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Abstract

In this work, we systematically investigate the superconducting properties of Nio-

bium Titanium Nitride (NbTiN) superconducting films with different geometries,

which at low temperature remain superconducting. NbTiN superconducting films

with a few nm thickness are widely used in devices such as superconductor-insulator-

superconductor (SIS) mixers, superconducting cavities and resonators and super-

conducting nanowire single-photon detectors (SNSPD). In all these applications,

films of varying dimensions are required to achieve optimal performance. The initial

thickness of our samples was 125 nm deposited on a silicon substrate. We change the

thickness of our samples using lithography and ion milling. We measure and analyze

the thickness dependence of various superconducting properties of these films.
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Introduction

In 1911, Dutch physicist Heike Kamerlingh Onnes observed superconductivity for

the first time in mercury, while studying the electrical properties of different types

of materials at cryogenic temperature. He witnessed that the electrical resistance of

mercury disappears at around 4.2 K which is very close to absolute zero temperature.

Later on, he reversed the process and observed that at around 4.2 K, resistance goes

back in the material. This transition temperature is called critical temperature (Tc)

and depends on the type of superconducting material can be different. He called this

phenomenon superconductivity and he won the Nobel Prize of Physics is 1913 for this

discovery. Since that time, lots of other superconducting materials have been discov-

ered and the theory behind this subject also has been developed to a large extent.

Superconductors have applications in different sectors like high energy physics, elec-

tric power, medicine, transportation, electronic/communication, defense/space and

industrial equipment [3] [1] [14].

In 1933, Walther Meissner and Robert Ochsenfield [37] observed that supercon-

ducting materials expel magnetic field during their transition to the superconducting

state. In their experiment, they cooled down tin (Sn) and lead (Pb) samples below

their critical temperature. They observed, almost all of the interior magnetic field was

canceled. Due to the fact that magnetic field flux in a superconductor is conserved,

they observed an increase in the exterior field. The state in which a superconductor

has a little or no magnetic field inside itself is called Meissner state. In this state,

superconductors exhibit perfect diamagnetism which sometimes is called supermag-

netism. Supermagnetism breaks down by increasing the applied magnetic field and
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this transition magnetic field is called critical magnetic field (Bc).

In 1986, Bednorz and Muller [8] published an article called "Possible high Tc

superconductivity in the Ba − La − Cu − O system" that revitalized the subject of

superconductivity. They discovered a new class of materials with unexpected high

critical temperature, called cuprates superconductors. These types of material have

CuO2 planes which are believed to dominate the properties of them.

The microscopic theory of superconductivity by Bardeen, Cooper and Schrieffer

(BCS) [6] is widely used to interpret superconductivity. In this theory, the elec-

trons condense into pairs and those pairs are current carriers. The binding of these

pairs is because of the electron-phonon interactions inside the superconductor. For

the temperatures close to Tc, the phenomenological Ginzburg-Landau theory (1950),

can be used because it is handled easier, also it can be derived from the BCS for-

malism. However, it is still controversial whether the BCS theory work well in the

high temperature superconductors or not. Researchers are recently interested in the

development of a new non-BCS theory.

In 1998, Stern et al. [42] made Niobium Titanium Nitride (NbTiN) films by

reactive DC-magnetron sputtering method. Nb − Ti alloy target has been used in

a mixture of Argon and Nitrogen atmosphere. They had difficulties with impurities

of metal in some of their targets. For getting better quality films, they used X-ray

photoemission spectroscopy in their deposition system. They have used different films

in which the portion of Nb to Ti weight was kept 78% to 22%. They were interested

in RF -losses (Radio Frequency losses) of those films in terahertz frequency range.

For that purpose they needed films with the energy gap higher than 2.5 meV . In

order to achieve that, they made their films with critical temperature higher than

15K. They also noticed, better quality films have lower resisttivity above Tc. They

observed for frequencies below 1 THz, NbTiN has very low RF -losses.

For receivers in millimeter and submillimeter radio astronomy, superconductor-
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insulator-superconductor (SIS) mixer is an important element. In radio astronomy,

the electromagnetic spectrum of astronomical objects at really high radio frequencies

(RFs) is one of the main area of different studies. For this specific application, mixers

with lowest possible noise are proffered. That is the main reason that nowadays SIS

mixers are widely used rather than Schottkey diode ones. For making a sensitive

SIS mixer to incoming radiation, well coupled SIS junctions are necessary. In SIS

junction which is one type of Josephson junction, due to quantum tunneling, current

passes through that junction and across that junction current flows without any

voltage applied until maximum critical current is reached. Radio frequency waves of

frequency f , irradiate from Josephson junction and because of that the frequency of

microwave can be determined accurately [40].

NbTiN is a material with almost high Tc as Niobium Nitride (NbN), but higher

quality and lower resistivity. The properties of NbTiN films were investigated for the

first time around the time that NbN films were fabricated. In 1999, NbTiN based,

low noise, high frequency (SIS) mixer was fabricated by Kawamura et al. [18]. In

their mixer, they used an interlayer of Au between NbTiN plane and Nb base. The

sensitivity of their mixer was almost twice as Nb based one, which was made right

before this one (in the same frequency range (850 GHz).

NbTiN has a theoretical energy gap of ∼ 1.7 times of NbN , which makes it

having low loss in frequency range up to 1.2 GHz. Cecil et al. [9] made NbTiN

films with resistivities in a range from 50 µ-ohm-cm to 150 µ-ohm-cm depending

on the deposition condition. The quality of their films, depended on ratio of N2

to Ar and also deposition rate. They claimed for films with lower resistivity and

higher comprehensive stress, sputtering should be done in lower pressure (∼ 4-6 m

torr). They have used ellipsometry for evaluation of optical properties of NbTiN

films. They reported changing in the optical properties is reflecting the change in the

resistivity and Tc.
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NbTiN is widely used in RF cavities for particle accelerators, hot electron bolome-

ter (HEB) mixers, coplanar waveguide superconducting resonators and supercon-

ducting nanowire single photon detectors (SNSPD). For Superconducting nanowire

Single photon detectors, NbTiN films with high Ti composition were made by Jia et

al. [17]. NbTi alloy target used in DC reactive sputtering machine was 47% Ti and

53% Nb in ambient temperature. Ar to N2 ratio was 1 to 5 and they were optimized

at 1.5 m torr pressure. The current was 0.7 A and the thickness of the film was

controlled accurately. They observed by increasing Ti composition in their films, Tc

and resistivity are decreasing.

Superconducting films used at phonon-cooled hot electron bolometer (HEB) mix-

ers, should be thin (a few nm only) for hot electrons to cool down fast and efficient.

Shiino et al. [41] observed that NbTiN films have higher Tc (16 to 18 K) and lower

resistivity in bulk, but lower Tc and higher resistivity in the case of thinner films.

For good quality HEB mixers, higher Tc films are preferred. In order to obtain high

quality thin films, they used epitaxial growth on substrate. For that purpose, both

lattice structure of film and substrate should match. This means the choices for sub-

strate are limited to big extent. One method to improve lattice matching is to heating

the substrate and the other one is to use a buffer layer between film and substrate.

For their NbTiN films with quartz or soda glass substrate, they used AIN layer in

between.

For photon detection applications, superconducting resonators have been widely

used. Temperature and noise dependent resonance frequency was measured inNbTiN

superconducting resonators that are covered with different thickness of SiOx by

Barens et al. [7]. They noticed that when resonators are covered by SiOx, noise

jumps to a higher level, independent of the layer thickness. They also observed the

resonance frequency deviations are depending on temperature and the volume of

SiOx.
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In the superconducting state, disorder does not affect the properties of super-

conductors. Therefore, it is expected for superconducting films to have a fixed Tc

independent of disorder. This can be explained by quasiparticle density of states and

BCS gap. Driessen et al. [11] observed that for superconductors with resisitivity

higher than 100 µΩ cm, the theory revealed severe deviation. Numerical simulations

showed that by increasing the disorder, eventually inhomogeneous superconducting

state will rise (even for homogeneous disorder). A series of TiN and NbTiN films

with different normal resistance and different resistivity (ranging from 120 to 150

µωcm) were made by them. The more they increased the disorder, they saw more

deviation from BCS theory. Their hypothesis was that those deviations are because

of short elastic scattering length in their films.

In 2015, high quality NbTiN films of different thickness were fabricated by Zhang

et al. [46]. Epiataxiail NbTiN films were deposited on a single-crystal MgO sub-

strate. They were able to change the composition of their films by changing the

deposition conditions. In all their films, NbTiN had a uniform composition. A lot of

superconducting devices, require ultrathin films of the order of nanometers. However,

NbN thin films are well known for their superconducting properties highly depend-

ing on the thickness and substrate. The variation in the composition and crystality

is depending on the thickness of the film and type of the substrate. Compare with

NbN , the superconducting and electrical properties of NbTiN films are less substrate

dependent. In addition to electrical properties, their chemical properties might also

change depending on the thickness. The observed, Tc was gradually decreasing by the

decrease of the thickness. For the thickness less than 10 nm, the electrical properties

(Tc and residual-resistivity ratio) dropped suddenly. They concluded, for fabricating

a high quality thin film, deposition parameters should be optimized point by point.
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Chapter 1

Theories of Superconductivity

London equations

Brothers F. and L. London [34] for the first time were able to interpret Meissner effect

by building up a relationship between magnetic field B, current density j and electric

field E in the superconducting materials. Their assumption was that in an electric

field, electrons experience no friction, so the equation of motion in an electric field

and the current density will be:

me
∂v

∂t
= −eE (1.1)

j = ensv (1.2)

here e is the charge of the electron, v is speed of an electron, me is electron mass and

ns is superconducting electron density [12]. Therefore:

∂j

∂t
= nse

2

me

E (1.3)

by taking the derivative of current versus time and substituting it in Eq.1.1, we can

get to the first equation that London brothers proposed. This equation shows that

the current inside a superconductor is changing because of the fact that electrons

accelerate by the electric field. The value of electric field E:

E = µ0λ
2
L

∂j

∂t
(1.4)

where,

λL =
√
me/µ0nse2 (1.5)
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is London penetration length. This is a distance in which the magnetic field penetrates

into a superconductor and becomes equal to e−1 times that of the magnetic field at the

surface of the superconductor. λL is usually in the order of 10−6m and is depending

on the temperature close to Tc. By using Maxwell equation ∇×E = −∂B
∂t

and taking

curl of Eq.1.4, we get to:
∂

∂t
( me

nse2∇× j +B) = 0 (1.6)

Because the derivative in this equation is equal to zero, the quantities in parenthesis

are equal to a constant value. In London brothers assumption, the constant value is

equal to zero. Therefore:

∇× j = −nse
e

me

B (1.7)

where gives us the second equation proposed by London brothers:

B = −µ0λ
2
L∇× j (1.8)

the second equation can be manipulated by Maxwell’s equation ∇× B = µ0j in the

form of:

∇2B = B

λ2
L

(1.9)

The solution to this equation for a special case in which B changes only in the z

direction, will be B = B0e
−z/λL . This equation is able to explain Meissner effect to

great extent. Except for the thicknesses in the order of λL, the magnetic field does

no penetrate inside the superconductor. This equation shows that B is not uniform

and has exponential decay. It also shows that the nature of decay depends on the

superconducting electron density (ns). λL is usually in the order of micrometer and

is temperature dependent. The temperature’s dependence of λL close to Tc is shown

empirically to be:

λL(T )−1 ≈ λL(T )−1
√

1− (t)4 (1.10)

where, t = T/Tc.
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The superconducting phase

There is a phase transition for a material form the normal to the superconducting

state when it cooles down below Tc and also when the magnetic field decreases to

magnetic fields lower than Bc [36]. Gibbs free energy equation in the presence of

magnetic field based on classical thermodynamic is:

G = U − TS −M.B (1.11)

where internal energy of superconductor is shown by U , the entropy by S and mag-

netization by M (magnetic moment per unit volume). Its differential equation then

will be:

dG = −SdT −M.dB (1.12)

This equation shows that the transition from the normal to the superconducting

state is coming with a gain in the energy. This is because of the fact that the free

energy of a material is higher in the normal state. In the superconducting state,

conduction electrons are paired in single quantum states with the lower energy. A

superconducting material is affected by the applied magnetic field and the magnetic

moment generated antiparallel to that applied magnetic field. By considering Gs(T, 0)

the Gibbs function of superconducting state with zero magnetic field, Gs(T,B) the

Gibbs function of superconducting state with magnetic field B and (∂G
∂B

)T = −M , we

can get to:

Gs(T,B)−Gs(T, 0) = 1
2µ0

B2 (1.13)

The difference between the two terms above is equal to the increase in the Gibbs

free energy per unit volume. At the transition magnetic field Bc, normal and super-

conducting states are in equilibrium. By considering Gn(T,B) as G function in the

normal state with magnetic field B,

Gn(T,Bc) = Gs(T,Bc) (1.14)

8



Figure 1.1: Schematic sketch of free energies as a function of magnetic field [36].

By substituting eq.1.14 in eq.1.13, we get to:

Gs(T, 0) = Gn(T, 0)− 1
2µ0

B2
c (1.15)

which shows for B > Bc, the superconductivity is going away. Fig.1.1 is an illus-

tration of what we have discussed above. In order to go from the normal to the

superconducting state the material has to push out the magnetic energy, and the

largest amount it can push out is the difference between the two free energies at

vanishing field.

Ginzburg-Landau theory

In 1950, Ginsburg and Landau introduced a complex order parameter called ψ which

is a complex pseudo-wave function. They also introduced |ψ|2 which is proportional

to the local density of the superconducting electrons [32]. Ginzburg-Landau (GL)

theory is able to explain the macroscopic behavior of the superconductors, specially

the type II ones. This theory assumes that the value of ψ is not equal to zero only

in the superconducting state [43]. The basic postulation of this theory is that ψ and

its gradient are small and vary slowly in the space which makes this theory to be

applicable only for temperatures close to Tc [4]. In this theory Gibs free energy has a
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very important role. The difference between normal and superconducting Gibbs free

energy in the presence of magnetic filed B is shown in terms of |ψ|2 and its gradient

|∇ψ|2,

g = gn + a|ψ|2 + b

2 |ψ|
4 + 1

2m∗ |(−i~∇− 2eA)ψ|2 + |B|
2

2µ0
(1.16)

in the above equation, the free energy density of normal state is shown by gn, quasi-

particle effective mass by m∗ and magnetic vector potential by A. Here a and b are

both phenomenological and temperature dependent parameters. In the case of weak

gradients and fields, the above equation will change into:

g = gn + a|ψ|2 + b

2 |ψ|
4 (1.17)

The minimum of free energy occurs when derivative of g is zero with respect to ψ.

By taking derivative of Eq.1.17:

aψ + bψ|ψ|2 = 0 (1.18)

By considering the fact that a has a negative constant value, we can find the maximum

value of ψ to be:

|ψm|2 = −a
b

(1.19)

here |ψm|2 is the density of electrons inside the superconductor, where it is screened

from any surface currents and fields. If we put the value of Eq.1.19 back into Eq.1.17

we get to:

g − gn = −a
2

2b = −|Bc|2

2µ0
, (1.20)

In this equation the maximum value of magnetic field Bc is calculated by considering

B2
c = µ0a

2/b. By using Eq.1.10 we can get to both GL coefficients:

a = −λ
2B2

c e
2

m∗c2

b = 16µ0λ
4B4

c e
4

m∗2c4

(1.21)
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if we also include the presence of gradients and fields, ψ can be written in the form

of:

ψ(r) = ψ0e
iϕ(r) (1.22)

ψ0 here is the amplitude value which is constant. If we substitute ψ(r) into Eq.1.15

and take the derivative of that equation with respect to ψ we get to:

aψ0 + bψ3
0 + ~2

2m∗ψ0e
−iϕ(i∇+ 2π

Φ0
A)2eiϕ = 0, (1.23)

in above equation the fluxoid quantum is shown by Φ0 = h
2e . In the cases where the

gradient of the phase is small, ∇2ϕ is negligible and we can rewrite the equation in

the form of:

a+ bψ2
0 + ~2

2m∗ (∇ϕ−
2π
Φ0
A)2 = 0. (1.24)

This equation is called the first GL equation and value of ψ0 can be derived out of

that.

Coherence length and penetration depth

Later on Ginsburg and Landau introduced a new parameter called the coherence

length ξ, which is the length scale that indicates the variation of order parameter. If

we assume there is perfect Meissner effect, we have A = 0 inside the superconductor.

If we also consider the fact that a < 0, Eq.1.24 will change to:

~2

2m∗|a|(∇ϕ)2 = 1− b

|a|
ψ2

0. (1.25)

for the case of ψ0 = |ψm|, the above equation will be equal to zero. The coherence

length value defined by Ginzburg and Landau then will be:

ξ2(T ) = ~2

2m∗|a(T )| ∝
1

1− t , (1.26)

where here t = T

Tc
. The temperature dependence of coherence length is phenomeno-

logical and the magnitude of ξ(T ) can be calculated by taking the square root of

11



above equation:

ξ(T ) =

√√√√ ~2

2m∗|a(T )| , (1.27)

In GL theory, the value of current density j is:

j = −i~e
m∗

(ψ∗∇ψ − ψ∇ψ∗)− 4e2

m∗
A|ψ|2 (1.28)

By substituting Eq.1.22 in above equation we will have:

ψ∗∇ψ − ψ∇ψ∗ = 2iψ2
0∇ϕ (1.29)

then the value of current density will be:

j = 2~e
m∗

ψ2
0(∇ϕ− 2π

Φ0
A) (1.30)

by taking curl of the current density,

∇× j = −4π~eψ2
0

mΦ0
∇× A = −4e2ψ2

0
m∗

B (1.31)

Ginsburg and Landau were able to find other important parameters. By comparing

the above equation with second London’s equation (Eq.1.8), they introduced a new

parameter called penetration length (λeff ). λeff is a length scale that indicates how

far B penetrates into the material.

λ2
eff = m∗

4µ0e2ψ2
0
. (1.32)

London brothers in their theory considered φ to be a constant number and by their

assumption ∇ϕ = 0. In GL frame, the local density of electrons is ns = |ψ|2 and

if we consider that, this equation agrees with London penetration depth. Then the

value of ns is calculated to be:

ns = m∗

4µ0e2λ2
eff

. (1.33)
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Upper critical field

In the case of very large magnetic fields, |ψ|2 � |ψm|2 = −a/b and only terms with the

lowest order of ψ are kept in the GL free energy equation [28]. By taking derivative

of Eq.1.16 with respect to ψ we have:

(∇
i
− 2π

Φ0
A)2ψ = −2m∗a

~2 ψ = ψ

ξ2 . (1.34)

by assuming a parallel field in z direction and use of Maxwell’s equation B = ∇×A,

we get (Ax, Ay) = (0, Bx),

[−∇2 + i22πB
Φ0

x
∂

∂y
+ (2πB

Φ0
)2x2]ψ = ψ

ξ2 . (1.35)

Because of the fact that the vector potential is only x dependent, the value of ψ will

be:

ψ = f(x)eikyyeikzz (1.36)

if we substitute that in Eq.1.35, we get to:

−f ′′ + (2πB
Φ0

)2(x− x0)2f = ( 1
ξ2 − k

2
z)f (1.37)

In the above equation we have x0 = kyΦ0/2πB. Eigenfunctions of this equation

can be calculated by solving the Schrödinger equation for a particle in a harmonic

oscillator potential,

f(x) = exp[−(x− x0)2

2ξ2 ] (1.38)

This equation shows the amplitude of ψ is changing in the order of ξ. Eigenvalues

for these eigenfactors are:

B = Φ0

2π(2n+ 1)( 1
ξ2 − k

2
z). (1.39)

n here can be 0, 1, .... Highest value of B only can achieved when n = 0 and kz = 0.

