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ABSTRACT

Data on spatial mobility have become increasingly available with the wide use of 

location-aware technologies such as GPS and smart phones. The analysis of movements is 

involved in a wide range of domains such as demography, migration, public health, urban 

study, transportation and biology.  

A movement data set consists of a set of moving objects, each having a sequence 

of sampled locations as the object moves across space. The locations (points) in different 

trajectories are usually sampled independently and trajectory data can become very big 

such as billions of geotagged tweets, mobile phone records, floating vehicles, millions of 

migrants, etc. Movement data can be analyzed to extract a variety of information such as 

point of interest or hot spots, flow patterns, community structure, and spatial interaction 

models. However, it remains a challenging problem to analyze and map large mobility data 

and understand its embedded complex patterns due to the massive connections, complex 

patterns and constrained map space to display. 

My research focuses on the development of scalable and effective computational 

and visualization approaches to help derive insights from big geographic mobility data, 

including both origin-destination (OD) data and trajectory data. Specifically, my research 

contribution has two components: (1) flow clustering and flow mapping of massive flow 

data, with applications in mapping billions of taxi trips (Chapter 2 and Chapter 3); and (2) 

time series analysis of mobility, with applications in urban event detection (Chapter 4).  
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Flow map is the most common approach for visualizing spatial mobility data. 

However, a flow map quickly becomes illegible as the data size increases due to the 

massive intersections and overlapping flows in the limited map space. It remains a 

challenging research problem to construct flow maps for big mobility data, which demands 

new approaches for flow pattern extraction and cartographic generalization. I have 

developed new cartographic generalization approaches to flow mapping, which extract 

high-level flow patterns from big data through hierarchical flow clustering, kernel-based 

flow smoothing, and flow abstraction. My approaches represent a significant breakthrough 

that enables effective flow mapping of big data to discover complex patterns at multiple 

scales and present a holistic view of high-level information.  

The second area of my research focuses on the time series analysis of urban 

mobility data, such as taxi trips and geo-social media check-ins, to facilitate scientific 

understanding of urban dynamics and environments. I have developed new approaches to 

construct location-based time series from mobility data and decompose each mobility time 

series into three components, i.e. long-term trend, seasonal periodicity pattern and 

anomalies, from which urban events, land use types, and changes can be inferred. 

Specifically, I developed time series decomposition method for urban event detection, 

where an event is defined as a time series anomaly deviating significantly from its regular 

trend and periodicity. 
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CHAPTER 1 INTRODUCTION

Data on spatial mobility have become increasingly available with the wide use of 

location-aware technologies such as GPS and smart phones. The analyses of movements is 

involved in a wide range of domains such as demography, migration, public health, urban 

study, transportation and biology. A movement data set consists of a set of moving objects, 

each having a sequence of sampled locations as the object moves across space. The 

locations (points) in different trajectories are usually sampled independently and trajectory 

data can become very big such as billions of geotagged tweets, mobile phone records, 

floating vehicles, millions of migrants, etc. Movement data can be analyzed to extract a 

variety of information such as point of interest or hot spots, flow patterns, community 

structure, and spatial interaction models. However, it remains a challenging problem to 

analyze and map large mobility data and understand its embedded complex patterns due to 

the massive connections, complex patterns and constrained map space to display. 

In this dissertation research, I focus on the analysis, mapping and visualization of 

origin-destination flow data—a specific type of spatial mobility data that concerns the 

movements between origins and destinations, such as human migration, taxi trips 

commuting, and commodity flows, among others. The goal of this research is to develop 

and evaluate a series of new computational and visual methods to effectively analyze and 

understand large origin-destination flow data. Specifically, these approaches will address 

a number of major challenges and research problems in analyzing big data of spatial flows, 
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including flow clustering, flow mapping, spatiotemporal analysis, location measure, and 

application development. 

The dissertation work can be separated into two broad topics (1) flow analysis and 

mapping and (2) location analysis with mobility data. The former involves three research 

papers on flow clustering (Chapter 2), flow smoothing and mapping (Chapter 3). The latter 

topic related to the urban event detection (Chapter 4), using big data of taxi trips.  

The dissertation research has makes significant contributions in methodologies for 

the analysis, mapping and applications of big spatial mobility data, which have become 

increasingly critical in understanding complex spatial and social systems such as human 

activities, urban structure, transportation, migration, and many others. 

In the following section 1.1 and 1.2, I will introduce related work about this 

research. 

1.1 FLOW MAPPING AND ANALYSIS 

Flow mapping has long been used in a wide range of applications such as human 

migration, transportation, commodity flow, and commuting (Tobler 1987, Tobler 1981). 

However, there are two major challenges for flow mapping in displaying large data: (1) the 

visual cluttering problem—maps become illegible with too many flows plotted on top of 

each other; and (2) the modifiable area unit (MAUP) and unit size problem—flow volumes 

are highly correlated with unit sizes, e.g., population. 

To address the visual cluttering problem, a number of approaches have been 

proposed in the literature based on: location aggregation, surface generation, or edge 

rerouting. Applications and reviews of aggregation-based methods for movement data can 

be found in (Andrienko and Andrienko 2002, Scheepens et al. 2011a, Andrienko and 
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Andrienko 2011), where most techniques use arbitrary area units, such as administrative 

boundaries, to aggregate movement data. Ferreira et al. (Ferreira et al. 2013) proposed a 

visual model to query origin-destination data based on user-chosen regions to aggregate 

flows. The drawback of this type of approaches is that aggregation can cause a significant 

loss of information, may omit flow patterns at local scales, and also suffer from the 

modifiable areal unit problem. Surface generation approaches produce a vector flow 

surface that only maps flows between geographically adjacent places(Tobler 1987), where 

a long-range flow is decomposed to a sequence of short flows. The limitation is that the 

origin and destination information for each particular flow is lost.  The third group of 

approaches focus on minimizing edge crossing (and thus reduce cluttering) in flow maps 

through edge rerouting (Phan et al. 2005) or edge bundling (Verbeek, Buchin and 

Speckmann 2011, Holten and van Wijk 2009), which reroute or bundle edges to improve 

the visual clarity of flow maps. These methods are effective in producing an aesthetic 

representation of flow data for relatively small data sets. However, their main limitations 

include: (1) bundled edges make it difficult to perceive the actual connection between 

specific pairs of origin and destination; (2) ignoring the modifiable area unit problem and 

treat each flow line equally regardless of their flow volume or significance in relation to 

background population.  

There are also a variety of methods for flow visualization based on non-spatial 

views, such as ordered matrices, combinations of maps and matrices, interactive OD 

maps(Wood, Dykes and Slingsby 2010), and exploratory visualization. Normally, 

interactive visualization systems do not intend to summarize the entire data set in a single 

flow map. Instead, they provide a non-spatial view (such as a matrix) and rely on user 
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interactions to select data to map and explore flow patterns through an iterative process. 

These interactive approaches to a certain degree avoid the visual cluttering problem but 

they cannot provide a clear overview of flow patterns. The matrix view approach is to 

visualize the origin-destination matrix rather than plotting the O-D flow data as 

vectors(Wood et al. 2010). In the origin-destination matrix, the rows represent the locations 

of flow origins as the columns represent the locations of destinations. Besides, reordering 

and aggregation techniques(Guo and Gahegan 2006)  applied to enhance the utility of OD 

matrices to cope with large dataset. The limitation of O-D matrix cannot perceive the 

actuals routes without the geographic context. To overcomes this limitation, Wood 

proposed OD maps (Wood et al. 2010) that attempt to retain the geographic context as 

much as possible while aggregating OD flow data with regular grids. However, the choice 

of appropriate grid size has a significant impact on the visualization. 

There are also methods for summarizing flow properties for each location using 

graph measures such as net migration ratio, centrality, and flow density (which is the 

number of flows passing a pixel)(Rae 2009). The kernel based smoothing and density 

estimation methods introduced earlier can be extended or customized for mapping 

locational characteristics of flows (but not the actual flows)(Scheepens et al. 2012). Rae 

(Rae 2009) generalize the O-D flow data to a flow density surface, which is a raster map 

view and the color of each pixel represent the number of flow passing that location. The 

limitation is the density of flow lines does not necessarily indicate the density of origin and 

destination locations. Similar kernel based smoothing and density estimation method 

applied on trajectory data in (Scheepens et al. 2011a, Scheepens et al. 2012, Scheepens et 

al. 2011b, Willems et al. 2013).  
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In this dissertation research, I develop and evaluate new approaches to mapping big 

data of spatial flows. The main idea is to first extract inherent flow patterns from big data 

through data mining approaches including hierarchical clustering, kernel smoothing, and 

generalization and then map discovered patterns with abstract flow maps that supports 

interactive and multi-scale exploration. Comparing to existing methods, these new 

approaches can cope with very large volume of data, discover unknown complex patterns, 

and present high-level information with new types of flow maps. These new methods are 

presented in Chapter 2 and Chapter 3. 

1.2 EVENT DETECTION WITH MOBILITY DATA 

Event detection, also referred to as anomaly detection, from spatial-temporal data 

has been studied extensively with traditional spatiotemporal data, such as extreme 

precipitation events (Wu, Liu and Chawla 2010) and outliers in meteorological data (Lu 

and Liang 2004). A comprehensive review can be found in (Gupta et al. 2014). Event 

detection from large spatial-temporal data considers both temporal and spatial information 

to define spatiotemporal outliers or events, whose behavioral/thematic (non-spatial and 

non-temporal) characteristics are significantly different from general trends in its spatial 

and temporal neighborhoods. Most of existing event detection techniques are based on 

density-based clustering method (Kut and Birant 2006, Breunig et al. 2000) or scan 

statistics (Kulldorff 1997). 

Different from detecting events directly from spatiotemporal data points, another 

type of approaches aggregates data points into location-specific time series and then detects 

outliers from each time series. As such, the problem is converted to anomaly detection in 

time series. Some of these methods are based on prediction models, in which an outlier is 
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defined as a significant deviation from its predicted value. Each time series is individually 

modeled as an univariate autoregressive moving average (ARMA) process, with which 

outliers can be detected (Pincombe 2005, Bianco et al. 2001). However, the ARMA model 

is difficult to configure and often suffer from the over-fitting problem. There are extensive 

research on the time series analysis with satellites images, in which time series 

decomposition approaches are used for detecting changes within time series (Verbesselt et 

al. 2010a, Verbesselt et al. 2010b).  

Recently, big spatial mobility data, such as geotagged social media, mobile phone 

usage, and taxi trips, have become increasingly available and offer unprecedented 

opportunities to understand the geographic and social dynamics (Liu et al. 2015). Social 

media check-ins, often with real-time data feed, has been widely used in event detection 

(Sakaki, Okazaki and Matsuo 2010, Sakaki, Okazaki and Matsuo 2013, Chae et al. 2012, 

Dong et al. 2015a). Recently, there has been an increasing interest in exploring both the 

temporal and spatial dimensions in social media data to extract and understand events at 

different spatial-temporal scales (Rattenbury, Good and Naaman 2007, Chen and Roy 2009, 

Dong et al. 2015a). Mobile phone data have been widely used in urban activity monitoring 

(Ratti et al. 2006, Calabrese et al. 2010), event detection (Candia et al. 2008, Traag et al. 

2011, Dong et al. 2015b), population density mapping (Deville et al. 2014), and tourism 

management (Ahas et al. 2007, Ahas et al. 2010). A more complete review on mobile phone 

data analysis can be found in (Calabrese, Blondel and Ferrari 2014).  

