
University of South Carolina University of South Carolina 

Scholar Commons Scholar Commons 

Theses and Dissertations 

2018 

The Effects of Exercise Training on Cardiovascular-related The Effects of Exercise Training on Cardiovascular-related 

Circulating MicroRNAs Circulating MicroRNAs 

Jacob Luther Barber 
University of South Carolina 

Follow this and additional works at: https://scholarcommons.sc.edu/etd 

 Part of the Exercise Science Commons 

Recommended Citation Recommended Citation 
Barber, J. L.(2018). The Effects of Exercise Training on Cardiovascular-related Circulating MicroRNAs. 
(Master's thesis). Retrieved from https://scholarcommons.sc.edu/etd/4863 

This Open Access Thesis is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and 
Dissertations by an authorized administrator of Scholar Commons. For more information, please contact 
digres@mailbox.sc.edu. 

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/etd
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F4863&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1091?utm_source=scholarcommons.sc.edu%2Fetd%2F4863&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/4863?utm_source=scholarcommons.sc.edu%2Fetd%2F4863&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digres@mailbox.sc.edu


 
 

The Effects of Exercise Training on Cardiovascular-related Circulating MicroRNAs  

 

By 

 

Jacob Luther Barber 

 

 

Bachelor of Science 

University of South Carolina, 2016 

 

Submitted in Partial Fulfillment of the Requirements 

For the Degree of Master of Science in 

Exercise Science 

The Norman J. Arnold School of Public Health 

University of South Carolina 

2018 

Accepted by: 

Mark Sarzynski, Director of Thesis 

J. Larry Durstine, Reader 

Xuewen Wang, Reader 

Cheryl L. Addy, Vice Provost and Dean of the Graduate School

 

 

 

 

 

 

 

 



 

ii 
 

ABSTRACT

 

PURPOSE: MicroRNAs (miRNAs) are small regulatory RNAs that post 

transcriptionally modify mRNAs and control gene expression. Circulating miRNAs are 

significantly altered following a single session of exercise, however the effects of 

exercise training on the circulating miRNA profile is unclear. Therefore, the purpose of 

the present study was to determine the effects of endurance exercise training on the 

abundance of targeted circulating miRNAs and the association of changes in miRNA 

levels with concomitant changes in cardiometabolic traits, in a subsample of adults from 

the HERITAGE Family Study.  

METHODS: This exploratory analysis examined 20 previously sedentary adults from 

the HERITAGE Family Study who completed 20 weeks of endurance exercise training. 

miRNAs were isolated from serum samples taken at baseline and post-training. The 

expression of 84 miRNAs related to cardiovascular disease and development was 

measured at both time points by performing RT-qPCR on the Human Cardiovascular 

Disease miScript miRNA PCR array (Qiagen, Hilden, Germany). Fold change was 

calculated as 2-∆∆Ct using the global geometric mean signal of all detected microRNAs as 

the normalizer value. Paired t-tests were used to examine the effects of exercise training 

on individual miRNA levels. 

RESULTS: Exercise training resulted in nominally significant down-regulation of five 

miRNAs (miR-155-5p, let-7b-5p, let-7e-5p, miR-486-5p, and miR-7-5p) compared to 

baseline (Fold change: 0.33-0.76, p=0.01-0.04). Change in miR-486-5p expression was 
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moderately correlated with change in small high-density lipoprotein particle 

concentration (r = -0.55, p=0.01) and change in low-density lipoprotein particle size 

(r=0.53, p=0.01). Additionally, change in miR-7-5p was correlated with change in very 

low-density lipoprotein particle concentrations (r = -0.47, p=0.04).  

CONCLUSIONS: Exercise training altered the expression of specific miRNAs 

associated with cardiovascular disease, which was related to concomitant changes in the 

plasma lipoprotein profile. MiRNAs therefore represent a potential mechanism that 

partially mediates the beneficial effects of exercise on cardiometabolic traits. Further 

research is needed to understand the complete effects of exercise on the circulating 

miRNA profile. 
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CHAPTER 1 

INTRODUCTION 

 

MicroRNAs (miRNAs) are small non-coding regulatory RNAs that control gene 

expression via post-transcriptional modification of messenger RNA (mRNA).1, 2 

MiRNAs silence mRNAs through two distinct mechanisms: mRNA degradation or 

repression of mRNA translation.2 Over 2,500 different miRNAs have been identified in 

humans, and despite accounting for an estimated 1-5% of the human genome, miRNAs 

are estimated to regulate greater than 30% of protein coding genes.2-4 MiRNAs are 

transported into circulation within exosomes, protein complexes, or microvesicles.2, 5 The 

transport of miRNAs in these complexes prevents their breakdown and allows miRNAs 

to circulate to and act on target cells throughout the body.1, 2 Thus, circulating miRNAs 

represent a novel biomarker for diseases such as cancer and cardiovascular disease 

(CVD).2, 6, 7  

Altered circulating miRNA profiles have been identified in patients with many 

different diseases, including different forms of cancer, diabetes, and forms of CVD.8, 9 

Additionally, Zampetaki et al.10 found that baseline miRNA profiles were associated with 

incident myocardial infarction over ten years in an elderly cohort, suggesting that 

miRNAs can also be used to predict future disease. MiRNAs have also been associated 

with many steps during the progression towards atherosclerosis, and associated with 

acute myocardial infarction, coronary artery disease, and unstable angina.7, 11 
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Additionally, miRNAs play an essential role in many biological processes such as 

angiogenesis, mitochondrial metabolism, and cardiac/skeletal muscle hypertrophy.12-14 

These pathways have implications beyond disease risk reduction and are associated with 

adaptations often found following exercise training. Indeed, miRNAs have recently been 

shown to correlate with cardiovascular adaptation to exercise,15 demonstrating an active 

functional role of miRNAs in human physiology. The associations of miRNAs with 

disease, as well as the physiological effects of miRNAs on multiple biological pathways, 

demonstrate the potential clinical relevance of circulating miRNAs as biomarkers of 

disease.  