This maximum value is called upper critical magnetic field which is a very important

parameter in superconductivity are and is equal to:

Bc2 = Φ0

2πξ2 . (1.40)
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Ginsburh and Landau also introduced a very important dimensionless parameter

called GL parameter,

κ = λ

ξ
(1.41)

by considering Eq.1.40, Eq.1.26 and Eq. 1.20, we get to

Bc2 =
√

2κBc. (1.42)

the value κ = 1/
√

2 is classifying superconductors into two different types. If κ <

1/
√

2 then Bc > Bc2 and the superconductor is the type I superconductor. If κ >

1/
√

2 then Bc < Bc2 and the superconductor is a type II one. The temperature

dependence of the critical field can often approximated by the expression:

Bc(T ) = Bc(0)[1− t2] (1.43)

where, t = T/Tc in the above equation.

BCS theory

In 1957, Bardeen, Cooper, and Schrieffer [5] were able to explain the concept of

superconductivity for the temperatures very close to zero Kelvin. This microscopic

theory is referred to as the BCS theory by other people in the field. In BCS theory,

a new term called energy gap is introduced which is separating the excited state in

the superconductor from the ground state. Many properties of the superconductivity

can be explained by this theory. In addition, the microscopic base of GL theory can

be derived from BCS theory, which makes this theory more valuebale [15]. It was

for the firts time in 1950 that Fröhlich [13] pointed out the importance of interaction

between electrons and lattice. When an electron is passing by, lattice will be pulled

toward that electron. When another electron is passing by with the same momentum

but opposite direction, it will be attracted at the same position by the displaced

lattice as shown in Fig.1.2. This interaction results in an effective attraction between

14



Figure 1.2: A qualitative demonstration of pair attraction phenomena that is me-
diated by the lattice. The electron 1 induces a distortion in the lattice. When the
electron 2 passes by that distortion, its state is being affected.

electrons and a phonon is exchanged between electrons through the lattice. If this

attractive force is strong enough to overcome the screened Coulomb repulsive force, a

net attractive interaction will be increased and the material becomes superconductor.

In 1951 Reynolds et al. [38], discovered the isotope effect in mercury for the

first time, which was able to support the Fröhlich theory. In their experimental

results, they observed parabolic relationship of Tc and Bc with isotopic mass M( Tc

and Bc ∝ M−1/2). If electrical conduction in mercury were purely electronic, there

should be no dependence upon the nuclear masses. This dependence of the critical

temperature for superconductivity upon isotopic mass was the first direct evidence

for interaction between the electrons and the lattice. This assumption, supported

the BCS theory of lattice coupling of electron pairs. It is quite remarkable that

an electrical phenomenon like the transition to the zero resistivity should involve a

purely mechanical property of the lattice. Since a change in the critical temperature

involves a change in the energy environment associated with the superconducting

transition. This suggests that part of the energy is being used to move the atoms of

the lattice, since the energy depends upon the mass of the lattice. It also indicates

that lattice vibrations are a part of the superconducting process. In 1956, Cooper

[10] showed that every two electrons in the Fermi sea, due to the attractive weak
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interaction between them can bind and form a bound state called Cooper pair.

Cooper showed that even a weak attraction can bind pairs of electron into a bound

state and the Fermi sea of electrons is unstable against the formation of at least one

bound pair, regardless of how weak the interaction is, so long as it is attractive.

According to this theory, as one electron passes by positively charged ions in the

lattice of the superconductor, the lattice distorts and the center of positive charge

shifts. Virtual phonons are emitted and form a cloud of positive charges around the

electron. After the electron passes, but before the lattice springs back to its normal

position, a second electron is drawn to the cloud. It is through this process that

two electrons, which should repel one another, get connected. As one electron of a

Cooper pair passes close to an ion in the lattice, the attraction between them causes

a vibration. This vibration can be passed from ion to ion until the other electron of

the Cooper pair absorbs the vibration. The net effect is that the electron has emitted

a phonon and the other electron has absorbed the phonon. In a simple model, it is

assumed that when a pair of electrons are added to the Fermi level, they only interact

with each other. For achieving the lowest energy state, these two electrons should

have a total momentum of zero. In order for that to happen, they should have their

momentum equal and opposite to each other. The wave function of this pair then

will be:

ψ0(r1, r2) =
∑

k
gke

ik·(r1−r2)χ(1, 2) (1.44)

here χ(1, 2) is the spin coupling function and gk is the weighting coefficient. In

general, spin function can be chosen from one of both antisymmetric singlet spin

function (↑↓ − ↓↑) or symmetric triplet spin functions (↑↑, ↑↓ + ↓↑, ↓↓). In this

case, the singlet one is used because the singlet coupling restricts the orbit function

to be a sum over cos k · (r1 − r2) and provides lower energy than the triplet one.∑ cos k · (r1 − r2) term has a larger probability amplitude for the electrons close to
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each other than other terms. Wave function then will be:

ψ0(r1 − r2) = [
∑

k>kF

gk cos k · (r1 − r2)](↑↓ − ↓↑) (1.45)

for calculating BCS ground state function, second quantization language is commonly

used by physicists. In this language, the occupied states are shown by using creation

operator c∗k↑, which is creating an electron with the momentum k and the spin up.

Empty states are shown by the annihilation operator ck↑, to annihilates an electron

with the same momentum and spin. By considering these conditions, the ground

state wave function will be:

|ψG〉 = Πk=k1,...,kM
(uk + vkc

∗
k↑c
∗
−k↓)|ψ0〉 (1.46)

Here the probability of one pair (k ↑,−k ↓) being occupied or unoccupied is shown

by |vk|2 and |uk|2 respectively and the probability |uk|2 is equal to 1 − |vk|2. In

later calculations, the magnitudes of uk and vk are calculated. In the cases where

only the attraction between the pair of electrons is considered, the pairing or reduced

Hamiltonian is applicable. The Hamiltonian can be written:

H =
∑
kσ
εkc
∗
kσckσ +

∑
kl
Vklc

∗
k↑c
∗
−k↓cl↑c−l↓ (1.47)

εk here is representing the kinetic energy of the electrons. In this approach, it is

considered that operators like ck↑c−k↓ can have non zero expectation values, unlike

normal state. Fluctuations about the expectation values are very small because of

large number of particles. In this approach also it is suggested to use the product of

operators in the form of c−k↓ck↑ = bk + (c−k↓ck↑ − bk) in Eq.1.47. The value bk here

is determined self-consistently, so:

bk =< c−l↓cl↑ >av

Now model-Hamiltonian is formed as,

H =
∑
kσ
εkc
∗
kσckσ +

∑
kl
Vkl(c∗k↑c∗−k↓bl + b∗kcl↑c−l↓ − b∗kbl) (1.48)
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the value for energy gap is defined as:

∆k = −
∑

l
Vklbl (1.49)

The next step is to do linear transformation in order to diagonalize the above equation.

The appropriate transformation can be done by defining new Fermi operators φk and

φ∗k,
ck↑ = u∗kφk + vkφ

∗
−k

c∗−k↓ = −v∗kφk + ukφ
∗
−k

(1.50)

by substituting new operators in model Hamiltonian we obtain:

H =
∑

k
εk[(|uk|2 − |vk|2)(φ∗kφk + φ∗−kφ−k) + 2|vk|2 + 2u∗kv∗kφ−kφk

+ 2ukvkφ
∗
kφ
∗
−k] +

∑
k

[(∆kukv
∗
k + ∆∗ku∗kvk)(φ∗kφk + φ∗−kφ−k − 1)

+ (∆kv
∗2
k −∆∗ku∗2k )φ−kφk + (∆∗kv2

k −∆ku
2
k)φ∗kφ∗−k + ∆kb

∗
k]

(1.51)

φk is like ck↑ and can destroy an electron with k ↑ or create one with −k ↓. Next step

is to choose uk and vk as shown below, in order to eliminate crossing terms φkφ−k

and φ∗kφ∗−k,

2εkukvk + ∆∗kv2
k −∆ku

2
k = 0 (1.52)

by multiplying above equation by ∆∗
u2

k
, we get to a quadratic equation. The solution

to this equation is:
∆∗kvk

uk
=
√
ε2k + |∆k|2 − εk (1.53)

the next step is to introduce Ek as excitation energy of a fermion which is positive

and greater than ∆,

Ek =
√
ε2k + |∆k|2 (1.54)

by considering normalization requirement |uk|2 + |vk|2 = 1, exact values of uk and vk

coefficients can be calculated as below,

|uk|2 = 1
2(1 + εk

Ek
)

|vk|2 = 1
2(1− εk

Ek
)

(1.55)
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by the use of Eq.1.50 in Eq, 1.49, ∆k can be written in the form of:

∆k = −
∑

l
Vklu

∗
l vl〈1− φ∗kφk − φ∗−kφ−k〉 (1.56)

here φ∗kφk and φ∗−kφ−k are number operators of excited Fermi quasi-particles. The

probability of excitation in normal state equation is in the form of Fermi function:

f(Ek) = 1
eβEk + 1 (1.57)

in above equation β = 1/kT . By considering Ek to be a positive number at T = 0

Fermi function goes to zero. The BCS energy gap can be written in the form of:

∆k = −
∑

l
Vklu

∗
l vl[1− 2f(El)] = −

∑
l
Vkl∆l

tanh βEl/2
2El

(1.58)

Cooper considered the approximation of Vkk′ = −V and by assuming that, was able

to calculate the energy gap for isotropic (s-wave) superconductors. He also assumed

that the energy gap of the s-wave superconductor is independent of the momentum

k. By considering all of these assumptions, the above equation will be:

1
V

=
∑

k

tanh βEk/2
2Ek

(1.59)

by the use of Eq. 1.54 and changing the sum to the integral, we get to:

1
N(0)V =

∫ ~ωc

0

1√
ε2k + ∆2(0)

dε =
∫ ~ωc/∆(0)

0

1√
1 + x2

dx. (1.60)

here N(0) is the density of the electrons at the Fermi surface. At temperature Tc,

the value of ∆(T ) goes to zero. In that point, the excitation spectrum is equal to

the normal state one and we have εk = Ek. By replacing Ek to εk, we can solve the

above equation numerically. By taking the symmetry of εk above Fermi level into the

calculations, we get to:

1
N(0)V =

∫ βc~ωc/2

0

tanh x
x

dx = ln 2eγβc~ωc/π (1.61)

γ is the Euler’s constant and is equal to 0.577.... Now kTc can be defined as:

kTc = 1.13~ωce−1/N(0)V . (1.62)
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In the case of weak coupling limits, we have N(0)V � 1. By substituting Eq.1.62 in

Eq.1.60 we get to the value of gap at zero Kelvin:

∆(0) = ~ωc
sinh(1/N(0)V ) ≈ 2~ωce−1/N(0)V = 1.764kTc, (1.63)

Above equation shows that the value of the gap at T = 0 is comparable in the

energy with kTc value. At the temperature T , the following approximation solution

is applicable:
∆(t)
∆(0) ≈ 1.74

√
1− t (1.64)

where, t = T/Tc.
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Chapter 2

Transport behavior of superconductors

In 1952, Abrikosov introduced the type II superconductors for the fist time [2]. These

types of superconductors, for the applied magnetic fields between the lower magnetic

field Bc1 and the upper mgnetic field Bc2, enter the mixed state. Mixed state contains

magnetic flux vortices carrying a total flux equal to Φ0 = h

2e . Each vortex is like

one elementary cell, which supercurrent is circulating around one normal core. By

increasing the magnetic field, the supeconducting gap ∆ starts to shrink in the core

of the vortex and the core itself becomes surronded by the circulating supercurrents.

Abrikosov vortices in type II superconductors not only can be generated by applying

magnetic filed, but also because of the thermal fluctuations spontaneously [27].

Transport behavior in the superconductors have three different regimes as a func-

tion of current density j. Below jc, system shows perfect conductivity. But it is

dissipative between jc and jd and normal above jd as it is shown in Fig.2.1. In the

mixed state, the transport current interacts with the vortices and exerts a driving

Figure 2.1: Three different regimes in order to compare the transport behavior of a
superconductor [31]
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Figure 2.2: Energy dissipation during the motion of vortex [21]

Lorentz force on them. Motion of vortices lead to the dissipation, a finite electric

filed E and appearance of resistivity ρ. The motion of a single vortex in a type II

superconductor is demonstrated in Fig. 2.2. The vortex while moving, transfers the

entropy from the trail end to the lead face (left panel of Fig.3). In a different ap-

proach by Bardeen and Stephen [6], the electric field in the core that is generated by

magnetic field and is changing with respect to the time, can be calculated by the use

of Maxwell equation in the middle of the normal core. Bardeen and Stephen used

London equations to describe the superconductivity, outside the core (right panel of

Fig.3).

Several interactions can affect the flux motion, which can result in different regimes

in the I-V characteristic measurements. In the case of low driving forces and high

temperatures, the motion of vortices is mainly due to thermally-activated depinning

and there will be very weak current dependence resistivity. In this regime behavior

is ohmic and it is called thermally activated free flux regime (TAFF ). By increasing

j, current-drivven depinning starts competing with the thermal activation in a non-

linear regime. By increasing of j, flux motion enters the new regime called free flux

flow (FFF ), which is an idealized case of vortex moving without pinning. This regime

is ohmic and the equation of motion is dominated by the Lorentz force and the drag

viscous. As current increases, it starts to suppress the superconducting energy gap to

the point where the kinetic energy overcomes the condensation energy. This regime
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Figure 2.3: Ohmic and non-Ohmic trasport as a function of j [21]

is called pair breaking regime, which is non-ohmic and the resitivity of material goes

back to normal. All these regimes are demonstrated in Fig.2.3.

Flux motion

The motion of flux in the mixed state, increases the dissipation inside the super-

conducting material [21]. A finite value for jc is needed because of the pinning of

the vortices by the defects. How the immobilized vortices are moving is an impor-

tant topic in studying the current in type II superconductors and it is at the same

time controversial. jc0 is the value of current in which the Lorentz driving force

(FL = J × B) that is exerted by the current is equal to the pinning force (Fp). In

the case of motion of isolated vortices, fp = fl = jc0 × Φ0 is giving the depinning

threshold (lower case symbols are quantities per length). Because of the fact that

thermal fluctuation is aiding depinning, the effective critical current jc is less than

jc0. By increasing the current, depining starts, but the motion of vortices are damped

because of the viscous drag fd = ηv. For the driving forces more than the depinning

threshold, the motion of vortices is called Flux Flow. The Free Flux Flow (FFF) term

is describing an ideal case of vortices being isolated and moving without pinning. In

FFF regime there is a balance between the driving force and the viscous drag, so that

fL = j×Φ0 = fd = ηv and for a constant η value, electric field is proportional to the
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Figure 2.4: (a) Side view of the vortices: Here solid lines represent the B lines (b) Top
view: The current directions are shown, here 2ξ is the estimated size of one vortex.

applied current ( E = v × B/c and ρ = BΦ0/ηc ). Different approaches have been

used for calculating η and ρ in details by different authors. But, they are similar in

a gross level and are summarized as:

1. Vortex core is approximated by a normal cylinder with radius ξ (coherence

length)

2. Vortex motion is generating an electric field inside the core which results into

normal current density and is roughly equal to suppercurrent density outside.

Side view and top view of vortices is shown in Fig. 2.4.

For a particle with mass m in a viscous medium, it takes a long time to get to

its final drift velocity. For a vortex because of negligible mass, it accelerates to its

final velocity almost instantaneously. In all the equations in superconductivity, this

average drift velocity is used.

Vortex Viscosity

Vortices appear transparent to the current that is flowing right into them, because of

the fact that their motion is generating electric field inside them [39]. In this case the

average of macroscopic resistivity will be equal to the normal-state resistivity which is

the resistivity inside the core multiplied by the fractional volume that is occupied by

the vortices. The resulting dissipation is well explained by Bardeen-Stephen equation
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which is a good starting point in the limit of large currents and electric fields.

ρfff
ρn
≈ B

Hc2(T ) (2.1)

In this region behavior is ohmic, but as the current is increasing, the dissipation will be

nonlinear and eventually reaches an instability point which is due to a discontinuous

increase in the voltage.

In 1986 Larkin and Ovchinnikov [25] showed that for low temperature limits in a

dirty superconductors the Free Flux resistivity is proportional to the value of normal

resistivity:
ρfff
ρn
' 0.9 B

Hc2(T ) (2.2)

Almost the same result (without the prefactor 0.9), is obtaining by the Ohmic dissi-

pation in the core and also temporal changes in the value of order parameter. The

equation above is calld LO equation and is the equivalent of η ≈ B

Hc2(T ) .

The instability at the temperatures not very below the critical temperature, has

been studied by Larkin and Ovchinnikov. They were able to show that the electron

distribution is departing from a thermal distribution when the vortex velocities are

high, which causes the change in the superconducting order parameter and also is

altering the drag force on the vortices. Their prediction was observing nonlinearity in

the current-voltage characteristics and also an instability in the motion of the vortex

at the time the vortex reaches a critical velocity v∗. This instability is because of

a decrease in the drag force, which happens when the vortex velocity is increasing

and is accompanied by a decrease in the size of vortex itself. They also showed that

the critical velocity does not depend on the magnetic field [19]. However, there were

experiments performed at the lower temperatures on other superconducting materials,

also showing a nonlinearity and instability with a totally different dependence of the

value of v∗ to the magnetic field B. The analysis showed that this new behavior

can be explained by a simple model in which the electron gas has a thermal-like
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distribution function which is characterized by a temperature that is higher than the

lattice and the bath. Larkin and Ovchinnikov suggested this possibility in their paper,

without exploring the consequences. When the electron temperature is increasing,

the resulting resistivity increases and causes a decrease in the current. This model

yields a critical vortex velocity (v∗) at the instability which is proportional to the

inverse of magnetic field (1/B) [22].

There are a few fundamental physical phenomena that are unfold in the mixed

state of superconductor, when the superconductor is subject to very big current and

power dissipation levels [29]. There is a sufficiently large current that can destroy the

superconducting state (pair-breaking effect) and will be discussed in next chapter.

At intermediate current densities (below the onset of pair-breaking) observation of

the free viscous flow of flux vortices is expected. In our work we have used a pulsed-

current technique to explore this dissipative regime to verify the pair-breaking effect.
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Chapter 3

Depairing Current Density in Superconductors

The depairing current density or pair-breaking current is one of the intrinsic param-

eters that sets a fundamental limit to the survival of superconductivity [24]. This

is the current density at which the kinetic energy of the superconducting carriers

becomes equal to the binding energy of the Cooper pairs. By increasing T , B and j,

the superconducting gap ∆ decreases. The boundary at T , B and j phase in which

∆ vanishes, separates the superconducting state from the normal state and that is

where all these parameters attain their critical values Tc, Bc2 and jd respectively. Any

of these functions can be separately defined as the critical boundary.

Tc and Bc2 measurements are done routinely while jd is seldomly measured, due

to the technical difficulties associated with sample heating at the high currents [21].

A series of useful reviews have been given on the calculation of the depairing current

densities [26] [23]. These theoretical calculations cover different regimes. The simple

London equations are valid at Tc, but it fails at the lower temperatures since it does

not take into account the effect of the change in the order parameter with the current.

The GL theory gives a good phenomenological treatment that works well close to Tc.

For low temperatures, some other theories based on the microscopic theories have

been proposed.
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Depairing current density in London equations framework

The value of jd can be obtained in a simple London approach by equating the kinetic

energy and condensation energy density expressions,

1
2nsm

∗v2
s = B2

c

2µ0
. (3.1)

The current density and velocity in the superconductors are related by:

js = 2ensvs (3.2)

by using the value of vs = js/2ens and Eq.1.5, we have:

jd = Bc

µ0λL
(3.3)

In this derivation, it is assumed that ns is not affected by j when it gets closer to jd.