Mobile phone and social media data have the advantage of high penetration and 

demographic coverage. However, social media and mobile phone data have uneven and 

often low spatiotemporal resolutions. For example, the Call Detail Record (CDR) data, a 
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type of mobile phone data, records the user location when a call or text message is made 

or received, and the location recorded is the location of the cell tower. Therefore, the spatial 

resolution of mobile phone data are not very high and vary with the distribution of cell 

towers, ranging from hundreds of meters to kilometers. To improve the usefulness of 

mobile phone data, a number of approaches have been developed that either use 

probabilistic location inference models to enhance location accuracy (Traag et al. 2011) or 

combine multiple data sources to assist application-specific analyses (Calabrese et al. 2011, 

Liu et al. 2015, Sagl et al. 2012).  

Floating car data, such as taxi trips in urban areas, have high spatiotemporal 

resolution and are suitable for extracting urban events with high accuracy (Calabrese et al. 

2010, Zhang et al. 2015). Taxi trip data can be grouped into two kinds: trajectory data (with 

actual driving routes) and OD trips (with only the origin and destination of each ride). 

Scholz and Lu (Scholz and Lu 2014) present a method to analyze activity hot spots of urban 

activities with massive trajectory data. Their method defines an activity hot spot as a 

location with an extremely large number of activity instances during a certain hour and 

assumes that the theoretical distribution of activity instances across the study area and 

through the study time is completely random. As such, the method does not take into 

account of either temporal trends or periodicities in defining events or hot spots. Zhang 

(Zhang et al. 2015) introduce an event detection method that can consider temporal 

periodicity (i.e., fluctuation patterns repeated in time), which uses the Discrete Fourier 

Transformation (DFT) to find the length of periodicity and then define events as deviations 

from the periodicity. This approach does not consider the long-term temporal trend of 

activities, particularly for very long time series. For example, taxi pickups or drop-offs at 
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a specific location may gradually (or quickly) increases or decreases if the land-use type of 

the location changes, which should also be considered in event detection other than 

periodicity.  

In this dissertation research, I use both long-term trends and seasonal periodicities 

to define events. I use the STL method (Cleveland et al. 1990) to decompose time series 

into three components (long-term trend, seasonal periodicity, and the remainder) and then 

extract events from the remainder component. In Chapter 4 I present a new approach to 

detecting urban events based on location-specific time series decomposition and outlier 

detection. 
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CHAPTER 2 MAPPING LARGE SPATIAL FLOW DATA WITH 

HIERARCHICAL CLUSTERING

2.1 ABSTRACT 

It is challenging to map large spatial flow data due to the problem of occlusion and 

cluttered display, where hundreds of thousands of flows overlap and intersect each other. 

Existing flow mapping approaches often aggregate flows using predetermined high-level 

geographic units (e.g. states) or bundling partial flow lines that are close in space, both of 

which cause a significant loss or distortion of information and may miss major patterns.  

In this research, I developed a flow clustering method that extracts clusters of 

similar flows to avoid the cluttering problem, reveal abstracted flow patterns, and 

meanwhile preserves data resolution as much as possible. Specifically, our method extends 

the traditional hierarchical clustering method to aggregate and map large flow data. The 

new method considers both origins and destinations in determining the similarity of two 

flows, which ensures that a flow cluster represents flows from similar origins to similar 

destinations and thus minimizes information loss during aggregation. With the spatial 

index and search algorithm, the new method is scalable to large flow data sets. As a 

hierarchical method, it generalizes flows to different hierarchical levels and has the 

potential to support multi-resolution flow mapping. Different distance definitions can be 

incorporated to adapt to uneven spatial distribution of flows and detect flow clusters of 
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different densities. To assess the quality and fidelity of flow clusters and flow maps, we 

carry out a case study to analyze a data set of 243,850 taxi trips within an urban area. 

 

2.2 INTRODUCTION 

Large data on geographic mobility such as migration, commuting, movements of 

goods and disease spread have become increasingly available due to the wide adoption of 

location-aware technologies. In our research, we focus on the origin-destination flow data, 

a specific type of geographic mobility data that concerns the origin and destination of each 

movement but ignores the actual trajectory route, for example, taxi trip data that has origin 

and destination points for each passenger ride. This form of data can also be referred to as 

flow data or spatial interaction data. It is a challenging problem to map and understand 

patterns in massive origin-destination data due to the problem of occlusion and cluttered 

display, where thousands or millions of flows overlap and intersect each other. 

Location-based graph measures and summary statistics, such as in-flow, out-flow, 

and net- flow ratios, are often used to understand location characteristics and spatial 

patterns of mobility data (Guo et al. 2012). Such measures project the data to a certain 

perspective but do not allow direct understanding of the connections among locations. Flow 

maps, on the other hand, can directly plot links among locations and show patterns of 

geographical movements (Tobler 1987, Tobler 1981). However, traditional flow maps are 

not capable of mapping large flow data. A typical origin-destination flow data set, such as 

migration paths among US counties or taxi trips in a city, can easily have millions of origin-

destination pairs. A number of new flow mapping approaches have been proposed to 

visualize and discover patterns in large flow data sets (Phan et al. 2005, Cui et al. 2008, 
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Guo 2009, Holten and van Wijk 2009, Andrienko and Andrienko 2011, Verbeek et al. 

2011). 

This article presents a new flow-mapping approach based on flow clustering to 

effectively generalize large point-to-point spatial flow data, discover major flow patterns, 

and preserve data resolution as much as possible within the map space. The approach can 

process large origin-destination flows and adapt to skewed spatial distributions, i.e. flow 

clusters of different spatial densities. Unlike existing approaches that aggregate locations 

or bundle flow lines, we directly cluster flows based on both origin and destination 

similarities among flows. The key contribution of the approach is a new agglomerative 

clustering method specifically designed for origin-destination flows and scalable to large 

data size. We demonstrate and evaluate the usefulness of the new method with a case study 

on taxi trip analysis. 

 

2.3 METHODOLOGY 

In this section, we present our new flow clustering and mapping method that can 

extract flow clusters and render a visually clear flow map to generalize patterns in massive 

spatial flows. First, the flow clustering method considers both origins and destinations in 

determining the similarity of flows, ensures that a flow cluster represents flows from 

similar origins to similar destinations. Second, with spatial index and search algorithm, the 

method is scalable to large data sets. Third, it is a hierarchical clustering method and thus 

has the potential to support multi-resolution flow mapping. Different distance definitions 

can be incorporated in the method. In this article we focus on a shared-nearest-neighbor 

distance measure to capture flow clusters of different densities. 
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2.3.1 Overview 

Let T = {Ti} be a set of origin-destination flows, where Ti = {Oi, toi, Di, tdi} is a 

directed flow that starts at origin location Oi and time toi, and ends at destination Di and 

time tdi; n = |T| is the number of flows. The time stamp for flows is optional, which can be 

omitted if all flows are in the same time period. Let O = {Oi = <IDi, Xi , Yi> } be all origin 

locations and D = {Dj = <IDi, Xi , Yi> } be all destination locations that are involved in T. 

Each location has a pair of spatial coordinates <Xi, Yi> and a unique ID. We treat O and D 

separately in the method as origins and destinations have different meanings for flows. 

Conceptually, our agglomerative flow clustering method consists of the following steps: 

1. Build a spatial index based on a contiguity definition to allow efficient retrieval of 

the nearest neighbors for a given origin/destination and the nearest flows for a given 

flow;  

2. Define a distance (or dissimilar) measure between flows, which should allow the 

detection of flow clusters of different spatial densities;  

3. Cluster flows with an efficient agglomerative clustering procedure, which 

iteratively groups flows into a hierarchy and stops at a level controlled by given 

parameters;  

4. Render a flow map with the discovered flow clusters C = {Cl}, which is a 

generalization of the original set of flows T = {Ti}, |C| ⪡ |T|. 

2.3.2 Neighborhood Search for Points and Flows 

To facilitate presentation and discussion of the spatial index and subsequent 

clustering steps, the following definitions on neighborhoods for points and flows are 

needed: 
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Definition 1.1 (Euclidean Neighborhood of a point) The Euclidean neighborhood 

of an origin point Op is defined as EN(Op, r) = {Oq ∈ O | EuclideanDist(Op, Oq) <= 

r}, where r is a constant search radius. Similarly, the definition applies for 

destination points in D.  

 

Definition 1.2 (K-Nearest-Neighbor (KNN) Neighborhood of a point) The k-

nearest-neighbor neighborhood of an origin point Op is defined as KNN(Op, k) = 

{Oq ∈ O|Oq ∈ EN(Op, rp) and |EN(Op, rp)| = k)}, where k is the number of nearest 

neighbors and rp is the search radius that is specific for Op and determined by k. 

Similarly, the definition applies for destination points in D.  

 

Definition 2 (KNN Neighborhood of a flow) The KNN neighborhood of a spatial 

flow Tp is FN(Tp, k) = {Tq ∈ T|Oq ∈ KNN(Op, k) and Dq ∈ KNN(Dq, k)}, where 

Op, Oq are the origins and Dp, Dq are the destinations of flow Tp and Tq. 

 

In Figure 2.1, the two circles in the left map represent the Euclidean neighborhood 

of the origin (blue) and destination (green) of a flow (red). The two circles in the right map 

show the K-Nearest-Neighbor neighborhoods (k = 10) for the origin and destination of the 

flow q at the center. Flows p1 and p2 are contiguous to flow q with the KNN neighborhood 

definition (right map) but not for the Euclidean neighborhood definition (left map). 

We first build spatial R tree indices on the origin and destination points, separately, 

with which we can quickly find the nearest neighbors for each origin and each destination. 

Each origin (or destination) has a stored list of flows that involve the origin (or destination). 
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In our case study of taxi trips, each origin (or destination) is unique, i.e. belongs to a unique 

flow. For other data sets it is possible that one origin (or destination) may be involved in 

multiple flows, e.g. a county has migration connections to many other counties. 

 

Figure 2.1 An illustration of contiguity definitions for origins, destinations, and flows. 

Flows p1 and p2 are contiguous to flow q with the KNN neighborhood definition (right 

map) but not for the Euclidean neighborhood definition (left map) 

 

Given a flow Tp (with origin Op and destination Dp) and a value of k, we find the k 

nearest origins KNN(Op, k) = {Oq} and k nearest destinations KNN(Dp, k) = {Dq}; then 

find the neighboring flows FN(Tp, k) = {Tq} by taking the intersection of the flow sets that 

involve {Oq} and {Dq}. A contiguous flow pair will be created between Tp and each of its 

neighboring flows in {Tq}. The subsequent clustering will only use these contiguity pairs 

to derive clusters. The larger the k value is, the more contiguity pairs will be created, and 

this demands more computational time in the later clustering step. On the other hand, k 

should be sufficiently large to ensure that the contiguity graph connects most flows. In 

Section 2.5 we will explain how to configure the k value. 
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2.3.3 Shared-Nearest-Neighbor Flow Distance 

The distance or dissimilarity measure for two flows p and q, as defined in Equation 

(1), is based on the number of shared nearest neighbors (SNN) between their origins and 

destinations, respectively. This similarity extends the SNN distance measure used for 

spatial point clustering (Jarvis and Patrick 1973, Guo et al. 2012), which can find natural 

groupings of different point densities. Figure 2.2 shows an illustrative scenario for the 

distance calculation (with k = 7). The circle centered on the origin point of flow p covers 

seven nearest origins, i.e. KNN(Op, 7). Similarly, the other three circles represent KNN(Oq, 

7), KNN(Dp,7) and KNN(Dq,7), respectively. Note that origins and destinations are treated 

separately. Since |KNN(Op, 7)∩KNN(Oq, 7)| = 2 and |KNN(Dp, 7)∩KNN(Dq, 7)| = 3, the 

distance between flows p and q is 1- (2/7*3/7) ≈ 0.87. If the two flows do not share any 

origin or destination neighbors, the distance is 1; conversely, if their origin and destination 

neighborhoods are both identical, the distance is zero. 

