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ABSTRACT

May River meandering through the Town of Bluffton, South Carolina has been known for 

its high level of water quality. The May River is one of the major sources of shellfish 

harvesting in South Carolina. Due to the non-point source pollution of fecal coliform, the 

water quality of the May River became degraded. As a result, shellfish harvesting 

classification in the May River was downgraded for the first time in its history. The rapid 

growth of the Town has led to a change in land use, which might be related to the increased 

levels of fecal coliform in the stream of the river. Furthermore, future land use 

developments are planned, and continues population growth is anticipated in the Town. 

Therefore, this research attempts to support the decision related to the implementation of a 

proposed land use plan by understanding the impact of the recent land use change on 

microbial water quality. Geographic Information System (GIS) technology was integrated 

with statistical analysis to assess the spatial relationships between different land use types 

and fecal coliform levels in the May River. This research found that residential areas, 

forestlands and golf courses are significantly correlated with fecal coliform. 

Geographically Weighted Regression (GWR) was used to examine the spatially varying 

relationships between specific land use types and fecal coliform concentrations among the 

sampling locations. Predictive models were developed to predict fecal coliform 

concentrations by including data of land use types and meteorological and environmental 

factors. In order to determine the optimal spatial scale for the land use variables, several 

circular buffer sizes were developed and examined for their appropriateness in supporting 
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significant models for fecal coliform prediction. It was shown that land use percentages 

within 1800 meters radius were most significantly correlated with fecal coliform. Rainfall 

measurements, water temperature, air temperature, salinity, and tide stage in addition to 

land use classes (residential areas, forestlands, and open spaces) within the 1800 meters 

radius were able to provide the most significant models for fecal coliform prediction. In 

order to predict the impact of the future land use developments plan, two rainfall scenarios 

(average and maximum precipitation) were used in the predictive models. The findings of 

this research indicated that the future land use plan will not lead to higher fecal coliform 

loadings than the current land use. 
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CHAPTER 1

INTRODUCTION 

1.1 BACKGROUND 

1.1.1 What are land use and land cover? 

Land use (LU) and land cover (LC) are the topographies of a specific region, 

country or even an area of a wider extent. The LU is a man-made activity, whereas LC is 

the nature’s cover of the land. The LC can be forestlands, wetlands, and many other natural 

covers of land as well as bodies of water (US Department of Commerce, 2015). The LU 

tells us how the land is used by people; these uses can be human developments like 

residential, industrial, and commercial and transportation area  (MRLC, 2016). Human 

activities have altered a large fraction of the earth’s surface due to the transformations of 

natural landscapes for different human uses (Foley et al., 2005). These human activities 

can be deforestation, agriculture, farming productions, and urbanization, and these 

activities may impact the landscape’s interaction with surface water (Foley et al., 2005).  

Coastal and land managers look at the LU and LC maps to evaluate the past and the 

future developments in terms of their impacts on the environment. Furthermore, scholars 

and scientists use LU and LC change information to link their relationships to air and water 

quality as well as many other ecological impacts. Many federal, state and local agencies 

use LU and LC data for several proposes such as flood control, wastewater treatment 

planning, and water resources inventory (Anderson, 1976). The data of LU and LC are also 

needed by the federal agencies for environmental impact assessments and wildlife 
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resources management to link the impact of human activities, like habitat fragmentation, 

to their impacts on wildlife resources and environmental quality (Anderson, 1976). LU and 

LC changes have been found to be related to the change of the global climate by altering 

the spatial and temporal patterns of thunderstorms (Pielke, 2005). Therefore, LU and LC 

are critical elements to many environmental studies, which became exceedingly valuable 

to many researchers and decision makers. 

1.1.3 The relationship between LU/LC and water quality 

Watersheds receive and transport waters that pass through their lands. Every 

watershed has different components of LU and LC which interact with the precipitation 

water that eventually drain into a waterbody’s receiving stream. The interaction 

mechanisms between the different LU and LC and the water may degrade the quality of 

the drained runoff waters. Consequently, the waterbody will be loaded with certain types 

of pollutants that existed within the LU and LC. For example, wetland is a natural LC 

which may contribute to minimum pollutants in the runoff as it is not commonly known as 

a major source of pollutants. Conversely, agricultural LU will have different sources of 

pollutants in its runoff due to the presence of fertilizers and pesticides. Urban areas will 

have high percentages of developed lands and imperviousness. Impervious areas may 

negatively impact the quantity of the runoff water as they may reduce or prevent the water 

infiltration through the soil. Consequently, part of this runoff will be controlled by some 

storm water management practice while some other parts will be drained into the water 

bodies carrying different types of pollutants. Therefore, the relationship between land use 

and water quality must be considered to maintain water quality.  
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Ecologists environmentalists, and natural resources managers and policy makers 

acknowledge that the past LU activities can continue to influence the structure and the 

function of the ecosystem in the future (Foster et al., 2003). Consequently, historical LU 

changes and their impacts to the ecosystem have expanded the understandings of why the 

ecosystem has been influenced and how LU activities can be improved in the future to 

reduce the environmental impacts (Foster et al., 2003). A study found that changes in LU 

and LC in a global extent will result in a significant impact to our earth system functioning 

(Lambin et al., 2003). In addition, one of the main contributors to climate change is the 

changes in LU and LC (Searchinger et al., 2008). It was found that biodiversity is directly 

impacted by LU and LC changes globally (Hansen, DeFries, & Turner, 2012). Soil 

degradation is also one of the major consequences of LU and LC change activities (Tolba 

et al., 1992). Many other recent studies focused on the relationships between LU and LC 

and other impacts such as landslide (Persichillo, Bordoni, & Meisina, 2017), infectious 

diseases (Patz & Olson, 2017), and atmospheric mercury (Zhang, Holmes, & Wu, 2016). 

 It is very important to understand how water quality is sensitive to LU change. It is 

also important to link land management and land use planning to water resources 

management. With the existence of the advanced technologies such as remote sensing and 

Geographic Information Systems (GIS), it is possible to detect LU changes, model the 

relationship between LU changes and water quality, and predict the spatial and temporal 

impacts of LU change on the quality of the water. Therefore, many studies have assessed 

the relationships between LU change and different water quality parameters such as 

nutrients, Fecal Coliform bacteria (FC), specific conductivity (SC), water temperature, 
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salinity, turbidity, and many other parameters depending on the study objectives and data 

availability.  

1.2 STATEMENT OF THE PROBLEM 

The United States Food and Drug Administration (USFDA) follows the guidelines 

of the National Shellfish Sanitation Program (NSSP) in evaluating the states’ shellfish 

sanitation programs. These guidelines require that each shellfish harvesting area be 

surveyed for its human consumption conditions (classifications); they can be classified as 

Approved, Conditionally Approved, Restricted, or Prohibited. In 2009, the South Carolina 

Department of Health and Environmental Control (SCDHEC) reported that there are five 

shellfish harvesting stations that were classified as a “Restricted Area” for human 

consumption in the Town of Bluffton, SC due to elevated levels of FC at the five stations. 

A most recent report of the SCDHEC in 2016 stated the same problem within the five 

stations (Moody, 2016). The pollution source was found to be a non-point source due to 

storm water runoff (Moody, 2016). The SCDHEC is authorized to prohibit shellfish 

harvesting when there are unsafe conditions for human consumption.  Therefore, it is 

important to know why these five stations often have elevated levels of FC, and to know 

how the FC levels are sensitive to LU activities in May River. 

1.3 STUDY OBJECTIVE AND HYPOTHESIS 

This dissertation aims to assess and model the relationship between LU and water 

quality by focusing on FC as a main indicator of microbial non-point source water 

pollutant. This research will assess and model the relationship between the LU types and 

the levels of FC bacteria at the Town of Bluffton, South Carolina. This research will 

integrate spatial and statistical analysis by using GIS and statistical methodologies. The 
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following questions will be answered by this dissertation research: (1) What are the spatial 

relationships between the LU types and FC bacteria? (2) How do the relationships between 

LU types and FC bacteria vary locally between the shellfish monitoring stations? (3) What 

are the most applicable and suitable LU and environmental predictors for FC in the May 

River? (4) How are FC bacteria predictable for a future land use change scenario?  

Only one hypothesis will be tested in this dissertation, and it is for the first question. 

The null hypothesis is that the type, amount, and location of land use within a watershed 

does not impact the concentrations of fecal coliform. 

By answering these questions, testing the hypothesis, and accomplishing this work, 

this dissertation will contribute in adding valuable knowledge to the Town of Bluffton 

government and its water resource management efforts. This study will be one of very few 

studies that include the LU for FC prediction and modeling. Additionally, this research will 

add further findings to the spatial statistical analysis.  

1.4 STUDY AREA 

The study area is the May River watershed which is located at Beaufort County in 

South Carolina (Figure 1.1). The Town of Bluffton has the May River as its significant 

estuary that drains into the Atlantic Ocean in the eastern coast of South Carolina. The May 

River watershed is encompassed in a 12-digit hydrologic unit code (HUC) and its size is 

about 10,353 hectares (40 square miles) (Van Dolah, Sanger, & Filipowics, 2004). The LU 

types in the May River watersheds are as the followings: residential areas, non-residential 

areas, forestlands, forested wetlands, non-forested wetlands, civic, commercial, golf 

courses, open spaces, open water, transportations, and undeveloped areas. The population 

of the Town of Bluffton in the year 2015 was about 16,728 (U.S Census Bureau, 2015).  
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Figure 1.1: May River watershed with sample sites and LU classes in 2016 

Due to the water quality of the May River, in 2001, it was considered as an Outstanding 

Resource Water (ORW) by the SCDHEC (Barber, 2008). The May River has been 
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identified as a priority watershed by the Environmental Protection Agency (EPA) and 

SCDHEC. The May River is significantly valued by the residents since it has a great 

recreational and economical importance. The aesthetics and views, and the abundant 

natural resources have led to an increase in population and commercial growth in the area. 

As a result, major LU changes are planned for developments by the Town of Bluffton’s 

government; thus, there are many concerns about the subsequent adverse impacts on water 

quality of May River. In addition, oyster production is the main economic activity in the 

May River and polluting this river possibly will impact the quality of the oyster beds and 

the harvestability of human consumption. 

The Town of Bluffton has grown rapidly in the past few decades and this growth is 

expanding.  In 1852, the area of the Town was about 640 acres (1 square mile), and in 

1987, many annexations were approved by the Town’s government until the area of the 

town increased to 34,560 acres (54 square miles) in 2015 to become on the top five largest 

municipality by land area in South Carolina (Town of Bluffton, 2015). The population size 

in 1990 was 713 people, which in 2005 increased to 4,885 people, which then increased to 

12,893 people in 2010 to reach to 16,728 people in 2015 (Town of Bluffton, 2015). The 

estimated build-out projection by the Town of Bluffton’s government is about 70,000 

people (Town of Bluffton, 2015). 

There were LU changes as the town was developing and growing in its population 

and commercial activities, which can impact the quality of the May River. The LU in the 

watershed is majorly residential, with some minor commercial uses, and there are no heavy 

industrial activities within the watershed. However, the May River for its first time in the 

history was downgraded for its shellfish harvesting classification in 2009.  Microbial 
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contamination of FC bacteria was and is still the main concerned pollutant in the river. The 

May River watershed is within the Shellfish Growing Area 19 (Figure 1-2). Five shellfish 

monitoring stations within the shellfish growing area 19 are classified as A “Restricted 

Area” in 2016 (Moody, 2016). These stations (Figure 1-2) are 19-19, 19-19A, 19-19B, 19-

19C, and 19-24. 

Figure 1.2: Shellfish Growing Area 19 with SCDHEC shellfish monitoring stations 
Source: SCDHEC 

The following chapters will go through different forms of analysis and assessments 

to answer the dissertation questions. Chapter 2 will assess the spatial relationships between 
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LC types and FC by using GIS and spatial statistical methods. Chapter 3 will model the 

relationships between LU types and FC by integrating environmental and meteorological 

factors. Chapter 4 will apply the models that are developed in Chapter 3 to predict the 

future impact of an alternative LU change scenario on FC at the specified study area. 
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CHAPTER 2

ASSESSING LAND USE IMPACT ON MICROBIAL WATER QUALITY 

ABSTRACT 

Land use (LU) is widely known as one of the factors that has a direct impact on the 

hydrology of a watershed. Some land uses can negatively impact our water resources, 

which subsequently impact the health of the living organisms and human beings. This 

research assesses the spatial relationships between different types of LU and microbial 

water quality to see how the different types of LU influence the level of fecal coliform (FC) 

bacteria concentrations in the May River in the Town of Bluffton.  Pearson product-

moment correlation was used to explore the spatial relationships between the selected LU 

and FC. Geographically Weighted Regression (GWR) analysis was used to examine the 

variations of the spatial non-stationary relationships between LU and FC. An Exploratory 

Regression Tool (ERT) developed by the Environmental Systems Research Institute 

(ESRI) was used in determining the ideal combination of explanatory variables for the 

GWR models. The study employed a Geographic Information System (GIS) for spatial 

analysis and for mapping the spatial outcomes for aspects of the study. The data for this 

research included LU data from the government of the Town of Bluffton and FC data from 

the South Carolina Department of Health and Environmental Control (SCDHEC). 

Residential areas and Forestlands are the main land use components in the study area and 

were found to have significant positive relationships with FC. Even with the small size of 

the study area, obvious variabilities of spatial non-stationary relationships were explored 
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by the GWR. The ERT was found to be a substantial tool for saving time and effort and 

was very supportive in exploring the LU variables for GWR models. The findings of this 

study suggest that the GWR can be used for water quality assessments and watershed 

management research. 

 2.1 INTRODUCTION 

There is nothing more important than ensuring access to clean and safe water 

resources for the community. The water cycle is the natural phenomenon that makes water 

continuously available in our environment. Through this cycle, storm water runs through 

different land covers (LC) and LU. The LC is the natural cover of the land, such as 

forestland or open water, and the LU is  the man-made cover such as roads, building and 

lakes (Cihlar & Jansen, 2001). The LU can be defined as the manner in which LC is used 

by humans (Cihlar & Jansen, 2001). In fact, the chemical, physical, and biological 

properties of water can be changed due to the interaction of different environmental factors 

with LU or LC. Alteration to these properties may result in polluted water. For example, 

LU such as an urban-developed can be a main cause for surface water pollution, as it 

increases the impervious surface which will increase the volume of the storm water runoff 

(Wilson & Weng, 2010). Accordingly, different water pollutants may be related to the 

different LU and LC types. 

