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Abstract

Finite element methods for the simulation of dynamic fracture in plane structures

are presented. The method is a modified extended finite element method (XFEM)

for dynamic fracture simulations with a new methodology to construct the XFEM

basis functions for discontinuities. In contrast to conventional XFEM in which the

extended interpolation is defined to only capture the discontinuities, the proposed

method describes the enrichment functions so that they reproduce both the disconti-

nuities and the polynomial bases of sufficiently high order which are critical for finite

element convergence. Such enrichment functions, by adopting the Duffy’s transfor-

mation, can be simply defined in terms of standard shape functions. The approach is

applied to a linear three-node triangular element for element-by-element crack prop-

agation modeling.

In the proposed method, the enrichment parameters effectively represent the

physics of the discontinuity and are assigned to non-nodal points, which helps to sim-

ply impose Dirichlet boundary conditions in strong form. This feature successfully

dissociates the finite element nodes from the extended approximation; it facilitates

the treatment of arbitrary crack propagation in explicit methods.

The proposed method significantly simplifies the XFEM programming imple-

mentation; the enrichment functions are vanished outside the element domain without

shifting techniques, so that no blending of the local partition unity is required. In

addition, the enriching procedure depends on neither the crack direction nor the ele-

ments contiguous to the enriched element. Moreover, the proposed method facilitates

the treatment of crack modeling in object-oriented programs (OOP) as the enrich-

v



ment object is completely dissociated from the element nodes.

The proposed method combined with explicit time integration and a cohesive

law quite well simulates the dynamic fracture of ductile and brittle materials. The

methodology is applied to the simulation of several benchmark problems whose ex-

perimental results are available involving dynamic fracture and nonlinearities. The

numerical results in terms of crack paths and speeds were effectively computed and

matched the experimental results. The results are also compared to those obtained

by standard XFEM to demonstrate the efficacy of the method. Through these nu-

merical examples, the robustness and performance of the method in reproducing the

observed failure modes are demonstrated.

vi



Table of Contents

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 1 Review of the Extended Finite Element Method . . . 4

1.1 partition of unity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 level sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 representation of a discontinuity with standard xfem . . . . . . . . . 7

Chapter 2 Enriched Displacement Fields for Discontinuity Us-
ing Non-Nodal Enrichment Parameters . . . . . . . . . 10

2.1 representation of a crack with non-nodal enrichment parameters for
three-node triangular elements . . . . . . . . . . . . . . . . . . . . . . 11

2.2 general formulation of the non-nodal enrichment xfem . . . . . . . . . 15

2.3 comparison to conventional xfem . . . . . . . . . . . . . . . . . . . . 17

vii



Chapter 3 Linear Complete Enriched Displacement Fields for
Discontinuity . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 representation of a crack with non-nodal enrichment parameters for
2-node linear elements . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 representation of a crack with non-nodal enrichment parameters for
three-node triangular elements . . . . . . . . . . . . . . . . . . . . . . 25

3.3 general formulations of the linear non-nodal enrichment xfem . . . . . 29

Chapter 4 Governing Equations, Weak Formulation and Dis-
cretization . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 weak formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 cohesive law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 numerical integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.6 Time integration scheme and critical time step . . . . . . . . . . . . . 35

Chapter 5 Numerical Examples . . . . . . . . . . . . . . . . . . . . 38

5.1 Near-tip crack field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Stress concentration in an infinite plate with a circular hole . . . . . . 45

5.3 edge-cracked plate under impulsive loading . . . . . . . . . . . . . . . 47

5.4 crack pattern in three-point bending specimens with variable offset
notch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.5 crack extension and velocity in three-point bending specimens . . . . 58

Chapter 6 Conclusion and Future Research . . . . . . . . . . . . 68

viii



Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Appendix A Reproducing Conditions of Non-Nodal XFEM in
Two Dimensions . . . . . . . . . . . . . . . . . . . . . . . 74

Appendix B Mapping Among Physical, Parent and Duffy’s Co-
ordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Appendix C Representation of a Crack with Non-Nodal En-
richment Parameters in One Dimension . . . . . . . . 78

Appendix D reproducing conditions of leaner complete non-
nodal xfem in one dimension . . . . . . . . . . . . . . . 80

Appendix E reproducing conditions of linear complete non-
nodal xfem in two dimensions . . . . . . . . . . . . . . 82

ix



List of Tables

Table 5.1 Crack propagation angles and timing data for the Kalthoff’s ex-
periment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Table 5.2 Crack propagation angles and timing data using linear complete
formulation for the Kalthoff’s experiment. . . . . . . . . . . . . . . 57

Table 5.3 Crack propagation angles and timing data for the Guo’s experi-
ment simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Table 5.4 Crack propagation angles and timing data resulted from linear
complete enriched formulation for the Guo’s experiment . . . . . . 62

x



List of Figures

Figure 1.1 A two-dimensional domain and its current configuration with a
crack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 1.2 Crack representation by two level set functions f and g. . . . . . 7

Figure 1.3 One-dimensional crack enrichment displacement: (a) enriched
displacement without shifting enrichment functions; and (b)
shifted enrichment displacement. . . . . . . . . . . . . . . . . . . 8

Figure 2.1 Duffy’s mapping between (a) a triangular element in material
coordinates and (b) a biunit square in parent coordinates −1 ≤
ξ ≤ 1;−1 ≤ η ≤ 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 2.2 The enrichment parameters and their associated enrichment
functions: (a) the representation of a discontinuity in a two-
dimensional model; n+ and n− are normal to the interpolation
surfaces; (b) the first enrichment function associated to the non-
nodal point Xc1; and (c) the second enrichment function asso-
ciated to the non-nodal point Xc2. . . . . . . . . . . . . . . . . . 12

Figure 2.3 A crack path on several elements which are not still reproducing
elements because the enrichment is not added to node I. . . . . . 18

Figure 2.4 Selection of enriched nodes: (a)-(b) in the conventional XFEM
where enriched nodes are dependent on the direction of crack;
and (c)-(d) in the proposed method where the FE nodes are
not enriched but for each intersection point two enrichment
variables are additionally defined. . . . . . . . . . . . . . . . . . . 20

Figure 3.1 Representation of the discontinuity in: (a) a function; and (b)
a derivative of a function. . . . . . . . . . . . . . . . . . . . . . . 22

xi



Figure 3.2 One-dimensional enrichment displacement fields: (a) an arbi-
trary linear displacement field on both sides of the crack; (b)
the finite-element displacement field uFEM; (c) the enrichment
displacement field produced by displacement jump enrichment
Ψu × JuK; and (d) enrichment displacement field for gradient
jump enrichment Ψ∇u × JLe∇uK. Note that in one dimension
for small derivatives J∇uK = JεK = JθK = θ+ − θ− . . . . . . . . . 23

Figure 3.3 One-dimensional crack enrichment functions: (a) Ψu; and (b) Ψ∇u. 24

Figure 3.4 A strong discontinuity in two dimensions: (a) a triangular ele-
ment with a crack; (b) Φu; and (c) Φ∇u. . . . . . . . . . . . . . . 26

Figure 3.5 Illustration of nomenclature for a linear complete non-nodal
enrichment in two dimension. . . . . . . . . . . . . . . . . . . . . 27

Figure 4.1 Cohesive law; the area under the cohesive law curve is the same
as the fracture energy (a) a general cohesive law; and (b) a
linear cohesive law. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 4.2 numerical integration with the subdomain integration schemes;
(a) a cracked element in physical coordinates; (b) Duffy’s parent
domain; and (c) regular parent coordinates. . . . . . . . . . . . . 36

Figure 4.3 The variation of normalized critical time step size according to
the normalized location of the discontinuity. . . . . . . . . . . . . 37

Figure 5.1 A square patch for the near-tip crack problem: (a) geometry;
and (b) boundary conditions. . . . . . . . . . . . . . . . . . . . . 39

Figure 5.2 Rate of convergence for the near-tip crack field problem for
several enrichment schemes: (a) Energy-norm errors; and (b)
L2-norm errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 5.3 Comparison of rates of convergence of the near-tip crack field
problem for non-nodal XFEMwith and without Dirichlet bound-
ary condition on the interface: (a) contour plot of Mises stress
in deformed configuration (×1000); and (b) L2-norm errors. . . . 41

