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ABSTRACT

The Poincaré series of a local ring is the generating function of the Betti numbers
for the residue field. The question of when this series represents a rational function
is a classical problem in commutative algebra. Golod rings were introduced by Golod
in 1962 and are one example of a class of rings that have rational Poincaré series.
The idea was generalized to Golod homomorphisms by Levin in 1975.

In this paper we prove two homomorphisms are Golod. The first is a class of ideals
such that the natural projection to the quotient ring is a Golod homomorphism.
The second deals with Golod homomorphisms between certain fiber products. To
prove the second we give a construction for a resolution of a module over a fiber

product.
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CHAPTER 1

INTRODUCTION

Let R be a local ring, m its maximal ideal, and k = R/m its residue field. Then we
can define the Poincaré series of R
PE®) =" dimy Torl (k, k)t".
n=0
The study of this series is a classical problem in commutative algebra. Since R is
local the residue field can be resolved by free R-modules. The minimal resolution of

k has the form

0 RPo RA o RPn

where §, is the nth Betti number. It follows that dimy Tor’(k,k) = B,. So the
Poincaré series of R is the generating function of the sequence of Betti numbers.

Of particular interest is the question of when this series equals a rational function
in ¢.

For example, if R = k[z]/(2?), then Tor®(k,k) = 1 for all n. So
R — n 1
Pe(t) = Zt = )
n=0 L=t

a rational function.

Both Kaplansky and Serre asked whether the Poincaré series of a local ring is
always a rational function. Kaplansky did not publish the question. Serre posed the
question in [15, pg. 118].

There is some evidence that this may be the case as several familiar rings have

rational Poincaré series. For example:



1. Let R is a regular local ring of Krull dimension n. The residue field k of R is

resolved by the Koszul Complex. In this case

Bit) = (1+ )™

2. Let R be a regular local ring of Krull dimension n and fi,...,f. € R a
regular sequence. Then Tate shows in [16] that the complete intersection

S =R/(f1,--.,[.) has a rational Poincaré series and that

(L+16)"

PS(t) = ey

However the answer to the question of Kaplansky and Serre was shown to be no by

David Anick [1] in 1982. Ancik’s counterexample was the ring

k[xla s ,ZE5]

2 2 2 2
(z1, 23, 3, 15, 129, T4T5, T103 + T3Ty + T275)
where k is a field of characteristic not equal to two.

The examples of rings with rational and irrational Poincaré series do not give

much insight into which of the following should be expected:

1. Most rings have rational Poincaré series. Rings with irrational Poincaré series

are rare.

2. While some special classes of rings have rational Poincaré series, most rings

have irrational Poincaré series.
3. Rational and irrational Poincaré series both commonly occur.

This is difficult to determine since the Poincaré series of a ring is not easily computable
unless additional hypothesis about the ring are made.
It was shown by Serre that if S is a regular local ring with the same residue field

as R and S — R is a surjective ring homomorphism then the Poincaré series of R is



term-wise bounded above by the series

1—t(Pg(t)—1) (1.1)
See [2, 3.3.2] for a proof.

A ring that meets this upper-bound is called a Golod ring, named for Evgenii
Golod who first examined such rings in [4]. This upper-bound is a rational function
in ¢ since both PZ(t) and P5(t) are polynomials. So Golod rings are another example
of rings with rational Poincaré series. Such rings exhibit maximal growth of Betti
numbers.

The Golod property can be generalized in two ways:

1. The Poincaré series can be generalized to any R-module M. When S is a
regular local ring with the same residue field as R and S — R is a surjective
ring homomorphism an upper-bound similar to (1.1) for Pf(¢) exists. This

allows us to define a Golod module.

2. The upper-bound in (1.1) still holds when the regular condition is removed from

S.

In Chapter 2 notation is established and key definitions are given. These include
algebra retracts, fiber products, Golod homomorphisms, and large homomorphisms.
Several preliminary results are also given.

In Chapter 3 a question asked by Gupta in [5] is answered. Here the ideal

[(s,t,u,v) = (lCl,...,l'm)s + (‘flv"'axm)u(yl?"'?yn)v_'_ (yh'"ayn)t

of k[z1,...,Zm, Y1, ..., Ys] is considered. Using the results of [9] we show that the
ring
k[xh' <oy Ty Y1y - - 7yn]
I(s,t,u,v)

is Golod when 1l <u<sand 1 <wv <.



In Chapter 4 we turn our attention to the fiber product, S xz T, of S and T over

R that fits the commutative diagram
SxpT —= T
S
S —* R
In this chapter we produce a minimal free resolution for an S-module M over S xgT
using the minimal free resolutions of R and M as S-modules and R as a T-module.
The definition of the resolution was inspired by the work of Moore in [13], who
produced a resolution in the case that R = k, the shared residue field of S and T'. To
produce a resolution in the case that R is more general the hypothesis that R is an
algebra retract of S and of T is added.
In Chapter 5 we use the structure of the resolution given in Chapter 4 to find the
following equality of the Poincaré series of an S-module M over the fiber product

SXRT

1 P3(t) 1 1
Pi(t) — i) (PE@) TR 1) |
This equality is not original to this paper. It was first shown by Dress and Krédmer
in [3] in the case that R = M = k. Herzog showed the equality in [6] using the
assumption that the maps pg and pr are equivalent representations of R. That is,

there exists maps ¢g : S — T and ¢ : T'— S with the property that the diagram

T

y l
pr
s

S —— R

commutes.

Neither of these previous works produced a resolution that reflected the equality.



CHAPTER 2

NOTATION, DEFINITIONS AND PRELIMINARIES

In this chapter we establish notation and definitions that will be used throughout the
remainder of the paper. We also record a few results that will be used later.

We use (R, m, k) for a local ring R with unique maximal ideal m and residue field
k= R/m.

All rings are assumed to be Noetherian and all modules are assumed to be finitely
generated.

If F(t) =Y a,t™ and G(t) = Y b,t" are power series in ¢ with b, < a, for all n,

then we say that F(t) is term-wise bounded above by F'(t) and write
G(t) = F(t).

Observation 2.0.1. Let F(t) and G(t) be power series in t with positive coefficients
and G(t) = F(t). If 1/F(t) and 1/G(t) exist, then 1/F(t) < 1/G(t).

Proof. Let

F(t) =) ant", G(t) =D byt",
n=0 n=0

1 > 1 >
_— = Cntn7 aIld — dntn
o) - 2 O
We will show that ¢, < d, for all n. Note that since 1/F(t) and 1/G(t) exist ag and

by are invertible and hence non-zero.

We proceed by induction on n. For n = 0 note that

1 1
co=— and dy=—.
Qo 0



Since G(t) = F(t), by < ag. So ¢o < dj.
Assume that ¢ < di for £k < n. Now note that

1 o0

e =— (—ag)Cn_r
ao =
and
1 [oe)
Ao = = - (=b)du-.
0 k=1

Since ap > by, —ap < —b, and 1/ay < 1/bg. By hypothesis ¢, < d,,_y for k =

1,...,n. It follows that ¢, < d,. O]

2.1 ALGEBRA RETRACTS

Definition 2.1.1. Let A and T be commutative rings and p : A — T a ring homo-
morphism. The ring T is an algebra retract of A if there is a ring homomorphism

1: T — A with pt = idr. The ring homomorphism i is call a section of p.