𝑑𝑖𝑠𝑡(𝑝, 𝑞) = 1 −
|𝐾𝑁𝑁(𝑂𝑝,𝑘)∩𝐾𝑁𝑁(𝑂𝑞,𝑘)|

𝑘
∗

|𝐾𝑁𝑁(𝐷𝑝,𝑘)∩𝐾𝑁𝑁(𝐷𝑞,𝑘)|

𝑘
                        Equation 1 

 

 

Figure 2.2 An illustration of the SNN distance measure between two flows, with k = 7. 

Blue points are flow origins and green points represent destinations 
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2.3.4  Agglomerative Flow Clustering Algorithm 

Our clustering algorithm iteratively merges flows to form a hierarchy of flow clusters. 

Below is the algorithm outline, requiring only one input parameter k – the number of 

origin/destination neighbors. Note that, although we use the shared-nearest-neighbor 

distance to discover flow clusters of different densities, other distance measures (such as 

the Euclidean distance) can be easily integrated in this algorithm to suite specific needs. 

Algorithm 2.1: Agglomerative Flow Clustering 

Input: T = {Ti | 1 ≤ i ≤ n} – a set of origin-destination flows; and k – the number of nearest    

neighbors used in calculating distance. 

Output: A set of flow clusters C = {Cl | 1 < l << n} 

Steps: 

1   Identify neighboring flows for each flow with a search radius k and create 

contiguous flow pairs, as explained in step 1. 

2   Calculate the distance for each contiguity flow pair according to Equation 1, as 

explained in step 2; 

3   Sort all contiguous flow pairs to an ascending order based on their distances; 

4   Initialize a set of flow clusters by making each flow a unique cluster, i.e. C = 

{Cl} and Cl = {Tl}, 1 ≤ l ≤ n; and 

5   For each contiguity flow pair (p, q), following the above ascending order:  

a. Find the two clusters Cx and Cy that p and q belong to: p ∈ Cx and q ∈ Cy; 

b. Calculate the distance dist(Cx, Cy) between Cx and Cy (see text below for 

detail); and  

c. If x ≠ y and dist(Cx, Cy) < 1, merge them: Cx = Cx∪Cy and C = C\Cy 
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2.3.5 Algorithm Configuration and Complexity 

The k parameter has two main effects. First, it determines the contiguity and the 

similarity measure among flows. We only merge flows (or clusters) that are contiguous. If 

k is too small, the contiguity graph for flows will have many disconnected components and 

tend to generate many small clusters. Second, a large k value will create many more 

contiguity pairs and thus demands more computational time in the later clustering step. We 

designed a simple but effective heuristic technique to set the parameter k, inspired by the 

parameter selection in DBSCAN (Ester et al. 1996). 

We define m-dist for a flow p as the minimum k value (i.e. number of nearest 

neighbors for point neighborhood) in order to find m neighboring flows for p, according to 

Definition 2. For a given m, we calculate the m-dist value (i.e. k) for each flow and sort all 

m-dist values to render a plot. For the case study of taxi trips, its m-dist plot in Figure 2.3 

shows that, with k = 1,000, more than 95% of original flows can find at least one 

neighboring flow, and about 70% of flows can find seven or more neighboring flows. This 

is sufficient for the purpose of ensuring reasonable spatial contiguity. For example, in a 

polygon data set or a Delaunay triangulation of point data, each object on average has 4–5 

spatial neighbors.  

The inset diagram in Figure 2.3 shows the distribution of the number of flow 

neighbors with the taxi data for k = 1,000, where on average each flow has 10 flow 

neighbors. As such, the m-dist plot can help us make informed choice of the k value. 

According to our experiments, k = 1,000 works very well for the taxi data. In the case study 

section, we provide a brief sensitivity evaluation by comparing the clusters and patterns 

with different k values. 
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Figure 2.3 Sorted m-dist values for the taxi trip data. When k = 1,000, flows to the right 

of the blue arrow have one or more neighboring flows; while flows to the right of the 

green arrow have seven or more neighboring flows. The inset diagram shows the 

distribution of the number of flow neighbors with k = 1,000, where on average each flow 

has 10 flow neighbors 

The computational complexity of the method involves three steps: (1) Building a 

contiguity index for flows, which needs to find k nearest points for both the origin and 

destination of each flow, and then find flows with both origin and destinations located 

within the neighborhood of the flow. With the assistance of a spatial index such as R-tree, 

the complexity of this step is O(knlogn); (2) Calculating and sorting the distances of 

contiguity pairs. There are at most O(mn) contiguity pairs, where m is the average number 

of flow neighbors. For each pair of flows, it takes O(k) time (with the help of Hash mapping) 

to count shared neighbors and calculate its distance according to Equation 1, and 

O(mnlog(mn)) time to sort all pairs. The overall complexity for this step is O(kmnlog(mn)); 
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(3) The complexity for the clustering step is O(mnk). Therefore, the overall complexity of 

Algrithm 1 is O(kmnlog(mn)), m << k << n. 

 

2.3.6 Mapping Flow Clusters 

Given a set of flow clusters derived with previous steps, we calculate a mean flow 

for each cluster using the centroid of origins, centroid of destinations, and the total flow 

volume of flows in the cluster. It is straightforward to render a flow map with the clustered 

flows. To verify the flow patterns discovered by our method, we calculate locational 

measures, such as in-flow, out-flow, net-flow ratios for each local neighborhood, and 

compare their spatial patterns with the flow clusters. One can conduct various analyses 

with the new flow clustering and mapping method. In this article we will elaborate on one 

possible analysis, i.e. analyzing the spatiotemporal patterns of mobility, based on the flow 

clusters of different time periods. We present a case study on taxi trip analysis in the 

following section. 

 

2.4 CASE STUDY 

We applied the developed flow clustering and mapping method to analyze a dataset 

of 243,850 taxi trips for a working week (five days) in the downtown area of Shenzhen, 

China. Each taxi trip has an origin GPS point, a destination GPS point, and time (when the 

passenger was dropped off). Without losing generality, we can assume that each GPS point 

in the dataset is unique, collected independently with about 10 m accuracy. If there were 

identical points, we still treat them as different points. Therefore, there are 243,850 origins 

and the same number of destination points. The spatial distribution of these points are 
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highly skewed, with some areas having about 30,000 points per square kilometer while 

other areas have only 500 points or less per square kilometer. The point distribution also 

follows the road network. The average trip distance is 5.64 km, and taxi trips often travel 

between areas with different point densities. It is difficult to map and understand such 

massive flow data in its original form. Figure 2.4 shows 1% of the flows (left map) and 10% 

of the flows (right map), both of which cannot offer many insights on the flow patterns in 

the data. 

2.4.1  Taxi Trip Clustering and Mapping 

Based on the m-dist plot in Figure 2.3, we set k = 1,000, with which most of the 

flows can find one or more neighbor flows, with an average of 10 neighbors for each flow. 

There are 11,000 flows (about 4%) which cannot find any neighboring flows; each will 

form a cluster of its own (and likely be excluded in the final mapping). A pair of flows or 

flow clusters can only be merged if their distance is less than 1, meaning that they must 

share at least one point in their origin neighborhoods and one point in their destination 

neighborhoods (see Equation 1). 

 

Figure 2.4 Flow maps of random samples of taxi trips. The left map shows 2,500 flows 

(i.e. 1% of the original data) and the right map shows 25,000 flows (10%) 
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The original 243,850 flows are grouped into 18,969 flow clusters, in which the 

largest cluster has 732 flows. There are 347 clusters with size > 100 (i.e. having more than 

100 flows in the cluster) These 347 clusters together contain 51,924 original flows (>21%). 

There are 1,309 clusters with a size > 50, which together contain 118,022 flows (about 50% 

of the original data). There are 5,269 clusters with at least 10 flows, covering nearly 90% 

of the original flows. Therefore, the clustering method generalizes the large input flow data 

into a relatively small set of clusters, which is only about 2% of the original data size and 

yet covers 90% of the original data. The flow map in Figure 2.5  shows the top flow clusters, 

where each curved line represents a cluster, starting from the centroid of its origin to the 

destination centroid, with the arrow pointing to the destination. Colors and line widths 

represent cluster sizes. Note that two flows or clusters must share both an origin point and 

a destination point in their neighborhoods, respectively. Therefore, each flow cluster is 

spatially compact (a relative term that depends on the distance definition adopted in the 

algorithm). 

We also calculate a smooth surface of net flow ratio by: (1) partitioning the area 

into grid cells; (2) finding k nearest origins/destination points (and thus flows) to each cell; 

and (3) calculating a net flow ratio (inFlow – outFlow) / (inFlow + outFlow) for each grid, 

which are mapped in Figure 2.4 as the background, with darker colors representing high 

net flow ratios (i.e. more incoming taxi trips than outgoing trips). This generalized flow 

map reveals major flow patterns in the data and important places/regions. For example, in 

the flow map we can easily recognize a number of hubs including the Huanggang Port on 

the border with Hong Kong, train station, subway stations, and other significant centers. 
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The flow map patterns not only match the location measure patterns well but also reveal 

more specific flow patterns with clear connection, direction, and flow strength indicators. 

 

Figure 2.5 Top flow clusters of taxi trips. The background map represents the smoothed 

net flow ratio, with darker colors for high net flow ratios 

2.4.2  Spatiotemporal Analysis of Taxi Trip Clusters 

To examine temporal patterns of taxi trips, we divide a day into six four-hour time 

windows: 5–9 a.m., (morning), 9 a.m.–1 p.m. (noon), 1–5 p.m. (afternoon), 5–9 p.m. 

(evening), 9 p.m.–1 a.m. (night), and 1–5 a.m. (early morning). The morning and evening 

periods, in particular, will capture the heavy–traffic hours of a day. We calculate the 

frequency of flows in each time window for each of the 1,309 flow clusters that have 50 or 

more flows. Then we map two subsets of the clusters in separate flow maps, one showing 

flow clusters dominated by morning flows (Figure 2.6) and the other showing flow clusters 

dominated by evening flows (Figure 2.7). Figure 2.8 shows the color legend for the 

temporal frequency of flows in each subgroup. The net flow ratio values for the specific 
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time period are also mapped in Figure 2.6 and Figure 2.7 in the background. In these two 

time-specific flow maps, we can see clear and distinctively different flow patterns. In the 

morning most taxi trips are from residential areas to transportation hubs (e.g. ports, train 

and subway stations) or commercial/industrial areas. In the evening, the flow patterns are 

almost the opposite. 

 

Figure 2.6 Taxi trip flow patterns during the morning traffic hours (i.e. 5 a.m. to 9 a.m.) 

Note that the subset of clusters in Figures 2.5, 2.6 and 2.7 are from the same 

hierarchical clustering result. They are chosen based on different criteria, with Figure 2.5 

showing the largest flow clusters of all time, Figure 2.6 showing clusters dominated by 

morning flows, and Figure 2.7 showing clusters dominated by evening flows. The 

clustering process not only generalizes the flow map but also enables analysis of flow 

characteristics and their spatial distribution. 
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2.4.3 Parameter Configuration and Comparison 

In the above analysis, we set k = 1,000 according to the m-dist plot in Figure 2.3 

and our experiments. As explained earlier, if k is too small, the contiguity graph for flows 

will have many disconnected components; if k is too large, it will create many more 

contiguity pairs and demand more computational time in the later clustering step. To 

examine the sensitivity of results to the k configuration, the clustering results for k = 1,500 

and k = 2,000 are shown in Figure 2.9, Figure 2.10 and the result for k = 1,000 is shown in 

Figure 2.5. Comparing the three maps, we can see that: (1) the patterns in general are 

similar although the sizes of the top clusters are different; and (2) the larger the k value is, 

the larger the top clusters are as clusters can be merged further with larger neighborhoods 

(defined by k). This result shows that the clustering result is not very sensitive to k 

configuration and responds to different k values in a predictable way. 

