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Abstract

The goal of this work is to improve proteotypic peptide prediction with lower pro-

cessing time and better efficiency. Proteotypic peptides are the peptides in protein

sequence that can be confidently observed by mass-spectrometry based proteomics.

One of the widely used method for identifying peptides is tandem mass spectrometry

(MS/MS). The peptides that need to be identified are compared with the accurate

mass and elution time (AMT) tag database. The AMT tag database helps in reducing

the processing time and increases the accuracy of the identified peptides. Prediction

of proteotypic peptides has seen a rapid improvement in recent years for AMT studies

for peptides using amino acid properties like charge, code, solubility and hydropathy.

We describe the improved version of a support vector machine (SVM) classifier

that has achieved similar classification sensitivity, specificity and AUC on Yersinia

Pestis, Saccharomyces cerevisiae and Bacillus subtilis str. 168 datasets as was de-

scribed by Web-Robertson et al. [15] and Ahmed Alqurri [11]. The improved version

of the SVM classifier uses the C++ SVM library instead of the MATLAB built in li-

brary. We describe how we achieved these similar results with much lesser processing

time.

Furthermore, we tested four machine learning classifiers on Yersinia Pestis, Sac-

charomyces cerevisiae and Bacillus subtilis str. 168 data. We performed feature

selection from scratch, using four different algorithms to achieve better results from

the different machine learning algorithms. Some of these classifiers gave similar or

better results than the SVM classifiers with fewer features. We describe the results

of these four classifiers with different feature sets.
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Chapter 1

Introduction

Proteomics is the study of proteins at a very large scale. The goal of proteomics is to

identify and quantify proteins in a cell. Proteins unlike genomes are dynamic and are

of varying complexity. This is the significant challenge in proteomics. This challenge

is overcome by one of the primary approaches in proteomics, Tandem Mass Spec-

trometry (MS/MS). MS/MS offers high-throughput quantification of the proteome

in a biological sample. However, due to the high-throughput capability of MS/MS,

the cost of performing this analysis on large datasets is significantly large [15].

As described by Web-Robertson et al. [15], there is a significant amount of effort

that goes in to cataloging peptides identified by MS/MS over multiple platforms and

database search routines as the information becomes available (Craig et al., [13];

Desiere et al., [5]; Jones et al., [8]; Kiebel et al., [12]). These database are built over

time and are very helpful in evaluating proteomes for which data has been amassed.

These databases help in reducing cost and time as the search routine to identify

proteotypic peptides has to only run on a subset of possible peptide candidates.

The challenge of building these databases for new organisms remains. To over-

come the very high cost of building these databases, several algorithmic approaches

have been proposed. These algorithms take advantage of the fact that there are many

known properties associated with the likelihood of proteotypic peptides, such as po-

larity, hydrophilicity, hydrophobicity of the peptide. By using the known properties

of the peptides, the challenge of predicting proteotypic peptides are significantly re-

duced. All of these approaches are based on the machine learning algorithms and

1



model building. In one of the earliest work, Web Robertson et al (2010) [15] used

simple sequence-derived properties of peptides for AMT studies to predict proteotypic

peptides using support vector machine (SVM) classification. The goal of my work is

to improve the prediction of the proteotypic peptides.

In the method described by Web-Robertson et al. [15], the concept of proteotypic

peptides is defined as the peptide that has been included in the AMT database at any

time that the parent protein is observed [15]. We have incorporated one of the three

dataset used by STEPP (Webb-Robertson, 2010) [15] and adopted that definition

of proteotypic peptides. Web-Robertson et al [15] used 35 features in predicting

proteotypic peptides. Table 1.1 lists 35 features from Web-Robertson et al., 2010

[15].

Table 1.1 Proteotypic peptide features. Features 1-35 are from Web-Robertson et
al., 2010 [15] and Feature 36 is from Ahmed Alqurri [11]

Index Features
1 Length
2 Molecular weight
3 Number of non-polar hydrophobic residues
4 Number of polar hydrophilic residues
5 Number of uncharged polar hydrophilic residues
6 Number of charged polar hydrophilic residues
7 Number of positively charged polar hydrophilic residues
8 Number of negatively charged polar hydrophilic residues
9 Hydrophobicity−Eisenberg scale (Eisenberg et al., 1984)
10 Hydrophilicity−Hopp−Woods scale (Hopp and Woods, 1981)
11 Hydrophobicity−Kyte−Doolittle (Kyte and Doolittle, 1982)
12 Hydropathicity−Roseman scale (Roseman, 1988)
13 Polarity−Grantham scale (Grantham, 1974)
14 Polarity−Zimmerman scale (Zimmerman et al., 1968)
15 Bulkiness (Zimmerman et al., 1968)
16−35 Amino acid singlet counts
36 Ordered Amino Acid Usage (3-AAU or 2-AAU)

Ahmed Alqurri, 2017 [11] added one more feature: Ordered Amino Acid Usage

2



(AAU). He was able to achieve similar results to Web-Robertson with only seven

features for the Yersinia Pestis dataset. Ordered Amino Acid Usage is an an abstract

model of bonds between adjacent amino acids [11]. Ordered amino acid tuples capture

the mutual information of these peptide fragments at an abstract level [11]. Alqurri

[11] considered both tuples (2-AAU) and triples (3-AAU). We have also adopted that

definition of Ordered Amino Acid Usage.

As already described by Ahmed Alqurri [11], some of the STEPP (Webb-Robertson,

2010) features compliment the AAU approach. We verified that and come up with

different subsets, combining STEPP features and AAU. These subset of features are

slightly different for each of the feature selection methods used in this research. For all

these different feature set we experimented with different machine learning techniques

to get the optimal results for different datasets. Table 1.1 shows all the proteotypic

features we used in our research.
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Chapter 2

Data Preparation Methodology

We have incorporated Yersinia Pestis dataset from Web-Robertson et al. [15] in

our research. The Saccharomyces cerevisiae (or Yeast) dataset is incorporated from

Ahmed Alqurri [11]. In order to verify and test our classification models, we prepared

one more dataset. We prepared the dataset for Bacillus subtilis str. 168. To prepare

the dataset for Bacillus subtilis str. 168, first we downloaded three files -

1. Proteomee file in fasta format from National Center for Biotechnology Infor-

mation (NCBI)

https://www.ncbi.nlm.nih.gov/genome/665/

2. DeepNovo file in mgf format fromMassIVE (University of California, San Diego)

[14] Bacillus subtilis str. 168 from

ftp://massive.ucsd.edu/MSV000081382/peak/DeepNovo/HighResolution/data/

3. Observed peptides from Global Proteome Machine Database (GPMDB) [4]

http://peptides.thegpm.org/ /peptides_by_species/

Proteome (fasta) file for Bacillus subtilis str. 168 had total 4,174 observed pro-

teins. DeepNovo file had total 26,687 observed peptides for Bacillus subtilis str.

168 after removing modifications. GPMDB had total 54,069 observed peptides. We

changed the leucine (L) to isoleucine (I) in the proteome (fasta) file as the DeepNovo

file had only isoleucine. We also changed the leucine (L) to isoleucine (I) in the

GPMDB peptides file as the DeepNovo file had only isoleucine.
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We merged the DeepNovo and GPMDB files. We only kept peptides of length

6 or more. We got 18,959 matching peptides from both the files. There were many

smaller peptides which were part of the larger peptides. We checked how many of

these smaller peptides which are present as substrings in larger peptides and are

present in two or more proteins. We found only 36 substrings (smaller peptides)

which were present in two or more proteins, i.e., in one protein they were part of

larger peptide, in other protein(s) they were independent of any existing peptide.

We included only these 36 smaller peptides (substrings) in our proteotypic file for

Bacillus subtilis str. 168 and removed other substrings (smaller peptides) from our

proteotypic file. In the end we had 14,157 proteotypic peptides.

We isolated the GPMDB peptides from Proteome (fasta) file. We digested the

pieces left in the proteome (fasta) file after isolating GPMDB peptides. We removed

the redundancies and kept the peptides of at least length 6. There were total 42,836

peptides left. We classified these 42,836 peptides as non-proteotypic peptides.

The Table 2.1 shows the list of observed and unobserved peptides from Yersinia

Pestis, Saccharomyces cerevisiae and Bacillus subtilis str. 168 datasets.

Table 2.1 Bacterial species protein dataset information

Organisms Y. Pestis S. cerevisiae B. subtilis
Total peptides in identified proteins 113,472 21,514 56,993
Proteotypic peptides 8,073 2,121 14,157
Non-proteotypic peptides 105,399 19,393 42,836
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Chapter 3

A Fast Peptide Classification Using LIBSVM

A support vector machine (SVM) is a supervised learning algorithm that outputs an

optimal hyperplane that categorizes new observations/entries. A SVM can be used

for both classification and regression. In the SVM paradigm each data point is an n

dimensional vector, where n is the number of features. To achieve good classification,

we select a hyperplane (in n dimensional space) that has the largest distance from the

training data of all classes. By having the highest margin, the out-of-sample error is

reduced.

The LIBSVM [2] library is a simple, easy-to-use, and efficient SVM classification

and regression package. We are using the LIBSVM [2] library. The LIBSVM [2]

library is available for many programming languages. We performed support vector

classification (SVC) using the LIBSVM [2] library for C++ and used LIBSVM’s [2]

decision function available in the scikit-learn [10] library for Python. The study for

peptide identification using Ordered Amino Acids with STEPP was done in MATLAB

using it’s built in SVM library by Ahmed Alqurri [11]. The MATLAB code takes

around 12 hours to run. To reduce the time we wrote the same code in C++ and

reduced the time by 7 times.

The LIBSVM [2] has five SVM types:

1. C-SVC (multi-class classification)

2. nu-SVC (multi-class classification)

3. One-class SVM
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4. Epsilon-SVR (regression)

5. nu-SVR (regression)

We have used C-SVC and nu-SVC for classification of peptides into proteotypic

and non-proteotypic peptides.

The LIBSVM [2] supports five kernel types:

1. Linear

2. Polynomial

3. Radial basis function

4. Sigmoid

5. Precomputed kernel

In general, in machine learning a kernel function is used for pattern analysis.

The support vector machine (SVM) is one of the most popular pattern recognition

algorithm that employs a kernel function. Kernel function transforms n dimensional

feature vector (in an algorithms like SVM) to m dimensional feature space, usually

m is much larger than n. Kernel function operates in high dimensional feature space,

by adding new features that are the functions of existing features. Kernel functions

do not calculate coordinates of the data in that high-dimensional space, instead they

calculate the inner products between the images of all the data in that feature space.

This approach is called the "kernel trick".

We have used linear kernel function to achieve similar results as described by Web

Robertson et al. [15] and Ahmad Alqurri [11].
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3.1 Motivation: Performance Issues

In previous work, Ahmad Alqurri [11] used MATLAB [9] to achieve Sensitivity of

90% and Specificity of 81% for the Yersinia Pestis dataset. The MATLAB code

was very good for prototyping our ideas, but it soon became a bottleneck as we

set on improving classification metrics. The MATLAB code for SVC with a linear

kernel took approximately 12 hours to run on Intel quad core 2.67GHz processor with

7.8G RAM. Using MATLAB [9] to iterate over our method was a bit time taking.

Improving performance became critical as we worked on feature selection and testing

different classification algorithms on a number of peptide datasets.

We wrote a C++ code using LIBSVM [2] library to get the same results as the

MATLAB [9] implementation of SVM. We have used the normalized datasets for

our experiments reported in this chapter. The performance gain that we achieve

over the MATLAB [9] implementation is significant. The C++ version of code with

nu-SVC reports its results in under 15 minutes. Even for other SVM classifiers men-

tioned above, LIBSVM’s performance is orders of magnitude better compared to

MATLAB [9] implementation.

3.2 Specificity and Sensitivity Metrics

Specificity and sensitivity are statistical metrics to measure performance of binary

classification algorithms. Sensitivity is the true positive rate (TPR) meaning the per-

centage of positives correctly identified. Specificity is the true negative rate meaning

the percentage of negatives correctly identified. Specificity is also defined as 1 - False

Positive Rate.

Comparison of specificity and sensitivity for peptides classification with SVM us-

ing LIBSVM and MATLAB are provided in Figure 3.1. We can observe in the figure

that both LIBSVM and MATLAB implementations are able to achieve the similar
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Figure 3.1 Sensitivity and Specificity comparison of LIBSVM [2] and MATLAB [9]
SVM classifiers on Yersinia Pestis dataset.

specificity and sensitivity on Yersinia Pestis dataset. With MATLAB implementa-

tion, we were able to achieve a sensitivity of 90% and specificity of 81%. With the

LIBSVM’s nu-SVC version, we got sensitivity of 91% and specificity of 81%, which

are very similar to MATLAB implementation. With the LIBSVM’s C-SVC version,

we got sensitivity of 92% and specificity of 80%.

