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ABSTRACT

 This study presents the first comparison of Landsat 8 OLI and Sentinel-2A MSI 

imagery in identifying soil salinity using soil physiochemical, spectral, statistical, and 

image analysis techniques. By the end of the century, intermediate sea level rise scenarios 

project approximately 1.3 meters (4.2 feet) of sea level rise along the coast of the 

southeastern United States. One of the most vulnerable areas is Hyde County, North 

Carolina, where 440 square miles of agricultural lands are being salinized, endangering 

4,200 people and 40 million dollars of property. To determine the best multispectral 

sensor to map the extent of salinization, this study compared Landsat 8 OLI and Sentinel-

2’s identification of electrical conductivity (EC). The EC of field samples were correlated 

with handheld spectrometer spectra resampled into multispectral sensor bands. Using an 

iterative ordinary least squares regression, it was found that EC was sensitive to Landsat 

8 OLI bands 2 and 4 and Sentinel-2A bands 2 and 6.  Respectively, the R2 and RSME of 

0.04-0.54 and 0.90-1.90 for the OLI, and 0.04-0.69 and 0.73-2.83 for Sentinel-2, suggests 

that the increased spatial resolution of Sentinel-2 provides a more precise measurement of 

salinity location. Image analysis using band math estimates that salt crusts make up 

approximately 1.4% (Sentinel-2) to 2.57% (OLI) of bare soil indicating that surrounding 

land is saline though not currently identifiable through multispectral analysis. As sea 

levels rise, accurately monitoring soil salinization will be critical to protecting coastal 

agricultural lands. Sentinel-2’s superior spatial and temporal resolution make it a superior 

sensor for salinity tracking.
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CHAPTER 1 

INTRODUCTION 

Coastal plains are some of the most vulnerable areas in the world to climate 

change, especially through the impacts of sea level rise. An inter-agency report published 

by the National Oceanic and Atmospheric Administration (NOAA) projects global mean 

sea level (GMSL) rise to be between 0.3 meters and 2.5 meters with the intermediate 

scenario at 1 m rise by 2100 (Sweet et al., 2017). The coast of North Carolina is projected 

to rise faster than the GMSL, reaching 1.3 m of rise by 2100 (Sweet et al., 2017). 

Increased storm surge and tide levels are already causing soil salinization in coastal 

counties. 

Salinization can negatively impact crops. Increased salinity restricts water 

availability to plant roots similar to drought conditions (Brady & Weil, 2010; NRCS, 

1998), decreases the germination rate for plants that directly results in yield loss (Ayers 

& Westcot, 1994; Brady & Weil, 2010; Hossain, 2010). Common commodity crops in 

coastal North Carolina are corn, soybeans, wheat, and cotton. Each crop experiences a 

yield declines at varying levels of EC (Table 1.1). Already, farmers are seeing impacts on 

the more sensitive crops if they are not carefully planted away from salinized areas. 

Ultimately, salinization can cost farmers hundreds of dollars per acre or even make land 

unusable for cultivation (Munns, Gilliham, Munns, & Gilliham, 2015). If nothing is done 

to mitigate soil salinization, increased coastal flooding will render the land unusable by 

the end of the century.
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Measurement of salinity is critical for land management and mitigation. Electrical 

conductivity (EC), is a measurement of salt content in soil using a water solution or soil 

probe denoted as deciSiemens per metre (dS/m) (Brady & Weil, 2010). Saline soils 

generally have an EC greater than 4 dS/m. Even slightly salt-affected soils can impact 

plant growth depending on irrigation routines (Ghosh, Kumar, & Saha, 2012; Rhoades, 

1982). Therefore, soil salinization tracking is critical to protecting coastal agricultural 

land. Farmers and agricultural extension agents believe that they lack state and federal 

support to respond to salinization because the extent of soil salinity is not well known 

(B.H.&E.C, personal communication, December 5, 2017). However, traditional methods 

of field surveying and sample analysing are not adequate to frequently cover large tracts 

of land (Li et al., 2015).  

Table 1.1 Impact of salinity levels on crop yield potential (Ayers & Westcot, 1994) 

  

Crop Tolerance of Salinity (dS/m) and Yield Potential 

Impacts 

Crop 

No impact 

on yield 

10% yield 

loss 

25% 

yield 

loss 

50% 

yield loss 

No crop 

growth 

Corn (Zea mays) <1.7 2.5 3.8 5.9 >10.0 

Onion (Allium cepa) <1.2 2.0 3.1 5.0 >8.9 

Potato (Solanum 

tuberosum) <1.7 2.5 3.8 5.9 >10.0 

Cotton (Gossypium 

hirsutum) <7.7 9.6 13 17 >27.0 

Wheat (Triticum 

aestivum) <6.0 7.4 9.5 13 >20.0 

Soybean (Glycine 

max) <5.0 5.5 6.3 7.5 >10.0 
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Satellite remote sensing offers the potential to cover a large spatial extent and 

provide regular measurements (Adam, Mutanga, & Rugege, 2009). Metternicht and 

Zinck (1997) and Metternicht (2003) used Landsat TM to detect salt-affected soils. 