Although circulating miRNAs have been well studied as biomarkers of various 

disease state, the effects of exercise on the circulating microRNA profile are not 

completely understood. Current literature shows an effect of acute exercise on the 

circulating miRNA profile and it has been suggested that miRNAs play a role in 

physiological adaptations to exercise.16, 17 However, less is known about the effects of 

exercise training on the circulating miRNA profile. Baggish et al.15 found that 90 days of 

rowing significantly altered resting levels of selected circulating miRNAs. Another study 

found that 4 weeks of cycling significantly decreased circulating levels of miR-486 and 

that this miRNA was correlated with changes in maximal oxygen consumption 

V̇O2max.18 Thus, limited evidence of the effects of exercise training on circulating 

miRNAs is available. Another limitation of the current literature is that many studies 

examine fewer than 10 targeted miRNAs, with little overlap of miRNAs between 

studies.17 Taken together, the effects of exercise training on circulating miRNAs are still 

largely unclear. Therefore, the purpose of the current study was to examine the effects of 
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exercise training on a panel of 84 miRNAs associated with CVD in 20 individuals from 

the HERITAGE Family Study. We hypothesized that exercise training would 

significantly alter the circulating miRNA profile. We will test these hypotheses with the 

following aims:  

Aim 1: Determine the effects of endurance exercise training on the abundance of targeted 

circulating miRNAs in a subsample of previously sedentary adults from the HERITAGE 

Family Study. 

We hypothesize that endurance exercise training will significantly alter the circulating 

miRNA profile of targeted miRNAs. 

Aim 2: Determine the association between circulating miRNA expression levels with 

cardiometabolic risk factors at baseline and as an adaptation to exercise training (i.e., 

change score). 

We hypothesize that baseline levels and exercise induced changes in circulating miRNAs 

will be significantly associated with concomitant levels of lipids and inflammatory 

markers.
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CHAPTER 2 

A BRIEF HISTORY OF HDL AND MICRORNAS

 

Cardiovascular disease (CVD) involves the heart or blood vessels and is 

associated with multiple physiological and behavioral risk factors including dyslipidemia, 

smoking, hypertension, diabetes, and obesity.19 As CVD is the leading cause of death in 

the United States20, much of research and resources have focused on the prevention and 

treatment of CVD. The association between low high-density lipoprotein cholesterol 

(HDL-C) and negative health outcomes was first reported in 1966, when HDL-C levels 

were found to be inversely associated with ischemic heart disease risk.21 In 1989 Gordon 

et al.22 showed that low levels of high-density lipoprotein cholesterol (HDL-C) was a risk 

factor for coronary heart disease. Low HDL-C levels have repeatedly been associated 

with increased CVD risk in many different populations across the world.23-26 Similar 

results are found in animal models. Overexpression of the human apolipoprotein A-I 

(ApoA-I) gene in mice results in an increase in HDL-C concentration that is accompanied 

with protection against atherosclerosis.23 Rubin et al.27 found that genetically elevating 

ApoA-I and HDL-C concentrations in mice protected against the formation of 

atherosclerotic lesions from a high fat diet compared to control mice, demonstrating a 

protective effect of HDL-C and ApoA-I. In ApoE deficient mice, who are predisposed to 

atherosclerosis, transgenic elevation of HDL-C diminished atherosclerotic lesion 

formation and HDL-C levels accounted for 78% of the observed variance in the lesion 
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size.28 This combination of human and animal research led to the hypothesis that elevated 

HDL-C levels protects against atherosclerosis and CVD. 

 The HDL hypothesis has recently been called in to question due to the 

ineffectiveness of treatments that raise HDL-C levels to attenuate CVD risk. The 2013 

ACC/AHA Guidelines concluded that statins were effective at lowering low density 

lipoprotein cholesterol (LDL-C) levels and that these reductions were effective in 

reducing CVD risk.29 However, targeted drug treatments for raising HDL-C do not yield 

similar results. A meta-analysis by Keene et al.30 of 39 drug trials of niacin, fibrates, and 

cholesterol esterase transfer protein (CETP) inhibitors showed that while many of the 

trials were successful in raising HDL-C levels, no change in CVD risk was found. In fact, 

their meta-analysis showed that despite elevated HDL-C levels some of these drugs were 

associated with elevated risk of CVD when compared to control groups.30 Additionally, 

mendelian randomization studies have shown that single nucleotide polymorphisms 

(SNPs) associated with elevated HDL-C levels are not associated with reduced CVD 

risk.31 These studies turned the HDL hypothesis upside down, as HDL-C levels by 

themselves do not seem to be protective against CVD. The HDL hypothesis therefore has 

recently shifted toward the HDL “function” hypothesis, where the functionality of HDL 

particles (HDL-P) is the important factor in determining CVD risk.   

