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Abstract

With the development of computer technology, researchers are able to observe and

collect enormous amount of data, where the independent and identical distributed as-

sumption is violated. For example, in sociology, individuals in an organization interact

with each other to change the underlying social structure; in biology, understanding

the gene-gene interaction helps researchers to detect potential diseases; in politics,

voters are mutually influenced before the election via private/public speeches and pa-

rades, which might ultimately change the election results. It is crucial to study how

individuals interact with each other from the data, which would lead to tremendous

contributions to the society.

Centuries ago, mathematicians started to describe the interaction of objects with

mathematical language in the field of graph theory. The concepts of vertices/nodes

and edges are the cornerstone of graph theory. Vertex can be used to describe indi-

vidual, and edge is a way to portray interaction between a pair of vertices. Taking

advantage of the accumulated discoveries in graph theory, statisticians are able to

develop stochastic models to make inference of the data, which can be represented

by network structures.

My main research goal is to develop statistical models to discover the underlying

community structure in various types of network data, including a snap shot of a

network and time-varying network. The word "community" is an intermediate con-

cept between a single node and the whole network, and can refer to a partition, a

block structure, etc. Additionally, I desire to make my models be feasible to large size

data, so that gigantic networks, e.g. social network, can be analyzed using my con-
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tributed methodologies. Spectral clustering type of methods, which usually require

less computational resources, are proposed to achieve the research goal.

I first explore the methodologies of discovering community structure under an

unobserved latent space by shrinking the latent positions of nodes belonging to the

same community. Unlike traditional community detection algorithms, the informa-

tion of edge covariates are taken into consideration for better estimation. I apply

the proposed algorithm on an attorney friendship network to check the correlation

between friendship status and office location.

I am also interested in analyzing dynamic network data, where a series of networks

are observed. For example, the friendship between the same group of undergraduate

students are different in the forth year comparing to the first year. One way to

detect communities with dynamic network is to treat network on each time point

independently. It is convenient, however, historical information (e.g. the network or

community structure in the previous time points), which has potential to improve

the estimation accuracy, is ignored. I build an algorithm to borrow the historical

information and improve the clustering quality with the help of degree of nodes.
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Chapter 1

Introduction

Network analysis has become an ubiquitous topic in statistical researches, espe-

cially in the field of social science, computer science, marketing, biology, etc. Survey

papers and books [9][1][18] have been published in the last ten years alluding to a

fast-growing demand in methodologies for analyzing network data. Community de-

tection is one of the most important and well-discussed sub-branch in the network

analysis research field. By observing one snapshot of a network, community detec-

tion algorithms aim to cluster nodes in a network into a finite number communities.

The word "community" can refer to a partition, a block structure, etc, which is an

intermediate concept between a single node and whole network. In the language

of statistical learning, network community detection problem is unsupervised. The

clustered communities depend on the mechanism of how edges are formed, in which

subject knowledge is required to make proper interpretation to the estimated com-

munities.

1.1 Erdös-Rényi-Gilbert Model

Detecting communities of nodes, or finding an optimal partition of nodes is con-

sidered a difficult task, as well as recognizing the true probabilistic structure of a

network. Many models have been proposed in the history. One of which, called

Stochastic Network Model, was initially discussed by mathematicians in 1950s. Erdös

and Rényi [7] and Gilbert [8] published two similar papers at the same period, whose

contribution is now identified as the Erdös-Rényi-Gilbert model. Although written in
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different perspective, the Erdös-Rényi-Gilbert model can be described in the follow-

ing unified framework: the probability of generating an edge between a pair of nodes

in an undirected network with n nodes is p, and generating edges for two pairs of

nodes are mutually independent events. Obviously, the model can be parameterized

by two parameters, n and p. When n is fixed and p is increasing, edges are expected

to appear more likely. The degree of a node is the number of edges connect to it.

In the Erdös-Rényi-Gilbert model, the degree distribution is approximately Poisson,

because

P{degree of node(v) = k} =
(
n− 1
k

)
pk(1− p)n−k−1

→ (np)ke−np
k! , as n→∞ and np = constant.

Additionally, the product of n and p is a critical indicator. If np is greater than 1,

a unique giant component is almost surely guaranteed in the network. The Erdös-

Rényi-Gilbert model is the simplest Stochastic Network Model, which is not very

useful for researchers to detect the network community structure, unless the desired

network has only one community - the whole network itself.

1.2 Stochastic Block Model

In 1980s, Holland, Laskey, and Leinhardt [14] proposed a probabilistic network

framework favoring block(community) structure, called Stochastic Block Model (SBM).

SBM assumes there exists K communities in an undirected network with n nodes,

and the probability of forming an edge between a pair of nodes completely depends

on the blocks(communities) two nodes belong to. For example, let’s consider a two-

community network (K = 2) with the following linkage probability matrix:

P =

0.8 0.2

0.2 0.9

 .
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The probability of having an edge between a pair of nodes both belonging to commu-

nity 1(2) is 0.8(0.9), and the probability of having an edge between a pair of nodes

belonging to different communities is 0.2. P is symmetric because edges are undi-

rected. After SBM was discovered, it became one of the most popular probabilistic

model for analyzing network data, especially in community detection. One drawback

of SBM is that it assumes all the nodes belonging to the same community are stochas-

tically identical and the degree distribution for all nodes are the same. Obviously, it

is not very realistic.

1.3 Degree Corrected Block Model

The paper of Degree Corrected Block Model (DCBM), an extension of SBM, was

published in 2011 by physicists Karrer and Newman [17], in which degree heterogene-

ity is taken into consideration in the mechanism of edge expansion. DCBM introduces

a degree parameter θi ∈ [0, 1] to node vi, i = 1, 2, . . . , n. For example, let’s consider

a two-community network again with the following community affinity matrix :

B =

0.9 0.3

0.3 0.7

 ,
and assume the degree parameter for node vi/vj/vk is θi = 0.6/θj = 0.8/θk = 0.1,

i 6= j 6= k. The probability of forming an edge between node vi and vj is 0.6× 0.8×

0.7 = 0.336 if both of them belong to community 2, and the probability of forming

an edge between node vi and vk is only 0.6× 0.1× 0.7 = 0.042 if both of them belong

to community 2. Not only the community affinity, but also the degree of individual

node impact the connection probability.

Let’s put everything into matrix form. Define 0/1-entry community membership

matrix Z ∈ Rn×K with Zik = I
(
vi ∈ V(k)

)
indicating whether node vi belongs to

community K. Define Θ to be a diagonal matrix with Θii = θi. It is easy to see that

3



the (i, j)th entry of the matrix

Ω = ΘZBZTΘ

is the probability of forming an edge between node vi and vj, i 6= j, under DCBM.

Equivalently, we can write Ωij = θiθjblilj , where li is the community node vi belongs

to. DCBM became more popular than Stochastic Block Model after it was proposed.

However, degree heterogeneity leads to a challenging problem in estimating the par-

tition with extra n unknown and nuisance degree parameters.

1.4 Latent Space Model

In addition to block structure models, Hoff, Raftery, and Handcock [13] proposed

the latent space model in 2002. The model assumes that there is an unobserved

latent space W = Rq, q = 1, 2, . . . , such that node vi can be represented by a mapped

position wi in the latent space W . Define W = {w1, w2, . . . , wn}, wi ∈ W , to be

the collection of all the latent positions. In the latent space model, small or zero

estimated distance between a pair of nodes in the latent space implies that they come

from the same community. The model assumes that edges are independently formed

conditionally on the latent positions and covariates. The likelihood is

P(A|W ,X ; θ) =
∏
i<j

P(Aij|wi, wj, xij; θ),

where A ∈ Sn is called the adjacency matrix and its (i, j)th entry, Aij, measures

the edge between node i and j. Sn is a set of n × n symmetric matrices. X =

{xij ∈ Rp|xij = xji} is the set of observed covariates of edges, and θ = {α, β, γ}

are the parameters. A natural way to parameterize the likelihood is using the logit

function:

log P(Aij = 1|wi, wj, xij; θ)
1− P(Aij = 1|wi, wj, xij; θ)

= α + xTijβ − γδij,

4



where δij is a well-defined distance function between nodes vi and vj in the latent

space, e.g., δij = ‖wi − wj‖q, δij = ‖wi − wj‖2
q, etc. The log-odds transformation

gives us a simple interpretation: “for two nodes vj and vk equi-distant from vi, the

log-odds ratio of vi ↔ vj versus vi ↔ vk is (xij − xjk)Tβ.” Moreover, the greater

the distance is, the lower the chance of connection. The conditional probability of

the appearance of an edge is highest when the distance between two nodes is zero.

It is worth mentioning that the Stochastic Block Model is one special case of the

latent space model [24], where β = 0 and nodes belonging to the same community

are located at the same position in the latent space W .

Existing stochastic network structures, e.g. SBM, DCBM, and latent space model,

have established a solid mathematical framework for statisticians to develop algo-

rithms aiming to discover community structure in an observed network for real life,

which happens to be my research goal.

In the next chapter, I will briefly review existing algorithms in detecting commu-

nities when a snapshot of a network is assumed to be generated by SBM, DCBM,

or latent space model. Additionally, we will illustrate the motivation of introducing

new models which can be used to discover network communities in both static and

dynamic network cases.
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Chapter 2

Literature Review and Motivation

2.1 Review of Community Detection Algorithms

In the previous chapter, we have briefly introduced the ideas of Stochastic Block

Model (SBM), Degree Corrected Block Model (DCBM), and latent space model.

Here we would like to review some existing algorithms frequently used in discovering

communities based on the foregoing models. For example, we would discuss the

spectral clustering algorithm [23][28], which is very efficient in detecting communities

under the SBM; and for DCBM, a variation of spectral clustering, called Spectral

Clustering On Ratios-of-Eigenvectors (SCORE) [16] is briefly demonstrated. In the

end, we explain the idea of model-based clustering algorithm under latent space model

[12].

2.1.1 Spectral Clustering

The Idea of Spectral Clustering

The main purpose of spectral clustering is to identify objects, who share similar

characteristics. Define xi ∈ Rp, i = 1, 2, . . . , n, to be the observed covariates of the

ith object, and X = {x1, x2, . . . , xn} is the sets containing all xi’s. We are able to

construct a similarity matrix W ∈ Sn by letting Wij = exp {−‖xi − xj‖2
p/2σ2}. Note

that the exponential formula used here is called Gaussian similarity function, and the

positive parameter σ controls the range of the neighborhoods. Gaussian similarity

function is NOT the only way to construct the similarity matrix. Different definitions
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can be employed to different problems. Define D ∈ Sn to be a diagonal matrix with

Dii = ∑n
j=1 Wij. Define the graph Laplacian matrix as

L = D −W

Lsym = D−
1
2LD−

1
2 = I −D−

1
2WD−

1
2 ,

where L is called the unnormalized graph Laplacian and Lsym is called the symmetric

graph Laplacian. Spectral clustering can be conducted on both graph Laplacian

matrices; however, detailed algorithms, clustering results, as well as their convergence

conditions are different[28].

The traditional spectral clustering algorithm designed to classify xi’s into K clus-

ters with the unnormalized graph Laplacian is

1. Compute theK eigenvectors η1, η2, . . . , ηK of the unnormalized graph Laplacian

matrix L = D −W associated with the smallest K eigenvalues.

2. Stack K eigenvectors together to form a n by K matrix H, such that the ith

column of H matrix is ηi, i = 1, 2, . . . , K. Equivalently, H = (η1, η2, . . . , ηK).

3. Use k-means algorithm on the rows of H to find the clusters of objects.

The spectral clustering algorithm with the symmetric graph Laplacian was pro-

posed by Ng, Jordan, and Weiss (2002) [23]. Compare to the previous algorithm, the

only difference is that it requires unit normalization after step 2 to re-balance the

weight of each node. The algorithm is

1. Compute the K eigenvectors η1, η2, . . . , ηK of the symmetric graph Laplacian

matrix Lsym = I −D− 1
2WD−

1
2 associated with the smallest K eigenvalues.