 

Figure 2.7 Taxi trip flow patterns during the evening traffic hours (i.e. 5 p.m. to 9 p.m.) 
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Figure 2.8 Multivariate legend of the flow colors in Figures 2.6 and 2.7 

 

Figure 2.9 Comparison of clustering results with k = 1,000 (see Figure 2.5), k = 1,500 

and k = 2,000 

 

Figure 2.10 Comparison of clustering results with k = 1,000 (see Figure 2.5), k = 1,500 and 

k = 2,000 
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2.5 CONCLUSION 

This article presents a new flow clustering and mapping method with needed 

capability and scalability for handling large origin-destination flow data. It can be used for 

exploratory analysis, visualization, or communication of flow data and patterns. The key 

component in the method is an agglomerative clustering method, which requires only one 

input parameter k, the number of nearest neighbors. If other distance measures are used, k 

is not needed but other parameters may be needed, related to the chosen distance measure. 

The configuration of k is critical and we provided an approach based on the m-dist plot to 

help make informed decisions. Our experiments show that the clustering result is not very 

sensitive to the k value. 

We carried out a case study with taxi trip data in Shenzhen to evaluate the usefulness 

of the proposed approach. Results show that the proposed method can effectively process 

large datasets and discover major flow patterns, which can also support the analysis of 

temporal variations, avoiding the weakness in other existing methods related to arbitrary 

aggregation of locations. The method can incorporate different distance and contiguity 

definitions to address different data or application needs. It is also possible to add 

constraints such as a maximum Euclidean distance threshold to avoid merging flows that 

are not close geographically while still allowing the detection of flow clusters with different 

densities. 

Future work is needed to better balance and automatically determine the appropriate 

level of flow clusters to optimize the flow map layout. This will require both intelligent 

algorithms and interactive human inputs. The robustness of the proposed approach needs 

further evaluation with both real datasets and specifically designed synthetic datasets with 
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various known patterns. Our current mapping approach does not allow much user 

interaction, which is partially due to our belief that an information-rich and static flow map 

is very important for communication purposes. Of course, supporting innovative user 

interactions will add additional benefits and will be explored in future work. Although the 

method is reasonably efficient, future work is needed to develop approximation extensions 

for analyzing even larger data sets with billions or more of points and flows. Another aspect 

that needs improvement is the ability to handle non-point flow data such as the US county-

to-county migration. 
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CHAPTER 3 INTERACTIVE MULTI-SCALE FLOW MAPPING WITH 

KERNEL SMOOTHING MAPPING 

 

3.1 ABSTRACT 

Flow mapping of large origin-destination data has long been a challenging problem 

because of the conflict between massive location-to-location connections and the limited 

map space. Current approaches for flow mapping only work with small dataset or have to 

use arbitrary data aggregation, which not only cause a significant loss of information but 

may also produce misleading maps. In this paper, we present a multi-scale flow map 

generalization approach that can extract flow structures at different scales and facilitate the 

analysis and visualization of big spatial flow data. The approach is built on a novel flow 

data aggregation method, which uses flow-based kernel density estimation and a greedy 

search of local maximum of dense flows. Given a scale, it discovers inherent and abstract 

flow patterns appropriate for the scale and naturally supports interactive and multi-scale 

flow mapping. The pattern scale is controlled with the kernel bandwidth and the pattern 

resolution is determined with the search radius. To demonstrate the approach and assess its 

effectiveness, a case study is carried out to map billions of taxi trips within the New York 

City. 

 



29 

3.2 INTRODUCTION 

Origin-Destination (OD) flows, a specific type of geographic mobility data, record 

the origin and destination of movements but ignore the actual trajectory route. Such data 

have become increasingly available and accurate due to the wide adoption of location-

aware technologies, including taxi trips, county-to-county migration, cell phone calls, 

commuting data, and disease spreading. Mapping and understanding massive origin-

destination flow data is fundamentally important for a wide range of research fields and 

decision makings in practice such as demography, urban planning, transportation, and 

epidemiology.  

Geographic flow visualization and visual analytics, such as flow map (Tobler 1987, 

Tobler 1981) and space-time cube (Kraak 2003, Kraak and Koussoulakou 2005), are 

commonly used in OD flow data analysis. However, existing approaches suffer the severe 

problem of occlusion and cluttered display when the data is relatively large. Traditional 

flow map generalization usually aggregate large flow data by predefined areas, which is 

arbitrary and suffers from the MAUP. As stated in (Rae 2011): “flow mapping is something 

of a disciplinary laggard”, especially in an big data era that mobility is one of the key 

aspects for various geographic research problems. In addition to the massive data volume, 

another challenge in analyzing mobility data is that mobility patterns may exist at different 

spatial scales (Laube and Purves 2011, Soleymani et al. 2015), where cross-scale analysis 

is of great importance (Fryxell et al. 2008, Nathan et al. 2008). 

In this paper, we propose the approach to enable multi-scale flow mapping. The 

main contribution of the approach in this paper is twofold. First, we put forward a general 

framework for multi-scale and multi-resolution flow mapping, where the scale is related to 
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the kernel bandwidth of flow smoothing and the resolution is related to the search radius 

in flow selection. Second, we designed a new flow map generalization algorithm based on 

local maximal search. With these two contributions, the approach can (1) discover and 

present generalized movement patterns at different spatial scale and resolution; and (2) 

enables interactive exploration of big flow data across scales with overview and zoom-in 

capabilities. We carried out a case study to analyze and map billions of taxi trips in New 

York City. 

 

3.3 RELATED WORKS 

3.3.1 Flow map and cartographic design 

Flow map has long been used in a wide range of applications such as human 

migration, transportation, commodity flow, and commuting(Tobler 1987, Tobler 1981). 

There are a few recent research works on the cartographic design principles for the 

symbolization and layout of flow map based on quantitative analyses of users’ perception 

performance (Koylu and Guo 2016, Jenny et al. 2016, Jenny et al. 2017) and similar studies 

have also been conducted in the graph drawing community (Alper et al. 2013, Dwyer et al. 

2009, Xu et al. 2012). One of the design principles is to minimize edge crossing to achieve 

visual clarity, for which a number of strategies have been proposed such as edge 

rerouting/bundling (Phan et al. 2005, Cui et al. 2008, Buchin, Speckmann and Verbeek 

2011) or producing non-branching flows by adjusting the curvature of flow lines (Jenny et 

al. 2017). However, there are also a few design principles remain debatable. For example, 

Xu et al. (2012) found that user prefer straight lines over curved lines while the study in 

(Jenny et al. 2016, Purchase et al. 2012) shows curved lines are more effective than straight 
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lines. For curved flow lines, Jenny et al. (2016) suggest to use symmetric flows rather than 

asymmetric flows, while others recommend the use of asymmetric flow lines to encode 

direction (Guo 2009, Ware, Kelley and Pilar 2014). 

Koylu and Guo (2016) show with experiments that the choice of symbolization type 

may depend on different tasks (e.g., the identification of the dominant flow directions or 

the identification of strongest flows) and different data patterns also have a strong effect 

on task performance and pattern perception in flow maps. It is difficult to generalize a 

universal set of design guidelines to create flow maps for different tasks and across various 

datasets. Interactive techniques may provide a viable solution, with which one can 

customize the symbolization and layout of flow maps according to the data, task, and the 

user’s preference. 

The goal of this study is to flow map generalization, which is different from these 

cartographic design researches. These design principles can improve visual clutter problem 

at certain extend, but it is only can be applied to small flow datasets (up to one hundred). 

It is necessary to apply data abstraction or aggregation when cope with large volume of 

flow data. Our proposed method focus on pattern extraction from very large and dense 

origin-destination flow data, and then visualize the extracted patterns. The researches 

mentioned above can provide design guidelines to visualize extracted flow patterns. 

 

3.3.2 Flow map generalization 

Mapping large volume of origin destination flows is a challenging research problem, 

since the flow map suffers from the visual cluttering problem while the data volume 

increased. As Andrienko et al. (2008) suggest, current visualization research need higher 
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degree of abstraction that can extract and visualize high-level abstract patterns from data. 

One type of such data reducing approaches is to aggregate OD data by using large 

geographic units. Researchers were looking for optimal way to define locations for 

aggregating movement data rather than define the regions arbitrarily. For instance, Guo 

(Guo 2009) proposed a spatially constrained graph partition method that can construct a 

hierarchical regions.  Andrienko (Adrienko and Adrienko 2011) developed a 

computational method that uses trajectory points’ coordinates to partition the territory into 

suitable places. The drawback of this type of approach is that aggregation can cause a 

significant loss of information, skip flow patterns at local scales, and suffer from the 

modifiable areal unit problem.  

Another type of data aggregation approaches simplify the flow data using clustering 

or cluster detection method. For instance, Zhu (Zhu and Guo 2014) proposed a clustering 

method to aggregate OD data based on the spatial similarity. Tao (Tao and Thill 2016) 

applied hot spot detection method on flow data to detect spatial flow clusters. Guo (Guo 

and Zhu 2014) extract flow patterns by applying kernel density estimation on flow data. 

Yan (Yan and Thill 2009) adopts self-organizing maps serves as the data mining engine to 

reduce data complexity. However, clustering method can reduce the data size at the cost of 

data resolution, which is coincides with the idea that any knowledge gain may accompany 

by information loss in data mining process. In this research, our proposed method belongs 

to this category. To cope with the problem of information loss, our proposed method can 

detect flow patterns at multiple spatial scales. The flow map at lower scale serves as 

complementary view for flow map at higher scale. Besides, our proposed method 

implements multi-resolution flow map by interaction techniques. A visual control interface 
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such as a slider bar, can be used to select a balance point between generalization level and 

information resolution.  

 

3.3.3 Flow data visualization and visual analytics 

There are also a variety of methods for flow data visualization and visual analytics 

such as location based visualization, matrix view, raster map in order to bypass the visual 

clutter problem. Alternative strategies visualize the location measures such as net flow ratio 

for different time durations derived from OD flow data(Guo et al. 2012), and it provides 

insights of characteristic of locations. The drawback of the location based analysis is the 

link between locations lost. Andrienko (Andrienko et al. 2016) presents a spatial and 

temporal abstraction method to represent location measure by diagram maps instead of 

flow maps, and the proposed method visualize the flow angle and distance in the diagram 

map to retain the links between locations. 

The matrix view approach is to visualize the origin-destination matrix rather than 

plotting the O-D flow data as vectors (Ghoniem, Fekete and Castagliola 2004). In the 

origin-destination matrix, the rows represent the locations of flow origins as the columns 

represent the locations of destinations. Besides, reordering and aggregation techniques 

(Guo and Gahegan 2006) applied to enhance the utility of OD matrices to cope with large 

dataset. The limitation of O-D matrix cannot perceive the actuals routes without the 

geographic context. To overcomes this limitation, Wood proposed OD maps (Wood et al. 

2010) which attempts to retain the geographic context as much as possible.  

Raster map generalized the O-D flow data to a flow density surface, which is a 

raster map view and the color of each pixel represent the number of flow passing that 



34 

location. The limitation is the density of flow lines does not necessarily indicate the density 

of origin and destination locations. Similar kernel based smoothing and density estimation 

method applied on trajectory data in (Scheepens et al. 2011a, Scheepens et al. 2012, 

Scheepens et al. 2011b). Note, the kernel based smoothing and density estimation method 

is different from our model in this paper. 