 Ample evidence exists for a physiological basis of the HDL hypothesis. HDL 

plays a critical role in reverse cholesterol transport (RCT), a known anti-atherogenic 

function or pathway, by accepting cholesterol on to lipid poor apoA-I, the main protein 

constituent of HDL, which is largely mediated by ATP binding cassette transporter A1 

(ABCA1).32 HDL also inhibits the expression of endothelial adhesion molecules in vitro33 
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and protects against LDL oxidation and apoptosis.34 Finally, HDL can stimulate the 

release of nitric oxide from the endothelium and induce vasodilation.35, 36 Perhaps the 

most well-established HDL function is the facilitation of RCT. Briefly, HDL and apoA-I 

promote cholesterol efflux from peripheral macrophages and other peripheral tissues 

primarily through the ABCA1 and ABCG1 transporters.37 Mature, lipid rich, HDL can 

then transfer cholesterol to the liver via scavenger receptor class B type 1 (SR-B1) or 

indirectly via CETP mediated transfer for excretion.37 Several recent population studies 

have shown cholesterol efflux capacity is associated with prevalent and incident of 

CVD38-40 and CVD mortality.41 In a prospective study of 2,924 adults from the Dallas 

Heart Study, Rohatgi et al.39 found a 67% reduction in atherosclerotic cardiovascular risk 

in the highest quartile of cholesterol efflux capacity compared to the lowest quartile after 

adjustment for traditional risk factors, HDL-C, and HDL-P concentration. Additionally, 

cholesterol efflux capacity of HDL has been reported as independent of traditional 

cardiovascular risk, as well as HDL-C and HDL particle concentration.39 Another 

atheroprotective function of HDL is  the proposed anti-inflammatory properties through 

this particle’s ability to inhibit the expression of cell surface adhesion molecules in 

endothelial cells.42 HDL has also been reported to inhibit a key enzyme in the production 

of endothelial cell adhesion molecules, however this inhibition has a great deal of 

variability in humans, likely due to the heterogeneity of HDL molecules themselves.42 

The relationship between the anti-inflammatory properties of HDL and CVD risk are still 

unclear, but circulating levels of these endothelial cell adhesion molecules (e.g., VCAM-

1, ICAM-1) are associated with CVD risk.43, 44 Therefore, the connection between HDL 
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function and CVD risk goes beyond the role of HDL in RCT and is likely a result of the 

combination of all HDL functions. 

 A recently discovered function or role of HDL is the ability of HDL particles to 

transport and deliver microRNAs (miRNAs) to target tissues.1 MiRNAs are small 

regulatory RNAs that control gene expression by targeting and binding messenger RNA 

(mRNA) and preventing protein production.1, 2 One estimate is that miRNAs account for 

1-5% of the human genome and regulate greater than 30% of protein coding genes.2 Over 

2,500 different miRNAs have been identified in humans, with more constantly being 

discovered.3, 4 As such, circulating miRNA levels may represent a new type of biomarker 

for diseases like cancer and CVD.2, 6, 7 The miRNA profile of patients with non-ischemic 

systolic heart failure was found significantly altered compared to healthy controls and 

correlated with the severity of the heart failure.8 MiRNAs may also be able to predict 

cardiovascular events, as Zampetaki et al.10 found that baseline miRNA profiles were 

associated with incident myocardial infarction over ten years in an elderly cohort. These 

studies illustrate the potential viability of miRNAs as biomarkers of disease and perhaps 

even future disease development. 

MiRNAs are synthesized in the nucleus and undergo modifications in the 

cytoplasm where they form a double stranded duplex before being exported via 

exosomes, microvesicles, HDL-P, or in a protein complex.2, 5 The binding of miRNAs to 

HDL likely follows a mechanism similar to the binding of small RNAs with liposomes 

which means that HDL incorporates the miRNAs into a protected space on the complex.1 

Additionally, the HDL-miRNA profile is altered in disease states compared to healthy 

controls and compared to circulating exosomal miRNA, potentially representing a 
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distinct novel biomarker for disease from circulating miRNA.1, 45 Wagner et al.45 found 

similar results showing that HDL-miRNA profiles were altered in patients with acute 

coronary syndrome compared to controls, and that three vascular- and inflammatory-

related miRNAs were most prominent on HDL. Choteau et al.46 examined HDL-miRNAs 

in patients with acute coronary syndrome and coronary artery disease (CAD) found that 

HDL miR-223 levels were correlated with CAD score (r=0.383, p=0.016) and may reflect 

the progression of CAD. In further support of the importance of the HDL-miRNA profile, 

Vickers et al.1 found that HDL was effective at delivering miRNAs to target cells. 

Hepatocytes were treated with synthesized HDL-miRNA complexes, which led to an 

increase in intracellular miRNA and a reduction in the specific miRNA targets.1 This 

study also showed that the delivery of HDL-miRNA is SR-B1 dependent, consistent with 

the known interaction between HDL and SR-B1 during cholesterol efflux.1 The delivery 

of miRNAs by HDL to target cells at least in part mediates the known function of HDL 

inhibiting cellular adhesion molecules.47 The discovery of the HDL mediated transport 

and functional delivery of miRNAs represents a potential new biomarker for disease and 

a target for intervention. Additionally, HDL-miRNAs are an exciting new potential 

mechanism by which HDL mediates its antiatherogenic effects.  