2. Stack K eigenvectors together to form a n by K matrix H, such that the ith

column of H matrix is ηi, i = 1, 2, . . . , K. Equivalently, H = (η1, η2, . . . , ηK).

3. Normalize the rows of H to generate H∗ matrix.

7



4. Use k-means algorithm on the rows of H∗ to find the clusters of objects.

Remark: recently, researchers have shown that it is better to compute theK eigen-

vectors associated with the K smallest absolute eigenvalues in the first step, be-

cause negative eigenvalues with large absolute value are able to discover "heterophilic"

structure in the network [24], which measures the difference between communities.

Graph Cut

One reason that the spectral clustering is so successful is due to its relation-

ship to the graph cut. Define an undirected graph G = (V , E) with node set V =

{v1, v2, . . . , vn} and edge set E . The edge between nodes vi and vj is measured by

a non-negative weight Aij, i 6= j. Aii is defined to be 0 indicating no self-loop.

Large positive Aij means that the connection between two nodes is strong, and if

Aij = 0, two nodes are not linked. As we introduced in the last chapter, the matrix

A = [Aij] ∈ Sn is called the adjacency matrix, and in literature, the matrix A is sim-

plified to be a matrix with 0/1 entries measuring the existence, instead of the size, of

observed edges. The adjacency matrix A can be understood as a special case of simi-

larity matrix. Define degree matrix D, Dii = di = ∑n
j=1 Aij, where di is the degree of

node vi. Define graph Laplacian matrices L = D−A and Lsym = I −D− 1
2AD−

1
2 the

same way as we did in the last section. Note that, for notational convenience, we do

not define the degree matrix and graph Laplacian matrices of the similarity matrix

W and the adjacency matrix A differently. Readers should be able to identify based

on the context.

For any subset of nodes S ⊂ V , we define its complement V\S to be S, and

use i ∈ S as a shorthand notation for the set {i|vi ∈ S}. The observed degree of

subset S, measuring the summation of the degrees of nodes in subset S, is defined

by D(S) = ∑
i∈S di. Additionally, for any two arbitrary subsets S and T , define

8



A(S, T ) = ∑
i∈S,j∈T Aij to be the strength of connection between two subsets S and

T .

Now let’s assume that there exists a partition of V such that V = V(1)∪V(2)∪· · ·∪

V(K), where the cardinarlity of the set |V(k)| > 0, k = 1, 2, . . . , K, and V(k) ∩ V(l) = ∅

for k 6= l. Recall that Z ∈ Rn×K is a 0/1-entry matrix with Zik = I
(
i ∈ V(k)

)
is the

community membership matrix. The partition and Z are equivalent in representing

the community structure of a network. The mincut cost function is defined by

mincut(V(1),V(2), . . . ,V(K)) = 1
2

K∑
k=1

A(V(k),V(k)),

which measures the overall strength of connection between each subset V(k) to its

complement. When K = 2, minimizing the mincut cost function returns a trivial

solution and it splits the whole vertex set into one subset with only one single vertex,

and another subset with the rest of the vertices. In order to avoid this problem,

researchers [11][25] modified the mincut cost function to maintain a size balanced

optimal partition. Define the cost function of ratio cut and normalized cut as follows,

RatioCut(V(1),V(2), . . . ,V(K)) = 1
2

K∑
k=1

A(V(k),V(k))
|V(k)|

,

NormalizedCut(V(1),V(2), . . . ,V(K)) = 1
2

K∑
k=1

A(V(k),V(k))
D(V(k)) ,

where |V(k)| is the number of vertices in the kth subset, and D(V(k)) is the degree

of the kth subset. When |V(k)| or D(V(k)) is small, the cost function of ratio cut

or normalized cut would tend to be large, which penalizes the partition and further

guarantees more size balanced results.

Relaxed Graph Cut and Spectral Clustering

The insight that "spectral clustering is a convex relaxation of the graph cut op-

timization problem" [25] motivates us to understand the bridge between these two

concepts. The conclusion is that minimizing the ratio cut cost function is approx-
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imately equivalent to executing the spectral clustering algorithm with the unnor-

malized graph Laplacian matrix, and minimizing the normalized cut cost function

is approximately equivalent to executing the spectral clustering algorithm with the

normalized graph Laplacian matrix. For the rest of this subsection, we show some de-

tails of the equivalence of the ratio cut problem and unnormalized spectral clustering

problem.

For simplicity, set K = 2 and V = S ∪ S. Denote u ∈ Rn to be a vector with

ui =
√
|S|
|S| when vi ∈ S, and uj = −

√
|S|
|S| when vj ∈ S. Therefore, the following

equations hold:

uTLu = uTDu− uTAu

=
n∑
i=1

diu
2
i −

n∑
i,j=1

uiujAij

= 1
2


n∑
i=1

diu
2
i − 2

n∑
i,j=1

uiujAij +
n∑
j=1

dju
2
j


= 1

2


n∑
i=1

 n∑
j=1

Aij

u2
i − 2

n∑
i,j=1

uiujAij +
n∑
j=1

(
n∑
i=1

Aij

)
u2
j


= 1

2

n∑
i,j=1

Aij (ui − uj)2 , (L is positive semi-definate)

= 1
2


∑

vi∈S,vj∈S

Aij


√√√√ |S|
|S|

+

√√√√ |S|
|S|


2

+
∑

vi∈S,vj∈S

Aij

−
√√√√ |S|
|S|
−

√√√√ |S|
|S|


2

=
(
|S|
|S|

+ |S|
|S|

+ 2
)
A(S, S)

=
(
|S|+ |S|
|S|

+ |S|+ |S|
|S|

)
A(S, S)

= |V|2

{
A(S, S)
|S|

+ A(S, S)
|S|

}

= |V| × RatioCut(S, S)

= n× RatioCut(S, S)

Minimizing RatioCut(S, S) is equivalent to minimizing uTLu
n

. By the construction of

the vector u, it can be easily verified that uTu = n and uT1n = 0, where 1 ∈ Rn is

10



a vector with all entries to be 1, and it is also the eigenvector associated with the

largest eigenvalue, which is 0. Therefore, the problem becomes to

minimize uTLu

uTu
,

subject to uT1n = 0, and vector u has the defined discrete structure.

This is a NP hard problem [28]. In order to have an approximate solution, we relax

the condition by removing the specific discrete structure of vector u, and the problem

becomes to

minimize uTLu

uTu
,

subject to uT1n = 0,

which can be solved by the Rayleigh-Ritz theorem [21], and one solution is the eigen-

vector of L associated with the second smallest eigenvalue. (Note that the smallest

eigenvalue of L is 0 with the eigenvector 1n because the matrix L is positive semi-

definite, which can be observed by the 5th equation in the derivation of uTLu.) Given

the estimated u, we can apply clustering methods, e.g. k-means, to detect clusters.

In this simple case (K = 2), we only need to find a cutoff value, such that vi belongs

to S or S depending on whether the estimated ui is greater or less than the cutoff

value.

Recall that in the spectral clustering, we stack the eigenvectors of L associated

with the K smallest eigenvalues to form H matrix, and then apply k-means on rows

of H to detect clusters. Considering the eigenvector of L associated with the smallest

eigenvalue is 1n, the estimating results would be the same compared to using the

eigenvector of L associated with the second smallest eigenvalue only.

Now let’s discuss the case when K > 2. Recall that we have defined matrix

Z ∈ Rn×K , whose (i, k)th entry is Zik = I
(
i ∈ V(k)

)
. Let Z = (z1, z2, . . . , zK), where

zk is the kth column of the matrix Z. For any cluster k, zk is the vector with entries

11



1 in the positions where the corresponding vertices belong to V(k). zk contains |V(k)|

number of 1’s and n− |V(k)| number of 0’s.

Define yk by yk = zk√
|V(k)|

, and denote Y = (y1, y2, . . . , yK) be a matrix whose ith

column is yi, i = 1, 2, . . . , K. It is obvious that Y TY = In, indicating columns of the

Y matrix are orthonormal to each other. Using the same derivation procedure, we are

able to show that yTk Lyk = (Y TLY )kk =
A

(
V(k),V(k)

)
|V(k)| . Thus, adding K components

together we have

RatioCut(V(1),V(2), . . . ,V(K)) = 1
2

K∑
k=1

A(V(k),V(k))
|V(k)|

= 1
2

K∑
k=1

(Y TLY )kk

= 1
2tr(Y

TLY ),

and minimizing the ratio cut cost function is equivalent to the following problem:

minimize tr(Y TLY ),

subject to Y TY = In, and matrix Y has the defined discrete structure.

Relax the problem by deleting the discrete structure condition, the problem becomes

to

minimize tr(Y TLY ),

subject to Y TY = In,

whose solution, by one of the variation of the Rayleigh-Ritz theorem [21](P. 68), is the

stack of K orthonormal eigenvectors of L associated with the K smallest eigenvalues.

Spectral Clustering in Community Detection

The spectral clustering algorithm has been shown to be consistent under the SBM

in terms of n, not only under the assumption of fixed number of communities, but

also in the situation where the number of communities grow as the number of nodes
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increases, which is more practical and realistic for social networks [24][20]. However,

because of the existence of degree heterogeneity, the consistency of the spectral clus-

tering algorithm cannot be guaranteed under the DCBM model. A relatively new ap-

proach, called Spectral Clustering On Ratios-of-Eigenvectors (SCORE), whose main

discovery is that by using the entry-wise ratios between the eigenvector of adjacency

matrix A associated with the largest absolute eigenvalue, as well as each of the other

K−1 eigenvectors to form a matrix similar to H, the effect of degree heterogeneity is

largely ancillary in terms of the clustering results [16]. In the next section, we briefly

discuss the SCORE algorithm.

2.1.2 SCORE

Under the DCBM model, the SCORE algorithm designed to cluster nodes into K

communities is:

1. Compute the K leading eigenvectors η1, η2, . . . ηK of the adjacency matrix A

associated with the largest K absolute eigenvalues.

2. Compute matrix R ∈ Rn×(K−1) such that for 1 ≤ i ≤ n and 1 ≤ l ≤ K − 1,

R(i, l) = ηl+1(i)
η1(i) ,

which is the coordinate-wise ratio between the ith entry of the first leading

eigenvector and the ith entry of the lth leading eigenvector.

3. Use k-means algorithm on the rows of R to find the clusters of objects.

In the second step, the term "lth leading eigenvector" represents the eigenvector as-

sociated with the lth largest absolute eigenvalue. There are three obvious difference

between the SCORE and the traditional spectral clustering algorithm. First, the

graph Laplacian of the SCORE algorithm is defined by L = A, which can be un-

derstood as a variation of unnormalized graph Laplacian. Second, the K leading
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eigenvectors are computed associated with the largest K absolute eigenvalues.

Third, in the second step of the algorithm, the R matrix is calculated by the entry-

wise ratios between the first leading eigenvector and each of the other K − 1 leading

eigenvectors. The notation R, instead of H, is used to emphasize the entries of R are

ratios. It is worth noticing that the effect of degree heterogeneity is largely removed

by using the entry-wise ratio of the leading eigenvectors in the second step.

Define l ∈ Rn to be the true label vector, say li = k if and only if vi ∈ V(k), and

let l̂ ∈ Rn to be the estimated label vector from the SCORE algorithm. Therefore,

the expected number of mismatched labels is ∑n
i=1 P (l̂i 6= li). Define

SK = {π : π is a permutation of the set{1, 2, . . . , K}} ,

and the Hamming distance between the true labels and estimated labels can be defined

by

Hammn(l̂, l) = min
π∈SK

n∑
i=1

P (l̂i 6= π(l)i),

which measures the distance between l̂ and l in terms of the closest permutation.