Many studies were conducted to investigate the relationships between LU and water 

pollutants (BenDor, Jordanova, & Miles, 2017; Cha, Park, Lee, Kim, & Cho, 2016; Chen 

et al., 2016; Deason, Seekamp, & Barbieri, 2014; Dheenan et al., 2016; Kelsey, Porter, 

Scott, Neet, & White, 2004; Li, Zhao, Miaomiao, & Wang, 2010; Mallin, Williams, Esham, 

& Lowe, 2000; Paule-Mercado et al., 2016; Pettus, Foster, & Pan, 2015; Reano, Haver, 
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Oki, & Yates, 2015; Schoonover & Lockaby, 2006; Su, Xiao, & Zhang, 2012; Sun, Guo, 

Liu, & Wang, 2014; Tu & Xia, 2008; Wilson & Weng, 2010). These studies found that 

there is a relationship between LU types and water quality parameters. The common 

statistical methods used in these studies were correlation analysis, and Ordinary Least 

Squares (OLS). Furthermore, most of these studies used simple statistical methods since 

they are simpler and more robust than developing complex hydrological models (Wan et 

al., 2014). Practically, LU percentages are used as independent variables, and water quality 

parameters from each sampling station are used as dependent variables when a regression 

or correlation analysis is used to study the relationship between LU and water quality.  

Although correlation analysis and OLS are simple and robust statistical methods 

and are widely used in evaluating the relationship between dependent and independent 

variables in different disciplines, they cannot explain the complex relationships between 

LU and water quality parameters by using these regression methods (Giri & Qiu, 2016). 

However, GWR can illuminate the complex relationships, because it is integrated with GIS, 

which implicates the coordinate system into the regression model to make it capable of 

examining the spatial variations between the dependent and independent variables (Giri & 

Qiu, 2016). The GWR is a spatial statistical analysis method that is extended form the OLS 

which estimates local regression coefficients instead of the global ones (Fotheringham, 

Charlton, & Brunsdon, 2001). The GWR is therefore a local statistical method because it 

explains the variations of a relationship over the space by allowing the local regression 

coefficients and local coefficient of determination (R2) to change over space which make 

it possible to explain the causes of spatial patterns (Fotheringham, Brunsdon & Charlton, 

2003). Therefore, unlike the OLS, which is a stationary spatial method, the GWR is a non-
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stationary spatial method and considers the positions of the dependent variables in the 

analysis. Furthermore, the GWR can detect the autocorrelation in the model (Fotheringham 

et al., 2003), and this gives it an additional advantage over the OLS method. The spatial 

autocorrelation can happen when values of a certain variable in more than one location are 

neighboring and have correlated values (Zhang, Bi, Cheng, & Davis, 2004). 

Tu and Xia (2008) were the first to apply the GWR to study the relationship 

between LU and water quality. They used the GWR to examine the spatially varying 

relationships between LU and selected water quality parameters. They found that the GWR 

gives better predictions than the OLS because the GWR explains the spatial variations 

between the different LU percentages and water quality parameters. Some other studies 

also found that GWR was more robust than OLS and accurately interpreted the relationship 

between urban landscape patterns and water quality (Sun et al., 2014), and the relationship 

between LU and water quality (Yu, Shi, Liu, & Xun, 2013). The GWR was also used in 

other research purposes such as urbanization impacts on agricultural landscape (Su et al., 

2012), the impact of environmental factors on land surface temperature (Li et al., 2010), 

air temperature and its influence factors (Ivajnšič, Kaligarič, & Žiberna, 2014), social life 

and HIV analysis (Wabiri, Shisana, Zuma, & Freeman, 2016), and air pollutants and human 

health (You et al., 2015). 

Using the GWR, previous studies often use a single LU indicator as a dependent 

variable when examining the relationship with water quality parameters (Brown et al., 

2012; (Huang, Huang, Pontius, & Zhang, 2015; Tu, 2013; Tu & Xia, 2008). This technique 

has been applied to avoid multicollinearity among LU variables. The LU variables are 

usually correlated, and consequently, collinearity will occur between them. With the 
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presence of multicollinearity, the GWR model will not be able to predict the relationship 

between the studied dependent and independent variables. However, using this univariate 

method may hide some important relationships by missing important explanatory variables 

in the model. This is because that more than one LU type can exist in a sub-watershed. 

Actually, the variations of a water quality parameters’ levels will not be completely 

explained if we, for example, only observed agriculture LU percentage in a sub-watershed 

while the main cause of water pollution is the runoff from high impervious surface 

dominated by urban developed LU (Chen et al., 2016). 

The issue of multicollinearity in multivariate GWR modelling has been investigated 

by Wheeler and Tiefelsdorf (2005). They found that the GWR lacks well-established 

diagnostic tools that are used in standard global regression analysis like the OLS. In 2007, 

Wheeler developed Geographically Weighted Ridge Regression (GWRR) to overcome the 

multicollinearity problem when multivariate variables are used in the GWR model 

(Wheeler, 2007). Furthermore, (Wheeler, 2009) introduced a penalized form of GWR, 

Geographically Weighted Lasso (GWL),  which  limits the correlation effects of the 

independent variables by restraining the magnitude of the regression coefficients. Using 

the spatially multivariate technique will help to account for non-point source pollution by 

adding more related variables in the analysis (Su et al., 2011). However, very few studies 

used the multivariate GWR model to examine the effects of LU as well as other factors on 

surface water quality. A study used Stepwise Multiple Linear Regression (SMLR) to find 

the explanatory variables, including LU variables, that are strongly correlated with water 

quality variables to be then used in the GWR model (Pratt & Chang, 2012). The most recent 

study (Chen et al., 2016) used a manual variable excluding-selecting method and compared 
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it with the SMLR that Pratt and Chang (2012) used, and found that the manual variable 

excluding-selecting method was better in finding the most predictive and significant 

models. 

However, there is a data mining tool called Exploratory Regression (ERT) that was 

developed by the ESRI team (Rosenshein, Scott, & Pratt, 2011). This tool evaluates all 

possible combinations of independent variables and chooses only models that successfully 

pass the required OLS assumptions. The OLS assumptions are: (a) Linear relationship 

between the dependent and independent variables, (b) the mean of the error term should be 

zero, (c) observations should be randomly sampled (d) no multicollinearity between the 

independent variables, (e) the errors should be uncorrelated, (f) the errors should be 

normally distributed (Montgomery, Peck, & Vining, 2012). Furthermore, the concept of 

the ERT is similar to SMLR, but it also has a function that automatically selects the 

variables that provide models that meet all the assumptions required by the OLS method. 

This is an advantage that will help in finding the best GWR models. On this basis, the ERT 

is used in this study in order to see if it is possible to develop multivariate GWR models to 

assess the relationships. The objective of this study is to assess both the spatial relationships 

and the spatially varying relationships between selected LU types and FC levels in the 

adjacent May River in the Town of Bluffton, South Carolina, and to see if it is possible to 

apply multivariate GWR models. 

2.2 STUDY AREA 

The May River watershed is located in Beaufort County in the southeastern part of 

South Carolina (Figure 2.1). The Town of Bluffton has the May River as its significant 

estuary, which drains into the Atlantic Ocean on the eastern coast of South Carolina. The 
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population of the Town of Bluffton in the year 2015 was about 16,728 (U.S Census Bureau, 

2015). Due to the high water quality of the May River in 2001, it was classified Outstanding 

Resource Water (ORW) by the SCDHEC (Barber, 2008). The Environmental Protection 

Agency (EPA) and SCDHEC have acknowledged the May River as a priority watershed. 

The May River is highly valued by the residents of the Town of Bluffton due to its great 

Figure 2.1: May River watershed with shellfish monitoring station sites and LU classes in 
2016. Source: The government of Town of Bluffton 
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recreational and economical importance. The aesthetics and views, and the abundant 

natural resources in the Town of Bluffton have led to an increase in population and 

commercial growth in the area. As a result, major LU changes are planned for 

developments by the government of the Town of Bluffton. However, there are many 

concerns about the subsequent adverse impacts on water quality of the river. In addition, 

oyster harvesting is the main economic activity in the May River and polluting this river 

may impact the quality of the oyster beds. 

 During the past few decades, the Town of Bluffton has grown rapidly, and this 

growth is continuing. There were LU changes as the town was developing and growing in 

population and commercial activities which eventually have changed the quality of the 

May River. The LU in the watershed is majorly residential, with some minor commercial 

uses, and there are no heavy industrial activities within the watershed. However, the May 

River, for the first time in its history was downgraded in its shellfish harvesting 

classification in 2009.  FC bacteria were and are still the main pollutants in the river. The 

May River watershed is within Shellfish Growing Area 19 (Figure 2.2). Five shellfish 

monitoring stations within shellfish growing area 19 were classified as Restricted in 2016 

(Moody, 2016). These stations are 19-19, 19-19A, 19-19B, 19-19C, and 19-24 (Figure 2.2). 

The other eight stations were classified as Approved in 2016 (Moody, 2016). 

2.3 DATA SOURCES AND METHODS 

2.3.1 Fecal coliform data 

Data for FC concentrations were retrieved from SCDHEC’s shellfish-monitoring 

program. The program was established primarily to maintain the health and quality 

standards of the shellfish and their harvesting areas by following federal guidelines and 
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state regulations (SCDHEC, 2017a). Also, this program was established to enhance water 

quality for the shellfish harvesting areas. Each shellfish growing area in South Carolina is 

comprehensively evaluated under this program. Annual evaluation is conducted for the  

Figure 2.2: Shellfish Growing Area 19 map with SCDHEC shellfish monitoring stations 
Source: SCDHEC 

shellfish growing areas that meet the requirements of the National Shellfish Sanitation 

Program (NSSP). Monthly routine sampling and laboratory analysis are conducted for 

bacteriological water quality monitoring at the SCDHEC’s designated sampling sites. The 

SCDHEC’s shellfish-monitoring program complies with the NSSP for standards, sampling 

and monitoring methods, and laboratory analysis. Most Probable Number (MPN) per 100 
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milliliters (ml) is the measurement unit used for the FC concentrations. As the shellfish 

monitoring stations are within Approved and Restricted areas, the guidelines for these two 

shellfish areas are as the followings: 1- For the Approved area, the median or the geometric 

mean of FC should not exceed 14 MPN per 100 milliliters, 2- A shellfish area should be 

classified Restricted when it is proven by the survey data that there are a reasonable level 

of pollutants exist or if there are harmful substances (deleterious or poisonous) which can 

unpredictably change the water quality or when it is not possible to classify the area as 

Conditionally Approved (SCDHEC, 2017b). There are 13 stations located in the study area 

which are included in this research. The data for FC concentrations from 1999 to 2015 are 

only available for 10 stations, while the data from three stations are available from 2009 to 

2015. This is because these three stations were installed in 2009. 

2.3.2 Land use and watersheds data  

LU data for the years 2007 (Figure 2.3) and 2016 (Figure 2.4) were retrieved from the 

governments of the Town of Bluffton and Beaufort County. The data are shapefile feature 

classes that were developed by polygons that reflect the LU classes that were captured by 

the satellite imagery. The projected coordinate system for the data is NAD 1983 State Plane 

South Carolina FIPS 3900 Feet Intl, and the projection is Lambert Conformal Conic. The 

geographic coordinate system for the data is GCS North American 1983. Using ArcMap 

10.4 software, the LU data were edited to prepare it for the analysis of the study. Twelve 

major LU types were identified: residential areas, forestlands, forested wetlands, non-

forested wetlands, open water, commercial, transportation, non-residential, civic, golf 

courses, open space, and undeveloped areas. ArcMap 10.4 was used to calculate the 

percentages of each land use classes from 2007 and 2016 in the May River watershed. The 
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May River watershed layer used in the study is a 12-Digits Hydrologic Unit Code (HUC) 

that were retrieved from the government of the Town of Bluffton. Sub-watersheds data 

were also retrieved from the governments of the Town of Bluffton and Beaufort County 

(Figure 2.5). For the purpose of the study, the percentages of each land use class in each 

sub- watershed are required to assess the impact of LU classes on the concentration of FC  

 

 

Figure 2.3: Land use map in 2007 

Source: The government of Town of Bluffton 
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at each sub-watershed. In other words, the LU for every shellfish monitoring station was 

calculated based on the sub-watershed in which the monitoring station is located. 

Figure 2.4: Land use map in 2016 
Source: The government of Town of Bluffton 

2.3.3 Statistical analysis for the relationship between LU and FC 

Pearson product-moment correlation was used to assess the spatial relationships 

between land use variables for each shellfish monitoring station and their corresponding  
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FC concentrations to find the correlation coefficients (r) and the correlation tests. The 

resulted r-values showed the strength and the direction of the spatial relationships between 

Figure 2.5: May River’s sub-watersheds
Source: The government of Town of Bluffton 

the selected variables. In other words, these r values indicated if there were significant or 

non-significant positive or negative correlations between the LU percentages and FC 

concentrations. This analysis was implemented for two periods. For land use data from 
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2007, the corresponding FC concentrations for 2009 were used; this is because there are 

three stations that started to collect FC concentration data in 2009. For 2016 LU data, the 

corresponding FC concentrations for the year 2015 were used, since the FC data for 2016 

was not available. Scatterplot diagrams for the correlations for the two periods were also 

produced to help in explaining the relationships. The land use variables that showed 

significant positive or negative relationships with FC concentrations were used in the next 

analysis to examine the variations of the spatial relationships between the stations.  

2.3.4 MODELING METHODS 

To assess the variations of the spatial relationships between the LU percentages and 

FC concentrations, the mean values of FC concentrations were calculated for each station 

from 2009 to 2015. Land use percentages for 2016 were used in the analysis to examine 

the spatially varying relationships between these land use percentages and the calculated 

mean values of FC concentrations. To avoid spatial auto-correlation and to maintain the 

assumption of statistical independence of the predicted values in the analysis, only one 

station was included for each sub-watershed when more than one station was located in a 

single sub-watershed. Doing this entailed taking the mean FC concentrations of all the 

stations located in a single sub-watershed and to considering them one station. Therefore, 

out of the 13 stations included in the study only six stations were examined at six sub- 

watersheds. 

The GWR method was used for the LU variables that were significantly correlated 

with FC concentrations. The GWR analysis was performed by using ArcMap10.4. Before 

developing the GWR models, it was necessary to develop OLS models for the same 

selected variables, and to ensure that these OLS models are not violating the linear 
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regression assumptions. The ERT was used in ArcMap10.4 to help in selecting the LU 

variables that can be used without violating the assumptions of the linear regression 

method. This is to get the best models that can explain the spatial variations of the selected 

LU variables with their corresponding FC concentrations. The ERT tests all the given 

selected variables at one time by testing all the possible combinations of variables that are 

not violating the assumptions of the OLS, and that give the best fitting models. A successful 

model that is not violating the OLS assumptions is mandatory before running the GWR; 

this is because the GWR is very sensitive to multicollinearity and autocorrelation in 

performing the analysis.  