Figure 5.4 Mesh used for the stress convergence of the near-tip crack prob-
lem: (a) an 80× 80 structured mesh; and (b) an irregular mesh
of around 13000 elements. . . . . . . . . . . . . . . . . . . . . . . 42

xii



Figure 5.5 Stresses of the near-tip crack problem for the 80×80 structured
mesh: (a-c) ahead of the crack tip; (d-f) angular variation along
constant radius (r = 0.1a). . . . . . . . . . . . . . . . . . . . . . . 43

Figure 5.6 Stresses of the near-tip crack problem for irregular mesh: (a-c)
ahead of the crack tip; (d-f) angular variation along constant
radius (r = 0.1a). . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 5.7 (a) Infinite plate with a circular hole subjected to uniform ten-
sion; and (b) upper right quadrant of a square of edge length
2b centered at (0, 0) is modeled due to symmetry. . . . . . . . . . 46

Figure 5.8 Rate of convergence for the plate with a hole in center problem
for four enrichment schemes: (a) Energy-norm errors; and (b)
L2-norm errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 5.9 Contour plots of the normal stress σ11 in deformed configuration
(×1000): (a) the proposed method and the standard XFEM;
and (b) the proposed method with interface constrains. . . . . . . 47

Figure 5.10 Experimental set-up and simulation model (a) Kalthoff exper-
imental set-up for crack propagation under impulsive loading
(b) Upper half of the plate used in the analysis. . . . . . . . . . . 49

Figure 5.11 The computed crack paths on the 40× 40 deformed mesh with
a maximum principle stress at different time steps: (a) t =
29.89µs; (b) t = 37.43µs; (c) t = 58.48µs; and (d) t = 81.28µs. . 50

Figure 5.12 The computed crack paths on the 80× 80 deformed mesh with
a maximum principle stress at different time steps: (a) t =
28.83µs; (b) t = 38.09µs; (c) t = 57.0µs; and (d) t = 79.98µs. . . 51

Figure 5.13 The computed crack paths on the 120 × 120 deformed mesh
with a maximum principle stress at different time steps: (a)
t = 28.96µs ; (b) t = 38.45µs; (c) t = 56.49µs; and (d) t = 77.4µs. 52

Figure 5.14 Comparison of crack propagation trajectories at final simulation
step using triangular linear elements (a) 40×40 mesh; (b) 80×80
mesh; and (c) 120× 120 mesh. . . . . . . . . . . . . . . . . . . . . 53

Figure 5.15 Crack speeds for the Kolthoff’s experiment simulation: (a) the
crack speed of this method and (b) the crack speed of the stan-
dard XFEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

xiii



Figure 5.16 The computed crack paths using linear complete formulations
on the 40×40 deformed mesh with a maximum principle stress
at different time steps: (a) t = 28.6µs; (b) t = 44.77µs; (c)
t = 62.18µs; and (d) t = 84.55µs. . . . . . . . . . . . . . . . . . . 54

Figure 5.17 The computed crack paths using linear complete formulations
on the 80×80 deformed mesh with a maximum principle stress
at different time steps: (a) t = 26.17µs; (b) t = 39.83µs; (c)
t = 55.5µs; and (d) t = 81.32µs. . . . . . . . . . . . . . . . . . . 55

Figure 5.18 The computed crack paths using linear complete formulations
on the 120 × 120 deformed mesh with a maximum principle
stress at different time steps: (a) t = 25.72µs; (b) t = 38.22µs;
(c) t = 56.54µs; and (d) t = 78.68µs. . . . . . . . . . . . . . . . . 56

Figure 5.19 Comparison of crack propagation trajectories using linear com-
plete formulation at final simulation step using triangular linear
elements (a) 40× 40 mesh; (b) 80× 80 mesh; and (c) 120× 120
mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 5.20 Crack speeds for the Kolthoff’s experiment simulation: (a) the
crack speed of linear complete formulation and (b) the crack
speed of the standard XFEM. . . . . . . . . . . . . . . . . . . . . 58

Figure 5.21 The geometry and boundary conditions of three-point-bend spec-
imens and finite element meshes used in numerical simulations
for the offset notch at the transition point; (a) experiment set-
up; (b) a coarse mesh of around 1000 elements; (c) a medium
mesh of around 4000 elements and (d) a fine mesh of around
15000 elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 5.22 The computed crack paths for γt = 0.75 on the fine deformed
mesh with a maximum principal stress at different time steps
(a) t = 1142µs ; (b) t = 1180µs; (c) t = 1227µs; and (d) t = 1305µs. 60

Figure 5.23 The computed crack paths for γt = 0.78 on the fine deformed
mesh with a maximum principal stress at different time steps (a)
t = 1329µs ; (b) t = 1350µs; (c) t = 1364µs; (d) t = 1385µs;
(e) t = 1423 s; and (f) t = 1456µs. . . . . . . . . . . . . . . . . . . 61

Figure 5.24 The computed crack paths for γt = 0.785 on the fine deformed
mesh with a maximum principal stress at different time steps
(a) t = 1316µs ; (b) t = 1330µs; (c) t = 1361µs; and (d) t = 1429µs. 62

xiv



Figure 5.25 Fine mesh crack patterns for different offset parameter γ (a)
γ = 0.75; (b) γ = 0.78; and (c) γ = 0.785. . . . . . . . . . . . . . 62

Figure 5.26 The geometry and boundary conditions of Guo’s experiment
and finite element meshes used in numerical simulations; (a)
experiment set-up; (b) a coarse mesh of around 1100 elements;
(c) a medium mesh of around 7700 elements and (d) a fine mesh
of around 17200 elements. . . . . . . . . . . . . . . . . . . . . . . 63

Figure 5.27 The crack patterns for different meshes: (a) coarse mesh (b)
medium mesh and (c) fine mesh. . . . . . . . . . . . . . . . . . . 63

Figure 5.28 The crack evolution for coarse mesh: (a)t = 369.41µs; (b)t =
486.89µs; (c)t = 606.82µs; and (d) t = 697.72µs. . . . . . . . . . 64

Figure 5.29 The crack evolution for medium mesh: (a)t = 370.43µs; (b)t =
531.64µs; (c)t = 607.73µs; and (d) t = 742µs. . . . . . . . . . . . 64

Figure 5.30 The crack evolution for fine mesh: (a)t = 346.58µs; (b)t =
531µs; (c)t = 616µs; and (d) t = 618µs. . . . . . . . . . . . . . . 64

Figure 5.31 Crack length history and crack speeds obtained in numerical
simulations for different meshes compared to the Guo’s experi-
ment: (a) the crack length histories; and (b) the crack speeds. . . 65

Figure 5.32 The crack patterns using linear complete enriched formulation
for different meshes: (a) coarse mesh (b) medium mesh and (c)
fine mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 5.33 The crack evolution resulted from linear complete enriched for-
mulations for coarse mesh: (a)t = 331.16µs; (b)t = 467.04µs;
(c)t = 611.79µs; and (d) t = 785.72µs. . . . . . . . . . . . . . . . 66

Figure 5.34 The crack evolution resulted from linear complete enriched for-
mulations for medium mesh: (a)t = 311.36µs; (b)t = 461.87µs;
(c)t = 606.87µs; and (d) t = 838.92µs. . . . . . . . . . . . . . . . 66

Figure 5.35 The crack evolution resulted from linear complete enriched for-
mulation for fine mesh: (a)t = 327.57µs; (b)t = 499µs; (c)t =
612.02µs; and (d) t = 773.68µs. . . . . . . . . . . . . . . . . . . . 67

Figure 5.36 Crack length history and crack speeds obtained from linear com-
plete enriched formulation for different meshes compared to the
Guo’s experiment: (a) the crack length histories; and (b) the
crack speeds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

xv



Figure B.1 Mapping among different coordinate systems: (a) physical co-
ordinates; (b) parent coordintes; and (c) Duffy’s coordinate. . . . 76

Figure C.1 Strong discontinuity in one dimension: (a) The representation
of a discontinuity in a one-dimensional crack model; and (b)
One-dimensional crack enrichment function. . . . . . . . . . . . . 79

Figure E.1 Application of side-splitter theorem for the computations of s1;
the red triangle gives s1 = (Y c

1 − Y3)/(Y1 − Y3) and the blue
triangle gives s1 = (Xc

1 −X3)/(X1 −X3). . . . . . . . . . . . . . . 85

xvi



Introduction

The extended finite element method (XFEM) [7, 25] can be viewed as a variation of

the generalized finite element method (GFEM) introduced by Melenk and Babus̆ka

[2] whereby arbitrary discontinuities such as crack and shear band can be modeled

without remeshing. One advantage of the XFEM over the GFEM is that it permits

the use of local enrichment bases in the finite element (FE) approximation. For the

FE convergence, completeness is a necessary condition [23, 9], i.e. the local approx-

imation must be capable of reproducing given smooth functions, which for elasticity

are rigid body motions and constant strain states. However, the local approximation

in conventional XFEM focuses only on reproducing the discontinuous functions along

with meeting of compatibility conditions among enriched element and its contiguous

elements. Therefore, in many instances, it is not apparent how to be the XFEM

convergence rates with mesh refinement.