Besides, there is a research trends to apply visual analytics on O-D flow data. The 

visual analytics utilize the computational power to corporate human capabilities to 

understand the data(Thomas and Cook 2006). Recently, filtering and selection method is 

applied to improve the visualization efficiency. This method downscale to a data subset 

according to a user-specified query. Ferreira et al. (Ferreira et al. 2013) proposed a visual 

model that supports spatiotemporal queries of origin-destination data, which is based on 

user’s choices of regions to aggregate flows. (Boyandin et al. 2011) proposed a view 

contains two maps, and place the origin and destination separately on these two map in 

order to avoid line occlusion. The selection approaches to a certain degree the visual 

cluttering problem but the limitation is they cannot provide a clear holistic overview of 

spatial flow patterns. In this paper, we proposed a visual analytic framework for multi-

scale flow mapping. Specifically, we provide an overview for the whole dataset in each 

scales, and zooming and panning operations allow the users switch between the different 

scales and views. Besides, the proposed method also can facilitate multi-resolution flow 

map exploration by providing a visual interface to enable real-time parameter adjusting.  

3.4 METHODOLOGY 

In this section, we present our approach to mapping massive origin-destination flow 

data at different spatial scales and generalization levels. The main idea is to treat a flow as 
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a spatial point in 4D space to estimate the density distribution of flows with a kernel density 

model, and then to generalize the generated density surface as several local maxima points. 

The extracted local maxima points in 4D space can be visualized as flow lines on 2D flow 

map. With different smoothing and generalization parameter settings, an interactive flow 

map enable us to observe the flow patterns at different spatial scales and generalization 

levels. This method intends to gain a highly abstraction from the original dataset without 

too much artificial interference. 

  A kernel density estimation is closely similar to a histogram, both of which are 

classical methods to summarize large data points, but the histogram is sensitive to the 

anchor point and bin size. The traditional methods aggregate the origin-destination flow 

data arbitrarily by predefined geographical regions or administrative boundary, which can 

be analog to histogram. Different from the traditional method, the advantage of kernel 

density estimation can preserve the characteristics of the dataset in the data abstraction 

process. 

Figure 2.1 is an illustration of the overall methodology. Specifically, the method 

consists of the three steps: (1) estimating density value by considering flows within its 

neighborhood; (2) selecting local maxima based the result of kernel density estimation and 

visualize extracted local maxima from 4D space as flow lines on flow map; and (3) multi-

scale interactive mapping with a set of different parameters for smoothing and 

generalization. Below is an illustration of our proposed method, and we described the flow 

density estimation (Section 3.4.1) and flow generalization (Section 3.4.2) in detail. Besides, 

we applied this method on a set of flow dataset, which contains a billion of taxi trips, in the 

case study section.  
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Figure 3.1 Illustration of the overall methodology.  

 

3.4.1 Flow based Kernel Density Estimation Model 

Kernel density estimation is a statistical technique for removing spurious data 

variation and estimating a reliable density value of the observed data points (Silverman 

1986). The kernel density estimator defined as following: 

𝑓ℎ(𝑥) =
1

𝑛
∑ 𝐾𝐻(𝑥𝑖 − 𝑥)

𝑛

𝑖=1

 

Where x1, x2, …, xn ∈ 𝑅𝑑 is a set of sample data and xi - x represents the distance 

from data point to test point. K is the kernel function and H is a 𝑑 × 𝑑 bandwidth matrix. 

The kernel function can be Epanechnikov, Triangular, or Gaussian. The choice of the 

kernel function does not change the smoothing result significantly, while the bandwidth 

parameter H is key parameter that determine the flow density estimation.  
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In this study, we applied the kernel density estimation method on the OD trip 

dataset to investigate mobility patterns.  Let T =(T1,T2,…,Tn) be an OD trip dataset has n 

observations. Ti = (ox,oy,dx,dy) is an OD trip, which start from point O ( ox,oy ) to point 

D( dx,dy). In this research, we treat each OD trip as one data point in 4D space.  

The bandwidth matrix induces an orientation is a basic difference between 

multivariate kernel density estimation from its univariate analogue. In this study, we set 

the bandwidth matrix as 4 dimensional positive scalars times the identity matrix, which 

assume the kernels have the same weight in all of the four dimensions.  

𝐻 = (

ℎ 0 0 0
0 ℎ 0 0
0 0 ℎ 0
0 0 0 ℎ

) 

The bandwidth for origin and destination can be different and adaptive to location-

specific characteristics such as population density or location type, which can be 

implemented by setting the values of the bandwidth matrix. In this paper, we use the same 

neighborhood size for origin and destination for a given scale. 

The selection of bandwidth has a strong influence on the result of density estimation. 

Given a dataset, too small bandwidth may cause under smoothed estimation while too large 

bandwidth may cause over smoothed estimation. The most common optimality criterion 

used to select bandwidth such as MISE (mean integrated squared error) or AMISE 

(Asymptotic MISE) are unable to be used directly since the true density distribution of the 

dataset is unknown. The Silverman’s rule is an approximation method based on the 

assumption that the underlying density being estimated is Gaussian, which suggest √𝐻𝑖𝑖 =

 (
4

𝑑+2
)

1

𝑑+4 𝑛
−1

𝑑+4𝜎𝑖   where 𝜎𝑖 the standard deviation of i-th variable of the samples and n is 

the number of the observations. Hence, data-based bandwidth selection methods(Jones, 
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Marron and Sheather 1996, Sheather and Jones 1991) are practical and useful for a wide 

range of data set. 

In our scenario of flow map generalization, the extent of map is an important factor 

for us to choose appropriate bandwidth. It is practical to choose a bandwidth proportional 

to size of map. For example, set h similar to 1/10 of the map length can naturally discover 

flow patterns among regions which area similar to 1/100 of the map areas. Besides, 

different bandwidths represent varies actual meaning in the geographic space. For instance, 

a neighborhood size of 20 meters may be suitable for recognizing a bus stop, while a much 

larger neighborhood size, e.g. 500 meters, maybe needed for large locations such as a 

stadium. Different parameter settings can detect flow patterns at different scales. The 

bandwidth selection is highly depends on the requirement of the applications. 

To sum up, the selection of bandwidth suggested by the data-based bandwidth 

selection method or expert who understand the context of the application are both 

applicable for our method. In this paper, we combine our method with the interactive map 

by fix the ratio between smooth bandwidth and map extent, and then explore flows patterns 

by change the zoom in level of interactive map. Using a small scale to discover general 

flow patterns at a higher level while a larger scale can reveal local flow patterns among 

smaller areas. A user may start from the global level with a large neighborhood size to 

obtain an overview of global patterns and then zoom in on a local region (with the 

neighborhood size scaled down accordingly) to explore patterns with more local details.  

3.4.2  Flow Selection and Generalization 

In traditional map generalization, the cartographer is responsible for selecting the 

most necessary elements and suppressing the unimportant details to reduce data complexity 
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and achieve map clarity and balance. It is a challenging problem to automate such a 

selection process, which is of critical need for dealing with big dataset and supporting 

interactive data exploration across scales. In this paper, we designed a new flow map 

generalization method with local maximal search, which based on the kernel density 

estimation result conducted in section 3.4.1 

The essence of the flow map generalization idea is to generalize the generated 

density surface into several 4D local maxima points, and those 4D points can be visualized 

as flowlines on 2D flow map. The generalization process need to (1) preserve overall 

patterns by selecting important and representative flows and (2) maintain the clarity of flow 

map by only selecting a small set of flows that are not too close to each other. For the first 

objective, we consider a flow with higher smoothed density more important. To achieve 

the second objective (i.e., avoiding the cluttering problem), we ensure that selected flows 

are not within each other’s neighborhood, defined by a search radius. Imagine that the first 

step of smoothing generates a smoothed density surface in 4D spaces, where the peaks 

represent a local cluster (or hot spot) of flows close to each other. The selection method 

will ensure that all selected flows represent local peaks. We adopted a greedy search 

strategy to achieve to achieve these objectives.  The selection algorithm is presented below 

(Algorithm 3.1). 

 

Algorithms 3.1. Flow Selection 

 

Input:  Smoothed flows T= {𝑇𝑓
′}; 

            Neighborhood search radius r; 

 

Output: A set of selected flows S={Ts}; 

 

Steps: 
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        S = Ø; 

        FOR EACH Flow 𝑇𝑓
′ ∈ T: 

                   isLocalMax = false; 

                   currentFlow = 𝑇𝑓
′; 

                  WHILE  (isLocalMax == false) 

                             neighborFlows  = searchFlowNeighbor(currentFlow, r); 

                             maxFlow = findMaxFlow(neighborFlows); 

                             IF  (maxFlow == currentFlow) 

                                        IF  currentFlow.selected = false 

                                                         𝑆 = 𝑆 ∪ {𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐹𝑙𝑜𝑤}; 

                                                  currentFlow.selected = true; 

                                        END IF; 

                                        isLocalMax = true; 

                             END IF; 

                             ELSE 

                                       currentFlow = maxFlow; 

                             END ELSE; 

                  END WHILE; 

         END FOR; 

 

The method searchFlowNeighbor (flow, r) returns a list of neighboring flows for a 

given flow. Neighborhood search can be supported efficiently by a spatial index such as 

R*- tree.  The method findMaxFlow(neighborFlows) returns the flow with the highest 

smoothed value within a list of flows. For each original flow, the selection algorithm starts 

from the flow, move to the maximal flow within its neighborhood, then find the maximal 

flow within its new neighborhood, until the current flow is the local maximum within its 

flow neighborhood. This way, a representative flow is identified for each original flow. 

The only parameter in this process, i.e., the search radius r, controls the pattern resolution 

while the smoothing bandwidth (in the smoothing step) controls the pattern scale. A larger 

search radius select less flows (by jumping over small peaks to reach higher peaks) and 

gain a more simplified flow map with less details. However, the search radius should vary 

within a certain range according to the scale. Otherwise, the map may become too detailed 

or too empty.   
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3.4.3 Interactive Multi-Scale and Multi-Resolution Flow Mapping 

In this paper, we proposed an exploration for an interactive multi-scale flow map. 

The idea is setting different smooth bandwidth and search radius according to scale. 

Different smooth bandwidth and search radius can gain patterns at different resolution, then 

we employ human interaction to switch the flow map between scales.  For example, using 

left flow map in Figure 3.4 as global flow map and using the right map in Figure 3.6 as a 

zoom in flow map. A user may need to understand the general patterns at a small scale, and 

then zoom in to a local area to get more details. 

Combining the flow kernel density estimation and the flow selection steps, there 

are two key parameters: the smoothing bandwidth and the search radius, which together 

controls the pattern scale (from local flow patterns to global flow patterns) and pattern 

resolutions (how much details to map for a certain pattern scale). Intuitively, a small 

smooth bandwidth and a small search radius can capture local flow patterns with more 

details (i.e., high spatial resolution). However, the flow map may have the cluttering 

problem when too many flows selected. Therefore, given a certain scale, it is a tradeoff 

between map clarity and map resolution. Normally, the smoothing bandwidth and search 

radius highly depends on the dataset. The selection of smoothing bandwidth and search 

radius is according to the interactive visual experience and data distribution. Similar to the 

selection of bandwidth in kernel density estimation, too large or too small bandwidth may 

cause under smoothed or over smoothed problem. The search radius may affects the 

represented flow selection, the local maximal flow but relatively low value compare to 
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nearby local maximal flow will be ignored with larger search radius. It is practical to 

implement real-time interactive software to let user determine these two parameters. 