After the selected variables were tested and elected by the Explanatory Regression 

Tool (ERT), the GWR models were developed to evaluate the local coefficients (parameter 

estimates), and local R-squared to exhibit how the relationships between LU percentages 

and FC concentrations can be spatially variable between the shellfish monitoring stations. 

The GWR can let the regression coefficients and the R-squared to change over the space. 

This means that every shellfish monitoring station will have its local regression coefficient 

and the local R-squared for its variables. The local coefficients were used to show how the 

relationships between the selected LU variables and their related FC variables varies 

between the monitoring stations, and the local R2 was used to explain how the FC 

concentration values in the stations are variably influenced by the LU variables. The 

concept of the GWR models is as the following: 

y� =  β� �uϳ, νϳ� + � β� 

�

���
�uϳ, νϳ�x�� + ε�  
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Where β� is the intercept for the coordinates �uϳ, νϳ� for location ϳ; β� is the local

regression coefficient for  x� which is the independent variable at location j, and ε�  is the

local error term at location j. 

In the GWR, the locations of the shellfish monitoring stations are geographically 

weighted in the model by using a distance decay function. This function basically assumes 

that the local coefficient of an observation has higher impact from the other observations 

that are closer to it than the ones that are further. A spatial kernel bandwidth is a main 

component in the weighting process. The distance decay function in the model is calculated 

as follows: 

 wij = exp (-d2
ij/b2) 

Were wij is the distance decay function’s weight for the observations i and j, dij is the 

distance between the observations i and j, and b is the spatial kernel bandwidth. In 

ArcMap10.4, there are two types of kernel bandwidths which are FIXED or ADAPTIVE, 

from which the user can choose. The FIXED kernel bandwidth is fixed for the distance 

between the observations and thus it is appropriate when the observations are not randomly 

distributed. The ADAPTIVE kernel bandwidth is adaptable for the number of the 

neighboring observations and thus it is applicable for the observations that are randomly 

distributed. Three methods can be used to find the optimum bandwidth that can give the 

best prediction. These three methods are Akaike Information Criterion (AICc), Cross 

Validation (CV), and Bandwidth Parameter. The AICc method finds the optimum bandwith 

by minimizing the AICc value. The CV method finds the optimum bandwidth by 

minimizing the CV score. Both the AICc and CV work automatically in finding the 

optimum bandwidth. The Bandwidth parameter method is used when there is a need to 



29 

manually specify the bandwidth. In this research, ADAPTIVE kernel bandwidth and AICc 

method were used in ArcMap10.4 to run the GWR models. 

2.4 RESULTS AND DISSCUSSION 

2.4.1 Characterization and percentage change of LU types for the years 2007 and 2016 

May River watershed LU types and their percentages for the years 2007 and 2016 

are shown in Table 2.1. The May River watershed was mostly forestlands in 2007 with a 

percentage about 24%. Following forestlands, non-forested wetland occupied about 20.5% 

of May River watershed. Residential area was about 20% in 2007. Open water  

Table 2.1: land use types percentages for May River watershed 

area was about 15.28% in 2007 and 15.6% in 2016. Golf courses cover about 5% of the 

watershed. In fact, the forestlands, residential areas, open water, and golf courses make up 

most of the area of May River watershed while the other land uses cover a very small 

portion of the watershed with percentages not more than 5%. There was about a 4% 

increase in the residential areas from 2007 to 2016 which made it the dominant land use in 

Land use type 2007 2016 

Residential 19.96% 24.21% 

Commercial 1.50% 1.60% 

Civic 0.85% 1.00% 

Open Space 1.86% 1.53% 

Forestlands 23.95% 21.26% 

Undeveloped 2.77% 1.17% 

Transportation 2.48% 2.36% 
Non-Residential 0.28% 0.28% 

Non-Forested Wetland 20.50% 20.50% 

Open Water 15.28% 15.60% 
Forested Wetland 5% 5% 
Golf Course 5.57% 5.50% 
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2016 with 24.21% of the watershed. Forestlands decreased about 3% in 2016, and this is 

because the residential areas expanded in this period. For the same reason, open space and 

undeveloped lands decreased about 0.2% and 1.6%, respectively. The other land use types 

were either the same for the two periods or were changed very slightly. 

2.4.2 The spatial relationships between LU types and FC 

Pearson’s correlation results for the correlation between LU types and FC in 2009 

and 2015 are shown in Table 2.2. To get better understandings and better interpretations 

for the spatial relationships between each LU percentages and their relative FC 

concentrations in MPN/100 ml, scatterplots were used for the two periods (Figure 2.6 and 

Table: 2.2 Pearson’s correlation results for land use and FC for 2009 and 2015 

Land use type 
Pearson’s 
correlation 
coefficient (r) 
2009 

P- value
< 0.05

Pearson’s 
correlation 
coefficient (r) 
2015 

P- value
< 0.05

Residential 0.81 0.04 0.83 0.03 
Commercial 0.89 0.01 0.40 0.42 
Civic 0.91 0.009 0.68 0.13 
Open Space 0.53 0.27 -0.03 0.94 
Forestlands 0.83 0.03 0.87 0.02 
Undeveloped 0.25 0.62 0.15 0.76 
Transportation 0.77 0.06 0.77 0.06 
Non-Residential 0.32 0.52 0.32 0.53 
Non-Forested Wetland -0.71 0.11 -0.75 0.08 
Open Water -0.72 0.10 -0.65 0.16 
Forested Wetland -0.33 0.51 -0.44 0.37 
Golf Course 0.87 0.02 0.89 0.01 

Bold: Significant correlation 

Figure 2.7). Residential land use has significant positive relationships with FC in the two 

periods, 2009 and 2015, with correlation coefficient (r)-value ranged from 0.81 to 0.83 and 

p-values ranged from 0.04 to 0.03, respectively. This result was expected since more

residential areas can discharge more point and non-point source pollutants. The non-point 
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Figure 2.6: Scatter plots for land use percentages of 2007 and FC concentrations in 2009 
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Figure 2.7: Scatterplots for land use percentages of 2016 and FC concentrations in 2015 
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source of FC from the residential areas is mainly caused by the runoff from these areas. It 

is well known that imperviousness of a specific land is an important factor in increasing its 

runoff. In fact, residential areas were found to have higher imperviousness compared to the 

other land uses. Furthermore, the runoff from these residential areas is commonly polluted 

with different biological and chemical wastes including fertilizers, pesticides, wastewater 

treatment plants, on-site septic systems, and pets and wild animals’ wastes. Most of these 

sources can pollute the river stream with FC which will be carried by the precipitation 

runoff. This result is consistent with the outcome of many previous studies that assessed 

the the relationship between residential areas and FC (Kelsy et al., 2004, Reano et al., 2015, 

Cha et al., 2016, Paule-Mercado et al., 2016). 

Same as residential areas, forestlands and golf courses were also significantly positively 

correlated with FC in the two periods with r-value ranged from 0.83 to 0.87, and from 0.87 

to 0.89 and p-values ranged from 0.02 to 0.03 and from 0.01 to 0.02, respectively. The 

forestlands can be sources of FC due to wildlife animals’ feces and due to fertilizers from 

agricultural areas as they are categorized under forestlands in this study. Therefore, runoffs 

from these areas are often loaded with fecal wastes in which FC bacteria exist. This result 

is similar to many previous studies (Cha et al., 2016; Paule-Mercado et al., 2016; Pettus et 

al., 2015; Schoonover & Lockaby, 2006). Golf courses can also be sources of FC due to 

fertilizers which accumulate in the river stream. Moreover, all the golf courses are located 

nearby the May River. This result is not different than the findings of some previous studies 

(Deason et al., 2014; Kelsy et al., 2008). The only negatively correlated LU with FC were 

open water, non-forested wetland, and forested Wetland. Open water was found to have a 

strong but not significant negative correlation in 2009 and 2015 with r-value ranged from 
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-0.72 to -0.65 and p-values from 0.10 to .16, respectively. This negative correlation of FC 

with open water is due to dilution processes. Higher dilution occurs in bigger open water 

areas, and consequently lower FC concentrations were found in sub-watersheds that are 

within bigger portion of the river stream. This finding is considered new in terms of 

assessing the relationships between LU and FC since most of the studies have not focused 

in open water impact on FC. Non-forested wetlands were also found to have strong 

negative correlation with FC in 2009 and 2015 with r-value ranged from -0.75 to -0.71 and 

p-values ranged from 0.11 to 0.08. This can be explained by the same reason for the open 

water as more dilution to FC concentrations can occur in bigger non-forested wetland areas. 

Additionally, the areas of non-forested wetlands are directly proportional to open water 

areas.  

Transportation was strongly positively correlated with FC in 2009 and 2015 with 

matched r-values of 0.77 and matched p-values of 0.06. This correlation is not reliable 

since transportation percentages are very small at each sub-watershed; this strong positive 

correlation is because transportation percentage is greater in sub-watersheds that have 

greater percentages of residential areas which are significantly positively correlated with 

FC. Commercial and civic lands were found to have significant positive correlation with 

FC only in 2009. In fact, they represent a small land use portion in very few sub-

watersheds, and most of the sub-watersheds have 0% of both commercial and civic land 

uses. Thus, the significant positive correlations in 2015 for the commercial and civic lands 

are not reliable. However, undeveloped, open space, non-residential, and forested wetland 

were found to have weak, positive and negative, correlations with FC in 2009 and 2015.  
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2.4.1 Examining the variations of the spatial non-stationary relationships between FC and 

LU types 

After using the ERT, the only land uses that passed the assumptions for inclusion in a 

linear regression model are golf courses, forestlands and residential areas. One of the main 

purposes of using this tool was to know if it is possible to include more than one LU 

variable in the regression model. Based on the data of this study, this ERT indicated that 

there is no chance to have a model that passes the assumptions when more than one 

explanatory variable is included in the model. Furthermore, this tool indicated that it is 

possible to include up to two LU variables, but it would violate the assumptions of the 

multiple linear regression. The violations can be due to multicollinearity, model 

performance, spatial autocorrelation of the residuals, or due to no normal distribution of 

the residuals. The ERT checked on six parameters in selecting the passing models (Table 

2.3). A passing model can consist of one or more LU variable.  

The ERT selected three models. Each model has only one LU variable. The three 

selected models had golf courses, forestlands and residential areas for FC prediction; these 

models had an adjusted coefficient of determination (R2) ranged from 0.70 to 0.83. The 

AICc compared the performance for the models; the lower AICc is the better model. 

Jarque-Bera tested the normal distribution of the residuals, and it tested not significant for 

the three selected variables. This means that there are normal distributions for the residuals 

of the selected models. Koenker (bp) or K(bp) in Table 2.3 is a test used by the same tool 

to see if there are spatial non-stationary variations that can be detected in the selected 

models if GWR is going to be used. The k(bp) tested significant for the three selected 

models. Variance Inflation Factor (VIF) was also used in this tool to test the 
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multicollinearity among the explanatory variables. The VIF should be lower than 7.5 to 

avoid multicollinearity. All the selected variables had a value of 1 for the VIF. Spatial 

Autocorrelation (SA) for the residuals was also tested in the three selected models which 

tested not significant for each of them. 

Table 2.3: Explanatory regression tool passing models  

AdjR2 AICc JB K(BP) VIF SA Model 

0.831 10.01 0.75 0.60 1.0 0.11 +GOLF***
0.78 11.5 0.71 0.34 1.0 0.32 +FORESTLANDS***
0.70 13.4 0.78 0.04 1.0 0.14 +RESIDENTIAL**

***: Model variable significance at p <0.01 
**: Model variable significance at p <0.05   
AdjR2: Adjusted R-Squared      
AICc: Akaike's Information Criterion      
JB: Jarque-Bera p-value      
K(BP):Koenker (BP) Statistic p-value      
VIF: Max Variance Inflation Factor      
SA: Global Moran's I p-value      

 As it is shown in Figure 2.8, there are local coefficients and local R2 values 

generated by the GWR for the relationship between residential areas and FC. There were 

also clear spatial variations in the local coefficients and local R2 between the stations. 

Higher coefficients were found at the stations located in sub-watersheds that have higher  

residential percentage and a higher FC concentration. This positive relationship result was 

expected since significant positive correlations between residential areas and FC were 

found in Table 2.2. The local R2 for all the stations ranged from 0.51 to 0.72. From Figure 

2.8, it was obvious that lower R2 resulted at stations located in sub-watersheds with lower 

percentages of residential Areas. The higher local coefficients showed the higher R2, and 

the higher coefficient was found at sub-watersheds with higher percentages of residential 

areas. This result shows that residential area percentage is an important factor that has to 

be considered when FC concentration is to be assessed. This result is consistent with many 
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Figure 2.8: Results of GWR model for the spatial variations of the relationships between 
residential percentages and FC concentrations. 

previous studies that examined the spatial variations of the relationship between residential 

areas and FC using the GWR (Dheenan et al., 2016; Kelsy et al.,2004; Paule-Mercado et 

al., 2016; Yu et al., 2013). 
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From Figure 2.9, local R2 for forestlands ranged from 0.06 to 0.99 for all the 

stations. This means that forestlands explanation to FC varied from 6% up to 99% at the  

Figure 2.9: Results of GWR model for the spatial variations of the relationships between 
forestlands percentages and FC concentrations 

sampling stations located in the sub-watersheds. This showed that there are great spatial 

variations of forestlands percentages in the sub-watersheds. Furthermore, a value of 0.99 
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for R2 in one of the stations suggests that forestlands percentage is a very important 

predictor for FC. Additionally, greater R2 were always found when there were high 

forestlands percentages in the sub-watersheds. A negative local coefficient was only found 

in one station, and it is the station that had the value of R2 =0.06. All other stations had 

positive local coefficients. This negative correlation might be due to the presence of this 

station in a sub-watershed that has a high percentage of open water which dilutes FC 

densities. Also, there were only 6% of forestlands available in that sub-watershed, which 

is a very small amount. Overall, this GWR model result is compatible with the same 

indication of the significant positive correlation between forestlands and FC in Table 2.2. 

This result is consistent with several previous studies that examined the relationship 

between Forestlands and FC concentration (Cha et al., 2016; Paule-Mercado et al., 2016; 

Pettus et al., 2015; Schoonover & Lockaby, 2006), while some other studies found negative 

relationships between Forestlands and FC (BenDor et. al., 2017; Pettus et al., 2015). 