The homomorphism ¢ in the above definition need not be unique. We will call
any homomorphism ¢ that satisfies the condition pi = idy a section of p.
The datum of an algebra retract are: The rings 7" and A, a surjective homomor-

phism p: A — T, and at least one section ¢ : T" — A. We write
TH AL T

when T is an algebra retract of A and ¢ is a section of p.
Note that the condition that pi = idy forces 7 to be injective and p to be surjective.
We can consider A to be an T" module via the map i. So t-a = i(t)a. Note that the

maps p and ¢ are T'—module homomorphisms:

p(t - a) = p(i(t)a) = p(i(t))p(a) = tp(a) = t - p(a)

and



Also p is an A—module homomorphism:

!/

pla’ - a) = p(d'a) = p(a')p(a) = ' - p(a).

However i is not an A—module homomorphism:

i(a-t) = i(p(a)t) = i(p(a))i(t) = i(p(a)) - i(t).

In general i(p(a))i(t) # ai(t). For example if ¢t = 17 and a € ker p non-zero. Then
i(17) = 14 since ¢ is a ring homomorphism and i(p(a)) = 04. Then i(p(a))i(1ly) =0

but ai(17) = a # 04. There is the exact sequence of T' or A—modules:

0 T A ker mp +—— 0.

p

So T = A/kermr as T or A—modules.

2.2 FIBER ProDUCTS

Definition 2.2.1. Suppose R,S and T are rings and ps : S — R and pr : T — R
are ring homomorphisms. The fiber product over R of S and T, denoted S xXg T, is
the ring

SxrT ={(s,t) € SxT:pg(s) =pr(t) € R}.

There is a ring homomorphism 7g : S xg T — S given by m5((s,t)) = s and a
ring homomorphism 77 : S xg T'— R given by 7r((s,t)) =t. We will call the maps
mg and 7w the projection homomorphisms.

Note that the diagram
S XR T L T

lﬂ's lpT (2.1)
R

S ps

comimutes.



Example 2.2.1. Let (R,m,k) be a local ring. Define S = R[xy,...,xp] and T =
Rlyr, ... yn]. Let I C (x1,...,2m) be an ideal of S and J C (y1,...,ys) be an ideal

of T. Then
Rz, . Ty Yty -+ Yn)
IT+J+ @, 2m) (Y5 Un)

S " T
7%y
We record a few important details about S xg T, S, T and R.

Observation 2.2.2. The kernel of mr is {(s,0) : s € ker ps} and the kernel of mg is

{(0,t) : t € kerpr}.

Proof. Clearly if (s,t) € {(s,0) : s € kerpg} then (s,t) € ker 7.

On the other hand suppose that (s,t) € kermp. Then 7p((s,t)) =t = 0. So
(s,t) = (s,0). Also, since (s,t) € {(s,0) : s € kerpg}. So kermp = {(5,0) : s €
ker ps}.

Similarly kermg = {(0,¢) : t € ker pr} O

Observation 2.2.3. The ideals ker mp and kerws of A satisfy (ker mr)(kermg) =

ker mr Nker wg = 0.

Proof. Since (ker ) (ker mg) C ker mpNker g it suffices to show that ker mpNker g =
0. Let (s,t) € kermp Nkermg. Then (s,t) € kermg. So, by (2.2.2), (s,t) = (0,t) for
t € ker pp. Similarly, since (s,t) € ker mp, (s,t) = (s,0) for s € ker pg. It follows that
(s,t) = (0,0). 0

Observation 2.2.4. If pg is surjective, then so is 7.

Proof. Let t € T. Since pg is surjective, there exists an s € S with pg(s) = pr(t). So

(s,t) € S xgT and 7p((s,t)) =t. O

Similarly, if pr is surjective then so is 7g.

From this point forward we will assume that both pg and pr are surjective.



Observation 2.2.5. If S, T, and R are local rings with mazimal ideals mg, my, and

mpg respectively, then S X g T is local with maximal ideal
Mgy, = {(8,t) € mg X mr : ps(s) = pr(t) € R}.
Proof. First note that
Mgy ,r = Tg ' (Mg) = 7 (my).

Since mg is a maximal ideal, mg, .7 is also.

Now we will show that mgy 7 is the unique maximal ideal. Suppose that (s,t) €
S xpT and (s,t) ¢ mgy 7. We will show that (s,t) is a unit. Since (s,t) ¢ mgy .7,
either s ¢ mg or t ¢ mp. Assume with out loss of generality that s ¢ mg. Then
ps(s) € mg. Since pr(t) = ps(s), t ¢ mp. Since both S and T are local rings s and ¢
are invertible. Tt follows that (s,t) is invertible.

Thus S xr T is a local ring with mg, ,r its maximal ideal. ]
Definition 2.2.6. A fiber product of the form
AXpR
is called a trivial fiber product.
Note that the trivial fiber product A X R is isomorphic to A.

Observation 2.2.7. Suppose that A = S xXg T is a fiber product and either of the

projection maps is an isomorphism. Then the fiber product is trivial.

Proof. Without loss of generality we assume that 7g : A — S is an isomorphism.
Then, by (2.2.2), 0 = kermg = {(0,¢) : t € kerpr}. So kerpr = 0. Since pp is

surjective by assumption, 7' = R. Then
A=S XR T=A Xr T

a trivial fiber product. O



The next theorem is useful for determining which rings can be realized as a non-

trivial fiber product.

Theorem 2.2.8. Let A be a local ring. One can realize A as a fiber product if and
only if there exists two non-zero ideals I and J of A with I N J = 0. In this case
i,
v J
Proof. Suppose that A is a non-trivial fiber product fiber product. So

AgSXRT

and there are ring homomorphisms 7g : A — S and ny : A — T. Then ker mg and
ker m are ideals of A. Neither of these ideals is zero, since otherwise S x g T would
be a trivial fiber product by (2.2.7). By (2.2.3), ker mg Nker 7y = 0.

On the other hand, suppose that I and J are two non-zero ideals with I N J = 0.
Let

S=—, T=—, and R=-——.

A A A
1
We will show that A = S xzrT. For a € A, let a, a, and a denote the image of a in

S, T, and R, respectively. Then we define the map 0: A — S xg T by

This map is well-defined since the projection from A to R can be factored through
the projection to S or T.

If a € kerd, then a = 0. So a € I. Similarly, a € J. Thena € INJ =10. So 0 is
injective.

To see that 0 is surjective let (ay,a3) € S xgT. Then d; = dz in R. So a1 — ag €
I+ J. Leta;—as=1i+jforieland j€J. Let a=a; —i=as+j. Then

—

0(a) = (a1 —1i,a9 + j) = (a1, dz).