Dwivedi and Sreenivas (1998)  performed stepwise regression on MODIS bands to map 

salt-affected soils in the Indo-Gangetic alluvial plains. Accuracies of multispectral 

analysis, however, are limited primarily by large pixel size and broad bandwidths. 

To address these limitations, studies have used hyperspectral data to study soil 

salinity (Ghosh et al., 2012; Li et al., 2015). Ghosh et al. (2012) integrated NASA’s EO-1 

Hyperion sensor and the Linear Mixture Model while Li et al. (2015) utilized the Chinese 

sensor HJ-1A to derive the Normal Soil Salt Content Response Index and the Soil 

Adjusted Vegetation Index. EO-1 was decommissioned in 2017 restricting its use to 

historical analysis (USGS, 2017). Additionally, current hyperspectral sensors (AVIRIS, 

Hyperion, CHRIS) do not have global coverage or high temporal resolution due to 

narrow swath widths, pointable platforms, or airplane-based missions (NASA, 2018; 

ESA, 2018; USGS, 2017). In lack of hyperspectral imagery, some studies integrated 

hyperspectral field spectra and physio-chemical measures with multispectral and very 

high resolution (VHR) data. Bai et al. (2016) Integrated in-situ measurements, similar to 

Li et al. (2015), though maintained the use of multispectral sensors for spatial and 

temporal coverage. Using stepwise regression, the study modelled the physio-chemical 

components of the soil using collected spectra and physio-chemical samples and Landsat 

OLI to identify soil alkalinity and salinity in the Songnen Plain of Northeast China. 

Bannari et al. (2008) built two indices for EO-1 ALI, a multispectral sensor, using spectra 

integration and in-situ measurements. Muller and Niekerk (2016) implemented analysis 
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using WorldView-2 aggregated at a variety of resolutions to determine the effects of 

spatial resolution on salinity accuracy. The study concluded that VHR sensors were not 

necessary and potential candidates for future work were Sentinel-2 and SPOT6.  

Each of these studies identified future pathways and limitations for soil salinity 

identification, highlighting the potential of hyperspectral sensors while also suggesting 

the use of higher resolution multispectral sensors. Due to the current limitations in 

hyperspectral data, timely soil salt detection must use multispectral data.  

By combining the methodology of Bai et al. (2016) and higher spatial resolution 

from Sentinel-2 suggested by Muller and Niekerek (2016), this study presents the first 

comparison of Landsat OLI and Sentinel-2 for soil salt detection. The aim of this study is 

to compare the potential of mapping soil salinization using Landsat 8 OLI and Sentinel-2 

following the methodology used in Bai et al. (2016). Correlations between the in-situ EC 

measurements and resampled multispectral bands were conducted. Using iterative 

ordinary least squares statistical modelling, the statistically significant models with the 

highest R2
Adj and lowest collinearity were selected to map salinity in the study area.
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CHAPTER 2 

MATERIALS AND METHODS 

2.1 Study Area 

Figure 2.1 Hyde County, NC with the six soil sampling sites, each containing a 90 meter 

transect, represented as green triangles. The county extends into the Pamlico Sound to the 

island chain called the Outer Banks, this study only classified the continental portion of 

the county. Imagery from ESRI ArcGIS and Digital Globe. 

 

Approximately 75 percent of land in Hyde County is below 1.3 meters of 

elevation (NOAA Office for Coastal Management, 2017). The highest elevation is in the 
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west of the county along Alligator Lake at 4.4 meters of elevation (NRCS, 2001). In 

Hyde County, North Carolina, a 1.3 meter rise jeopardizes approximately 4,200 people, 

440 square miles, and 40 million dollars in property including thousands of acres of 

agricultural land (Climate Central, 2016). According to the United States Department of 

Agriculture (USDA) 2012 Census of Agriculture there were 158 farms on the peninsula 

and total market value of agricultural products sold was $133 million (NASS, 2012).  