The XFEM exploits the partition of unity framework to adopt various func-

tions as a basis for reproducing the discontinuous fields; step enrichment functions

for strong discontinuity [12], asymptotic crack-tip functions for crack tip modeling

[7], distance enrichment functions for weak discontinuities [10, 31] and hyperbolic

tangent enrichment functions for discontinuities in derivatives [1]. Furthermore, The

XFEM has successfully been applied to many other applications; cohesive crack mod-

els [24, 35], evolution of dislocations [16, 33] and modeling of grain boundaries [29]. In

addition, XFEM and GFEM provided a crucial insight for meshless methods [27, 34]

involving the dynamic fracture simulations. Although in these approaches, the ex-

tended approximation effectively captures the discontinuity, it may not be able to

1



reproduce the polynomial functions required for completeness.

One of the main difficulties that arises in using conventional XFEM is the

choice of enrichment functions from which the discontinuities are captured [2]. Since

based on the partition of unity (PU) property [12, 11], the extended interpolation

can only reproduce the enrichment functions exactly, very accurate selection of these

enrichment functions is crucial to maintain the accuracy of the results. Therefore, it

is desirable to have an enrichment that can reproduce both the discontinuous function

and the motions required for FE completeness.

Another challenge arisen in using XFEM is the implementation. In conven-

tional XFEM, the enrichment part generally spreads over the elements contiguous to

the enriched element. These elements are often called blending elements and should

be treated appropriately [11]. For step enrichment functions, the blending regions

can be avoided by shifting enrichment techniques as introduced by Zi and Belytschko

[35]. Furthermore, in conventional XFEM, the enrichment parameters are assigned

to element nodes which are often in common among several elements. However, this

precludes the abstract description of enrichment part which can dramatically facili-

tates the XFEM implementation. Therefore, it is also desirable to have a technique

that can define an enrichment displacement independent from element nodes.

The main objective of this work is to develop a highly efficient XFEM basis

functions but nevertheless quite accurate formulation for dynamic fracture simula-

tions. Such XFEM bases are defined to reproduce not only the discontinuity func-

tions but the polynomials which are in turn required for completeness condition. In

this method, the enrichment parameters are selected as physically-based quantities

associated to the discontinuity of the problem whereby the Dirichlet boundary condi-

tions can be simply imposed on both element edges and the surfaces of discontinuity.

Moreover, the associated enrichment functions are constructed so that they vanish on

element edges. This feature leads to an enrichment fully defined in a local domain,

2



which dramatically simplifies the XFEM implementation. Hence, it is conceivable to

think that the proposed method can be an effective scheme for constructing enrich-

ment functions in an XFEM framework.

The remaining chapters are organized as follows: Chapter 1 briefly reviews

the conventional XFEM. Chapter 2 models a strong discontinuity, i.e. a crack, using

a new methodology that exploits a set of non-nodal points for constructing the en-

richment bases and then, Chapter 3 enhances such enrichment bases to capture the

weak discontinuities, i.e. the discontinuities in the derivative of a function. Chapter

4 reviews the governing equations, weak formulation and discretization along with

the cohesive models and a radial-return algorithm to compute the cohesive forces.

Chapter 5 provides several numerical examples for crack propagation to demonstrate

the efficacy and the robustness of the method. Finally, the last Chapter presents the

conclusions and future works.
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Chapter 1

Review of the Extended Finite Element Method

The finite element method (FEM) effectively approximates the solution of the par-

tial differential equations (PDE) with piecewise differentiable polynomials. For this

purpose, it first subdivides the body of the structure into segments that are called

finite elements. Then, it approximates the solution within each element with poly-

nomials. One advantage of the FEM is that it best approximates the solution within

element whereby the solution converges to the exact solution with mesh refinement.

However, the finite element approximations are not approximations well suited for

problems with discontinuities. When the solution is discontinuous across an interface,

the finite element mesh must also conform with the interface. This becomes com-

putationally expensive for moving discontinuities, since the mesh must be updated

whenever the discontinuity propagates.

The extended finite element method successfully models various discontinu-

ities by extending the FE approximation such that it can best reflect the solution of

the PDE. The enrichment part of the approximation consists of enrichment functions

and enrichment parameters which are selected based on a-priori knowledge about the

discontinuity. The main underlying key concepts in XFEM analysis are: partition of

unity (PU) and level set functions which are described in more details in the following

sections.
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1.1 partition of unity

The partition of unity concept was first used in the enrichment definitions by Babus̆ka

et al. [3], which led to generalized finite element methods (GFEM). In this approach,

a set of unity functions NI is used to reproduce the discontinuous function Φ exactly

by satisfying
N∑
I=1

NI(X)Φ(X) = Φ(X) (1.1)

In GFEM, the partition of unity is applied to the entire domain [4, 22] and so

would entail considerable computational cost. However, In XFEM, instead of a global

partition of unity, a local discontinuous partition of unity that only spans throughout

the enriched element is constructed [7, 25].

1.2 level sets

We consider a two-dimensional domain Ω0 ∈ R2 with its boundary Γ0 in the refer-

ence configuration as shown in Figure 1.1. The material and spatial co-ordinates are

denoted by X and x, respectively and the motion is described by x = u(X, t). The

current images of Ω0 and Γ0 are denoted by Ω and Γ, respectively. The entire bound-

ary Γ0 is partitioned into either the essential boundary Γ0
u or the natural boundary Γ0

t

such that ∂Γ0
u∩∂Γ0

t = ∅ and ∂Γ0
u∪∂Γ0

t = Γ0. In the XFEM framework, to construct

Figure 1.1 A two-dimensional domain and its current
configuration with a crack.
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enrichment functions, an accurate description of the interface is often useful. The

interface, i.e. the crack surface in this study, can be implicitly defined by a set of

level set functions as

X ∈ Γ0
c if f(X) = 0 and g(X, t) > 0 (1.2)

As shown in Figure 1.2, the level set function f can be defined in terms of signed

distance function given by

f(X) = min
X̄∈Γc
‖X− X̄‖ sign(n+.(X̄−X)) (1.3)

where X̄ is the closest point on the interface to X and ‖.‖ denotes the Euclidean

norm. The function g(X, t) is defined such that the crack is enclosed within the

subdomain g(X, t) ≥ 0 whereby the crack tip is located by g(X, t) = 0. For discretized

domains, the evaluation of the implicit function f(X) can be simplified by finite

element discretization and is then defined by

f(X) =
∑
I

fINI(X) (1.4)

Furthermore, the derivatives of the level set functions which are useful in the cohesive

force computations can be simply computed by finite element approximations as

f,i(X) =
∑
I

fINI,i(X) (1.5)

The level set function defined in Equation (1.3) can be simply adopted to

define various discontinuities. For example, a strong discontinuity in a function, i.e.

a displacement jump in crack modeling, can be represented by either the sign distance

function or the Heaviside step function. The sign distance function can be defined

according to the level set function as

sign(f(X)) =


−1 if f(X) < 0

+1 if f(X) > 0
(1.6)
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and the Heaviside step function can be written as

H(f(X)) =


0 if f(X) < 0

1 if f(X) > 0
(1.7)

In the next section, the extended interpolation used in conventional XFEM

Figure 1.2 Crack representation by two level set functions f
and g.

will be briefly introduced for crack modeling.