Define Ω to be the probability of generating the adjacency matrix A, and ηk is the kth

leading eigenvector of A associated with the kth largest absolute eigenvalue. Define

η̄i to be the kth leading eigenvector of Ω associated with the kth largest absolute

eigenvalue. When ‖η̄k − ηk‖ and ‖Θ−1(η̄k − ηk)‖ are bounded, it can be shown that

Hammn(l̂, l) ≤ C log3(n)errn,

where C is a positive constant, and errn is a an error bound depending on the degree

matrix Θ.

2.1.3 Model-based Clustering under Latent Space Model

In the latent space model, it is assumed that there is a latent space, such that

each node can be located into one position in the latent space. With the conditional
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independence assumption, the likelihood is

P(A|W ,X ; θ) =
∏
i<j

P(Aij|wi, wj, xij; θ),

where W = {w1, w2, . . . .wn}, wi ∈ Rq, is the set of latent positions, X = {xij ∈

Rp|xij = xji} is the set of all observed characteristics, and θ = {α, β, γ} are the

parameters. We can parameterize the probability using logit function,

µij ≡ log P(Aij = 1|wi, wj, xij; θ)
1− P(Aij = 1|wi, wj, xij; θ)

= α + xTijβ − γδij.

In order to classify nodes into clusters, it is assumed that each latent position wi

belongs to a q-dimensional mixture of K multivariate normal distribution, e.g. wi ∼∑K
k=1 λkMVNq(µk, σ2

kIq), where λk is the probability a node belongs to the kth cluster,

and ∑K
k=1 λk = 1.

Two different estimation methods were proposed to maximize the likelihood [12].

One method is called two-stage maximum likelihood estimation. In the first stage,

the MLE of the latent position parameters, wi’s, are computed without consideration

of the clustering. Maximizing

P(A|W ,X ; θ) =
∏
i<j

eµijAij

1 + eµij
,

who is convex as a function of distance δij providing with a unique solution. Multidi-

mensional scaling technique can be used to recover latent positions after distances are

estimated. In the second stage, MLE of the parameters of the multivariate normal

distributions can be computed using EM algorithm conditionally on the previously

estimated latent positions. This method is comparatively fast; however, informa-

tion is lost when the latent positions and distribution parameters are not estimated

simultaneously.

The second one is a Bayesian approach equipped with Markov chain Monte Carlo

(MCMC) sampling techniques. The prior distribution of the parameters are

β ∼ MVNp(ξ,Ψ),
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λ ∼ Dirichlet(ν),

σ2
k

IID∼ σ2
0Invχ2

γ k = 1, 2, . . . , K,

µk
IID∼ MVNq(0, ω2Iq) k = 1, 2, . . . , K,

where ξ,Ψ, ν = (ν1, ν2, . . . , νK), σ2
0, γ and ω are hyper-parameters which are needed to

be specified at the beginning. Detailed sampling methods and conditional posterior

distributions can be found in [12], and this method leads to better clustering results

comparing to the two-stage MLE; however, the computation is very time consuming

with large networks.

2.2 Motivation

The main research goal is to build models which can be used to discover network

community structure with the adjacency matrices, as well as edge covariates. From

the model-based clustering, the Bayesian approach is very slow. Consider that there

exists million/billion-user social networks, new approaches are needed to resolve the

problem to accommodate the large scale networks. At the same time, with advances

in computer technology, it is possible to observe the entire evolution of a network

over time. Instead of estimating communities with a snapshot of network, it might

be better to estimate in a longitudinal manner, and the key question is how to borrow

historical information to improve the estimation for the current network communities.

In the next two chapters, we will discuss two potential methods, one is designed to

have a fast estimation under the latent space model, and one is designed to handle

the dynamic network community discovery under the DCBM setting.

2.3 Notations

For any vector x ∈ Rq, ‖x‖q =
√
xTx denotes the Euclidean Norm. For any matrix

W , ‖W‖F denotes the Frobenius norm with ‖W‖2
F = trace(W TW ) = tr(W TW ). For
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any set V , |V| denotes the set cardinality, e.g. the number of objects in the set V .

All eigenvectors mentioned are unit-norm. I(·) is the indicator function. 1n ∈ Rn is

a n× 1 vector with all entries equal to 1. In ∈ Rn×n is the n× n identity matrix. Sn

is a set for symmetric n× n matrices.
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Chapter 3

Lasso-type Network Community Detection

within Latent Space

3.1 Introduction and Motivation

Imagine that we have observed a snapshot of network data with the adjacency

matrix A, as well as covariate(s) for each edge. For example, covariates of an edge

from social network could be the age/income/education difference between two users.

Traditional spectral clustering algorithm can be used to handle adjacency matrix A

only; however, it would be beneficial if we can involve covariate(s) information in

the algorithm to possibly boost the estimation results. This is the motivation of this

chapter.

3.2 Setting

As we stated in the introduction, latent space model [13] assumes there exists an

unobserved latent space W = Rq, such that the linkage probability between any pair

of nodes (vi, vj),∀i 6= j, can be partially represented by the distance between the

mapping of (vi, vj) in the latent space. wi ∈ Rq is the mapping (latent position) of

node vi.

The probability of edge appearance between a pair (vi, vj) depends on the distance

between wi and wj. Closer wi and wj stands for stronger connection probability.

Additionally, covariates might contribute to the connection probability as well. One
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natural way to parameterize the probability is using the logit function, say

ηij ≡ log P(Aij = 1|wi, wj, xij; θ)
1− P(Aij = 1|wi, wj, xij; θ)

= α + xTijβ − γδij,

where xij ∈ Rp is the covariates of pair (vi, vj), θ = {α, β, γ} ∈ {R,Rp,R\R−} is

the underlying parameter, and δij ∈ R\R− is a distance measure between wi and

wj. We assume squared Euclidean distance, δij = ‖wi − wj‖2
q, for mathematical

simplicity. In usual logistic regression, the value of X = {xij ∈ Rp|xij = xji} and ∆ =

{δij}, i, j = {1, 2, . . . , n}, i 6= j, are observed and known. Differently, in this problem

∆ is unknown because the latent positions W = {w1, w2, . . . , wn} are unknown and

unobservable.

For any two pairs (vi, vj) and (vl, vm), i 6= j, l 6= m, two events {Aij = 1|wi, wj, xij}

and {Alm = 1|wl, wm, xlm} are assumed to be independent. Therefore, the likelihood

and log-likelihood are

∏
i<j

P(Aij = 1|wi, wj, xij; θ)Aij [1− P(Aij = 1|wi, wj, xij; θ)]1−Aij =
∏
i<j

eηijAij

1 + eηij
,

∑
i<j

ηijAij − log(1 + eηij) =
∑
i<j

(α + xTijβ − γδij)Aij − log(1 + eα+xTijβ−γδij).

Maximizing the log-likelihood would provide us with an estimation of the unknown

parameters θ and unknown latent positions W . It is not easy to find the global opti-

mum because the log-likelihood is not concave as a function ofW . Hoff et al. [13] sug-

gested to estimate the latent distances ∆ with constrained positive values satisfying

the triangle inequality before estimating W via multidimensional scaling. Handcock

et al. [12] proposed a model-based clustering method by assuming wi follows a finite

mixture of K multivariate normal distributions. In the context of community detec-

tion, Handcock’s approach is better; however, relative heavy computational intensity

makes it not suitable to large networks.
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3.3 Our Approach

Based on the construction, two close nodes in the latent space have higher con-

nection probability, which further implies that these two nodes might belong to the

same community. Therefore, we want to penalize the latent distances between all

pairs in maximizing the log-likelihood. The objective function we want to minimize

is

g(θ,W) = −log-likelihood + λ
∑
i<j

δij,

=
∑
i<j

{
log(1 + eα+xTijβ−γδij)− (α + xTijβ − γδij)Aij

}
+ λ

∑
i<j

δij,

=
∑
i<j

{
log(1 + eα+xTijβ−γδij)− (α + xTijβ)Aij

}
+
∑
i<j

(λ+ γAij)δij. (3.1)

Equation 3.1 implies that the latent distance of pair (vi, vj) is penalized more when

edges are observed, say Aij = 1. It is ideal to estimate (θ,W) using

(θ̂, Ŵ) = arg min
θ,W

g(θ,W);

however, this is very difficult.

Under the context of profile likelihood, unknown parameters θ and W can be

partitioned as parameter of interestW and nuisance parameter θ because our ultimate

goal is to detect network community structure from W . Instead of estimating θ and

W simultaneously, we can first assume that nuisance parameter θ is known, then we

represent g(θ,W) = gθ(W), and estimate W using Ŵ = arg minθ g(W). In reality, θ

is unknown. For each estimate of θ, we can estimate W using

Ŵ = arg min gθ̂(W) = arg min g(θ̂,W).

Unfortunately, estimating θ along is also a difficult task. Therefore, we use the same

idea to estimate θ using

θ̂ = arg min gŴ(θ) = arg min g(θ, Ŵ).
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Given an initial value of either θ̂ or Ŵ , let two estimation steps be applied alter-

natively until convergence. The zig-zag type method, as known as the Gauss-Seidel

method, could solve the estimation problem much faster. With the estimate Ŵ , apply

k-means algorithm on each latent positions would return a partition of nodes with K

subsets.

3.3.1 Estimate W with given θ̂

With given θ̂ = {α̂, β̂, γ̂} in the previous iteration step, the optimization problem

is minW gθ̂(W), which is equivalent to

min
W

∑
i<j

{
log(1 + eα̂+xTij β̂−γ̂δij)− (α̂ + xTijβ̂)Aij

}
+
∑
i<j

(λ+ γ̂Aij)δij.

Conducting first-order Taylor series expansion of the log term at δij = 0 gives

log(1 + eα̂+xTij β̂−γ̂δij) = log(1 + eα̂+xTij β̂)− γ̂eα̂+xTij β̂

1 + eα̂+xTij β̂
δij + · · · .

Plug the expansion into the objective function yields

min
W

∑
i<j

log(1 + eα̂+xTij β̂)− γ̂eα̂+xTij β̂

1 + eα̂+xTij β̂
δij

− (α̂ + xTijβ̂)Aij + (λ+ γ̂Aij)δij,

⇐⇒ min
W

∑
i<j

λ+ γ̂Aij −
γ̂eα̂+xTij β̂

1 + eα̂+xTij β̂

 δij,
⇐⇒ min

W

∑
i<j

λ+ γ̂Aij −
γ̂eα̂+xTij β̂

1 + eα̂+xTij β̂

 ‖wi − wj‖2
q,

⇐⇒ min
W

tr
[
W T (D∗ − A∗)W

]
, (3.2)

where W = (w1, w2, ..., wn)T ∈ Rn×q, A∗ ∈ Sn and

A∗ij = λ+ γ̂Aij −
γ̂eα̂+xTij β̂

1 + eα̂+xTij β̂
= λ+ γ̂

Aij − eα̂+xTij β̂

1 + eα̂+xTij β̂

 , i < j, (3.3)

A∗ii = 0, and D∗ ∈ Sn is a diagonal matrix with D∗ii = ∑n
j=1 A

∗
ij. D∗ is the degree

matrix of A∗. We assume W TW = Iq for identifiability reason. In equation 3.2, the

problem can be solved by one of the variation of the Rayleigh-Ritz theorem [21](p68),
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and the solution is the column stack of q orthonormal eigenvectors τ1, τ2, . . . , τq cor-

responding to the smallest eigenvalues ζ1 ≤ ζ2 ≤ · · · ≤ ζq of matrix D∗ − A∗, say

Ŵ = (τ1, τ2, . . . , τq).

Define L∗ = D∗−A∗, and L∗ is the unnormalized graph Laplacian of A∗. It is worth

mentioning that tr
[
W T (D∗ − A∗)W

]
= tr

(
W TL∗W

)
is convex with respect to W if

and only if L∗ is nonnegative definite. L∗ is nonnegative definite when A∗ij ≥ 0. The

condition is not always held unless we pick a λ such that

λ ≥

∣∣∣∣∣∣min
i<j

γ̂Aij − γ̂eα̂+xTij β̂

1 + eα̂+xTij β̂


∣∣∣∣∣∣ , or λ ≥ λmin ≡ max

i<j

 γ̂eα̂+xTij β̂

1 + eα̂+xTij β̂

 . (3.4)

The second inequality relies on the fact that there always exists at least one pair

(vi, vj) whose Aij = 0, which is equivalent to say the network is not fully connected.

