
University of South Carolina University of South Carolina

Scholar Commons Scholar Commons

Theses and Dissertations

2018

Implementation Costs of Spiking versus Rate-Based ANNs Implementation Costs of Spiking versus Rate-Based ANNs

Lacie Renee Stiffler
University of South Carolina - Columbia

Follow this and additional works at: https://scholarcommons.sc.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Stiffler, L.(2018). Implementation Costs of Spiking versus Rate-Based ANNs. (Doctoral dissertation).
Retrieved from https://scholarcommons.sc.edu/etd/5028

This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in
Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please
contact digres@mailbox.sc.edu.

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/etd
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F5028&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarcommons.sc.edu%2Fetd%2F5028&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/5028?utm_source=scholarcommons.sc.edu%2Fetd%2F5028&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digres@mailbox.sc.edu

Implementation Costs of Spiking versus Rate-Based ANNs

by

Lacie Renee Stiffler

Bachelor of Science in Engineering
University of South Carolina, 2016

Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science in

Computer Science and Engineering

College of Engineering and Computing

University of South Carolina

2018

Accepted by:

Jason D. Bakos, Director of Thesis

Duncan Buell, Reader

Gabriel A. Terejanu, Reader

Cheryl L. Addy, Vice Provost and Dean of the Graduate School

c© Copyright by Lacie Renee Stiffler, 2018
All Rights Reserved.

ii

Dedication

To my parents, my husband, and the clan that welcomed me as one of their own;

in short, my family.

iii

Acknowledgments

This thesis is the culmination of several years of scholarship and would not have been

possible without the generous contributions of many different people.

My mentor, Jason Bakos, had the most profound impact on my development as

a research scientist and provided valuable advice along the way.

Gabriel Terejanu generously gave his knowledge throughout the various develop-

mental stages of this thesis.

Even though most of my friends and family did not always understand what I was

working on, they consistently asked me about progress, listened when I had tough

days, and celebrated with me when I had breakthroughs.

The most deserving of my gratitude is my husband, Nick. Without his support,

I most likely would not have pursued a Master’s degree. I definitely would not have

been able to overcome the tough times such a venture entails without his solidarity.

iv

Abstract

Artificial neural networks are an effective machine learning technique for a variety

of data sets and domains, but exploiting the inherent parallelism in neural networks

requires specialized hardware. Typically, computing the output of each neuron re-

quires many multiplications, evaluation of a transcendental activation function, and

transfer of its output to a large number of other neurons. These restrictions become

more expensive when internal values are represented with increasingly higher data

precision. A spiking neural network eliminates the limitations of typical rate-based

neural networks by reducing neuron output and synapse weights to one-bit values,

eliminating hardware multipliers, and simplifying the activation function. However,

a spiking neural network requires a larger number of neurons than what is needed

in a comparable rate-based network. In order to determine if the benefits of spiking

neural networks outweigh the costs, we designed the smallest spiking neural network

and rate-based artificial neural network that achieved 90% or comparable testing ac-

curacy on the MNIST data set. After estimating the FPGA storage requirements

for synapse values of each network, we concluded rate-based neural networks need

significantly fewer bits than spiking neural networks.

v

Table of Contents

Dedication . iii

Acknowledgments . iv

Abstract . v

List of Tables . ix

List of Figures . x

List of Algorithms . xi

List of Abbreviations . xii

List of Symbols . xiii

Chapter 1 Introduction . 1

Chapter 2 Background . 3

2.1 Artificial Neural Networks . 3

2.2 Spiking Neural Networks . 4

2.3 Binnarized Neural Networks . 7

vi

2.4 MNIST Dataset . 8

Chapter 3 Related Work . 9

3.1 FPGA-Based ANNs . 9

3.2 FPGA-Based SNNs . 10

3.3 ASIC-Based SNNs . 11

Chapter 4 SNN Training Algorithm 14

4.1 Neuron Model . 15

4.2 Data Pre-Processing . 15

4.3 Network Initialization . 16

4.4 Training . 18

4.5 From Training to Deployment . 20

4.6 Output Neurons and Classification 20

4.7 Network Optimization . 21

Chapter 5 Preliminary Data . 22

5.1 No Hidden Layer, One Output Neuron 22

5.2 Hidden Layer, One Output Neuron 23

5.3 No Hidden Layer, 10 Output Neurons 24

vii

5.4 No Hidden Layer, Multiple Output Neurons per Class 25

5.5 Hidden Layer, Multiple Output Neurons per Class 25

Chapter 6 Methodology . 29

6.1 Rate-Based ANN . 29

6.2 SNN . 32

Chapter 7 Results . 35

7.1 Rate-Based ANN Results . 35

7.2 Increasing Training Sample Size for SNN 36

7.3 SNN Optimizations . 37

7.4 SNN Results . 37

Chapter 8 Conclusion and Discussion 39

Bibliography . 41

Appendix A Derivation of Neuron Gradient 45

Appendix B SNN Design Decisions 47

B.1 ANN Breakdown . 47

B.2 Value Checks . 48

viii

List of Tables

Table 3.1 Summary of Related Work . 13

Table 4.1 Example of output from SNN Output Neurons 21

Table 5.1 Summary of Methods Used to Maximize Testing Accuracy 26

Table 5.2 Testing Parameters Used During the Design Process 28

Table 7.1 Rate-based ANN Results . 35

Table 7.2 SNN Results . 38

ix

List of Figures

Figure 2.1 Common Neural Network Topologies 3

Figure 2.2 Basic Neuron Structure . 4

Figure 2.3 Graph of Sigmoid Function . 5

Figure 2.4 A Neuron in a SNN . 5

Figure 2.5 Examples of digits in the MNIST dataset 8

Figure 3.1 Fully-Connected Unlayerd Neural Network Topology 10

Figure 3.2 IBM TrueNorth . 12

Figure 4.1 SNN Neuron Structure . 15

Figure 4.2 The Distribution of +1 and -1 Synapse Strengths 17

Figure 5.1 SNNs with Only One Output Neuron 23

Figure 5.2 Effect of Multiple Output Neurons per Digit Class, No Hidden Layer 27

Figure 5.3 Full SNN with Eight Output Neurons Per Digit Class 27

Figure 6.1 Testing Accuracy Trend for 6-bit Fixed Point 31

Figure 7.1 Increasing Training Sample Size for SNN 36

Figure 7.2 SNN Optimizations . 38

x

List of Algorithms

1 Rescaling Input Data . 16

2 Error Propagation to Hidden Layer 20

3 Random Sampling . 21

4 Learning Rate Decay . 33

5 Check for Special Values of out_n . 48

6 Check for Special Values of hid_var 48

xi

List of Abbreviations

ANN .Artificial Neural Network

ASIC . Application Specific Integrated Circuit

BNN . Binarized Neural Network

CDF . Cumulative Distribution Function

CNN . Convolutional Neural Network

CPU . Central Processing Unit

DNN . Deep Neural Network

FPGA . Field Programmable Gate Array

GPGPU . General-Purpose Graphical Processing Unit

GPU . Graphics Processing Unit

RAM . Random Access Memory

SNN . Spiking Neural Network

STDP . Spike Time Dependent Plasticity

xii

List of Symbols

S(x) Sigmoid solution of input x

x Network Input

i Input Node/Neuron Index

j Target Neuron Index

Ij Summed Input to Neuron j

xi Binary Spike State of Input Node/Neuron i

x̃i A Continuous Value in Range [0,1] Representing xi

cij Binary Synaptic Connection Between Node/Neuron i and Neuron j

c̃ij A Continuous Value in Range [0,1] Representing cij

sij Synaptic Strength Between Node/Neuron i and Neuron j, +1 or -1

bj Bias Term for Neuron j

nj Binary Neuron j Output

ñj A Continuous Value in Range [0,1] Representing nj

µj Gaussian Mean of Neuron j’s Summed Input

σ2
j Gaussian Variance of Neuron j’s Summed Input

k Class of Output

yk Binary Class Label

pk Probability the Average Spike Count for Class k is Greater Than 0.5

a Learning Rate

erf Error Function

xiii

Chapter 1

Introduction

Interest in artificial neural networks (ANNs) for tasks such as computer vision and im-

age, video, and audio classification has increased in recent years. However, ANNs are

expensive in terms of computing and memory resources across all platforms used for

deployment: Central Processing Units (CPUs), Graphics Processing Units (GPUs),

Field Programmable Gate Arrays (FPGAs), and Application-Specific Integrated Cir-

cuits (ASICs). CPU and GPU implementations are aided by libraries and frame-

works to be as efficient as possible in terms of computing time and resource manage-

ment. Some popular tools include NVIDIA’s cuDNN [12], TensorFlow [31], Torch [34],

Caffe [4], and Theano [32]. ASICs are designed to have all necessary resources for

a narrow range of ANNs. This limitation on network type and topology can make

an ASIC cost prohibitive for research purposes. ANN resource demands are most

noticeable on FPGAs. As a mobile embedded platform, FPGAs have the most lim-

ited computing and memory resources. Even though ANNs have been implemented

on FPGAs since 1992 [11] and FPGAs have grown in size and amount of resources,

these networks generally have fewer neurons and layers than those deployed on CPUs,

GPUs, and ASICs.