1.3 representation of a discontinuity with standard xfem

In the following, we first describe the XFEM crack modeling in one dimension. Let

us consider a bar with a crack as shown in Figure 1.3(a). The crack is located inside

the middle element denoted by Xc and the nodes of element containing the crack are

numbered 1 and 2. Considering the sign distance function as enrichment function,

the standard XFEM description of the displacement field within an element is given

by
u(X, t) = ucons(X, t) + udisc(X, t)

=
2∑
I=1

NI(X)uI(t) +
2∑
I=1

NI(X)sign(X)qI(t)
(1.8)
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where ucons and udisc are continuous and discontinuous parts of the interpolation and

qI is the enrichment parameter associated to node I.

The continuous and discontinuous parts of the displacement are shown in

Figure 1.3(a). As it can be seen, the enriched displacement field does not vanish

at element nodes, i.e. the Kronekcer-δ property does not satisfy. As proposed in

References [10, 35] the Kronecker-δ property can be achieved by shifting enrichment

functions with respect to element nodes. The shifted enrichment functions are defined

as

ΨI(X) = sign(X)− sign(XI) (1.9)

As it is shown in Figure 1.3(b), the shifted enrichment displacements vanish outside

the element domain including the element nodes.

For a multi-dimensional problem, the XFEM approximation for an element

Figure 1.3 One-dimensional crack enrichment displacement: (a)
enriched displacement without shifting enrichment functions; and (b)
shifted enrichment displacement.
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is expressed by

u(X, t) =
∑
J∈δ

NJ(X)uJ(t) +
∑
K∈ε

∑
J∈δK

c

NK
J (X)ΨK

J (X)qKJ (t) (1.10)

where δ is the set of all element nodes, ε the number of discontinuity surfaces, and

δK
c the set of enrich nodes associated to the surface K. The enrichment function Ψ

is obtained from the Equation (1.9).

9



Chapter 2

Enriched Displacement Fields for Discontinuity

Using Non-Nodal Enrichment Parameters

In conventional XFEM, the discontinuous function itself is used as the enrichment

function and the partition of unity enables the approximation to reproduce discon-

tinuous functions exactly by satisfying the Equation (1.1). However, in the presented

method, the enrichment functions are associated to the non-nodal points and are

defined so that they can reproduce the discontinuity without local partition of unity,

i.e. the enrichment functions are not multiplied by standard shape functions NI , and

consequently the element nodes are not enriched. In a vector form, the displacement

field can then be defined as following:

u(X, t) = ucons(X, t) + udisc(X, t)

=
N∑
I=1

NI(X)uI(t) + ∑
J∈δen

ΨJ(X)aJ(t)
(2.1)

where δen is the set of non-nodal enriched points (usually on crack path in two dimen-

sions) and aJ are the additional degrees of freedom associated with their enrichment

function ΨJ .

In the following, first we will describe the crack modeling procedure in two

dimensions for a constant strain triangular element, then introduce a general formu-

lation independent from both the element type and the discontinuous function.
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2.1 representation of a crack with non-nodal enrichment

parameters for three-node triangular elements

In this section, we will describe the crack modeling procedure in two dimensions for

a constant strain triangular element. We only consider the elements that are com-

pletely cut by a crack, i.e., a crack propagates one complete element at a time so that

the crack tip is always placed on element edges.

Let us consider a finite element with the local node numbers as shown in Fig-

ure 2.1(a). The crack is assumed to be straight within the element; it has advanced

from the surface S3 to the surface S1 so that Xc1 and Xc2 are the first and second

intersection points between the crack and element edges, respectively. The enrich-

Figure 2.1 Duffy’s mapping between (a) a triangular
element in material coordinates and (b) a biunit
square in parent coordinates −1 ≤ ξ ≤ 1;−1 ≤ η ≤ 1.

ment variables in crack modeling are considered the jump in the function, i.e. the

displacement, at the non-nodal points; in Figure 2.1(a), the jump in displacement

at Xc1 and Xc2 are denoted by JuK1 and JuK2, respectively. Thus, Equation (2.1) is
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rewritten as:

u(X, t) =
3∑
I=1

NI(X)uI(t) + ∑
J∈δen

ΨJ(X)Ju(t)KJ

=
3∑
I=1

NI(X)uI(t) + Ψ1(X)Ju(t)K1 + Ψ2(X)Ju(t)K2

(2.2)

where the enrichment variables JuK1 and JuK2 are illustrated in Figure 2.2(a). We

Figure 2.2 The enrichment parameters and their associated
enrichment functions: (a) the representation of a discontinuity
in a two-dimensional model; n+ and n− are normal to the
interpolation surfaces; (b) the first enrichment function
associated to the non-nodal point Xc1; and (c) the second
enrichment function associated to the non-nodal point Xc2.

construct the enrichment functions so that the extended interpolation in Equation

(2.2) can reproduce the discontinuous function, i.e. the Heaviside step function in

Equation (1.7). Thus, by substituting the displacement field u with the vectorized

H, the Equation (2.2) can be rewritten as

H(X, t) =
3∑
I=1

NI(X)HI + Ψ1(X)JHK1 + Ψ2(X)JHK2 (2.3)
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For the assumed direction of the crack illustrated in Figure 2.1(a), H1 = 1, H2 =

H3 = 0 and JHKX∈Γc = 1. Considering
3∑
I=1

NI = 1 and by partitioning Equation (2.3)

for each side of the interface, we have

Ψ+
1 (X) + Ψ+

2 (X) = N2 +N3

Ψ−1 (X) + Ψ−2 (X) = −N1

(2.4)

It is important to note that finding a set of enrichment functions that satisfies

Equation (2.4) enables the extended finite element interpolation to reproduce the

discontinuous function. However, Equation (2.4) does not satisfy the C0 continuity

condition among enriched element and its contiguous elements. Therefore, to satisfy

C0 continuity conditions, the enrichment functions must vanish along specific element

edges. For instance, in the first equation, Ψ+
1 and Ψ+

2 must vanish along surfaces S+
1

and S+
3 as shown in Figure 2.1, respectively. Thus, we simply assign Ψ+

1 = N3 and

Ψ+
2 = N2. However in the second equation Ψ−1 must vanish along both surfaces S−1

and S2, and also Ψ−2 must vanish along surfaces S−3 and S2.

To facilitate the construction of such enrichment function, the Duffy’s trans-

formation which is a mapping between a triangle and a square can be used; the Duffy’s

transformation can be viewed as a mapping from a square in parent coordinates to

a triangle in material coordinates as illustrated in Figure 2.1. A detailed description

of the Duffy’s transformation can be found in [13, 20, 26] .

In this transformation, one vertex in the triangle is mapped to an edge in the

square; i.e. edge 1̄2 in Figure 2.1(b). This vertex is chosen such that the crack passes

through non-adjacent edges in parent domain. Therefore, this node should be the

node opposite to the edge that is not intersected by the crack, which is node 1 here

(See Figure 2.1). Then, the FE approximation is given by

u(X, t) =
3∑
I=1

N
′

I(X)uI(t) (2.5)
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where the Duffy’s isoparametric shape functions can be expressed in terms of standard

bilinear shape functions
N
′
1 = N4Q

1 +N4Q
2

N
′
2 = N4Q

3

N
′
3 = N4Q

4

(2.6)

where

N4Q
I (ξ, η) = 1

4(1 + ξIξ)(1 + ηIη) (2.7)

Here, (ξI , ηI) are nodal coordinates of bi-unit square in parent coordinates shown in

Figure 2.1(b). By substituting the shape functions in Equation (2.6) into Equation

(2.4), we can obtain

Ψ+
1 (X) + Ψ+

2 (X) = N4Q
3 +N4Q

4

Ψ−1 (X) + Ψ−2 (X) = −N4Q
1 −N

4Q
2

(2.8)

Thus, the C0 continuity is simply satisfied by assigning the enrichment functions as

follows
Ψ+

1 = N4Q
4

Ψ−1 = −N4Q
1

Ψ+
2 = N4Q

3

Ψ−2 = −N4Q
2

(2.9)

It is important to note that the enrichment functions obtained by the Duffy’s

transformation are in terms of well-known bilinear shape functions. So, one can ex-

tensively make use of existing codes for the computation of the enrichment functions

and their derivatives. However, some more code implementation is required to im-

plement the Duffy’s interpolation.