λmin is the minimum values of λ guaranteeing A∗ij ≥ 0 and the convexity condition of

the optimization problem. We want to check whether we could choose larger value

of λ to further shrink the distances between pairs of nodes belonging to the same

community. The answer is "no need". Based on the theorem 3.1, we can see that

eigenvectors of L∗ is invariant for any λ whose value is greater than the described

threshold in equation 3.4.

Theorem 3.1. Define similarity matrix A ∈ Sn with Aii = 0 and Aij ≥ 0, ∀i 6= j.

D is the degree of matrix of A, and L = D −A is the unnormalized graph Laplacian

of A. Assume rank(L) = n − c. 0 = ζ1 = · · · = ζc ≤ · · · ≤ ζn are the ordered

eigenvalues of L, and 1√
n
1n = τ1 = · · · = τc, . . . , τn are corresponding orthonormal

eigenvectors. Define a new matrix A∗ = aA+ b(1n1Tn − In) ∈ Sn, where a, b > 0. D∗

is the degree of matrix of A∗, and L∗ = D∗−A∗ is the unnormalized graph Laplacian

of A∗. ζ∗1 ≤ ζ∗2 ≤ · · · ≤ ζ∗n are the ordered eigenvalues of L∗, and τ ∗1 , τ ∗2 , . . . , τ ∗n are

corresponding orthonormal eigenvectors. It can be shown that ζ∗i = aζi + nb and

τ ∗i = τi, ∀i > c.
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Proof. It is clear that D∗ = aD + (n− 1)bIn. Therefore, for ∀i

L∗τi = (D∗ − A∗)τi

= {[aD + (n− 1)bIn]− [aA+ b(1n1Tn − In)]}τi

= [(aL+ nbIn)− b1n1Tn ]τi

= (aζi + nb)τi − b1n1Tnτi.

For ∀i ∈ [1, c], ζi = 0, τi = 1√
n
1n gives L∗τi = nb 1√

n
1n − b1n1Tn ( 1√

n
1n) = 0, and for

∀i ∈ [c+ 1, n], L∗τi = (aζi + nb)τi − b1n0 = (aζi + nb)τi.

Theorem 3.1 implies that eigenvectors of L∗ remain invariant for different λ under

the linear transformation of A∗ when the convexity condition is held. λmin is the

smallest one satisfies the convexity condition. We can rewrite equation 3.3 as a

function of λ as

A∗ij = λ+ γ̂

Aij − eα̂+xTij β̂

1 + eα̂+xTij β̂


=
λmin + γ̂

Aij − eα̂+xTij β̂

1 + eα̂+xTij β̂

+ (λ− λmin)

where λ−λmin plays the same role as b in the theorem. Therefore, we can choose any

λ > λmin. In order to further simplify the equation, we set

λ = γ̂ > λmin = max
i<j

 γ̂eα̂+xTij β̂

1 + eα̂+xTij β̂

 . (3.5)

By doing so, the equation 3.3 becomes

A∗ij = γ̂

1 + Aij −
eα̂+xTij β̂

1 + eα̂+xTij β̂

 .
With the results of Theorem 3.1, it is equivalent to define

A∗ij = 1 + Aij −
eα̂+xTij β̂

1 + eα̂+xTij β̂
= Aij + 1

1 + eα̂+xTij β̂
.

The stated minimization procedure is closely related to unnormalized spectral

clustering when λ is properly selected as stated in equation 3.4 or equation 3.5, and

23



A∗ is considered as a similarity matrix. Conduct spectral clustering on A∗ with

unnormalized graph Laplacian is exactly equivalent to the previous analysis steps.

The connection to spectral clustering implies that choosing q = K in our algorithm

is reasonable.

As we can see, when additional covariates are observed, our algorithm can combine

the information of the adjacency matrix A and covariates X together to form a new

similarity matrix A∗, which might be able to provide better community estimation.

At the meantime time, when there is no observed covariate, equation 3.3 becomes

A∗ij = γ̂Aij +
(
λ− γ̂eα̂

1 + eα̂

)
,

and the clustering results will be identical to the traditional spectral clustering based

on the Theorem 3.1.

3.3.2 Estimate θ with given Ŵ

With given Ŵ = {ŵ1, ŵ2, . . . , ŵn} and q = K, we can compute ∆̂ = {δ̂ij} =

{‖ŵi − ŵj‖2
K}. The optimization problem is minθ gŴ (θ), which is equivalent to

min
θ={α,β,γ}

∑
i<j

log(1 + eα+xTijβ−γδ̂ij)− (α + xTijβ − γδ̂ij)Aij.

It is the logistic regression problem with Aij as response, and (xij,−δij) as predictors,

which can be accomplished by any statistical software (e.g. R) efficiently.

3.3.3 The Algorithm

Given the adjacency matrix A and covariates X , our proposed community detec-

tion algorithm is

1. Conduct unnormalized spectral clustering on A to have initial estimate of latent

positions:

a) Compute degree matrix of A by letting D = diag
(∑n

j=1 Aij
)
.
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b) Compute theK eigenvectors τ1, τ2, . . . , τK corresponding to theK smallest

eigenvalues ζ1 ≤ ζ2 ≤ · · · ≤ ζq of unnormalized Laplacian matrix L =

D − A.

c) Let Ŵ ∈ Rn×K be the matrix containing the vectors τ1, τ2, . . . , τK as

columns.

d) ŵi is the ith row of Ŵ , and Ŵ = {ŵ1, ŵ2, . . . , ŵn}.

2. Compute ∆̂ = {δ̂ij} = {‖ŵi − ŵj‖2
K}.

3. Define X ∗ = {x∗ij} = {(xij,−δ̂ij)} , and conduct logistic regression with Aij as

response and x∗ij as predictor to have θ̂ = {α̂, β̂, γ̂}.

4. Define Â∗ with Â∗ij = Aij + 1

1+e
α̂+xT

ij
β̂
.

5. Define A = Â∗, and repeat step 1− 4 until θ̂ (or ∆̂) converges.

6. Apply k-means algorithm on Ŵ = {ŵ1, ŵ2, . . . , ŵn} to achieve the partition.

The consistency of spectral clustering has been discussed [29], in which strong

evidence has been discovered for the superiority of the spectral clustering with nor-

malized graph Laplacian. More specifically, it converges in more general conditions

comparing to using the unnormalized graph Laplacian. Therefore, one reasonable

variation of the above algorithm is to conduct spectral clustering algorithm on A∗

with symmetric graph Laplacian. The algorithm is

1. Conduct spectral clustering on A with the symmetric graph Laplacian to have

initial estimate of latent positions:

a) Compute degree matrix of A by letting D = diag
(∑n

j=1 Aij
)
.

b) Compute theK eigenvectors τ1, τ2, . . . , τK corresponding to theK smallest

eigenvalues ζ1 ≤ ζ2 ≤ · · · ≤ ζq of symmetric Laplacian Lsym = In −

D−
1
2AD−

1
2 .
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c) Let Ŵ ∈ Rn×K be the matrix containing the vectors τ1, τ2, . . . , τK as

columns.

d) Normalized the rows of Ŵ to 1 to generate Ŵ ∗ matrix.

e) ŵ∗i is the ith row of Ŵ ∗, and Ŵ∗ = {ŵ∗1, ŵ∗2, . . . , ŵ∗n}.

2. Compute ∆̂ = {δ̂ij} = {‖ŵ∗i − ŵ∗j‖2
K}.

3. Define X ∗ = {x∗ij} = {(xij,−δ̂ij)} , and conduct logistic regression with Aij as

response and x∗ij as predictor to have θ̂ = {α̂, β̂, γ̂}.

4. Define Â∗ with Â∗ij = Aij + 1

1+e
α̂+xT

ij
β̂
.

5. Define A = Â∗, and repeat step 1− 4 until θ̂ (or ∆̂) converges.

6. Apply k-means algorithm on Ŵ∗ = {ŵ∗1, ŵ∗2, . . . , ŵ∗n} to achieve the partition.

3.4 Simulations

We use simulated data to compare our algorithms with the original spectral clus-

tering algorithms.

3.4.1 Simulation 1

Let’s imagine that there are three villages in a map indicating three communities.

In total there are 300 villagers in all three villages, and each villager has one-third

chance to be assigned to live in one of the three villages. Villagers are connected

randomly and connection probability depends on whether two villagers are in the

same village, as well as the age difference. We assume that similar age villagers have

higher chance to be connected. Motivated by this story, we assume

P(Aij = 1|...) = exp (0.5 + βxij − δij)
1 + exp (0.5 + βxij − δij)

,
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where δij = 0 if two villagers(nodes) belong to the same village(community), otherwise

δij = 1. xij is the age difference covariate. It is generated in the following way: we

randomly generate an "age" variable for each node under Uniform(10, 70), and xij is

the absolute age difference between villager i and j, ∀i 6= j.

When β = 0, the connection probability is fully determined by the community

status. When the absolute value of β increases, the age differences contribute more, so

that our algorithm should be able to outperform those without taking age difference

into consideration.

We compare traditional spectral clustering algorithm with the unnormalized and

the normalized (symmetric) graph Laplacian with our proposed algorithms by the

misclassification error

number of misclassified villagers
300

for various values of β. For each setting, we iterate 50 times to calculate sample

mean, median, and standard deviation.

Simulation 1 results are summarized in Figure 3.1. Blue(red) dashed/solid line

represents spectral clustering with unnormalized/normalized graph Laplacian corre-

sponding to A(A∗). When there is no age effect (β = 0), all four models perform

perfectly. When the absolute value of β increases from 0 to 0.05, traditional spec-

tral clustering algorithms, as well as the our approach regarding to the unnormalized

graph Laplacian start to fail. At the meantime, the performance of our approach

regarding to the normalized graph Laplacian gradually drops, which has been shown

as the best approach in this simulation even thought the variation is a little higher

comparing to other approaches when the age effect is strong.

3.4.2 Simulation 2

In simulation 2, we desire to explore the convergence of our algorithms. We set

β = −0.3, which indicates a fairly strong age effect. The number of total villagers
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Figure 3.1 Lasso Model Simulation 1 Results

Blue dashed/solid line represents spectral clustering with unnormalized/normalized
graph Laplacian corresponding to A. Red dashed/solid line represents spectral clus-
tering with unnormalized/normalized graph Laplacian corresponding to A∗.
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are simulated from 300 to 1000. Other conditions remain the same.

Simulation 2 results are summarized in Figure 3.2. The mean and median mis-

classification error of our approach regarding to the normalized graph Laplacian con-

verges when n increases. Other three algorithms fail completely even with large n.

The higher variation is negligible when we consider the overall clustering performance.

3.5 Data Application: Attorney’s Friendship Network

In 1988-1991, friendship data was collected in a Northeastern US corporate law

firm in New England [19]. It includes 71 attorneys, and each of them pointed out

their friends in the company by answering the following survey question: "Would you

go through this list, and check the names of those you socialize with outside work. You

know their family, they know yours, for instance. I do not mean all the people you are

simply on a friendly level with, or people you happen to meet at Firm functions." We

are able to portray a social network using the answers from 71 attorneys. Exclude two

isolated nodes, and treat all directed edges undirected and unweighted, we are able

to plot the network in figure 3.3. The size of node is proportional to the node degree,

and color representation illustrates which office attorneys work daily (Boston/yellow,

Hartford/green, or Providence/red).