Figure 2.10 shows the GWR model for the golf courses. The variations of the golf 

courses relationships with FC were very similar to the residential areas. In other words, the 

spatial variations of local R2 and local coefficients for golf course and residential areas are 

almost the same. This indicated that the variation of the proportions of the percentages of 

the golf course and the residential areas in the sub-watersheds is similar. The local R2 for 

Golf course ranged from 0.47 to 0.86. This significant positive relationship was also 

indicated by the correlation analysis in Table 2.2. This result suggests that the golf courses 

percentage is an important variable in predicting FC concentrations. Runoff from golf 

courses is well known for its impaired water quality; therefore, these variations of its 

relationships with FC were expected.
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Figure 2.10: Results of GWR model for the spatial variations of the relationships between 
golf courses percentages and FC concentrations

The result for the GWR model for the open water (Figure 2.11) was different than 

the results for the models of the other land uses. While residential areas, forestlands, and 
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golf courses showed positive relationships with FC concentration, open water showed 

negative correlation at most of the stations. This is similar to the findings of a previous  

Figure 2.11: Results of GWR model for the spatial variations of the relationships between 
open water percentages and FC concentrations. 

study (Dheenan et al., 2016), except for two stations. These two stations showed positive 

relationship with FC because of the two different situations for both stations. One station 
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(19-12) is located in the headwater of a creek that is connected to May River. The sub-

watershed for this station included only the creek water which is a small percentage of open 

water that was considered to have low FC concentration. However, this station is located 

within greater open water area where dilution process occurs; thus, lower FC concentration 

was found, and a positive relationship was shown by the local coefficient of the GWR  

model. The FC concentration was not found low in station (19-11) even though it had a 

high percentage of open because this station is not located in the stream of the May River. 

Instead, it is located at a creek far away from the River where no strong dilution is occurred; 

as a result, a positive relationship was shown by the GWR model. However, due to the 

locations of the stations in the sub-watersheds, these variations of negative and positive 

relationships for open water and FC concentrations were expected. 

For better results, a larger study area and more sample numbers are required to explain 

more details about the variations of the impact of LU on FC. In addition, sub-watersheds 

with mixed land uses may reduce the precision of the results. The locations of the sampling 

station at each sub-watershed should be considered when choosing the sub-watersheds in 

the analysis. However, this was not possible due to data limitation. 

2.5 CONCLUSION 

This research attempted to assess the impact of different LU types on the microbial 

water quality of the shellfish harvest area in the May River at the Town of Bluffton, South 

Carolina. This research was conducted to examine the spatial (stationary and non-

stationary) variations of the relationships between selected LU types and FC. Scatterplots 

and Pearson’s correlation results of the stationary (global) spatial relationships showed 

numerus significant and non-significant positive and negative relationships between LU 
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percentages and FC concentrations. The Scatterplots and Pearson’s correlation were useful 

methods in explaining these relationships. The ERT was used to automatically select the 

explanatory LU variables that can be included in the GWR modelling. The ERT saved 

much time and effort in selecting the variables for GWR model’s development. Although 

the purpose of using the ERT was to use multivariate variables in the GWR models, only 

a single variable was used for each GWR model. The GWR was able to explain detailed 

non-stationary (local) spatial variations of the relationships between the selected LU 

variables and FC. Residential areas, forestlands, and golf courses were found to have 

significant positive correlations with FC. On other hand, spatial variabilities of negative 

correlation with FC concentrations can be explained by open water. The GWR method is 

robust and sensitive in examining the spatial non-stationary relationships between the 

tested LU and FC. The visualization of the GWR makes it easier to know which shellfish 

monitoring station has either negative or positive local coefficient since the model is 

displayed in a map. Although it is preferable to use the GWR for larger study areas and 

lager sample numbers, it was capable to examine the spatial non-stationary variations in 

this study.
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CHAPTER 3

DEVELOPMENT OF PREDICTIVE MODELS TO MONITOR THE 

IMPACT OF LAND USE ON SHELLFISH HARVESTING WATER 

QUALITY 

ABSTRACT 

Determining the proper spatial scale for the land use (LU) classes is crucial to model their 

impacts on water quality and has been widely studied over the past few decades. In this 

research, multiple circular buffers that are different in size were created and used in 

developing predictive models that can estimate land use impact on water quality for a 

shellfish growing area in the May River at the Town of Bluffton, SC. Geographic 

Information System (GIS) was used in developing eight buffer sizes ranged from 500 to 

2500 meters. Linear Mixed Model (LMM) was used for the statistical analysis in order to 

determine the most appropriate buffer size that its LU variables as well as environmental 

explanatory variables are significantly associated with FC concentration. Combined and 

seasonal models were developed and compared. The comparison between the models was 

based on the significance of the models’ parameters. The data for this study included: (a) 

LU data from the government of the Town of Bluffton and (b) FC data from the South 

Carolina Department of Health and Environmental Control (SCDHEC). The LU 

percentages within the circular buffers of 1800 meters along with the environmental 
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explanatory variables were better associated with FC, and they provided significant 

predictive models. The results of the study appear to encourage the use of the LMM when 

the special scale selection for LU variables is required in developing water quality models. 

3.1 INTRODUCTION  

To protect the human health form the potential risk accompanied with shellfish 

consumption, the National Shellfish Sanitation Program (NSSP) has developed guidelines 

that have to be followed by all costal states to identify, survey, and classify their shellfish 

growing waters (USFDA, 1993). The shellfish growing areas may be classified as (1) 

Approved, (2) Conditionally approved, (3) Restricted, (4) Conditionally restricted, or (5) 

Prohibited. The main criterion for these classifications is the concentration of Fecal 

Coliform (FC) bacteria concentration. The FC bacteria can be derived from human waste, 

such as sewage, or animal wastes as well as some other point and non-point sources. Based 

on the epidemiological studies, the United States Environmental Protection Agency 

(USEPA) found that the concentration of Escherichia Coli (E. coli), a main species of fecal 

coliform indicator bacteria, is correlated with gastrointestinal illnesses for swimmers 

(Dufour, 1984; USEPA, 1986) as well as infections to ears, nose, eyes and throats in less 

cases (Hunter, 1997). Thus, the presence of FC bacteria in water streams is an indicator of 

a pathogenic contamination, which may pose a health risk due to shellfish consumption. 

To prevent the occurrence of health problems related to shellfish consumption form 

water bodies that have exceeded fecal coliform indicator concentration, it is common to 

assess the water quality and issue shellfish harvest advisories. The main concern with 

issuing an advisory for the shellfish harvest areas is that the decision is based on the 

preceding day measurement for FC bacteria, because the FC bacteria take 18 to 24 hours 
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for their incubation period (Whitman, Nevers, & Gerovac, 1999). The method that involves 

using models to estimate FC concentration based on preceding day measurements 

concentration is called the “persistence method” (USEPA, 2007).  

Several studies have shown that the persistence method often post incorrect 

advisories (Christen, 2002; Frick, Ge, & Zepp, 2008; Whitman & Nevers, 2008; Whitman, 

Nevers, Korinek, & Byappanahalli, 2004). Therefore, this persistence method may provide 

either false positive or false negative advisories for a shellfish harvest area (Frick et al., 

2008). False advisories, in some cases, could lead to either a closure for a safe condition or 

a non-closure for an unsafe condition. Consequently, this will result in exposing the public 

to health risks as well as economic losses. Therefore, many agencies and researchers have 

started to develop empirical predictive models to provide near real-time estimation for their 

surface water conditions (Francy, Darner, & Bertke, 2006; Francy & Darner, 2007). To 

some extent, these predictive models are useful in determining waterbodies that need 

stricter monitoring, and they are also helpful in estimating the conditions of the waterbodies 

between sampling times in order to avoid unsafe water conditions (USEPA, 2010). 

To promote the efficiency of water quality monitoring programs, the use of the 

predictive models was highly recommended by the USEPA in its 2012 draft for recreational 

water quality criteria (USEPA, 2012). Decision making for a shellfish harvest area 

advisories can be improved by employing predictive models combined with their necessary 

data that can be attained from different accessible sources (Kelsey, Scott, Porter, Siewicki, 

& Edwards, 2010). Measurable physicochemical parameters of water can provide decision 

makers with feasible FC prediction based on a real-time forecasting approach (David & 

Haggard, 2011; Gonzalez, Conn, Crosswell, & Noble, 2012). Using a regression model 
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incorporated with real-time measurements demonstrated a great promise for guiding 

decision makers towards water quality conditions (Olyphant & Whitman, 2004). Predictive 

models will still be necessary to guide decision makers towards water quality monitoring 

even with the possibility of measuring FC concentration directly (Olyphant & Whitman, 

2004). Several studies have found that FC concentration can be better estimated by 

combining precipitation, climate and physiochemical variables in the models. (Brooks, 

Corsi, Fienen, & Carvin, 2016; David & Haggard, 2011; Galfi, Österlund, Marsalek, & 

Viklander, 2016; Gonzalez et al., 2012; Kelsey et al., 2010; Olyphant, Thomas, Whitman, 

& Harper, 2003; Olyphant & Whitman, 2004; Thoe et al., 2014; Thoe, Wong, Choi, & Lee, 

2012). Therefore, the variations in FC densities are affected by the interaction of several 

environmental factors including water and climate parameters. 

Furthermore, a study found that precipitation and temperature are crucial factors in 

determining the FC densities due to their impacts on FC survival (Leight, Hood, Wood, & 

Brohawn, 2016). Other studies also found that temperature, Biological Oxygen Demand 

(BOD), Turbidity, Total suspended solids (TSS) and antecedent dry days are significant 

parameters to provide detailed association with FC (Paule-Mercado et al., 2016). A study 

used Soil and Water Assessment Tool (SWAT) and concluded that temperature was the 

main significant variable in determining FC concentration (Cho et al., 2016). Moreover, a 

study found that FC densities can be better predicted using only water and weather 

parameters (Nevers & Whitman, 2005).  

Several studies have suggested the integration of LU classes  in predicting FC 

concentrations (Cha, Park, Lee, Kim, & Cho, 2016; Crowther, Wyer, Bradford, Kay, & 

Francis, 2003; Galfi et al., 2016; Paule-Mercado et al., 2016; Schoonover & Lockaby, 
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2006). Most importantly, some of these studies have shown that physiochemical 

parameters, LU classes, and imperviousness give a greater insight to model the FC bacteria. 

(Galfi et al., 2016; Schoonover & Lockaby, 2006). However, some other studies have 

revealed that the strength of the relationships between the modeled variables including FC 

are varied by the variation of the seasons and the geographical locations, and they 

suggested that the models should be site-specific for the predicted bacteria. (David & 

Haggard, 2011; Leight, et al., 2016). 

Accordingly, precipitation is the most commonly used explanatory variable in the 

literature, and the other climate and physiochemical variables were used based on data 

availability and best fitted models resulted. Furthermore, other studies have recommended 

separating the models into base and high flow conditions to get more accurate FC 

prediction (Crowther et al., 2011; David & Haggard, 2011; Galfi et al., 2016; Paule-

Mercado et al., 2016; Schoonover & Lockaby, 2006; Thoe & Lee, 2013). These studies 

used such approach in order to identify the essential variables that must be considered for 

both base and high flow since storm water runoff is the main nonpoint source of FC during 

the high flow condition. 

Different statistical methods were used in different studies to predict FC such as 

Artificial Neural Network (ANN), Multiple Linear Regression (MLR), and quantitative 

PCR (qPCR). Quite a number of studies have found that the ANN is a promising method 

for developing predictive models for FC concentrations (He & He, 2008; Zhang, Deng, & 

Rusch, 2012). Several other studies used MLR method to predict the FC densities; these 

studies suggested that MLR is a promising tool and can provide a greater insight to 

understand the factors that influence the FC densities (Brooks et al., 2016; Frick et al., 
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2008; Gonzalez & Noble, 2014; He & He, 2008; Herrig, Böer, Brennholt, & Manz, 2015; 

Olyphant et al., 2003; Paule-Mercado et al., 2016; Zhang et al., 2012). Therefore, MLR as 

well as real-time explanatory variables can be used to develop empirical models, which 

can be used  as the basis to issue health advisories (Frick et al., 2008).  

As LU variables will be included in developing the FC models, the spatial scale for 

defining the LU variables is required. For this study, circular buffers method is the only 

option that can be used to define the LU variables because the shellfish monitoring stations 

are positioned in the stream of the May River. Several studies have used circular buffers to 

model the impact of LU on water quality (Azyana & Norulaini, 2012; Chang, 2008; 

Daugomah, Siewicki, Porter, & Scott, 2007; Gyawali, Techato, & Monprapusson, 2015; 

Sanger, Holland, & Hernandez, 2004; Zhai, Xia, & Zhang, 2014). Few studies have 

concluded that circular buffers were not better than other spatial scales such as watersheds 

in explaining the LU impact (Azyana & Norulaini, 2012; Gyawali et al., 2015; Zhai et al., 

2014). However, several other studies were able to evaluate the influence of LU classes on 

water quality by developing circular buffers for the LU variables (Chang, 2008; Daugomah 

et al., 2007; Sanger et al., 2004). These studies have not come to an agreement on a 

consistent circular buffer size although it ranged from 400 to 500 meters. 

Due to data collection approach in this study, there will be repeated measurements 

(observations) for each shellfish monitoring station. In this case, the LU variables will be 

matched (unchanged) for the observations of each station, and the MLR is not the 

appropriate statistical method to deal with the repeated measurements. There is a Linear 

Mixed Model (LMM), which can deal with the repeated measurements (Pinheiro and 

Bates, 2000). Several studies have used the LMM to predict FC by including LU as well 
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as other factors in the modelling (Delpla & Rodriguez, 2014; Hurley & Mazumder, 2013; 

Ragosta et al., 2010). In this study, the LMM method will be used to find the circular buffer 

size for LU variables that can provide the most predictive models for FC bacteria. 

3.2 STUDY AREA 

The May River watershed is located in Beaufort County in south east of South 

Carolina (Figure 3.1). The Town of Bluffton has the May River as its significant estuary, 

which drains into the Atlantic Ocean on the eastern coast of South Carolina. The population 

of the Town of Bluffton in 2015 was about 16,728 according to the U.S Census Bureau, 

2015. Due to the high water quality of the May River in 2001, it was classified Outstanding 

Resource Water (ORW) by the SCDHEC (Barber, 2008). The Environmental Protection 

Agency (EPA) and SCDHEC have acknowledged the May River as a priority watershed. 