One way FPGAs can make efficient use of available resources and make room

for the largest possibly network is to reduce data precision used within an ANN,

which can be arbitrarily set. Reduced numerical precision poses to significant ad-

vantages: decreased memory needed for a single value and smaller multipliers for

the multiply-accumulate operations inherent to ANNs. These benefits help to in-

1

crease performance and reduce power consumption of FPGAs and ASICs alike. The

minimum precision required by a neural network varies depending on type and de-

sired application, requiring some amount of experimentation to determine the exact

precision.

The smallest possible data precision is 1-bit that can only communicate informa-

tion with zeros and ones. An example of neural network using this extreme is the

Spiking Neural Network (SNN). Until IBM’s TrueNorth ASIC [16] [13], SNNs had

not been considered for use in machine learning due to lack of training methods that

suited with binary neural network. IBM devised a unique training algorithm for SNNs

that uses the familiar backpropagation method of learning. The 1-bit needed for data

eliminates hardware multipliers on FPGAs since multiply-accumulate operations are

replaced by simple accumulates, uses a simpler neuron activation function, and lends

itself to a simpler neuron interconnect. However, these benefits come at a cost. SNNs

generally have more neurons than comparative ANNs that use higher data precisions.

This trade-off has not been explored, leaving in question if the resource savings of

SNNs outweighs the cost of additional neurons.

In order to determine if the SNN trade-off is beneficial, this thesis estimates the

FPGA storage requirements for synapse weights of a rate-based ANN and a SNN

that achieve a 90% or comparable testing accuracy for the MNIST data set [23].

There are currently no publicly available tools for training SNNs, so first we develope

an algorithm based on IBM’s backpropagation technique [13] presented with their

TrueNorth ASIC while keeping FPGA architecture in mind. We conclude that the

SNN requires so many more neurons than a comparable ANN using higher data

precision to negate the resource savings signified by the 1-bit data precision.

2

Chapter 2

Background

2.1 Artificial Neural Networks

Artificial neural networks (ANNs) are a fundamental algorithm in machine learning

most commonly used for classification, e.g. pattern recognition. The theory con-

cerning the structure, usage,and training of ANNs has become well understood after

several decades of research, but researchers have not been able to deploy the net-

works until recently due to the high computational costs associated with training the

networks. The introduction and rapid advancement of general-purpose graphical pro-

cessor units (GPGPUs) and field programmable gate arrays (FPGAs) have allowed

the widespread use of ANNs.

(a) Feed Forward Neural Network Topology (b) Recurrent Neural Network Topology

Figure 2.1: Common Neural Network Topologies

ANNs are primarily modeled as a graph consisting of interconnected neurons.

Each neuron accepts multiple inputs called synapses and gives a single value as output.

3

The chosen network topology must be tailored to the desired application and training

algorithm to be used. Commonly used topologies are acyclic and cyclic, which are

referred to as "feed forward" and "recurrent" networks, respectively, seen in Figure

2.1.

Figure 2.2: Basic Neuron Structure

Generally, each neuron uses the weighted sum of synapse values to compute a

continuous activation function f(x), Figure 2.2. The output from the function is

the neuron’s final output, either to subsequent neurons or the end of the network.

Continuous activation functions give results between 0 and 1, making them suitable

for both analog and digital functions. A popular activation function is the sigmoid

function, S(x) = 1
1 + e−x , which approaches 0 for negative input and approaches 1 for

positive input [30], see Figure 2.3. Implementing the sigmoid function on an FPGA

is nontrivial and typically requires a polynomial approximation.

2.2 Spiking Neural Networks

Neural networks have been separated into three generations. The first generation

contains the McCulloch and Pitts-type neurons whose output signals were set to zero

or one. Rate-based ANNs make up the second generation where continuous activation

functions give values between zero and one. The third and current generation is

timing-based ANNs (Spiking Neural Networks, SNNs) that store information in the

timing of spikes [18] and more closely model the behavior of biological neurons.

4

Figure 2.3: Graph of Sigmoid Function

Neurons in rate-based ANNs communicate with real numerical values created

by the activation functions, such as the sigmoid function discussed in the previous

section. Timing based networks communicate with spikes carried on the synapses,

where the frequency and spacing of the spikes convey the necessary information.

Spikes are typically represented with ones and zeros are used in the absence of a

spike. This behavior closely resembles biological neurons. Each neuron collects signals

from surrounding neurons that change the ionic level (or membrane potential) in the

neuron. Once the level reaches a threshold, the neuron fires and transmits a signal

downstream in the system, demonstrated in Figure 2.4.

Figure 2.4: A Neuron in a SNN

In order to model the membrane potential of biological neurons, each neuron

5

in a SNN maintains and updates internal state with a neuron update function. The

function combines the weighted pulses arriving on the synapses with the current state

and produces a series of spikes to send downstream. Several update functions exist,

each with varying degrees of compatibility with biological neurons and associated

computational costs [27]. The update function has to be chosen with care since it

will greatly impact the SNN’s performance, implementation, and training method.

Popular choices are the "leaky integrate ad fire," Hodgkins-Huxley, and Izhikevich

models [21].

2.2.1 Training SNNs

Rate-based ANNs are typically trained with gradient descent, a method that can-

not be directly applied to SNNs due to the discontinuous-in-time nature of spiking

neurons. While training methods for SNNs are not as well developed as those for tra-

ditional ANNs, there are several supervised and unsupervised approaches available.

One unsupervised approach that has received a lot of attention recently is Spike Time

Dependent Plasticity (STDP). This method searches for relationships between firing

neurons and adjusts the weights to strengthen those relationships [18]. Supervised

training methods include [22]:

• SpikeProp [2],

• ReSuMe [29],

• statistical methods that optimize synapse weights to maximize the likelihood

of firing at the desired times [15],

• linear algebra methods where the approximate target firing patterns are deter-

mined from the input patterns and solve for the weights using iterative meth-

ods [5],

6

• evolutionary methods [1], and

• spike-based Hebbian methods where specific neurons are associated with train-

ing samples. The weights of the neurons are adjusted so that the neuron fires

when its corresponding training sample is given to the network [24].

There is an emerging approach that uses probabilistic backpropagation to bridge

the gap between gradient descent for traditional ANNs and the discontinuous-in-time

nature of spiking neurons. Probabilistic backpropagation uses probabilities of events

occuring, such as a neuron firing, during training then converts the probabilities to

binary or trinary values for run time. IBM used this method for digit classification on

their TrueNorth chip [13]. Probabilistic backpropagation has also been used to train

fully connected networks with binary neurons and binary or trinary synapses [38] [8].

2.3 Binnarized Neural Networks

There is a neural network that is similar to an SNN called a Binarized Neural Network

(BNN) that uses binary weights and activations at run time [9] [35] [10]. Values are

typically constrained to -1 and +1, similar to SNNs restriction to zero and one. For

both networks, this limitation replaces multiply-accumulate operations with simple

accumulations, saving space and power in hardware implementations.

While BNNs and SNNs behave similarly on hardware, they are implemented dif-

ferently and for varying reasons. BNNs are inteded to reduce the precision of Deep

Neural Networks (DNNs), specifically Convolutional Neural Networks (CNNs), for

deployment on FPGAs, which are known to perform better when using binary op-

erations over floating point [35]. SNNs are binary by nature and are not a means

to translate DNNs into low precision. Communicating via spikes easily translates to

using ones to indicate a spike and zeros otherwise. With this in mind, SNNs cannot

be trained with methods used for DDNs like a BNN can with the necessary consid-

7

(a) Zero (b) One (c) Two (d) Three (e) Four

(f) Five (g) Six (h) Seven (i) Eight (j) Nine

Figure 2.5: Examples of digits in the MNIST dataset

erations for binarization included during training. SNNs represent a biological brain

and keep an internal state to replicate the ionic level of a neuron to do so in many

implementations. BNNs do not keep such a state.