Our goal is to see whether the friendship status has strong correlation with the

office location, which can be tested to see if the friendship network clustering result

matches the office geographical status. Figure 3.3 also includes the eigenvalue plot of

the unnormalized graph Laplacian, in which two big gaps can be seen obviously. The

red line separates the first (smallest) eigenvalue and the rest ones implying that the

network might contains one community. On the other hand, the blue line separates

the first two eigenvalues and the rest ones implying two communities. This method

is frequently used to determine the number of communities in unsupervised network

community detection problem and clustering problem. From the network plot, we
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Figure 3.2 Lasso Model Simulation 2 Results

Blue dashed/solid line represents spectral clustering with unnormalized/normalized
graph Laplacian corresponding to A. Red dashed/solid line represents spectral clus-
tering with unnormalized/normalized graph Laplacian corresponding to A∗.

30



Attorney Friendship Network

1 2 3 4 5 6 7 8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Eigenvalues of Graph Laplacian

E
ig

en
va

lu
es

Figure 3.3 Attorney Friendship Network and Eigenvalue Plot

notice that there are only two nodes belonging to the office in Providence (with color

red). Therefore, it is fair to assume K = 2 for our the analysis.

First, we conduct spectral clustering with normalized(symmetric) graph Lapla-

cian on the adjacency matrix (table 3.1). The misclassification rate is 1+29+2
69 = 32

59 ,

indicating the failure of the algorithm.

Table 3.1 Spectral Clustering with Normalized Graph Laplacian

Office

Estimation
Boston Hartford Providence

Boston 19 1 0
Hartford 29 18 2

Next, we conduct our algorithm with normalized graph Laplacian on the adjacency

matrix, as well as two covariates: age difference and year difference. Age difference is

calculated by the absolute difference between two attorneys’ ages, and year difference
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is calculated by the absolute difference between two attorneys’ years with the firm.

The misclassification rate depending on adjacency matrix and age difference is 5
59

(table 3.2), which can be considered as a huge improvement. Borrowing information

from working year difference gives misclassification rate 6
59 (table 3.3), and using both

age and year information gives misclassification rate 7
69 (table 3.4).

Table 3.2 Spectral Clustering with Age Information

Office

Estimation
Boston Hartford Providence

Boston 45 0 0
Hartford 3 19 2

Table 3.3 Spectral Clustering with Working Year Information

Office

Estimation
Boston Hartford Providence

Boston 45 1 0
Hartford 3 18 2

Table 3.4 Spectral Clustering with Both Age and Working Year Information

Office

Estimation
Boston Hartford Providence

Boston 43 0 0
Hartford 5 19 2

We conclude that friendship network along does not imply the office geograph-

ical community structure; however, with extra information from the attorneys’ age

and/or years with the firm, friendship network community structure has very strong

relationship with the office location. Another interesting finding is that using both
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covariates decreases the model performance a bit, which motivates us to explore more

about how to select the best subsets of covariates in the future.
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Chapter 4

Dynamic Network Community Discovery

4.1 Introduction

The traditional spectral clustering, SCORE algorithms, as well as our approaches

in the last chapter are designed to discover communities in a static network. No

historical information can be used to improve the cluster quality. On the other hand,

in the computer science literature, an idea called evolutionary clustering has been

discussed to deal with the clustering problem with a series of time-varying similarity

matrices, in which the clustering results from the current similarity matrix is adjusted

by the historical information. Evolutionary clustering was first discussed in 2006 [4].

One year later, the idea of temporal smoothness is integrated into the evolutionary

clustering [5] to provide better clustering results in terms of less short-term noise

and more adaptive long-term cluster drifts. The cost function of the evolutionary

clustering problem is

Costt = α(CSt) + β(CTt), (4.1)

where CS stands for snapshot cost, representing the clustering quality of the current

snapshot; CT stands for temporal cost, measuring the temporal smoothness guided

by the historical information, α ∈ [0, 1] is the smoothness tuning parameter, and

β = 1− α. The subscript t, 2 ≤ t ≤ T , is the time. t starts at 2 because no history

can be borrowed from the temporal cost function at t = 1, the starting point of the

observation.

As we discussed in the chapter 2, SCORE algorithm performs well in detecting
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communities of a static network under the DCBM. At the meantime, evolutionary

clustering is a newly proposed method to detect clusters over time when temporal

smoothness is taken into consideration. In this chapter, we plan to integrate the

idea of SCORE and evolutionary clustering together, and discuss three frameworks

in terms of three philosophical ways of borrowing historical information,to adaptively

discover the network communities when the observed network is evolving over time

under the DCBM model assumption.

4.1.1 Settings

We assume that at time t, 1 ≤ t ≤ T , there are n nodes Vt = {v1, v2, . . . , vn}, and

K clusters Vt = {V(1)
t ,V(2)

t , . . . ,V(K)
t } in the network, where V(l)

t is the set of nodes

belonging to the lth community at time t. We assume there exists an unobserved

partition Vt = V(1)
t ∪ V

(2)
t ∪ · · · ∪ V

(K)
t . One 0/1-entry symmetric adjacency matrix

At ∈ Sn is observed.

We denote 0/1-entry matrix Zt ∈ Rn×K to be the community membership matrix

at time t, and Zt(i, l) = 1 when node i belongs to community l at time t. Because

a node belongs to one and only one community at each time, it is easy to see that

each row of Zt has only one “1”, and the rest of the entries are “0”s. Denote Zt =

(zt1, zt2, . . . , ztK). ‖ztl‖1 = |V(l)
t | is the size of community l at time t. For any l and m,

l 6= m, ztl and ztm are orthogonal vectors, say zTtlztm = 0. Define ytl = ztl/
√
zTtlztl be

the normalized ztl, and matrix Yt = (yt1, yt2, . . . , ytK). It is obvious that Y T
t Yt = IK .

We define Xt ∈ Rn×K such that XT
t Xt = IK . Columns of Xt are orthonormal to each

other (just like Yt); however, we allow multiple non-zero entries in each row of Xt.

Xt can be considered as a relaxed or perturbed Yt.

Define θt ∈ Rn to be the degree vector, whose ith entry θt(i) ∈ (0, 1) is the degree

parameter for node i at time t. Let Θt = diag(θt) be the n dimensional diagonal

matrix. (Remark: degree parameter is NOT the node degree in the degree matrix.
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Degree parameter θt measures the population popularity of a node, and the node

degree is the number of observed edges connected to a node.)

4.1.2 Content

In Section 4.2, we introduce three frameworks whose main purpose is to discover

communities with a series of observed time-varying adjacency matrices from a net-

work with n nodes under the DCBM. In Section 4.3, five simulated experiments are

presented to compare the performance of three frameworks, as well as the SCORE

algorithm which servers as a benchmark. In Section 4.4, we apply our proposed al-

gorithm on Enron Email data. In Section 4.5, we discuss three interesting topics,

including whether we should borrow more historical information, and how to modify

the model to meet the needs when the number of communities K, and the number

of nodes n are varying over time.

4.2 Model Construction

There are two major subsections in this section. First, we introduce the com-

munity detection method at t = 1. At this point, there is no engaged historical

information. Therefore, it is a static network community detection problem. SCORE

algorithm [16], and a relaxation for k-means clustering [30] are detailedly described.

Second, we discuss the case at 2 ≤ t ≤ T . We use the same cost function as previously

discussed in equation 4.1. Additionally, three frameworks of temporal smoothness

are considered: Preserving Cluster Quality (PCQ), Preserving Cluster Membership

(PCM), and Preserving Membership Degree (PMD). The idea of the first two frame-

works (PCQ, PCM) was original proposed in [5], and the third one (PMD) is proposed

by ourselves to tackled the degree heterogeneity problem under the DCBM assump-

tion. An integrated algorithm is summarized in the end of this section after three

frameworks are introduced.
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4.2.1 At Time t = 1

At time t = 1, the adjacency matrix A1 ∈ Sn is observed. Based on the Degree

Corrected Block Model (DCBM) [17], A1(i, j), i > j, is a realization of the Bernoulli

random variable with linkage probability

P[A1(i, j) = 1] = θ1(i)θ1(j)B1(l,m),

where θ1(i) is the degree parameters for node i at time t = 1, and node i belongs

to community V(l)
1 , and node j belongs to community V(m)

1 . B1(l,m), the (l,m)th

entry of the community affinity matrix B1 ∈ RK×K , is the baseline linkage parameter

between the nodes in community l and community m at time t = 1. We can describe

the upper triangular of A1 to be a realization of n(n − 1)/2 independent Bernoulli

random variables with linkage probabilities located in the corresponding positions in

the matrix Ω1 = Θ1Z1B1Z
T
1 Θ1.

Spectral Clustering On Ratios-of-Eigenvectors (SCORE) [16] was designed to de-

tect communities using an observed adjacency matrix under the DCBM. The algo-

rithm contains three steps:

1. Compute the K leading eigenvectors (associated with the largest K absolute

eigenvalues) of the adjacency matrix A1: η11, η12, . . . η1K .

2. Compute matrix R1 ∈ Rn×(K−1) such that for 1 ≤ i ≤ n and 1 ≤ l ≤ K − 1,

R1(i, l) = η1(l+1)(i)
η11(i) ,

which is the coordinate-wise ratio between the ith entry of the first leading

eigenvector and the ith entry of the lth leading eigenvector.

3. Apply k-means algorithm on the rows of R1 to detect cluster labels.

Define R1 = (r11, r12, . . . , r1n)T . The objective function of the k-means algorithm

in the third step, which should be minimized with respect to V(1)
1 ,V(2)

1 , . . . ,V(K)
1 (or
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equivalently Z1), is

KM1 =
K∑
l=1

∑
i∈V(l)

1

‖r1i − µ(l)
1 ‖2,

where µ(l)
1 =

∑
i∈V(l)

1
r1i

|V (l)
1 |

is the centroid (mean) of the lth community. A reformulated

representation of k-means problem was discovered in 2002 [30]. The reformulated

problem is related to the trace maximization associated with the Gram matrix. For

the reason which will be specified in the next subsection, it is beneficial to state the

reformulated cost function, which is

KM1 = tr(R1R
T
1 )− tr[Y T

1 (R1R
T
1 )Y1],

where Y1 is the normalized Z1, and R1R
T
1 is the Gram matrix corresponding to RT

1 .

Because R1R
T
1 is obtained from the observed adjacency matrix A1, minimizing the

cost function (with respect to Y1) is equivalent to maximizing tr[Y T
1 (R1R

T
1 )Y1]. We

further relax the matrix Y1 to X1 with XT
1 X1 = IK . However, unlike Y1, more than

one non-zero entries are permitted in each row of X1. X1 is a relaxed or perturbed

Y1. One solution to maximize the relaxed function tr[XT
1 (R1R

T
1 )X1], by one of the

variation of the Rayleigh-Ritz theorem in [21](P. 68), is the stack of K eigenvectors

associated with the largest K (not absolute) eigenvalues of R1R
T
1 . Note that if X̂1 is

a solution, then for any K dimensional orthogonal matrix U , X̂1U is also a solution.

Therefore, the optimal X1 is not unique. However, it is not a problem for us since

network communities are exchangeable. We are able to obtain Ẑ1, an estimate of Z1,

by applying k-means algorithm (or other clustering method) on the rows of X̂1.

In summary, at time t = 1, the algorithm to detect communities with A1 is:

1. Compute the K leading eigenvectors (associated with the largest K absolute

eigenvalues) of the adjacency matrix A1: η11, η12, . . . η1K .

2. Compute matrix R1 ∈ Rn×(K−1) such that for 1 ≤ i ≤ n and 1 ≤ l ≤ K − 1,

R1(i, l) = η1(l+1)(i)
η11(i) ,
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which is the coordinate-wise ratio between the ith entry of the first leading

eigenvector and the ith entry of the lth leading eigenvector.

3. Obtain X̂1 ∈ Rn×K by stacking K eigenvectors associated with the largest K

eigenvalues of the Gram matrix W1 = R1R
T
1 .