The May River is highly valued by the residents of the Town of Bluffton due to its great 

recreational and economical importance. The aesthetics and views, and the abundant 

natural resources in the Town of Bluffton have led to an increase in population and 

commercial growth in the area. As a result, major LU changes are planned for 

developments by the government of the Town of Bluffton. However, there are many 

concerns about the subsequent adverse impacts on water quality of the river. In addition, 

oyster harvesting is the main economic activity in the May River and polluting this river 

may impact the quality of the oyster beds. During the past few decades, the Town of 

Bluffton has grown rapidly, and this growth is continuing. There were LU changes as the 

town was developing and growing in population and commercial activities have eventually 

changed the quality of the May River. The LU in the watershed is majorly residential, with 
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some minor commercial uses, and there are no heavy industrial activities within the 

watershed. However, the May River, for the first time in its history, was downgraded in its 

 

Figure 3.1: May River watershed with shellfish monitoring station sites and LU classes in 
2016 
Data source: The government of Town of Bluffton 

shellfish harvesting classification in 2009. FC bacteria were and are still the main pollutants 

in the river. The May River watershed is within Shellfish Growing Area 19 (Figure 3.2). 

Five shellfish monitoring stations within shellfish growing area 19 were classified as 

Restricted in 2016 (Moody, 2016). These stations are 19-19, 19-19A, 19-19B, 19-19C, and 
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19-24 (Figure 2.2). The other eight stations were classified as Approved in 2016 (Moody, 

2016). 

 

Figure 3.2: Shellfish Growing Area 19 map with SCDHEC shellfish monitoring stations 
Source: SCDHEC 

3.3 DATA SOURCES AND METHODS 

3.3.1 Fecal Coliform Data  

Data for FC concentrations were retrieved from SCDHEC’s shellfish-monitoring 

program. The program was established primarily to maintain the health and quality 

standards of the shellfish and their harvesting areas by following federal guidelines and 
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state regulations (SCDHEC, 2017a). Also, this program was established to enhance water 

quality for the shellfish harvesting areas. Each shellfish growing area in South Carolina is 

comprehensively evaluated under this program. Annual evaluation is conducted for the 

shellfish growing areas that meet the requirements of the National Shellfish Sanitation 

Program (NSSP). Monthly routine sampling and laboratory analysis are conducted for 

bacteriological water quality monitoring at the SCDHEC’s designated sampling sites. The 

SCDHEC’s shellfish-monitoring program complies with the NSSP standards, sampling 

and monitoring methods, and laboratory analysis. Most Probable Number (MPN) per 100 

milliliters (ml) is the measurement unit used for the FC concentrations.  

As the shellfish monitoring stations are within Approved and Restricted areas, the 

guidelines for these two shellfish areas are as the following: 1- For the Approved area, the 

median or the geometric mean of FC should not exceed 14 MPN per 100 milliliters, 2- A 

shellfish area should be classified as Restricted when it is proven by the survey data that 

there are a reasonable level of pollutants exist or if there are substances deleterious or 

poisonous substances which can unpredictably change the water quality or when it is not 

possible to classify the area as Conditionally Approved (SCDHEC, 2017b). There are 13 

stations located in the study area which will be included in this research. The data for FC 

concentrations from 1999 to 2015 are only available for 10 stations, while the data from 

three stations are available from 2009 to 2015. This is because these three stations were 

installed in 2009. 

3.3.2 Land use data 

LU data for the year 2016 were retrieved from the governments of the Town of 

Bluffton. The data is a shapefile feature class that was developed by polygons that reflect 
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the LU classes that were captured by the satellite imagery. The projected coordinate system 

for the data is NAD 1983 State Plane South Carolina FIPS 3900 Feet Intl, and the projection 

is Lambert Conformal Conic. The geographic coordinate system for the data is GCS North 

American 1983. Using ArcMap 10.4, the LU data were edited in order to be prepared for 

the analysis of the study. Twelve major LU types were identified: residential areas, 

forestlands, forested wetlands, non-forested wetlands, open water, commercial, 

transportation, non-residential, civic, golf courses, open space, and undeveloped areas.  

3.3.3 Circular Buffers for land use data 

ArcMap 10.4 was used to calculate the percentages of each land use class for the 

year 2016 in circular buffers. A shapefile feature class layer for the May River watershed 

was required for the buffers developments to clip the edges of the buffers within the 

watershed borders. The May River watershed’s layer used in the study is a 12-Digits 

Hydrologic Unit Code (HUC) that was retrieved from the government of the Town of 

Bluffton. For the purpose of this study, the percentages of the LU classes for each shellfish 

monitoring station is required to get the LU variables for the stations. Therefore, a circular 

buffer was created for each shellfish monitoring station to calculate the LU percentages 

inside it. Since there are 13 shellfish monitoring stations in the study area, 13 circular 

buffers have been developed. As one of the study objectives is to identify the optimum 

buffer size for FC modelling, it was necessary to develop multiple buffers with different 

sizes for all the stations. For that reason, eight circular buffer sizes in meters were created: 

500m, 800m, 1000m, 1200m, 1500m, 1800m, 2000m, and 2500m (Figure 3.3).  
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3.3.4 Precipitation data 

Two rainfall datasets were used for fecal coliform modeling. One dataset is from 

rainfall monitoring gauge for Broad Creek Public Service District (PSD). This is the 

rainfall data source that is used by the SCDHEC for shellfish monitoring assessments in 

the May River. The other rainfall dataset was retrieved from the Next Generation Weather 

Radar (NEXRAD) system from the National Atmospheric and Oceanic Administration 

(NOAA). Historical rainfall data from 2009 to 2015 were used in this study. The data were 

prepared in two ways for the purposes of the study. Rainfall measurements for the day of 

sampling, and rainfall measurements for 24 hours, 48 hours and 72 hours preceding the 

day of sampling.  

 

Figure 3.3: Example of the circular buffer sizes for one of the shellfish monitoring stations 
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3.3.5 Environmental factors data 

The SCDHEC’s shellfish monitoring stations measure the following parameters: 

salinity, water temperature, air temperature, salinity, wind direction and tide stage. These 

parameters were retrieved form the SCDHEC and were used in FC modeling. Air and water 

temperature are measured in Celsius, salinity is measured in part per thousand (ppt), wind 

direction is a categorical variable (eight categories) with eight directions, and tide stage is 

a categorical variable (eight categories) with eight levels. 

3.3.5 Statistical analysis of the relationship between salinity and rainfall 

Pearson product-moment correlation and scatterplots were used to assess the 

impact of rainfall on salinity. Precipitation measurements from rain gauge and NEXRAD 

for the day of sampling were used in the analysis to see if they influence the salinity 

concentration in the May River. The precipitation and salinity measurements from 2009 to 

2015 were included in the analysis. The correlation coefficients (r) and the p-values for the 

correlation test explained the strength, the significance and the direction of the relationship 

between salinity and rainfall. The results of Pearson product-moment correlation can 

determine if there are significant or non-significant positive or negative correlations 

between salinity and rainfall.  

3.3.6 Statistical analysis of the relationship between salinity and FC bacteria 

Pearson product-moment correlation and a scatterplot between FC and salinity 

were used to explore how FC concentration is linked to salinity. Data from 2009 to 2015 

for salinity and FC measurements for the day of sampling were included in the analysis. 

The r-value and the p-value for the correlation test illustrated the strength and significance 

of the correlation of the relationship between salinity and FC. The degree of significance 
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and direction of the relationship is determined by using this test. The scatterplot was used 

to display the correlation and its direction between salinity and FC. 

3.3.7 MODELING METHODS 

3.3.7.1 Combined models 

LMM was used to develop 16 predictive models for the entire sampling period 

(2009 to 2015). The LMM was used because it is an appropriate statistical model in 

determining associations between a dependent variable and a set of predictors when the 

data are repeatedly collected from the sampling stations. This is because the data is 

structured by sampling dates for each monitoring station, so in this case, the LU data are 

repeated for each sampling station, and because the LU data do not vary by date, they will 

be matched for the repeated measurements for each station.  

Rian gauge and NEXRAD datasets were used in modelling for the eight buffer sizes 

to get eight models with rain gauge and eight models with NEXRAD. In each model, the 

following variables were included: LU classes (residential areas, forestlands, open spaces, 

golf courses, non-forested wetlands, open water), water temperature, air temperature, 

salinity, wind direction, tide stage, precipitation measurements (24 hours, 48 hours and 72 

hours) preceding the day of sampling. R-studio software via “lme” function was used to 

perform the LMM to get the 16 models.  

For each buffer size, a model selection function called “dredge” in R-studio was 

used to automatically select the variables that provide the best fitted model. This method 

was used to make sure that each buffer size has the best selected model. This is necessary 

before the models for the buffers are compared. The comparison objective is to find the 

buffer size that provides the most predictive model. However, this most predictive model 
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must be significant. Therefore, the parameters of the models’ outcomes were compared. 

This was done by identifying the model that has the most significant coefficients at a p-

value less than 0.05. Since the LMM does not provide R2 values, a function in R-studio 

was used to get marginal R2 values for the models.  

3.3.7.2 Seasonal models 

After finding the optimum buffer size for providing the most significant combined 

model, the data were separated by season to get the results for the seasonal models. 

Therefore, there were four datasets used in the analysis for the seasonal model. The 

seasonal models were developed twice with the two precipitation datasets, rain gauge and 

NEXRAD. This is to compare the seasonal models’ performance from with the two 

different precipitation datasets. Similar to the combined models, model selection was 

performed for the seasonal models to find the most significant models.  

3.3 RESULTS AND DISSCUSSION  

3.3.1 The relationship between salinity and rainfall  

Pearson’s correlation results (Table 3.1) and scatterplots (Figure 3.4) showed 

significant but weak positive correlations between rainfall and salinity. The results of the 

two precipitation variables (rain gauge and NEXRAD) are very similar. What was expected 

is that salinity is negatively correlated with rainfall. This is because salinity concentration 

should decrease as it is diluted by precipitation. In fact, most of the sampling days were 

dry days, and even though the correlation is positive, it is not strong enough to provide a 

clear explanation for this relationship. However, the reason for this positive relationship 

might be due to the soil particles that are carried by storm water runoffs, which may have 
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increased the salinity in the river stream. This result is based on a monthly collected data 

for both of salinity and rainfall, and a daily data will help to explain more details for this 

relationship.  

Table 3.1: Correlation test results for rainfall variables 

Rainfall Variable Pearson’s correlation coefficient (r) P- value < 0.05

Rain gauge 0.13 0.00002

NEXRAD 0.08 0.006962 

Figure 3.4: The relationship between salinity and rainfall 

3.3.2 The relationship between salinity and FC 

Salinity is one of the explanatory variables that will be used in predicting FC 

concentration. Pearson’s correlation results (Table 3.2) and scatterplots (Figure 3.5)  
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showed significant negative correlation with r-value of -0.33 and p-value of 2.2e-16. This 

significant linear negative relationship was expected because salinity influences the 

survival of FC. With higher salinity, less FC can survive in a fresh water body. This result 

is consistent with some previous studies that assessed the impact of salinity on FC 

concentration (Gonzalez et al.,2012; Gonzalez & Noble, 2014; Kelsey et al., 2010). Thus, 

it is important to include salinity concentration from each shellfish monitoring station in 

predicting FC concentration. 

Table 3.2: Correlation test results for salinity and FC 

Tested variables Pearson’s correlation 
coefficient (r) 

P- value < 0.05

Salinity and FC -0.33 2.2e-16 

Figure 3.5: The relationship between log FC and salinity 
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3.3.3 Modeling LU and FC 

3.3.3.1 Combined models  

Linear Mixed Model (LMM) was used in developing 16 models, these are eight 

models for eight buffer sizes for two precipitation datasets (rain gauge and NEXRAD). 

Marginal R2 values were used in comparisons between the models to evaluate models’ 

performance for eight models for rain gauge and for eight models for NEXRAD (Table 3.3 

and Table 3.4). The marginal R2 value was the highest with the 2500m-buffer followed by 

the 2000m and then by the 1800m-buffer. The marginal R2 for the models with rain gauge 

for all buffer sizes ranged from 0.395 to 0.567, and from 0.387 to 0.561 with NEXRAD 

models.  

The p-values for the models’ parameter estimates (coefficients) were also compared 

to evaluate the models’ significance (p < 0.05) with rain gauge (Table 3.5) and NEXRAD 

(Table 3.6). It was found that the models (rain gauge and NEXRAD) for the 1800m-buffer 

were the only two models that had significant p-values for their coefficients. This means 

that FC concentration was significantly predicted by the LU variables as well as other 

variables that were retained in the models of the 1800m-buffer. Furthermore, it was shown 

that the p-value for the intercept was decreasing as the buffer size increases until it reached 

to less than 0.05 with 1800m-buffer models, which then returned to increase with the 

2000m-buffer. The coefficient for the non-forested wetlands variable was never significant 

at any model in which it was included. It is interesting to find that the 1800m-buffer models 

(with rain gauge and NEXRAD) did not include the non-forested wetlands variable. 

However, the non-forested wetlands variable was included in the 2000m- buffer’s model. 

In fact, the non-forested wetlands variable appeared to have negative correlation with FC 
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in chapter 2 while it was always positive with all the models in which it was retained. This 

opposite correlation of this variable in the models might be the reason why it was not 

significant at any model, which may explain why it was not included in the 1800m-buffer’s 

model. As for the 2500m-buffer’s models (with rain gauge and NEXRAD), the signs of the 

coefficients of the golf course variable were changed from positive to negative; this 

negative correlation was not expected with FC concentration because golf course was  

Table 3.3: Marginal R2 values for the models with different buffer sizes (gauge) 

Buffer size of the model Marginal R2

500m Gauge 0.395

800 m Gauge 0.453 

1000 m Gauge 0.494 

1200 m Gauge 0.518 

1500 m Gauge 0.536

1800 m Gauge 0.546

2000 m Gauge 0.555 

2500 m Gauge 0.567 

Table 3.4: Marginal R2 values for the models with different buffer sizes (NEXRAD) 

Buffer size of the model Marginal R2

500 m NEXRAD 0.387

800 m NEXRAD 0.445

1000 m NEXRAD 0.486 

1200 m NEXRAD 0.510 

1500 m NEXRAD 0.528 

1800 m NEXRAD 0.540

2000 m NEXRAD 0.549 

2500 m NEXRAD 0.561 



70 

Table 3.5: linear mixed model parameters and their p-values for each buffer size (rain 
gauge) 

Bold: significant (p < 0.05) 

Table 3.6: linear mixed model parameters and their p-values for each buffer size 
(NEXRAD) 

Bold: significant (p < 0.05) 

shown to have positive correlation with FC in Chapter 2 as well as some other studies. 

Therefore, these results suggest that the circular 1800m-buffer is the optimum buffer size 

for using the LU variables in predicting FC concentration.  
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While some of the studies that used the circular buffers found that 400 to 500m 

buffer size were the most appropriate (Chang, 2008; Daugomah et al., 2007; Sanger et al., 

2004), it is not surprising that the 1800m was found the most appropriate in this study for 

some reasons. The first reason is that the shellfish monitoring stations are located in the 

river’s stream, so at 400m or 500m-buffer, most of the LU percentage in the buffer is going 

to be water. The second reason is that as the buffer size increases and because it is circular, 

more LU classes will be included form all the directions, which may be advantageous in 

explaining more detailed relationships between FC concentration, LU percentages and the 

environmental factors.  