This formula seems to be far from reality, because it does not consider the fact that

density of electrons is changing. But it can give us an idea about the fact that jd

depends on both critical field and the penetration depth.

Depairing current density in Ginzburg-Landau theory

framework

Velocity of the quasiparticles in a superconductor can be obtained by equating Eq.1.30

and Eq.3.1,

vs = ~
m∗

(∇ϕ− 2π
Φ0
A). (3.4)

If we substitute above equation in (Eq.1.16) and put the derivative of that equal to

zero, we can find maximum value for vs and Js in which beyond that there wont be

any ψ that minimizes the free energy.

a+ bψ2
0 + 1

2m
∗v2
s = 0. (3.5)
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The optimum of ψ0 that minimizes free energy at fixed vs is:

ψ2
0 = |a|

b
(1− m∗v2

s

2|a| ) = |ψm|2[1− (ξm
∗vs
~

)2]. (3.6)

By putting above equation into Eq.3.1, we get to the corresponding supercurrent

density:

j = 2e|ψm|2[1− (ξm
∗vs
~

)2]vs. (3.7)

For calculating the maximum current, we put ∂j
∂vs

= 0 and we get to vs = ~/
√

3m∗ξ.

This current now can be identified as maximum possible value for the current which

is the depairing current value:

jd = 4e|ψm|2~
3
√

3m∗ξ
. (3.8)

If we combine above equation with London penetration depth equation (Eq.1.5), we

eventually get to:

jd = ~
3
√

3µ0eλ2
Lξ

= Φ0

3
√

3πµ0λ2
L(T )ξ(T )

. (3.9)

by considering t = T/Tc, λL(t) = λL(0)/
√

1− (t)4 and ξ(t) = ξ(0)/
√

1− t for tem-

peratures close to Tc, the shift in Tc at given B and j as a function of applied current

can be calculated as:

1− Tc(j)
Tc(0) ≈

(1
4

) 2
3
[

j

jd(0)

] 2
3

(3.10)

In above equation we can see the proportionality of the shift in Tc to j2/3. jd(0)

based on above equation will be:

jd(0) =
√

2Φ0

27πµ2
0


√
Bc2(0)
λ2
L(0)

 , (3.11)

here Bc2(0) = Φ0/2πξ(0)2 is upper critical field at zero temperature. In MKSA

system, above equation becomes:

jd(0) = 5.56× 10−3 ×
√
Bc2(0)/λ2(0), (3.12)

here jd is in A/m2, Bc2 is in Tesla and λ is in meters. In above equation, we took

off the subscript of λL only to prevent confusion. Joule heating can give an apparent
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Figure 3.1: Temperature dependence of jd from different theories. Replotted from
Ref.[31]. The solid curve is KL theory, the dashed one is Eq.3.13 and the dot one is
GL’s result.

shift to Tc (∆Tc ∝ ρj2), if for any reason heat removal from the sample is ineffec-

tive. Therefore, in any type of measurements, we need to make sure we do not have

excessive amount of heating.

Different groups have done calculations for calculating pair breaking current val-

ues. Kuprianov and Lukichev [31] among them had closer results to phenomenological

expression. They calculated the microscopic jd value, by inserting temperature de-

pendence of Bc and λ:

jd = jd(0)
2
√

2
(1− t2)3/2, (3.13)

It is important to point out that the predictions on the temperature dependence of

jd from these theories are the same when the temperature is near Tc.

In order to describe the macroscopic properties such as j(d), the GL theory is more

amenable than the BCS microscopic theory [43]. In our lab, both values of j(d) and

Bc2(0) can be obtained from our transport measurements and is a convenient way to

calculate the values of λ and ns. In addition, unlike some other methods for measuring

λ that are unable to provide an accurate absolute value and only are able to provide
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λ(T )/λ(0) (temperature variation), j(d) is able to provide the absolute values for λ

and ns.

Depairing current density from the quasiparticle energy shift

At low temperature limits, in the presence of a uniform velocity vs the quasiparticle

energies shift by ~kFvs where kF is the wavevector at the Fermi surface. In super-

conducting state, ns stays roughly constant to the point vs is reaching its critical

value vd. At that point the shift in energy, will be equal to the energy gap and the

velocity gets to vd = 2~/m∗ξ which is the maximum velocity of quasiparticles in GL’s

framework [20]:

vd = ∆
~kF

= 2~
m∗ξ

, (3.14)

Here m is the mass of the electron and ξ is the coherence length. j is proportional to

vs until it gets to vd, where value of ns is dropping. For the limits where vs � v∆, all

electrons contribute to supercurrent js = 2ensvs. For temperatures close to Tc, the

density of quasi particles is proportional to the order parameter |ψ|2 in GL frame.

At low temperatures a more microscopic calculation is required to take into account

the effect of the modification on the quasiparticle density by the drifting velocity.

The maximum value that current can get is slightly higher than the value of vd.

By a good approximation it can be said that jd ' e∗n∗svd and:

jd '
m∗c2∆

4πe∗λ2~kF
' c2~

2π2e∗λ2ξ
, (3.15)

magnitude of ξ can be calculated by having the information on the value of Bc2. Here

kF is a constant number and ∆ has temperature dependence. From the right hand

side of the above equation the temperature dependence of jd is calculated in the form

of:

jd(T ) = jd(0)(λ
2(0)

∆(0) ) ∆(T )
λ2(T ) (3.16)
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By using the right hand side of Eq.3.15 magnitude of jd(0) in BCS frame and in

MKSA system is estimated to be:

jd(0) = 9.19× 10−3 ×
√
Bc2(0)/λ2(0), (3.17)

which is close to the value of jd calculated by GL’ framework.
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Chapter 4

Apparatus and Experimental Techniques

In this chapter the experimental techniques that we have used along the way is

discussed.

Sample preparation

Our sample was provided in the form of bulk from STAR Cryoelectronics company

in Santa Fe. However, cutting, patterning, etching and wiring was done in our lab-

oratory. They have used DC magnetron sputtering method for sample fabrication.

The target that was used in their sputtering machine was NbTi by portions of 70 %

Nb and 30 % Ti. The atmosphere was combination of argon and nitrogen gas with

the use of silicon as a substrate.

In all our measurements, we have used a four-probe bridge pattern. In order to

create this pattern, we first need to make a mask. There are different methods to

Figure 4.1: Single bridge pattern used in our experiment
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make a mask, but we have used the photo lithography method. In this method a

camera and projector is needed. The first thing to do was covering a microscope slide

with the negative photo resist in the spinner. The next step was to put that slide

in the light path of the microscope and exposing the slide to the light for specific

amount of time (the time can be different depends on the size of bridge and type of

photo resist we use). Then we had to put the slide in the developer which is diluted

by water for specific amount of time (depending the exposure time and type of photo

resist we have used). All our steps were done in the dark room as there should not be

any lighting in the room. After development, by using our sputtering machine, layers

of silver was deposited on the slide. The positive pattern remains on the slide and

the rest comes off after washing it by acetone. By the use of this mask, the standard

photo lithography procedure and ion milling we were able to create the four probe

bridge pattern on all of our superconducting film. The length of the bridge that we

have created is 200 µm with the width of 11 µm. The aspect ratio (length to the

width portion) of the bridge then will be 18.8. After patterning our samples, thin

wires were bonded on the micro bridge by indium in order to not have high contact

resistance. Then the sample was mounted inside our Cryocooler.

Spin processor

For the photoresist coating purpose, spin coater WS − 650SZ − 6NPP/LITE from

Laurell technologies corporation have been used (Fig.4.2). This compact spinner has

some advanced features like automatic control and high-performance and can drive

up to 12,000 RPM(rotations per minute). It also comes with multi optional chucks

and other advance properties. This system uses high pressure and dry air and for

that purpose a compressor is attached to our spin coater machine. The instruction

for using this machine is discussed in Appendix A.
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Figure 4.2: Spin coater WS − 650SZ − 6NPP/LITE

Sputtering

We have used PELCO model3 sputter coater 91000 (Fig.4.3) in order to do the

sputtering process. This sputter coater is an economical desktop unit and is simple

to operate. We have used this machine in our laboratory, whenever we wanted to

make our own mask or make changes to the masks that we already have. When the

pattern is created by the use of photo resist on the slide, a thick layer of metal film

should be deposited on the slide. Because of the fact this coater is compact size, pump

down time is very fast. In this machine, silver is used as the target. Sputtering is a

process whereby particles are ejected from a solid target material due to bombardment

of the target by energetic particles, particularly gas ions in a laboratory. Fig.4.4 is

a schematic drawing of sputter deposition method. The current controller allows

different choices of both sputtering current and argon pressure. Around 20 rounds of

deposition is necessary to make a uniform film that we need (to create films in range

of µ m ). Each round should not take more than 90 seconds in order to prevent the

sample being heated up and there should be at least 30 s of wait time between each

round. The steps for using the sputtering machine is discussed in Appendix B.
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Figure 4.3: PELCO model3 sputter coater 91000

Figure 4.4: Schematic drawing of sputter deposition

Ion-milling system

In order to etch the desired patterns on our superconducting film, we have used

an ion milling machine. Ion milling is an etching process, where ions of an inert

gas, accelerate from an ion source into the surface of substrate and etch unpro-

tected part (Fig.4.5). In our lab we have two ion-milling systems, Oxford IG5 and

TFSIBMS− 100. They are connected together and share the same vacuum system.

In our experiments, we only have used the small Oxford IG5 which uses a nozzle as
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Figure 4.5: Schematic drawing of ion milling process

Figure 4.6: Oxford ion gun and IBMS − 100

an anode (Fig.4.6). The operation of our ion gun machine is discussed in Appendix

C.

Cryostats and Magnet

For the transport measurements that we have done in our laboratory for various

superconducting samples, PT405 cryorefrigerator was used. The standard four-probe

measurement wires of the bridge is set up on that. PT405 can cool down to the
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Figure 4.7: PT405 Cryostat with GMW3473-50 magnet

temperatures lower than 4K. Most of the samples that we have used, have low Tc and

this system perfectly works to reach the temperatures lower than that. GMW3473-50

electromagnet installed with our Cryostat Fig.4.7 in order to measure the value of Bc

for our samples. The schematic diagram for PT405 and GMW3473-50 is shown in

Fig.4.8.