 As discussed above, drug interventions targeted at raising HDL-C levels have not 

resulted in improved CVD risk, so alternative therapies for improving HDL function and 

cardiovascular health are needed. Regular exercise is an alternate therapy that has been 

suggested for reducing CVD risk.48, 49 Regular exercise has favorable effects on both lipid 

and lipoprotein profiles50 including increasing plasma HDL-C levels.51 However, the 

effects of exercise training on HDL function are still largely unclear. A recent study by 
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Khan et al. 2018 found that weight loss combined with exercise in patients with 

metabolic syndrome improved HDL composition and cholesterol efflux capacity.52 

Recently Sarzynski et al.53 examined the effects of exercise training on HDL mediated 

cholesterol efflux capacity across two training studies, and found that only the highest 

dose of high intensity exercise resulted in significant changes in global radiolabeled 

efflux capacity (+6.2%) in one cohort and non-ABCA1 radiolabeled efflux capacity 

(+5.7%) in another cohort. Furthermore, results from the remaining limited literature on 

the effects of exercise on HDL mediated cholesterol efflux are mixed. A study in patients 

with peripheral artery disease found no effect of exercise training on cholesterol efflux 

capacity,54 however this may have been due to the inability of these patients to reach the 

intensities necessary to see a change. Koba et al.55 studied patients with acute coronary 

syndrome and found that cardiac rehabilitation, even at relatively low intensities, 

significantly increased cholesterol efflux capacity compared to baseline but not compared 

to controls. Exercise may also impact the anti-inflammatory properties of HDL. A short-

term diet and exercise intervention was effective at converting pro-inflammatory HDL to 

anti-inflammatory in overweight and obese men.56 Some evidence does exist for a 

beneficial effect of exercise on the anti-oxidative properties of HDL. In patients with type 

II diabetes, four months of endurance training improved the ability of HDL to inhibit 

LDL oxidation, but this improvement was not seen in the healthy control group.57 

However, the effects of exercise on the anti-inflammatory and anti-oxidative properties 

are still largely unclear, as there are limited studies and most of the beneficial effects of 

exercise on HDL function have been found in studies examining diseased populations.   
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While the effects of exercise on HDL function are somewhat unclear, ample 

evidence exists of an effect of exercise on circulating miRNA levels. In 32 healthy 

trained men, acute endurance exercise up regulated selected miRNAs one to three hours 

after the last exercise session, and basal levels of nine selected miRNAs were 

significantly altered following 12 weeks of endurance training.58 The authors proposed 

that a mechanism for the alteration of circulating miRNAs following training is the 

associated/concomitant alteration of lipoprotein levels.58 Xu T et al.5 in a recent review 

speculated that the rise in circulating miRNAs following acute exercise may be due to 

muscle damage and subsequent release of miRNAs from damaged tissue. The authors 

also noted that the effects of chronic exercise on circulating miRNAs are still unclear, as 

some miRNAs seem to be upregulated following chronic exercise while others are down 

regulated.5 The fact that miRNA levels themselves change with exercise has significant 

implications for disease and may mediate some of the beneficial effects of exercise.59 

Uhlemann et al.60 showed that endurance training acutely increases endothelial specific 

miRNA and resistance training increased skeletal muscle specific miRNA.  

Despite numerous studies examining changes in circulating miRNAs with 

exercise, to our knowledge no study has examined the effects of exercise on HDL-

miRNAs. Additionally, most of the research on the effects of exercise on circulating 

miRNAs has examined the acute effects of exercise.16 Thus, a need exists for further 

research concerning the effects of exercise training on circulating miRNAs in different 

populations.
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CHAPTER 3 

METHODOLOGY

 

HERITAGE Family Study. The HERITAGE Family Study (hereafter referred to as 

HERITAGE) is one of the largest, most well-controlled, standardized exercise training 

studies to date. HERITAGE was designed to examine the role of genetic factors on 

cardiometabolic responses to endurance exercise training. The HERITAGE cohort is 

composed of 481 whites (232 men and 249 women) from 99 families and 250 blacks (88 

men and 162 women) from 105 family units that completed a 20-week endurance 

exercise program at one of four clinical centers (Indiana, Minnesota, Québec, Texas). The 

study design and training protocol have been described in detail elsewhere.61 Briefly, the 

participants were sedentary at baseline, normotensive or mildly hypertensive (<160/100 

mm Hg) without medications for hypertension, diabetes, or dyslipidemia.  

Exercise training program. The training program consisted of three weekly 

sessions of cycling at the heart rate associated with 55% of baseline VO2max for 30 

minutes for the first two weeks. The duration and intensity were then gradually increased 

every two weeks until the heart rate associated with 75% of baseline VO2max for 50 

minutes was achieved. This level was maintained for the final six weeks of training. All 

training was performed on Universal Aerobicycles (Cedar Rapids, IA). Power output was 

controlled directly relative to heart rate by using the Universal Gym Mednet (Cedar 

Rapids, IA) computerized system. The protocol was standardized across all clinical 
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centers and supervised to ensure that the equipment was working properly and that the 

participants were compliant with the protocol.  