9



3.3 Speedup with C++ code

We achieved significant speedup with C++ code. The MATLAB code took approxi-

mately 720 minutes to classify Yersinia Pestis dataset. With the LIBSVM’s C-SVC

classification, the time is reduced to 100 minutes. When we implemented the same

LIBSVM’s nu-SVC classification, the time was further reduced to approximately 15

minutes.

LIBSVM nu-SVC 15

LIBSVM C-SVC 100

Matlab SVM 720

0 100 200 300 400 500 600 700 800
Minutes

Figure 3.2 Time taken in minutes for SVM on Yersinia Pestis dataset using three
methods

3.3.1 nu-SVC is faster than C-SVC

We found out that nu-SVC is much faster than C-SVC. nu-SVC takes parameter nu

values between 0 and 1. C-SVC takes parameter C values from 0 to infinity. As the nu

value for nu-SVC can be very small compared to C value for C-SVC, the processing

time for nu-SVC is significantly less than C-SVC. In our model for Yersinia Pestis

dataset, after doing grid search on parameter nu for nu-SVC and C for C-SVC, we

found best results for nu = 0.31 for nu-SVC and C = 1e5 for C-SVC, the sensitivity

and specificity metrics values are almost the same for both nu-SVC and C-SVC.
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3.3.2 Relative speedups with both algorithms

As shown in the Figure 3.2, nu-SVC takes approximately 15 minutes to complete for

Yersinia Pestis dataset. Whereas, C-SVC takes 100 minutes to complete for Yersinia

Pestis dataset.

3.4 Grid Search to get optimal hyper-parameter selection

Hyper-parameters are passed as the arguments to the constructor of the estimator

classes. In LIBSVM [2] support vector classifier the kernel type, degree, gamma, cost,

nu are some of the examples of hyper-parameters. To get the best cross-validation

score, the hyper-parameters are searched and optimized.

Grid search is a method used to search and optimize the hyper-parameters of

the estimator classes. Here in case of support vector classifier for identifying pep-

tides using ordered amino acids, we have optimized the parameter C for C-SVC and

parameter nu value for nu-SVC.

3.4.1 Tuning nu-SVC

The nu-SVC takes C values in the range of 0 to 1. We started our grid search for C

using five values from 0.1 to 0.9 with equal spacing. We found the best results for

C = 0.3. We narrowed grid search for C between 0.2 and 0.4. This time we took

11 numbers between 0.2 and 0.4 with equal spacing for grid search. We found best

sensitivity and specificity for C = 0.31. The results for Sensitivity and Specificity

with C = 0.31 were similar to the Web-Robertson et al. [15] and Ahmed Alqurri [11].

3.4.2 Tuning C-SVC

C-SVC takes C values in the range of 0 to∞. We started our grid search for C using

three values, i.e, 1, 50 and 1e2. We found the best results for C = 1e2. We again did

the grid search for C using three 1e2, 5e2 and 1e3. This time we get results for C =
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1e3. Now we again did grid search with C equal to 1e3, 1e4 and 1e5. In this iteration

we found best results for C = 1e5. The results for Sensitivity and Specificity with

C = 1e5 were very close to the Web-Robertson et al. [15] and Ahmed Alqurri [11].

We stopped our grid search right there but for sanity check we did run our model

with C = 1e6. With C = 1e6, the Sensitivity and Specificity went down by couple

of percentage points. We observed that as we were increasing the value of C for grid

search, the speed of the model was becoming slower.

3.5 Incorporating additional datasets

We incorporated the Saccharomyces cerevisiae dataset in our experiments and analy-

sis. We trained SVC model on Saccharomyces cerevisiae using same hyper parameters

as in the Yersinia Pestis model. We used normalized dataset (done using min-max

scalar) for Saccharomyces cerevisiae, similar to Yersinia Pestis dataset. We did 10-

fold cross validation. The results were even better than Yersinia Pestis dataset.

We achieved the sensitivity of 97% and specificity of 92% from the Saccharomyces

cerevisiae dataset.

Further we tested our existing SVM classifier trained on Yersinia Pestis dataset

on Saccharomyces cerevisiae dataset but we were getting sensitivity score of approx-

imately 0%. Similarly when we tested the SVM classifier trained on Saccharomyces

cerevisiae with Yersinia Pestis dataset, the specificity was down to approximately

0%. We assumed that the features which we are using for training SVM classifier

here are only giving us the good results for the test sample data taken from the same

datasets.

To get the best results, we did the feature selection from scratch. We used four

feature selection methods:

1. Univariate Analysis
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Table 3.1 SVC trained on sample balanced 3-AAU datasets and tested on 20%
unbalanced datasets

Feature
Selection

Number of
Features Classifier Training

data
Testing
data Sensitivity Specificity

Alqurri [11] 7 SVC Sample YP 20% YP 96% 78%
XGBoost 6 SVC Sample YP 20% YP 94% 79%
RFE 6 SVC Sample YP 20% YP 94% 79%
Univariate 6 SVC Sample YP 20% YP 95% 79%
Alqurri [11] 7 SVC Sample SC 20% SC 97% 92%
XGBoost 6 SVC Sample SC 20% SC 98% 93%
RFE 6 SVC Sample SC 20% SC 97% 93%
Univariate 6 SVC Sample SC 20% SC 97% 92%

2. Recursive Feature Elimination

3. XGBoost feature importance

4. Principal Component Analysis

These feature selection methods are described in detail in Chapter 4.

We have used Scikit-Learn [10] library for python to do further experiments and

analysis. We started off with the Yersinia Pestis datasets. We divided the Yersinia

Pestis data in to train and test data by 80:20 ratio. We then took balanced data from

80% dataset. We did the feature selection by three different ways: Univariate Anal-

ysis, Recursive Feature Elimination and XGBoost feature importance. For feature

selection we used whole data for Yersinia Pestis.

We first trained the SVM classification model using balanced training data. We

started off with linear kernel. We again did the grid-search on C using scikit-learn

GridSearchCV class with 5 fold cross-validation. We got best results for C = 1e3.

We tested our model on unbalanced 20% of the Yersinia Pestis dataset as well as on

full Yersinia Pestis dataset. We repeated similar steps for Saccharomyces cerevisiae

dataset. The Table 3.1 shows SVC results for model trained on sample balanced 3-
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Table 3.2 SVC trained on sample balanced 3-AAU datasets and tested on full
unbalanced datasets

Feature
Selection

Number of
Features Classifier Training

data
Testing
data Sensitivity Specificity

Alqurri [11] 7 SVC Sample YP Full YP 95% 78%
XGBoost 6 SVC Sample YP Full YP 94% 79%
RFE 6 SVC Sample YP Full YP 94% 79%
Univariate 6 SVC Sample YP Full YP 95% 79%
Alqurri [11] 7 SVC Sample SC Full SC 97% 92%
XGBoost 6 SVC Sample SC Full SC 97% 93%
RFE 6 SVC Sample SC Full SC 97% 93%
Univariate 6 SVC Sample SC Full SC 97% 92%

AAU datasets and tested on 20% sample unbalanced datasets. The Figure 3.3 shows

ROC curve with AUC scores for the SVC model trained on sample balanced 3-AAU

datasets and tested on 20% sample unbalanced datasets.

In the next step, we trained the model on sample balanced Yersinia Pestis dataset

and tested on full Yersinia Pestiss dataset. We have used 5-fold cross-validation. We

repeated the same steps for Saccharomyces cerevisiae. The Table 3.2 shows SVC

on 3-AAU datasets which is trained on sample balanced datasets but tested on full

datasets using 5-fold cross-validation. The Figure 3.4 shows ROC curve with AUC

scores for the SVC model trained on sample balanced 3-AAU datasets and tested on

full datasets.

After getting good results from models trained on sample balanced dataset, we

trained the model on unbalanced sample of Yersinia Pestis and Saccharomyces cere-

visiae datasets. For this we trained and tested our models on datasets with 80:20 ratio.

We used the same hyper parameters as was used earlier for training sample balanced

data. We also tested models with full datasets using 5-fold cross-validation. The

Table 3.3 and Table 3.4 shows the SVC models trained on 80% unbalanced datasets

and tested on 20% data and full data respectively using cross-validation. The Fig-
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Figure 3.3 ROC curve for SVC trained on sample balanced 3-AAU datasets and
tested on 20% unbalanced datasets using four different features set
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Figure 3.4 ROC curve for SVC trained on sample balanced 3-AAU datasets and
tested on full unbalanced datasets using four different features set
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Table 3.3 SVC trained on sample unbalanced 3-AAU datasets and tested on 20%
unbalanced datasets

Feature
Selection

Number of
Features Classifier Training

data
Testing
data Sensitivity Specificity

Alqurri [11] 7 SVC Sample YP 20% YP 96% 78%
XGBoost 6 SVC Sample YP 20% YP 94% 79%
RFE 6 SVC Sample YP 20% YP 94% 79%
Univariate 6 SVC Sample YP 20% YP 95% 79%
Alqurri [11] 7 SVC Sample SC 20% SC 97% 92%
XGBoost 6 SVC Sample SC 20% SC 98% 93%
RFE 6 SVC Sample SC 20% SC 97% 93%
Univariate 6 SVC Sample SC 20% SC 97% 92%

Table 3.4 SVC trained on sample unbalanced 3-AAU datasets and tested on full
unbalanced datasets

Feature
Selection

Number of
Features Classifier Training

data
Testing
data Sensitivity Specificity

Alqurri [11] 7 SVC Sample YP Full YP 95% 78%
XGBoost 6 SVC Sample YP Full YP 94% 79%
RFE 6 SVC Sample YP Full YP 94% 79%
Univariate 6 SVC Sample YP Full YP 95% 79%
Alqurri [11] 7 SVC Sample SC Full SC 97% 92%
XGBoost 6 SVC Sample SC Full SC 97% 93%
RFE 6 SVC Sample SC Full SC 97% 93%
Univariate 6 SVC Sample SC Full SC 97% 92%

ure 3.5 and Figure 3.6 shows ROC curve with AUC scores for the SVC trained on

80% sample unbalanced 3-AAU datasets and tested on 20% sample datasets and full

datasets.

We then incorporated both the datasets from Yersinia Pestis and Saccharomyces

cerevisiae to test our models. We found that our model trained on only 6 features

of Yersinia Pestis is not classifying Saccharomyces cerevisiae dataset that well for

3-AAU datasets. The AUC score when we were training and testing using datasets

from two different species was approximately 50% for both the models. We again
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Figure 3.5 ROC curve for SVC trained on sample unbalanced 3-AAU datasets and
tested on 20% unbalanced datasets using four different features set
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Figure 3.6 ROC curve for SVC trained on sample unbalanced 3-AAU datasets and
tested on full unbalanced datasets using four different features set
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Table 3.5 SVC on 3-AAU datasets trained and tested on datasets from different
species with three different feature selection methods and using RBF kernel

Feature
Selection

Number of
features Classifier Training

data
Testing
data Sensitivity Specificity

XGBoost 13 SVC Sample YP Full SC 90% 82%
XGBoost 13 SVC Sample YP Full YP 91% 73%
XGBoost 13 SVC Sample SC Full SC 95% 92%
XGBoost 13 SVC Sample SC Full YP 86% 74%
RFE 13 SVC Sample YP Full SC 90% 82%
RFE 13 SVC Sample YP Full YP 90% 74%
RFE 13 SVC Sample SC Full SC 96% 92%
RFE 13 SVC Sample SC Full YP 86% 73%
Univariate 13 SVC Sample YP Full SC 86% 83%
Univariate 13 SVC Sample YP Full YP 91% 73%
Univariate 13 SVC Sample SC Full SC 96% 92%
Univariate 13 SVC Sample SC Full YP 87% 71%

performed feature selection using XGBoost feature importance, Univariate and RFE

on combined features for Yersinia Pestis and Saccharomyces cerevisiae. We did this

to make sure that both the models are trained on the same feature sets.

We again performed grid search with 5-fold cross-validation on kernel, C and

gamma. For both the Yersinia Pestis and Saccharomyces cerevisiae dataset, we get

best results for Radial Basis Function (RBF) kernel with C = 0.1 and gamma =

auto. We have also used the 5-fold cross-validation. We have tested the model on

the dataset from different species. The Table 3.5 shows Support Vector Classification

using different feature selection methods, tested on datasets from different species.

The Figures 3.7, 3.8 and 3.9 show the AUC scores for the SVC done on the

normalized datasets using XGBoost feature importance analysis, Recursive feature

elimination and Univariate Analysis. We have used 13 features from all three feature

selection methods to achieve these results.