The county was cleared and drained for cultivation in the 19th century using 

gravity-fed drainage ditches (McMullan Jr., Rich Jr., Landino, & Barnes, 2016). Rain-fed 

fields channel excess water into drainage ditches often only 24 inches wide. These 

ditches then cut along roads, through wetlands, and around fields before terminating at 

larger drainage canals or natural tributaries. Eventually, the water from the agricultural 

fields drains into the Pamlico Sound and the Atlantic Ocean following the gradient in 

elevation from land to sea. As sea level rises and the gradient shrinks, drainage ditches 

become tidal and, if not prevented, saltwater flows onto agricultural land during high tide 

and storm events (Manda, Giuliano, & Allen, 2014). Impacts of saltwater intrusion from 

ditches are observed through evidence of increased plant stress, salt crusts on soils, and 

agricultural abandonment ( B.H., August 7, 2017; Moorhead & Brinson, 1995; Poulter et 

al., 2009). 

Hyde County is located on the east coast of North Carolina covering an area of 

613 mi2. The county receives between 50 and 60 inches of rain annually with air 

temperatures between 50 and 75 degrees Fahrenheit. Approximately 70% of Hyde 

County is at or below 1.3 meters of elevation. According to a 2001 soil survey of the 

county, soils with a mineral surface layer or highly organic surface layer are most 
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suitable for farming. Both soil groups have poor drainage capacity, requiring artificial 

drainage (NRCS, 2001). Agriculture accounts for almost 30% of the land and, together 

with forestry, fishing, and hunting approximately 19% of direct employment in the 

county (Data USA, 2016; NASS, 2012). The main crops grown are corn, cotton, 

soybeans, and wheat with some specialty vegetable cultivation. 

2.2. Datasets and Pre-processing 

2.2.1 Soil samples 

Sample sites were selected based on a priori knowledge of salt damage and 

permission from landowners. Six fields were selected in total and a transect method was 

applied to collect soil samples along the salinity gradient away from drainage ditches 

(Figure 2.1). The transects were approximately 90 meters in length with samples taken 

every three meters on two dates for a total of 106 samples. The GPS locations of all 

sample points were recorded. Collection days were September 16, 2017 and December 

05, 2017. 54 samples were collected in September and 52 samples were collected in 

December. These dates were chosen due to their proximity to Landsat 8 OLI overpass 

times. The dry fall in Hyde County made salt crusts apparent on soil surface and 

decreasing interference from soil moisture (SM); however, the December date had higher 

soil moisture due to recent precipitation. Soil moisture was directly measured using the 

FieldScout TDR 150 in December and a the North American Land Data Assimilation 

System (NLDAS-2) Noah Lands Surface Model was used as a proxy for surface soil 

moisture (0-10 cm) in September (Xia et al., 2012).  Due to vegetation interference, 

several transects were shortened during collection.  
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Measurements of EC and spectra were conducted in the field. A JAZ Ocean optics 

handheld spectrometer was held 1 meter above the sample point to collect reflectance 

spectra. The spectrometer has 2,048 bands from 191.117 nm to 889.222 nm (VIS) 

(OceanOptics, 2018). A FieldScout TDR 150 was used to measure EC, SM, and 

temperature in-situ. The 4.5 inch probes were inserted into the soil and measurements 

were recorded (Spectrum Technologies, 2017). Five samples were submitted for 

validation testing at the North Carolina State University Agricultural Cooperative 

Extension Service lab. 

The JAZ spectrometer data was pre-processed using Python programming. Due to 

high noises in the shortwave infrared (SWIR), the spectra were limited to 400-760 nm 

(VIS-NIR). Reflectance (r) was calculated from the raw count using the equation: 

𝑟 =
𝑠−𝑑

𝑘−𝑑
∗ 100                                                        (1) 

where 𝑠 is the raw count data and 𝑘 and d are the reference and dark spectra, respectively, 

taken while calibrating the spectrometer in-situ.  

2.2.2. Satellite Imagery and Pre-processing 

Satellite images from Landsat 8 OLI and Sentinel-2 were used in this study. 

Sentinel-2 is a European Space Agency mission that includes two polar-orbiting satellites 

(Sentinel-2A and Sentinel-2B) allowing the return time to be decreased from 10 to 5 days 

at the equator and less in the mid-latitudes (ESA, 2017). A Sentinel-2A image was used 

in this study. Landsat OLI has a return time of 16 days (USGS, 2016). OLI has four 

bands within the VIS-NIR at 30 m spatial resolution and Sentinel-2A has six bands at 10-

20 meter spatial resolution (ESA, 2017; USGS, 2016). The OLI image used in this study 
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was taken September 16, 2017. The Sentinel-2 image was taken September 20, 2017. The 

OLI image was downloaded from USGS Data Clearinghouse (EarthExplorer). Using 

ENVI 5.4, the image was then radiometrically calibrated and converted to surface 

reflectance using the Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes 

(FLAASH) module. The Sentinel-2 image was corrected and converted to reflectance 

using the European Space Agency Sentinel Application Platform (SNAP) Sen2Cor 

module (ESA, 2014).  