Thus 6 is surjective and A = S xz T. n

10



2.2.9 (Fiber product of modules). Let M be an S-module, N a T-module, and P an
R-module. We can consider P as an S or T-module via ps or pr, respectively. Suppose
that pw : M — P and v : N — P are surjective S and T-module homomorphisms,

respectively. Then we define the A—module
M xp N={(m,n) € M x N :pu(m)=rv(n) e P}.
The A action on M xp N is given by
a- (m,n) = (ws(a) - m, 7r(a) - n).

The above is an element of M Xp N since

p(ms(a) - m) = ps(rs(a)) - u(m).

and
v(rr(a) - n) = pr(rr(a)) - v(n).

Further pr(mr(a)) = ps(ms(a)), since diagram (2.1) commutes, and pu(m) = v(n),

since (m,n) € M xp N, so that

prs(a) -m) = v(mr(a) - n).

2.2.10 ( Fiber Product of Retracts). Suppose that R Lo P R oand R 2 5 5 R
are algebra retracts.

Then S xr T is a T-algebra via the map pr : T — S xg T given by pp(t) =
(is(pr(t)),t). This is a well-defined map to S Xr T since pg o is = idg so that
ps(is(pr(t))) = pr(t). Further, T is an algebra retract of S xg T and wppr = idr
where mp : S Xxg T — T is the natural projection to T'.

Similarly S xg T is a S-algebra and S is an algebra retract of S xg T.

11



2.3 POINCARE SERIES AND GOLOD MODULES.

Definition 2.3.1. If (R, m, k) is a local ring and M is an R-module, then the Poincaré
series of M s

Pii(t) =" dimy Tor (M, k)t".

n=0
Proposition 2.3.2. Let ¢ : T'— R be a surjective ring homomorphism and M an
R-module. Then
PR()PL (1) < PE(t)PL (1),

See [2, 3.3.3] for proof.

Observation 2.3.3. Suppose that (R, m, k) is a local ring and

0 M’ M M" +——0
is a split exact sequence. Then

Proof. Since the sequence is split exact M = M’ @ M"”. Then claim follows from the

definition of the Poincaré series and the fact that Tor commutes with direct sums. [

If (S,mg,k) is a regular local ring and (R, mg, k) is a local ring with ¢ : S — R

a surjective ring homomorphisms, then Serre showed that

PE(t) = (2.2)
Definition 2.3.4. The ring R is Golod if equality holds in (2.2).

Golod rings have maximal growth of Betti numbers and their Poincaré series is
a rational function. Golod characterized rings that meet this upper bound in [4] by

introducing higher homology operations.

12



Definition 2.3.5 (Trivial Massey Operation). Let A be a differentially graded algebra
with Hy(A) = k. We say that A admits a trivial Massey operation if for some k-basis

b = {hy}xen of H>1(A) there exists a function p: U2, b — A such that
p(hy) =2y € Z(A) with cls(zy) = hy

and

-1
a,u (hh,...,h)\p) :pz:/l (h,\l,...,h,\j),u (h)\].+1,...,h)\p)
j=1

where a = (—1)38% g for a € A.

Golod showed that if the Koszul complex of a local ring (R, mg, k) admits a trivial
Massey operation then the ring R is Golod.

The upper bound given in (2.2) still holds when the condition that S be regular
is removed. Levin generalized the Golod definition in [11]. In this paper Levin noted
that the Golod property really depends on the homomorphisms between S and R,

not on S and R themselves.

Definition 2.3.6 (Golod Homomorphisms). Suppose that ¢ : S — R is a surjective
ring homomorphism of local rings. The homomorphism o is called Golod it

B (t)

This property can be further generalized by replacing the residue field with any

finitely generated R—module.

Definition 2.3.7 (¢-Golod Modules). Suppose that ¢ : S — R is a surjective ring
homomorphism of local rings. If M is an R-module, then it can be considered as a
S-module via ¢. M is called p-Golod R-module when

Rip _ Py(t)
B = T -

Proposition 2.3.8. Let ¢ : T'— R be a surjective ring homomorphism and M an

R-module. If M is p-Golod, then ¢ is a Golod homomorphism.

13



Proof. M is ¢-Golod. So by definition the equality

Pi(t)
1—t(PE(t)—1)

Pit) =

holds. Also

Pi()F (1) = Bl (t) Py (1)
by (2.3.2). Combining the above and the upper-bound for Pf(¢) given by Serre we
get

Ph(®)
T H(PE®H — 1)

e (1)

PO = PROP0) < BEOP0) = P

Since the outside terms are equal, it follows that

P () Py (1) = Py (t)7— t(jzcg((tt)>

_1)‘

Dividing both sides by P (t) shows that ¢ is a Golod homomorphism. O

Let (R, m,k) be a local ring and M an R-module. Let R denote the completion
of R. Since R is a flat R-module

PE(t) = PL(t).

By the Cohen Structure Theorem there is a regular local ring 7" and an ideal I C T’
with R = T/I. We call the ring R Golod if 7 is Golod, where 7 is the quotient map
from T to R. An R-module M is called Golod if M is m-Golod.

Example 2.3.1. The following are all examples of Golod homomorphisms.

1. If (R,m,k) is a reqular local ring and f € m? is a reqular element, then the

natural quotient map

7T:R—>£

(f)
is a Golod homomorphism. See [2, 5.1].

14



2. If (R,m,k) is a regular local ring and I an ideal, then it is shown in [8] that

the natural quotient map

is a Golod homomorphisms for s > 0.

3. The previous example can be improved when R is a polynomial ring over a field

and I is a monomial ideal. In this case 7 is a Golod homomorphisms for s > 2
[9]-

4. Let (S,mg. k), (S, mg, k), (T, mp, k), and (T",mq:, k) be local rings. If ¢ : S —
S"and v : T — T are surjective homomorphisms, then there is a surjective

homomorphism

QISXkT%S/XkT/

induced by the universial property for fiber products. If ¢ and ¢ are Golod

homomorphisms, then 0 is as well. See [13, 4.2.2]
The following example illustrates an example of a non-Golod homomorphism.

Example 2.3.2. Let (R,m,k) be a regular local ring of dimension n, fi,...,f. a

reqular sequence in R and

R
S

If ¢ > 1, then the natural quotient map ©: R — S is not a Golod homomorphism

Proof. The Poincaré series of S is

(L+16)"

PS(t) = ey

The Poincaré series for S is given in [16]. On the other hand the upper bound given

by Serre is
BE(t) _ (1+0)"
1—t(PE@t)—1) 1—t((1+t)e—1)

Since ¢ > 1 the denominators are different. So 7 is not a Golod homomorphism. []

15



The last example leads to the following observation about Golod homomorphisms.

Observation 2.3.9. The composition of Golod homomorphisms is not necessarily

Golod.

Proof. Let k be a field and R = k[x,y]. Then

W'R%iandW'R%R
. (z2) 22 T (2292)

are Golod homomorphisms by (2.3.1). However their composition

is not a Golod homomorphisms by (2.3.2). O

2.4 LARGE HOMOMORPHISMS

Levin introduced the idea of large homomorphisms in [12].

Definition 2.4.1. Let (R, mg, k) and (S,mg, k) be local rings. The surjective ring
homomorphism ¢ : R — S is large if the induced map ¢, : Tor™(k, k) — Tor® (k, k)

18 surjective.