2.4 MNIST Dataset

In a collaborative effort, LeCun, Cortes, and Burges created the MNIST dataset of

handwritten digits [23]. There is a training set of 60,000 examples and a testing

set with 10,000 examples, all of which have been normalized with respect to size

and centered in a 28x28 pixel image. The MNIST dataset is beneficial to use when

exploring various learning techniques and pattern recognition methods while desiring

to use real-world data because there is minimal effort needed to preprocess and format

the data into usable files. A sample of the MNIST dataset is shown in Figure 2.5.

8

Chapter 3

Related Work

While this thesis does not deploy a neural network on an FPGA or ASIC, we want to

know how networks perform on each platform and compare estimated resource usage

of rate-based ANNs and SNNs as if they are to be deployed on an FPGA.

3.1 FPGA-Based ANNs

The first published work of an FPGA-based ANN occured in 1992 [11] [39] where

the authors used a feed forward network with one hidden layer. Cox and Blanz

used 8-bit integer synapse weights and had to support 224 8-bit integer multiplies

per cycle [11]. The authors minimized resource usage to allow for the largest ANN

possible to fit on the FPGA by implementing the multipliers as single-input fixed-

multipliers. These new multipliers had constant weights encoded into their design. In

this implementation, each synapse is associated with a specific multiplier, meaning

that it can only support ANNs with synapses less than or equal to the maximum

number of possible multipliers. This limitation of multipliers on synapses greatly

impairs the size of ANNs that can be implemented.

It has been mentioned before that recurrent ANNs and some SNNs both maintain

internal state. For recurrent networks to accomplish this, additional synapse con-

nections store data dependencies for later use, causing increased computation time

during training and deployment. Recent work has been conducted on FPGA-based

recurrent neural networks, applied to natural language processing [25]. In this work,

the recurrent connections occur in the hidden layer as seen in Figure 2.1b. Training

9

Figure 3.1: Fully-Connected Unlayerd Neural Network Topology

this network used backpropagation through time to unfold the network over three

time steps that can then follow the typical training of feed forward networks.

A way to increase the size of an FPGA-based layered feed forward ANN is to

use layer multiplexing [20]. Layer multiplexing only implements the largest layer,

excluding the input layer, and gives each neuron the maximum number of inputs.

For example, a network structured with eight input neurons, five hidden neurons,

and three output neurons would be implemented using five neurons with eight inputs

each. The single layer is multiplexed by a control block to execute the behavior of

all layers of the network. This method allowed Himavathi et. al. to implement 31

neurons that only used 64% of the available slices on the Xilinx XCV400hq240.

3.2 FPGA-Based SNNs

Thomas and Luk designed a SNN with 1,024 neurons arranged in a fully-connected

unlayered configuration [33] seen in Figure 3.1. The RAM (Random Access Memory)

holds synapse weights on-chip in a 1,024 element by 36-bit array, requiring 1,024 clock

cycles just to read weights and complete calculations. Performance of the design was

evaluated using synthetic workloads instead of an application. Thomas and Luk found

a range of 35% slow down to a 17% speedup when comparing the FPGA SNN to a

GPU implementation due to the varying firing activity generated by the synthetic

workload.

10

The primary limitation to SNNs on FPGAs is space, i.e. how many neurons can

fit on the FPGA device? Thomas and Luk were able to fit 1,024 neurons on their

device with careful planning [33] but this is not enough for sufficiently large-scale

SNNs. Recent research has been focused on creating a better neuron architecture in

order to improve the scalability of FPGA-based SNNs [37]. Wan et al. developed

an efficient neuron architecture that uses a sharing mechanism at the synapse and

neuron levels to reduce the silicon area and resources occupied by each neuron.

At the center of Wan et al.’s design is a neuron computing core that emulates

the synaptic behavior within the neuron [37]. Each neuron block has a computing

core shared by multiple synapses connected to the neuron. To complete the efficient

neuron architecture, the neuron block is enclosed in a layer module with a RAM, a

decoder, a controller, and a packet generator. A layer module has multiple neurons

associated with it and all neurons share the neuron block where the computations

take place. With this sharing mechanism in the architecture, Wan et al. were able

to accommodate up to 181 neurons in each layer module, totalling 3,982 neurons on

the FPGA [37].

3.3 ASIC-Based SNNs

One of the recent chips that implements SNNs is the IBM TrueNorth [16] [13] [6]. The

architecture of the chip is an array of neural cores arranged in a 64x64 square. Each

core contains 256 neurons, which brings a total of 220 neurons on the TrueNorth, and

has 256 inputs and 256 outputs, equaling 65,536 synapses per core. The TrueNorth

is able to achieve such high density because it is an ASIC, which typically have 10x

more density that FPGAs.

Esser et al. describe how they train the SNN for the IBM TrueNorth chip using

backpropagation in [13]. Spikes and discrete synapses are treated as continuous prob-

abilities, which are sampled to create one or more networks that are merged together

11

Figure 3.2: IBM TrueNorth

using ensemble averaging. They tested the training method with the MNIST dataset

and were able to achieve 99.42% accuracy in a high performance network and 92.7%

accuracy in a high power efficiency network.

The Google TPU [19], Nvidia Volta [36], SpiNNaker [17] [14], DianNao [7], and

Darwin [26] are other platforms and co-processors working to implement SNNs on a

large scale to meet research needs.

12

Table 3.1: Summary of Related Work

FPGA-based ANNs FPGA-based SNNs ASIC-based SNNs
Source [11] [20] [25] [33] [37] [13]
Number of
Neurons

30 31 1024 Hidden 1024 3982 220

Network
Connectiv-
ity

Fully inter-
connected,
feedforward

Fully inter-
connected,
feedforward

Fully inter-
connected,
feedforward

Fully con-
nected

Fully inter-
connected,
feedforward

Each core
is fully con-
nected but
sparse con-
nections
between
cores.

Number of
Synapses

224 130 10,836,992 1, 0242 398,200 intra-core:
64*64*65536

Platform 9U VME card Xilinx
XCV400hq240

Xilinx Vir-
tex6 LX760

Xilinx
Virtex5
xc5vlx330t

Xilinx
XC7Z020

IBM
TrueNorth

13

Chapter 4

SNN Training Algorithm

Although training tools for rate-based ANNs are relatively common, there are cur-

rently no off-the-shelf training tools for SNNs. As a result, part of this thesis was

to develop a training tool for the SNN based on IBM’s methods for the TrueNorth

chip [13] in Matlab. To our knowledge, IBM has not released a library for their tech-

nique to be used by researchers. Most of the details of this chapter come from [13] but

there were some aspects of the IBM SNN training implementation that were unclear

or not fully specified so we have detailed everything here to show the full training

process. Our recreation targets FPGA boards as the deployment platform instead

of being restricted to the TrueNorth, allowing for a broader range of neural network

topologies.

Our SNN uses zeros and ones for most values: inputs, synapse connections, and

outputs; one value, the synapse strength, can be -1 or +1. In order to train this type

of network, we have to use probablistic backpropagation. This requires a separate

training network that uses probabilistic interpretations of events; we focus on using

probabilities of a value being one. These probabilities are then translated to zeros

and ones when creating the deployment network that would be be used on the desired

platform.

14

4.1 Neuron Model

Each neuron in the network sums its input using Ij = ∑
x
xicijsij+bj and the activation

function uses a history-free thresholding equation

nj =

1 if Ij > 0,

0 otherwise

,

where xi is the input to the neuron, cij indicates if the synapse is connected, sij is

the synaptic strength, and bj is the bias term, to determine output. Figure 4.1 shows

the neuron structure.

Figure 4.1: SNN Neuron Structure

4.2 Data Pre-Processing

In [13], IBM briefly mentions rescaling the input image data into a continuous value

in the range [0,1] without detailing how the rescaling is completed. Dr. Brownlee

describes two methods for scaling data, normalization and standardization [3]. Nor-

malization rescales the input to the range [0,1] while standardization centers data

distribution on 0 and sets standard deviation to 1. Based on these definitions, it

appears that IBM used normalization to rescale the MNIST dataset.