The enrichment functions in Equation (2.9) are shown in Figure 2.2(b)-(c).

As it can be seen, the enrichment functions have a jump equal to the unity at their

associated non-nodal enrichment point. Since the linear shape functions of three-node

triangular elements are higher order than the constant discontinuous function, the
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interpolation in Equation (2.2), in addition to the Heaviside step function, can repro-

duce two parallel planes at both sides of the interface; two planes shown in Figure

2.2(a) that their unit normal to the surface of the interpolation are parallel to each

other, i.e.

n+ × n− = 0 (2.10)

The detailed proof has been provided in Appendix A, and the relation between

bilinear Duffy shape functions and the standard triangle shape functions is described

in Appendix B. Thus, the enrichment functions in Equation 2.9 can be described by

standard shape functions as

Ψ+
1 = N3

Ψ−1 = −N1 ×N3

N2 +N3

Ψ+
2 = N2

Ψ−2 = −N1 ×N2

N2 +N3

(2.11)

2.2 general formulation of the non-nodal enrichment xfem

In this section, we describe the method for a multi-node element with a general

discontinuous function Φ(X). The discontinuous function can be defined as a function

of level set function as

Φ(X) = F (f(X)) (2.12)

As discussed in previous section, Equation (2.1) can reproduce the discontin-

uous function Φ, if it holds for u = Φ. Thus, Equation (2.1) gives

Φ(X) =
ne∑
I=1

NI(X)Φ(XI) +
∑
J∈δen

ΨJ(X)aJ (2.13)

By rewriting Equation (2.13) for either side of the interface separately we have

Φ+(X) =
ne∑
I=1

NI(X)Φ(XI) + ∑
J∈δen

Ψ+
J (X)aJ

Φ−(X) =
ne∑
I=1

NI(X)Φ(XI) + ∑
J∈δen

Ψ−J (X)aJ
(2.14)
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The first terms on the right-hand side of Equation (2.14) can also be partitioned for

nodes at either side of the interface as
ne∑
I=1

NI(X)Φ(XI) =
∑
I∈δ−n

NI(X)Φ−(XI) +
∑
I∈δ+

n

NI(X)Φ+(XI) (2.15)

where δ+
n and δ−n are the sets of element nodes that are on the subdomains where

f > 0 and f < 0, respectively.

In this study, we assume that the discontinuous functions at either side of

the interface, i.e. Φ+ and Φ− are as sufficiently smooth as to be interpolated by

standard shape functions. For example, the strong and weak discontinuities are often

approximated with the Heaviside and distance functions, respectively. This indicates

that the enrichment functions are constant or linear on both sides of the interface

and therefore, can be exactly interpolated by linear shape functions. Thus, Φ+ and

Φ− can be described in terms of standard shape functions by

Φ+(X) =
ne∑
I=1

NI(X)Φ+(XI)

Φ−(X) =
ne∑
I=1

NI(X) Φ−(XI)
(2.16)

Substituting Equations (2.15) and (2.16) into (2.14), we will have

∑
I∈δ−n

NI(X)JΦKX=XI
= ∑

J∈δen
Ψ+
J (X)aJ

∑
I∈δ+

n

−NI(X)JΦKX=XI
= ∑

J∈δen
Ψ−J (X)aJ

(2.17)

where JΦKX = Φ+(X) − Φ−(X) is the jump in function at X. Note that Equations

(2.17) are the key equations used to construct the enrichment functions. It must be

stressed that these equations do not suffice to provide closure to the definition of the

enrichment functions. In other words, there are no unique enrichment functions and

enrichment parameters that satisfy Equations (2.17). The overall procedure to define

the enrichments can be organized using the following main steps:

1. Identifying the discontinuity in the problem (denoted by Φ here) using a-priori

knowledge about the discontinuity in the problem.
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2. Introducing the enrichment parameters which are best able to represent the

identified discontinuity.

3. Defining the minimum number of enrichment parameters and their associated

enrichment functions to satisfy the following conditions:

a) Equation(2.17)

b) The C0 continuity condition between the enriched element and contiguous

elements.

Note that the enrichment functions for triangular elements obtained in previous sec-

tion can be simply attained using the aforementioned procedure. As an example, the

crack modeling in one dimension has been demonstrated, in general, using Equation

(2.17) in Appendix C.

2.3 comparison to conventional xfem

Some methodological issues of the conventional XFEM addressed by the non-nodal

enrichment method are briefly described here:

• The local partition of unity given in Equation (1.1) only builds a partition of

unity over reproducing elements for which all element nodes are enriched; see

References [11, 14, 15, 32] for more details. Due to mesh constrains, some of

the element nodes may not be enriched for an element completely cut by a

crack; these elements are often called blending elements. An example has been

depicted in Figure 2.3, where a crack has advanced through several elements

and the crack tip is on the intersection of elements e4 and e5. To satisfy C0

continuity condition, the nodes placed on the crack tip edge are selected not to

be enriched as follows in Figure 2.3, which leads to an unenriched node I. Thus,

although the crack has crossed over the elements e1 through e4, these elements
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are not still reproducing elements. In contrast to conventional XFEM, in non-

nodal enrichment method, as soon as the crack passes through the element, it

becomes a reproducing element.

Figure 2.3 A crack path on
several elements which are not
still reproducing elements
because the enrichment is not
added to node I.

• The conventional XFEM approximations do not, in general, satisfy the Kronecker-

δ property that leads to difficulties in imposition of Dirichlet boundary condi-

tions on enriched nodes. As proposed in References [35, 10], the Kronecker-δ

property can be achieved by shifting enrichment functions with respect to ele-

ment nodes. However, shifting enrichment functions renders the construction of

lumped mass matrix difficult which is crucial for efficient dynamic analysis. In

the proposed method, the enrichment functions are vanished on element edges

and consequently the Kronecker-δ property is essentially satisfied.

• Although the shifted enrichment functions hold the Kronecker-δ property, they

may not vanish on contiguous elements. This may influence the imposition

of Dirichlet boundary conditions on element edges. Moreover, to preclude the
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parasitic terms added to the approximation, the contiguous elements which are

blending elements are required to be treated appropriately. However, in the

proposed method, the enrichment functions are vanished outside the element

domains and consequently no blending elements appear.

• In conventional XFEM, the interpretation of the enrichment parameters is dif-

ficult so that the non-smooth Dirichlet boundary conditions and interface con-

ditions may not be easily imposed on enrichment parameters. One of the main

Dirichlet boundary conditions imposed on contact interface is impenetrability

condition. In non-nodal enrichment method, the impenetrability condition can

be easily applied as a Dirichlet boundary conditions in strong form as

if JuK = 0, Ju̇K.n ≥ 0 (2.18)

• In the conventional XFEM, the enriched nodes are chosen based on both the

direction of the crack growth and whether it is contiguous to an existing crack

or not. As shown in Figure 2.4(a)-(b), the set of enriched nodes is dependent

on the crack directions. However, in the presented method, enriching proce-

dure depends on neither the crack direction nor the elements contiguous to

the enriched element which indeed facilitates the crack modeling in an object-

oriented program. As shown in Figure 2.4(c)-(d), wherever a crack passes over

an edge, one enrichment variables assigned to the intersection point is added to

the enrichment variable set.
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Figure 2.4 Selection of enriched
nodes: (a)-(b) in the conventional
XFEM where enriched nodes are
dependent on the direction of crack;
and (c)-(d) in the proposed method
where the FE nodes are not enriched
but for each intersection point two
enrichment variables are additionally
defined.
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Chapter 3

Linear Complete Enriched Displacement Fields

for Discontinuity

In this section, we extend the interpolation so that it can capture two discontinuities:

a strong discontinuity across the crack surface which can be represented with a jump

in the displacement and a weak discontinuity which can be considered a jump in

the strains. It can be shown that when the interpolation reproduces independent

linear functions on sides of the interface, then such discontinuities can be captured.