The following theorem gives several equivalent conditions for a surjective ring

homomorphism to be large. It was proven by Levin in [12].

Theorem ([12, 1.1]). Let (R,mg,k) and (S, mg, k) be local rings and ¢ : R — S a

local surjective ring homomorphism. Then the following are equivalent
1. The homomorphism ¢ is large.

2. For any finitely generated S-module M, considered as an R-module via o,

Pyi(t) = Py (t) P5i(t).

16



. The homomorphism @, : Tor™(S, k) — Tor®(k,k) induced by the canonical

projection p : S — k is injective.

. For any finitely generated S-module M, regarded as an R-module via ¢, the

induced homomorphisms Tor™ (M, k) — Tor® (M, k) are surjective.

. There is an exact sequence of algebras

k «—— Tor(k,k) «—— Tor’(k,k) «—— Tor®(S, k) «—— k.

Example 2.4.1. The following are large homomorphisms

. Let (R,m,k) be a local ring. The natural projection R — k is a large homo-

morphism.
. Let (R,m,k) be a local ring. If v € m/m?, then R — R/(x) is large when

a) x is a non zero-divisor,

b) v € (0:m).

. Let (S,mg,k) and (T,mr, k) be local rings. The projections S xx T — S and

Sxy — T are large homomorphisms [3].

The following was proven by Herzog in [6, Theorem 1].

Proposition 2.4.2. Suppose that T L AL T isan algebra retract. The homomor-

phism p is large.

This proposition will play an important role in chapter 5 where we consider the

Poincaré series of modules over the fiber product S xz T and R is an algebra retract

of both S and T
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2.5 MODULE HOMOMORPHISMS

Here we record a few results about module homomorphisms.

Theorem 2.5.1. Let R be a commutative Noetherian ring and M be a finitely gen-
erated R—module. If f : M — M is a surjective R—module homomorphism, then it

is an isomorphism.

Proof. Since R is Noetherian and M is finitely generated, M is a Noetherian module.

Then we have the ascending chain of submodules of M
kerfgkeerlerf?’g

which must stabilize. So there is some n with ker f* = ker fV for n < N. Now let,
x € ker f. Since f is surjective and the composition of surjective maps is surjective,
f™ is surjective. So there exists some y with z = f"(y). Then 0 = f(z) = f""(y).
So y € ker f*1 = ker f. Then x = f"(y) = 0. This shows that f is injective. Since

f is surjective by assumption, f is an isomorphism. m

Corollary 2.5.2. Let R be a commutative Noetherian ring and M and N be a finitely
generated R—modules. If f : M — N and g : N — M are surjective R—module

homomorphisms, then both are isomorphisms.

Proof. The maps gf : M — M is a surjection. So, by (2.5.1) ¢gf is an isomorphism. If
x € ker f, then gf(x) = g(f(x)) =0. So x € kergf = 0, since gf is an isomorphism.
Then ker f = 0, showing that f is injective. So f is an isomorphism. Similarly, g is

an isomorphism. O
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CHAPTER 3

AN ANSWER TO A QUESTION OF GUPTA

Here we let k be a field of any characteristic and R = k[x1,. .., T, Y1, - - - Yn)-
In [5] the author poses the following question:

Let
I(s,t,u,v) = (21, ., 2m)* + (@1, 20) (Y1, Yn) + (Y1, Un)' C R

[5, Remark 5.2] For which values of (s,t,u,v) € N*is R/I(s,t,u,v) Golod?

In [5] the author showed that R/I(s,t,u,v) is Golod whent =2,v =1 and u < s.

Theorem 3.0.1. The ring R/I(s,t,u,v) is Golod if and only if s = 1,t = 1 or

1<u<sandl <wv<t.

The proof of (3.0.1) uses results established in [9]. The following definitions will
be needed.

The authors in [9] define for the polynomial ring k[xy,. .., x,]

FO,...,0,zm .. xn) — (O, 0, Zp1y oy )
T, '

d"(f) =

Note that d"(f + g) = d"(f) + d"(g) for f,g € klx1,...,z,]. Also note that for a

monomial © we have

u

ol if r is the smallest integer such that x, divides u, and

d"(u) =
0, otherwise.

If I =(f1,...fm) C k[z1,...,2,] is an ideal, then d(I) is the ideal generated by the

elements d"(f;) for r = 1,...,n and ¢ = 1,...,m. The operator d" depends on the

19



ordering of the variables. If ¢ is a permutation, then define

dg(f) = O'(dr(f(xa—l(l), .. .1}0—1(”)))).

fI=(fi,...fm) Ckl[z1,...,2,] is an ideal, then d,(I) is the ideal generated by the
elements d.(f;) forr=1,...,nandi=1,...,m.

We make use of the following theorem:

Theorem ([9, 2.3]). Let I C klz1,...,x,] be a proper ideal with (d,(I))* C I for

some permutation o. Then k[xy,...,x,]/1 is a Golod ring.

Proof of 3.0.1. First consider the case that 1 < s,t and s < u or t < v then
I(s,t,u,0) = (21,0, T0)" + (Y1, - )"

The ring k[x1,. .., Tm, Y1, .-, Yn]/I(s,t,u,v) is a retract of k[z1,11]/(x5,yt). The
later ring is not Golod (see (2.3.2)). Then I(s,t,u,v) is not Golod by [5, 4.2].
Henceforth assume that v < s and v < t.

In the case that s =1

k t=1
A field is a regular ring and the identity map is obviously Golod. Then ring

k[yla s 7ym]
<y17 s 7ym>t

is Golod by [9, 3.1].
The case that t = 1 is similar.
Now consider the case that 1 < u < s and 1 < v < t. Order the variables by

L1,y Ty Y1, - - - Yn. Then the following hold:

d((z1,...,2m)°) = (21, ..., 2,)5 ",
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d((yi, ... ,yn)t) = (y1,... ,yn)tfl, and

(@1, o) (W1, Yn)") = (@1, )" (- 0)"

Proof of (1). If xf} ... x* is a generator of (z1,...,2y,)° with i, < iy < --- <} and

ey positive, then

e1—1 ek

.o, it j =1y, and

di (x?l » .x?k) —

i1 ik
0, otherwise.

In either case d’ (xfll o xf:) € (T1,...,xm) L.
On the other hand if z ... 27" is a generator of (x1,. .. T )57 with 4y < -+ <y,
then

11 e1+1 e\ __ ..e1 €k
d (xl-l xzk) =Ty T

Proof of (2). The equality is established in a similar way as (1).