We also performed principal component (PCA) analysis for feature reduction on

both Yersinia Pestis and Saccharomyces cerevisiae datasets. In PCA analysis we
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Figure 3.7 ROC curve for SVC trained on sample unbalanced 3-AAU datasets and
tested on full unbalanced datasets using XGBoost feature importance analysis
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Figure 3.8 ROC curve for SVC trained on sample unbalanced 3-AAU datasets and
tested on full unbalanced datasets using Recursive Feature Elimination (RFE)
analysis
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Figure 3.9 ROC curve for SVC trained on sample unbalanced 3-AAU datasets and
tested on full unbalanced datasets using Univariate analysis
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Figure 3.10 ROC curve for SVC using 8 Principal Component Analysis (PCA).
Model trained on unbalanced sample 3-AAU datasets and tested on full unbalanced
datasets of both the species
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Table 3.6 SVC on 3-AAU datasets tested on datasets from different species with 8
principal components and RBF kernel

Feature
Selection

Principal
Components Classifier Training

data
Testing
data Sensitivity Specificity

PCA 8 SVC Sample YP Full SC 88% 84%
PCA 8 SVC Sample YP Full YP 89% 75%
PCA 8 SVC Sample SC Full SC 95% 89%
PCA 8 SVC Sample SC Full YP 86% 66%

used all 3-AAU dataset features to get 8 principal components that gave us good

results. The 8 principal components from Yersinia Pestis model covered 84% of the

variance. For the model trained on the Saccharomyces cerevisiae dataset, 80% of the

variance was covered. For SVM classification, we have used RBF kernel with C = 1

and gamma = auto. We have used the 5-fold cross-validation. We have tested the

model with both the datasets.

The Table 3.6 shows Support Vector Classification (SVC) using 8 principal com-

ponents on 3-AAU datasets and tested on datasets from different species. The Figure

3.10 shows ROC curve with AUC score for Support Vector Classification shown in

Table 3.6.
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Chapter 4

Feature Selection

Feature selection demonstrates that only small set of features are required for correct

prediction of proteotypic peptides. Feature selection is also very important to decrease

cost of running models on very big data. Web-Robertson et al. [15] performed support

vector classification using all the features but they did provide Fisher Criterion Score

(FCS) [1] for each feature. They also mentioned that less number number of features

would also provide good prediction of proteotypic peptides. Web-Robertson et al. [15]

didn’t perform feature selection through algorithms like recursive feature elimination

(RFE) because of high cost of computation required to run them on big data.

Ahmed Alqurri [11] performed support vector classification only on 7 features.

Alqurri used linear discriminate analysis (LDA) and examined LDA loadings to see

the contributions of each feature. After examining LDA loadings, they came up with

7 features. We decided to do features selection exhaustively.

We performed four types of feature selections and did classification using all these

sets of features. In this chapter we have used normalized datasets (done through

min-max scalar) for feature selection. The four feature selection method we used are

as below -

1. Univariate Analysis

2. Recursive Feature Elimination

3. XGBoost feature importance

4. Principal Component Analysis
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4.1 Univariate Feature Selection

Figure 4.1 Chi2 score for feature selection on 3-AAU Yersinia Pestis dataset

Univariate feature selection is based on univariate statistical analysis. Univariate

analysis deals with only one variable at a time. It doesn’t deal with the relationship

between features or variables. Univariate analysis is used to summarize data. The

scikit-learn [10] Python library provides SelectKBest class that can be used with

different statistical tests to select a specific number of features. SelectKBest returns

a subset of the highest scoring features.

We have used the basic chi-squared test as a scoring function with the scikit-

learns [10] SelectKBest class to select features. The chi-squared statistic or χ2 test

removes features which are mostly independent of the class and therefore irrelevant

for classification. The chi-squared statistic or χ2 test was devised by Karl Pearson
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Figure 4.2 Chi2 score for feature selection on 3-AAU Saccharomyces cerevisiae
dataset

[6] in 1900. The chi-squared test is a statistical hypothesis test where the statistical

distribution of the test statistic is a chi-squared distribution where the null hypothesis

is true. The null hypothesis in case of a chi-squared test is defined as the hypothesis

that states there is no significant difference between expected and observed data.

In our case, we are performing a chi-squared test for independence to test if a

particular feature in our data is independent of the class. If that feature is independent

of the class then we remove that feature from the classification. The chi-squared

statistic is a number that signifies whether the observed value would be significantly

different from the expected value if there was no relationship. If the chi-squared

statistic is low then it signifies that there is a relationship between a feature and the

class. In case of high chi-squared statistic, it signifies there in no relationship between

28



Figure 4.3 Chi2 score for feature selection on 3-AAU Yersinia Pestis and
Saccharomyces cerevisiae dataset

a feature and class.

The chi-squared statistic for the chi-squared test is calculated by the formula -

χ2
f =

∑ (Oi − Ei)2

Ei

(4.1)

where f is the degree of freedom, O is the observed value and E is the expected value.

We performed Univariate analysis for Yersinia Pestis, Saccharomyces cerevisiae

and dataset containing the features from both Yersinia Pestis and Saccharomyces

cerevisiae. The Figures 4.1, 4.2 and 4.3 show the feature selection scores from uni-

variate analysis we have done on three datasets. From the univariate analysis we can

observe that number of proline (P) residues and ordered amino acid usage (3-AAU)

are the two top features.
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4.2 Recursive Feature Elimination

Figure 4.4 RFE feature ranks for 3-AAU Yersinia Pestis dataset

Recursive Feature Elimination (RFE) is a multivariate feature selection method.

RFE removes features recursively and build the model using the remaining features

that are left behind. RFE uses an external estimator to build a model that assigns

weights to features. It ranks the features either through coef_ attribute or through

feature_importance_ score. The features with least scores are removed from current

set of features. This process is repeated recursively with reduced features until the re-

quired set of features are selected. As such, this is a greedy algorithm to select the best

performing features. Scikit-learn’s [10] provides RFE class under feature_selection

library. We implemented RFE with logistic regression to rank features by weights.

We did Recursive Feature Elimination (RFE) for Yersinia Pestis, Saccharomyces
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Figure 4.5 RFE feature ranks for 3-AAU Saccharomyces cerevisiae dataset

cerevisiae and combination of calculated features from both Yersinia Pestis and Sac-

charomyces cerevisiae. The Figures 4.4, 4.5 and 4.6 show the feature rankings for Re-

cursive Feature Elimination (RFE) we have done on three datasets. For both Yersinia

Pestis and Saccharomyces cerevisiae, feature number 35 i.e, Ordered Amino Acid (3-

AAU) ranked at the top followed by Hydrophobicity-Eisenberg scale (Eisenberg et

al., 1984), Hydrophilicity-Hopp-Woods scale (Hopp and Woods, 1981) and Polarity-

Grantham scale (Grantham, 1974). For the combined calculated features dataset

for Yersinia Pestis and Saccharomyces cerevisiae, ordered amino acid (3-AAU) still

tops the rank, but second, third and fourth position goes to Number of positively

charged polar hydrophilic residues, Hydropathicity-Roseman scale (Roseman, 1988)

and Polarity-Grantham scale (Grantham, 1974) respectively.
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Figure 4.6 RFE feature ranks for on 3-AAU Yersinia Pestis and Saccharomyces
cerevisiae dataset

4.3 XGBoost feature importance

XGBoost stands for Extreme Gradient Boosted trees. XGBoost is a supervised learn-

ing technique used for classification and regression. More details are given in section

5.4.

XGBoost library [3] in python provides a very useful function feature_importance_

for trained model. These importance scores are calculated when the model is getting

trained. These importance scores are F scores for each feature. These importance

scores can be calculated by three types [3]: ’weight’, ’gain’ and ’cover’. ’weight’ is the

number of times a feature is used to split the data across all trees [3]. ’gain’ is the

average gain of the feature when it is used in trees [3]. ’cover’ is the average coverage
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Figure 4.7 XGBoost feature importance for 3-AAU Yersinia Pestis dataset

Figure 4.8 XGBoost feature importance for 3-AAU Saccharomyces cerevisiae
dataset

33



Figure 4.9 XGBoost feature importance for on 3-AAU Yersinia Pestis and
Saccharomyces cerevisiae dataset

of the feature when it is used in trees [3]. We have used ’weight’ as the importance

type to calculate the feature importance score.

We generated XGBoost feature importance scores for Yersinia Pestis, Saccha-

romyces cerevisiae and combined features from both Yersinia Pestis and Saccha-

romyces cerevisiae datasets. The Figures 4.7, 4.8 and 4.9 show the feature impor-

tance scores from XGBoost models we ran three datasets. For all the three datasets,

feature number 35 and 1 i.e, Ordered Amino Acid (3-AAU) and molecular weights of

the peptides have the highest scores.

4.4 Principal Component Analysis

Principal Component Analysis (PCA) is an unsupervised learning method used for

multivariate analysis. Principal Component Analysis (PCA) is a statistical method

that reduces the multivariate dataset in to a set of multiple orthogonal components

that explains the maximum amount of variance in the data. PCA reduces dimensions
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of data while retaining most of the original information. PCA is mathematical tool

that reduces high number of correlated features in to less uncorrelated orthogonal

principal components. In other words, PCA is a linear dimension reduction tool that

is very useful for data with high correlated variables.

Figure 4.10 PCA feature reduction on 3-AAU Yersinia Pestis and Saccharomyces
cerevisiae dataset
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PCA was first invented by Karl Pearson in 1901 [6] and later developed by Harold

Hotelling in the 1936 [7]. PCA is one of the simplest eigenvector based multivariate

analysis. PCA is mostly used in explanatory data analysis. We have implemented

PCA using pythons scikit-learn [10] library. Scikit-learn [10] uses the LAPACK imple-

mentation of the full Singular Value Decomposition (SVD) or a randomized truncated

SVD by the method of Halko et al. 2009, depending on the shape of the input data

and the number of components to extract. It also has option of the scipy.sparse.linalg

ARPACK implementation of the truncated SVD [10].

We did Principal Component Analysis (PCA) for Yersinia Pestis and Saccha-

romyces cerevisiae datasets. The Figure 4.10 show the explained variance from PCA

analysis we have done on two datasets. In the figure 4.10, n_components is the num-

ber principal components and explained_variance_ratio_ is the variance explained

by each principal component. In figure 4.10, the graphs flattens out from principal

components 7. These 7 components covers around 82% variance for Yersinia Pestis

dataset and 78% variance for Saccharomyces cerevisiae dataset.
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Chapter 5

Machine Learning techniques for peptide

classification

We did experiments using four different machine learning algorithms to verify if Sup-

port Vector Machine (SVM) is giving us the best peptide classification. We have

incorporated Saccharomyces cerevisiae dataset to train and test our models in addi-

tion to Yersinia Pestis dataset. The following are the machine learning algorithms

which we have performed for this research:

1. Logistic Regression

2. Random Forest

3. K-Nearest Neighbor

4. XGBoost

We have also performed three different feature selection techniques to come up

with optimal features as described in Chapter 4. The three feature selection meth-

ods we performed are Univariate Analysis, Recursive Feature Elimination (RFE) and

XGBoost (via it’s feature importance method). We have also performed feature

reduction algorithm, Principal Component Analysis (PCA). We are reporting the

results from each of the classification method using different feature selection meth-

ods. We started to run our experiments on normalized datasets. We performed the

normalization using min-max scalar.
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We have performed our tests on Yersinia Pestis and Saccharomyces cerevisiae

(Yeast) normalized datasets. We started off by dividing each of the datasets in to

train and test data by 4:1 ratio. We have also tested each of our trained models with

both the data sets. We have used grid search with cross-validation to come up with

optimal parameters for each of the classifiers. For all these analysis we have used

scikit-learn [10] package for Python.

We will go in to each of the classification methods in more detail below:-

5.1 Logistic Regression

Logistic Regression is a supervised learning technique. Logistic regression is a classi-

fier that classifies an observation in one of the two or more classes. Logistic regression

can be binomial, multinomial or ordinal. In our case, we are using binomial logistic

regression. The logistic function is at the core of logistic regression. The logistic

function is a ’S’ shaped sigmoid curve. The equation of logistic function is as, with

x as a real value number between −∞ to +∞.

f(x) = ex

(1 + ex) (5.1)

A logistic regression is a model which provides log-odds of the probability of an

event in a linear combination of independent or predictor variables. Binary logistic

regression is an expression of probability of an event Y = 1, 0 occurring against a set

of X = (X1, X2, ..., Xk) explanatory variables which can be discrete, continuous, or

a combination.

logit(Pr(Yi = 1|Xi = xi)) = logit(πi) = β0 + β1xi1 + ...+ βkxik (5.2)

We started off with the Yersinia Pestis datasets. We divided the Yersinia Pestis

dataset in to train and test data by 80:20 ratio. We then took balanced data from 80%

dataset. We did the feature selection by three different ways: Univariate Analysis,
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Table 5.1 Logistic Regression trained on sample balanced 3-AAU datasets and
tested on 20% unbalanced datasets

Feature
Selection

Number of
Features Classifier Training

data
Testing
data Sensitivity Specificity

XGBoost 6 Logistic Regression Sample YP 20% YP 94% 80%
RFE 6 Logistic Regression Sample YP 20% YP 94% 80%
Univariate 6 Logistic Regression Sample YP 20% YP 94% 80%
XGBoost 6 Logistic Regression Sample SC 20% SC 96% 94%
RFE 6 Logistic Regression Sample SC 20% SC 97% 94%
Univariate 6 Logistic Regression Sample SC 20% SC 97% 94%

Recursive Feature Elimination (RFE) and XGBoost feature importance. For feature

selection we used the whole dataset for Yersinia Pestis. We trained the Logistic

Regression using balanced training data. We tested our model on unbalanced 20% of

the Yersinia Pestis as well as on full Yersinia Pestis dataset. We did the grid search on

the trained model to optimize the results. We did grid search with cross-validation

on the three parameters: penalty, C and solver. We have also used 10-fold cross-

validation while training our models. We repeated similar steps from feature selection

to model training on Saccharomyces cerevisiae dataset. The Table 5.1 shows Logistic

Regression on sample balanced 3-AAU datasets and tested on 20% of the unbalanced

datasets. The Figure 5.1 shows ROC-AUC curve for the Logistic Regression on sample

balanced 3-AAU datasets and tested on 20% of the unbalanced datasets.