Therefore, the interpolation is enriched to reproduce two discontinuities across the

interface; a strong discontinuity at a function denoted by Φu and a weak discontinuity

at its first derivative denoted by Φ∇u. The strong discontinuity is given in Equation

(1.7) and the weak discontinuity can also be defined by adopting the Heaviside step

function as

Φ∇u = H(f(X))× f(X) =


0 if f(X) < 0

f(X) if f(X) > 0
(3.1)

The discontinuous functions Φu and Φ∇u are plotted in one dimension in Figure 3.1.

To capture such discontinuities, two enrichment functions Ψu and Ψ∇u are

associated to the physically-based enrichment variables: jump in the displacement

JuK and jump in the gradient of the displacement JLe∇uK, respectively. The latter

is consciously multiplied by Le to make the units of nodal values consistent which

significantly reduces the condition numbers of stiffness matrix.

In the following, we first construct the non-nodal enrichment parts in one

dimension, then for a linear triangular element in two dimensions.
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Figure 3.1 Representation of the discontinuity in: (a) a function;
and (b) a derivative of a function.

3.1 representation of a crack with non-nodal enrichment

parameters for 2-node linear elements

Let us consider a one-dimensional bar with a strong discontinuity, i.e. a crack, at

X = Xc as shown in Figure 3.2. The level set function f is considered negative

and positive on the left side and right side of the crack, respectively. Figure 3.2(a)

illustrates an arbitrary displacement field consisting two independent linear fields

on sides of the interface. Such displacement fields can be reproduced by adding

three independent parts: (i) a continuous displacement represented by finite element

interpolation shown in Figure 3.2(b); (ii) a jump in the displacement captured by the

enrichment function Ψu illustrated in Figure 3.2(c); and (iii) a jump in strain captured

by the enrichment function Ψ∇u illustrated in Figure 3.2(d). It is important to note

that the number of unknown variables to define two independent lines is 2 × 2 = 4,

which is equal to the variables used here {u1, u2, JuK, JLe∇uK}.

Thus, the displacement field is then given by

u(X, t) = ucons(X, t) + udisc(X, t)

=
2∑
I=1

NI(X)uI(t) + Ψu(X)Ju(t)KX=Xc + Ψ∇u(X)JLe∇u(t)KX=Xc

(3.2)

The enrichment functions are constructed so that the Equation (3.2) can reproduce
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Figure 3.2 One-dimensional enrichment displacement fields:
(a) an arbitrary linear displacement field on both sides of the
crack; (b) the finite-element displacement field uFEM; (c) the
enrichment displacement field produced by displacement jump
enrichment Ψu × JuK; and (d) enrichment displacement field for
gradient jump enrichment Ψ∇u × JLe∇uK. Note that in one
dimension for small derivatives J∇uK = JεK = JθK = θ+ − θ−

the discontinuous functions in Equations (1.7) and (3.1).

Let us first consider the displacement field u = Φu, for which the Equation

(3.2) for each side of the crack is simplified as

Ψu+ = N1

Ψu- = −N2

(3.3)

where for such a displacement, JΦuKX=Xc = 1 and J∇ΦuKX=Xc = 0 (see Figure 3.1(a)).

Note that the enrichment function Ψu is identical to the enrichment function obtained
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in Equation (C.2), as expected. Next, considering the displacement u = Φ∇u, the

Equation (3.2) is then simplified as

X −Xc = N2(X2 −Xc) + LeΨ∇u+(X)

0 = N2(X2 −Xc) + LeΨ∇u-(X)
(3.4)

For such a displacement, JΦuKX=Xc = 0 and JΦ∇uKX=Xc = 1 (see Figure 3.1(b)).

The term X − Xc can be interpolated exactly by finite element interpolation as

X − Xc =
2∑
I=1

NI(XI − Xc), so the Equation (3.4) gives the second enrichment

function as follows
Ψ∇u+ = −sN1

Ψ∇u- = −(1− s)N2

(3.5)

where we have used a normalized parameter for the crack position defined as s =

(Xc − X1)/Le. The enrichment functions have been plotted in Figure 3.3. Using

these enrichment functions, the extended interpolation can reproduce two indepen-

dent linear functions at sides of the crack. The classical proof has been provided in

Appendix D.

Figure 3.3 One-dimensional crack enrichment functions: (a) Ψu;
and (b) Ψ∇u.
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3.2 representation of a crack with non-nodal enrichment

parameters for three-node triangular elements

Let us consider a triangular element that is completely cut by a crack as shown in

Figure 3.4(a). For such a crack position, the strong and weak discontinuous functions

given in Equations (1.7) and (3.1) are shown in Figures 3.4(b)-(c). The enrichment

variables for capturing the strong discontinuity are chosen to be the displacement

jump at the intersection points of the crack and element edges, which are the dis-

placement jumps at Xc
1 and Xc

2 denoted by JuK1 and JuK2, respectively. Furthermore,

the enrichment variables for capturing the weak discontinuity are selected to be the

jump in directional derivative of the displacement at the intersection points.

To meet the C0 continuity condition between the enriched element and its

contiguous elements, the element edges at the intersection points are selected as the

direction of derivatives. These directions are denoted by ec
1 and ec

2 as shown in Figure

3.5. So, the approximation of a scalar variable u(X) is given by

u(X) = ucons(X) + udisc(X)

=
3∑
I=1

NI(X)uI + ∑
J∈δu

Ψu
J(X)JuKJ + ∑

K∈δ∇u
Ψ∇u
K (X)JLc

K∇u.ec
KKK

(3.6)

where δu and δ∇u are two sets including enriched discontinuous points on the interface,

Lc
K is the length of an element edge that contains the point Xc

K and J∇u.ec
KKK is the

jump in directional derivative along ec
K at Xc

K . In the following, we only consider the

case that the element is completely cut by a crack, i.e. δu = δ∇u = {1, 2}.

As discussed for one dimensional case, we wish to construct the enrichment

functions so that the extended interpolation given by Equation (3.6) reproduces the

discontinuous functions Φu and Φ∇u. Let us first consider a displacement field equal

to the Heaviside step function, i.e. u = Φu. For such a displacement field, the regular

and enriched degrees of freedom (DOF) for the crack position shown in Figure 3.4(a)

are obtained as
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Figure 3.4 A strong discontinuity in two dimensions:
(a) a triangular element with a crack; (b) Φu; and (c)
Φ∇u.

Regular DOFs:



Φu
1 = 1

Φu
2 = 0

Φu
3 = 0

Enriched DOFs:



JΦuK1 = 1

JLc
1∇Φu.ec

1K1 = 0

JΦuK2 = 1

JLc
2∇Φu.ec

2K2 = 0

(3.7)

As it can be noted, for the Heaviside step function, the jumps in derivatives are van-

ished. Thus, the interpolation in Equation (3.6) reduces to the interpolation describe

in Equation (2.2), and consequently the same enrichment functions are obtained de-
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Figure 3.5 Illustration of nomenclature for a linear complete
non-nodal enrichment in two dimension.

scribed here as

Ψu
1 =


−N4Q

1 f < 0

N4Q
4 f > 0

Ψu
2 =


−N4Q

2 f < 0

N4Q
3 f > 0

(3.8)

where the bilinear shape functions were resulted from the Duffy’s transformation (see

the Section 2.1 for more details). Next, considering the displacement field u = Φ∇u,
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the nodal values are determined as

Regular DOFs:



Φ∇u
1 = f(X1)

Φ∇u
2 = 0

Φ∇u
3 = 0

Enriched DOFs:



JΦ∇uK1 = 0

JLc
1∇Φ∇u.ec

1K1 = Lc
1
|f(X3)|
Lc−

1

JΦ∇uK2 = 0

JLc
2∇Φ∇u.ec

2K2 = Lc
2
|f(X2)|
Lc−

2
(3.9)

where for such a displacement ∇Φ∇u = n+ as depicted in Figure 3.5. By substituting

the nodal values in Equation (3.7) in approximation given in Equation (3.6) and

rewriting for each side of the interface, we have

f(X) = N1f(X1) +Ψ∇u+
1 Lc

1
|f(X3)|
Lc−

1
+Ψ∇u+

2 Lc
2
|f(X2)|
Lc−

2

0 = N1f(X1) +Ψ∇u−
1 Lc

1
|f(X3)|
Lc−

1
+Ψ∇u−

2 Lc
2
|f(X2)|
Lc−

2

(3.10)

Since the function f is a linear function, it can be exactly interpolated by standard

shape functions as f =
3∑
I=1

NIfI . For simplicity, we will define two normalized pa-

rameters for the first and second intersection points of the crack and element edges as

s1 = Lc−
1 /Lc

1 and s2 = Lc−
2 /Lc

2, respectively. Exploiting the Duffy’s transformation,

the enrichment functions Ψ∇u1 and Ψ∇u2 are obtained as

Ψ∇u
1 =


−(1− s1)N4Q

1 f < 0

−s1N
4Q
4 f > 0

Ψ∇u
2 =


−(1− s2)N4Q

2 f < 0

−s2N
4Q
3 f > 0

(3.11)

where we have used the side-splitter theorem.