Proof of (3). If i} .. xf:yfll . .y]ff is a generator of (z1,...,2,)"(y1,...,yn)" With

1 <o <dg, J1 <---<7;and e positive, then

e1—1 ek, J1 Jooo e s
Tty ey, if g =14, and

0, otherwise.
. ' el er, f1 fe u—1 v
In either case d (% TRy .ij> € (@1, oy )" Y1, -, Yn)"-
On the other hand if z} .. xf}’:yjfll . y]f; is a generator of (z1,...,20m)" H(y1, ... Yn)"

with 41 < --- < and j; < --- < jp then

i1 (.e1tl ek, f1 fe) — e ek, J1 Je
d (xil XY Y, ) =TT Y,
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The three assertions have been established; it follows that

d([(s,t,u,v)) = (xla s 7$m)571 + (1'17 s 7$m>U71(y17 s 7yn)v + (yh s 7yn>t71

and

(d(I(s,t,u,0)))° = (21, Z) 2+ (21, Z) T 2 (1, )
+ (21, ... ,xm)s_l(yl, o ,yn)t_l + (21, ... ,xm)Qu_g(yl, o ,yn)zv

+ (xly s axM)U71(yl> s 7yn)t+v71 + (yb s 7yn)2t72'

So d(I(s,t,u,v))2 C I when 1 < w. Thus, by [9, 2.3], I(s,t,u,v) is Golod.

If u=1and 1 < v, then d, (I(s,t,u,v))2 C I(s,t,u,v) where o is the per-
mutation that gives the variables the order yi,...,yn, x1,...,%y,. Thus, by [9, 2.3],
R/I(s,t,u,v) is Golod.

Finally when v = v = 1, then we note that the quotient ring is isomorphic to the

fiber product over k of Golod Rings.

Elxy, .. Ty Y1y Un) o ElT1, o T " Elyi, -\ Yn]

I(s,t,1,1) T (@) Yyt

Then I(s,t,1,1) is Golod by [10, 4.1].
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CHAPTER 4

RESOLUTIONS OVER FIBER PRODUCTS

4.1 (CONSTRUCTION OF RESOLUTION

4.1.1. Let (R, mpg, k), (S, mg, k) and (T,mp,k) be local commutative rings with sur-
jective ring homomorphisms ps : S — R and pr : T — R. Define A = S xgT
and let mg : A — S and 7 : A — T be the projection homomorphisms. Suppose
further that R 15 8 2% Rand RS T 25 R are algebra retracts. Then, by (2.2.10),

SES AL S and TS A TS T are algebra retracts. The diagram

(4.1)

3
9}
%
U2 S
=
"

3
~
S
H
o AN
S~

commutes.

Let M be an S-module. We consider M to be an A-module via g : A — S.

Our goal is to resolve M as an A-module.

Let B’ be a minimal resolution of R as a T-module. Let pr be the augmentation
from B’ to R. Also let C' and D’ be minimal resolutions of R and M as S-modules,
respectively. Let pg be the augmentation from C’' to R. Let B=B' ®7A,C =C" ®5A
and D =D'®4S. Since __ ®rAand __ ®g A are functors, B,C and D are complexes
of free A-modules.

Since B’ is minimal, Im 05" C mypB/,_,. It follows that Im 95 C m4B,_;. Similarly,

Im (’35 Cc myCy_; and Im QiD CmyDg_;.
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Observation 4.1.2. There are isomorphisms of A-modules:
1. Tm 9P > ker 7rs.
2. ITm &Y = ker 7.
Proof. First note that Im 9% = ker pp. Then
Imd% = 98(B, @r A) = 0% (B,) @1 A = ker pr @1 A = (ker pr) A.

The last isomorphisms is as A-modules given by k ® a — pur(k)a.
We will show that (kerpr)A = kermg = {(0,t)|t € kerpr}. If k € kerpr and

(s,t) € A, then
k(s t) = (ms(pr(k))s, o (pr (k)t) = (is(pr(k))s, kt) = (0, kt) € ker 7s.
On the other hand, if (0, k) € ker g then k € ker pr and
(0,k) = k(1,1) € (kerpr)A.
So Im 9% = (ker pr)A = ker mg. Similarly Im 0§ = ker 7y O

We now define the double complex G. We will show in (4.2.1) that the total
complex of G is a minimal resolution of M as an A-module.
Let G41 = Cy4. For £ even define

d—0+2

Gar= P By @4 Ga—ar i
d'=1
and for ¢ > 1 odd define
d—t+2
Gao= P Co ®aGa—a 1.
d'=1
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Consider the picture

0 Gog «— G33 «5— Gu3 «5— Gs3 +— .
8-3'5 84,3 85-3
%4 o o1 o1
4.2
G0 Gio <5 Gop «— G3p +— Gyp +—— (42)
93 4 03 5 04 9
2 03 5 93 5 955
0 Gog «—— Gu11 +— Go1 +—— G31 +— .
81 1 62,1 831
0 0 0 0

We describe the horizontal and vertical maps of G.

First define the horizontal maps. Note that G431 = D,4. So define
If 7 is even

\ Bl+(-)"1®) 4,y ifd>2
ad,f‘Bd/®Gd—d/,e =
(_1)d/1 ® ag/id/"eil lf d, ==

If¢>1is odd

. BRl+(-1)"1® 4,y ifd=>2
ad:€|cd/®Gd—d’,Z =

Now we define the vertical maps. If ¢ is even

o8 .1 ifd =
a§7£|Bd’®Gd7d’,é =
0 if d > 1.
If/>1is odd
-1 ifd =1
8§,Z|Cd’®Gd—d’,e =
0 if d > 1.
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Proposition 4.1.3. The picture (4.2) is a double complez.

Proof. The rows are complexes. We proceed by induction on ¢. When ¢ = 1 we show

that
Giap:0 Gop o G ¢ Gag o= G o
011 03 4 03 4 011

is a complex. That is

which is a complex. So G, ; is a complex.
Assume that G, is a complex for £ < ¢. The modules in G, ; depend on whether
¢ is even or odd. We show the case that ¢ is even. Let b ® g € G4, with b € By and

g c Gd—d’,(—l- Ifd > 3, then

Oy (O (b@g)) =0l sy (O5(b) @ g+ (—1)"b® Yy s 1(9))
=05 (950) @ g+ (1) 'O5() ® Iy o1 (9)
+ (=1 BB @) gy1(9)+ (1 0@y 1y (O wia(9))

= 0.

The first summand is zero because B is a complex. The last summand is zero because
G -1 1s a complex by the inductive hypothesis. The middle terms are the same except
with opposite signs. The cases that d’ = 1,2 are similar. The case that ¢ is odd is
similar.

The columns are complexes. We show that dj,,,., 0 d;, = 0. The module
Ga+41,4+1 depends on whether £ is even or odd. We show the case that ¢ is odd. Let
b® g€ G141 With b € By and g € Gyy. Then

d—042

9= > D ac®g

d'=1 ceCy
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for a. € A and g € Gg_ay1. If d > 1, then 93,,,,,(b ® g) = 0 by definition.
Consider d’ = 1. Then

he (051, 1(b@g)) =03, (07 (b)g)

d—0+2
= OB ()2, ( > Y acw gc)

d'=1 ceCy
d—~0+2
:8{3(6) Z Z aél},z(acc®90)

d'=1 ceCy

=07 (b) 3 acdi(c)g.

ceCy

C (ker mp)(ker 7g)

=0.

The reduction on the fourth line occurs because of the definition of 9j,. The con-
tainment on the next to last line is due (4.1.2).

The case that ¢ is even is similar.