Normalization requires the minimum and maximum values of each attribute; in

the MNIST dataset, the attributes are the individual pixels in the 28x28 pixel images.

15

The pixels of an image are arranged in a single row with 784 attributes total and a

training set has an arbitrary number of images up to 60,000. The result is a matrix

where the number of rows is the number of images in the set and the number of

columns is consistently 784. Performing Matlab’s min and max functions on the

matrix gives a row vector of the minimum and maximum value of each column (pixel),

respectively. Algorithm 1 shows how each scaled value is calculated, resulting in

a matrix where the dimensions remain as the number of training images by 784.

Normalization is also performed on the full set of testing images.

Algorithm 1 Rescaling Input Data
1: %Note: min and max row matrices are generated prior to the nested for loops
2: for each row in matrix, r do
3: for each column, c do
4: if max(c) == 0 then
5: scaled_value(r,c) = 0
6: else
7: scaled_value(r,c) = (value(r,c) - min(1,c))/(max(1,c) - min(1,c))
8: end if
9: end for

10: end for

4.3 Network Initialization

This thesis used a fully inter-connected feed forward topology with one hidden layer.

In order to train this network with backpropagation, continuous values have to be

used for the properties to be learned, namely the weight of each synapse. Part of the

weight is represented as synapse strength, either -1 or +1, that is established before

training begins and remains constant throughout the process. The strengths are set

up as a matrix for the hidden and output layers with the neurons in each layer as

the rows and the input synapses to each neuron as the columns. We assume an even

number of neurons per layer so that a neuron can have an equal number of -1 and

+1 synapse strengths. For example, a network with two input nodes, four hidden

16

Figure 4.2: The Distribution of +1 and -1 Synapse Strengths

neurons, and two output neurons will look like Figure 4.2. The synapse connections

are represented by the solid and dashed lines, where a solid line indicates a synaptic

strength of +1 and a dashed line shows a strength of -1. Because of our restriction to

even numbers of neurons per layer, Figure 4.2 shows how each neuron has an equal

number of +1 and -1 strengths coming in and going out.

The rest of a synapse weight is the connection, c. During training, connection

is a probability initialized from a uniform random distribution over the range [0,1]

multiplied by 0.1 and interpreted as the probability of the connection being one.

Connection probabilities are also setup in a matrix with the same dimensions as the

corresponding synapse strength matrix.

17

4.4 Training

4.4.1 Input

The matrix generated from pre-processing the MNIST training images is used as input

to the training network. The normalized values are interpreted as the probability of

the pixel being 1 in the deployment network. There are input nodes in the network

that only pass the normalized values of a single image to the hidden layer. Since

the network topology is fully inter-connected, each hidden neuron receives all input

values. Subsequently, input to each output neuron is the output from all hidden

neurons as seen in Figure 2.1a.

4.4.2 Forward Pass

Based on the inputs, the probability of each neuron in each subsequent layer firing

is calculated as a function of the neuron’s synaptic connection probabilities using

a Cumulative Distribution Function (CDF) of a Gaussian. Each synapse between

target neuron j and all input nodes or neurons i has both a synaptic probability of

being connected, c̃ij, and synapse strength, sij. x̃i is the probability of the input

being 1. Mean and variance are used as parameters to determine if a neuron fires:

µj = bj +
∑
i

x̃ic̃ijsij

σj
2 =

∑
i

x̃ic̃ij(1− x̃ic̃ij)sij2

The probability of a neuron firing is derived using the complimentary CDF of a

Gaussian:

ñj = 1− 1
2

[
1 + erf

(
Θ− µj√

2σj2

)]

where erf is the error function and Θ = 0.

18

4.4.3 Backward Pass

The backward pass adjusts the synapse connection probabilities using the gradient

descent of a log-loss function:

E = −
∑
k

[yklog(pk) + (1− yk)log(1− pk)]

where, for class k, yk is the binary label indicating if this is the correct class of the

input image and pk is the probability that the average spike count for k is greater

than 0.5 (ñj with Θ = 0.5). The partial derivative of the loss function with respect to

the synapse connection probabilities c̃ij is used to find the gradient at each synapse.

It is computed using the chain rule

∂E

∂c̃ij
= ∂E

∂ñj

∂ñj
∂c̃ij

,

shown in Appendix A. The training algorithm then calculates the change in the

synapse connection probabilities at each neuron:

∆c̃ij = −a ∂E
∂c̃ij

,

where a is the learning rate.

Using the gradient from the log-loss function only works for the output layer since

we know what each neuron should fire. For the hidden layer, the training algorithm

has to backpropagate the output neuron errors through summations, shown in Algo-

rithm 2. The summation replaces the ∂E
∂ñj

, represented by e_n, portion of the gradient

descent calculation. n_mu and mu_c correspond to ∂ñj
∂µj

and ∂µj
∂c̃ij

, respectively. Algo-

rthm 2 was developed by comparing the equations used for the SNN to those used in

the traditional rate-based ANN we developed, shown in Appendix B.

The bias of each hidden and output neuron is also trained using gradient descent:

∂E

∂bj
= ∂E

∂ñj

∂ñj
∂bj

and ∆bj = −a∂E
∂bj

.

More details are given in Appendix A.

19

Algorithm 2 Error Propagation to Hidden Layer
1: for each hidden neuron, l do
2: sum = 0
3: for each output neuron, n do
4: % Note: out_bias = e_n * n_mu and out_c̃ = e_n * n_mu * mu_c
5: % from the calculation of the gradient descent at the output layer
6: sum = sum + (out_bias(n,l) * out_c̃(n,l) * out_strengths(n,l))
7: end for
8: n_mu = (1/(σl

√
2π)) * exp(-(Θ-µl)2/(2σ2

l))
9: mu_c = input_data .* hid_strengths(l)

10: hid_c̃(l) = sum * n_mu * mu_c
11: hid_bias(l) = sum * n_mu
12: end for

Connection probabilities and bias terms are then checked to determine if they

need to be snapped to their appropriate ranges, [0,1] and [-255,255], respectively.

4.5 From Training to Deployment

The training algorithm works on a training network where each synapse has been

assigned a connection probability. In order to create the network that is deployed on

hardware, the deployment network, each synapse connection in the training network

is randomly sampled to determine if the synapse is zero or one in the deployment

network, as seen in Algorithm 3. If a higher accuracy is desired, multiple deployment

networks can be created, called ensembles, and operated in parallel. Bias terms can

have fractional portions during training that must be dropped for the deployment

network, we used the floor of each number.

4.6 Output Neurons and Classification

Each class label, 0 to 9, is associated with multiple output neurons and the prediction

is based on the average of all neurons assigned to each label. This thesis used eight

neurons per class, totalling 80 output neurons. After the average for each class is

calculated, the highest average determines the prediction. An example is shown in

20

Algorithm 3 Random Sampling
1: for each row, r do
2: for each column, c do
3: y = 0.1 * rand
4: if y <= probability(r,c) then
5: spike(r,c) = 1
6: else
7: spike(r,c) = 0
8: end if
9: end for

10: end for

Table 4.1 where the digit classes are listed at the top of the table, the output from

all 80 neurons are listed in the middle, and the average of each class is listed at the

bottom. Based on the averages, the prediction in this example is digit 9.

Table 4.1: Example of output from SNN Output Neurons

Digit Classes 0 1 2 3 4 5 6 7 8 9
0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0

Output 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0

Average 0 0 0 0 1/2 1/8 0 0 0 3/4

4.7 Network Optimization

In an effort to achieve a high testing accuracy, we implemented momentum and

learning rate decay. Momentum is used only on the hidden layer neurons at a rate of

0.9. Our learning rate decay occurs on a fixed schedule starting with alpha equal to

0.1 and multiplying by 0.1 every 250 epochs. More details are given in Chapter 7.

21

Chapter 5

Preliminary Data

As mentioned in Chapter 4, IBM does not provide all details of their SNN training al-

gorithm in [13]. In order to fill in the missing information, we developed our training

algorithm in steps by starting with the simplest network configuration then progress-

ing to the full feedforward network. Each configuration builds on the previous one

and helped answer questions IBM had left open.