Exercise tests. Three exercise tests were administered prior to training and three 

additional tests were given at the end of training. All tests were completed on a stationary 

cycle ergometer. The first test at each time point was used to establish the participants 

V̇O2max. During the second test of each battery, participants cycled at 50 watts and 60% 

of their V̇O2max for 8 minutes each. The third and final test of each battery consisted 

again of 8 minutes each of 50 watts and 60% V̇O2max, after which the power output was 

increased to 80% V̇O2max for three minutes, and continually increased until exhaustion. 

During the third test blood was collected via a venous catheter. 61 

Subjects for current study. Twenty white subjects from HERITAGE that 

completed the 20-week exercise program were selected for this study based on 

discordance for exercise-induced changes in HDL particle size. All subjects selected for 

this exploratory study were from the Québec center, as the Québec participants were also 

part of an ancillary study that involved skeletal muscle biopsies and have available gene 

expression data. 

Blood collection. Blood samples were obtained from an antecubital vein into 

sealed Vacutainer tubes in the morning after a 12-hour fast with participants in a semi-

recumbent position. The blood samples were collected at baseline and again at 24 hours 

after the last training session. Blood samples were allowed to clot at room temperature 

and serum was separated via centrifugation according to standard methods. For 

eumenorrheic women, all samples were obtained in the early follicular phase of the 

menstrual cycle when blood plasma cholesterol alterations are minimal.61 
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HDL isolation. HDL isolation was previously performed on these 20 subjects 

using the following procedures. HDL plasma was separated from whole serum via fast 

performance liquid chromatography (FPLC) with size exclusion chromatography. 

Briefly, 370 µL of whole serum was injected into an Akta Pure FPLC and run through 

two gel filtration columns (Superdex 200 increase columns, GE Healthcare). HDL 

fractions were collected and pooled together then aliquoted for storage in a -80°C freezer. 

HDL plasma was then concentrated by adding 500 µL of plasma HDL to an Amicon 

Ultra 0.5 mL centrifugal filter with a 3000 dalton cellulose membrane in a 2 mL 

centrifuge tube and spinning at 14,000 x g for 30 minutes at room temperature. The flow 

through was discarded and the filter device removed and placed upside down in a clean 

tube and spun at 1,000 x g for 2 minutes at room temperature, yielding approximately 60 

µL of concentrated HDL serum.  

Note: The miRNA PCR analysis of serum HDL samples was largely 

unsuccessful, therefore for the remainder of the document, analysis will focus on 

circulating miRNAs. 

MiRNA analysis. MiRNAs were extracted on the QIAcube workstation from 

baseline and post-training whole serum samples using miRNeasy Serum/Plasma 

Advanced Kits (Qiagen, Hilden, Germany). Samples were spiked with a known amount 

of synthetic C. elegans miR-39-3p. MiRNA quantification was then performed using 

reverse transcriptase real-time polymerase chain reaction (RT-qPCR). Briefly, cDNA was 

transcribed from the extracted miRNA and then aliquoted into the Human Cardiovascular 

Disease miScript miRNA PCR Array (Qiagen, Hilden, Germany). This array contains 

primers for 84 miRNA sequences identified as exhibiting altered expression during CVD 
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and development. The selected miRNAs are listed in Table 3.1. All cDNA steps and PCR 

setup were performed by the QIAgility instrument (Qiagen, Hilden, Germany) using an 

automated pipetting protocol. Real-time qPCR was performed on the miRNA PCR array 

in the Rotor-Disc 100 format by the Rotor-Gene Q real-time PCR cycler (Qiagen, Hilden, 

Germany).  Rotor-Gene PCR cycling conditions were performed according to 

manufacturer’s suggested protocol and conditions.  

Cardiometabolic trait measurement. Total cholesterol and triglyceride levels in 

plasma and lipoproteins were measured by enzymatic methods using the Technicon RA-

1000 analyzer.61 Lipoprotein subclass and particle size measurements were performed 

using NMR spectroscopy previously described.62 Substrate utilization and ventilation 

during submaximal exercise were measured via standard methods previously described.61  

Statistical methods. The effect of training on circulating miRNAs (Aim 1) was 

assessed using paired t-tests of pre- and post-training miRNA levels. Cycle threshold (Ct) 

represents the cycle number at which there is an exponential increase in miRNA 

fluorescence. Delta Ct was calculated by subtracting the global geometric mean signal of 

all detected miRNAs from individual Ct values. Delta delta Ct was then calculated by 

subtracting delta Ct values of baseline samples from delta Ct values post-training. Fold 

change was calculated as 2-∆∆Ct using the global geometric mean signal of all detected 

microRNAs as the normalizer value. Pearson’s correlations were used to examine the 

associations between baseline and fold change in miRNA levels with change in select 

cardiometabolic phenotypes(Aim 2). All analyses were performed using SAS 9.4 (Cary, 

NC). 
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Table 3.1. List of miRNAs included on Qiagen’s Human Cardiovascular Disease 

miScript miRNA PCR Array. 
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CHAPTER 4 

RESULTS

 