After model selection was completed for the models of all buffer sizes with rain 

gauge dataset, the following variables retained in all models: open space, residential, 

forestlands, water temperature, air temperature, salinity, tide stage, gauge-48hrs. The 

models for the buffers: 500m,800m and 1000m retained all the variables except for gauge-

24hrs and gauge-72hrs because they were never shown in any model. Golf course 

disappeared in the model for the 1500m-buffer and it was shown again with negative sign 

at 2500m-buffer.  

With NEXRAD dataset and after model selection was completed for the models of 

all buffer sizes, the following variables retained in all model: open space, residential, 

forestlands, salinity, tide stage, NEXRAD-24hrs, and NEXRAD-72hrs. Buffers 

500m,800m and 1000m retained all the variables except for NEXRAD-24hrs, air 

temperature and water temperature because they were never shown in any model. 

However, air temperature and water temperature and gauge24hrs were involved in all rain 

gauge models. This might have occurred because all NEXRAD models included 
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NEXRAD-24hrs and NEXRAD-72hrs measurements in their models, which may would 

cause multicollinearity if the air temperature and water temperature measurements were 

included in the model. Like what happened with rain gauge models, with NEXRAD 

models, golf course disappeared at 1500m-buffer and it was shown again with negative 

sign at 2500m-buffer. These results suggest that open space, residential, forestlands, 

salinity, tide stage and rainfall measurements are important predictors for FC concentration 

in May River. These results are consistent with several studies that modeled FC 

concentration with LU and environmental factors (Cha et al., 2016; Crowther et al., 2003; 

Galfi et al., 2016; Paule-Mercado et al., 2016; Schoonover & Lockaby, 2006). 

For the 1800m-buffer and rain gauge data, the following variables were involved 

in the model: open space, residential, forestlands, water temperature, air temperature, 

salinity, rain gauge-24hrs, and tide stage (Table 3.7). The model for 1800m-buffer with 

NEXRAD data included the following variables: open space, residential, forestlands, 

salinity, NEXRAD-24hrs, and NEXRAD-72hrs and tide stage (Table 3.7). Both models 

(rain gauge and NEXRAD) retained open space, residential, forestlands, salinity, and 

precipitation measurements as significant predictors in the models. This indicates that FC 

bacteria loading is controlled by the storm-water runoff from LU classes, and their survival 

is affected by salinity.  

Salinity is negatively correlated with FC bacteria and this might because E. coli 

bacteria cannot survive in high-salinity waters. The marginal R2 values for the 1800m-

buffer models (rain gauge and NEXRAD) indicate that about 0.54 to 0.55 % of FC 

variations was explained by the variables in the selected models. These values seem to 

suggest that predicting FC bacteria with rain gauge and NEXRAD are very similar. 
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Table 3.7: FC prediction models using 1800m-buffer for LU variables 

Model Equation 

Rain gauge 0.93+5.4 (open space) +1.18 (residential) + 2.5 (forestlands)-0.02 
(water temp) +0.014 (air temp) - 0.019 (salinity) +0.389 (gauge-
48hrs) + f (tide stage) 

NEXRAD 0.78+5.5 (open space) +1.1(residential) +2.6 (forestlands)-0.02 
(salinity) + 0.21 (NEXRAD-24hrs) + 0.11 (NEXRAD-72hrs) + f(tide 
stage) 

f: Factor for tide’s categorical variables 

3.3.3.2 Seasonal models  

There was an intent to develop two seasonal models based on wet and dry seasons. 

However, clustered column charts (Figure 3.6 and 3.7) for the rain gauge and NEXRAD 

datasets indicated that the climate in the May River has no wet and dry seasons. Therefore, 

four seasonal models were developed for each rainfall datasets using the 1800m-buffer for 

LU variables. The marginal R2 values (Table 3.7) and the p-values (Table 3.8 and Table 

3.9) for the models’ parameters were compared to determine the significance levels and 

the prediction capabilities for the seasonal models.  

The winter models for rain gauge and NEXRADS are the most predictive models 

and are the only two models that have significant coefficients for the parameters of the 

models (Table 3.8 and Table 3.9). The marginal R2 values for all seasonal models ranged 

from 0.52 to 0.67 (Table 3.7). For winter models, the marginal R2 value with rain gauge is 

0.673, and with NEXRAD, the marginal R2 is 0.665 (Table 3.7). The seasonal models with 

rain gauge had open space, residential and forestlands included in all the models. Unlike 

the combined models, the retained rainfall measurement variables were varied with the 
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Figure 3.6: Monthly precipitation inches from 2009 to 2015 measured by rain gauge 

 

Figure 3.7: Monthly precipitation inches from 2009 to 2015 measured by NEXRAD
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Table 3.8: Marginal R2 values for seasonal models for 1800m-buffer (rain gauge and 
NEXRAD) 

Table 3.9: linear mixed model parameters and their p-values for seasonal models (rain 
gauge) 

Model parameters P-values (< 0.05) for seasonal models (gauge)
Fall Spring Summer Winter 

Intercept 0.5950 0.4205 0.3247 0.0000 

open space 0.0057 0.0006 0.0145 0.0128 

open water - - - - 
residential 0.0114 0.0071 0.0043 0.0078 

forestlands 0.0074 0.0012 0.0081 0.0464 

non-forested wetlands - 0.1705 0.0961 - 
golf course - - - - 
salinity - 0.0008 - 0.0000 

air temp - - 0.0012 0.0000 

gauge 24hrs 0.0000 - - - 
gauge 48hrs - - 0.0000 0.0000 

gauge 72hrs - 0.0000 - - 

Bold: significant (p < 0.05) 

seasonal models. For example, the fall model had gauge-24hrs, and the spring model had 

gauge-72hrs, while summer and winter models had gauge-72hrs. With NEXRAD, all the 

seasonal models retained the following variables: open space, residential, and forestlands. 

Salinity was only shown in winter model. Like the seasonal models with rain gauge, every 

Seasonal models for 

buffer 1800 m 

Marginal R2 

Fall Gauge 0.578 

Fall NEXRAD 0.618 

Spring Gauge 0.569 

Spring NEXRAD 0.550 

Summer Gauge 0.520 

Summer NEXRAD 0.516 

Winter Gauge 0.673 

Winter NEXRAD 0.665 
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seasonal model with NEXRAD retained only one rainfall measurement, which varied with 

the seasons. However, open water and golf course were not retained in any season with 

neither rain gauge nor NEXRAD models. This seems to emphasize that open water and 

golf course are not important predictors for FC when buffer 1800m is used. 

Table 3.10: linear mixed model parameters and their p-values for seasonal models 
(NEXRAD) 

Model parameters P-values (< 0.05) for seasonal models (NEXRAD) 
Fall Spring Summer Winter 

Intercept 0.0090 0.2468 0.1889 0.0000 

open space 0.0056 0.0005 0.0186 0.0202 

open water - - - - 
residential  0.0086 0.0091 0.0073 0.0147 

forestlands 0.0087 0.0016 0.0091 0.0422 

non-forested wetlands - 0.1952 0.1231 - 
golf course - - - - 
salinity - - - 0.0000 

air temp - - 0.0003 0.0000 

NEXRAD 24hrs 0.0000 - - 0.0000 

NEXRAD 48hrs - - 0.0000 - 
NEXRAD 72hrs - 0.0000 - - 

Bold: significant (p < 0.05) 

The equations for FC predictions for the seasonal models are shown in Table 3.10 

and Table 3.11. With rain gauge models, tide stage was only retained in winter model, 

whereas with NEXRAD models, only fall and winter models retained the tide stage 

variable. Non-forested wetlands variable was not significant at any seasonal model, and it 

was not involved in both winter models (rain gauge and NEXRAD), which were found to 

be the most predictive models among the other seasonal models. 

Data for precipitation and environmental factors for a longer period is needed to get 

more precise combined and seasonal models. In this study, FC concentrations were mostly 

sampled in dry days. Thus, precipitation data for a longer period can provide more 



77 

information about the impact of rainfall on FC levels. The prediction power with rain gauge 

and NEXRAD were found to be very similar, thus, the NEXRAD is advantageous over the 

rain gauge since it can be accessed with no cost. 

Table 3.11: Seasonal FC prediction models for 1800 meters circular buffer and rain gauge 

f: Factor for tide’s categorical variables 

Table 3.12: Seasonal FC prediction models for 1800 meters circular buffer and NEXRAD 

Model Equation 

Fall 0.23+5.7 (open space) +1.21 (residential) +3.02 (forestlands) + 0.36 

(NEXRAD-24hrs) + f (Tide stage) 

Spring -0.34+5.14 (open space) + 1.71 (residential) +3.85 (forestlands) +0.77 (non-

forested wetlands) + 0.16 (NEXRAD-72hrs) 

Summer 0.55 + 4.6 (open space) +2.0 (residential) + 3.2 (forestlands) +1.01(non-

forested wetlands) - 0.03 (air temp) +0.15 (NEXRAD-48) 

Winter 1.08+4.14 (open space) + 1.02 (residential) +2.02 (forestlands) + 0.03 (air 

temp) - 0.04 (salinity) + 0.78 (NEXRAD-24hrs) + f (tide stage) 

f: Factor for tide’s categorical variables 

Model Equation 

Fall 0.041+5.5 (open space) +1.12 (residential)+3.05 (forestlands)+0.42 (gauge-
24hrs) 

Spring 0.26+4.6 (open space) +1.6 (residential)+3.7 (forestlands) + 0.74 (non-
forested wetlands)- 0.01 (salinity) + 0.14 (gauge-72hrs) 

Summer 0.40+4.62 (open space) + 2.08 (residential) + 3.13 (forestlands) +1.06 (non-
forested wetlands) - 0.03 (air temp) +0.27 (gauge-48hrs) 

Winter 1.12+4.36 (open space) +1.1 (residential) +1.9 (forestlands) +0.03 (air temp)- 
0.04 (salinity) + 0.60 (gauge48hrs) + f (tide stage) 
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The knowledge for best management practices for LU impact on FC in the May River 

can be improved by further researches on other environmental factors such as the volume 

of the stream inside the buffer, dissolved oxygen (DO), PH, turbidity, and alkalinity. 

Including these parameters in further researches can be crucial in validating the size of the 

buffer for future studies on FC levels on the May River. 

3.4 CONCLUSION  

This study attempted to develop combined and seasonal models to predict FC 

concentration by developing several circular buffers that vary in size. The percentages of 

LU classes in the buffers and environmental factors were included in FC modellings. The 

models’ outcomes for all the buffers were compared to identify which buffer size can 

provide the best fitted and the most significant model. The results of this study indicated 

that LU variables for 1800m-buffer scale were better correlated with FC when compared 

with the other buffer sizes. The LU variables for 1800m-buffer incorporated with 

environmental factors were able to provide significant models for FC prediction. Thus, it 

is important to consider LU impact in water quality modeling and in management practices. 

The seasonal models demonstrated the impact of seasonal variations on FC modelling as 

each season has a different model. This study suggests that LMM can be used to model the 

associations between water quality and LU as well as other environmental parameters when 

there are repeated samplings for the sampling locations.
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CHAPTER 4

PREDICTING THE IMPACT OF A FUTURE LAND USE PLAN ON 

SHELLFISH HARVESTING WATER QUALITY 

ABSTRACT 

This study assesses the impact of a future land use (LU) plan fecal coliform (FC) 

concentrations in the May River at the Town of Bluffton, South Carolina. Predictive 

models were used for two different rainfall scenarios. Average and maximum rainfall 

scenarios in addition to LU percentages as well as tide stage were used in FC prediction. 

Circular buffers that are 1800 meters in size were used as the special scale for the proposed 

LU percentages that were included in the models. The results of FC prediction for the future 

LU scenarios were compared with the predicted FC in 2015 for the same scenarios. The 

comparison indicated that FC loading from the future LU plan will not to be higher than 

FC level in 2015.  The data for this research included LU data from the Town of Bluffton 

and FC concentrations from the South Carolina Department of Health and Environmental 

Control (SCDHEC).  The results of this research recommend the use of the Linear Mixed 

Model (LMM) in developing predictive models in order to serve as decision support tool 

for water quality and land management.
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4.1 INTRODUCTION 

To maintain the quality of surface waters, it is important to understand the links 

between the conditions of waterbodies and land management practices. Land management 

can help in understanding the spatial and temporal variabilities of water pollutants. One of 

the life-threatening water pollutants for humans and aquatic creatures is fecal coliform. As 

prevention is always better than treatment, land management can provide the prevention 

required to limit the fecal coliform levels. Land use (LU) activities are among the most 

concerned issues in land management practices. A comprehensive understanding of how 

the hydrologic cycle is impacted by LU change is needed to achieve the optimum natural 

resources management (Scanlon, Reedy, Stonestrom, Prudic, & Dennehy, 2005). The LU 

became an important factor in studying their impacts on the environment and the 

ecosystem.  

The variabilities of fecal coliform densities of the future can be predicted by 

analyzing the past LU changes, and many studies have been conducted to assess the impact 

of future LU on water quality (De Girolamo & Porto, 2012; Delpla & Rodriguez, 2014; 

Garmendia, Mariel, Tamayo, Aizpuru, & Zabaleta, 2012; Isik, Kalin, Schoonover, 

Srivastava, & Lockaby, 2013; Karlsson et al., 2016; Mango, Melesse, McClain, Gann, & 

Setegen, 2010; Neupane & Kumar, 2015; Tong, Liu, & Goodrich, 2009; Tu, 2009; Vaché, 

Eilers, & Santelmann, 2002; Wijesekara et al., 2012; Yira, Diekkrüger, Steup, & Bossa, 

2016). These studies assessed the impacts of future (proposed) LU plan on water quality 

by using a scenario-based approach. Furthermore, these studies have used different 

methods and models for the assessments. Some of these studies have used physically-based 

scale models like SWAT and some others have used statistical models like Multiple Linear 
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Regression (MLR) and Artificial Neural Network (ANN). The scenario-based analysis can 

be utilized as a tool to examine the potential impacts for a future LU change (Verburg et 

al., 2008).  

To manage the quality of surface waters, it is important to have robust modeling 

tools capable of assessing LU and management scenarios (Elliott et al., 2016). Developing 

LU change scenarios is an effective method in projecting the impact of future developments 

and providing tools to support policies and decisions that maintain sustainable strategies 

for decision makers (Nakicenovic et al., 2000). As a mean of mitigating the negative 

environmental impact of future LU change, the scenario-based modeling approach is 

necessary to provide the support in the analysis of the future LU impact (Sohl et al., 2012). 