 Two masks were used to exclude the non-soil pixels in both images. First, the 

normalized difference vegetation index (NDVI) was used to identify vegetation and water 

pixels. As per previous studies, pixels with NDVI > 0.3 were considered vegetation and 

NDVI<0.05 were considered water (Bai et al. 2016). The ENVI module “Calculate Cloud 

Mask using Fmask” was then used to remove any clouds from the images. The final 

images contained only bare soil pixels. 

2.3. Methodology 

A Pearson’s r correlation was conducted between the processed JAZ data and 100 

soil EC measurements (Equation 2). Pearson’s r measures the linear correlation between 

two variables though it can be affected by outliers and sample size (Pearson, 1895). This 

data is approximately normally distributed (skewness ±2) (Gravetter & Wallnau, 2014). 

The Pearson’s r correlation is calculated as: 

𝑟 =
∑𝑋𝑌−

(∑𝑋)(∑𝑌)

𝑛

√(∑𝑋2−
(∑𝑋)2

𝑛
)(∑𝑌2−

(∑𝑌)2

𝑛
)

                                              (2) 

where X represents the reflectance value, Y represents the EC, and 𝑛 is the total number 

of values in each dataset (𝑛 must be equal for X and Y). In addition, a continuum removal 
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of the JAZ data was implemented by fitting a convex hull to the spectra to identify 

absorptions and emissions in the spectra to determine the viability of future hyperspectral 

satellite research. The processed, not continuum removed JAZ data was  resampled to the 

broad multispectral bands using the Landsat OLI and Sentinel-2 spectral response 

functions (J. A. Barsi et al., 2011; J. Barsi et al., 2014; ESA, 2017) to better compare the 

two sensors. A Pearson’s R correlation analysis was conducted between the resampled 

spectra and the field measured EC using 100 samples. Correlation coefficients indicate 

the strength and direction of relationships between variables. The statistical significance 

of the correlation was tested at the 0.05 significance level. 

 Then, an iterative ordinary least squares regression was used to develop two 

models for OLI and Sentinel-2 using the appropriate resampled data. The OLI model had 

four independent variables (Bands 1-4) and Sentinel-2 model had six independent 

variables (Bands 1-6). 67 samples were used for model development with 33 samples 

used for validation. The samples were selected randomly to avoid bias. Stepwise 

regressions have been used previously; however, it has been shown that the results lead to 

a higher chance of spurious statistical significance, parameter bias, and inconsistencies 

leading to non-replicable results (Thompson, 1995; Whittingham et al., 2006). Due to this 

possibility, two main statistical metrics were measured to evaluate model performance. 

To avoid collinearity from the related variables that can cause prediction errors, the 

variance inflation (VIF) was calculated (Equation 3). Finally, the Akaike’s Information 

Criterion (AIC) was used to compare the resulting regression models and rank the models 

(Equation 4). To use AIC, the models must already satisfy the informative requirements 

of the other four statistics. A VIF>5 indicates high collinearity. Generally, the lowest 
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model AIC score is best though models with a Δi < 2 have essentially equivalent value in 

goodness of fit and models with a Δi > 10 are poor enough to not be considered. There is 

some debate on the Δi between 2 and 10 and this study considered all models with a Δi < 

6 from the best AIC score (Burnham & Anderson, 2002; Symonds & Moussalli, 2010).  

VIF and AIC are calculated as: 

𝑉𝐼𝐹 =
1

1−𝑅2
                                                           (3) 

𝐴𝐼𝐶 = 𝑛 [ln⁡(
𝑅𝑆𝑆

𝑛
)] + 2𝑘                                               (4) 

Three additional metrics were used in coordination with VIF and AIC. The coefficient of 

determination (R2) is a measure of the goodness of fit between measured and predicted 

values (Equation 5). R2
Adj adjusts for the over-fit of the model (Equation 6). The root 

mean square error (RMSE) is an estimate of error within the model (Equation 7). These 

statistics are calculated as: 

                                      𝑅2 = 1 −
∑ (𝛾−𝛾,)2𝑛
𝑖=1

∑ (𝛾,−𝛾̅)2𝑛
𝑖=1

                                                (5) 

𝑅𝐴𝑑𝑗
2 = 1 −

𝑛−1

𝑛−𝑘−1
(1 − 𝑅2)                                           (6) 