PT405 refrigerator

PT405 is a two stage pulse-tube, closed cycle cryocooler. A Cryomech CP950 com-

pressor with frequency of ∼ 1.4 Hz is connected to the cooler which requires water

to cool down. Before starting the cooling down process, the system was evacuated to

10−5 torr using a turbo-pumping station. When it starts to run, the helium gas is

compressing by the compressor and then expanding in the cold head. In this process,

the expanded gas is then cooled down and the temperature goes lower.
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Figure 4.8: Schematic of PT405 and its magnet and sensors

For temperature measurements in this system, three sensors were used:

1. A LakeShore Cernox CX−1070−SD resistance that measures the temperature

at the sample position. Temperature can be found by measuring the resistance

and use of some time dependent functions. Cernox is the most reliable sensor,

because it is stable under the change of both magnetic field and temperature.

2. A LakeShore Diode DT − 670 which also measures the temperature at the

sample position. It indicates the temperature by measuring its cross voltage of

the sample. This sensor is used to give a secondary check of the temperature.

However this diode is sensitive to temperature and magnetic field.

3. A silicon diode thermometer that measures the temperature at the cold head

which is almost 21 cm away from the sample. The reason that this sensor is

used is that it is outside where magnetic field is and can give us the feedback

of temperature controller.

Schematic drawing of system is shown in Fig.4.8
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GMW 3473-50 magnet

Our magnet is water-cooled GMW 3473 − 50 with poles of 150 mm made of ferro-

magnetic iron cores which is used to generate magnetic field at the the point where

sample is. this magnet was installed on a rotor and can be rotated horizontally. The

maximum current in this magnet is 50 A that can produce a magnetic field of about

1.3 T . To measure the magnetic field, HGT2100 Hall probe was used. This sensor is

located on one of the iron pole faces. A fixed low current is sent to that probe and

the transverse voltage and the produced magnetic field is measured by the use of a

multimeter. From the voltage, the transverse resistance can be measured and from

the resistance, the magnetic field can be calculated. The reason for that is the fact

that the transverse resistance is proportional to the magnetic field. Magnetic field

is very stable during all measurements that we do in our lab. The sample holder

is located on the end of a copper rod extended from the cold head. The applied

magnetic field can be adjusted as the holder is in between the magnet poles.

The Hall effect is the production of a voltage difference (the Hall voltage) across an

electrical conductor, transverse to an electric current in the conductor and a magnetic

field perpendicular to the current.

DC measurement setup

In order to do our DC measurements, a DC power supply is used in series with a

large resistance called ballistic resistance (R1). The voltage in this power supply can

be changed and this power supply is able to provide a continuous low current to the

sample (Fig.4.9). One standard resistance is also used in the circuit which is called

standard resistance(Rstd). A Double Pole Double Throw (DPDT ) relay is used to

reverse the current direction in the circuit. By using 4-probe measurement, we can

exclude the thermal emf and the contact resistance. By measuring the forward (+)

and reversed (−) voltages of the sample and the use of standard resistor, the resistance
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Figure 4.9: DC 4-probe measurement circuit. Computer controls this Double Pole
Double Throw (DPDT ) relay.

of the sample can be calculated:

R = Rstd

V
+
sample − V

−
sample

V
+
std − V

−
std

, (4.1)

All the voltages here are the averages of the readings from our digital multimeters

(DMM).

Pulsed measurement setup

For measuring deparing current density in superconductors, high current densities

are required. Measurements involving high current densities cause both self heating

effect and heat generation from the contacts. Those two can destroy the sample and

be a major technical problem. To overcome these problems short-duration, low-duty

pulsed current is used rather than continuous DC current. In this approach thermal

emf will be subtracted by the oscilloscope itself and there is no need to reverse the

direction of the current. Duty cycles can be used to describe the percent time of an

active signal in an electrical device such as the power switch in a switching power

supply.
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Figure 4.10: Puled measurement setup

The pulse generator which can be both a Wavetek Model 801 or Quantum Com-

poser Model 9512, provides a single-shot pulse with constant amplitude. The pulse

is regulated by a current control device and then is feeding the current source which

is composed by fast response transistor NTE373 and a reference resistor as shown in

Fig.4.10. The current through the sample can be calculated by:

I = Vin − VBE
Rref

= Vstd
Rstd

, (4.2)

where, Vin is the voltage of the base and VBE is the base-emitter bias of the transis-

tor. The current as a function of time and voltage are displayed on Lecroy 9341A

oscilloscope. The computer can monitor the oscilloscope, collect data and adjust the

current.
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Chapter 5

Data and Analysis

In this chapter, the results of the transport measurements of NbTiN samples with

different thicknesses is discussed.

NbTiNSample

The original thickness of the NbTiN sample that we have used is 125 nm thickness

and is an amorphous type. All superconducting NbTiN films with different thick-

nesses were initially DC tested (using 4-probe measurement technique) with and

without an applied magnetic field. The Cryomech PT405 Cryostat was the main

system that we have used for doing all of our measurements.

First thing after we put the sample in is to cool down the system and a mea-

surement called Free Fall. While cooling down the system, we record the change of

resistance versus temperature. Graphing that can give us a rough estimate of how

much critical temperature and normal resistivity is which might be helpful later on.

Plus the process of cooling down is needed to be done regardless.

The onset Tc is defined as the intersection of the extrapolation of the normal-state

portion and the extrapolation of the steep transition portion of the R(T ) curve [30].

The applied magnetic field in our measurements is in both parallel and perpendicular

orientations. We try to have a high point density in our measurements, in order to

have more accurate graphs. The highest magnetic field that we can achieve with our

magnet in our system is around 1.3 T and depending on the type of measurement

that we are doing, we can have different steps for the magnetic field (we usually use
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Figure 5.1: Critical temperature measurments of NbTiN superconducting sample
(125 nm thickness)

0.1 T steps). We try to find the values of important superconductivity parameters

like coherence length, effective coherence length, penetration depth, superconduct-

ing electron density and also critical boundaries like critical temperature, magnetic

field and depairing current. We repeat our measurements for different thicknesses of

NbTiN superconducting films (125 nm, 83 nm and 37 nm) to see how important

superconducting parameters are changing based on the thickness of the films. We

have achieved different thicknesses for our thin films by milling them down in our ion

milling machine. We have calculated the milling rate with our ion gun machine to be

0.189 nm/min.

Measurements on the first thickness of NbTiN

superconducting sample

Based on our measurements, this NbTiN superconducting film is a type II super-

conductor with a transition of around 0.5 K and critical temperature around of 11.8

K (Fig.5.1). The normal resistance for this film thickness is 217 Ω with a resistivity
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Figure 5.2: Resistive transitions for NbTiN at zero magnetic field for different values
of current of (right to left): 0.34 mA, 6.4 mA, 22 mA, 45.4 mA, 71.7 mA and 133
mA

Figure 5.3: I2/3
d versus temperature values

of 1.37× 10−6 Ωm.

In order to calculate the value of depairing current denisty jd(0), we first need to

calculate the value of deparing current Id(0). Fig.5.2 shows the resistive transition at

zero magnetic field for various applied currents. The lowest current value in this graph

is 0.34 mA and the highest is 133 mA and all currents are pulsed. All the curves
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Figure 5.4: I2
d versus T graph

shift in a fairly parallel manner over the central portion of the normal resistance

(R ≈ Rn/2). The depairing current value Id(T ) at different values of T is defined

at the midpoint of the resistive transition R = Rn/2 = 108.5 Ω. Fig. 5.3 shows

the values of I2/3
d points against T (corresponding to the pair breaking effect). The

two third power graph is confirming the induced depairing current phenomenon in

GL theory. By the values of y-axis intercept of the I2/3
d (T ) versus the temperature

graph, we can find the zero temperature value to be Id(0) ≈ 0.25[TcdI2/3/dT ]3/2 [33].

Based on our results in Fig.5.3 the value of Id(0) = 195.8mA. We also need to make

sure that our heat removal from the sample is effective. In order to do so, we are

making sure there is no shift in the temperature due to joule heating (I2
d ∝ ρj2). By

graphing the value of I2
d versus T we see that by increasing the temperature the value

of I2
d does not increase linearly which is a confirmation of the fact that the Joule

heating here is negligible (Fig.5.4). Now We can say the shift in the temperature is

only due to the depairing effect. We can calculate the depairing current density by

dividing the value of depairing current (Id(0)) by the sectional area of our sample

( A = width × depth = 1.375 × 10−12m2). We report the corresponding value of

depairing current density at zero-temperature to be jd(0) = 142.4× 109 A/m2.
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The value of depairing current densisty is related to the upper critical field Bc2

and the magnetic penetration depth. Becuase Bc2(T, j) is a function of current as

well, we obtain the value of the Bc2 for our sample by measuring the shift in the

resistive transition by applying different magnetic fields at a constant low current

value. Resistive transition of NbTiN sample for 7.5 µA in perpendicular magnetic

field is shown in Fig.5.5. The information from these curves was used to determine

the value of upper critical field (Bc2). In order to do so, we use the results of resistance

versus tempreture graph and we find the temperatures corresponding to the midpoint

of resistance transition. By defining Bc2 at the midpoint of the transition (Bc2(T )) in

Fig. 5.6, the value of Bc2(0) can be calculated. It was shown before by Werthamer et

al. [44] that Bc2(0) ≈ 0.7TcdBc2(T )/dT and is known asWHH formalism. The value

of Bc2(0) for our sample in perpendicular magnetic field is calculated to be 12.05 T

by use of WHH formalism.