In the next step, we trained the Logistic Regression model on sample balanced

Yersinia Pestis dataset but tested it on full Yersinia Pestiss dataset with 10-fold

cross-validation. We repeated the same steps for Saccharomyces cerevisiae. For the

model trained on Yersinia Pestis, feature selection is done using Yersinia Pestis

dataset. For the model trained on Saccharomyces cerevisiae, feature selection is done

using Saccharomyces cerevisiae dataset. The Table 5.2 shows Logistic Regression

on 3-AAU datasets which is trained on sample balanced 3-AAU datasets but tested

on full unbalanced datasets. The Figure 5.2 shows ROC-AUC curve for the Logis-
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Figure 5.1 ROC curve for Logistic Regression trained on sample balanced 3-AAU
datasets and tested on 20% unbalanced datasets using three different feature
selection methods
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Table 5.2 Logistic Regression trained on sample balanced 3-AAU datasets and
tested on full unbalanced datasets

Feature
Selection

Number of
Features Classifier Training

data
Testing
data Sensitivity Specificity

XGBoost 6 Logistic Regression Sample YP Full YP 93% 79%
RFE 6 Logistic Regression Sample YP Full YP 94% 79%
Univariate 6 Logistic Regression Sample YP Full YP 94% 80%
XGBoost 6 Logistic Regression Sample SC Full SC 97% 93%
RFE 6 Logistic Regression Sample SC Full SC 97% 93%
Univariate 6 Logistic Regression Sample SC Full SC 97% 92%

tic Regression on sample balanced 3-AAU datasets and tested on full unbalanced

datasets.

After getting good results from logistic regression models trained on sample bal-

anced data, we trained the model on unbalanced sample of Yersinia Pestis and Sac-

charomyces cerevisiae datasets. For this we trained and tested our models on 80:20

ratio. We used the same hyper parameters as used earlier for training sample bal-

anced data. For unbalanced datasets, we have used class weights. Like previously

we also tested our models on full datasets using 10-fold cross-validation. The Tables

5.3 and 5.4 shows the Logistic Regression results trained on 80% unbalanced datasets

and tested on 20% data and full datasets respectively. The Figures 5.3 and 5.4 shows

the ROC-AUC curve for the Logistic Regression results trained on 80% unbalanced

datasets and tested on 20% data and full datasets respectively.

We then incorporated both the datasets from Yersinia Pestis and Saccharomyces

cerevisiae to test our logistic regression models. We found that our model trained

on only 6 features of Yersinia Pestis dataset is not able to classify Saccharomyces

cerevisiae dataset that well for 3-AAU datasets. Similarly, the model trained on Sac-

charomyces cerevisiae was not able to classify the Yersinia Pestis dataset that well.

The AUC score when we were training and testing using datasets from two different

species was approximately 50% for both the models. We again performed feature se-
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Figure 5.2 ROC curve for Logistic Regression trained on sample balanced 3-AAU
datasets and tested on full unbalanced datasets using three different feature
selection methods
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Figure 5.3 ROC curve for Logistic Regression trained on sample unbalanced
balanced 3-AAU datasets and tested on 20% unbalanced datasets using three
different feature selection methods
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Figure 5.4 ROC curve for Logistic Regression trained on sample unbalanced
balanced 3-AAU datasets and tested on full unbalanced datasets using three
different feature selection methods
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Table 5.3 Logistic Regression trained on sample unbalanced 3-AAU datasets and
tested on 20% unbalanced datasets

Feature
Selection

Number of
Features Classifier Training

data
Testing
data Sensitivity Specificity

XGBoost 6 Logistic Regression 80% YP 20% YP 94% 80%
RFE 6 Logistic Regression 80% YP 20% YP 94% 80%
Univariate 6 Logistic Regression 80% YP 20% YP 94% 80%
XGBoost 6 Logistic Regression 80% SC 20% SC 96% 94%
RFE 6 Logistic Regression 80% SC 20% SC 97% 94%
Univariate 6 Logistic Regression 80% SC 20% SC 97% 94%

Table 5.4 Logistic Regression trained on sample unbalanced 3-AAU datasets and
tested on full unbalanced datasets

Feature
Selection

Number of
Features Classifier Training

data
Testing
data Sensitivity Specificity

XGBoost 6 Logistic Regression 80% YP Full YP 93% 79%
RFE 6 Logistic Regression 80% YP Full YP 94% 79%
Univariate 6 Logistic Regression 80% YP Full YP 94% 80%

XGBoost 6 Logistic Regression 80% SC Full SC 97% 93%
RFE 6 Logistic Regression 80% SC Full SC 97% 93%
Univariate 6 Logistic Regression 80% SC Full SC 97% 92%

lection using XGBoost feature importance, Univariate and RFE on combined features

for both the Yersinia Pestis and Saccharomyces cerevisiae datasets. We did this to

make sure that both the model are trained on the same feature sets. The results for

3-AAU datasets were not good, the AUC scores were pretty low.

We created the 2-AAU datasets for Yersinia Pestis and Saccharomyces cerevisiae

for further testing. We again performed feature selection using XGBoost feature im-

portance, Univariate and RFE on combined features for Yersinia Pestis and Saccha-

romyces cerevisiae 2-AAU normalized datasets. We again performed grid search with

5-fold cross-validation on C and penalty. We have used class weights. We got decent

results only with the features set from RFE analysis. For the model trained with the 2-
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Table 5.5 Logistic Regression trained on sample unbalanced 2-AAU datasets tested
on full unbalanced datasets from different species. The feature selection is done
using features from both the Yersinia Pestis and Saccharomyces cerevisiae datasets.

Feature
Selection

Number of
Features Classifier Training

data
Testing
data Sensitivity Specificity

RFE 13 Logistic Regression Sample YP Full SC 92% 50%
RFE 13 Logistic Regression Sample YP Full YP 72% 74%
RFE 13 Logistic Regression Sample SC Full SC 85% 77%
RFE 13 Logistic Regression Sample SC Full YP 69% 75%

Table 5.6 Logistic Regression trained on sample unbalanced 3-AAU datasets and
tested on full unbalanced datasets from different species

Feature
Selection

Principal
Components Classifier Training

data
Testing
data Sensitivity Specificity

PCA 8 Logistic Regression Sample YP Full SC 81% 78%
PCA 8 Logistic Regression Sample YP Full YP 85% 75%
PCA 8 Logistic Regression Sample SC Full SC 91% 80%
PCA 8 Logistic Regression Sample SC Full YP 83% 68%

AAU Yersinia Pestis dataset, we got decent results with C=0.00012 and penalty=’l2’.

For the model trained with the 2-AAU Saccharomyces cerevisiae dataset, we got de-

cent results with C=0.001 and penalty=’l2’. We have used the 5-fold cross-validation

to validate the models when testing with the same dataset. We have also tested the

models on the dataset from different species. The Table 5.5 shows logistic regres-

sion classification on 2-AAU datasets using RFE analysis, tested on full datasets of

both the Yersinia Pestis and Saccharomyces cerevisiae. The Figure 5.5 shows the

ROC-AUC scores for logistic regression model trained on 2-AAU datasets of Yersinia

Pestis and Saccharomyces cerevisiae.

We also performed principal component analysis (PCA) for feature reduction on

both Yersinia Pestis and Saccharomyces cerevisiae datasets. In PCA analysis we used

all 3-AAU dataset features to get 8 principal components that gave us good results.

These 8 principal components covered 84% variance for Yersinia Pestis dataset and
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Figure 5.5 ROC curve for Logistic Regression using the 13 feature from RFE
analysis. Model trained on unbalanced sample 2-AAU datasets and tested on full
unbalanced datasets of both the species
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Figure 5.6 ROC curve for Logistic Regression using the 8 principal components.
Model trained on unbalanced sample 3-AAU datasets and tested on full unbalanced
datasets of both the species
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80% variance for Saccharomyces cerevisiae dataset. We have used these 8 principal

components for the logistic regression model to train on Saccharomyces cerevisiae and

tested on Yersinia Pestis. We have performed grid search with 5-fold cross-validation

on the two parameters: penalty and C. We have used class weights in our models. We

have used the 5-fold cross-validation to validate the model trained and tested on the

same dataset. We have tested the models with the datasets from different species.

The Table 5.6 shows Logistic Regression using PCA on 3-AAU datasets which is

trained on 80% sample datasets but tested on full datasets for both the species. The

Figure 5.6 shows ROC-AUC curve for the Logistic Regression using PCA on 3-AAU

datasets which is trained on 80% sample datasets and tested on full datasets for both

the species.

In summary, for the logistic regression classification, we got best results with the

models trained and tested on the datasets from the same species. We got best AUC

score of 87% for the model trained and tested with Yersinia Pestis datasets using

features set from Univariate analysis. We got AUC score of 95% for the model trained

and tested with Saccharomyces cerevisiae datasets using features set from all three

feature selection methods we performed. However, these models gave AUC of only

50% when tested with datasets from different species. Hence, we have created 2-

AAU normalized datasets to get better results for the models trained and tested on

datasets from different species. For the 2-AAU datasets, using RFE features set, we

got decent results. For the model trained on 2-AAU Yersinia Pestis dataset, we got

AUC score of 73% and 71% when testing with Yersinia Pestis and Saccharomyces

cerevisiae datasets respectively. For the model trained on 2-AAU Saccharomyces cere-

visiae dataset, we got AUC score of 72% and 81% when testing with Yersinia Pestis

and Saccharomyces cerevisiae datasets respectively. With PCA, using 8 principal

components for 3-AAU datasets, the model trained with the Yersinia Pestis dataset

gave AUC score of 80% when tested with both the Yersinia Pestis and Saccharomyces
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cerevisiae datasets. With PCA, using 8 principal components for 3-AAU datasets,

the model trained with the Saccharomyces cerevisiae dataset gave AUC score of 85%

and 75% when tested with the Saccharomyces cerevisiae and Yersinia Pestis datasets

respectively.

5.2 Random Forest

Random Forests is a supervised learning technique used for classification and regres-

sion. Random Forests is an ensemble of many number of decision trees created from

randomly selected subset of training data. While splitting the node during construc-

tion of trees, the split that is picked is the best split among a random subset of the

features. Random Forests outputs the class that is the mode of classes (classification)

or mean prediction (regression) of the individual trees. Random Forests follow divide

and conquer approach to increase performance.

We started off with the Yersinia Pestis datasets. We divided the Yersinia Pestis

dataset in to train and test data by 80:20 ratio. We then took balanced sample data

from 80% dataset. We did the feature selection by three different ways: Univariate

Analysis, Recursive Feature Elimination (RFE) and XGBoost feature importance.

For feature selection we have used whole dataset for Yersinia Pestis. We trained

the Random Forest using sample balanced training data. We tested our model on

unbalanced 20% of the Yersinia Pestis dataset as well as on full Yersinia Pestis

dataset. We have used grid search with cross-validation to get optimal hyper param-

eters values for Random Forest. We have used 5-fold cross-validation while training

our models. We repeated similar steps for feature selection and model training on

Saccharomyces cerevisiae dataset. The Table 5.7 shows Random Forest classification

on sample balanced 3-AAU datasets and tested on 20% unbalanced datasets.

The Figure 5.7 shows the ROC-AUC curve for the Random Forest classification

using three different feature selection methods. The models are trained on sample
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Figure 5.7 ROC curve for Random Forest trained on sample balanced 3-AAU
datasets and tested on 20% unbalanced datasets using three different feature
selection methods
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Table 5.7 Random Forest trained on sample balanced 3-AAU datasets and tested
on 20% unbalanced datasets

Feature
Selection

Number of
Features Classifier Training

data
Testing
data Sensitivity Specificity

XGBoost 6 Random Forest Sample YP 20% YP 83% 91%
RFE 6 Random Forest Sample YP 20% YP 83% 90%
Univariate 6 Random Forest Sample YP 20% YP 87% 88%
XGBoost 6 Random Forest Sample SC 20% SC 96% 96%
RFE 6 Random Forest Sample SC 20% SC 93% 95%
Univariate 6 Random Forest Sample SC 20% SC 96% 96%

balanced 3-AAU Yersinia Pestis and Saccharomyces cerevisiae datasets and tested

on 20% unbalanced Yersinia Pestis and Saccharomyces cerevisiae datasets. For the

model trained on Yersinia Pestis, feature selection is done using Yersinia Pestis

dataset. For the model trained on Saccharomyces cerevisiae, feature selection is done

using Saccharomyces cerevisiae dataset.