 Baseline characteristics including mean values for the standard lipid panel and 

other cardiovascular risk factors are shown in Table 4.1. No significant differences were 

found between sexes. The expression levels of five miRNAs were nominally (p<0.05) 

down regulated with exercise. Exercise resulted in a fold change of 0.82 (p=0.04) for mir-

155-5p, 0.49 (p=0.01) for let-7b-5p, 0.70 (p=0.04) for let-7e-5p, 0.56 (p=0.02) for miR-

486-5p, and 0.42 (p=0.01) for miR-7-5p, all compared to baseline expression levels. In 

addition to fold change, average Ct values increased in all five miRNAs (Figure 4.1), 

indicating reduced expression following exercise. Change in miR-486-5p expression was 

moderately correlated with change in small high-density lipoprotein (HDL) particle 

concentration (r=-0.55, p=0.01) and change in low-density lipoprotein (LDL) particle size 

(r=0.53, p=0.01). Additionally, change in miR-7-5p was correlated with change in very 

low-density lipoprotein (VLDL) particle concentrations (r=-0.47, p=0.04). Fold change of 

miR-155-5p and let-73-5p were correlated with change in plasma free fatty acids at 50W 

and 60% of max workload, as well as change in circulating glucose at 60% max workload 

(Table 4.2).   

 Baseline levels of numerous miRNAs were nominally (p<0.05) correlated with 

changes in cardiometabolic traits following exercise training. Baseline expression levels 

of miR-124-3p, miR-143-3p, and miR-199a-5p were moderately positively correlated 
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with changes in V̇O2max (r=0.48-0.54, p=0.02-0.04). Expression levels of 24 circulating 

miRNAs at baseline were positively correlated with change in plasma apoA-1 levels 

(range: r=0.47-0.64, p=0.003-0.04) (Table 4.3). Baseline levels of 12 different miRNAs 

were correlated with exercise induced changes in HDL cholesterol levels (Table 4.4), and 

baseline expression levels of 7 different miRNAs were correlated with change in mean 

arterial pressure with exercise (Table 4.5). The baseline miRNA expression level of 51 

miRNAs were negatively correlated with change in end tidal carbon dioxide pressure 

(PETCO2) during submaximal exercise (range: r=-0.49 to -0.81, p<0.0001-0.01). These 

51 miRNAs are listed in Table 4.6.
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BMI: body mass index, HDL-C: high-density lipoprotein cholesterol, LDL-C: low-

density lipoprotein cholesterol, TC: total cholesterol, TG: triglycerides, CRP: C-reactive 

protein, SBP: systolic blood pressure, DBP: diastolic blood pressure,  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.1. Participant baseline characteristics given as means (standard deviation). 

  (n=20) 

Age (years) 43.4 (13.1) 

BMI (kg/m2) 26.4 (3.7) 

VO2 max (L/min) 2.1 (0.5) 

HDL-C (mg/dL) 43.4 (10.7) 

LDL-C (mg/dL) 134.4 (34.3) 

TC (mg/dL) 203.7 (37.5) 

TG (mg/dL) 159.1 (84.3) 

CRP (mg/dL) 0.29 (0.3) 

SBP (mmHg) 116.7 (12.8) 

DBP (mmHg) 65.9 (9.9) 

Waist (cm) 90.5 (11.6) 

Percent fat 28.9 (6.9) 
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Figure 4.1. Baseline and post-training cycle threshold (CT) values along with individual 

exercise response for miRs: let-7b-5p let-7e-5p, miR-155-5p, miR-486-5p, and miR-7-5p.  
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Table 4.2. Correlation between fold-change in select miRNAs and concomitant change in 

substrate utilization  

 FFA 50W FFA 60% Glucose 60% Aldosterone 
miR-155-5p 0.73 0.59 0.49 NS 

Let-7b-5p NS NS NS 0.61 

Let-7e-5p 0.72 0.60 0.53 NS 

miR-486-5p NS NS NS NS 

miR-7-5p NS NS NS 0.58 
 

All correlations listed were p<0.05. NS, not significant (p>0.05). FFA 50W: free fatty 

acids at 50 watts workload, FFA 60%: free fatty acids at 60% workload, Glucose 60%: 

glucose at 60% workload 
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Table 4.3. Correlation between baseline miRNA expression and change in apoA-1.  

 r p-value 
Let-7c-5p 0.64 0.003 

Let-7d-5p 0.47 0.04 

miR-10b-5p 0.53 0.02 

miR-130a-3p 0.48 0.04 

miR-140-5p 0.47 0.04 

miR-142-3p 0.47 0.04 

miR-150-5p 0.47 0.04 

miR-16-5p 0.50 0.03 

miR-195-5p 0.53 0.02 

miR-221-3p 0.55 0.01 

miR-222-3p 0.57 0.01 

miR-24-3p 0.48 0.04 

miR-25-3p 0.53 0.02 

miR-26a-5p 0.49 0.03 

miR-29a-3p 0.49 0.03 

miR-29b-3p 0.53 0.02 

miR-30a-5p 0.55 0.01 

miR-30c-5p 0.52 0.02 

miR-30e-5p 0.59 0.01 

miR-320a 0.55 0.01 

miR-342-3p 0.54 0.02 

miR-451a 0.52 0.02 

miR-93-5p 0.59 0.01 

miR-99a-5p 0.49 0.03 
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Table 4.4. Correlation between baseline miRNA expression levels and change in HDL-C 

levels  

 r p-value 
Let-7a-5p 0.51 0.03 

Let-7c-5p 0.50 0.03 

miR-130a-3p 0.52 0.02 

miR-17-5p 0.48 0.04 

mir-185-5p 0.50 0.03 

miR-195-5p 0.54 0.02 

miR-223-3p 0.49 0.03 

miR-23b-5p 0.53 0.02 

miR-31-5p -0.46 0.04 

miR-320a 0.49 0.03 

miR-98-5p 0.49 0.03 

miR-99a-5p 0.47 0.04 
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Table 4.5. Correlation between baseline miRNA expression levels and change in mean 

arterial pressure.  