 

3.5 CASE STUDY 

3.5.1 Data: NYC Taxi Trips 

The new York taxi dataset we used in  this study covers all taxi trips of the yellow 

cabs operating in New York City from Year 2009 through 2015, which contains more than 

one billion (1,179,731,355) taxi trips. In this case study, we applied our proposed method 

on New York taxi dataset to investigate the human mobility patterns.  

Taxi trips are valuable sensors of city life (Ferreira et al. 2013), which provide 

insights into many aspects of urban, from transportation planning to human mobility.  In 

this case, every taxi trip has a time stamped origin GPS point and a destination GPS point, 

which also carries the information about the moving trends. The main challenge of 

analyzing this dataset is the volume of the data. We partition the study area into 1321*1940 

grids, with each grid size is 5 meters. Two maps in Figure 3.2 show the complexity and 

distribution of the original dataset. The left map in Figure 3.2 shows net flow volume (in – 

out) for each grid, and the right map in Figure 3.2 shows sum flow volume (in + out) for 

each grid.  Figure 3.3 shows origins and destinations of a subset of taxi trips. 

It is impossible to visualize the flows in the dataset individually. The flow map 

becomes extremely cluttered even for this relative small (hundreds) sample data set, and it 

is difficult to discover any insights on the movement patterns of people. The left map in 

Figure 3.2 shows the net flow volume of all the origins and destination points. The locations 

in blue color recognized as transportation hubs such as: Penn Station, Grand Central and 
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other subway stations, since taxi is a supplement transportation for other public transit. The 

downtown area and convention center with red color represent the main destination for 

people in the busy morning. 

 

Figure 3.2 Distribution of the origin and destination of taxi trips. The left map shows net 

flow volume (in – out) for each grid, and the right map shows sum flow volume (in+out) 

for each grid. 

 

It is impossible to visualize the flows in the dataset individually. The flow map 

becomes extremely cluttered even for this relative small (hundreds) sample data set, and it 

is difficult to discover any insights on the movement patterns of people. The left map in 

Figure 3.2 shows the net flow volume of all the origins and destination points. The locations 

in blue color recognized as transportation hubs such as: Penn Station, Grand Central and 
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other subway stations, since taxi is a supplement transportation for other public transit. The 

downtown area and convention center with red color represent the main destination for 

people in the busy morning. 

Despite the midtown area, it is hard to tell which area has more arrival than 

departures. (More departures locates at the avenue and more arrivals locates at the streets.) 

Location measure is an efficient complimentary way to understand O-D flow data, but it 

also has the problem of scale. In Figure 3.4, the upper map shows the smoothed locational 

measure and highlights hotspot for departures (in blue) and arrivals (in red). Compare to 

the right map, the left map use 100 meters as the smooth radius for kernel smoothing, and 

the right map use 300 meters as the smooth radius. These two maps demonstrate different 

locational measures at various spatial scales. These two maps also work as the background 

to verify the flow maps produced by our method in the following sections. 

3.5.2 Flow Map Generalization 

Figure 3.5 is the generalized flow map within this study area. 80 flows in the map 

represent the most typical flow patterns in the workday morning. As we use the uniform 

model, every O-D flow count as weight 1 in the flow density estimation model. To simplify, 

the strongest flow in the map means there are 532,264 taxi trips between two circles with 

300 meters radius during morning hour in past seven years.  

3.5.3 Selection Parameter Configuration 

From the flows with smoothed value, we use the flow selection algorithm presented 

in Section 3.4 to select local maximal flows. To examine the sensitivity of the selection 

results to the search radius configuration, the selection results with search radius of 200 

meters, 300 meters and 300 meters are shown in Figure 3.7 and Figure 3.8. Comparing 
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these three maps, we can see that: (1) larger search radius selects less flows and improve 

the clarity of flow map, because larger search radius can jump out from the local maximum 

which the value is relatively low. 

 

Figure 3.3 Illustration of scale problem. Location measure maps at different spatial scales. 
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Figure 3.4 Generalized Flow Map for 110,076,167 taxi trips, which occurs on workday 

morning (7am – 9am) from 2009 to 2015. 
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Figure 3.5 Generalized Flow Map for taxi trips, which occurs on Saturday (6pm – 7pm) 

from 2009 to 2015. 

However, it will lose more details of the flow patterns. (2) The selected flow set by 

larger search radius is the subset of the selected flow set with smaller search radius. In our 
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interactive flow map design, we provide users an interface like a scroll bar to input the 

search radius, and the flow map can real time response to user’s input. There is no optimal 

solution for the search radius selection, and it totally depends on the user’s preference, 

information abundance or map clarity. 

 

Figure 3.6 Flow map for downtown area. Smooth radius is 100 meters and selection radius 

is 200 meters. 

 

Figure 3.7 Flow map for downtown area. Smooth radius is 100 meters and selection radius 

is 200 meters. 



49 

 

Figure 3.8 Flow map with 100-meter smooth radius and 300-meter selection radius. 

 

3.5.4 Multi-scale Interactive Flow Mapping 

Figure 3.9 has two flow maps for Manhattan area as we showed before. In the left 

map, we use 300 meters as the smooth bandwidth and 300 meters as the search radius for 

select reprehensive flows.  There are 80 flows which flow value greater than 8000 shown 

in the left map. In right map, we use 100 meters as the smooth bandwidth and 200 meters 

as the search radius for select flows. The right flow map is a zoom in perspective for the 

region selected in the left map. Comparing these two maps, the patterns are similar, but the 

right flow map carries more detailed by zoom in to this region. 

 

3.6 CONCLUSION 

This paper presents a multi-scale flow mapping method which is scalable for 

mapping large origin-destination flow data at different scales. It can be used for interactive 

analysis of flow patterns. The key components are a flow map generalization method based 
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on kernel density estimation. The smoothing method requires the input parameter to define 

kernel bandwidth, which supports the implementation of multi-scale flow map. The 

configuration of kernel bandwidth is critical and influences the smoothing results 

dramatically. Different bandwidths reveal the patterns in different scales. Larger bandwidth 

can discover general patterns from large area to area, while smaller bandwidth can discover 

specific patterns from small area to area.  

 

Figure 3.9 Flow map of taxi trips in the Manhattan area at different spatial scales. The right 

flow map is a zoom in perspective for the region selected in left flow map, only the flows 

which origin or destination located within this area showed. 
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The selection method is to find a subset of flows that can represent the major flow 

patterns in the data. The parameter of search radius determines the extent of map 

generalization: larger search radius selects less reprehensive flow and gets clearer flow 

map. Meanwhile, it will lose more details and resolutions of flow patterns. We carried out 

a case study which is the taxi trips in New York City to evaluate the usefulness of our 

proposed approach. Results show that the proposed method can effectively discover 

patterns in different scales and resolutions. 

Future work is needed to better balance and automatically determine the appropriate 

level of flow smoothing bandwidth and selection search radius to optimize the flow map 

layout. This will require both intelligent algorithms and interactive human inputs. The 

effectiveness of the proposed approach needs further implementation with interactive 

software. Of course, supporting innovative user interactions will add additional benefits 

and will be explored in future work.  
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CHAPTER 4 URBAN EVENT DETECTION WITH BIG DATA OF TAXI 

OD TRIPS – A TIME SERIES DECOMPOSITION APPROACH 

 

4.1 ABSTRACT 

Big urban mobility data, such as taxi trips, cell phone records, and geo-social media 

check-ins, offer great opportunities for analyzing the dynamics, events, and spatiotemporal 

trends of the urban social landscape. In this article, we present a new approach to the 

detection of urban events based on location-specific time series decomposition and outlier 

detection. The approach first extracts long-term temporal trends and seasonal periodicity 

patterns. Events are defined as anomalies that deviate significantly from the prediction with 

the discovered temporal patterns, i.e., trend and periodicity. Specifically, we adopt the STL 

approach, i.e., seasonal and trend decomposition using LOESS (locally weighted 

scatterplot smoothing), to decompose the time series for each location into three 

components: long-term trend, seasonal periodicity, and the remainder. Events are extracted 

from the remainder component for each location with an outlier detection method. We 

analyze over a billion taxi trips for over seven years in Manhattan (New York City) to 

detect and map urban events at different temporal resolutions. Results show that the 

approach is effective and robust in detecting events and revealing urban dynamics with 

both holistic understandings and location-specific interpretations. 

 



53 

4.2 INTRODUCTION 

Big urban mobility data, such as taxi trips, cell phone records, and geo-social media 

check-ins, offer great opportunities for the analysis and understanding of the dynamics, 

events, and spatiotemporal trends of the urban social landscape. Such data can potentially 

enable both real-time monitoring and long-term analysis of geo-social dynamics. However, 

there is a lack of effective methodologies to characterize urban patterns, quantify trends, 

and simultaneously detect events or anomalies from big and long-term urban mobility data. 

Previous research on urban mobility data analysis includes the detection of social events 

such as human gatherings with a density analysis of mobile phone usage (Calabrese et al. 

2010, Candia et al. 2008), the examination of responses to earthquakes from twitter data 

(Sakaki et al. 2010), and the analysis of land use transition and anomalies with taxi 

trajectories (Pan et al. 2013). Existing methods for urban event detection do not usually 

separate trends from periodicities, so the event detection process can be influenced by 

hidden trend changes. Temporal trend and periodicity often change over space and time 

and urban dynamics may exhibit patterns also occurring at different spatial scales and 

temporal granularities. 

It is a challenging problem to effectively extract long-term trend, periodicity, and 

events from high-resolution and big urban mobility data, which may have billions of GPS 

points and trips over years. Compared with the commonly used mobile phone data and 

social media check-ins, taxi trip data have higher resolutions in both geographic space 

(about 5 m accuracy) and time, which has the potential to detect events with high accuracy. 

Cell phone data has a much lower spatial resolution, depending on the density of cell phone 

towers, normally ranging from hundreds of meters to kilometers. Social media data, on the 
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other hand, has a low and uneven temporal resolution, where some users may send multiple 

tweets within a few minutes while some other users only send one tweet in several days. 

In this research, we present a new approach for detecting and mapping urban events 

with big data of taxi OD trips based on time series decomposition and outlier detection. 

The approach can distinguish different temporal patterns (e.g., long-term trends and 

seasonal periodicity), define and detect events as anomalies deviating from the patterns, 

and map the dynamics of events over space and time with high accuracy and resolution. 

Specifically, our approach uses the STL method (Cleveland et al. 1990) i.e., Seasonal and 

Trend decomposition using LOESS (locally weighted scatterplot smoothing), to 

decompose the time series for each location into three components: long-term trend, 

seasonal periodicity, and the remainder. Urban events are extracted with an outlier 

detection method from the remainder component, which has removed both seasonal 

periodicity and long-term trend. We analyze over a billion taxi trips for over seven years 

in Manhattan (New York City) to detect and map urban events at different temporal 

resolutions. Results show that the approach is effective and robust in detecting events and 

revealing urban dynamics with both a holistic understanding and location-specific 

interpretations. 

 

4.3 RELATED WORK 

Event or anomaly detection from spatial-temporal data has been extensively studied, 

such as detecting extreme precipitation events (Wu et al. 2010), outliers in meteorological 

data (Lu and Liang 2004) and agriculture data (Lu, Carbone and Gao 2017), disease 

outbreaks (Kulldorff 1997) terrorism outbreaks (Guo et al. 2012), and spatiotemporal 
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events in social media. Most of existing methods for spatiotemporal event detection are 

based on density-based clustering or spatiotemporal scan statistics, which do not take into 

account long-term temporal trends and periodicity. Another group of methods for event or 

anomaly detection in time series analysis is based on a regression model, which estimates 

its parameters by data fitting and extracting anomalies from the residuals, i.e., the 

difference between the observed value and the value forecast by the regression model 

(Bianco et al. 2001). Model-based approaches in general are confirmatory analyses and 

therefore cannot discover unknown forms of patterns and may suffer from the over-fitting 

problem. 