𝑅𝑀𝑆𝐸 = √
∑ (𝛾−𝛾′)2𝑛
𝑖=1

𝑛
                                                  (7) 

where 𝛾 are the measured EC values, 𝛾′ are the predicted EC values, 𝛾̅ is the average of 

measured values, 𝑛 is the number of samples (n=66), and 𝑘 is the number of variables 

(k=4 (OLI), k=6 (Sentinel-2)). An iterative approach was used to developing the model 

due to the known constraints of stepwise regression models (Thompson, 1995). Each 

model was evaluated using the full validation dataset and datasets consisting of the 

individual days of observation. This was done to identify potential errors during 

sampling.  
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 Finally, the regression models were applied to analyse Landsat OLI and Sentinel-

2A scenes. Using the pre-processed imagery and the ENVI Band Math module, the EC 

was calculated for each bare soil pixel. The resulting values were then validated using 33 

field samples and VHR imagery from Google Earth. The VHR imagery was visually 

interpreted to identify salt crusts based on a priori field observations. Landsat OLI and 

Sentinel-2 results were compared using statistical analysis, spectral sensitivity analysis, 

and accuracy assessments. 
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CHAPTER 3 

RESULTS 

3.1 Soil Sample Salinity Gradient 

As hypothesized, a gradient of high to low salinity existed from the edges of the 

fields near the drainage ditches to towards the centres of the fields (Figure 3.1). This 

shows that the salinity is likely coming from overland saltwater inundation during high 

tides or storm events. 

 

Figure 3.1 Example gradient of soil electrical conductivity levels away from drainage 

ditches
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3.2 Spectral Properties of Soil Samples 

EC measurements in the study area ranged from 11 dS/m to 0 dS/m. Metternicht 

and Zinck (1997) categorized below 4 dS/m as non-saline, between 4 dS/m and 8 dS/m as 

slightly saline, between 8 dS/m and 16 dS/m as moderately saline, and above 16 dS/m as 

strongly saline. However, even an EC of 4 dS/m can result in a crop yield loss of between 

25 and 50 percent for corn, onions, and potatoes (Ayers & Westcot, 1994). Due to the 

impact of lower salinity on crops, the threshold of 4 dS/m was determined sufficient for 

identifying areas of critical salinity. Therefore, soil spectra in this study were examined 

based on two EC classes (above and below 4 dS/m) to demonstrate salinity-related 

spectral variation. 

 In Figure 3.2a, saline soils (above 4dS/m) have significantly higher spectral 

reflectance than non-saline soils (below 4 dS/m). Continuum removal was conducted to 

demonstrate the wavelengths of spectral absorption and emission that could correspond 

with salinity (Figure 3.2b). The wavelength ranges of highest reflectance are 403-412 nm, 

420-453 nm, 566-588 nm, 596-608 nm, 719-736 nm, and 743-750 nm. Figure 3.3 shows 

the correlation coefficients between EC and soil reflectance, as a function of wavelength. 

Correlation coefficients were the highest between 400 and 500 nm with a decreasing 

trend toward the NIR. Starting at 688 nm a sharp increase in the p-value indicates a lack 

of statistical significance.  
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Figure 3.2 Calculated Reflectance of field spectra (a) averaged into above and below 4 

dS/m categories (b) continuum removed. 

 

Figure 3.3 Correlation coefficient and P-value between EC and not continuum removed 

Soil Spectra  

3.3. Resampled Spectrometer Analysis 

The narrow spectral features identified by hyperspectral sensors are less easily 

detected by broad brand sensors. Tables 3.1 and 3.2 show the correlation coefficients 

between the satellite-like bands and EC for both sensors. The correlation coefficients stay 

fairly close to the hyperspectral coefficients for similar spectral ranges. The OLI-like 

bands have slightly higher correlation coefficients though Sentinel-like bands have 

a. b. 
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consistently statistically significant results. Due to the high correlations between the 

bands, there is a high likelihood of collinearity between the bands as identified. 

Table 3.1 Pearson 𝑟 correlation coefficients among the OLI-like bands and EC. 