 r p-value 
Let-7a-5p -0.59 0.01 

Let-7c -0.54 0.02 

Let-7f-5p -0.49 0.03 

miR-210 -0.49 0.03 

miR-26b-5p -0.57 0.01 

miR-98-5p -0.50 0.03 

miR-99a-5p -0.61 0.01 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

24 

 

Table 4.6. List of baseline miRNAs significantly correlated with change in PETCO2 

during submaximal exercise 

 

Let-7c Let-7d-5p miR-103a-3p miR-124-3p miR-125a-5p miR-126-3p 

miR-130a-3p miR-140-5p miR-143-3p miR-144-3p miR-145-5p miR-146a-5p 

miR-15b-5p miR-16-5p miR-17-5p miR-181b-5p miR-185-5p miR-18b-5p 

miR-195-5p miR-199a-5p miR-21-5p miR-210 miR-214-3p miR-221-3p 

miR-223-3p miR-224-3p miR-23a-3p miR-24-3p miR-25-3p miR-26a-5p 

miR-26b-5p miR-27a-3p miR-27b-3p miR-29a-3p miR-29b-3p miR-29c-3p 

miR-30a-5p miR-30c-5p miR-30d-5p miR-30e-5p miR-320a miR-342-3p 

miR-365a-3p miR-423-3p miR-424-5p miR-451a miR-494 miR-92a-3p 

miR-93-5p miR-98-5p miR-9a-5p 



 

25 

 

CHAPTER 5 

DISCUSSION

 

 Exercise training nominally down-regulated 5 miRNAs related to cardiovascular 

disease compared to baseline in 20 healthy, previously sedentary adults from the 

HERITAGE Family Study. Exercise induced changes in miRNA expression levels were 

correlated with concomitant changes in select cardiometabolic factors such as HDL-C 

and plasma free fatty acids during submaximal exercise.  

 The down regulation of the five miRNAs in the current study could be explained 

by a few different mechanisms. One would be a degradation of the miRNAs in 

circulation with exercise, however miRNAs are transported within vesicles or within 

protein complexes that prevent degradation,1, 2 so this seems unlikely. Exercise could also 

influence the expression of the miRNAs themselves, however little is known about  

potential mechanism(s) by which exercise could accomplish this. MiRNA expression can 

certainly be regulated and altered, but the regulation of miRNA is complex and not fully 

understood.63 Another potential mechanism would be the promotion of selective uptake 

of these miRNAs by skeletal muscle with exercise. Several studies have demonstrated the 

ability of target cells, such as skeletal muscle, to take up circulating miRNAs.1, 2, 64 One 

plausible explanation is that the reduction of these five miRNAs in circulation with 

exercise training may in part be due to increased uptake of these miRNAs by skeletal 

muscle. Exercise training however does not likely increase the uptake of all miRNAs by 



 

26 

 

skeletal muscle and may in fact increase the release of certain miRNAs into circulation. 

Baggish et al.15 found that exercise training resulted in an up-regulation of miR-222, 

miR-21, and miR-221. Interestingly these same three miRNAs were also up-regulated 

following acute exercise, indicating a potential additive effect of acute bouts with training 

that serves to upregulate certain miRNAs.15  

The current study found that exercise training down-regulated miR-486-5p.  

Similarly, in a study of 11 healthy young men both a single cycling exercise session and 

four weeks of exercise training significantly decreased circulating levels of miR-486-

5p.18 Additionally, the directionality of the change in circulating miR-486-5p with 

exercise was the same following an acute bout and following exercise training,18 giving 

further evidence for an additive effect of acute bouts that may lead to a training effect. 

MiR-486-5p targets phosphatase and tensin homolog (PTEN), a negative regulator of Akt 

signaling, and therefore increases insulin-dependent glucose uptake.65 It is well 

established that exercise training improves insulin dependent glucose uptake in skeletal 

muscle.66, 67 Therefore, the reduction of circulating miR-486-5p may be the result of an 

increased uptake of the miRNA into the skeletal muscle. This uptake of miR-486-5p may 

in turn be responsible for improvements in insulin dependent glucose uptake by the 

skeletal muscle following exercise training.  