4. Apply k-means algorithm on the rows of X̂1 to find Ẑ1.

4.2.2 At Time 2 ≤ t ≤ T

At time 2 ≤ t ≤ T , we consider the cost function Costt = α(CSt) + β(CTt) from

equation 4.1, which is commonly used in evolutionary clustering literature [4][5]. The

t = 1 case can be framed into this cost function as well with CS1 = KM1 and α = 1.

The snapshot cost (CS) measures the cluster quality using the current observa-

tion At at time t. Define CSt = KMt. On the other hand, temporal cost (CT)

measures the smoothness of the evolution of the network. There is no consensus

of the mathematical definition of the smoothness in the literature. Two previously

proposed frameworks [5], Preserving Cluster Quality (PCQ) and Preserving Cluster

Membership (PCM), are trying to address this problem. In this chapter, we will

discuss how to use PCQ and PCM frameworks in the dynamic network community

discovery. Moreover, we propose a new framework called Preserving Membership De-

gree (PMD) to handle the situation with severe degree heterogeneity. By the end of

the day, we find PMD outperforms PCQ and PCM in terms of stability and accuracy

in complicated network settings by simulations.

Preserving Cluster Quality (PCQ)

Under the PCQ framework, the benefit of adding the temporal cost is to find a

partition at time t such that both CSt and CSt−1 are small. In other words, if several

partitions lead to the same CSt, then the one leading to the smallest CSt−1 wins.
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Denote KMt(Zs) to be the k-means objective function at time t evaluated by Zs, the

partition at time s. The cost function under PCQ framework is

Cost(PCQ)t = αCSt + βCTt

= αKMt(Zt) + βKMt−1(Zt)

= α{tr(RtR
T
t )− tr[Y T

t (RtR
T
t )Yt]}

+ β{tr(Rt−1R
T
t−1)− tr[Y T

t (Rt−1R
T
t−1)Yt]}

= {αtr(RtR
T
t ) + βtr(Rt−1R

T
t−1)}

− {αtr[Y T
t (RtR

T
t )Yt] + βtr[Y T

t (Rt−1R
T
t−1)Yt]}

= {αtr(RtR
T
t ) + βtr(Rt−1R

T
t−1)} − {tr[Y T

t (αRtR
T
t + βRt−1R

T
t−1)Yt]}

= {αtr(Wt) + βtr(Wt−1)} − {tr[Y T
t (αWt + βWt−1)Yt]}, (4.2)

where Yt is the normalized Zt, Rt is an n by K − 1 matrix, whose entries are the

coordinate-wise ratio between the first leading eigenvector and other K − 1 leading

eigenvectors computed by the adjacency matrix At, andWt = RtR
T
t is a Gram matrix.

In equation 4.2, the first part is known. Minimizing the cost function is equivalent to

maximizing the second part tr[Y T
t (αWt + βWt−1)Yt] with respect to Yt. We further

relax Yt to Xt using the same idea of the relaxation from Y1 to X1 (e.g. XT
t Xt = IK ,

and more than one non-zero entries in each row of Xt). One optimal estimate X̂t,

aiming to maximize tr[XT
t (αWt+βWt−1)Xt], is the stack of K eigenvectors associated

with the largest K eigenvalues of αWt+βWt−1. Eventually, apply k-means algorithm

on the rows of X̂t gives an estimate of the community membership matrix Ẑt. Now

it is easy to see why we need to reformulate the original k-means cost function to

the trace representation. By doing so, two k-means objective functions, KMt(Zt) and

KMt−1(Zt), can be integrated together to simplify the optimization procedures.
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Preserving Cluster Membership (PCM)

Under the PCM framework, unlike using Wt−1 = Rt−1R
T
t−1 as historical informa-

tion in PCQ, we borrow the information only from historical community structure

at time t− 1. Define the distance function between Xt and Xt−1 to be

dist(Xt, Xt−1) = 1
2‖XtX

T
t −Xt−1X

T
t−1‖2

F ,

which measures the distance between the subspace spanned by the columns of Xt and

Xt−1. Note that the defined distance function is invariant to the XtU transformation,

where U is any K dimensional orthogonal matrix. With the well-defined distance

function, the cost function under PCM framework is

Cost(PCM)t = αCSt + βCTt

= αKMt(Zt) + βdist(Xt, Xt−1)

= α{tr(RtR
T
t )− tr[Y T

t (RtR
T
t )Yt]}+ β

2 ‖XtX
T
t −Xt−1X

T
t−1‖2

F

= α{tr(RtR
T
t )− tr[Y T

t (RtR
T
t )Yt]}

+ β

2 tr[(XtX
T
t −Xt−1X

T
t−1)T (XtX

T
t −Xt−1X

T
t−1)]

= α{tr(RtR
T
t )− tr[Y T

t (RtR
T
t )Yt]}

+ β

2
[
tr(XtX

T
t XtX

T
t )− 2tr(XtX

T
t Xt−1X

T
t−1) + tr(Xt−1X

T
t−1Xt−1X

T
t−1)

]
=
{
αtr(RtR

T
t ) + β

2
[
tr(XtX

T
t XtX

T
t ) + tr(Xt−1X

T
t−1Xt−1X

T
t−1)

]}

−
{
αtr[Y T

t (RtR
T
t )Yt] + βtr(XtX

T
t Xt−1X

T
t−1)

}
=
{
αtr(RtR

T
t ) + β

2 [K +K]
}

(4.3)

−
{
αtr[Y T

t (RtR
T
t )Yt] + βtr(XT

t Xt−1X
T
t−1Xt)

}
Relax=

{
αtr(RtR

T
t ) + βK

}
− tr[XT

t (αRtR
T
t + βXt−1X

T
t−1)Xt] (4.4)

= [αtr(Wt) + βK]− tr[XT
t (αWt + βXt−1X

T
t−1)Xt], (4.5)

where the fact tr(XtX
T
t XtX

T
t ) = tr(XT

t XtX
T
t Xt) = tr(IKIK) = K is used in equation

4.3, and Yt is relaxed to Xt in equation 4.4. A solution path to minimize the cost
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function under the PCM framework is to stack the K eigenvectors associated with

the largest K eigenvalues of αWt + βX̂t−1X̂
T
t−1 to obtain X̂t, followed by applying

k-means algorithm on rows of X̂t to find Ẑt.

Preserving Membership Degree (PMD)

In both PCQ and PCM frameworks, degree heterogeneity is not taken into con-

sideration because the intermediate step of computing Rt largely removes the degree

effect. The question here is “Whether degree plays an rule in the evolution of a net-

work?” If the answer is negative, indeed we can simply use PCQ or PCM framework

to finalize the community discovery procedure. However, if the answer is positive,

it is natural to ask the following question “What mechanism is degree heterogeneity

functioning to influence the community memberships in the network development

process to the next time step?” One intuition is that nodes with relatively

high degree tend to stay in the same community from t−1 to t, comparing

to those marginal nodes who have fewer within community degree. Our

goal is to construct a framework to implement this intuition.

Recall that Θt ∈ Sn is the diagonal matrix with diagonal entries be the degree

parameter θt(i), i=1,2,. . . , n. Therefore, ΘtZt ∈ Rn×K is the matrix whose (i, l)th

entry is θt(i)I
(
vi ∈ V(l)

t

)
. I
(
vi ∈ V(l)

t

)
is an indicator function, and its value is 1 when

node i belongs to community l at time t. Define Θ̃tZt to be the normalized ΘtZt with

entries [Θ̃tZt](i, l) = θt(i)√∑
j:vj∈V

(l)
t

θt(j)2
I
(
vi ∈ V(l)

t

)
. Obviously, the (i, i)th entry of the

diagonal matrix Θ̃t is θt(i)∑
j:vj∈V

(l)
t

θt(j)2 . Denote Θ̃tX̃t to be the relaxed version of Θ̃tZt

such that (Θ̃tX̃t)T (Θ̃tX̃t) = IK , and multiple non-zero entries are allowed in each row

of Θ̃tX̃t.

It is critical to understand the relationship between two n by K orthonormal

matrices Θ̃tX̃t and Xt. As stated, Θ̃tX̃t is the relaxed version of Θ̃tZt, and Xt is the

relaxed version of Yt. Note that Yt can be reformulated as Θ̄tZt, where the (i, i)th
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entry of the diagonal matrix Θ̄t is 1√∑
j:vj∈V

(l)
t

1
. It is easy to see that Θ̄tZt and Θ̃tZt

are the same when all the population degree parameters are the same, say θt(1) =

θt(2) = · · · = θt(n). Besides, we can show that in more general cases, the relationship

between Yt and Θ̃tZt is Yt = Θ̄tΘ̃−1
t (Θ̃tZt), or equivalently Θ̃tZt = Θ̃tΘ̄−1

t Yt. It is

reasonable to assume the relationship between Xt and Θ̃tX̃t is Xt ≈ Θ̄tΘ̃−1
t (Θ̃tX̃t),

or Θ̃tX̃t ≈ Θ̃tΘ̄−1
t Xt.

The distance function designed for the temporal cost function, aiming to ingratiate

our intuition, is

dist(Θ̃tX̃t, Θ̃t−1X̃t−1) = 1
2‖Θ̃tX̃t(Θ̃tX̃t)T − Θ̃t−1X̃t−1(Θ̃t−1X̃t−1)T‖2

F ,

where Θ̃tX̃t is the relaxed version of Θ̃tZt, which preserves both community mem-

bership and within community degree for each node. With the well-defined distance

function, the cost function under PMD framework is

Cost(PMD)t = αCSt + βCTt

= αKMt(Zt) + βdist(Θ̃tX̃t, Θ̃t−1X̃t−1)

= α{tr(RtR
T
t )− tr[Y T

t (RtR
T
t )Yt]}

+ β

2 ‖Θ̃tX̃t(Θ̃tX̃t)T − Θ̃t−1X̃t−1(Θ̃t−1X̃t−1)T‖2
F

= α{tr(RtR
T
t )− tr[Y T

t (RtR
T
t )Yt]}

+ β

2 tr
{(

Θ̃tX̃tX̃
T
t Θ̃tΘ̃tX̃tX̃

T
t Θ̃t

)}
+ β

2 tr
{(

Θ̃t−1X̃t−1X̃
T
t−1Θ̃t−1Θ̃t−1X̃t−1X̃

T
t−1Θ̃t−1

)}
− β

2 tr
{

2Θ̃tX̃tX̃
T
t Θ̃tΘ̃t−1X̃t−1X̃

T
t−1Θ̃t−1

}
= α{tr(RtR

T
t )− tr[Y T

t (RtR
T
t )Yt]}

+ β

2 tr
{(

Θ̃tX̃t(IK)X̃T
t Θ̃t

)
+
(
Θ̃t−1X̃t−1(IK)X̃T

t−1Θ̃t−1
)}

− βtr
{
X̃T
t Θ̃tΘ̃t−1X̃t−1X̃

T
t−1Θ̃t−1Θ̃tX̃t

}
= α{tr(RtR

T
t )− tr[Y T

t (RtR
T
t )Yt]}
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+ β

2 tr
{(
X̃T
t Θ̃tΘ̃tX̃t

)
+
(
X̃T
t−1Θ̃t−1Θ̃t−1X̃t−1

)}
− βtr

{(
Θ̃tX̃t

)T (
Θ̃t−1X̃t−1X̃

T
t−1Θ̃t−1

) (
Θ̃tX̃t

)}
Relax= α

{
tr
(
RtR

T
t

)
− tr

[
XT
t

(
RtR

T
t

)
Xt

]}
+ βK − βtr

{(
Θ̃tX̃t

)T (
Θ̃t−1X̃t−1X̃

T
t−1Θ̃t−1

) (
Θ̃tX̃t

)}
= α

{
tr
(
RtR

T
t

)
− tr

[
XT
t

(
RtR

T
t

)
Xt

]}
+ βK − βtr

{
XT
t

(
Θ̄−1
t Θ̃tΘ̃t−1Θ̄−1

t−1Xt−1X
T
t−1Θ̄−1

t−1Θ̃t−1Θ̃tΘ̄−1
t

)
Xt

}
(4.6)

= αtr
(
RtR

T
t

)
+ βK

− tr
[
XT
t

(
αRtR

T
t + βΘ̄−1

t Θ̃tΘ̃t−1Θ̄−1
t−1Xt−1X

T
t−1Θ̄−1

t−1Θ̃t−1Θ̃tΘ̄−1
t

)
Xt

]
(4.7)

= αtr(Wt) + βK

− tr
[
XT
t

(
αWt + βΘ̄−1

t Θ̃tΘ̃t−1Θ̄−1
t−1Xt−1X

T
t−1Θ̄−1

t−1Θ̃t−1Θ̃tΘ̄−1
t

)
Xt

]
(4.8)

where the Θ̃tX̃t = Θ̃tΘ̄−1
t Xt is used in equation 4.6. In order to see the difference

between PCM and PMD frameworks, let’s focus on the second part of equation 4.4

and 4.7.