By the information that we have on the upper value of magnetic field, we extract

the value of coherence length by use of Bc2 = Φ0/2πξ2 formula. We report the

coherence length ξ of our sample for this thickness in perpendicular magnetic field to

be equal to 5.23 nm. This value of ξ that is deduced from the upper critical field can

be reduced by the scattering, and is a macroscopic value. There is another coherence

length value that is called intrinsic BCS coherence length ξ0 that is not depending on

the scattering and is a microscopic value. These two values are related by ξ ≈
√
ξ0l,

where l is the mean free path of electrons [20]. In our case as scattering is in all 3

directions of our sample, and we are changing the thickness only, the value of ξ can

be proportional to the thickness (ξ ≈
√
ξ0d). By the information that we have on ξ

and thickness of our sample d, We report the value of in plane ξ0 to be ∼ 0.2 nm.

The combination of values of depairing current density and upper critical field

provide a useful method for obtaining the value of penetration depth (λ) purely from

transport measurements. This value of λ is an absolute value and is unaffected by
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Figure 5.5: Resistive transitions for NbTiN at a current of I=7.5 µA in perpendicular
magnetic field values of (right to left): 0.01 T , 0.1 T , 0.2 T , 0.3 T , 0.4 T , 0.51 T , 0.62
T , 0.72 T , 0.83 T , 0.94 T , 1.05 T , 1.14 T

Figure 5.6: Upper critical magnetic field versus the midpoint transition temperature
for perpendicular magnetic field
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Figure 5.7: The allignemt measurements in order to find the angle where resistance
is minimum which is at 21.3 degree

Figure 5.8: Resistive transitions for NbTiN sample at a current of I=7.4 µA in
parallel magnetic field values of (right to left): 0.002, 0.008, 0.17, 0.26, 0.36, 0.45,
0.55, 0.65, 0.75, 0.85, 0.95, 1.05, 1.13, 1.19 T

magnetism in material [30]. This value is calculated to be equal to 0.368 µm and we

report the value of κ = λ/ξ = 70.36, which puts this material in the extreme super-

conducting category. We now utilize the information obtained about λ to estimate

the carrier concentration value from ns = m∗/4µ0e
2λ2 formula. Assuming that the

effective electron mass m∗ equals the free electron mass, m, e is the electron charge,

we get the density of superconducting electrons density ns to be 2.092× 1026 m−3.
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Figure 5.9: Upper critical magnetic field versus the midpoint transition temperature
for parallel magnetic field

We have repeated the measurement in the parallel magnetic field as well. For

having the magnetic field being parallel to our sample, we need to do the alignment as

when we put it in the system the orientation can not be exactly parallel. We measure

the value of resistance at highest magnetic field that we have (1.3 T ) at different

angles and then we graph R(θ) to find the angle that gives us the minimum value of

the resistance. Because in parallel orientation, the flux penetration is minimum. As

it is shown in Fig.5.7 we can see 21.3 degree is the minimum of our R(θ) graph. Then

we graph the change of resistance versus temperature at different magnetic field steps

(0.002, 0.008, 0.17, 0.26, 0.36, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95, 1.05, 1.13, 1.19 T )

in order to find the parallel upper critical field Fig.5.8. The value of Bc2 by WHH

formalism is 21.06 T Fig.5.9. The coherence length value for parallel magnetic field

is ξ=3.96 nm, BCS coherence length value is ∼ 0.1 nm and λ=0.423 µm. The GL

parameter value for this thickness is κ = λ/ξ = 106.98.
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Figure 5.10: Critical tempreture measurments of NbTiN superconducting sample
after first thining

Measurements on the second thickness of NbTiN

superconducting sample

After putting our sample in ion milling machine and milling it down for 3 hours

and 40 min (with milling rate of ∼ 11.36nm/hr), our film thickness is measured to

be 83 nm. This thickness is 66.4 % of original thickness of the film. As it can be

seen from Fig.5.10, the normal resistance value increases to 311Ω. The value of Tc

also increases to 12.9K which is almost ∼ 1K higher than the first thickness. We

have done the depairing current density measurements based on resistance versus

temperature measurements in zero magnetic field for different pulsed current values

ranging between 0.33 mA to 4.6 mA as shown in Fig.5.11. After finding the values of

Id(T ) based on the midpoint of transition cuts and making sure that Joule heating is

negligible (Fig. 5.12) we were able to find the value of Id(0) by the result of the slope of

Fig.5.21 to be equal to 128.68 mA. For this thickness the value of jd(0) = 140.94×109

A/m2. Compared to the first thickness this value does not change much.

The measurements of change of resistance versus temperature for different mag-
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Figure 5.11: Resistive transitions for NbTiN at zero magnetic field for different values
of current of (right to left): 0.33 mA, 1.05 mA, 2.1 mA, 3.3 mA and 4.6 mA

netic fields (in perpendicular orientation) at different magnetic field steps (0, 0.12,

0.24, 0.36, 0.48, 0.60, 0.72, 0.88, 1, 1.12, 1.20 T) is shown in Fig.5.14 at a constant

current of 37 µA. Like before, we do the 50% of resistance cut and then we obtain the

values of Bc2(T ) for the midpoint transition. After graphing the values of Bc2(T ) and

use of WHH formalism we report the value of upper critical field be equal to 17.61 T

(Fig.5.15), which is higher than the first film. By the information on upper magnetic

field and depairing current density, we are able to find the value of coherence length

coherence length ξ in perpendicular magnetic field to be equal to 4.32 nm, ξ0 ∼ 0.2

nm, λ ' 0.406 µm, ns ' 1.71 × 1026 m−3 and κ = λ/ξ = 93.98. We see a decrease

in the value of coherence length and an increase in the value of magnetic penetration

depth. Both values of ns and ξ0 are staying almost the same.

For the parallel orientation, we have graphed the change of resistance versus tem-

perature at different magnetic field steps (0, 0.12, 0.24, 0.36, 0.48, 0.60, 0.78, 0.9,

1.02, 1.11, 1.23) at constant current of 26 µA in order to find the parallel upper

critical field (Fig.5.16). The value of Bc2 by WHH formalism is 47.40 T based on

the slope of Fig. 5.17. This value is increasing compared to the previous thickness.
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Figure 5.12: I2
d versus T graph

Figure 5.13: I2/3
d versus temperature in order to find the value of depairing current
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Figure 5.14: Resistive transitions forNbTiN at a current of I=37 µA in perpendicular
magnetic field values of (right to left): 0, 0.12, 0.24, 0.36, 0.48, 0.60, 0.72, 0.88, 1,
1.12, 1.20 T

Figure 5.15: The value of Bc2 by WHH formalism which is 17.61 T
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Figure 5.16: Resistive transitions for NbTiN at a current of I=26 µA in parallel
magnetic field values of (right to left): 0, 0.12, 0.24, 0.36, 0.48, 0.60, 0.78, 0.9, 1.02,
1.11, 1.23 T

Figure 5.17: The value of Bc2 by WHH formalism which is 47.40 T

The coherence length value for parallel magnetic field is ξ = 2.63 nm, BCS coher-

ence length value is ∼ 0.1 nm and λ= 0.521 µm. The GL parameter value for this

thickness in parallel magnetic field orientation is κ = λ/ξ = 198. By decreasing the

thickness, we see an increase in the value of penetration depth and a decrease in the

value of coherence length. The value of BCS coherence length is not changing.
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Figure 5.18: Critical tempreture measurments of NbTiN superconducting sample
after second thining

Measurements of the third thickness of NbTiN

superconducting sample

After putting our sample for the second time in ion milling machine and milling it

down for extra 4 hours and 1 min with the previous milling rate), we get to the

third thickness of our sample which is 37 nm. The thickness of the film at this point

is 29.08 % of the original thickness of the film. As it can be seen from Fig. 5.18

the normal resistance is increasing to 624 Ω which is almost double as the previous

thickness. The value of Tc here is decreasing to 11.5 K which is closer to the Tc of

the first thickness.

We have done the depairing current density measurements based on resistance

versus temperature measurements in zero magnetic field for different pulsed current

values between 4.9 mA to 63 mA for this thickness is shown in Fig.5.19. Similar

to the previous situations, we can find the values of Id(T ) based on the midpoint of

transition cuts and also making sure that Joule heating is negligible (Fig.5.20), we
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Figure 5.19: Resistive transitions for NbTiN at zero magnetic field for different values
of current of (right to left): 4.9 mA, 7.31 mA, 14.7 mA, 20 mA, 28.5 mA, 38 mA
and 63 mA

Figure 5.20: I2
d versus T graph

were able to find the value of Id(0) by the result of the slope of Fig. 5.21. The value

of Id(0) is 144 mA gives us the value of jd(0) = 351.2×109A/m2 which is a lot higher

than the other two thicknesses.

The measurements of change of resistance versus temperature for different mag-

netic fields (in perpendicular orientation) at different magnetic field steps (0, 0.1,

57



Figure 5.21: I2/3
d versus temperature in order to find the value of depairing current

0.22, 0.34, 0.46, 0.58, 0.84, 0.88, 0.97, 1.08 T ) is shown in Fig.5.22 at a constant

current of 9.6 µA. Like before, we do the 50 % of resistance cut and then we obtain

the values of Bc2(T ) for the midpoint transition. After graphing the values of Bc2(T )

versus T and use of WHH formalism we report the value of upper critical field be

equal to 43.23 T (Fig.5.23), which is increasing compared to the other two thick-

nesses. The coherence length value for this thickness and perpendicular magnetic

field orientation is ξ = 2.71 nm, BCS coherence length value is ∼ 0.2 nm and λ=

0.340 µm. The GL parameter value for this thickness is κ = λ/ξ = 125.46 and the

value of superconducting electrons density is ns = 2.45 × 1026 m−3. By decreasing

the thickness we can see a decrease in the value of penetration depth compare to the

other two thicknesses.

Table 5.1 is showing different superconducting parameters such as critical temper-

ature, upper critical magnetic field and depairing current density values in perpendic-

ular magnetic filed for different thicknesses to give us a summery of all of these values

and change of them based on the thickness. Other groups such as Matsunaga et al.