It is important to note that the enrichment functions are defined so that the

C0 continuity condition is satisfied. Using the enrichment functions Ψu
J and Ψ∇u

J , the

approximation in Equation (3.2) can reproduce two independent planes at either side

of the crack. The detailed proof has been provided in Appendix E.
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3.3 general formulations of the linear non-nodal enrichment xfem

In this section, we will derive the enrichment function for a multi-node element with

a discontinuity in the rth derivative of a function denoted by Φ(r)(X), which occurs

across the interface defined by f(X) = 0. Thus, it can be described in terms of level

set function as follows

Φr(X) = H(f(X))× f r(X) (3.12)

The non-nodal approximation for capturing the discontinuous function Φ(r)(X) is

expressed by

u(X) =
ne∑
I=1

NI(X)uI +
∑
J∈δr

Ψr
J(X)arJ (3.13)

where δr is a set of non-nodal points on the interface and Ψr
J and arJ are the enrichment

function and enrichment parameter associated to point J . The enrichment parameter

arJ can be defined as

arJ = mes(Ωe)
r

nSD J∇u,r.ec
JKJ (3.14)

where mes(Ωe) is the measure of the domain (length in 1D, area in 2D or volume in

3D), nSD is the number of spatial dimensions and ∇u,r is defined as

∇u,r =


∂ru

∂Xr

∂ru

∂Y r

 (3.15)

The approximation described in Equation (3.13) must hold for the discontinuity given

in Equation (3.12), i.e. u = Φ(r). So

Φ(r)(X) =
ne∑
I=1

NI(X)Φ(r)
I +

∑
J∈δr

Ψr
J(X)×mes(Ωe)

r

nSD J∇Φ(r)
,r .ec

JKJ (3.16)

By rewriting Equation (3.16) for either side of the interface separately we have

Φ(r)+(X) =
ne∑
I=1

NI(X)Φ(r)
I + ∑

J∈δr
Ψr+
J (X)×mes(Ωe)

r

nSD J∇Φ(r)
,r .ec

JKJ

Φ(r)−(X) =
ne∑
I=1

NI(X)Φ(r)
I + ∑

J∈δr
Ψr−
J (X)×mes(Ωe)

r

nSD J∇Φ(r)
,r .ec

JKJ

(3.17)
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The first terms on the right-hand side of Equation (3.17) can also be partitioned for

nodes at either side of the interface as

ne∑
I=1

NI(X)Φ(r)(XI) =
∑
I∈δ−n

NI(X)Φ(r)−(XI) +
∑
I∈δ+

n

NI(X)Φ(r)+(XI) (3.18)

where δ+
n and δ−n are the sets of element nodes that are on the subdomains where

f > 0 and f < 0, respectively. We assume here that the discontinuous function Φ(r)

is as sufficiently smooth as to be interpolated exactly by standard shape functions.

Thus, Φ(r)+ and Φ(r)− can be described in terms of standard shape functions by

Φ(r)+(X) =
ne∑
I=1

NI(X)Φ(r)+(XI)

Φ(r)−(X) =
ne∑
I=1

NI(X)Φ(r)−(XI)
(3.19)

Substituting Equations (3.17) and (3.18) into (3.19), we will have

∑
I∈δ−n

NI(X)JΦ(r)KX=XI
= ∑

J∈δr
Ψr+
J (X)×mes(Ωe)

r

nSD J∇Φ(r)
,r .ec

JKJ

∑
I∈δ+

n

−NI(X)JΦ(r)KX=XI
= ∑

J∈δr
Ψr−
J (X)×mes(Ωe)

r

nSD J∇Φ(r)
,r .ec

JKJ

(3.20)

The Equation (3.20) is the general formulation to derive the enrichment functions

using non-nodal enrichment points for a discontinuity in the rth derivative of the

field. For example, 2D enrichment functions given in equation (3.11) can be obtained

from Equation (3.20) by assigning r = 1 which gives Φ1(X) = H(f(X))× f(X).
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Chapter 4

Governing Equations, Weak Formulation and

Discretization

4.1 governing equations

Considering dynamic form of a two-dimensional problem, the governing equation is

∂Pji
∂Xj

+ ρ0bi − ρ0üi = 0 in Ω0 (4.1)

where P is the nominal stress tensor, ρ0 is the initial density and b is the body force

vector per unit mass. The boundary conditions are

ui = ūi on Γ0
u

JuKi = JūKi on Γ0
uc

n0
jPji = t̄0i on Γ0

t

n0±
j P 0±

ji = τ 0c
i (JuKi) on Γ0

c

(4.2)

where ū is the applied displacement on the Dirichlet boundary Γ0
u and JūK is the

prescribed displacement jump on a set of non-nodal enrichment parameters Γ0
uc, t̄0

is the applied traction on the Neumann boundary Γ0
t , n is the outward normal to

the designated boundaries and τ 0c is the cohesive traction across the crack boundary

Γ0
c. Superscripts plus and minus signs indicate the positive and negative value of the

level set function f , respectively. Indicial notation is used for lower case indices.

It must be stressed out that a crack tip can be simply modeled by imposing a

prescribed displacement jump equal to zero at crack tip point as

JuKi = 0 at crack tip (4.3)
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4.2 weak formulation

The admissible space for the trial and test functions are defined as follows:

f = {u |u ∈ C0, u = ū on Γ0
u, JuK = JūK on Γ0

uc, u discontiniuous on Γc}

f0 = {δu | δu ∈ C0, δu = 0 on Γ0
u, JδuK = 0 on Γ0

uc, δu discontiniuous on Γc}
(4.4)

The weak form is expressed as an integral form of the momentum equation so that

for u ∈ f and ∀ δu ∈ f0

δW kin = δW ext − δW int + δW coh (4.5)

where δW kin is the kinetic work, δW ext is the external work, δW int is the internal

work and δW coh is the cohesive work achieved by the cohesive traction on the crack

surface. So, the Equation (4.5) can be expanded as follows

∫
Ω0
δu.ρ0üdΩ0 =

∫
Ω0
δu.ρ0bdΩ0 +

∫
Γ0

t

δu.t̄0dΓ0 −
∫

Γc
JδuK.τ cdΓ0 −

∫
Ω0

∂δu
∂X

: PdΩ0

(4.6)

where JδuK and τ are the variation of displacement jump and cohesive traction applied

on the discontinuity surface, respectively.

4.3 discretization

The finite element discretization relates each of the virtual work terms in Equation

(4.5) to an associated nodal force as follows:

fkin = f ext − f int + f coh (4.7)

where fkin, f ext, f int and f coh are the kinematic, external, internal and cohesive forces,

respectively. These forces are constructed by assembling the local element force vec-

tors:

fkin
e =

∫
Ωe
ρNg

e
TNg

edΩed̈ge (4.8)
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f ext
e =

∫
Ωe
ρNT

e bedΩe +
∫

Γe
t

NT
e t̄dΓet (4.9)

f int
e =

∫
Ωe

Bg
e

TSgedΩe (4.10)

f coh
e = −

∫
Γe

c

JΨKTτ cndΓec (4.11)

Here the superscript e is the element number, S is the second Piola-Kirchhoff stress

in Voigt form, dge = [ue, JuKJ ] is the generalized nodal coefficient matrix consisting of

the nodal displacements and the enrichment parameters, Ng
e is the union of regular

shape functions and enrichment functions and Bg
e is generalized strain-displacement

matrix. The Ng
e matrix is given by

Ng
e = [N0

e,ΨJ ] (4.12)

The Bg
e is also given by

Bg
e = [B0

e,Bc
e] (4.13)

where

B0
I =


NI,X x,X NI,X y,X

NI,Y x,Y NI,Y y,Y

NI,X x,Y +NI,Y x,X NI,X y,Y +NI,Y y,X

 (4.14)

Bc
I =


ΨI,X x,X ΨI,X y,X

ΨI,Y x,Y ΨI,Y y,Y

ΨI,X x,Y + ΨI,Y x,X ΨI,X y,Y + ΨI,Y y,X

 (4.15)

where (.),i indicates the partial derivative along ith coordinate direction.