 Bands in nm b1 b2 b3 b4 EC 

b1 (434-451) 1 

    b2 (452-512) 0.90* 1 

   b3 (533-590) 0.73* 0.94* 1 

  b4 (636-673) 0.68* 0.92* 0.98* 1 

 EC 0.42 0.35* 0.25* 0.21* 1 

*Significant at the 0.05 probability level 

Table 3.2 Pearson 𝑟 correlation coefficients for sample spectra averaged into Sentinel-2 

bands 

 Bands in nm b1 b2 b3 b4 b5 b6 EC 

b1 (433-453) 1 

      b2 (457.5-522.5) 0.98* 1 

     b3 (542.5-577.5) 0.89* 0.95* 1 

    b4 (650-680) 0.85* 0.93* 0.98* 1 

   b5 (697.5-712.5) 0.82* 0.90* 0.98* 0.98* 1 

  b6 (732.5-747.5) 0.78* 0.87* 0.95* 0.96* 0.99* 1 

 EC 0.39* 0.35* 0.25* 0.21* 0.18* 0.14 1 

*Significant at the 0.05 probability level  

3.4. Regression Model 

The resulting models were statistically significant with the lowest AIC, and no 

significant multicollinearity. In the Landsat OLI model, Bands 2 (452-512 nm) and 4 

(636-673 nm) were sensitive to EC. In the Sentinel-2 model, Bands 2 (457.5-522.5) and 6 

(732.5-747.5) were sensitive to EC. This suggests that the Blue and Red spectral ranges 
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are the most sensitive to EC in both sensors. Equation 8 shows the Landsat OLI model 

with OLI Band 2 and 4. Equation 9 shows the Sentinel-2 model with Band 2 and 6. 

𝐸𝐶𝑂𝐿𝐼 = 2.0080 + 0.0698𝒃𝟐 − 0.0156𝒃𝟒⁡                              (8) 

𝐸𝐶𝑆𝑒𝑛𝑡𝑖𝑛𝑒𝑙−2 = 2.1111 + 0.0559𝒃𝟐 − 0.0074𝒃𝟔                              (9) 

The descriptive statistics of the models describe the performance of each 

regression model (Table 3.3). The R2
Adj for the Landsat OLI model and Sentinel-2 model 

were lower for the December collection day than for the September collection day though 

both were statistically significant. The R2
Adj for Landsat OLI on the first day was 0.33 and 

with all data 0.20. The R2
Adj for the Sentinel-2 model was 0.412 on day one of sampling 

and 0.234 including both days of sampling. The RMSE of the Landsat OLI and Sentinel-

2 models are 1.24 and 1.42, respectively. This indicates that they could both be used to 

predict EC though Sentinel-2 has slightly higher skill.  

There are three potential factors that may explain these differences in model 

fitting between the two days. In September, the crops were at the end of the growing 

season but had mostly not been harvested while in December the crops were harvested 

and the land was tilled causing a change in soil texture and surface soil type. Soil 

moisture between September and December were approximately equivalent. However, 

the lab soil tests confirmed the EC measurements were accurate regardless of the change 

in soil moisture. The lab soil tests showed a clear relationship between field salinity 

measurements and lab salinity measurements (Figure 3.4). As EC is a function of soil 

moisture and salt concentration, the two variables are highly correlated (Pearson 𝑟 of .78) 

even small variations could have affected the in-situ measurements. Additionally, 
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temperature is a potential factor as temperature varied between 17 °C and 28 °C in 

September and 6 °C and 19 °C in December. 

Table 3.3 Model statistics for both sampling days, separated and combined, the bolded 

categories are statistically significant. 

Day Sensor R2
 R2

Adj RMSE VIF AIC 

S
ep

te
m

b
er

 

Landsat OLI 0.54 0.51 0.90 2.17 172.5 

Sentinel-2 0.69 0.669 0.73 3.23 165.4 

D
ec

em
b

er
 

Landsat OLI 0.04 -0.02 1.90 1.04 229.6 

Sentinel-2 0.04 -0.02 2.83 1.04 228.2 

B
o

th
 D

a
y

s Landsat OLI 0.31 0.24 1.15 1.45 333.80 

Sentinel-2 0.32 0.27 1.13 1.47 331.90 

 

 

Figure 3.4 Soil test results adapted from NCDA&CS Agronomic Division showing 

Exchangeable Sodium Percent (ESP) and In-situ Electrical Conductivity (EC) 
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3.5. Comparison of salinity mapping 

The OLI and Sentinel-2A models were applied to their respective images. Only 

the above 4 dS/m soils were extracted for the final salinity distribution analysis. Using 

the Sentinel-2A and Landsat OLI images, salinized soils cover approximately 1.8% (529 

acres) (Sentinel-2A) to 2.5% (4210 acres) (Landsat OLI) of the bare soil in Hyde County, 

most of which is farmland. The area was calculated as the percentage of bare soil (extract 

through the masking process) classified as saline by the models. Image analysis identified 

only the highest salinity pixels, although in-situ soil measurements reveal that 

surrounding pixels were also saline. This is likely due to the high spectral reflectance of 

salt crusts versus lower saline soils or soils that have recently been disturbed through 

tilling or harvesting.  