Unlike model-based approaches, there are numerous methods for exploratory time 

analysis. The simplest one is to use a moving average window to smooth the time series 

and detect long-term trends, which does not explicitly recognize periodicity patterns and 

anomalies. To detect periodicity, the Discrete Fourier Transform (DFT) or Wavelet 

Transform methods can be used, which however cannot reveal long-term trends or 

anomalies. To recognize and separate different types of patterns in a time series, 

decomposition approaches are often used. The STL method (Cleveland et al. 1990), i.e., 

seasonal and trend decomposition using LOESS (locally weighted scatterplot smoothing), 

is a data driven exploratory method that can decompose a time series into trend, seasonality 

(periodicity), and remainder components. Different applications of STL may focus on 

different components, e.g., climate studies may focus on exploring the trend and 

economists are often interested in the business cycle (seasonal component). The focus of 

our research is on the remainder component, which can be used to detect events. For 

example, Chae et al. (Chae et al. 2012) integrate thematic modeling and STL to visualize 
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social media anomalies and Hafen et al. (Hafen et al. 2009) use STL to monitor health data 

and detect disease outbreaks. Since STL is essentially a smoothing-based approach, it is 

not suitable for detecting the change point (Verbesselt et al. 2010b, Verbesselt et al. 2010a). 

Big mobility data, such as geotagged social media, mobile phone usage and taxi 

trips, have become increasingly available and offer unprecedented opportunities to 

understand the geographic and social dynamics (Liu et al. 2015). Social media check-ins, 

often with real-time data feeds, have been widely used in event detection (Chae et al. 2012, 

Dong et al. 2015a, Sakaki et al. 2013, Sakaki et al. 2010). Recently, there has been an 

increasing interest in exploring both the temporal and spatial dimensions in social media 

data to extract and understand events at different spatial-temporal scales (Chen and Roy 

2009, Dong et al. 2015a, Rattenbury et al. 2007). Mobile phone data have also been widely 

used in urban activity monitoring (Calabrese et al. 2010, Calabrese et al. 2014, Ratti et al. 

2006), event detection (Candia et al. 2008, Dong et al. 2015b, Traag et al. 2011),  

population density mapping (Deville et al. 2014), and tourism management (Ahas et al. 

2007, Ahas et al. 2010). A more complete review on mobile phone data analysis can be 

found in Calabrese, Blondel, and Ferrari (Calabrese et al. 2014). 

Mobile phone and social media data have the advantage of high penetration and 

demographic coverage. However, social media and mobile phone data have uneven and 

often low spatiotemporal resolutions. For example, the Call Detail Record (CDR) data, a 

type of mobile phone data, records the user location when a call or text message is made 

or received, and the location recorded is the location of the cell tower. Therefore, the spatial 

resolution of mobile phone data are not very high and vary with the distribution of cell 

towers, ranging from hundreds of meters to kilometers. To improve the usefulness of 
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mobile phone data, a number of approaches have been developed that either use 

probabilistic location inference models to enhance location accuracy (Traag et al. 2011) or 

combine multiple data sources to assist application-specific analyses (Calabrese et al. 2011, 

Liu et al. 2015, Sagl et al. 2012). 

Taxi trip data have high spatiotemporal resolution and are suitable for extracting 

urban events with high accuracy (Calabrese et al. 2010, Zhang et al. 2015). Taxi trip data 

can be grouped into two kinds: trajectory data (with actual driving routes) and OD trips 

(with only the origin and destination of each ride). Scholz and Lu (Scholz and Lu 2014) 

present a method to analyze activity hot spots of urban activities with massive trajectory 

data. Their method defines an activity hot spot as a location with an extremely large number 

of activity instances during a certain hour and assumes that the theoretical distribution of 

activity instances across the study area and through the study time is completely random. 

As such, the method does not take into account either temporal trends or periodicities in 

defining events or hot spots. Zhang et al. (Zhang et al. 2015) introduce an event detection 

method that can consider temporal periodicity (i.e., fluctuation patterns repeated in time), 

which uses the Discrete Fourier Transformation (DFT) to find the length of periodicity and 

then define events as deviations from the periodicity. This approach does not consider the 

long-term temporal trend of activities, particularly for very long time series. For example, 

taxi pickups or drop-offs at a specific location may gradually (or quickly) increase or 

decrease if the land-use type of the location changes, which should also be considered in 

event detection other than periodicity. 

Different from existing approaches, our approach considers both long-term trends 

and seasonal periodicities in defining events with big spatial mobility data. We use the STL 
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method (Cleveland et al. 1990) to decompose time series into three components (long-term 

trend, seasonal periodicity, and the remainder) and extract events from the remainder 

component. 

 

4.4 DATA 

The data used in this research cover all taxi trips of the yellow cabs operating in New 

York City for seven years, from 2009 through 2015. The data has a total of over one billion 

(1,179,731,355) taxi origin-destination (OD) trips. Yellow cabs represent the majority of 

taxi cars in the Manhattan area for the seven-year period. The green cabs started operation 

in August 2013 and are only permitted to pick up passengers to the north of the 110th Street 

(northern Manhattan) or in the outer-boroughs of New York City. Other riding-share 

options such as Uber and Lyft became available after 2015. This big data set of taxi trips 

can provide comprehensive information for understanding urban dynamics. Each taxi OD 

record has a number of fields, including pick-up and drop-off dates and times, pick-up and 

drop-off locations, trip distance, itemized fares, rate type, payment type, and passenger 

count. In this study, we primarily focus on the location and date/time of pickups and drop-

offs. 

Figure 4.1 shows a density map of taxi pick-ups in the Manhattan area, which is 

divided into a set of grid cells (each cell is 20 by 20 m in size) and the total count of taxi 

pick-ups (for seven years) for each cell is mapped. To showcase the time series at different 

scales, one specific grid cell (200 West Street, the address for the Goldman Sachs Tower) 

is selected and its time series at three temporal resolutions (i.e., weekly, daily and hourly) 

are shown in Figure 4.2. As seen in the plots, temporal patterns are complex and can 
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involve both long-term trends and periodicities (repeated patterns) at various scales, as well 

as noise and outliers. The Goldman Sachs Tower was completed and put to use at the end 

of 2009, which completely changed the overall time series. We can also notice that there 

was an anomaly in mid-September of 2010, visible in the daily and hourly time series plots. 

Existing event detection methods may consider periodicities but often ignore the overall 

trend (e.g., declining, increasing, or more complex changes), which is a severe limitation 

particularly for event detection with long-term time series that span across many years. 

 

Figure 4.1 Taxi pick-up counts per grid cell (20m*20m) for seven years in the Manhattan 

area. 
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Figure 4.2 The time series for the grid cell at 200 West Street (Goldman Sachs Tower), at 

three different temporal resolutions, i.e., weekly, daily, and hourly. 
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4.5 METHODOLOGY 

In this article, we propose a new approach for urban event detection with billions 

of taxi trips based on the STL method (Seasonal and Trend decomposition using Loess) 

(Cleveland et al. 1990) and an outlier detection method. The approach consists of three 

steps.  

First, partition the study area into a set of grid cells (e.g., 20 by 20 m grid cells as 

in the case study) and construct a time series for each grid based on the taxi pickups or 

drop-offs in the neighborhood (e.g., a 50 m buffer) of each cell over time. 

 

Figure 4.3 An illustrative example of time series decomposition with monthly taxi drop-

offs over seven years (2009 – 2015) for a selected location in Manhattan, NYC. From the 

top to the bottom are: (1) original data; (2) the seasonal periodicity component, (3) the 

long-term trend component; and (4) the remainder component, from which anomalies 

(events) will be extracted 
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Second, decompose each time series into three components: long-term trend, 

seasonal periodicity, and a remainder component, using the STL method (Figure 4.3). This 

decomposition step is critical because events in time series are often embedded in and 

complicated by long-term trends and seasonal periodicities (here “seasonal” is a broad term 

that represents repeated patterns of any time interval). 

Third, extract anomalies (events) with the remainder component, which has 

removed the long-term trend and seasonal periodicity. 

Figure 4.3 shows an example of the result, which is the time series decomposition 

for monthly taxi drop-offs at a specific location, using the STL (Seasonal and Trend 

decomposition using Loess) method. Without decomposition, it is very difficult to quantify 

anomalies and detect events from the original time series. Events (anomalies) become 

much clearer in the remainder component after removing the trend and periodicity 

components. For each data point in the remainder time series, our approach calculates a 

modified Z-score to measure its potential as an event. The following subsections will 

present the approach in detail.  

 

4.5.1 Time series decomposition 

We use the STL method to decompose a time series into three components: trend, 

seasonality (periodicity), and remainder, each representing one type of the underlying 

patterns. The trend component describes a long-term change pattern in the data. The 

seasonality of a time series is a pattern that regularly repeats with a fixed interval. The 

remainder component is essentially the remaining variation in the data that cannot be 

explained by the seasonal and trend components. The decomposition process allows the 
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user to specify the amount of variation in the trend and seasonal components, and also 

allows specifying the length of periodicity, which is useful for analyzing time series of 

different temporal resolutions. The decomposition outcome can be expressed with an 

additive model: Yv=Tv+ Sv+ev , where Yv is the original time series (data) for location v, 

Tv , Sv , and ev represent the trend, seasonal and remainder components, respectively. Tv+ 

Sv is referred as the deterministic or predictable component. 

The overall structure and steps of the STL method is shown in Figure 4.4, with an 

inner loop nested inside an outer loop. The inner loop has six steps to iteratively fine-tune 

the trend and seasonal components. Each run of the outer loop updates the remainder 

component and calculates a set of robustness weights, which are used in the next set of 

inner loop iterations to reduce the effects of extreme values or outlier observations. The 

STL method is mainly based on the LOESS method, which is a non-parametric regression 

model based on a k-nearest-neighbor smoothing (Cleveland 1979). The LOESS model is 

used at multiple places in the STL method, including steps 2, 3, and 6. LOESS can be based 

on different polynomial models such as a linear or a quadratic model. In our approach, we 

use the linear model and the main parameter for LOESS is the size of the smoothing 

window. In the iterative process, a robustness weight for each data point is iteratively 

learned, to reduce the influence of outlier values by assigning them relatively small weights 

in fine-tuning trend and periodicity. Robustness weights for all data points are set to 1 at 

the start point and will be updated in the outer loop according to the remainder component. 

The LOESS process in the STL method is essentially a type of k-nearest neighbor kernel 

smoothing in a temporal context. 
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Figure 4.4 Overview of the time series decomposition with STL. Yv is the input time series. 

Tv, Sv, and Rv represent the outputs: trend, seasonal, and remainder. Split (Np) is to split 

the time series into Np subseries. Loess (Ns) denotes a locally weighted smoothing with a 

moving window of size Ns. MoA(Np) denotes a moving average smoothing with a window 

of size Np.  
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The trend component Tv is initially set to a vector of zeros, which will be updated 

in subsequent iterations. After Step 1 (Detrend) of the inner loop, the detrended time series 

(i.e., the original time series minus the trend component) is split into Np subseries, where 

Np is the number of observations per cycle. For example, if the input data Yv is a time series 

of hourly data for seven years with assumed weekly periodicity, then Np = 168 because 

there are 168 hours per week, and each subseries will be a time series of 365 values because 

there are 365 weeks in seven years. In other words, each subseries represents the 

observational data for a specific hour within a week and thus has one value for each week. 