PCM: tr
[
XT
t

(
αRtR

T
t + βXt−1X

T
t−1

)
Xt

]
PMD: tr

[
XT
t

(
αRtR

T
t + βΘ̄−1

t Θ̃tΘ̃t−1Θ̄−1
t−1Xt−1X

T
t−1Θ̄−1

t−1Θ̃t−1Θ̃tΘ̄−1
t

)
Xt

]

There are two sets of products of degree matrices, Θ̄−1
t Θ̃t and Θ̄−1

t−1Θ̃t−1, worth men-

tioning. When [Θ̄−1
t Θ̃t](i, i) is greater than 1, node vi has relatively higher degree than

others belonging to the same community at time t. We call Θ̄−1
t Θ̃t the degree contest

matrix at time t. The product of two degree contest matrices at time t − 1 and t,(
Θ̄−1
t Θ̃t

) (
Θ̃t−1Θ̄−1

t−1

)
, averages the degree contest level between two consecutive time

points.
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Xt−1 is the historical information, and Rt is the information from the current ad-

jacency matrix. Nodes with high averaged degree contest level borrow more historical

information comparing to PCQ and PCM, which is consistent to our intuition. For

example, in social network, core members in a community usually stay longer in the

community comparing to the marginal members.

In equation 4.7 and 4.8, Θ̄−1
t Θ̃t is unknown. We can estimate Θ̄−1

t−1Θ̃t−1 based on

estimated Ẑt−1. A reasonable variation of the cost function is to replace Θ̄−1
t Θ̃t with

the estimate of Θ̄−1
t−1Θ̃t−1. By doing so, we assume the degree contest matrices are

approximately the same between two successive time steps. Thus, the working PMD

cost function is

Cost(PMD)t = αtr(Wt) + βK − tr
[
XT
t

(
αWt + β ˆ̃Θ2

t−1
ˆ̄Θ−2
t−1X̂t−1X̂

T
t−1

ˆ̄Θ−2
t−1

ˆ̃Θ2
t−1

)
Xt

]

where ˆ̃Θt−1, ˆ̄Θt−1, and X̂t−1 are the estimate of Θ̃t−1, Θ̄t−1, andXt−1. Follow the same

procedure as we stated before, X̂t is obtained by stacking K eigenvectors associated

with the largest K eigenvalues of αWt + β ˆ̃Θ2
t−1

ˆ̄Θ−2
t−1X̂t−1X̂

T
t−1

ˆ̄Θ−2
t−1

ˆ̃Θ2
t−1, which can be

utilized to find Ẑt with the normal k-means algorithm.

4.2.3 Algorithm

The dynamic network community discovery algorithm is

• At t = 1, observe the adjacency matrix A1, and

1. Compute the K leading eigenvectors (associated with the largest K abso-

lute eigenvalues) of the adjacency matrix A1: η11, η12, . . . η1K .

2. Compute matrix R1 ∈ Rn×(K−1) such that for 1 ≤ i ≤ n and 1 ≤ l ≤ K−1,

R1(i, l) = η1(l+1)(i)
η11(i) ,

which is the coordinate-wise ratio between the ith entry of the first leading

eigenvector and the ith entry of the lth leading eigenvector.
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3. Compute the Gram matrix W1 = R1R
T
1 .

4. Obtain X̂1 ∈ Rn×K by stacking K eigenvectors associated with the largest

K eigenvalues of the similarity matrix W1, and apply k-means algorithm

on the rows of X̂1 to find Ẑ1.

• At 2 ≤ t ≤ T , observe the adjacency matrix At, and

1. Compute the K leading eigenvectors (associated with the largest K abso-

lute eigenvalues) of the adjacency matrix At: ηt1, ηt2, . . . ηtK .

2. Compute matrix Rt ∈ Rn×(K−1) such that for 1 ≤ i ≤ n and 1 ≤ l ≤ K−1,

R1(i, l) = η1(l+1)(i)
η11(i) ,

which is the coordinate-wise ratio between the ith entry of the first leading

eigenvector and the ith entry of the lth leading eigenvector.

3. Compute the Gram matrix Wt = RtR
T
t .

4. Obtain X̂t ∈ Rn×K by stacking K eigenvectors associated with the largest

K eigenvalues of

– PCQ: αWt + βWt−1,

– PCM: αWt + βX̂t−1X̂
T
t−1,

– PMD: αWt + β ˆ̃Θ2
t−1

ˆ̄Θ−2
t−1X̂t−1X̂

T
t−1

ˆ̄Θ−2
t−1

ˆ̃Θ2
t−1,

where ˆ̄Θt−1 = diag
[
Ẑt−1(ẐT

t−1Ẑt−1)− 1
2 1K

]
,

and ˆ̃Θt−1 = diag
[
Θ̂t−1Ẑt−1(ZT

t−1Θ̂2
t−1Zt−1)− 1

2 1K
]

with Θ̂t−1 = diag (At−11n),

and apply k-means algorithm on the rows of X̂t to find Ẑt.

4.3 Simulations

We present the simulation results from five experiments, which compare the per-

formance of PCQ, PCM, and PMD three frameworks in simple and complicated
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circumstances.

4.3.1 Experiment 1

In experiment 1, we set (n,K, T, rep) = (1000, 2, 5, 50). The community affinity

matrix B has diagonal elements 1 and off-diagonal elements 0.5. Community labels

follow l1(i) = Ber(0.5)+1, and the degrees of nodes are the same, say θt(i) = 0.2. The

term "rep" indicates the number of times we repeat the experiment. We can describe

this situation as observing an SBM-based non-evolutionary network T times. We set

α to be 0.5 and 0.9 in experiment 1(a) and 1(b) respectively.

The results of experiment 1 are summarized in Figure 4.1 and Table 4.1. Figure

4.1 displays the mean error rate of benchmark method (BM) and three frameworks

over time. Error rate is defined by the number of misclassified nodes divided by

n. It is the same as the misclassification rate in the last chapter. The benchmark

method is the SCORE algorithm using only the "current" adjacency matrix At. We

conclude that (1) PCQ outperforms the rest three methods when there is no degree

and evolutionary effect; (2) PMD is slightly better than BM and PCM; (3) the choice

of α is quite robust in terms of the clustering accuracy in this simple network setting.

The means and standard deviations of the error rate for four methods are recorded in

Table 4.1. Similar tables are not provided for later experiments since the comparison

can be done by looking at the error rate plot directly.

4.3.2 Experiment 2

Compare to experiment 1, we only add the degree effect in experiment 2, by

assuming observing a series of adjacency matrices generated from the same DCBM-

based network. (n,K, T, α, rep) = (1200, 2, 5, 0.8, 50). The community affinity matrix

B and the mechanism to generate community labels are the same as in experiment

1. Besides, we set c0 = 0.5 and d0 = 0.05, and let the degrees of nodes vary via the
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Figure 4.1 Experiment 1(a) (left) and 1(b) (right) Error Rate

Table 4.1 Experiment 1(a) (top) and 1(b) (bottom) Mean(Sd)

Time BM PCQ PCM PMD
1 0.0596(0.0101) 0.0596(0.0101) 0.0596(0.0101) 0.0596(0.0101)
2 0.0579(0.0094) 0.0143(0.0041) 0.0577(0.0092) 0.0534(0.0014)
3 0.0595(0.0098) 0.0133(0.0036) 0.0596(0.0100) 0.0591(0.0108)
4 0.0573(0.0095) 0.0137(0.0036) 0.0573(0.0092) 0.0553(0.0122)
5 0.0564(0.0087) 0.0013(0.0037) 0.0567(0.0088) 0.0548(0.0116)

Time BM PCQ PCM PMD
1 0.0599(0.0094) 0.0599(0.0094) 0.0599(0.0094) 0.0599(0.0094)
2 0.0596(0.0097) 0.0140(0.0047) 0.0600(0.0093) 0.0586(0.0100)
3 0.0591(0.0084) 0.0138(0.0040) 0.0596(0.0085) 0.0561(0.0132)
4 0.0572(0.0063) 0.0127(0.0037) 0.0580(0.0064) 0.0559(0.0104)
5 0.0586(0.0106) 0.0128(0.0041) 0.0590(0.0109) 0.0563(0.0151)
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following formula:

2(a): θ1(i) = d0 + (c0 − d0)
(
i

n

)
,

2(b): θ1(i) = d0 + (c0 − d0)
(
i

n

)2
.

From 2(a) to 2(b), the average degree of the nodes in the network is decreasing, which

creates more sparse adjacency matrix (less edges) with more hubs. The simulation

results in Figure 4.2 indicate that PCQ dominates the all methods and PMD is the

second best one again.
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Figure 4.2 Experiment 2(a) (left) and 2(b) (right) Error Rate

4.3.3 Experiment 3

Compare to experiment 1, we only add the community evolutionary effect in

experiment 3. (n,K, T, α, rep) = (1000, 2, 5, 0.8, 50). The community affinity matrix

B is the same as in experiment 1, and θt(i) = 0.2. We generate the initial community

label by l1(i) = Ber(0.5) + 1, and allow lt(i) to alter over time. In experiment 3(a),

we set the probability for a node to change its community to be 0.05, and it is
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increased to 0.2 in 3(b). The results of experiment 3 are summarized in Figure 4.3.

It is surprising that PCQ fails in faster evolving networks, when more nodes change

communities over time. It gives us a hint that PCQ might not be a good choice in

the case when nodes frequently change their community labels.
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Figure 4.3 Experiment 3(a) (left) and 3(b) (right) Error Rate

4.3.4 Experiment 4

In experiment 4, we consider a more complicated situation by combining the de-

gree and evolutionary effects together. (n,K, T, α, rep) = (1200, 3, 5, 0.8, 50). The

community affinity matrix B has diagonal elements 1, P (1, 2) = P (2, 3) = 0.5, and

P (1, 3) = 0.1. The initial community label is generated by l1(i) = Multinomial(1
3 ,

1
3 ,

1
3).

Let c0 = 0.5, d0 = 0.1, c∗0 = 0.95, and d∗0 = 0.8. We allow node i to switch to a new

community by probability 1 − probi between two consecutive time, and probi de-

pends on the degree of the nodes. Based on the intuition discussed in section 4.2.2,

the nodes with higher degree has higher probi, the probability of keeping the same
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community label. Degree and probi are assumed as follows:

4(a): θ1(i) = d0 + (c0 − d0)
(
i

n

)
, probi = d∗0 + (c∗0 − d∗0)

(
i

n

)
;

4(b): θ1(i) = d0 + (c0 − d0)
(
i

n

)2
, probi = d∗0 + (c∗0 − d∗0)

(
i

n

)2
.