Salt-affected soils are clustered together and around water bodies, inlets, and low 

elevations indicating the impact of elevation and saltwater flooding on increased soil 

salinity. Location (Figure 3.5) and concentration (Figure 3.6) maps were created to 

visually display the comparison between the Landsat OLI and Sentinel 2 images. The 

concentration map was created using hot spot analysis based on polygon area density. 

Both sensors highlight three areas with high densities of saline soils, the northwest corner 

of the county, southwest corner, and east coast (Figure 3.6). Manmade structures that 

reflect brightly such as light pavement and metal roofs are improperly classified by both 

OLI and Sentinel-2.  

As seen in Figures 3.5 and 3.6, OLI classifies more soil area as saline (>4 dS/m) 

than Sentinel-2. This can be explained by the larger pixel size and the overestimation due 

to lower model accuracy. In comparing Sentinel-2 and Landsat OLI, it is clear that OLI 

overestimates the spatial extent of visible high salinity soils on a pixel per pixel basis. 
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Figure 3.7 shows an example using Digital Globe imagery from ArcGIS of a high salinity 

soil location and the difference in identification between OLI and Sentinel-2.  However, 

both sensors underestimate the full scale of soil salinization due to difficulties identifying 

low salinity (<4 dS/m) soils. Sentinel-2’s higher spatial resolution enabled the 

identification of narrow salt crusts through fields while the salt signal was lost or 

overestimated with Landsat OLI.  

Figure 3.5 Distribution of soil salinity in Hyde County, NC from Landsat OLI (a) and 

Sentinel-2 (b), red pixels are identified as saline 

 

Figure 3.6 Concentrations of soil salinity pixels in Hyde County, NC from Landsat OLI 

(left) and Sentinel-2 (right) 
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Figure 3.7 Example of salt crust locations, identified through visual interpretation (a) in 

comparison with the USDA NASS Crop Data Layer (b), Landsat OLI modelled salt 

crusts (c), and Sentinel-2 modelled salt crusts (d). 

 

 Sensitivity of Landsat OLI and Sentinel-2 to salt vary due to spectral resolution 

and band location (Figure 3.8). Sentinel-2 is able to better capture the upward trajectory 

of the JAZ spectrometer spectra (insitu) in the red to NIR bands. Landsat OLI is more 

closely related to the in-situ spectra in the shorter wavelengths. At band  3 

(approximately 560 nm), all three spectra are in near agreement. This result shows that 

multispectral data, while lacking in the resolution of hyperspectral data, is still able to 

capture with some sensitivity the field spectra of saline soils.  

a. b. 

c. d. 
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Figure 3.8 Spectral Sensitivity for Landsat OLI, Sentinel-2, and JAZ spectrometer
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CHAPTER 4 

DISCUSSION 

4.1. Use of multispectral data for salinity tracking 

To date, Sentinel-2 has not been used for the identification of salinity though 

previous work has indicated that it might be superior to other broad band imagery (Muller 

& Van Niekerk, 2016).  In this comparative study, correlation coefficients remained 

nearly the same between the broadband spectra of Landsat OLI and Sentinel-2 with 

correlated with EC. Statistically significant relationships existed for both OLI and 

Sentinel-2 aggregated bands when correlated with EC, indicating both OLI and Sentinel-

2 can predict the location of soil salinity. 

 Using linear regression models, OLI bands 2 (452 nm-512 nm) and 4 (636 nm-

673 nm) and Sentinel-2 bands 2 (457.5 nm-522.5 nm) and 6 (732.5 nm – 747.5 nm) were 

selected to estimate soil EC. Both models were statistically significant and showed low 

collinearity. The models have relatively flat slopes, enabling them to capture the values 

around 4 dS/m but overestimating the low EC values and underestimating the high EC 

values.  

The variation in R2
Adj between sampling days suggest that there may be 

environmental factors impacting EC and spectral reflectance. Soil texture changes and 

temperature variations due to measuring before and after the harvest season are potential 

explanations. The dew point and humidity varied between the two days which may have 
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impacted spectral readings. The dew point and average relative humidity in nearby Dare 

County were 67°F and 90 for September and 59°F and 92 for December (Weather 

Underground, 2017). Soil moisture did not vary extensively between days but varied 

between the sampling sites. As the spectra and EC were measured in-situ, and not in a 

lab, noise and anomalous measurements likely contributed to the limited fit of the 

models. Previous studies processed field data in a lab resulting in EC and spectral 

measurements under ideal, controlled circumstances (Bai et al., 2016; Ghosh et al., 2012; 

Li et al., 2015; G. Metternicht & Zinck, 1997). Due to the less controllable environment 

when taking measurements in-situ, higher variation in sample spectra and EC 

measurements may be explained. This study is in agreement with previous studies in the 

identification of bands useful for modelling high soil salinity (Bai et al., 2016; Li et al., 

2015).  