In the next step, we trained the Random Forest model on sample balanced

Yersinia Pestis dataset and tested on full Yersinia Pestiss dataset. We repeated

the same steps for Saccharomyces cerevisiae. The Table 5.8 shows Random Forest

classification on 3-AAU datasets which is trained on sample balanced datasets but

tested on full datasets. The Figure 5.8 shows the AUC scores for the Random Forest

classifier using three different feature selection methods. The models are trained on

sample balanced 3-AAU Yersinia Pestis and Saccharomyces cerevisiae datasets and

tested on full unbalanced Yersinia Pestis and Saccharomyces cerevisiae datasets.

After getting good results from models trained on sample balanced data, we

trained the models on unbalanced sample of Yersinia Pestis and Saccharomyces cere-

visiae. For this we divided the datasets in 80:20 ratio for training and testing re-

spectively. We used the same hyper parameters as used earlier for training sample

balanced data. Like previously, we have also tested the models with full datasets.
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Figure 5.8 ROC curve for Random Forest trained on sample balanced 3-AAU
datasets and tested on full unbalanced datasets using three different feature
selection methods

53



Table 5.8 Random Forest trained on sample balanced 3-AAU datasets and tested
on full unbalanced datasets

Feature
Selection

Number of
Features Classifier Training

data
Testing
data Sensitivity Specificity

XGBoost 6 Random Forest Sample YP Full YP 83% 90%
RFE 6 Random Forest Sample YP Full YP 82% 90%
Univariate 6 Random Forest Sample YP Full YP 86% 88%

XGBoost 6 Random Forest Sample SC Full SC 97% 96%
RFE 6 Random Forest Sample SC Full SC 95% 95%
Univariate 6 Random Forest Sample SC Full SC 97% 96%

Table 5.9 Random Forest trained on sample unbalanced 3-AAU datasets and
tested on 20% unbalanced datasets

Feature
Selection

Number of
Features Classifier Training

data
Testing
data Sensitivity Specificity

XGBoost 6 Random Forest 80% YP 20% YP 83% 91%
RFE 6 Random Forest 80% YP 20% YP 83% 90%
Univariate 6 Random Forest 80% YP 20% YP 87% 89%
XGBoost 6 Random Forest 80% SC 20% SC 96% 96%
RFE 6 Random Forest 80% SC 20% SC 93% 95%
Univariate 6 Random Forest 80% SC 20% SC 96% 96%

The Tables 5.9 and 5.10 shows the Random Forest results for the model trained on

unbalanced sample and tested on 20% sample datasets and full datasets respectively.

Figure 5.9 shows the AUC scores for the Random Forest using three different fea-

ture selection methods. The models are trained on 80% unbalanced 3-AAU Yersinia

Pestis and Saccharomyces cerevisiae datasets and tested on 20% unbalanced Yersinia

Pestis and Saccharomyces cerevisiae datasets. For the model trained on Yersinia

Pestis, feature selection is done using Yersinia Pestis dataset. For the model trained

on Saccharomyces cerevisiae, feature selection is done using Saccharomyces cerevisiae

dataset.

Figure 5.10 shows the ROC-AUC curve for the Random Forest using three differ-
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Figure 5.9 ROC curve for Random Forest trained on 80% unbalanced 3-AAU
datasets and tested on 20% unbalanced datasets using three different feature
selection methods
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Table 5.10 Random Forest trained on sample unbalanced 3-AAU datasets and
tested on full unbalanced datasets

Feature
Selection

Number of
Features Classifier Training

data
Testing
data Sensitivity Specificity

XGBoost 6 Random Forest 80% YP Full YP 83% 90%
RFE 6 Random Forest 80% YP Full YP 82% 90%
Univariate 6 Random Forest 80% YP Full YP 86% 88%

XGBoost 6 Random Forest 80% SC Full SC 97% 96%
RFE 6 Random Forest 80% SC Full SC 95% 95%
Univariate 6 Random Forest 80% SC Full SC 97% 96%

Table 5.11 Random Forest trained on sample unbalanced 3-AAU datasets and
tested on full unbalanced datasets from different species

Feature
Selection

Number of
Features Classifier Training

data
Testing
data Sensitivity Specificity

PCA 7 Random Forest Sample YP Full SC 87% 81%
PCA 7 Random Forest Sample YP Full YP 76% 85%
PCA 7 Random Forest Sample SC Full SC 92% 91%
PCA 7 Random Forest Sample SC Full YP 77% 76%

ent feature selection methods. The models are trained on 80% unbalanced 3-AAU

Yersinia Pestis and Saccharomyces cerevisiae datasets and tested on full unbalanced

Yersinia Pestis and Saccharomyces cerevisiae datasets.

We then incorporated both the datasets from Yersinia Pestis and Saccharomyces

cerevisiae to test our models. We found that our model trained on only 6 features

of Yersinia Pestis is not classifying Saccharomyces cerevisiae dataset that well for

3-AAU datasets. We again did feature selection using XGBoost feature importance,

Univariate and RFE on combined calculated features for Yersinia Pestis and Saccha-

romyces cerevisiae. But still the classification was way off, we were getting only 50%

AUC.

Like in case of Logistic Regression, we again worked with 2-AAU datasets to
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Figure 5.10 ROC curve for Random Forest trained on 80% unbalanced 3-AAU
datasets and tested on full unbalanced datasets using three different feature
selection methods
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Figure 5.11 ROC curve for Random Forest using 7 Principal Component Analysis
(PCA). Model trained on unbalanced sample 3-AAU datasets and tested on full
unbalanced datasets of both the species
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get decent results for Random Forest classification but we were getting pretty low

AUC scores. We then performed principal component analysis (PCA) for feature

reduction on both Yersinia Pestis and Saccharomyces cerevisiae datasets. In PCA

analysis we used all 3-AAU dataset features to get 7 principal components that gave

us decent results. These 7 principal components covered 82% variance for Yersinia

Pestis dataset and 78% variance for Saccharomyces cerevisiae dataset. We have also

used 5-fold cross-validation while training our models. The Table 5.11 shows Random

Forest classification using 7 principal components on 3-AAU datasets, trained on 80%

sample datasets but tested on full datasets for both the species. The Figure 5.11 shows

ROC-AUC curve for the Random Forest classification using 7 principal components

on 3-AAU datasets, trained on 80% sample datasets but tested on full datasets for

both the species.

In summary, for the random forest classification, we got best results with the

models trained and tested on the datasets from the same species. We got best AUC

score of 88% for the model trained on 80% of the Yersinia Pestis dataset and tested

with 20% of Yersinia Pestis dataset using features set from Univariate analysis. We

got best AUC score of 96% for the model trained and tested with the Saccharomyces

cerevisiae datasets using features set from Univariate analysis and XGBoost feature

importance. However, these models gave AUC of only 50% when tested with datasets

from different species. Hence, we have created 2-AAU normalized (using min-max

scalar) datasets to get better results for the models trained and tested on datasets

from different species. But for the 2-AAU datasets as well we didn’t get any de-

cent results. We were still getting very low AUC scores with 2-AAU datasets. With

PCA, using 7 principal components for 3-AAU datasets, the model trained with the

Yersinia Pestis dataset gave AUC score of 80% and 84% when tested with both

the Yersinia Pestis and Saccharomyces cerevisiae datasets respectively. With PCA,

using 7 principal components for 3-AAU datasets, the model trained with the Sac-
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charomyces cerevisiae dataset gave AUC score of 91% and 76% when tested with the

Saccharomyces cerevisiae and Yersinia Pestis datasets respectively.

5.3 K-Nearest Neighbor

The k-nearest neighbors (KNN) is a non-parametric machine learning algorithm used

for classification and regression. Non-parametric techniques do make any assumption

on the underlying data distribution which in sense resembles very closely to the real

world problems. K-nearest neighbor doesn’t have any explicit training phase hence

training phase is quite fast. In KNN, a positive number k is specified which is generally

small. Along with k, a new sample is provided. A database of with k entries is created

which closely resemble our new sample. In this database we gave the most common

classification of these entries to the new sample.

In KNN, selecting k is most important, as we increase k, the classification bound-

aries become smoother. For example, in binary classification, if we increase k to

infinity, all the entries will either in one class on in the other depending upon the

total majority.

We started KNN with the Yersinia Pestis datasets. We divided the Yersinia Pestis

data in to train and test data by 80:20 ratio. We then took sample balanced data

from 80% dataset. We did the feature selection by three different ways: Univariate

Analysis, Recursive Feature Elimination (RFE) and XGBoost feature importance.

For feature selection we used whole data for Yersinia Pestis. We trained the k-nearest

neighbor model using balanced training data. We tested our model on unbalanced

20% of the Yersinia Pestis as well as on full Yersinia Pestis dataset with 4-fold cross-

validation. We repeated similar steps from feature selection to model the trained

with Saccharomyces cerevisiae dataset. The Table 5.12 shows k-nearest neighbor on

sample balanced 3-AAU datasets and tested on 20% unbalanced datasets. The Figure

5.12 shows ROC-AUC curve for the k-nearest neighbor on sample balanced 3-AAU
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Table 5.12 k-nearest neighbor trained on sample balanced 3-AAU datasets and
tested on 20% unbalanced datasets

Feature
Selection

Number of
Features Classifier Training

data
Testing
data Sensitivity Specificity

XGBoost 6 KNN Sample YP 20% YP 93% 70%
RFE 6 KNN Sample YP 20% YP 94% 69%
Univariate 6 KNN Sample YP 20% YP 90% 79%
XGBoost 6 KNN Sample SC 20% SC 95% 89%
RFE 6 KNN Sample SC 20% SC 96% 85%
Univariate 6 KNN Sample SC 20% SC 96% 89%

Table 5.13 k-nearest neighbor trained on sample balanced 3-AAU datasets and
tested on full unbalanced datasets

Feature
Selection

Number of
Features Classifier Training

data
Testing
data Sensitivity Specificity

XGBoost 6 KNN Sample YP Full YP 99% 7%
RFE 6 KNN Sample YP Full YP 99% 3%
Univariate 6 KNN Sample YP Full YP 98% 27%

XGBoost 6 KNN Sample SC Full SC 97% 71%
RFE 6 KNN Sample SC Full SC 98% 68%
Univariate 6 KNN Sample SC Full SC 98% 76%

datasets and tested on 20% unbalanced datasets.

In the next step, we trained the model on sample balanced Yersinia Pestis dataset

and tested on full Yersinia Pestiss dataset using 4-fold cross-validation. We repeated

the same steps for Saccharomyces cerevisiae. The Table 5.13 shows k-nearest neighbor

on 3-AAU datasets which is trained on sample datasets but tested on full datasets.

We got pretty low specificity scores while testing with full datasets using 5-fold cross-

validation.

We also trained the KNN model on unbalanced sample of Yersinia Pestis and

Saccharomyces cerevisiae. For this we divided the datasets in 80:20 ratio for training
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Figure 5.12 ROC curve for k-nearest neighbor trained on sample balanced 3-AAU
datasets and tested on 20% unbalanced dataset using three different feature
selection methods
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Table 5.14 k-nearest neighbor trained on sample unbalanced 3-AAU datasets and
tested on 20% unbalanced datasets

Feature
Selection

Number of
Features Classifier Training

data
Testing
data Sensitivity Specificity

XGBoost 6 KNN Sample YP 20% YP 8% 99%
RFE 6 KNN Sample YP 20% YP 5% 99%
Univariate 6 KNN Sample YP 20% YP 23% 99%
XGBoost 6 KNN Sample SC 20% SC 71% 98%
RFE 6 KNN Sample SC 20% SC 70% 98%
Univariate 6 KNN Sample SC 20% SC 78% 98%

Table 5.15 k-nearest neighbor trained on sample unbalanced 3-AAU datasets and
tested on full unbalanced datasets

Feature
Selection

Number of
Features Classifier Training

data
Testing
data Sensitivity Specificity

XGBoost 6 KNN Sample YP Full YP 8% 99%
RFE 6 KNN Sample YP Full YP 5% 99%
Univariate 6 KNN Sample YP Full YP 23% 99%
XGBoost 6 KNN Sample SC Full SC 72% 97%
RFE 6 KNN Sample SC Full SC 69% 97%
Univariate 6 KNN Sample SC Full SC 76% 98%

and testing respectively. We again performed the grid search. Like previously, we

have also tested our model with full datasets with 5-fold cross-validation. We didn’t

get good results with KNN classification. When we tested our KNN model trained

on unbalanced datasets with full datasets, the model took almost all of computer

memory and took lot of time. Cross-validation takes most of the memory of the

system and takes lot of time. Still we again tried grid search to get better results

but we didn’t good results with KNN classification. We realized that KNN may not

be suitable for this kind of problem. The Tables 5.14 and 5.15 show the k-nearest

neighbor results for the model trained on 80% unbalanced datasets and tested with

20% sample datasets and full datasets respectively.
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Table 5.16 k-nearest neighbor trained on sample balanced 3-AAU datasets and
tested on full unbalanced datasets from different species

Feature
Selection

Number of
Features Classifier Training

data
Testing
data Sensitivity Specificity

XGBoost 8 KNN Sample YP Full SC 90% 80%
XGBoost 8 KNN Sample YP Full YP 89% 75%
XGBoost 8 KNN Sample SC Full SC 96% 86%

XGBoost 8 KNN Sample SC Full YP 85% 66%

As the KNN classification model was not performing well for the unbalanced as

well as larger datasets, we just incorporated both the datasets from Yersinia Pestis

and Saccharomyces cerevisiae to test our models trained on balanced and smaller

datasets. We found that our model trained on only 6 features of Yersinia Pestis

is not classifying Saccharomyces cerevisiae dataset that well for 3-AAU datasets.