 MiR-155-5p is down regulated in mice following 12 weeks of endurance exercise 

training.68 Data from this study supports the current study’s finding that exercise training 

down regulates circulating miR-155-5p. MiR-155-5p is drastically upregulated in 

atherosclerosis, and miR-155-5p targets eNOS and inhibits nitric oxide production.69, 70 

MiR-155-5p expression also promotes cardiac inflammation and failure in mice.71 Bone 
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marrow transplant into miR-155-5p knockout mice was effective at rescuing the cardiac 

hypertrophy, demonstrating the importance of reducing miR-155-5p expression even in a 

diseased state.71 The physiological role of miR-155-5p with atherosclerosis and heart 

failure highlights the potential clinical importance of strategies that reduce circulating 

levels of this miRNA. Further research is needed to determine if the reduction in 

circulating miR-155-5p is associated with a similar reduction in vascular miR-155-5p. 

 Little is known about the effects of exercise on the let-7 family of miRNAs, and 

this study may be the first to show a down regulation of let-7b and let-7e following 

exercise training. This reduction may be beneficial as plasma levels of let-7b are elevated 

during an ischemic stroke and has been identified as a potential biomarker of stroke.72 

However, the physiological basis for this increase is unclear. The let-7 family of miRNAs 

has been implicated in both the immune and inflammatory response.73, 74 Let-7e has been 

identified as a pro-inflammatory miRNA and may play a role in atherosclerosis.73 

Therefore, the reduction of circulating levels of let-7b and let-7e with exercise may have 

clinical relevance for a reduction in inflammation.  

 Baggish et al.15 reported that exercise training significantly altered the expression 

of select miRNAs and that this alteration was associated with changes in V̇O2max, 

indicating a potential role of miRNAs as mediators of exercise induced cardiovascular 

and metabolic adaptations. Similarly, we found that baseline expression levels of three 

miRNAs were moderately positively correlated with exercise-associated changes in 

V̇O2max, further implicating miRNAs in response of V̇O2max to training.  The current 

study found that change in circulating miR-486-5p was correlated with changes in size of 

both HDL particles and LDL particles. MiR-486 has been reported to associated with 
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HDL2 (large HDL) but not HDL3 (small HDL),75 suggesting a relationship between miR-

486 and lipoprotein size. Additionally, changes in miR-155-5p and let-7e-5p were 

correlated with change in circulating free fatty acids and plasma glucose during 

submaximal exercise. Both circulating free fatty acids and plasma glucose are measures 

of substrate utilization during exercise. Exercise training improves the utilization of lipids 

during moderate intensity exercise.76 An increase in circulating free fatty acids during 

exercise may indicate greater mobilization of fats for use and may represent a shift 

toward lipid metabolism. This increase in circulating free fatty acids is expected near the 

end of an acute bout of moderate exercise as substrate utilization shifts toward lipids,77 

therefore an increase in circulating free fatty acids during submaximal exercise following 

training may indicate improved lipid metabolism following training. Thus, the change in 

select circulating miRNAs may mediate metabolic changes observed during submaximal 

exercise following exercise training.  

 This study also examined associations between the baseline miRNA profile and 

changes in cardiometabolic risk factors. Baseline levels of several miRNAs were 

positively correlated with change in HDL-C levels and change in apoA-1 levels. As 

discussed previously, HDL-C has long been used as a biomarker for cardiovascular 

health,21 however focus has recently shifted to the functionality of HDL instead of HDL-

C levels. ApoA-1 is the primary functional protein of HDL and has been inversely 

associated with a reduction in risk of atherosclerosis.27 The potential ability of miRNAs 

to predict response of both HDL-C and apoA-1 levels to exercise training would allow 

for the tailoring of exercise prescriptions for individuals with low HDL-C or apoA-1 

levels. Strikingly, over 50 baseline miRNAs were negatively correlated with change in 
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PETCO2 during submaximal exercise at 60% VO2max. PETCO2 decreases as a result of 

decreased pulmonary blood flow and decreased cardiac output and is a surrogate measure 

for tolerance to exercise.78, 79 PETCO2 is decreased in patients with chronic obstructive 

pulmonary disease, indicative of diminished exercise tolerance.79 Therefore an increase in 

PETCO2 during submaximal exercise following training is indicative of an improved 

ventilatory tolerance to exercise. The current results suggest that the circulating miRNA 

profile at baseline may be able to predict the response of PETCO2 during acute exercise 

to exercise training.  

 Our study benefitted from the use of a miRNA PCR array that included 84 

miRNAs associated with cardiovascular disease and development. However, the 

relatively small and heterogeneous sample may not be representative of other 

populations. Additionally, this was the first study to examine the effects of exercise for 

many of the included miRNAs, thus further research is needed to confirm our findings. 

Further research is also needed to determine the mechanisms by which exercise alters 

circulating miRNA expression and the association of changes in the circulating miRNA 

profile with changes in clinical outcomes.  

 Exercise training may alter the circulating miRNA profile of select cardiovascular 

disease related miRNAs and these alterations may have physiologically significant roles. 

The reduction in select miRNAs with exercise may be clinically significant given the 

diverse role of these miRNAs in disease development. The current study provides further 

support for the effects of exercise training on circulating miRNAs such as miR-486 and 

miR-155 and gives new evidence miR-7 and miRNAs in the let-7 family. Additionally, 

the current study provides preliminary evidence for the use of circulating miRNAs as 
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biomarkers for exercise training efficacy and predicting exercise training response, which 

may be useful in clinical exercise prescription. Future research is needed on the effects of 

exercise on the untargeted circulating miRNA profile to identify novel miRNAs 

associated with exercise and confirm the existing findings.
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