The squares commute. We will show that the square

Gart1 5 Gar1om1

85+1,Z+1
22 [2er.
Ga14 e Gaye

d,l

commutes. The module G441 ¢41 depends on whether ¢ is even or odd. We show the

case that £ is odd. Let b®g € Ggy1 041 with b € By and g € Gay1—gy. If d' > 2, then
33,4(3§+1,z+1(bd ®g)) = 33,4(0) =0.
On the other hand
0hoar (01001 (0® 9)) = 0 (F5(D) @ g+ (~1) b @ Iy _arul9)) -

Note that 88/(17) ®g e By_1® Gd-{—l—d’,é and b®6§+1_d,74(g) € By ® Gd—d’,ﬁ- Ifd > 3,

then the vertical map sends both to zero since d’,d' —1 > 2. If ' = 2, then
e (050) ® 9+ (1) 0@ g i(9) = 0 (95(1) 9 =0
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since (88)2 = 0.
If d =1, then

Ol 0(04 11,41 (ba ® 9)) = 0l (07 (b)g) = O ()} (9).-
On the other hand
41 (@?ﬂ,zﬂ(b ® 9)) = g1 (‘b ® 8575(9)) = —07 (0)35,(9)-

So the squares commute. The case that ¢ is even is similar.

4.2 THE TOTAL COMPLEX OF G IS A MINIMAL RESOLUTION

Theorem 4.2.1. Given the hypothesis of (4.1.1), the total complex of the double

complex G is a minimal resolution of M as an A-module.

Before proving (4.2.1) we consider the complex

O ker 818 B Bs (4 3)
(ker 7)) B1 553 (ker ) B2 532’3’ (ker 7r) B3 ot :

First note that 02 ((kernp)B;) = kermp0%(B;) = (kermr) (kermg) = 0. So
(ker m7)B; C ker 0. Since B is a complex, Im95 C kerdP. So (4.3) is induced

on quotients by the complex

B
0 +—— ker o 5 P
2 3

Lemma 4.2.2. The complex (4.3) is exact.

Proof. First note that we have (ker 77)B; C ker 9% C B;. Then we have the inclusion

of modules
ker OF c B,
(ker ) By — (kermp) By
Note that
GernB o B
keroF " ker 98
(Formr) B
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So we have a short exact sequence.

0 B B; ker 0P
ker 98 T (ker 1) B1 i (ker m7)B1

Now consider the short exact sequence of complexes

0 0 0
£:0 ker 8{3 Bo Bs
(ker 7)) By 5B (ker 1) B2 5B (ker m1)Bs3
7 id id
F-0 By By Bs
(ker 77) By 5B (ker w7) B2 5B (ker m1)Bs3
™
. By
H:0 b 0 0
0.

This leads us to the long exact sequence on homology:

+—— H, () «—— H,(H) +—— H,(F) +——

—— H, () «— H,(H) «—— ....

Clearly
By _
1y n=0
H, (H) = ker OF
0 n#0
Note that
B
— __~B, T=pB.
(ker 71) By, @4 "

Then the following diagram commutes:

anl Bn
(ker 7)) Bpn—1 571? (ker ) Bn
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So F is isomorphic to

! / !
0 Bl 855/ B2 agl B3
Then
B, - n=20
Hn (F) — ker 818
0 n # 0.
If n # 0, then

H,(F) +— H,(&) +— H,11(H)
is exact and the left and right modules are zero. So H,(£) = 0 for n # 0. For n =0,
the sequence

0 «—— Ho(H) «—— Ho(F) «—— Ho(€) +— 0

is exact, where 7 is the map induced on homology by 7. Note that 7 is surjective.
Since B, is a free T-module for n = 0, 1, the functor B/, ® __ is exact. Applying

this functor to the the exact sequence

0 T A - ker m1p +—— 0.

T

we get

0 B! B,

/
O B @r kermp «+—— 0

B;,®ri
where xp, (b ® a) = 7p(a)b. If k € ker 0%, then yp, (k) € ker 8% since

BO%Bl

or
JXBO J/XBI

/ !
BO <8T Bl
1

commutes. Let . o5 be the restriction of xp, to ker 9%. Then

0« ker 0% «—— ker 9% +—— ker Xierop ¢ 0

Xker 6?
J/l/l lll J/a

0 Bi Bl Bi ®T keI'ﬂ'T +— 0

XBl B;@T’L
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commutes and the rows are exact. The maps ¢} and 4; are the natural inclusion maps.

So they are injective. Then, by the snake lemma, we have:

0 «—— Ho(F) ¢—4— Ho(H) «—— cokera «—— 0

is exact. In particular ¢ is surjective. So we have surjections 7 : Ho(F) — Ho(H)
and ¢ : Ho(H) — Ho(F). By (2.5.2) both maps are isomorphisms. Then Hy(€) =

ker m = 0. Thus £ is exact.

U

Now we proceed with the proof of (4.2.1)

Proof of (4.2.1). To determine the homology of TotG we use the spectral sequence
associated to G filtered by columns. Call this spectral sequence &.

The zero page of £ is G with only the vertical maps. Then £;, = H{(Ga). So we
compute the vertical homology at each spot.

For ¢ =1 we compute the homology of

Gavi2

v
Jad-‘—l,Q

Ga

lasz,l

0.
Clearly ker g, = Gg1. We will show that Im 9y, ,, = (kermg)Gga. Let (0,5)g €
(ker m7)Gq1. Note that Im 9% = ker mg. Then there exists b € By with 92 (b) = (0, 7).
Then b® g € Gd+1,2 and

8}1’“’2(() ®g) = 8{3(17)9 =(0,4)g.
On the other hand if b ® g € G4y12 With b € By and g € G411-41 then either

041120 ® g) =0 ¢ (kermg)Ga,
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or

Ohy12,(b®g) = als(b)g € (kermg)Ga,-

Then
H{(Gayx) = (kcwi?)lGdJ = Gg1®a 5.
If ¢ is even, then we compute the homology of
Gat1,41
la§+1,4+1
Gay
2
Ga—1,-1.
First note that
d—0+2
dG?Z By ®aGa—q g1 C ker 9y,

by definition.

fbrge kerf ®aGg-1,-1, then
94,(b® g) = 8 (b)g = 0.

So

d—0+2
B
kerf ®4Ga-101® P Ba @4 Gaa -1 C kerdy,
d'=2

Since G411 is a free A module, it has a basis G4_1 1. Then {b®g:b € By,g €
Ga—1,0-1} 1s a basis for By ®4 Gg_1-1. Let

d——(+2
( >y ab,gb®g) + Y Yo €kerdy,

gEGd,Lgfl beB1 d'=2
with Yo € By ®4 Gd—d’,[—l Then

d—042
0= 5,z(< > Zab,gb®g>+ > ’Yd')
d'=2

9€Gg_1,0—1 bEBy

= > X a0 (h)g+0

9€Gy_1,0—1 bEBy

= Z (9{3 (Z ab,gb> g.