Decisions in LU management can be supported if enough information concerning the 

impacts of future LU and climate change scenarios are available (Lin, Hong, Wu, & Lin, 

2007).  

Most of the studies that used scenario-based approach generated arbitrary future 

LU scenarios and evaluated their impacts. There are many physically-based watershed 

simulation models that have been developed to estimate the impact of future LU change 

scenarios. Some of these simulation models include: AGNPS (Young & Shepherd, 1995), 

ANSWERS (Beasley and Huggins 1982), HSPF (Bicknell, Imhoff, Kittle Jr, Donigian Jr, 

& Johanson, 1997), LTHIA (Bhaduri, Grove, Lowry, & Harbor, 1997) and SWAT (Arnold, 

Williams, Srinivasan, King, & Griggs, 1994). Some studies have compared the efficiencies 

between two different simulation models and found that it is hard to determine which 

model can perform better in terms of the statistical results (Niraula, Kalin, Srivastava, & 

Anderson, 2013; Sharifi et al., 2017). Several studies have used SWAT to assess the impact 
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of future LU scenarios on the ecosystem including the impact on surface water quality (De 

Girolamo & Porto, 2012; Mancosu et al., 2015; Mango et. al, 2010; Mehdi, Ludwig, & 

Lehner, 2015; Neupane & Kumar, 2015; Tong, Sun, Ranatunga, He, & Yang, 2012; Vaché 

et. al, 2002). However, a study used Multi Linear Regression (MLR) to predict the impact 

of  future LU scenarios on water quality (Garmendia et. al, 2012). Delpla & Rodriguez, 

(2014) used Linear Mixed Model (LMM) to predict FC and turbidity from multiple LU 

and climate scenarios. 

 Technically, to assess the impact of LU change on surface water quality, the 

current LU of a watershed is modeled, and then the models are used for future LU scenarios 

to compare the differences between the two modeled conditions (Elfert & Bormann, 2010). 

 Using the scenario-based approach with the integration of Geographical 

Information System (GIS) can serve as a powerful decision support tool for LU policy and 

management (Vaché et al., 2002). Numerous previous studies that assessed the impact of 

LU change on water quality, which used scenario-based approach, have proposed future 

LU scenarios based on “what if” scenario analysis (Bussi et al., 2016; Garmendia et al., 

2012;Karlsson et al., 2016; Mango et al., 2010; Neupane & Kumar, 2015; Rajib, 

Ahiablame, & Paul, 2016; Sharifi et al., 2017; Wilson & Weng, 2011; Yira et. al, 2016). 

This study will assess the impact of a proposed LU plan on fecal coliform densities by 

using previously developed models. 

4.2 STUDY AREA 

The May River watershed is located in Beaufort County in south east of South 

Carolina (Figure 4.1). The Town of Bluffton has the May River as its significant estuary, 

which drains into the Atlantic Ocean on the eastern coast of South Carolina. The population 
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of the Town of Bluffton in 2015 was about 16,728 according to the U.S Census Bureau, 

2015. Due to the high water quality of the May River in 2001, it was classified Outstanding 

Resource Water (ORW) by the SCDHEC (Barber, 2008). The Environmental Protection  

Figure 4.1: May River watershed with shellfish monitoring station sites and LU classes in 
2016 
Data source: The government of Town of Bluffton 
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Agency (EPA) and SCDHEC have acknowledged the May River as a priority watershed. 

The May River is highly valued by the residents of the Town of Bluffton due to its great 

recreational and economical importance. The aesthetics and views, and the abundant 

natural resources in the Town of Bluffton have led to an increase in population and 

commercial growth in the area. As a result, major LU changes are planned for 

developments by the government of the Town of Bluffton. The May River watershed is 

within Shellfish Growing Area 19 (Figure 4.2).  

4.3 DATA SOURCES AND METHODS 

4.3.1 Fecal Coliform Data  

Data for FC concentrations were retrieved from SCDHEC’s shellfish-monitoring 

program. The program was established primarily to maintain the health and quality 

standards of the shellfish and their harvesting areas by following federal guidelines and 

state regulations (SCDHEC, 2017a). Also, this program was established to enhance water 

quality for the shellfish harvesting areas. 

Each shellfish growing area in South Carolina is comprehensively evaluated under 

this program. Annual evaluation is conducted for the shellfish growing areas that meet the 

requirements of the National Shellfish Sanitation Program (NSSP). Monthly routine 

sampling and laboratory analysis are conducted for bacteriological water quality 

monitoring at the SCDHEC’s designated sampling sites. The SCDHEC’s shellfish-

monitoring program complies with the NSSP standards, sampling and monitoring methods, 

and laboratory analysis. Most Probable Number (MPN) per 100 milliliters (ml) is the 

measurement unit used for the FC concentrations. As the shellfish monitoring stations are 

within Approved and Restricted areas, the guidelines for these two shellfish areas are as  
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Figure 4.2: Shellfish Growing Area 19 map with SCDHEC shellfish monitoring stations 

Source: SCDHEC 

the following: 1- For the Approved area, the median or the geometric mean of FC should 

not exceed 14 MPN per 100 milliliters, 2- A shellfish area should be classified as Restricted 

when it is proven by the survey data that there are a reasonable level of pollutants exist or 

if there are substances deleterious or poisonous substances which can unpredictably change 

the water quality or when it is not possible to classify the area as Conditionally Approved 

(SCDHEC, 2017b). There are 13 stations located in the study area which will be included 

in this research. The data for FC concentrations from 1999 to 2015 are only available for 
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10 stations, while the data from three stations are available from 2009 to 2015. This is due 

to the fact that these three stations were installed in 2009. 

4.3.2 Land use data 

LU data for the for the proposed LU plan were retrieved from the governments of 

the Town of Bluffton (Figure 4.4). The data is a shapefile feature class that was developed 

by polygons that reflect the LU classes that were captured by the satellite imagery. The 

projected coordinate system for the data is NAD 1983 State Plane South Carolina FIPS 

3900 Feet Intl, and the projection is Lambert Conformal Conic. The geographic coordinate 

system for the data is GCS North American 1983. Using ArcMap 10.4, the LU data were 

edited in order to be prepared for the analysis of the study. Three major LU types were 

used in the analysis: (1) residential areas, (2) forestlands, and (3) open space 

4.3.3 Circular Buffers for land use data 

In Chapter 3, it was found that 1800 meter is the optimum size for LU buffers. 

ArcMap 10.4 was used develop 1800m-circular buffers for each shellfish monitoring 

stations to calculate the percentages of each land use class for the proposed LU plan within 

the circular buffers (Figure 4.3). A shapefile feature class layer for the May River 

watershed was required for the buffers developments to clip the edges of the buffers within 

the watershed borders. The May River watershed’s layer used in the study is a 12-Digits 

Hydrologic Unit Code (HUC) that was retrieved from the government of the Town of 

Bluffton. For the purpose of this study, the percentages of the LU classes for each shellfish 

monitoring station are required to get the LU variables for the stations.  
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Figure 4.3: Future LU plan of the Town of Bluffton 
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Figure 4.4: Circular buffer of 1800 meters for one of the shellfish monitoring stations 

4.3.4 Precipitation and tides data 

Two rainfall datasets were used for fecal coliform modeling. One dataset is from 

rainfall monitoring gauge for Broad Creek Public Service District (PSD). This is the 

rainfall data source that is used by the SCDHEC for shellfish monitoring assessments in 

the May River. The other rainfall dataset was retrieved from the Next Generation Weather 

Radar (NEXRAD) system from the National Atmospheric and Oceanic Administration 

(NOAA). Historical rainfall data from 2009 to 2015 were used in this study. Average and 

maximum rainfall events for Fall 2015 were calculated and used in the modeling. Tide 

stages data were retrieved from the SCDHEC’s shellfish monitoring stations. The tide 

stages are categorical variables (eight categories) with eight levels. 
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4.3.5 Modeling methods 

Two equations for FC from Chapter 3 were used in the modeling (Table 4.1). These 

two equations were developed for the fall season. One equation is for FC modeling using 

rain gauge data and the other equation is for FC modeling using NEXRAD precipitation 

data. The fall season model was selected for two reasons. The first reason is that the fall is 

the season for shellfish harvesting. The second reason is that there was a flood event in 

South Carolina in Fall 2015.  

In order to compare FC levels of the future LU plan with their levels in the current 

LU, two future scenarios (with rain gauge and NEXRAD) were developed and compared 

with two modeled scenarios for FC in 2015. One scenario included average rainfall in fall 

2015, and the other scenario included the maximum rainfall event in 2015. Therefore, FC 

levels of the average and maximum rainfall scenarios (with rain gauge and NEXRAD) for 

the future LU were compared with FC levels of the average and maximum rainfall 

scenarios for LU in 2015. For each scenario, the equation was used to calculate FC 

concentration for the 13 sampling locations in and then the average was calculated. Column 

charts were used to demonstrate the comparisons and to determine whether the future LU 

could cause water quality degradation  

Table 4.2 Rain Gauge and NEXRAD models for the Fall season 

f: Factor for tide’s categorical variables 

Model Equation 

Rain Gauge 0.041+5.5 (open space) +1.12 (residential) +3.05 (forestlands) + 0.42 
(Gauge-24hrs) 

NEXRAD 0.23+5.7 (open space) +1.21 (residential) + 3.02 (forestlands) + 0.36 
(NEX-24hrs) + f (Tide stage) 
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4.4 RESULTS AND DISCUSSION 

For each shellfish monitoring station (Table 4.1), the modeled (predicted) log FC 

concentration in 2015 and the modeled future log FC concentration and their averages were 

calculated based on the average rainfall (Rain Gauge and NEXRAD). The average FC 

concentration for the modeled scenarios with average rainfall are shown in Figure 4.1. 

What can be clearly seen from the average rainfall models in Figure 4.1 is that FC levels 

from the modeled future LU, with Rain Gauge and NEXRAD, is slightly lower than FC 

levels from the 2015 modeled LU. By using maximum rainfall from Rain Gauge and 

NEXRAD, modeled FC concentration in 2015 and modeled future FC for each station and 

their averages were calculated (Table 4.2). Like the average rainfall models, the results of 

the maximum rainfall models show that FC levels of the modeled future LU are lower than 

FC levels of the modeled 2015 LU (Figure 4.2). Interestingly, similar results were found 

from the average and the maximum rainfall models. 

An initial objective of the study was to assess the impact of the future LU plan and 

climate scenarios on fecal coliform levels. The results suggest that the future LU plan 

should not lead to a higher water quality degradation which may occur as a result of higher 

FC loading in the May River. This study suggests concerning LU, rainfall, and tide stage 

in predicting FC of a future LU plan. Contrary to expectations, the future LU plan will not 

lead to higher FC loadings although the plan will have higher residential areas, which were 

found positively correlated with FC in chapters 2 and 3. These results may be explained by 

the fact that most the proposed residential areas are far from the shellfish monitoring 

stations; and thus, their impact will not reach the river. 
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Table 4.2: Modeled FC concentration in 2015 and in the future with Average Rain (Gauge 
and NEXRAD) 

Station ID Modeled 2015 
FC with 
Average Rain 
(Gauge) 

Modeled 
Future FC 
Average Rain 
(Gauge) 

Modeled 
2015 FC 
Average 
Rain 
(NEXRAD) 

Modeled Future 
FC Average Rain 
(NEXRAD) 

19-19 1.37 1.35 1.61 1.59 
19-19A 1.45 1.45 1.68 1.68 
19-19B 1.10 1.10 1.31 1.31 
19-19C 1.03 1.00 1.26 1.23 
19-24 0.78 0.66 0.99 0.89 
19-16 0.61 0.53 0.83 0.75 
19-26 0.80 0.80 1.02 1.02 
19-18 0.61 0.61 0.82 0.82 
19-25 0.58 0.58 0.80 0.80 
19-01 0.48 0.48 0.69 0.69 
19-11 0.45 0.45 0.65 0.65 
19-12 0.38 0.38 0.58 0.58 
20-05 0.29 0.29 0.48 0.48 
Average FC 
from all the 
stations 

0.76 0.74 0.98 0.96 

 

 

Figure 4.5: Average FC levels for Modeled 2015 and future FC with Average Rain 

0 0.2 0.4 0.6 0.8 1 1.2
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Modeled Future FC with Average Rain

(Gauge)

Modeled 2015 FC with Average Rain
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Modeled Future FC with Average Rain

(NEXRAD)

Log Fecal Coliform Average
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Table 4.3: Modeled 2015 and future FC with Maximum Rain (Gauge and NEXRAD) 

Station ID Modeled 
2015 FC 
Maximum 
Rain (Gauge) 

Modeled 
Future FC 
Maximum 
Rain (Gauge) 

Modeled 2015 
FC Maximum 
Rain 
(NEXRAD) 

 Modeled 
future FC 
Maximum Rain 
(NEXRAD) 

19-19 1.89 1.86 2.23 2.20 
19-19A 1.97 1.97 2.29 2.29 
19-19B 1.61 1.61 1.93 1.93 
19-19C 1.55 1.52 1.88 1.85 
19-24 1.29 1.18 1.61 1.50 
19-16 1.13 1.04 1.44 1.37 
19-26 1.32 1.32 1.63 1.63 
19-18 1.13 1.13 1.44 1.44 
19-25 1.10 1.10 1.42 1.42 
19-01 0.99 0.99 1.30 1.30 
19-11 0.96 0.96 1.26 1.26 
19-12 0.90 0.90 1.20 1.20 
20-05 0.80 0.80 1.09 1.09 
Average FC 
from all the 
stations 

1.28 1.26 1.59 1.58 

Figure 4.6: Average FC levels for Modeled 2015 and future FC with Maximum Rain 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Modeled 2015 FC Maximum Rain (Gauge)

Modeld Future FC Maximum Rain (Gauge)

Modeld 2015 FC Maximum Rain (NEXRAD)

 Modeld future FC Maximum Rain(NEXRAD)

Log Fecal Coliform Average
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A prior study has noted the importance of integrating a scenario-based modeling 

with the GIS in order to have a powerful decision support tool for LU management (Vaché 

et al., 2002). Similar to the study conducted by Delpla & Rodriguez, (2014), LMM was 

used in modeling the impact of future LU and climate scenarios in FC levels. This study 

seems to suggest using the LMM and the GIS in developing the basis of a decision support 

tool for forecasting LU impact in water quality. The findings of the study have significant 

implications for developing decision support tools for May River’s water quality. 