5.1 No Hidden Layer, One Output Neuron

The first SNN configuration only has the 784 input nodes and one output neuron.

The output neuron fires 1 if a zero digit image is given to the network and 0 otherwise.

We used this configuration to confirm the proper input image data rescaling method

and the proper bias update equation since these were the first two uncertainties we

came across. We had three possible rescaling options and two possible bias update

equations:

• Rescaling

– Normalization

– Standardization

– Averaging Each Pixel Across All Training/Testing Images

• Bias Update Equation

– ∆bj = −a ∗ ∂E
∂bj

where ∂E
∂bj

= 1

22

– ∆bj = −a ∗ (∂E
∂ñj
∗ ∂ñj
∂µj
∗ ∂µj
∂bj

) where ∂µj
∂bj

= 1

We concluded that normalization is the best way to rescale the input image data

and that ∆bj = −a∗(∂E
∂ñj
∗ ∂ñj
∂µj
∗ ∂µj
∂bj

), where ∂µj
∂bj

= 1, is the appropriate way to update a

neuron’s bias term. We also added the bias bounds check during training and dropped

the fractional bits from the bias terms during evaluation of the deployment SNN using

Matlab’s floor method. Figure 5.1a shows the resulting training and testing accuracies

of this configuration and Table 5.2 includes testing parameters such as the number

of epochs used during training this configuration and subsequent ones.

5.2 Hidden Layer, One Output Neuron

We next chose to add a hidden layer to the SNN, wanting to perfect the backward

pass and properly backpropagate the output error to the hidden layer. It was because

of this configuration that we compared ANN and SNN equations, seen in Appendix

B, to create Algorithm 2. With this algorithm, we were able to correctly perform

gradient descent on the hidden layer. Unfortunately, "not a number" values began to

appear in the SNN during training. This was due to zeros and ones as whole numbers

being assigned to variables instead of decimal values during training. We rectified

(a) No Hidden Layer (b) Hidden Layer

Figure 5.1: SNNs with Only One Output Neuron

23

this issue by checking for zero and one as special values, discussed in more depth in

Appendix B. Figure 5.1b shows the accuracies of this configuration.

5.3 No Hidden Layer, 10 Output Neurons

For this configuration, we took out the hidden layer again to focus solely on the

output layer. We added enough output neurons to have one for each digit class in

the MNIST dataset, 0-9. A neuron fires one if an image of its digit is presented to

the SNN and zero otherwise. The question we explored here is what do with the Σ

in E = −∑
k

[yklog(pk) + (1− yk)log(1− pk)], the log-loss function used to determine

the gradient at each synapse. The two scenarios that we explored:

• Derive the gradient at each synapse with the summation included and pk is

replaced by ñj:

∂E

∂ñj
= − 1

ln(10)
∑
k

[
yk

1
ñj

+ (1− yk)
1

ñj − 1

]
.

This would use the output of the specific neuron being analyzed, ñj, and the

binary class label of each output neuron, yk, that indicates whether the neuron

should have fired.

• Remove Σ and derive the gradient at each synapse such that it only focuses on

one neuron at a time, giving

∂E

∂ñj
= − 1

ln(10)

[
yj

1
ñj

+ (1− yj)
1

(ñj − 1)

]
.

We concluded that it made more sense to remove the Σ and use the second partial

derivative shown in the list. While the summation is important when determining the

overall error of the SNN, it is not necessary when calculating the error of one specific

neuron. More details are given in Appendix A. Figure 5.2a shows the accuracies

for this configuration, which at approximately 50% testing average leaves room for

improvement.

24

5.4 No Hidden Layer, Multiple Output Neurons per Class

The jaggedness seen in Figure 5.2a does not represent a learning curve typically ex-

pected for a neural network. We decided that there are two possible explanations, the

missing hidden layer or having only one output neuron per digit class. We chose to

test multiple output neurons first since IBM says they used multiple output neurons

per digit class to improve the prediction performance of the network [13]. The pre-

vious configuration only had one output neuron per digit class where the fist neuron

in the order of zero to nine to fire a 1 is used as the prediction. To quickly determine

the affect of multiple output neurons we added a second neuron to each digit class.

The prediction for each class becomes the average of all neurons assigned to the class

and the highest average is used as the network prediction. Our results are shown in

Figure 5.2b. The overall accuracy of the SNN improved but there is still jaggedness

in the learning that needs to be fixed.

5.5 Hidden Layer, Multiple Output Neurons per Class

In order to create the complete SNN we added the hidden layer to the previous con-

figuration, what became known as the full SNN. We started with 10 hidden neurons

and tested up to 512 to find the highest testing accuracy we could achieve with two

output neurons per class, 100 epochs, and 1,000 training samples. Table 5.1a shows

the tests and corresponding results. Since 512 hidden neurons did not improve signif-

icantly from 256 hidden neurons, we moved on to testing the impact of the number

of epochs and output neurons used per digit class with 512 hidden neurons, shown in

Tables 5.1b and 5.1c. At the end of these tests, we increased the number of hidden

neurons to 1,024 to ensure maximum accuracy. We had a SNN with 1,024 hidden

neurons, that learned over 1,000 epochs, used 1,000 training samples, and used eight

output neurons per digit class that had approximately 70% testing accuracy at the

25

Table 5.1: Summary of Methods Used to Maximize Testing Accuracy

Number
of Hidden
Neurons

Testing
Accuracy

10 10.36%
100 46.19%
256 53.91%
512 ~54%

(a) Testing Various
Amounts of Hidden
Neurons with Two Out-
put Neurons per Class,
100 epochs, and 1,000
Training Samples

Number of
Epochs

Testing
Accuracy

250 ~60%
500 60%
1,000 64% - 65%

(b) Testing Various
Numbers of Epochs with
Two Output Neurons
per Class, 512 Hidden
Neurons, and 1,000
Training Samples

Number
of Output
Neurons
per Class

Testing
Accuracy

4 69.25%
8 70.05%
16 ~70%
25 ~70%

(c) Testing Various
Numbers of Output
Neurons per Class with
512 Hidden Neurons,
1,000 Epochs, and 1,000
Training Samples

end of this phase. Figure 5.3 shows that the SNN now has the expected learning

curve.

26

(a) SNN with 10 Output Neurons, One Per Digit Class

(b) SNN with Two Output Neurons Per Digit Class

Figure 5.2: Effect of Multiple Output Neurons per Digit Class, No Hidden Layer

Figure 5.3: Full SNN with Eight Output Neurons Per Digit Class

27

Table 5.2: Testing Parameters Used During the Design Process

Configuration
/Optimiza-
tion

No Hidden
Layer, One
Output Neuron

Hidden Layer,
One Output
Neuron

No Hidden
Layer, 10 Out-
put Neurons

No Hidden
Layer, Mul-
tiple Output
Neurons per
Class

Hidden Layer,
Multiple Out-
put Nerons per
Class

Number of
Inputs

784 784 784 784 784

Number of
Hidden Neu-
rons

N/A 10 N/A N/A 1,024

Number of
Epochs

250 50 100 250 1,000

How Often
Evaluated
(Epochs)

10 1 10 10 10

Number of
Training
Samples Used

100 100/1,000 100 100/60,000 1,000

Number of
Output Neu-
rons per
Class

N/A N/A 1 2 8

Number of
Testing Sam-
ples

10,000 10,000 10,000 10,000 10,000

28

Chapter 6

Methodology

This thesis performs a direct comparison of hardware efficiency between rate-based

ANNs and SNNs for a benchmark data set, MNIST [23]. There are recent efforts to

develop algorithms for training SNNs to perform machine learning tasks. When used

for machine learning, SNNs offer the potential advantages of not requiring multipliers

and reductions in storage for synapse weights and intermediate results. Despite this,

there are currently no direct comparisons in hardware efficiency between rate-based

ANNs and SNNs. For the comparison, two neural networks were trained and eval-

uated, one rate-based ANN and one SNN. The network parameters were adjusted

such that both achieved comparable testing accuracy. Afterward, we estimated their

hardware cost according to their corresponding synapse storage requirements.

6.1 Rate-Based ANN

In order to compare hardware efficiency, we designed the smallest fully connected feed

forward rate-based ANN with one hidden layer that achieves a 90% testing accuracy.