Similarly the model trained on Saccharomyces cerevisiae dataset with 6 features was

not classifying the Yersinia Pestis dataset that well. The AUC while testing both

the models with different species was approximately only 50%. We again did feature

selection using combined features for Yersinia Pestis and Saccharomyces cerevisiae.

We found best results with 8 features using XGBoost feature importance analysis.

In summary we can say that KNN classification did perform reasonably well when

trained on balanced smaller dataset. However, when trained on unbalanced larger

dataset, KNN classification didn’t perform well at all. The Table 5.16 shows k-nearest

neighbor on 3-AAU datasets which is trained on sample datasets but tested on full

datasets from both the species.

5.4 XGBoost

XGBoost stands for extreme gradient boosting. XGBoost is scalable tree boosting

system designed and developed by Tianqi Chen [3]. It implements machine learning
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algorithms under the Gradient Boosting framework. The model of choice for XGBoost

is decision tree ensembles. XGBoost is an implementation of gradient boosted decision

trees designed for speed and performance.

Decision tree ensembles consists of a set of classification and regression trees

(CART). Decision tree ensembles are widely used in Gradient Boosting Methods,

Random Forests, etc. Tree ensemble methods learn higher order interaction between

features and are scalable. It is intractable to learn all the trees in a decision tree en-

sembles at once. Hence an additive strategy is applied to train decision trees rather

than taking gradient as in other supervised learning techniques. At each step, we take

the tree which optimizes over objective function. XGBoost follows greedy algorithm

at each tree split.

We started XGBoost model training with the Yersinia Pestis dataset. We divided

the Yersinia Pestis dataset in to train and test data by 80:20 ratio. We then took

balanced data from 80% dataset for training. We did the feature selection by three

different ways: Univariate Analysis, Recursive Feature Elimination (RFE) and XG-

Boost. For feature selection we used whole data for Yersinia Pestis dataset. We then

trained the XGBoost model using balanced training dataset. We tested our model on

unbalanced 20% of the Yersinia Pestis. We repeated similar steps for Saccharomyces

cerevisiae dataset. The Table 5.17 shows XGBoost classification trained on sample

balanced 3-AAU datasets and tested on 20% unbalanced data. The Figure 5.13 shows

ROC-AUC curve for the XGBoost classification trained on sample balanced 3-AAU

datasets and tested on 20% unbalanced data.

In the next step, we trained the XGBoost model on sample balanced Yersinia

Pestis dataset and tested on full Yersinia Pestiss dataset. We repeated the same steps

for Saccharomyces cerevisiae. The Table 5.18 shows XGBoost classification on 3-AAU

datasets which is trained on sample balanced datasets and tested on full unbalanced

datasets. The Figure 5.14 shows ROC-AUC curve for the XGBoost classification
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Figure 5.13 ROC curve for XGBoost trained on sample balanced 3-AAU datasets
and tested on 20% unbalanced datasets using three different feature selection
methods
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Table 5.17 XGBoost trained on sample balanced 3-AAU datasets and tested on
20% unbalanced datasets

Feature
Selection

Number of
Features Classifier Training

data
Testing
data Sensitivity Specificity

XGBoost 6 XGBoost Sample YP 20% YP 90% 86%
RFE 6 XGBoost Sample YP 20% YP 90% 85%
Univariate 6 XGBoost Sample YP 20% YP 91% 86%
XGBoost 6 XGBoost Sample SC 20% SC 95% 97%
RFE 6 XGBoost Sample SC 20% SC 93% 96%
Univariate 6 XGBoost Sample SC 20% SC 95% 96%

Table 5.18 XGBoost trained on sample balanced 3-AAU datasets and tested on
full unbalanced datasets

Feature
Selection

Number of
Features Classifier Training

data
Testing
data Sensitivity Specificity

XGBoost 6 XGBoost Sample YP Full YP 92% 85%
RFE 6 XGBoost Sample YP Full YP 92% 84%
Univariate 6 XGBoost Sample YP Full YP 93% 84%

XGBoost 6 XGBoost Sample SC Full SC 97% 96%
RFE 6 XGBoost Sample SC Full SC 96% 95%
Univariate 6 XGBoost Sample SC Full SC 97% 96%

trained on sample balanced datasets and tested on full unbalanced datasets.

After getting good results from models trained on sample balanced data, we

trained the model on unbalanced sample of Yersinia Pestis and Saccharomyces cere-

visiae. For this we trained and tested our models on 80:20 ratio. We used the same

hyper parameters as used earlier for training sample balanced data. Like previously

we also tested on full datasets. The Table 5.19 and Table 5.20 shows the XGBoost

classification results for the model trained on 80% sample unbalanced datasets and

tested on 20% sample datasets and full datasets respectively. The Figure 5.15 and

Figure 5.16 shows the ROC-AUC curve for the XGBoost classification results for the
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Figure 5.14 ROC curve for XGBoost trained on sample balanced 3-AAU datasets
and tested on full unbalanced datasets using three different feature selection
methods
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Table 5.19 XGBoost trained on sample unbalanced 3-AAU datasets and tested on
20% unbalanced datasets

Feature
Selection

Number of
Features Classifier Training

data
Testing
data Sensitivity Specificity

XGBoost 6 XGBoost 80% YP 20% YP 90% 86%
RFE 6 XGBoost 80% YP 20% YP 90% 85%
Univariate 6 XGBoost 80% YP 20% YP 91% 86%
XGBoost 6 XGBoost 80% SC 20% SC 95% 97%
RFE 6 XGBoost 80% SC 20% SC 93% 95%
Univariate 6 XGBoost 80% SC 20% SC 95% 96%

Table 5.20 XGBoost trained on sample unbalanced 3-AAU datasets and tested on
full unbalanced datasets

Feature
Selection

Number of
Features Classifier Training

data
Testing
data Sensitivity Specificity

XGBoost 6 XGBoost 80% YP Full YP 92% 85%
RFE 6 XGBoost 80% YP Full YP 92% 84%
Univariate 6 XGBoost 80% YP Full YP 93% 84%

XGBoost 6 XGBoost 80% SC Full SC 97% 96%
RFE 6 XGBoost 80% SC Full SC 96% 95%
Univariate 6 XGBoost 80% SC Full SC 97% 96%

model trained on 80% sample unbalanced datasets and tested on 20% sample datasets

and full datasets respectively.

We then incorporated both the datasets from Yersinia Pestis and Saccharomyces

cerevisiae to test our already trained models. We found that our model trained on

only 6 features of Yersinia Pestis is not classifying Yeast dataset that well for 3-AAU

datasets. We again did feature selection using XGBoost feature importance, Univari-

ate and RFE on combined calculated features for Yersinia Pestis and Saccharomyces

cerevisiae. But still the classification was way off, we were getting only 50% AUC.

Then we employed principal component analysis (PCA) for feature reduction on both
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Figure 5.15 ROC curve for XGBoost trained on sample 80% unbalanced 3-AAU
datasets and tested on 20% unbalanced datasets using three different feature
selection methods
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Figure 5.16 ROC curve for XGBoost trained on sample 80% unbalanced 3-AAU
datasets and tested on full unbalanced datasets using three different feature
selection methods
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Table 5.21 XGBoost trained on sample unbalanced 3-AAU datasets and tested on
full unbalanced datasets from different species

Feature
Selection

Principal
Components Classifier Training

data
Testing
data Sensitivity Specificity

PCA 7 XGBoost Sample YP Full SC 88% 76%
PCA 7 XGBoost Sample YP Full YP 84% 80%
PCA 7 XGBoost Sample SC Full SC 90% 94%
PCA 7 XGBoost Sample SC Full YP 77% 74%

the Yersinia Pestis and Saccharomyces cerevisiae datasets.

In the PCA analysis we used all the 36 3-AAU dataset features to get 7 principal

components that gave us good results. The 7 principal components from Yersinia

Pestis model covered 82% of the variance. For the model trained on the Saccha-

romyces cerevisiae dataset, 78% of the variance was covered. We have also used

5-fold cross-validation while training our models.

The Table 5.21 shows XGBoost on 2-AAU datasets which is trained on 80%

sample unbalanced datasets and tested on full datasets for both the species. The

figure 5.17 shows the ROC-AUC curves for the models trained on the Yersinia Pestis

and Saccharomyces cerevisiae datasets using 7 principal components.

In summary, for the XGBoost classification, we got best results with the models

trained and tested on the datasets from the same species. We got best AUC score of

89% for the model trained and tested with Yersinia Pestis datasets using features set

from Univariate analysis. We got best AUC score of 97% for the model trained and

tested with Saccharomyces cerevisiae datasets using features set from XGBoost fea-

ture importance method. However, these models gave AUC of only 50% when tested

with the datasets from different species. Hence, we have created 2-AAU normalized

datasets to get better results for the models trained and tested on datasets from dif-

ferent species. But for the 2-AAU datasets as well we didn’t get any decent results.
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Figure 5.17 ROC curve for XGBoost using the 7 Principal Component Analysis
(PCA). Model trained on unbalanced sample 3-AAU datasets and tested on full
unbalanced datasets of both the species
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We were still getting very low AUC scores with 2-AAU datasets. With PCA, using

7 principal components for 3-AAU normalized datasets, the model trained with the

Yersinia Pestis dataset gave AUC score of 82% when tested with both the Yersinia

Pestis and Saccharomyces cerevisiae datasets. With PCA, using 7 principal com-

ponents for 3-AAU datasets, the model trained with the Saccharomyces cerevisiae

dataset gave AUC score of 92% and 76% when tested with the Saccharomyces cere-

visiae and Yersinia Pestis datasets respectively.

As we observed with our experiments in this chapter that all the models trained on

dataset from one organism and tested on the datasets from other organisms were not

performing well. We realized that it was happening because of the way we performed

the normalization. The min-max scalar was not suitable for our experiments. In

Chapter 6, we rerun the experiments on non-normalized datasets.
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Chapter 6

Results on non-normalized datasets

We saw in our previous experiments in Chapter 5, to get good results for the model

trained and tested on datasets from different organisms we had to employ more

features. Also, by using more features we were not getting the same results as we were

getting while working on single dataset. We also observed that tree based machine

learning algorithms like Random Forest and XGBoost were not performing as well

as SVC and logistic regression when trained and tested on datasets from different

organism. We realized this may be happening because of the normalization which we

did for our datasets. We were using min-max scalar for normalization. We realized

min-max scalar was not the right approach to do normalization for these datasets.

We decided to do the experiments with the non-normalized datasets. In this chapter.

we have included one more dataset to further test our experiments. We have prepared

dataset for Bacillus Subtilis str. 168. The data preparation methodology is explained

in detail in Chapter 2.

We ran our C++ code for C-SVC on the 3-AAU non-normalized datasets. We

used the same features that were used by Ahmad Alqurri [11]. We used the same

hyper-parameters as described in section 3.4. We ran the model for all three dataset,

i.e., Yersinia Pestis, Saccharomyces cerevisiae and Bacillus Subtilis str. 168 datasets.

The model trained on the sample Bacillus Subtilis str. 168 dataset was giving low

sensitivity score.

We reworked on our C++ code for C-SVC model. We changed the value of C to

5e0. We again trained and tested our model with Yersinia Pestis dataset. This time
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SVC model trained and tested on Yersinia Pestis dataset gave sensitivity of 94% and

specificity of 80% with 10-fold cross-validation. The Yersinia Pestis model tested

with Saccharomyces cerevisiae dataset was giving sensitivity of 99% and specificity

of 85%. The Yersinia Pestis model tested with Bacillus Subtilis str. 168 dataset was

giving sensitivity of 98% and specificity of 77%. The time it took for model to train

was approximately 100 minutes.