9€Ga—1,6-1 beBy
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Since Gg_j -1 is a basis,

0? (Z ab7gb) =0.

beB,

So (Spep, angh) € ker OF. Then

d—0+2 d—0+2
( 5 zab,gb®g)+ RTINS (zab,gb)®g+ 5
d'=2

gGGd,Lgfl beB1 gEGd,Lg,l beB1 d'=2
d—~0+2
B
ckery ®4Ga10-1® P Ba @4 Ga_ar 1.
d'=2

Thus
d—042

ker 0y , = (ker 7 ®a Gd—1,£—1) & P Bi ®4CGa-a 1.
d'=2

We will show that Im 93, ,,, = (ker m7)Gqy. Let (s,0)g € (ker m7)Gqy. Note that
Im & = ker rp. Then there exists ¢ € C; with 9¢(c) = (5,0). Then ¢ ® g € Gay1.011
and

Dg1ei1(c®g) = & (c)g = (s,0)g.

On the other hand if c® g € Ggy12 With c € Cy and g € Ggy1_a1 then either
654_172(6 & g) =0¢c (ker 7TT)Gd7g

or

(93“72(0 ®g) = alc(c)g € (ker )Gy

Then

(ker 8 R4 Gd_1yz_1) O BG5S By ©4 Ga—ar g1
(ker WT)Gd,g

ker 9f @4 Gy_1,40-1 d-ti2
= ’ B i G oy T
ker mp (B1 ®4 Ga-1,-1) @ 5?2 @ ©4 Ga-a -1 | ©a

Hé}(gd,*) =

By a similar argument

(ker O ®a G’d_l,g_l) DPBYL Cor @4 Gaoar o
(ker WS)Gd,Z

ker O @4 Ga-1,0-1 d—t+2
- ’ Co @4 Gaars- S.
ker g (Cr ®4 Ga-1,0-1) N 5?2 ¢ B4 Ga-a-1 | B4

Hy(Gax) =
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for ¢ > 1 odd.

Now we will find £2. We take homology at each spot of the complex

0 «—— Hj(Ga.) T HY(Gs4) ST HY(Gys) ¢«— ...
3,3 4,3

51 00— HE(GL*) W Hg(GZ*) % Hg(Gg’*) — ...

0 0 0

where 5fj* is the map in map induced on homology by (9,’}7*.

For ¢ = 1 we have the complex

0<;G0,1®ASTG1,1®AS<5TG2,1®AS<;.... (4.4)
1,1 21

The module G41 = Dy. Then Gy ®4 S = Dg®4 S = D) as S-modules. So (4.4) is
isomorphic to D’ as complexes of S-modules. The homology does not change when

we treat (4.4) as a complex of A-modules. Thus

. M ifd=0
Hy(H{(G.v)) = Ho(D') =
0 ifd>0.
For ¢ even we consider the homology of
0 ker 08 ®4Gy_2,0-1
kerﬂ'T<Bl®AG472,£—l)
keraB®AG[,17g,1 4.5
o, keer(lB@AGe,l,g,l) ® By ®4 Gpogg1 @4 T +—— ... (45)

ker@{s@AGd_l’g_l

éc,ll,l keI‘ﬂ'T(Bl(X)AGd,l’g,l

) D ( 23" Ba ®a Gdfd/,£—1> AT —— ....
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Note that (4.5) is isomorphic to the tensor product of the complexes
G*,Efl 10— G£72,€71 — Géfl,ffl ...

and

ker 818
ker w7 By

BQ@AT%B3®AT<;.... (46)

By (4.2.2), (4.6) is exact. The homology does not change when we consider it as a
complex of A-modules. Then (4.5) is exact since it is the tensor product of an exact

complex and another complex. So
Hi(H{(G.)) =0

for ¢ even.
By a similar argument

HYNH}(G..) =0

for ¢/ > 1 odd.

Thus the spectral sequence collapses on page 2. Then

M ifp=q=0
w(TotG) = P p+q( Hy (G, >):

pra=n 0 otherwise.

Thus Tot G is a resolution of M by free A-modules. Since Im 9% C m4B,Im 9 C m4C,

and Im 0P C m4D, the resolution is minimal. O
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CHAPTER 5
THE POINCARE SERIES OF MODULE OVER A FIBER

ProbpuctT

The purpose of this chapter is to establish the relationship between Poincaré series
over the fiber product A = S xzgT and Poincaré series over S and T'. As stated before
this result is already known [3],[6]. Here we show that the structure of the resolution
from Chapter 4 reflects this equality. We will then consider the case that S', 7', R
and S, T, R satisfy the conditions of (4.1.1) with surjective ring homomorphisms ¢ :
S — S and ¢ : T — T’. The universal property for fiber products induces a
surjective ring homomorphisms 6 : S xp T — S" xr T". We will give conditions for

this homomorphism to be Golod.

5.1 HILBERT SERIES

Definition 5.1.1. Let M be a graded k-vector space with My = 0 for d < 0 and

dimg My finite for all d. Then the Hilbert series of M is the formal Laurent series
HSy(t) = dimy Mat?.
d
If HSps(¢) is defined, then we say that M has a Hilbert series. Let

T (M) = M = M @ M @ Q... @ M

£ times

where T{(M) = k. Then the tensor algebra of M is

Te(M) = D TL(M).

=0
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Define

T (M) = D My, @k My, @ ... @ My, C Th(M).
di+do+-+de=d

and note that

Ty (M) = DT (M)
d=0
We record two properties of Hilbert series
Proposition 5.1.2. Let M and N be graded vector spaces with Hilbert series. Then
Proof. By the definition of the Hilbert series
HSM®kN(t) = Z d1mk(M ®k N)dtd.
d

The k-vector space
it+j=d
Then
dimk(M Rk N)d = Z dimyg M; dimy, Nj.
it+j=d
The right hand side is precisely the coefficient of ¢4 in the product HSy,(t)HSy(¢). O

Proposition 5.1.3. Let Tx(M) be the tensor algebra of M over k. If My = 0 for

d <0, then
1

HSm,an () = m

Proof. First we have
HSr,(0) = D TH(01).
Since :
TL(M) =M @ M @k Q... M

£ times

the Hilbert series of Tk (M) can be determined by (5.1.2). So

HST;;(M) (t) = (HSM(t))Z-

37



Thus

HSr, ) () = 3 HSmg (a1 (1)
=0

(e 9]

=3 (HSu )
) 1

T 1—HSyu(t)

5.2 FIBER PRODUCTS AND POINCARE SERIES

Definition 5.2.1. Let k be a field and C be a set. Then let *C be the k-vector space

with basis C.

Corollary 5.2.2. Given the assumptions of 4.2.1 we have

1 PR(t) 1 1
PE) ~ PE®) (Pﬁ(t) PR 1) |

We prove 5.2.2 using the following lemma

Lemma 5.2.3. The k-vector space k @ 4 Gy is isomorphic to
B ko Ty (FCor @k *B21) @4 *Dy,
di1+do=d
if ¢ =20"+1 and
D  *Bu @k T (¥Coy @k *Bs1) @4 Dy,

di+da+d3z=d
di>1

if 0 =20 +2.