We are targeting embedded deployment platforms where space is a significant limiting

factor for both on-chip and off-chip memory storage. For this thesis, the amount of

space, in bits, needed to store synapse weights will be used to approximate the size

of a network. This approximation does not fully represent hardware resource usage,

especially for floating point data precision since they require extensive hardware to

function. The total number of bits for a fully connected network with one hidden

layer is determined with the number of input nodes, the number of neurons in the

29

hidden layer, the number of output neurons, and the number of bits used to store

the weights: TotalBitsrate = ((input ∗ hidden) + (hidden ∗ output)) ∗ bitWidth. The

MNIST images are 28x28 pixels, giving us the number of input nodes the network

requires. We will only use one output neuron per class label (digit), giving us a total

of 10 output neurons. This leaves the number of hidden neurons and the bitWidth

unknown. We experimentally found the combination of hidden neurons and bitWidth

that achieved 90% testing accuracy while using as few total bits as possible, deter-

mined by TotalBitsrate = ((784 ∗ hidden) + (hidden ∗ 10)) ∗ bitWidth.

6.1.1 Testing Accuracy Criteria

To determine if a rate-based ANN successfully achieved 90% testing accuracy we

looked at the testing accuracy reported for the 40th and 50th epochs, out of 50 total.

If the average of the two values was greater than or equal to 90% for at least three

of five tests, the network was determined to have satisfied the testing accuracy goal.

6.1.2 Floating Point Precision Implementation

Testing double and single floating point precisions were the least complicated tests

we performed. Double precision is Matlab’s default precision so we did not have to

make any considerations during training calculations. Single precision only needed

to be type-casted at the initialization stage and during training.

6.1.3 Fixed Point Precision Implementation

Our fixed point precision implementation required significant modification from float-

ing point. We initially attempted training in fixed point but encountered difficulties.

The results reported in Table 7.1 used double floating point during training and con-

verted to fixed point during network evaluation. We knew there would be a reserved

sign bit in our fixed point precision, some number of bits reserved for the whole

30

Figure 6.1: Testing Accuracy Trend for 6-bit Fixed Point

number portion, and the remaining bits of the chosen precision would be used as the

fractional portion.

To determine the necessary number of bits needed for the whole number portion,

we looked at the minimum and maximum values synapse weights can reach during

training. We looked at synapse weight values because this thesis is determining the

storage requirements for these numbers and wanted to preserve the learned values

as much as possible. The smallest learned synapse weight we observed was -30.2

and the largest was 19.7. Since 30 is the largest whole number we saw, we reserved

ceiling(log2(30)), or five, bits for the whole number portion of our fixed point preci-

sion.

We then tested 6-bit fixed point as the smallest precision we can use, one bit for

the sign and five bits for the whole number with no fractional bits. We wanted to know

if you could leave out the fractional portion of the synapse weights without penalty.

Unfortunately, there is a penalty. When 6-bit fixed point was used with 64 or more

hidden neurons, the testing accuracy began to fall compared to what was found when

31

using smaller amounts of hidden neurons. Figure 6.1 shows this behavior. Because of

these results, we decided to enforce at least one bit for the fractional portion, making

7-bit fixed point the smallest precision we tested and reported.

6.2 SNN

After the smallest possible rate-based ANN was found, we designed a comparable

SNN discussed in detail in Chapters 4 and 5. It has the same fully connected feed

forward topology as the ANN with 784 input nodes from the 28x28 pixel images.

Due to the spiking nature of the network output, we had to use eight neurons per

digit class, resulting in 80 total output neurons. Since the synapse weights are only

stored using one bit, bitWidth is not taken into account for the total bits used for the

SNN. Instead, multiple deployment SNNs, called ensembles, can be used to increase

testing accuracy so the number of ensembles needed is measured instead. The number

of hidden neurons required to achieve 90% or comparable testing accuracy is also

unknown. The total number of bits required by the SNN will be determined by

TotalBitsspike = ((784 ∗ hidden) + (hidden ∗ 80)) ∗ ensembles.

6.2.1 Testing Accuracy Criteria

To determine if a SNN configuration successfully achieved the target testing accuracy,

we looked at the accuracy reported for the 900th and 1, 000th epochs, out of 1,000

total. If the average of these two values was greater than or equal to the target, the

network was decided to have satisfied the testing accuracy goal. We did not require

that the accuracy be reached at least three of five tests.

6.2.2 Optimizations

After Chapter 5 we had a full SNN that achieved approximately 70% testing accuracy.

We investigated the optimizations discussed below and implemented those that helped

32

Algorithm 4 Learning Rate Decay
1: %Note: alpha is initialized to 0.1 and epoch starts at 1
2: if epoch % 250 == 0 then
3: alpha = alpha * 0.1;
4: end if

increase the SNN testing accuracy closer to our 90% goal.

Learning Rate Decay

This is the first optimization we explored since its implementation had the least

impact on the code, only requiring a simple if statement shown in Algorithm 4. We

used IBM’s method for learning rate decay which followed "a fixed schedule across

training iterations starting at 0.1 and multiplying by 0.1 every 250 epochs [13]".

Momentum

The next optimization we looked at was momentum. IBM reported they used a

momentum of 0.9 [13] so we did also without experimenting with other values. Mo-

mentum is useful because of its smoothing affect on the learning process, due to the

fact that momentum helps a network extricate itself from local minima that can occur

during training [28].

Mini Batching

After momentum, we looked into implementing mini batches. The SNN had been

designed using stochastic gradient descent up to this point and we investigated mini

batches since IBM reported using it for their TrueNorth SNN application [13]. Suc-

cessfully implementing mini batches would reduce the number of times the network

was updated and overall calculation time. However, adding mini batches to the SNN

was error prone and the effort to debug quickly proved to be intensive. We decided

to pursue 90% testing accuracy by other means.

33

Ensembles

The last optimization we added to the SNN was ensembles. This is implemented in the

deployment network where a number of networks, the desired number of ensembles,

is created by independently sampling the training network. Each ensemble evaluates

input data and the output from all of them are averaged together before determining

the prediction, similar to the example in Table 4.1.

34

Chapter 7

Results

We designed a rate-based ANN and SNN with matching topologies. Both have 784

input nodes (28x28 pixel images) fully connected to a hidden layer with some number

of neurons. The hidden layer is then fully connected to the output layer. Our rate-

based ANN has 10 output neurons, one for each digit, and our SNN has 80 total

output neurons, each digit has eight neurons assigned to it. Figure 2.1a shows the

general topology of these networks.

7.1 Rate-Based ANN Results

To determine the smallest possible rate-based ANN, we decided to pick the bit widths

we wanted to test then determine the number of hidden neurons needed to reach 90%

testing accuracy on the MNIST dataset. We tested double and single floating point

and a variety of fixed point precisions under 32 bits. These results are shown in Table

7.1.

Table 7.1: Rate-based ANN Results

bitWidth Minimum Hidden Neurons to
Achieve 90% Testing Accuracy TotalBitsrate

Double Floating Point 8 406,528
Single Floating Point 8 203,264
24-bit Fixed Point 8 152,448
16-bit Fixed Point 8 101,632
9-bit Fixed Point 8 57,168
8-bit Fixed Point 8 50,816
7-bit Fixed Point 11 61,138

35

Figure 7.1: Increasing Training Sample Size for SNN

7.2 Increasing Training Sample Size for SNN

Considering that the MNIST dataset comes with 60,000 training samples, using less

than 10,000 is not ideal. However, throughout the process of developing our SNN

training algorithm, testing with 10,000 and 60,000 training samples failed. Learning

would progress normally then plummet. The accuracies would greatly oscillate as

well. This behavior is possibly a result of over learning so we decided to test various

training sample sizes until we reached the maximum amount we could use before

seeing a decline in testing accuracies. Figure 7.1 shows the results of these tests. The

overall testing accuracy of a test is determined by averaging the accuracies reported

at the 900th and 1, 000th epochs, out of 1,000 total, for 3,000 training samples and

beyond. Tests before 3,000 had their testing accurcay estimated from their graphs.

We concluded 7,500 training samples is the optimal amount to use for training our

SNN with 85.48% testing accuracy but this is short of our goal of 90% testing accuracy.

36

7.3 SNN Optimizations

Optimizations were added to the SNN as the training sample size was increased once

we noticed that the learning curve was still on an upward trajectory after 1,000

epochs starting at approximately 3,500 training samples. We anticipated that the

optimizations would cause the learning curve to plateau before the 1, 000th epoch.