[35] have calculated the value of Tc to be 15 K or lower that can be depending on the
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Figure 5.22: Resistive transitions for NbTiN at a current of I=9.6 µA in the per-
pendicular magnetic field values of (right to left): 0, 0.1, 0.22, 0.34, 0.46, 0.58, 0.84,
0.88, 0.97, 1.08 T

Figure 5.23: The value of Bc2 by WHH formalism which is 43.23 T
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Table 5.1: Values of R(Ω), jd(0)(A/m2), Tc(K), Bc2(T ), ξ(nm), ξ0(nm), λ(µm), κ and
ns(m−3) for perpendicular magnetic field orientation for three different thicknesses of
NbTiN superconducting films

t
(nm)

R
(Ω)

jd(0)
(A/m2)

Tc
(K)

Bc2
(T )

ξ
(nm)

ξ0
(nm)

λ
(µm) κ

ns
(m−3)

125 217 142.4×
109 11.8 12.05 5.23 0.2 0.368 70.36 2.092×

1026

83 311 140.94×
109 12.9 17.61 4.32 0.2 0.406 93.98 1.71×

1026

37 624 351.21×
109 11.5 43.23 2.71 0.2 0.340 125.46 2.45×

1026

thickness of the film or substrates. Our experimental values for all three thicknesses

is in agreement with their results. Lei Yu et al. [45] seen an increase in the value

of critical temperature, by increasing the thickness and the decrease of penetration

depth. We have not seen any type of trend (increasing or decreasing) in the value

of critical temperature, which can be due to the fact that our sample is amorphous

type unlike other groups. We also have seen a decrease in the value of penetration

depth which is in agreement with Lei Yu et al. experimental results. The value of

resistance and upper critical field is increasing by decreasing the thickness that can

be due to the increase in the scattering and disorder by thinning down our sample.

We get the same value of ξ0 for all three thicknesses as we expect, which should be

independent of geometry of the sample. The value of superconducting density for all

three thicknesses is almost the same, which is what is expected as it is a density value

and should be independent of the thickness.

For the parallel orientation, we have graphed the change of resistance versus tem-

perature at different magnetic field steps (0, 0.109, 0.225, 0.343, 0.464, 0.588, 0.716,

0.847, 0.974, 1.087, 1.2 T ) in order to find the parallel upper critical field for a con-

stant current of 9.6 µA (Fig.5.24). The value of Bc2 by WHH formalism is 92.17 T

based on the slope of Fig. 5.25. The coherence length value for parallel magnetic

field is ξ = 1.89 nm, BCS coherence length value is ∼ 0.1 nm and λ = 0.389 µm.
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Figure 5.24: Resistive transitions for NbTiN at a current of I=9.6 µA in parallel
magnetic field values of (right to left): 0, 0.109, 0.225, 0.343, 0.464, 0.588, 0.716,
0.847, 0.974, 1.087, 1.2 T

Table 5.2: Values of Bc2(T ), ξ(nm), ξ0(nm), λ(µm) and κ for parallel magnetic field
orientation for three different thicknesses of NbTiN superconducting films

t
(nm)

Bc2
(T )

ξ
(nm)

ξ0
(nm)

λ
(µm) κ

125 21.06 3.96 0.1 0.423 106.89
83 47.40 2.63 0.1 0.521 198
37 92.17 1.89 0.1 0.389 205.82

The GL parameter value for this thickness is κ = λ/ξ = 205.82.

Table 5.2 is showing different superconducting parameters, critical temperature,

upper critical magnetic field and depairing current density values in parallel magnetic

filed for different thicknesses of NbTiN films. By decreasing the thickness of the film,

we see an increase in the value of upper critical field in this magnetic field orientation

as well. We see an decrease in the value of coherence length. We also get the same

value of ξ0 for all three thicknesses as we expect.

All our experimental data was compared with the calculated ones from the existing

theories and, other groups experimental values. For both orientations of magnetic
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Figure 5.25: The value of Bc2 by WHH formalism which is 92.17 T

field, We have seen critical field Bc2(T ) functions conform to GL predictions. We

were not able to find any value in the literature for the depairing current density

values provided by other groups for this type of superconductor, but our results is

in the range that is expected for all other type of superconductors. We also have

observed that jd(T ) function confrom to GL predictions. With the result of our

depairing current density measurements, we were able to find the exact value of

magnetic penetration depth. Other groups such as Hu et al. [16] have calculated the

value of λ to be in the range of 200 − 400 nm which is in agreement with all of our

experimental results. The values of κ for all different thicknesses put this material in

the range of extreme superconducting material.
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Chapter 6

Conclusions

In the present work we investigated the superconducting properties of NbTiN su-

perconducting films with different thicknesses. In particular, we have studied the

upper-critical-field and current induced effect. Both jd(T ) and Bc2(T ) functions, con-

form to GL predictions. The measurements of jd(T ) and Bc2(T ) combined, provide

a useful method to obtain λ based on transport measurements. This is of special

value in the situations in which the geometry of the sample or the volume makes

it not suitable for the penetration depth measurements by inductive methods. By

decreasing the thickness we see an increase in the value of Bc2(0), which can be due

to the fact that scattering and effective disorder are increasing. The values of Tc and

λ for all different films were in agreement with other groups. The values of ξ0 and ns

are constant for different thicknesses, which is in agreement with what is expected.
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Appendix A

Spinner Operation

In this section we discuss the operation of our spinner:

1. Turn on the power supplies of the spin coater and the compressor.

2. The outlet pressure of the compressor should be in the range of 60 ∼ 70 psi

before starting.

3. Press "Select Process" and by using the up-down buttons, choose the preferred

saved set up process. If you want to change the set up press "Edit Mode" and

then "tab", then move the flashing cursor to the parameter that you want to

change. You also always can create a new process based on what you need.

4. Press "Run Mode" to confirm the settings.

5. Open the lid and mount your desired vacuum chuck. If your sample is small, 3

mm chuck is a good choice, but if you are using a slide, a bigger chuck needs

to be used.

6. Place the sample on top of the chuck and carefully try to align the center of

the sample at the axial of the chuck.

7. Press "Vacuum" button now. If the compressor pressure is right, the vacuum

reading on the screen should show a number between 17 to about 23.
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8. Drip the photoresist on the top of the sample and make sure the whole surface

of your sample is covered by that. You need to pay very careful attentions as

chemicals should not get into the hole of the chuck as it may damage the motor.

9. Close the lid.

10. Make sure the LED light of the "Start" button is illuminating.

11. Press "Start" button. you should see the chuck starting to rotate right away. If

for any reason you feel like something is wrong, press "Stop" at anytime.

12. Open the lid after it stops running.

13. Press "Vacuum" to drops that down to 0.

14. Take out the sample.

15. Put a protecting cap on the chuck and close the lid. Turn off both power supply

and the compressor.

70



Appendix B

Sputtering machine operation

The following steps was followed in the deposition process:

1. Put the sample in sputtering machine and put the cap back on.

2. Make sure power supply is connected.

3. Turn on the rough pump connected to system and let it pump for a few minutes.

Because it is a small sputtering machine, it does not need to be pumped for a

long time.

4. Turn on the sputtering machine.

5. Watch the pressure indicator on the screen of the machine. You see the ready

yellow light button on when the pressure gets to the desired pressure (around

10−2 mbar).

6. Now turn argon gas on and wait a few minutes for the pressure to stabilize.

7. Make sure the timer on the machine is on 90 sec.

8. Press test button to see how much is the current that current indicator is

showing (current should be in a range between 10 to 15 mA).

9. After you see the right current by testing, you can start sputtering by pressing

start button.

10. Sputtering stops after 90 seconds, wait at least 30 seconds and repeat the process

if you need to (better to wait longer than that).
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11. Close argon gas.

12. Turn off the rough pump.

13. Turn off the sputtering machine.

14. Push up small knob on the top cap slowly to bring the pressure inside machine

back to the room pressure.

15. Open the cap and take your sample out.
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Appendix C

Operation for Oxford ion gun

In this section the operation of our ion milling machine is discussed:

1. Before you start make sure everything is at the off position and all the lid clamps

are closed.

2. Put the sample inside the ion milling chamber at the marked position by match-

ing the marker positions at both ends for mounting the gun head.

3. Turn the rough pump on.

4. Open the chamber rough valve slowly. It is safe to open the clamps when you

see the pressure of chamber is less than 100 torr.

5. Open the green knob on the ion gun, when you see pressure is stabilized.

6. Close the chamber rough and gently open the turbo rough.

7. Switch the vacuum gauge to the turbo position and monitor it. Wait for it to

drop under 20 mtorr.

8. Turn on the turbo pump. When you push the switch to "ON" and it goes back

to the middle position. But you should see the yellow LED is on. After about

2 minutes, the green LED will be lit. This means the turbo pump is at its full

speed.

9. Check the pressure of the chamber by switching back the vacuum gauge to

chamber position to make sure it is still low.
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10. Let it pump for about 20 minutes.

11. Slowly and carefully open high vacuum valve, while monitoring the turbo pres-

sure on vacuum gauge. The pressure should not go over 100 mtorr. Wait for

the pressure to stabilize.

12. Turn on cold cathode gauge and then press on and then number 1. This gauge

shows the pressure of chamber which is usually in the order of 10−5 torr.

13. Set the flow control valve to be 6.1.

14. Make sure the low pressure gauge on argon gas tank is 10 psi.

15. Open the argon gas cylinder and switch the manifold very slowly making sure

the turbo pressure does not go up. Wait for pressure to stabilize.

16. Turn on the power of the ion gun.

17. Adjust the beam current to be 100 µA with the beam energy less than 2.5 KeV .

18. Etching time depends on the desired thickness that we want and can take a few

hours. It is better to take the sample after a few hours out and at some case it

is needed to redo the lithography process.

19. When the ion milling is done, turn off the ion gun power supply. Close the gas

cylinder and the flow valve.

20. Close the high vacuum valve.

21. Turn off turbo pump.

22. Do not turn off the rough pump at least for half an hour. Because the turbo

cooling fan can keep the turbo bearing cool as the turbo spins down.

23. Close the turbo rough.
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24. Turn off rough pump.

25. Open the vent valve connected to chamber gradually. You should hear the

hissing sound to the point that it gets to the atmospheric pressure.

26. Now system is shut down and you can take your sample out.
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