The model trained on the sample Saccharomyces cerevisiae dataset was giving

sensitivity of 97% and specificity of 92% with 10-fold cross-validation. The Saccha-

romyces cerevisiae model tested with Yersinia Pestis dataset was giving sensitivity of

89% and specificity of 69%. The Saccharomyces cerevisiae model tested with Bacillus

Subtilis str. 168 dataset was giving sensitivity of 96% and specificity of 83%.

The model trained on the sample Bacillus Subtilis str. 168 dataset was giving

sensitivity of 92% and specificity of 90% with 10-fold cross-validation. The Bacillus

Subtilis str. 168 model tested with Yersinia Pestis dataset was giving sensitivity

of 81% and specificity of 62%. The Bacillus Subtilis str. 168 model tested with

Saccharomyces cerevisiae dataset was giving sensitivity of 93% and specificity of 94%.

The Figure 6.1 shows the time taken (in minutes) to run the SVC model on the three

datasets.

S. Cerevisiae 20

B. Subtilis 45

Y. Pestis 100

0 100 200 300
Minutes

Figure 6.1 Time taken in minutes for C-SVC on three non-normalized datasets

76



Table 6.1 SVC with Alqurri’s [11] features set, trained on sample unbalanced
non-normalized 3-AAU datasets and tested on full unbalanced non-normalized
3-AAU datasets from different species

Feature
Selection

Number of
Features Classifier Training

data
Testing
data Sensitivity Specificity

Alqurri [11] 7 SVC Sample YP Full SC 99% 88%
Alqurri [11] 7 SVC Sample YP Full YP 94% 80%
Alqurri [11] 7 SVC Sample YP Full BS 98% 77%
Alqurri [11] 7 SVC Sample SC Full SC 97% 92%
Alqurri [11] 7 SVC Sample SC Full YP 89% 69%
Alqurri [11] 7 SVC Sample SC Full BS 96% 83%
Alqurri [11] 7 SVC Sample BS Full SC 93% 94%
Alqurri [11] 7 SVC Sample BS Full YP 81% 62%
Alqurri [11] 7 SVC Sample BS Full BS 92% 90%

As shown in the Table 6.1, the SVC model trained on the peptides dataset without

any normalization from one organisms was able to classify the peptides from another

organism in this case. This was great improvement from the situation in Chapter 3,

where the SVC model (written in C++) trained on the Yersinia Pestis dataset was

giving sensitivity of approximately 0% when tested with Saccharomyces cerevisiae

dataset with Alqurri’s [11] feature set.

6.1 Feature rankings using non-normalized datasets

To improve the results for each of the machine learning techniques we have per-

formed feature selection for our experiments in chapter 3 and chapter 5. For non-

normalized datasets, we again performed the feature selection using all three datasets,

i.e., Yersinia Pestis, Saccharomyces cerevisiae and Bacillus Subtilis str. 168. We

have performed feature selection using the same methods described in Chapter 4,

i.e., Univariate Analysis, Recursive Feature Elimination (RFE) and XGBoost feature

importance method. We made a small change for univariate analysis from Chapter 4,

as chi-squared test doesn’t take negative values, we have performed ANOVA analysis
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for univariate feature selection.

The figures 6.2 and 6.3 show the feature rankings for the combined 3-AAU datasets

of Yersinia Pestis, Saccharomyces cerevisiae and Bacillus Subtilis str. 168 using Uni-

variate analysis, RFE and XGBoost feature importance. We performed feature reduc-

tion through the principal component analysis (PCA). Only one principal component

was able to explain 99% of the variance for both the Yersinia Pestis and Saccha-

romyces cerevisiae datasets. This was happening because the PCA doesn’t perform

well with non-normalized datasets. We didn’t run our classification experiments using

PCA because of this reason with non-normalized datasets.

The AUC score with the univariate features set from the combined three datasets

were not giving good results for the model trained on Bacillus Subtilis str. 168

dataset. To overcome this issue, we have performed the univariate feature analysis

with the datasets from Yersinia Pestis and Saccharomyces cerevisiae only. We have

used univariate features set from the univariate analysis on Yersinia Pestis and Sac-

charomyces cerevisiae datasets for all the classification algorithms. The Figure 6.4

show the univariate feature scores for the combined non-normalized 3-AAU datasets

of Yersinia Pestis and Saccharomyces cerevisiae.

6.2 Support Vector Classification

In this chapter, we have performed Support Vector classification (SVC) using the non-

normalized datasets. We performed SVC using the three features sets from Univariate

analysis, Recursive feature elimination (RFE) and XGBoost feature importance anal-

ysis. We did feature selection using all the three datasets. Here in Chapter 5, with

non-normalized datasets we are able to get better results with SVC. The feature set

from univariate analysis, for the model trained on Bacillus Subtilis str. 168 and

tested on Yersinia Pestis and Saccharomyces cerevisiae datasets was giving sensitiv-

ity of only 54% and 56% respectively. To improve the results of SVC classification
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Figure 6.2 Feature ranking through Univariate analysis using ANOVA F-score and
Recursive Feature Elimination (RFE) on combined 3-AAU non-normalized datasets
of Yersinia Pestis, Saccharomyces cerevisiae and Bacillus Subtilis str. 168
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Figure 6.3 Feature ranking using XGBoost feature importance on combined
3-AAU non-normalized datasets of Yersinia Pestis, Saccharomyces cerevisiae and
Bacillus Subtilis str. 168

with univariate features set, we have used only Yersinia Pestis and Saccharomyces

cerevisiae datasets for univariate feature analysis.

We employed the same hyper-parameters which were used in the SVC model

to train and test Yersinia Pestis dataset in Table 3.4. With those same hyper-

parameters, we didn’t get good results with non-normalized datasets. We again

performed the grid search with 5-fold cross-validation. We have used class weights

for all the models as the datasets are unbalanced. For the features set from Univariate

analysis, we got the best SVC classification results with C = 1e2, gamma = auto or

10 and kernel = rbf. For the features set from RFE analysis, we got best results with

C = 15, gamma = auto and kernel = rbf. For the features set from XGBoost feature

importance analysis, we got best results with C = 1e7, gamma = 1e-06 and kernel =

rbf.
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Figure 6.4 Feature ranking through Univariate analysis using ANOVA F-score on
combined 3-AAU non-normalized datasets of Yersinia Pestis and Saccharomyces
cerevisiae

We got the best AUC scores for the SVC model using feature set from the XGBoost

feature importance analysis. For the model trained on the sample Yersinia Pestis

dataset and tested on full Yersinia Pestis, Saccharomyces cerevisiae and Bacillus

Subtilis str. 168 datasets, we got AUC scores of 86%, 94% and 90% respectively. For

the model trained on the sample Saccharomyces cerevisiae dataset and tested on full

Yersinia Pestis, Saccharomyces cerevisiae and Bacillus Subtilis str. 168 datasets,

we got AUC scores of 81%, 96% and 91% respectively. For the model trained on

the sample Bacillus Subtilis str. 168 dataset and tested on full Yersinia Pestis,

Saccharomyces cerevisiae and Bacillus Subtilis str. 168 datasets, we got AUC scores

of 80%, 83% and 92% respectively.

The Table 6.2 shows the sensitivity and specificity scores for the Support Vector
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classification (SVC) model performed on Yersinia Pestis, Saccharomyces cerevisiae

and Bacillus Subtilis str. 168 non-normalized 3-AAU datasets. The Figures 6.5, 6.6

and 6.7 show the ROC curve with AUC scores for the Support Vector classification

(SVC) classification model performed on the three non-normalized 3-AAU datasets

using XGBoost feature importance analysis, Recursive feature elimination (RFE) and

Univariate analysis respectively.

Table 6.2 SVC trained and tested on non-normalized 3-AAU datasets from
different species with three different feature selection methods and using RBF kernel

Feature
Selection

Number of
features Classifier Training

data
Testing
data Sensitivity Specificity

XGBoost 6 SVC Sample YP Full SC 99% 89%
XGBoost 6 SVC Sample YP Full YP 97% 75%
XGBoost 6 SVC Sample YP Full BS 99% 81%
XGBoost 6 SVC Sample SC Full SC 99% 93%
XGBoost 6 SVC Sample SC Full YP 91% 71%
XGBoost 6 SVC Sample SC Full BS 92% 90%
XGBoost 6 SVC Sample BS Full SC 99% 86%
XGBoost 6 SVC Sample BS Full YP 94% 66%
XGBoost 6 SVC Sample BS Full YP 97% 87%
RFE 6 SVC Sample YP Full SC 96% 93%
RFE 6 SVC Sample YP Full YP 93% 81%
RFE 6 SVC Sample YP Full BS 98% 83%
RFE 6 SVC Sample SC Full SC 97% 94%
RFE 6 SVC Sample SC Full YP 76% 74%
RFE 6 SVC Sample SC Full BS 94% 91%
RFE 6 SVC Sample BS Full SC 97% 86%
RFE 6 SVC Sample BS Full YP 95% 91%
RFE 6 SVC Sample BS Full BS 94% 61%
Univariate 6 SVC Sample YP Full SC 86% 84%
Univariate 6 SVC Sample YP Full YP 94% 79%
Univariate 6 SVC Sample YP Full BS 79% 64%
Univariate 6 SVC Sample SC Full SC 95% 92%
Univariate 6 SVC Sample SC Full YP 87% 80%
Univariate 6 SVC Sample SC Full BS 89% 84%
Univariate 6 SVC Sample BS Full SC 92% 90%
Univariate 6 SVC Sample BS Full YP 87% 67%
Univariate 6 SVC Sample BS Full BS 97% 82%
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Figure 6.5 ROC curve for Support Vector classification trained on sample
unbalanced non-normalized 3-AAU datasets and tested on full non-normalized
datasets using XGBoost feature importance analysis
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Figure 6.6 ROC curve for Support Vector classification trained on sample
unbalanced non-normalized 3-AAU datasets and tested on full non-normalized
datasets using RFE analysis
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Figure 6.7 ROC curve for Support Vector classification trained on sample
unbalanced non-normalized 3-AAU datasets and tested on full non-normalized
datasets using Univariate analysis
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Table 6.3 Logistic Regression classification trained and tested on non-normalized
3-AAU datasets from different species with three different feature selection methods.

Feature
Selection

Number of
features Classifier Training

data
Testing
data Sensitivity Specificity

XGBoost 6 Logistic Regression Sample YP Full SC 98% 89%
XGBoost 6 Logistic Regression Sample YP Full YP 94% 79%
XGBoost 6 Logistic Regression Sample YP Full BS 98% 77%
XGBoost 6 Logistic Regression Sample SC Full SC 97% 93%
XGBoost 6 Logistic Regression Sample SC Full YP 99% 57%
XGBoost 6 Logistic Regression Sample SC Full BS 99% 73%
XGBoost 6 Logistic Regression Sample BS Full SC 97% 91%
XGBoost 6 Logistic Regression Sample BS Full YP 82% 67%
XGBoost 6 Logistic Regression Sample BS Full BS 95% 88%
RFE 6 Logistic Regression Sample YP Full SC 96% 92%
RFE 6 Logistic Regression Sample YP Full YP 93% 79%
RFE 6 Logistic Regression Sample YP Full BS 98% 77%
RFE 6 Logistic Regression Sample SC Full SC 97% 93%
RFE 6 Logistic Regression Sample SC Full YP 97% 65%
RFE 6 Logistic Regression Sample SC Full BS 99% 76%
RFE 6 Logistic Regression Sample BS Full SC 98% 90%
RFE 6 Logistic Regression Sample BS Full YP 83% 67%
RFE 6 Logistic Regression Sample BS Full BS 95% 87%
Univariate 6 Logistic Regression Sample YP Full SC 98% 89%
Univariate 6 Logistic Regression Sample YP Full YP 94% 80%
Univariate 6 Logistic Regression Sample YP Full BS 98% 77%
Univariate 6 Logistic Regression Sample SC Full SC 97% 92%
Univariate 6 Logistic Regression Sample SC Full YP 89% 71%
Univariate 6 Logistic Regression Sample SC Full BS 96% 82%
Univariate 6 Logistic Regression Sample BS Full SC 93% 91%
Univariate 6 Logistic Regression Sample BS Full YP 88% 57%
Univariate 6 Logistic Regression Sample BS Full BS 95% 85%

6.3 Logistic Regression

In this chapter, we have performed the logistic regression classification with non-

normalized datasets. Our model described in Chapter 5 was not performing well with

the non-normalized dataset. This time we did the feature selection using all three

datasets. We again performed the grid search for the logistic regression model. We

have used 5-fold cross-validation for our experiments. For the features set obtained

from XGBoost feature importance and RFE, all the models gave good results for C
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= 1e10, solver = liblinear and multi-class = ovr. The feature set from Univariate

analysis for the model trained on Bacillus Subtilis str. 168 and tested on Yersinia

Pestis and Saccharomyces cerevisiae datasets was giving AUC of only 54% and 57%

respectively. For Univariate feature analysis we have only used Yersinia Pestis and

Saccharomyces cerevisiae datasets.