7.3.1 Momentum

IBM did not elaborate on where they used momentum, on the hidden layer, output

layer, or both. After some experimentation with 1,024 hidden neurons, shown in

Figure 7.2a, we decided to only use momentum on the hidden layer.

7.3.2 Ensembles

We explored the affect of ensembles on a SNN with 1,024 hidden neurons and found

a small improvement in the testing accuracy when four ensembles were used during

deployment instead of only one, Figure 7.2b.

7.3.3 Learning Rate Decay

Including learning rate decay in the SNN training algorithm resulted in the jump in

testing accuracy between the 200th and 300th epochs seen in Figures 7.2a and 7.2b.

You can also discern a slight jump in testing accuracy between the 500th and 600th

epochs in these figures.

7.4 SNN Results

We were unable to reach 90% testing accuracy with our fully-connected feedforward

SNN. Table 7.2 shows the most successful configurations we were able to obtain for

one, two, three, and four ensembles. We attempted to minimize the number of hidden

37

(a) Momentum

(b) Ensembles

Figure 7.2: SNN Optimizations

neurons needed to reach 87% testing accuracy for four ensembles but smaller amounts

of hidden neurons resulted in decreased testing accuracy.

Table 7.2: SNN Results

Ensembles # Hidden Neurons Testing Accuracy TotalBitsspike
1 256 85.18% 221,184
2 512 86.42% 884,736
3 256 87.06% 663,552
4 1,024 87.05% 3,538,944

38

Chapter 8

Conclusion and Discussion

This thesis examined the hardware efficiency of a SNN trained with IBM’s probabilis-

tic backpropagation algorithm [13] with respect to a rate-based ANN. Since SNNs

do not require multipliers or transcendental activation functions, the purpose of this

thesis is to determine if these benefits outweigh the cost of increased neurons. For

the analysis, a SNN and rate-based ANN were trained and evaluated on the MNIST

dataset [23]. Network parameters, such as the number of hidden neurons, data preci-

sion, and ensembles, were adjusted until both networks achieved comparable testing

accuracy with 90% as the goal. Hardware efficiency was estimated by the number of

bits required to store synapse weights.

Based solely on the storage requirements for synapse values, the rate-based ANN

is more memory efficient than the SNN. The smallest rate-based ANN we found

that achieved 90% testing accuracy on the MNIST dataset used 8-bit fixed point to

represent synapse weights and only needed eight hidden neurons. This configuration

required 50,816 bits for storage. Comparatively, the highest testing accuracy we were

able to obtain for the SNN was 87% which required three ensembles, 256 hidden

neurons, and 663,552 bits for synapse value storage.

For the SNN, we noticed that some of the network parameters we tweaked during

experimentation had varying affects on the testing accuracy. In Chapter 5, we learned

that increasing the number of hidden neurons, epochs, and output neurons per class

improved testing accuracy up to a point, after which, there was no increase. In

Chapter 7, we explored the affects of a few neural network optimizations. Momentum

39

had the greatest impact by producing a smoother learning curve and only having

momentum on the hidden layer instead of both hidden and output layers gave a

higher testing accuracy. Learning rate decay had significant impact on the testing

accuracy by accelerating the learning. Ensembles was the least predictable parameter

we experimented with. It was not guaranteed that increasing the number of ensembles

would increase the testing accuracy. Increasing the number of hidden neurons was

not guaranteed to increase the testing accuracy either.

Storage requirements are not the only aspect of hardware that can be investigated

to determine which neural network is most hardware efficient. This thesis can be

extended in a future project to estimate the area of an FPGA implementation for

both a rate-based ANN and a SNN. An in depth look at the total hardware necessary

for both networks would give better understanding of the trade-offs between the two.

One important piece of hardware to compare is the multiplier. Binary networks

eliminate multiply-accumulate operations inherent to rate-based ANNs and therefore

eliminate hardware mulitpliers. This difference could provide a way for SNNs to be

more efficient than rate-based ANNs.

Another point of comparison for rate-based ANNs and SNNs is their activation

functions. SNNs only require an addition and a comparison while rate-based ANNs

need an estimation of a transcendental function. The implementation of the transcen-

dental function could cause a drop in hardware efficiency for the rate-based ANN.

40

Bibliography
[1] A. Belatreche, L. P. Maguire, M. McGinnity, and Q. X. Wu. A method for

supervised training of spiking neural networks. In Proc. IEEE Conf. Cybernetics
Intelligence Challenges and Advances, CICA, 2003.

[2] S. M. Bohte, J. N. Kok, and H. La Poutré. Spike-prop: error-backpropagation
in multi-layer networks of spiking neurons. Neurocomputing, 48(1):17–37, 2002.

[3] Jason Brownlee. How to scale machine learning data from scratch with python,
Mar 2018.

[4] Caffe. http://caffe.berkeleyvision.org/.

[5] Andrew Carnell and Daniel Richardson. Linear algebra for time series of spikes.
In Proc. 13th European Symposium on Artificial Neural Networks, 2005.

[6] Andrew S. Cassidy, Paul Merolla, John V. Arthur, Steven K. Esser, Bryan L.
Jackson, Rodrigo Alvarez-Icaza, Pallab Datta, Jun Sawada, Theodore M. Wong,
Vitaly Feldman, Arnon Amir, Daniel Ben Dayan Rubin, Filipp Akopyan, Em-
mett McQuinn, William P. Risk, and Dharmendra S. Modha. Cognitive com-
puting building block: A versatile and efficient digital neuron model for neurosy-
naptic cores. In IJCNN, pages 1–10. IEEE, 2013.

[7] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Oliver Temam. A high-throughput neural network accelerator. IEEE Micro,
35(3).

[8] Zhiyong Cheng, Daniel Soudry, Zexi Mao, and Zhen-zhong Lan. Training binary
multilayer neural networks for image classification using expectation backprop-
agation. CoRR, abs/1503.03562, 2015.

[9] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect:
Training deep neural networks with binary weights during propagations. In
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors,
Advances in Neural Information Processing Systems 28, pages 3123–3131. Curran
Associates, Inc., 2015.

41

[10] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. Binarized neural networks: Training neural networks with weights and
activatios constrained to +1 or -1. March 2016.

[11] C. E. Cox and E. Blanz. Ganglion - a fast field-programmable gate array im-
plementation of a connectionist classifier. IEEE Journal of Solid-State Circuits,
28(3):288–299, 1992.

[12] Nvidia’s cudnn. http://developer.nvidia.com/cudnn.

[13] Steve K Esser, Rathinakumar Appuswamy, Paul Merolla, John V. Arthur, and
Dharmendra S Modha. Backpropagation for energy-efficient neuromorphic com-
puting. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing Systems 28, pages 1117–
1125. Curran Associates, Inc., 2015.

[14] A. D. Brown et al. Spinnaker - programming model. IEEE Trans. on Computers,
64(6):1769 – 1782, 2015.

[15] Jean-Pascal Pfister et al. Optimal spike-timing-dependent plasticity for precise
action potential firing in supervised learning. Neural computation, 18(6):1318–
1348, 2006.

[16] Paul A. Merolla et al. A million spiking-neuron integrated circuit with a scalable
communication network and interface. Science, 345(6197):668 – 673, August
2014.

[17] Steve B. Furber, David R. Lester, Luis A. Plana, Jim D. Garside, Eustace
Painkras, Steve Temple, and Andrew D. Brown. Overview of the spinnaker
system architecture. IEEE Trans. on Computers, 63(12), December 2013.

[18] Ankur Gupta and Lyle N. Long. Hebbian learning with winner take all for spiking
neural networks. In Proc. International Joint Conference on Neural Networks,
2009.

[19] John L. Hennessy and David A. Patterson. Computer architecture: a quantitative
approach. Elsevier, 6 edition, 2019.

[20] S. Himavathi, D. Anitha, and A. Muthuramalingam. Feedforward neural network
implementation in fpga using layer multiplexing for effective resource utilization.
IEEE Transactions on Neural Networks, 18(3):880–888, May 2007.

42

[21] Eugene M. Izhikevich. Simple model of spiking neurons. IEEE Trans. on Neural
Networks, 14(6), 2003.