The results of this study may rather be limited by the locations of the shellfish 

monitoring stations because the basis of the modes is based on the relationships between 

LU percentages in the sampling locations and FC, which is an important issue for future 

research. Further research should be undertaken to develop predictive models for water 

quality and apply it to multiple land use scenarios in addition to climate scenarios. 

4.5 CONCLUSION 

This study attempted to use formerly developed models to predict the impact of a 

proposed LU plan on FC levels in the May River. Two rainfall scenarios (average and 

maximum precipitation) were used in the models. The models that predicted the future FC 

levels and the models that simulated FC levels in 2015 were compared. The results 

indicated that the proposed LU plan will not lead to a higher water quality degradation 

which may occur as a result of higher FC loading in the May River. By integrating LU 

percentages with rainfall and tide stage the models successfully predict FC concentration 

for different LU scenarios. Such models can participate in land management practices 

through identifying the spatial and temporal variabilities of water pollutants. This study 

suggests using circular buffer in defining the spatial scale for the LU variables that are used 
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in the models. Moreover, this study suggests using the LMM for model developments.



102

REFERENCES

Arnold, J. G., Williams, J. R., Srinivasan, R., King, K. W., & Griggs, R. H. (1994). 

SWAT: soil and water assessment tool. US Department of Agriculture, 

Agricultural Research Service, Grassland, Soil and Water Research Laboratory, 

Temple, TX. 

Barber, B. P. (2008). Town of Bluffton May River watershed monitoring program. 

Prepared for Town of Bluffton, Bluffton, SC. 143pp. 

Beasley, D. B., & Huggins, L. F. (1982). ANSWERS-Users Manual. US Environment 

Protection Agency. Report EPA-905/9-82-001. 

Bhaduri, B., Grove, M., Lowry, C., & Harbor, J. (1997). Assessing long-term hydrologic 

effects of land use change. American Water Works Association. Journal, 89(11), 

94. 

Bicknell, B. R., Imhoff, J. C., Kittle Jr, J. L., Donigian Jr, A. S., & Johanson, R. C. 

(1997). Hydrological  simulation program—Fortran: User’s manual for version 

11. Environmental Protection Agency Report No. EPA/600/R-97/080. US

Environmental Protection Agency, Athens, Ga. Retrieved from 

http://infohouse.p2ric.org/ref/07/06417.pdf 

Bussi, G., Whitehead, P. G., Bowes, M. J., Read, D. S., Prudhomme, C., & Dadson, S. J. 

(2016). Impacts of climate change, land-use change and phosphorus reduction on 

phytoplankton in the River Thames (UK). Science of the Total Environment. 



103

Retrieved from 

http://www.sciencedirect.com/science/article/pii/S0048969716303199 

De Girolamo, A. M., & Porto, A. L. (2012). Land use scenario development as a tool for 

watershed management within the Rio Mannu Basin. Land Use Policy, 29(3), 

691–701. 

Delpla, I., & Rodriguez, M. J. (2014). Effects of future climate and land use scenarios on 

riverine source water quality. Science of the Total Environment, 493, 1014–1024. 

Elfert, S., & Bormann, H. (2010). Simulated impact of past and possible future land use 

changes on the hydrological response of the Northern German lowland 

‘Hunte’catchment. Journal of Hydrology, 383(3), 245–255. 

Elliott, A. H., Semadeni-Davies, A. F., Shankar, U., Zeldis, J. R., Wheeler, D. M., Plew, 

D. R., … Harris, S. R. (2016). A national-scale GIS-based system for modelling

impacts of land use on water quality. Environmental Modelling & Software, 86, 

131–144. 

Garmendia, E., Mariel, P., Tamayo, I., Aizpuru, I., & Zabaleta, A. (2012). Assessing the 

effect of alternative land uses in the provision of water resources: evidence and 

policy  implications from southern Europe. Land Use Policy, 29(4), 761–770. 

Isik, S., Kalin, L., Schoonover, J. E., Srivastava, P., & Lockaby, B. G. (2013). Modeling 

effects of changing land use/cover on daily streamflow: an artificial neural 

network and curve number based hybrid approach. Journal of Hydrology, 485, 

103–112. 

Karlsson, I. B., Sonnenborg, T. O., Refsgaard, J. C., Trolle, D., Børgesen, C. D., Olesen, 

J. E., … Jensen, K. H. (2016). Combined effects of climate models, hydrological



104

model structures and land use scenarios on hydrological impacts of climate 

 change. Journal of Hydrology, 535, 301–317. 

Lin, Y.-P., Hong, N.-M., Wu, P.-J., & Lin, C.-J. (2007). Modeling and assessing land-use 

and hydrological processes to future land-use and climate change scenarios in 

watershed land-use planning. Environmental Geology, 53(3), 623–634. 

Mancosu, E., Gago-Silva, A., Barbosa, A., De Bono, A., Ivanov, E., Lehmann, A., & 

Fons, J. (2015). Future land-use change scenarios for the Black Sea catchment. 

Environmental Science & Policy, 46, 26–36. 

Mango, L. M., Melesse, A. M., McClain, M. E., Gann, D., & Setegen, S. G. (2010). Land 

use and climate change impacts on the hydrology of the upper Mara River Basin, 

Kenya: results of a modeling study to support better resource management. 

Retrieved from https://works.bepress.com/daniel_gann/17/ 

Mehdi, B., Ludwig, R., & Lehner, B. (2015). Evaluating the impacts of climate change 

and crop land use change on streamflow, nitrates and phosphorus: A modeling 

study in Bavaria. Journal of Hydrology: Regional Studies, 4, Part B, 60–90. 

https://doi.org/10.1016/j.ejrh.2015.04.009 

Nakicenovic, N., Alcamo, J., Davis, G., de Vries, B., Fenhann, J., Gaffin, S., … others. 

 (2000). Special report on emissions scenarios: a special report of Working 

Group III of the Intergovernmental Panel on Climate Change. Pacific Northwest 

National Laboratory,  Richland, WA (US), Environmental Molecular Sciences 

Laboratory (US). Retrieved from http://www.osti.gov/scitech/biblio/15009867 



105

Neupane, R. P., & Kumar, S. (2015). Estimating the effects of potential climate and land 

use changes on hydrologic processes of a large agriculture dominated watershed. 

Journal of Hydrology, 529, 418–429. 

Niraula, R., Kalin, L., Srivastava, P., & Anderson, C. J. (2013). Identifying critical source 

areas of nonpoint source pollution with SWAT and GWLF. Ecological Modelling, 

268, 123–133. 

Rajib, M. A., Ahiablame, L., & Paul, M. (2016). Modeling the effects of future land use 

change on water quality under multiple scenarios: A case study of low-input 

agriculture with hay/pasture production. Sustainability of Water Quality and 

Ecology, 8, 50–66. 

S.C. Dept. of Health and Environmental Control (SCDHEC). (2017a). DHEC: Food

Safety - Shellfish Monitoring. Retrieved January 31, 2018, from 

http://www.scdhec.gov/FoodSafety/ShellfishMonitoring/ 

S.C. Dept. of Health and Environmental Control (SCDHEC). (2017b). Regulation 61-47,

shellfish. Retrieved from http://www.scdhec.gov/Agency/docs/water-regs/r61-

47.pdf

Scanlon, B. R., Reedy, R. C., Stonestrom, D. A., Prudic, D. E., & Dennehy, K. F. (2005). 

Impact of land use and land cover change on groundwater recharge and quality in 

 the southwestern US. Global Change Biology, 11(10), 1577–1593. 

Sharifi, A., Yen, H., Boomer, K. M., Kalin, L., Li, X., & Weller, D. E. (2017). Using 

multiple watershed models to assess the water quality impacts of alternate land 

development scenarios for a small community. Catena, 150, 87–99. 



 

106 

Sohl, T. L., Sleeter, B. M., Sayler, K. L., Bouchard, M. A., Reker, R. R., Bennett, S. L., 

 … Zhu, Z. (2012). Spatially explicit land-use and land-cover scenarios for the 

 Great Plains of the United States. Agriculture, Ecosystems & Environment, 153, 

 1–15. 

Tong, S. T., Liu, A. J., & Goodrich, J. A. (2009). Assessing the water quality impacts of 

 future land-use changes in an urbanizing watershed. Civil Engineering and 

 Environmental Systems, 26(1), 3–18. 

Tong, S. T., Sun, Y., Ranatunga, T., He, J., & Yang, Y. J. (2012). Predicting plausible  

 impacts of sets of climate and land use change scenarios on water resources. 

 Applied Geography, 32(2), 477–489. 

Tu, J. (2009). Combined impact of climate and land use changes on streamflow and water 

 quality in eastern Massachusetts, USA. Journal of Hydrology, 379(3), 268–283.  

U.S Census Bureau. (2015). 2015 Population Estimate for Town of Bluffton. Retrieved 

 January 26, 2017, from //www.census.gov/quickfacts/table/PST045215/4507210 

Vaché, K. B., Eilers, J. M., & Santelmann, M. V. (2002). Water quality modeling of 

 alternative agricultural scenarios in the US Corn belt1. Wiley Online Library. 

 Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/j.1752-

 1688.2002.tb00996.x/abstract 

Verburg, P. H., Eickhout, B., & van Meijl, H. (2008). A multi-scale, multi-model   

 approach for  analyzing the future dynamics of European land use. The Annals of 

 Regional Science, 42(1), 57–77. 

Wijesekara, G. N., Gupta, A., Valeo, C., Hasbani, J.-G., Qiao, Y., Delaney, P., & 

 Marceau, D. J. (2012). Assessing the impact of future land-use changes on 



107

hydrological processes in the  Elbow River watershed in southern Alberta, 

Canada. Journal of Hydrology, 412, 22 232. 

Wilson, C. O., & Weng, Q. (2011). Simulating the impacts of future land use and climate 

changes on surface water quality in the Des Plaines River watershed, Chicago 

Metropolitan Statistical Area, Illinois. Science of the Total Environment, 409(20), 

4387–4405. 

Yira, Y., Diekkrüger, B., Steup, G., & Bossa, A. Y. (2016). Modeling land use change 

impacts on water resources in a tropical West African catchment (Dano, Burkina 

Faso). Journal of Hydrology, 537, 187–199. 

Young, R. A., & Shepherd, R. G. (1995). AGNPS-AGRICULTURAL NONPOINT 

SOURCE MODEL. In WORKSHOP ON COMPUTER APPLICATIONS IN 

WATER MANAGEMENT (p. 33). Retrieved  from 

http://www.cwi.colostate.edu/publications/IS/79.pdf#page=43



108

CHAPTER 5 

CONCLUSION

The initial objectives of this research were to assess the impact of LU types on 

microbial water quality by integrating GIS as well as spatial and non-spatial statistical 

analysis, and to predict the impact of a proposed LU plan in a shellfish harvesting area in 

the May River at the Town of Bluffton, SC. This dissertation aimed to achieve the 

following: 

• Assess the impact of different LU types on the FC loadings in the river.

• Examine the spatial (stationary and non-stationary) variations of the relationships

between selected LU types and FC.

• Develop combined and seasonal models to predict FC concentration by developing

several circular buffers sizes to determine the one that can provide the most

significant models.

• Use the developed models to predict the impact of a proposed LU plan on FC levels

in the May River by examining two rainfall scenarios (average and maximum

precipitation).

The results of this dissertation indicated that: 

• The stationary (global) spatial relationships showed numerus significant and non-

significant positive and negative correlations between LU percentages and FC

concentrations.
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• The GWR was able to explain detailed non-stationary (local) spatial variations of

the relationships between the selected LU variables and FC.

• Residential areas, forestlands, and golf courses were found to have significant

positive correlations with FC.

• The ERT is a suitable tool to automatically select the explanatory LU variables that

can be included in the GWR modeling.

• The ERT saves much time and effort in selecting the variables for GWR model’s.

• Although it is preferable to use the GWR for larger study areas and lager sample

numbers, it was capable to examine the spatial non-stationary variations in this

study.

• The LU variables for 1800m-buffer scale were better correlated with FC when

compared with the other buffer sizes.

• The LU variables for 1800m-buffer incorporated with environmental factors were

able to provide significant models for FC prediction.

• It is important to consider LU impact in water quality modeling and in management

practices.

• FC bacteria are affected by seasonal variations, and therefore, each season should

have its own model.

• The proposed LU plan will not lead to a higher water quality degradation level than

currently exists.

• By integrating LU percentages with rainfall and tide stage the models successfully

predict FC concentration for different LU and climate scenarios.

The significance of the results of this study can be summarized as the following: 
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• The results suggest that GWR can be used for small study areas

• The statistical bias was avoided by using the ERT

• The ability to spatially link different LU classes and FC

• Found that for this study area an 1800m buffer size supports the most significant

model for FC.

• Reached a suitable statistical method for including LU in the modeling.

• Provided seasonal models to predict FC in a specific season.

The limitations of this dissertation are the following: 

• Three sampling stations were installed in 2009, therefore, the data for FC and all

other variables other than the LU data in this study were collected in 2009 without

including older historical data.

• The size of the study area is small and therefore small sampling stations conducted

in the study.

• The sampling stations are located within the stream of the May River, therefore,

none of these stations were in any sub-watersheds of the study area.

• FC were mostly sampled in dry days, so precipitation data for a longer period can

provide more information about the impact of rainfall on FC levels.

• Only one proposed LU plan was assessed for FC prediction.

Investigations for future research could include the following:

• Assessing the relationships between LU and FC in a larger study area that has more

sampling stations and historical data.
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• Comparing the relationships between LU and FC between several study areas in 

South Carolina to explain more details about the variations of the impact of LU on 

FC. 

• Assessing the relationships between LU and other water quality parameters such as 

DO, heavy metals and nutrients. 

• Developing wet and dry models, if applicable, to predict FC. 

• Examining the models with different spatial scales such as comparing models’ 

performances of circular buffers with sub-watersheds.  

• Examining the relationships between LU and water quality within sub-watersheds 

can explore more facts about the relative impacts. 

• Developing multiple land use scenarios in addition to climate scenarios to provide 

more information about water quality prediction. 

The findings of this research have implications for LU and water resources managers: 

• The models that were developed in the study can participate in land management 

practices through identifying the spatial and temporal variabilities of water 

pollutants. 

• Water resources managers can implement the modeling concept of this research to 

predict the impact of LU on other water quality parameter or pollutant, or to predict 

the impact of other explanatory factors that have potential impact on water quality. 

• Land use managers can use similar models to predict the impact of land use and 

other explanatory variables on air quality. 

• The LU and water resources mangers in the Town of Bluffton can apply the 

developed models in this study to predict the impact of further future land use 
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scenarios. In addition, the combined and seasonal models can be used to predict the 

current FC concentrations from the current LU and climate data. 

• The technique of the developed models can be geographically transferred to other

regions.
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