Proof of 5.2.3. We proceed by induction on £.
For ¢ = 1 we have Gqy = Dy, which has basis D;. The k vector space k @k ®5*Dgy
has basis {l® 1 ® d : d € Dy}. Then the map d — 1® 1 ® d fo d € D, gives the

isomorphism.
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Assume that the claim is true for ¢ < ¢. We will show that it holds for ¢. If

¢ =20+ 2, then

d—0+2

GaoRak = ( P B, ®a Gd—d1,€—1) ®ak

dr=1
d—~0+2

= P (By @ak) @k (Ga—agy -1 ®a k)

di=1

d—t+2
P (By, ®4k) @4 < P ko Ti ’dQ(kC21 @k ¥B>1) @ deS)

di=1 do+ds=d—d;

12

d—~0+2
= P P (By @ak) @k (k Rk Ti a2 (*Co1 @1 *B>1) g deg)
di1=1 do+d3s=d—d;
d—042 v
b D B @k Ty ®(*Coi @1 *Bs1) @1 Dy,
di=1 do+ds=d—d;

= 6 *By, O Ti/’dQ (*Cs1 @k *Bs1) @ ¥Dg,.

di+da+dz=d
di>1

112

If ¢ =20+ 1, then

d—0+2
Gae@ak=| P Cu @4 CGa—dpp1 | ®ak

do=1
d—~0+2
= P (Cop ®ak) %k (Ga—dg -1 @4 k)
do=1
d—0+2 oy
= @ (Cdo ®a k) Ok @ chh Rk Tk_ ' 2(kCzl Rk k821> Rk de3
do=1 di+da+-d3
=d—do
d—0+2

=D D *Cun (del @k T " (FCor @5 *Bor) @k de?,)
do=1 d1+d2+ds
—d—dy
d—_0+2 oy
P P FCup @r Ba @k Ty ("B @k ¥Cs1) @k FDy,

do=1 di+d2+d3
=d—dp

I

= @ k ®y Ti/’dﬁdﬁ@ (sz1 Rk kcz1) Rk deg'

do+d1+da+d3=d
do>1

Proof of 5.2.2. Let B="*B,C =*C and D =*D. Then

PL(t) = HSp(t), P5(t) = HS¢(t), Py (t) = HSp(t)
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and
Pii(t) = HSg,e k()
Now

G.®ak =Y Gir®ak 2B @k Ti(*Bs1 @5 FCsp) @y *D.
4l

The second isomorphism follows from (5.2.3). Then

B HS5(t)HSp (1)
1 — (HSp(t) — 1) (HSc(t) — 1)

HSG*®Ak (t)

by (5.1.2) and (5.1.3).

That is
Pi (t) Py (t)
P(t) = peo M (5.1)
" 1= (Pg(t) = 1)(PR(t) = 1)
Reciprocate both sides to finish the proof.
O

5.2.4. Let S",T", R and S, T, R both satisfy the hypothesis of (4.1.1). Let ¢ : S — S’

and ¢ : T — T be surjective ring homomorphisms. Then we have the diagram of

TiNngs
A=S5 XR T T
X f”
A =8 xgT —— T (5.2)
S d S’ R.

Here 0 is the map induced from the universal property of fiber products.

Lemma 5.2.5. Suppose that ¢ : S — S is a surjective ring homomorphism, pg :

S — R and ps : S" — R are large homomorphisms. Then the following are equivalent
1. The homomorphism ¢ is Golod.
2. When treated as an S’-module via ps:, R is p-Golod.

3. FEvery finitely generated S’-module M is ¢-Golod.
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Proof. 1. = 2. Suppose that ¢ if a Golod homomorphisms. Then

{0
Lt (P50 — 1)

B (t)
Since ps and pg are large homomorphisms we have
F(t) = BAOPR(t) and B(t) = KA (PR (1)
by [12, 1.1]. Then

REOP () = 1 e

Divide by Pf(t) to show that R is a ¢-Golod S’-module.

2. = 3. Suppose that R is a ¢-Golod S’-module and let M be a finitely generated

S’-module. Since pg and py are large homomorphisms we have
Py (t) = P{(t)P5(t) and Py (t) = Pi(t)Pg (1)

by [12, 1.1]. Since R is ¢-Golod we have

o PE)
PR =T s -y

Multiply both sides by P (t) to get that M is ¢-Golod.
3. = 1. Let M =k to see that ¢ is a Golod homomorphism.
O

Theorem 5.2.6. In (5.2), 6 is a Golod homomorphism if and only if ¢ and ¢ are

Golod homomorphisms.

Proof. First note that the map pg, pr, psr and py are large homomorphisms by (2.4.2).
Then by (5.2.5) it suffices to show that R is a 6-Golod A’-module if and only if R is
a p-Golod S’-module and a 1-Golod T'-module.

Now we have the short exact sequence of R-modules

0 R S' X T e A 0.

Dg! =Pt
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Also we have an R-module homomorphisms x : R — S’ xT" given by x(r) = (ig/(7),0)

which satisfies (ps — prv) o x = idg. So the sequence is split exact. Then, by (2.3.3)
P3(t) = Pgi(t) + Pri(t) — Pg(t).
Since R is an algebra retract of A we have the following
Py (t) = P(t)Pg(t), Pa(t) = Pgi(t)Pr (1),
PA(®) = PROPA®),  PA) = PROPA),
Multiply both sides of
P3(t) = Pgi(t) + Pri(t) — Pg(t)
by P#(t) and using the above equalities of Poincaré series to get
PA(t) = PA() + PA(1) — PA).

The ring homomorphisms ng : A — S and 7 : A — T are large homomorphisms by
(2.4.2), since S and T are algebra retracts of A. Combining this and the above we

get

Py(t) = Pa(t) + Pp(t) — P

= P3(t)P§(t) + Pp.(t) Pr (t) — PR(1)P5 ()

) PL() . P

=BT g - vesn =y OIS e - V@Es = 1
PL()

PO - e -

:Pgm 7t) + PL(OPE() ~ PS(OPE()

)
P (t) + Pg(t) — PR (1) PR(t)

The third equality follows from (5.1). Hence

(P (£)+Pg (t)= Pr () PR () (P (1) —=1) = PR(t)(Ph(t) 1)+ Py (t)(P5(t)—1). (5.3)
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Now we have the following sequence of (in)equalities:

1—t(Py(t) — 1)

P(t)
_ (1-uPh® - 1) (@) + PE(H) - PEOPE()
a PR (t) PR (t)
_ PR(t)+ PR(t) — PR(t)PR(t) — t (Pﬁ (t)(PL(t) = 1) + PE(t)(P§(t) — 1))
a PE(t) PR (t)
_ PR —t(PL(t) — 1)) + Pr()(1 — t(P§(t) — 1)) — Pr(t)PR(t)
PR (t) PR (t)
C1—#(PL() 1)  1—t(P§(t)—1) )
O O
<
T~ PR(t)  PR(t)
1
-

The first and last equalities follow from (5.2.2). The second equality comes from
(5.3). The term-wise inequality follows from Serre’s upperbound and (2.0.1). The
term-wise inequality is an equality if and only if R is ¢-Golod and -Golod.

O

This theorem can be compared to [13, 4.2.2]. Here we have replaced k with R at

the cost of adding the hypothesis of (4.1.1).
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