Similarly, if the input is daily data with weekly periodicity, then Np = 7 and each subseries 

has 365 values. In Step 2 (cycle-subseries smoothing), each subseries is smoothed with 

LOESS separately and then the set of subseries are combined to one time-series again (Cv). 

We will provide detailed discussions on parameter configuration in Section 4.5.3. Figure 

4.5 shows the three output components of STL for the daily time series of taxi pickups for 

seven years (only year 2015 is shown due to limited space) at 200 West Street (i.e., 

Goldman Sachs Tower). 

 

4.5.2 Event Detection 

After the decomposition of the time series for a grid cell, each value Rt in the 

remainder component is the difference between the observed value Yt and the expected 

value (i.e., the trend value Tt plus the seasonal value St) for a specific time t. To test the 

significance of Rt, we again split the remainder component into Np groups (similar to 

Split(Np) after Step 1 in Figure 4.4). In other words, each group consists of the remainder 

values for the same time but different cycles. 
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Figure 4.5 Three output components of the STL time series decomposition for the daily time 

series data of seven years at 200 West Street (Goldman Sachs Tower), with Np =7, Ns=53, Nt = 

11, No=20, and Ni=1.  Only year 2015 is shown here due to limited space.  



67 

 

Figure 4.6 The modified z-score values and detected top events at 200 West Street 

(Goldman Sachs Tower) using the daily time series of taxi pickups for seven years. Only 

2015 is shown in the plot due to limited space. 

 

For example, if the input data is daily observational values and Np = 7 (i.e., weekly 

periodicity), the remainder values will be divided into seven groups, where each group has 

the remainder values for the same week day, e.g., Saturday. As such, an event is evaluated 

against those remainder values for the same weekdays. 

We use two alternative methods to extract events from the remainder component. 

The first method is based on the Tukey’s range test, with which outliers (events) in the 

remainder component are those values that are outside the range:[𝑄1 − 𝑘(𝑄3 − 𝑄1), 𝑄3 +
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𝑘(𝑄3 − 𝑄1)],, where Q1 and Q3 are the lower and upper quartiles of the group, and k usually 

is between 1.5 and 3. This test can identify events but does not provide a quantitative 

measurement of events. To more accurately quantify events, we also calculate a modified 

Z-score for each remainder value in the group. The modified Z-score (Mi) for a remainder 

value Ri in a group is computed as: Mi = 0.6745*(Ri – μ)/MAD, where μ is the median of 

the group and MAD is the median of the absolute deviation to the median. Figure 4.6 shows 

the modified z-scores for the 2015 data as shown in Figure 4.5. There are 10 major events 

with Mi> 10 for the year, which not only covers all the major holidays but also includes 

unusual events such as the Blizzard of January 26–27, 2015 and another event on Friday, 

April 3. 

 

4.5.3 Parameter configuration 

The STL method has three important parameters: (1) Np – the number of observations 

(or the length) of a seasonal cycle; (2) Ns – the size of the smoothing window for LOESS 

in step 2 (cycle-subseries smoothing); and (3) No – the number of iterations for the outer 

loop. Other parameters can be determined accordingly or using a default setting, such as 

Ni – the number of iterations of the inner loop, and Nt – the smoothing window size for 

LOESS in step 6 (trend smoothing). 

Parameter setting is related to both the resolution of the time series (e.g., hourly, daily 

or weekly) and the periodicity cycle length (which can be determined with domain 

knowledge or by a data-driven method such as the Discrete Fourier Transform). For 

example, the taxi data can be transformed to hourly time series, daily time series or weekly 

time series. There are also a number of well-known periodicity cycles that exist in the data, 
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such as daily and weekly patterns. Parameters will be set according to the data resolution 

and the periodicity cycle to be captured. In the following subsections, we will discuss 

parameter configuration in more detail. To facilitate the discussion of parameter 

configuration and case studies in Section 4.6, we define three scenarios here: 

1. Scenario 1: taxi data aggregated to hourly time series, assuming both daily and 

weekly periodicity;  

2. Scenario 2: taxi data aggregated to daily time series, assuming weekly periodicity 

(results in Figure 4.5 and Figure 4.6 are from this scenario); and  

3. Scenario 3: weekly time series with assumed annual periodicity. 

 

4.5.3.1 Parameter Np 

Np is the number of observations (or the length) of a periodicity cycle, which can 

be either set based on domain knowledge or discovered with a periodicity test method such 

as the Discrete Fourier Transform (DFT). In our case study, for Scenario 1 (where the input 

data is hourly time series), we set Np = 168 since one week has 168 hours, which can 

capture both daily and weekly periodicity. Similarly, we set Np = 7 for Scenario 2 since 

the data is daily and one week has 7 days. For Scenario 3, Np = 52 for the weekly data with 

assumed annual periodicity. 

 

4.5.3.2 Parameter Nt and Ns 

STL is flexible to allow different levels of variation in the trend and seasonal 

components, which can be controlled by the parameters Nt (the smoothing window size for 

the trend component) and Ns (the smoothing window size for seasonal periodicity). The 
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choice of these two parameters in practice is based on the understanding of which variation 

in a time series should be considered seasonal periodicity and which should be in the trend 

component. For example, an “event” that lasts for a long time (e.g., a few months) may be 

viewed as trend, in which case Nt should be a set to a relatively small value so that the trend 

component captures more variation. With a larger Nt, the trend becomes smoother and 

more variation goes into the seasonal and remainder components. 

Similarly, a larger value of Ns will produce a smoother seasonal component and 

capture less variation. For both Scenarios 1 and 2, the main seasonal periodicity is weekly 

and we set Ns= 53 to smooth the seasonal component with a one-year window (since there 

are 52 weeks in one year and Ns needs to be an odd number). Ns should not be less than 7 

for the smoothing process to be meaningful. Once Np and Ns are set, the value of Nt can be 

set according to the following inequality (Cleveland et al. 1990): 

𝑁𝑡 ≥
1.5𝑁𝑝

1 − 1.5𝑁𝑠
−1

 

In our case studies, for Scenario 1, Np = 168, Ns = 53, and Nt = 259. For Scenario 

2, Np = 7, Ns = 53, and Nt = 11. For Scenario 3, Np = 52, Ns = 7 (this is the smallest value 

possible for this parameter), and Nt = 99. 

 

4.5.3.3 Parameter No  

The number of iterations for the outer loop, No, is important for fine-tuning the 

robustness weights, which reduces the influence of noise and outliers on the estimation of 

the trend and seasonal components. No should be large enough to allow the estimation of 

the trend and for seasonal components to converge. We set No = 20 based on experiments 

with a convergence test. When set, the number of runs of the inner loop Ni = 1 since No = 
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20 is large enough (Cleveland et al. 1990). The outer loop iterations essentially are to make 

sure that the remainder component reliably captures outlier values. 

 

Figure 4.7 The remainder component of taxi arrivals at 11 pm on the New Year’s Eve, 

2013. 
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4.6 CASE STUDY AND RESULTS 

To evaluate the effectiveness of our approach, we analyzed the big dataset of taxi 

trips as introduced in Section 4.4, which has over one billion (1,179,731,355) taxi OD trips 

in Manhattan (New York City) for seven years (2009—2015). On average, each day has 

about half a million taxi-trips with accurate location (about 5 m accuracy) and time (in 

second). We divide the study area into 20 by 20 m grids, altogether 137,046 grid cells. 

For each grid cell, we find all taxi arrivals/departures within a 50 m buffer to the grid 

center and construct three different types of time series for the three scenarios (see Section 

4.5), respectively. For each time series, our approach decomposes the data into three 

components: long-term trend, seasonal periodicity, and the remainder. While both the long-

term trend and seasonal periodicity are interesting, in this research we focus on detecting 

events from the remainder component. Events can be either an unusually high 

concentration of taxi arrivals/pickups (called positive events) or an unusually low volume 

of arrivals/pickups (called negative events). 

Our approach accurately detected a collection of interesting events at different spatial 

and temporal scales (with the three different scenarios), ranging from regional events such 

as festivals, hurricanes and snowstorms to local events such as exhibitions and football 

games. To help understand and evaluate the detected events, below we present a number 

of representative examples. Figure 4.7 shows an overview map of the remainder values 

(one for each grid) at 11 p.m. on 31 December, 2013. Based on these remainder values, 

events will be detected. With the map, we can identify the hot spots of taxi arrivals/drop-

offs, i.e., locations with higher-than-expected arrivals (represented by red colors) and 

locations with unusually low volume of taxi arrivals (in blue) on New Year’s Eve. It is 
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interesting to see that the area (in blue) to the south of the Central Park was receiving fewer-

than-expected taxi arrivals at the time. We further checked other sources of information 

and found that the area was indeed under traffic control and thus of limited access for taxi 

cars (or any other vehicles) at that moment for New Year’s Eve, due to the annual 

celebration at Time Square. 

Figure 4.8 shows the locations with 300 or more extracted events in the hourly time 

series over the seven years. Among the 137,046 grids for the whole area, only 1,277 grids 

have a frequency of events greater than 300. Further examination of these locations, we 

find that most of them are the landmarks in NYC, such as Museums and Train Stations. 

However, we also find locations that are less “well-known”, e.g., Pier 92/94, and the 287 

Gallery, which often hold events and gatherings. 

 

Figure 4.8 Locations with most events in seven years (2009 - 2015) 
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Further analyses of the characteristics and temporal distribution of the events for 

each location can help better understand the events and infer the land use type or function 

of the location. For example, Figure 4.9 shows the temporal distribution of the events that 

occurred at Little Italy (near Low Manhattan). Please note, these week-long events were 

extracted from a weekly time series, and it classified trends in hourly and daily time series 

decomposition. In the chart, the blue color represents negative events (when there were 

fewer taxi arrivals than normal), the red color represents positive events, and the size of 

the circle represents the significance of the event. We can immediately see that every year 

in September there is a big event in Little Italy, from which we later learned that there is 

indeed a Feast of San Gennaro at Little Italy in mid-September every year, when the area 

will be blocked off and therefore offers no taxi access for arrivals. 

 

Figure 4.9 Temporal distribution of the events happened at the Little Italy. There is Annual 

Feast of San Gennaro at Little Italy every middle September. The blue color represents 

events which have fewer taxi arrivals than normal, and red represents the opposite. The 

size of the circle represents the significance of the events. 



75 

4.7 CONCLUSIONS AND FUTURE WORK 

This article presents a new approach to urban event detection and analysis with big 

data of taxi trips. Built upon the STL time series decomposition method, our approach 

decomposes a time series (one for each location) into three   components: the trend, season 

periodicity, and the remainder. Events are then detected from the remainder component 

alone, separated from the trend and periodicity. As such, an event is defined as a remainder 

value that is significantly different from its expected value based on the discovered trend 

and periodicity. Previous event detection approaches either assume a random distribution 

(i.e., does not consider trend or periodicity) or only take into account periodicity (but do 

not consider the long-term trend). With the case study result, as shown in Sections 4.5 and 

4.6, we have shown that the approach is effective in detecting events and revealing urban 

dynamics with both a holistic understanding and location-specific interpretations.  

While this article primarily focuses on the remainder component and event 

detection, the discovered trend, periodicity and events can be used for further analysis of 

urban patterns such as land use functions, dynamics and changes. The approach can also 

be used for analyzing other mobility data such as mobile phone data and social media 

activities. Future work may also examine the origin-destination relationship and analyze 

the geographic impacts of specific events. In this article, the spatial resolution (i.e., grid 

partitioning) is fixed. It will be very interesting to extend the approach further to 

automatically detect events of different geographic sizes and temporal lengths. While the 

data being used in this study is not a real-time data feed, it is possible to extend the method 

to enable real-time event detection based on immediate past or historical records.
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