0.741 0.787 0.553 0.858 0.712 0.190 -0.607 0.861 0.719
DRA*01:01/DRB1*07:01 69 Binary 0.811 0.535 0.876 0.648 0.863 0.626 0.659 0.274 0.847 0.598 0.260 -0.413 0.840 0.587
DRA*01:01/DRB1*08:01 889 IC50 0.808 0.637 0.863 0.719 - - - - - - 0.201 -0.592 0.798 0.591
DRA*01:01/DRB1*08:02 142 IC50 0.752 0.471 0.736 0.439 0.705 0.320 - - 0.385 0.188 0.721 0.411 0.315 -0.154
DRA*01:01/DRB1*09:01 873 IC50 0.853 0.617 0.868 0.697 0.845 0.669 0.595 0.157 0.791 0.574 - - 0.810 0.595
DRA*01:01/DRB1*09:01 34 Binary 0.802 0.523 0.837 0.583 0.839 0.586 0.623 0.219 0.795 0.511 - - 0.759 0.448
DRA*01:01/DRB1*11:01 66 Binary 0.678 0.299 0.749 0.419 0.722 0.373 - - 0.690 0.319 0.294 -0.347 0.742 0.408
DRA*01:01/DRB1*11:01 1006 IC50 0.851 0.694 0.890 0.778 0.870 0.748 - - 0.849 0.714 0.204 -0.602 0.840 0.696
DRA*01:01/DRB1*12:02 17 Binary 0.886 0.659 0.800 0.512 - - - - - - - - - -
DRA*01:01/DRB1*13:01 18 Binary 0.988 0.846 0.864 0.632 - - - - - - 0.228 -0.471 0.772 0.471
DRA*01:01/DRB1*13:01 866 IC50 0.846 0.652 0.772 0.532 - - - - - - 0.210 -0.551 0.790 0.551
DRA*01:01/DRB1*13:02 134 IC50 0.632 0.048 0.903 0.620 0.910 0.606 - - 0.756 0.422 0.720 0.281 0.765 0.527
DRA*01:01/DRB1*14:54 854 IC50 0.867 0.683 0.889 0.713 - - - - - - - - - -
DRA*01:01/DRB1*15:01 167 IC50 0.866 0.621 0.758 0.498 0.744 0.525 - - 0.514 0.057 0.636 0.176 0.469 0.019
DRA*01:01/DRB1*15:01 79 Binary 0.537 0.057 0.578 0.120 0.610 0.169 - - 0.446 -0.082 0.504 0.006 0.517 0.026
DRA*01:01/DRB1*15:02 17 Binary 0.846 0.510 1.000 0.736 - - - - - - 0.173 -0.481 0.827 0.481
DRA*01:01/DRB1*15:02 18 IC50 0.933 0.683 0.667 0.409 - - - - - - 0.444 -0.387 0.544 0.384
DRA*01:01/DRB3*01:01 852 IC50 0.644 0.293 0.838 0.597 0.827 0.546 0.677 0.300 0.808 0.527 - - 0.800 0.484
DRA*01:01/DRB3*02:02 771 IC50 0.725 0.422 0.740 0.432 - - - - - - - - - -
DRA*01:01/DRB3*03:01 854 IC50 0.794 0.568 0.781 0.563 - - - - - - - - - -
DRA*01:01/DRB4*01:01 14 IC50 0.725 0.472 0.800 0.516 0.600 0.402 0.725 0.548 0.725 0.460 - - 0.650 0.465
DRA*01:01/DRB4*01:01 18 Binary 0.615 0.179 0.723 0.347 0.738 0.371 0.492 -0.012 0.554 0.084 - - 0.646 0.227
DRA*01:01/DRB4*01:03 839 IC50 0.832 0.644 0.786 0.539 - - - - - - - - - -
DRA*01:01/DRB5*01:01 18 Binary 0.889 0.636 0.958 0.750 0.917 0.681 - - 0.847 0.568 0.306 -0.318 0.778 0.454
DRA*01:01/DRB5*01:01 762 IC50 0.785 0.596 0.843 0.743 0.806 0.660 - - 0.778 0.609 0.260 -0.526 0.775 0.607

Best Count 19 17 18 20 5 4 0 1 1 2 0 0 1 0
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Chapter 6

Conclusions
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6.1 Conclusions

In this dissertation proposal, we introduced our work on mislocation related cancer

genes indentification and peptide-MHC I binding prediction. For the first work,

we showed that our pipeline has the capability to capture misolcation related cancer

genes and gave a list of potential cancers genes that are related to proteins mislocation.

Comparing with other methods, our pipeline only relies on gene expression data. This

makes our pipeline much easier to be applied on other cancers.

In the second part work, our proposed an allele-specific CNN model (DeepMHC)

works better than all existing models. Also we explored on how network structure and

data encoding will effect the performance for peptide-MHC I binding prediction. In

our next work, we presented a pan-specific model (DeepSeqPan) which takes into the

raw sequences of HLA alleles and peptides. In this proposed model, we successfully

let the model learn to encode the protein sequences instead of using knowledge and

structure based pseudo sequence encoding method. Our proposed method offers a

novel encoding and modeling solution on this problem. The benchmark test results

showed that DeepSeqPan can outperform other methods on certain alleles. We argue

that the DeepSeqPan model could be integrated into existing ensemble methods to

improved the overall capabilities. In our final work, we proposed a novel attention-

like LSTM-CNN model on class II HLA binding problem. Our model is the only

available non pseudo sequence based pan-specific model in thia area. Testing with

benchmark dataset, our model achieve state-of-the-art performance and outperformed

other methods on several certain alleles. With the help of attention mechanism, our

model could directly output the binding core prediction. Comparing with existing

binding core prediction, our model predicts based on the whole peptide in one-shot.

Also, it could offer attention weight on each individual position.
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6.2 Future work

6.2.1 Extending DeepSeqPan on dynamic length peptides

In current DeepSeqPan model, we only focus on 9-mers. However, HLA class I could

also bind to 10-, 11-length peptides though not so common as 9-length peptides.

Considering this, in future we plan to extend the DeepSeqPan model to handle variant

peptides input. Right now, we have two options in hand: (i) padding all peptides as

a fixed length input, i.e. 11-length, and (ii) using LSTM to encode peptides input.

We plan to explore both options and test which one offers better performance.

6.2.2 Other binding problems

As we mentioned before, protein related bindings are very common and important

in cell activities. In our work, we focused on HLA-peptide bindings. Other binding

problems, such as DNA-binding protein, protein-protein binding and protein-ligand

binding etc., also need reliable and effective tools to help researchers design their

bench experiment. Since all our proposed method are sequence based without relying

on any structure or domain information, we plan to extend these models to other

protein related binding problems.
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