We got best AUC scores for the Logistic Regression classification using feature

set from Recursive Feature Elimination (RFE) analysis. For the model trained on

the sample Yersinia Pestis dataset and tested on full Yersinia Pestis, Saccharomyces

cerevisiae and Bacillus Subtilis str. 168 datasets, we got AUC scores of 86%, 94%

and 88% respectively. For the model trained on the sample Saccharomyces cerevisiae

dataset and tested on full Yersinia Pestis, Saccharomyces cerevisiae and Bacillus

Subtilis str. 168 datasets, we got AUC scores of 81%, 95% and 87% respectively. For

the model trained on the sample Bacillus Subtilis str. 168 dataset and tested on full

Yersinia Pestis, Saccharomyces cerevisiae and Bacillus Subtilis str. 168 datasets, we

got AUC scores of 75%, 94% and 91% respectively.

The Table 6.3 shows the results for logistic regression for both the Yersinia Pestis

and Saccharomyces cerevisiae non-normalized datasets. If we observe the sensitivity

and specificity in the Table 6.3, we see that results from features selected through

XGBoost feature importance, RFE and Univariate analysis are much better for the

non-normalized datasets compared to the normalized datasets. The Figures 6.8, 6.9

and 6.10 show the ROC curve with AUC scores for the logistic regression model

performed on the non-normalized 3-AAU datasets using XGBoost feature importance

analysis, Recursive feature elimination and Univariate analysis respectively.

The Logistic Regression classification model trained on Yersinia Pestis dataset

took approximately 0.5 minute to train and cross-validate, which is almost 320 times

faster than C++ version of SVM classification model described earlier in this chapter.

87



Figure 6.8 ROC curve for Logistic Regression classification trained on sample
unbalanced non-normalized 3-AAU datasets and tested on full datasets using
XGBoost feature importance analysis
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Figure 6.9 ROC curve for Logistic Regression classification trained on sample
unbalanced non-normalized 3-AAU datasets and tested on full datasets using RFE
analysis
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Figure 6.10 ROC curve for Logistic Regression classification trained on sample
unbalanced non-normalized 3-AAU datasets and tested on full datasets using
Univariate analysis
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6.4 Random Forest

In this chapter, we have performed Random Forest classification using non-normalized

datasets. We performed Random Forest classification using the three features sets

from univariate analysis, recursive feature elimination (RFE) and XGBoost feature

importance analysis. We did feature selection using all the three datasets. Unlike in

Chapter 5, here in case of non-normalized datasets, we are able to get good results.

The feature set from Univariate analysis, for the model trained on Bacillus Subtilis

str. 168 and tested on Yersinia Pestis and Saccharomyces cerevisiae datasets was

giving AUC of only 72% and 79% respectively. To further improve the results of

classification using Univariate feature set, we have used only Yersinia Pestis and

Saccharomyces cerevisiae datasets for Univariate feature analysis.

We got best AUC scores for Random Forest classification using feature set from

XGBoost feature importance method. For the model trained on sample Yersinia

Pestis and tested on full Yersinia Pestis, Saccharomyces cerevisiae and Bacillus Sub-

tilis str. 168 we got AUC scores of 85%, 95% and 91% respectively. For the model

trained on sample Saccharomyces cerevisiae and tested on full Yersinia Pestis, Sac-

charomyces cerevisiae and Bacillus Subtilis str. 168 we got AUC scores of 80%, 96%

and 91% respectively. For the model trained on sample Bacillus Subtilis str. 168 and

tested on full Yersinia Pestis, Saccharomyces cerevisiae and Bacillus Subtilis str. 168

we got AUC scores of 81%, 95% and 92% respectively.

The Table 6.4 shows the results for Random Forest classification for the Yersinia

Pestis, Saccharomyces cerevisiae and Bacillus Subtilis str. 168 non-normalized datasets

using XGBoost feature importance analysis, Recursive feature elimination and Uni-

variate analysis. The Figures 6.11, 6.12 and 6.13 shows the AUC scores for the Ran-

dom Forest classification performed on the non-normalized datasets using XGBoost

feature importance analysis, Recursive feature elimination and Univariate analysis

respectively.
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Table 6.4 Random Forest classification trained and tested on non-normalized
3-AAU datasets from different species with three different feature selection methods.

Feature
Selection

No. of
features Classifier Training

data
Testing
data Sensitivity Specificity

XGBoost 6 Random Forest Sample YP Full SC 94% 96%
XGBoost 6 Random Forest Sample YP Full YP 78% 91%
XGBoost 6 Random Forest Sample YP Full BS 91% 90%
XGBoost 6 Random Forest Sample SC Full SC 96% 97%
XGBoost 6 Random Forest Sample SC Full YP 68% 91%
XGBoost 6 Random Forest Sample SC Full BS 89% 92%
XGBoost 6 Random Forest Sample BS Full SC 96% 94%
XGBoost 6 Random Forest Sample BS Full YP 74% 89%
XGBoost 6 Random Forest Sample BS Full BS 93% 91%
RFE 6 Random Forest Sample YP Full SC 94% 94%
RFE 6 Random Forest Sample YP Full YP 78% 91%
RFE 6 Random Forest Sample YP Full BS 91% 89%
RFE 6 Random Forest Sample SC Full SC 94% 96%
RFE 6 Random Forest Sample SC Full YP 67% 91%
RFE 6 Random Forest Sample SC Full BS 84% 92%
RFE 6 Random Forest Sample BS Full SC 94% 92%
RFE 6 Random Forest Sample BS Full YP 75% 85%
RFE 6 Random Forest Sample BS Full BS 92% 90%
Univariate 6 Random Forest Sample YP Full SC 92% 92%
Univariate 6 Random Forest Sample YP Full YP 81% 88%
Univariate 6 Random Forest Sample YP Full BS 93% 85%
Univariate 6 Random Forest Sample SC Full SC 93% 94%
Univariate 6 Random Forest Sample SC Full YP 74% 86%
Univariate 6 Random Forest Sample SC Full BS 94% 85%
Univariate 6 Random Forest Sample BS Full SC 92% 88%
Univariate 6 Random Forest Sample BS Full YP 72% 93%
Univariate 6 Random Forest Sample BS Full BS 92% 88%

The Random Forest classification model trained on Yersinia Pestis dataset took

approximately 4 minutes to train and cross-validate, which is almost 25 times faster

than C++ version of SVM classification described earlier in this chapter. Also, the

Random Forest classifier is the only classifier that is giving us higher specificity than

sensitivity.
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Figure 6.11 ROC curve for Random Forest classification trained on sample
unbalanced non-normalized 3-AAU datasets and tested on full datasets using
XGBoost feature importance analysis

93



Figure 6.12 ROC curve for Random Forest classification trained on sample
unbalanced non-normalized 3-AAU datasets and tested on full datasets using RFE
analysis
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Figure 6.13 ROC curve for Random Forest classification trained on sample
unbalanced non-normalized 3-AAU datasets and tested on full datasets using
Univariate analysis
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6.5 XGBoost

In this chapter, we performed XGBoost classification on non-normalized datasets. We

performed XGBoost classification using the three features sets from Univariate anal-

ysis, RFE and XGBoost feature importance analysis. We did feature selection using

all the three datasets. Unlike in Chapter 5, here with non-normalized datasets we are

able to get good results with XGBoost classification. The features set from univariate

analysis, for the model trained on Bacillus Subtilis str. 168 dataset and tested on

Yersinia Pestis and Saccharomyces cerevisiae datasets was giving sensitivity of only

63% and 67% respectively. To improve the results of classification with univariate

features set, we have used only Yersinia Pestis and Saccharomyces cerevisiae datasets

for univariate feature analysis.

We got the best AUC scores for XGBoost classification using features set from XG-

Boost feature importance method. For the model trained on sample Yersinia Pestis

dataset and tested on full Yersinia Pestis, Saccharomyces cerevisiae and Bacillus

Subtilis str. 168 datasets, we got AUC scores of 88%, 96% and 91% respectively.

For the model trained on sample Saccharomyces cerevisiae dataset and tested on full

Yersinia Pestis, Saccharomyces cerevisiae and Bacillus Subtilis str. 168 datasets, we

got AUC scores of 87%, 96% and 91% respectively. For the model trained on sample

Bacillus Subtilis str. 168 dataset and tested on full Yersinia Pestis, Saccharomyces

cerevisiae and Bacillus Subtilis str. 168 datasets, we got AUC scores of 83%, 96%

and 92% respectively.

The Table 6.5 shows the results for XGBoost classification on Yersinia Pestis, Sac-

charomyces cerevisiae and Bacillus Subtilis str. 168 non-normalized 3-AAU datasets

using three feature selection methods. The Figures 6.14, 6.15 and 6.16 show the

ROC curve with AUC scores for the XGBoost classification performed on the non-

normalized 3-AAU datasets using XGBoost feature importance analysis, Recursive

feature elimination and Univariate Analysis respectively.
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The XGBoost classification model on Yersinia Pestis dataset took approximately

10 minutes to train and cross-validate. This is almost 10 times faster than C++

version of SVM classification described earlier in this chapter. Overall, we are getting

best AUC scores with the XGBoost classifier with all the three feature selection

methods that we have performed.

Table 6.5 XGBoost classification on 3-AAU datasets trained and tested on
non-normalized 3-AAU datasets from different species with three different feature
selection methods.

Feature
Selection

No. of fea-
tures Classifier Training

data
Testing
data Sensitivity Specificity

XGBoost 6 XGBoost Sample YP Full SC 99% 93%
XGBoost 6 XGBoost Sample YP Full YP 92% 84%
XGBoost 6 XGBoost Sample YP Full BS 97% 86%
XGBoost 6 XGBoost Sample SC Full SC 98% 95%
XGBoost 6 XGBoost Sample SC Full YP 91% 82%
XGBoost 6 XGBoost Sample SC Full BS 94% 89%
XGBoost 6 XGBoost Sample BS Full SC 98% 94%
XGBoost 6 XGBoost Sample BS Full YP 91% 75%
XGBoost 6 XGBoost Sample BS Full BS 96% 88%
RFE 6 XGBoost Sample YP Full SC 98% 89%
RFE 6 XGBoost Sample YP Full YP 92% 83%
RFE 6 XGBoost Sample YP Full BS 98% 90%
RFE 6 XGBoost Sample SC Full SC 97% 93%
RFE 6 XGBoost Sample SC Full YP 81% 84%
RFE 6 XGBoost Sample SC Full BS 92% 89%
RFE 6 XGBoost Sample BS Full SC 96% 91%
RFE 6 XGBoost Sample BS Full YP 84% 78%
RFE 6 XGBoost Sample BS Full BS 96% 87%
Univariate 6 XGBoost Sample YP Full SC 97% 89%
Univariate 6 XGBoost Sample YP Full YP 93% 82%
Univariate 6 XGBoost Sample YP Full BS 97% 81%
Univariate 6 XGBoost Sample SC Full SC 97% 91%
Univariate 6 XGBoost Sample SC Full YP 89% 80%
Univariate 6 XGBoost Sample SC Full BS 96% 81%
Univariate 6 XGBoost Sample BS Full SC 93% 92%
Univariate 6 XGBoost Sample BS Full YP 83% 77%
Univariate 6 XGBoost Sample BS Full BS 96% 84%
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Figure 6.14 ROC curve for XGBoost classification trained on sample unbalanced
non-normalized 3-AAU datasets and tested on full non-normalized datasets using
XGBoost feature importance analysis
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Figure 6.15 ROC curve for XGBoost classification trained on sample unbalanced
non-normalized 3-AAU datasets and tested on full non-normalized datasets using
RFE analysis
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Figure 6.16 ROC curve for XGBoost classification trained on sample unbalanced
non-normalized 3-AAU datasets and tested on full non-normalized datasets using
Univariate analysis
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Chapter 7

Conclusion

From the experiments we have run, we can say that we have achieved comparable

or some times better results than Web Robertson et al. [15] with only 6 features.

For the SVM classifier written in C++ with 7 features from Ahmad Alqurri [11],

we have achieved better sensitivity (94%) and almost similar specificity (80%) than

Ahmad Alqurri [11]. Our SVM classifier written in C++ is at least 7 times faster

than MATLAB version.

We have achieved similar or better results using faster machine learning algo-

rithms like Logistic Regression, Random Forest and XGBoost. We have achieved

better sensitivity and specificity scores than Ahmad Alqurri [11] with only 6 features

(from XGBoost feature importance analysis) using XGBoost classifier. The XGBoost

classifier written in Python is almost 10 times faster than SVM classifier written in

C++. The Random Forest classifier written in Python is almost 25 times faster than

SVM classifier written in C++.

The Ordered Amino Acid Usage (AAU) feature is the most significant feature

overall that helps in improving the results for all the classifiers. In other words,

AAU feature helps in improving the prediction of proteotypic peptides with different

machine learning techniques.
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