The results of experiment 4 are shown in Figure 4.4. Both PCQ and PMD perform

significantly better than the SCORE algorithm, and PCQ works the best.
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Figure 4.4 Experiment 4(a) (left) and 4(b) (right) Error Rate

4.3.5 Experiment 5

In experiment 5, we explore the case with more communities, and simultaneously,

exam whether α is still robust in more complicated circumstances comparing to the

simple ones in experiment 1. (K,T, rep) = (5, 5, 50). The community affinity matrix
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is

B =



1 0.5 0.3 0.2 0.1

0.5 1 0.1 0.1 0.2

0.3 0.1 1 0.2 0.3

0.2 0.1 0.2 1 0.5

0.1 0.2 0.3 0.5 1


,

and the initial community label is generated by l1(i) = Multinomial(1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5). For

experiment 5(a) and 5(b), the degree function and probi follows the same ones in

experiment 4(a) and 4(b), respectively. Additionally, for each setting we run the

simulation with α = 0.5 and α = 0.8. Results of experiment 5 are summarized in

Figure 4.5. It is very impressive to see that PMD framework has accurate and stable

performances in different values of α in two network settings. PCQ only performs

well when a proper α is chosen, which is α = 0.8 in this experiment.

4.3.6 Simulation Summary

In the previous five experiments, we compare three frameworks: PCQ, PCM, and

PMD, with the SCORE algorithm as the benchmark. The complexity of experiments

is controlled by degree effect, community evolutionary effect, and the choice of α.

Generally speaking, PCQ performs well in simple cases; however, the accuracy cannot

be guaranteed with high degree of heterogeneity and more dynamic situations.

We observe that (1) PCQ fails when the evolutionary effect is strong from exper-

iment 3(b); (2) PMD outperforms PCQ when α = 0.5 from experiment 5 indicating

that we might need to choose a proper α to have a high clustering accuracy under

PCQ. Instead, PMD works better than the benchmark and PCM in all simulation

experiments. It fits our expectation because PCM is just a special case of PMD as-

suming all node degrees are the same. Another good property of PMD is that it is

not sensitive to the choice of α, which is indeed unknown in real world data.
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Figure 4.5 Experiment 5(a1,a2) (top) and 5(b1,b2) (bottom) Error Rate
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In summary, PCM framework should not be considered to use in reality con-

sidering that fact that it performs the worst in five simulated experiments. PCQ

framework is the best when the observed adjacency matrices are all coming from a

simple network settings, e.g. low degree heterogeneity and low community evolu-

tionary effect. PMD framework is more suitable for complicated cases. Considering

that we are not able to know what type of network setting we are facing in the real

network data, PMD is always a safe and good choice.

4.4 Data Application: Enron Email Data

Enron was an American energy, commodities, and services company based in

Houston. As one of the most infamous corporate, it bankrupted due to a finan-

cial scandal in December 2001. Emails among management team, including CEO,

president, vice president, etc, have been collected from January 1998 to June 2002.

We generate three undirected and unweighted network adjacency matrices using the

Enron email records in 2000, 2001, and 2002 [15]. We name them pre-scandal, in-

scandal, and post-scandal period. In total, 74 users are included in three networks.

We are curious to see if some interesting patterns from the results of our dynamic

network community discovery algorithm can be found.

First of all, we need to determine the number of communities. Similar to the last

chapter, we plot eigenvalues of unnormalized graph Laplacian matrices corresponding

to the adjacency matrices in 2000, 2001, and 2002 in Figure 4.6, which suggests

two/one/two communities in 2000/2001/2002.

We use Preserving Membership Degree (PMD) framework with α = 0.9. Clus-

tering results are summarized in Figure 4.7. Node size is proportional to the ob-

served node degree. Colors indicate the user position. Red/pink/yellow represents

CEO/president and vice president/others including director, manager, trader, etc.

We observe that (1) more email conversations are generated in in-scandal period
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Figure 4.6 Enron Email Network Eigenvalue Plot

comparing to pre- and post-scandal period; (2) degrees of nodes are more similar in

pre-scandal period, and high degree hubs emerge in in-scandal period; (3) two obvious

communities are formed in post-scandal period, including the core management team

and lower level management team.

We have the following hypotheses only based on our observation: (1) the entire

management team generated more conversations in 2001 before the scandal to try

to avoid the scandal happens; (2) core management team (e.g. CEO, president, vice

president) should take main responsibility for the scandal since they are more involved

in conversations with all parties when the scandal was happening; (3) separation

into two communities in post-scandal period might be caused by the difference of

group interests. More subject knowledge in business is required to conduct a deeper

analysis regarding to how the management teams was manipulating the event in the

pre-scandal and in-scandal periods, and what are possible group interests for two
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Figure 4.7 Enron Email Network Estimated Communities

communities. We leave it to readers who are interested in.

4.5 Discussions

4.5.1 More Historical Information

So far, we have only used historical information from time t−1 in the community

discovery at time t. By doing so, both accuracy and stability of the clustering results

are improved in most simulation experiments. It is natural to think whether involving

more historical information would be helpful, and in which scale would the mean error
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rate drop. Let’s now consider the following total cost function:

Costt = α(CSt) + β(CTt) + γ(CTt−1), (4.9)

where t = 3, 4, . . . , T , and α + β + γ = 1. Let α = 0.6, and β = γ = 0.2, we run the

simulation using the same setting as experiment 1(a) and 5(a) (except for the choice

of α) to generate the Figure 4.8. From top two plots, we can conclude that the mean

error rate is significantly decreased after using t− 2 information for PCQ framework,

in which the network community labels do not change over time (simple setting).

From the bottom two plots of Figure 4.8, we observe that the mean error rate for the

PCQ/PMD framework is slightly increased/decreased. Both increase and decrease

are not significant. Simulation results show that when the network is complicated

enough, utilizing more historical information might have both positive and negative

effects. It is beneficial to the nodes whose community labels are unchanged, and it

also brings deceptive information to other nodes. Without knowing the true structure

of the observed network, it is hard to determine the level of history to be borrowed.

This topic needs further investigation in the future.

4.5.2 Time-varying K

It is more realistic to assume that number of communities changes over time. The

authors who propose PCQ and PCM framework [5] pointed out that the dimension

of the Wt in PCQ and the distance function 1
2‖XtX

T
t −Xt−1X

T
t−1‖2

F in PCM do not

depend on the value of K. Therefore, PCQ and PCM algorithms can be used directly

without any modification when K is varying in different time steps. The argument is

true for PMD as well, because we measure the distance between the subspace spanned

by the columns of Θ̃tX̃t and Θ̃t−1X̃t−1, in which the effect of the number of columns,

K, is ancillary.
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Figure 4.8 Experiment 1(a) (top) and 5(a) (bottom) with/without More Historical
Info.
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4.5.3 Time-varying n

Another impracticable assumption we made in previous sections is fixing the num-

ber of observed nodes over time. It is natural to have observations with different n

at two consecutive time step. Define nt and nt−1 to be the number of observed nodes

at time t and t− 1, respectively.

First, let’s consider the case when nt = nt−1 − 1, and assume it is the node vi at

t − 1 disappears at t. One way mentioned in [5] for PCQ framework is to remove

the ith row/column from Wt−1 to match the dimension of Wt. In PCM or PMD

framework, we can remove the ith row from Xt−1 or Θ̃t−1X̃t−1, respectively, and then

re-normalize the modified matrix. Similar modification can be conducted when more

than one node disappears from at time t and more rows/columns need to be removed.

When new nodes are added at time t comparing to t−1, we need to find a way to

increase the dimension ofWt−1, Xt−1 and Θ̃t−1X̃t−1 in three frameworks, respectively.

Let’s assume nt = nt−1 +mt, and the first nt−1th nodes at time t are the old ones at

time t− 1. In PCQ framework, the modification formula [5] is

modified Wt−1 =

Wt−1 Et−1

ET
t−1 Ft−1

 ,
where Et−1 = 1

nt−1
Wt−11nt−11Tmt and Ft−1 = 1

n2
t−1

1Tnt−1Wt−11nt−11mt1Tmt . The modified

Wt−1 has three good characteristics: (1) It is positive semi-definite if Wt−1 is; (2) the

relationship between each newly added node and an existing node is the same as

the average relationship between two existing nodes; (3) the relationship between

two newly added nodes is the same as the average relationship between two existing

nodes. In PCM framework, the modification formula is

modified Xt−1 =

Xt−1

Gt−1

 ,
where Gt−1 = 1

nt−1
1mt1Tnt−1Xt−1. By doing so, the probability of a newly added node

belonging to the kth community is proportional to the estimated size of the kth
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community. Re-normalization is needed after the modification. In PMD framework,

we propose a similar modification formula

modified Θ̃t−1X̃t−1 =

Θ̂t−1X̃t−1

Ht−1

 ,
where Ht−1 = 1

nt−1
1mt1Tnt−1Θ̂t−1X̃t−1, and Θ̂t−1 = diag (At−11n). The probability of a

newly added node belonging to the kth community is proportional to the total number

of edges connecting to the estimated kth community, which can be understood as the

estimated degree of the kth community. modified Θ̃t−1X̃t−1 need to be re-normalized

after the modification as well.

60



Chapter 5

Conclusion and Extension

So far we have discussed two algorithms to reinforce the ability of discovering net-

work community structure based on spectral clustering type of method by borrowing

extra information.

In Chapter 3, we assume both the adjacency matrix A and edge covariates X are

observed, and we propose an algorithm based on A∗, a combination of A and X , to

have better community estimation. The intuition is that by mapping nodes into a

latent space, the probability of forming an edge between any pair of nodes can be

fully determined by a linear combination of the distance between two nodes in the

latent space and edge covariates. We can simplify the objective function by applying

Taylor series expansion, so that the original complicated problem can be reformulated

to a fast-to-solve trace maximization problem. There is no doubt that the algorithm

can be generalized. For example, we can assume adjacency matrix A measures edge

strength. Instead of logit, we use log link function to mimic the analysis procedure

in previous chapter. The parameterization is

ηij ≡ log{E[Aij|wi, wj, xij; θ]} = α + xTijβ − γδij,

and the log-likelihood is

∑
i<j

{ηijAij − eηij − log(Aij!)}.

The objective function with distance regularization is

g∗(θ,W) = −log-likelihood + λ
∑
i<j

δ
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=
∑
i<j

{eηij + log(Aij!)− ηijAij}+ λ
∑
i<j

δ

=
∑
i<j

{
log(Aij!) + eα+xTijβ−γδij − (α + xTijβ)Aij + (λ+ γAij)δij

}
,

which is very similar to the equation 3.1. We can apply first-order Taylor series

expansion to the exponential term at δij = 0, and further simply the objective function

(as a function of W) as follows
∑
i<j

[
λ+ γ

(
Aij − eα+xTijβ

)]
δij = tr

[
W T (D∗∗ − A∗∗)W

]
,

where

A∗∗ij = λ+ γ
(
Aij − eα+xTijβ

)
.

It serves as the same function as equation 3.3. We observe that with different dis-

tribution assumption, the combination of the adjacency matrix and edge covariates

varies; however, there always exists a way to transfer the original problem into a trace

maximization form. Therefore, our approach has potential to generate a complete set

of algorithms in terms of different distribution assumptions of A (and link functions)

to provide community discovery solutions to all type of network data. Besides, it

can be generalized in other ways, including adding another regularization term to

penalize the covariates, and/or modifying the linearity assumption to be nonlinear,

etc.

In Chapter 4, we assume to observe a series of adjacency matrices from the same

network. Historical information is borrowed to provide with more accurate commu-

nity estimation for current network. More specifically, in the proposed Preserving

Membership Degree (PMD) algorithm, both previous partition and the relative de-

gree are taken into consideration to address the intuition that nodes with relatively

high degree tend to stay in the same community from t−1 to t, comparing to marginal

nodes who have fewer within community degree. The intuition seems to make sense

in most social networks, but it is not necessary true in others. There is a need to

invent a method to test the intuition itself.
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Network analysis and community discovery is relatively new to statisticians. In

this dissertation, we have only discussed two types of approaches to analyze static

and dynamic network data. There exists a large territory of network problems that

have been seldom touched, like how to improve the prediction of people’s survival

time using social network information, how to predict the next terrorist attack or

political election results by analyzing the interaction of users in a social network, etc,

which motivates us to continue studying and exploring.
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