Overall, Sentinel-2 is shown to be the more useful dataset for identifying salinity 

change in coastal landscapes. The R2
Adj and RMSE of the models indicate that Sentinel-2 

has slightly better skill than Landsat OLI at predicting EC. Sentinel-2’s 10 meter spatial 

resolution and 2-3 day return time also offers superior spatial and temporal resolution to 

Landsat OLI’s 30 meter spatial resolution and 16 day return time. When taking into 

account in-situ measurements showing that salinity impacted land continued beyond the 

land mapped using the models, the estimate of land affected rises significantly, however, 

without hyperspectral data, it is difficult to definitively quantify. 

4.2. Agricultural Implications 

Based on the results of this study, salinity can be mapped in agricultural land in 

Hyde County, NC. Sentinel-2 and Landsat OLI have similar limitations to their spectral 
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resolution when classifying saline soils though Sentinel-2 has a slightly higher resolution. 

Only the highest salinity soils are mapped using this multispectral methodology 

approach, so the values of 1.4%-2.5% of the land are likely underestimations in terms of 

total affected land. In addition, land that is experiencing salinity problems but is 

vegetated with halophyte plants or is not saline enough to significantly decrease crop 

yields is not included in this mapping approach, although in-situ soil measurements 

indicate these areas exist. The higher spatial resolution of Sentinel-2 decreases the 

number of mixed pixels likely lending to a higher accuracy in classification. Increased 

spatial resolution and classification accuracy aids in tracking and addressing soil 

salinization in agricultural fields. As sea levels rise, land will either need to be protected 

or practices will need to be adapted to the changes though barriers exist for both of these 

options. 

4.3. Opportunities for Future Research 

This study tests the feasibility of advancing the use of multispectral imagery from 

two satellite sensors for salinity identification. Currently, Sentinel-2 provides superior 

spatial, spectral, and temporal resolutions to Landsat OLI leading to improved salinity 

classification. Results for both classification models may be improved by conducting lab-

based EC and spectral sampling to reduce environmental noise, taking a greater number 

of samples to reduce potential bias, taking samples during the drier months of the year to 

increase salt signatures, and sampling either before or after harvesting to decrease texture 

interference.  

To address the spectral limitations of broadband data such as that from Landsat 

OLI and Sentinel-2, previous studies have employed hyperspectral data to improve soil 



 

26 

salinity classification (Ghosh et al., 2012; Li et al., 2015). The hyperspectral JAZ 

spectrometer measurements show more sensitivity to soil salinity than the broadband 

sensors, particularly after continuum removal. This indicates that future work should 

involve analysis using hyperspectral imagery. Currently, the ESA CHRIS sensor and 

Chinese HJ-1 satellite constellation provide hyperspectral data. The HJ-1 sensor was 

effectively used by Li et al. (2015) though has been shown to have some data limitations. 

The Italian Space Agency PRISMA mission is scheduled to launch in December 2018 

and will contain a hyperspectral sensor (OHB Italia, 2018).  Additionally, the NASA 

Hyspiri satellite is estimated to be launched after 2022 (California Institute of 

Technology, n.d.). For historical analysis, Hyperion data from pre-2017 can be used. or 

Although there are limitations, Sentinel-2 offers the potential for high spatial and 

temporal resolution salinization tracking that is both economical and computationally 

efficient. 
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CHAPTER 5 

CONCLUSION 

This study conducted soil spectra and EC measurements to compare the skill of 

Landsat OLI and Sentinel-2 in mapping soil salinity extent. Statistically significant 

correlations exist between EC and both Landsat 8 OLI and Sentinel-2 bands. The Landsat 

8 OLI and Sentinel-2 estimation models had R2Adj of 0.33 and 0.41, respectively. In-situ 

soil measurements instead of lab measurements may account for the relatively lower 

R2Adj than previous studies. High salinity soils, that often appeared as white salt crusts, 

(>4 dS/m) covered approximately 1.4%-2.57% of the county, although in situ 

measurement of soil salinity indicated that this is likely an underestimation of the total 

affected area. As sea levels rise, soil salinization will increase, and continuous tracking of 

salinity change is necessary to respond to the threat.  

Due to the higher spatial resolution, predictive ability, and return time, Sentinel-2 

offers superior opportunities for identification of salinity than Landsat OLI However, 

analysis of hyperspectral handheld spectrometer measurements suggest that hyperspectral 

sensors may have increased predictive ability in identification of soil salinity.
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