[22] Andrezej Kasinski and Filip Ponulak. Comparison of supervised learning meth-
ods for spike time coding in spiking neural networks. Int. J. Appl. Math. Comput.
Sci., 16(1):101–113, 2006.

[23] Y. LeCun, L. Bottou, and Y. Bengio an P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,
November 1998.

[24] Robert Legenstein, Christian Naeger, and Wolfgang Maass. What can a neuron
learn with spike-timing-dependent plasticity? Neural computation, 17(11):2337–
2382, 2005.

[25] Sicheng Li, Chunpeng Wu, Hai (Helen) Li, Boxun Li, Yu Wang, and Qinru
Qui. Fpga acceleration of recurrent neural network based language model. In
Proc. IEEE 23rd Annual International Symposium on Field-Programmable Cus-
tom Computing Machines, 2015.

[26] De Ma, Juncheng Shen, Zonghua Gu, Ming Zhang, Xiaolei Zhu, Xiaoqiang Xu,
Qi Xu, Yangjing Shen, and Gang Pan. Darwin: A neuromorphic hardware co-
processor based on spiking neural networks. Journal of Systems Architecture,
2017.

[27] Wolfgang Maass. Networks of spiking neurons: The third generation of neural
network models. Neural Networks, 10(9):1659–1671, 1997.

[28] Momentum and learning rate adaptation.
http://www.willamette.edu/~gorr/classes/cs449/momrate.html.

[29] Filip Ponulak. Supervised learning in spiking neural networks with ReSuMe
method. PhD thesis, Poznan University of Technology, 2006.

[30] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Pearson Publishing, 3rd edition.

[31] Tensorflow. http://www.tensorflow.org.

[32] Theano. http://www.deeplearning.net/software/theano/.

43

[33] David B. Thomas and Wayne Luk. Fpga accelerated simulation of biologically
plausible spiking neural networks. In 17th IEEE Symposium on Field Pro-
grammable Custom Computing Machines, 2009.

[34] Torch. torch.ch.

[35] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela Blott, Philip
Leong, Magnus Jahre, and Kees Vissers. Finn: A framework for fast, scalable
binarized neural network inference. In Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, FPGA ’17, pages
65–74, New York, NY, USA, 2017. ACM.

[36] Nvidia volta. http://images.nvidia.com/content/volta-architecture/pdf/volta-
architecture-whitepaper.pdf.

[37] Lei Wan, Yuling Luo, Shuxiang Song, J. Harkin, and Junxiu Liu. Efficient neuron
architecture for fpga-based spiking neural networks. In 2016 27th Irish Signals
and Systems Conference (ISSC), pages 1–6, June 2016.

[38] Jieyu Zhao, John Shawe-Taylor, and Max van Daalen. Learning in stochastic
bit stream neural networks. Neural Networks, 9(6):991 – 998, 1996.

[39] J. Zhu and P. Sutton. Fpga implementation of neural networks-a survey of a
decade of progress. In Proceedings of the 13th International Conference on Field
Programmable Logic and Applications, pages 1062–1066, 2003.

44

Appendix A

Derivation of Neuron Gradient

The probability of target neuron j firing is represented as P (nj = 1) ≡ ñj. ñj is the

complimentary Cumulative Distribution Function (CDF) of a Gaussian:

ñj = 1− 1
2

[
1 + erf

(
Θ− µj√

2σj2

)]

where erf is the error function and Θ = 0. The log-loss function is used since training

was observed by IBM to converge fastest with this approach [13],

E = −
∑
k

[yklog(pk) + (1− yk)log(1− pk)]

where, for class k, yk is the binary label indicating the presence of a class and pk

is the probability that the average spike count for k is greater than 0.5 (ñj with

Θ = 0.5). During training, the derivative of the loss function with respect to the

synapse connection probabilities c̃ij, where i is the input neuron index, is used to find

the gradient at each synapse. It is computed using the chain rule

∂E

∂c̃ij
= ∂E

∂ñj

∂ñj
∂c̃ij

.

In [13], IBM derived the right most fraction and concluded that

∂ñj
∂c̃ij
≈ ∂ñj
∂µj

∂µj
∂c̃ij

where
∂ñj
∂µj

= 1
σj
√

2π
e

−
(Θ−µj)2

2σj2
,

and
∂µj
∂c̃ij

= x̃isij.

45

IBM did not derive ∂E
∂ñj

in [13] so this derivation is included below where pk is replaced

with ñj of neuron j. Since only one neuron is being analyzed at a time, the summation

is dropped and yk becomes yj, the expected output of neuron j in the output layer.

∂E

∂ñj
= − ∂

∂ñj

∑
k

[yklog(pk) + (1− yk)log(1− pk)]

∂E

∂ñj
= − ∂

∂ñj
yjlog(ñj) + ∂

∂ñj
(1− yj)log(1− ñj)

∂E

∂ñj
= −yj

1
ñjln(10) + (1− yj)

1
(ñj − 1)ln(10)

∂E

∂ñj
= −yj

1
2.303

1
ñj

+ (1− yj)
1

2.303
1

(ñj − 1)

∂E

∂ñj
= − 1

2.303

[
yj

1
ñj

+ (1− yj)
1

(ñj − 1)

]

Putting everything together, the gradient at each synapse is

∂E

∂c̃ij
= − 1

2.303

[
yj

1
ñj

+ (1− yj)
1

(ñj − 1)

]
∗ 1
σj
√

2π
e

−
(Θ−µj)2

2σj2 ∗ x̃isij.

In [13], IBM makes a comment that "a similar treatment can be used to show that

[the] corresponding gradient with respect to the bias term equals 1" after deriving ∂µj
∂c̃ij

.

I took this to mean that

∂E

∂bj
= ∂E

∂ñj

∂ñj
∂µj

∂µj
∂bj

where
∂µj
∂bj

= 1.

46

Appendix B

SNN Design Decisions

B.1 ANN Breakdown

In order to understand how the equations I have for the SNN relate to the traditional

ANN, I broke down our ANN equations into smaller pieces and matched their function

to those of the SNN equations. ANN equations are shown with the round bullets and

to the left of the ≡ symbol in the dash bullets. The equivalent SNN equations are

shown to the right of the ≡ symbol in the dash bullets.

Output Layer

• out_c̃ = ∂
∂x
S(x) ∗ (out_output− out_expected)

– out_output− out_expected ≡ ∂E
∂ñj

– ∂
∂x
S(x) ≡ ∂ñj

∂µj

• out_weights = out_weights− (a ∗ out_c̃ ∗ out_input)

– out_input ≡ ∂µj
∂c̃ij

– −a ∗ out_c̃ ∗ out_input ≡ −a ∗ ∂E
∂c̃ij

Hidden Layer

• hid_c̃ = ∂
∂x
S(x) ∗ sum where sum = Σ(out_c̃ ∗ out_weights)

– Sum replaces output comparison to expected ≡ Sum to replace ∂E
∂ñj

– ∂
∂x
S(x) ≡ ∂ñj

∂µj

47

• hid_weights = hid_weights− (a ∗ hid_c̃ ∗ hid_input)

– hid_input ≡ ∂µj
∂c̃ij

– −a ∗ hid_c̃ ∗ hid_input ≡ −a ∗ ∂E
∂c̃ij

B.2 Value Checks

It is possible for some values to be 0 or 1 during training and this can cause problems

in calculations within the SNN by introducing infinity or "not a number". I have

provided checks for these specific values and altered them with a small number;

0.0001 was chosen arbitrarily based on the default precision Matlab displays in the

Command Window. Algorithm 5 shows the checks I have for the output neurons and

Algorithm 6 shows the checks for the variance of the hidden neurons, which are the

only two values I observed to become 0 or 1 during training.

Algorithm 5 Check for Special Values of out_n
1: if out_n == 0 then
2: out_n = out_n + small_num;
3: else if out_n == 1 then
4: out_n = out_n - small_num;
5: end if
6: e_n=(-1/log(10))*((y*(1/out_n))+((1-y)*(1/(out_n-1))));

Algorithm 6 Check for Special Values of hid_var
1: if hid_var == 0 then
2: hid_var = hid_var + small_num;
3: end if
4: hid_n_mu=(1/(σl

√
2π)) * exp(-(Θ-µl)2/(2σ2

l));

48

	Implementation Costs of Spiking versus Rate-Based ANNs
	Recommended Citation

	tmp.1550557148.pdf.TSca2