4.4 cohesive law

The cohesive model is applied to the damage evolution created by the crack. In a

cohesive model, a surface traction determined by a cohesive law is applied onto the

crack surfaces Γc such that the energy dissipated due to the crack evolution matches
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the critical fracture energy. In this study, we considered only the normal component

of the traction. The normal displacement jump δN is defined by

δN = n.JuK = n.
∑
J∈δen

JΨKJJuKJ (4.16)

In general, the cohesive traction can be computed incrementally with radial

return algorithm as follows:

input : δN

δ0
N = δprev

N

τ 0
N = τprev

N

E0 = Eprev

for i = 1 to N

δiN = δi−1
N + i× δN

N

if δiN > 0

τ trial
N = τ i−1

N + Ei−1(δiN − δi−1
N )

if τ trial
N > f(δiN)

τ iN = f(δiN)

Ei = τ iN/δ
i
N

return τ iN

(4.17)

where δN and δiN are the normal displacement and incremental displacement, respec-

tively. In the radial return algorithm, the loop invariant is EN = τ iN/δ
i
N while δiN

and τ iN are underneath the traction law illustrated in Figure 4.1. Thus, for the linear

cohesive model, we have

δmax = 2GF

τmax
(4.18)

4.5 numerical integration

For computation of the integral Equations (4.8) -(4.10) in an enriched element where

the integrands are discontinuous, a modified numerical quadrature scheme such as
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Figure 4.1 Cohesive law; the area under the
cohesive law curve is the same as the fracture
energy (a) a general cohesive law; and (b) a linear
cohesive law.

subdomain integration is needed. In subdomain integration, the element domain is

partitioned into several subdomains where the Gauss points are positioned as shown

in Figure 4.2(b)-(c). Here we adopt two different subdomain integration schemes

depending on the parent domains where the enrichment functions are defined. For

the Duffy’s parent domain, the enrichment functions are given in Equation (2.9)

and the straight discontinuity shown in Figure 4.2(a) is mapped to a high curvature

interface shown in Figure 4.2(b). To maintain the accuracy of the integration, the

interface is discretized, which leads to increased number of subdomains. For the

standard parent domain shown in Figure 4.2(c), the enrichment functions are given

in Equation (2.11). Since these enrichment functions are non-polynomial functions,

higher number of Gauss points is required to maintain the integration accuracy.

4.6 Time integration scheme and critical time step

The explicit time integration was used over the whole domain. The explicit time

integration is conditionally stable, i.e. it is stable when

∆t ≤ ∆tc = 2
ωmax

(4.19)
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Figure 4.2 numerical integration with the subdomain
integration schemes; (a) a cracked element in physical
coordinates; (b) Duffy’s parent domain; and (c) regular
parent coordinates.

By studying the frequencies ωi of the one-dimensional discrete system ω2
iMdi = Kdi,

the variation of the critical time step according to the normalized location of the crack

was determined. Figure 4.3 compares the normalized critical time step of standard

XFEM with non-nodal XFEM. The critical time steps are normalized with respect

to ∆0
c = l/c.

For standard XFEM, the peak value of the critical time step occurs when the

crack is in the middle of the element while for non-nodal XFEM, the minimum of the

critical time step occurs at the middle. This implies that the non-nodal XFEM is more

efficient than the standard XFEM. Furthermore, for standard XFEM, the critical time

step drops linearly to zero as the crack location approaches to the element nodes

36



which leads to numerical difficulties in explicit time integration schemes. However,

since non-nodal XFEM has no zero critical time step, it can be directly used in explicit

methods.

Figure 4.3 The variation of normalized critical time
step size according to the normalized location of the
discontinuity.
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Chapter 5

Numerical Examples

In the first two examples, the convergence of the proposed method is validated through

static problems from linear elastic fracture mechanics. To verify the method for mod-

eling dynamic crack propagation, we consider crack propagation for three benchmark

problems whose experimental results are available. To effectively demonstrate the

benefits of the method, we solve the problems using three approaches: (i) a stan-

dard XFEM, (ii) a non-nodal XFEM considering only strong enrichment functions

Ψu, and (iii) the linear complete non-nodal XFEM. The numerical solutions are com-

pared with experimental data. The central difference method for time integration is

used with a Courant number of 0.1. All simulations are solved using constant strain

triangular elements, plane strains and thicknesses of unity. The fracture criterion was

the maximum tensile stress computed at the crack front. The direction of the crack

was selected to be the normal to the maximum tensile stress direction. To eliminate

the awkward oscillations in stress computation, once an element failed, the stresses

about the crack edge were averaged using nodal smoothing techniques.

The relative errors in the energy norm denoted by R.Een and L2-norm denoted

by R.Ed used in the analysis are defined as

(R.Een)2 =

∫
Ω

(ε− εh)TC(ε− εh) dΩ∫
Ω
εTCε dΩ

, (5.1a)

(R.Ed)2 =

∫
Ω

(u− uh)2 dΩ∫
Ω

u2 dΩ
. (5.1b)
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5.1 Near-tip crack field

To demonstrate the capability of the proposed method for reproducing non-smooth

solutions, a square patch with the same length and height L = H = 2 and a crack

length H/2 = 1 is considered as shown in Figure 5.1. Tractions are prescribed along

Figure 5.1 A square patch for the near-tip crack problem: (a) geometry; and (b)
boundary conditions.

the boundary and the rigid body motions are avoided by prescribing displacements

at nodes B and C shown in Figure 5.1(b). The closed-form stress fields ahead of a

crack tip for the mode I in polar coordinates (r, θ) are given by

σ11(r, θ) = KI√
2πr

cos θ2

(
1− sin θ2 sin 3θ

2

)
, (5.2a)

σ22(r, θ) = KI√
2πr

cos θ2

(
1 + sin θ2 sin 3θ

2

)
, (5.2b)

σ12(r, θ) = KI√
2πr

cos θ2sin
θ

2 cos 3θ
2 . (5.2c)

The closed-form displacements are also given by

u1(r, θ) = KI

2µ

√
r

2π cos θ2

(
k − 1 + 2 sin2 θ

2

)
, (5.3a)

u2(r, θ) = KI

2µ

√
r

2π sin θ2

(
k + 1− 2 cos2 θ

2

)
(5.3b)
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where µ is the shear modulus and k is the Kolosov constant defined as

k =


3− 4 ν (plane strain),
3− ν
1 + ν

(plane stress).
(5.4)

The material properties selected are: Young’s modulus E = 105 and Poisson’s ratio

ν = 0.3. The stress intensity factor is prescribed as KI = 1.0.

A convergence study is carried out using structured linear triangular elements.

Plots of errors in both energy norm and L2-norm are provided in Figure 5.2. The

rates of convergence in the energy norm for the regular FEM, the standard XFEM,

and the proposed method are around 0.49 which is very close to the optimal value of

0.5. Notice that the convergence rate in the energy norm for non-smooth problems

is less than unity; it is O(h1/2) for the crack-tip problem as indicated in [4].

Also, the results demonstrate that the proposed method outperforms the stan-

dard XFEM as the graph shows a constant shift toward lower error. For the non-nodal

XFEM with only Ψu enrichment, the convergence rate is sub-optimal but it increases

with mesh refinement as it is illustrated from L2-norm results in Figure 5.2(b).

Figure 5.2 Rate of convergence for the near-tip crack field problem for
several enrichment schemes: (a) Energy-norm errors; and (b) L2-norm errors.
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One advantage of the proposed method is to improve accuracy by imposing

Dirichlet boundary conditions on the interface. In doing so, closed-form displacement

jumps are imposed at the non-nodal point on the left edge, i.e., point A in Figure

5.1. These constraints can be expressed as

JūAKX = 0, JūAKY = −2u2(1, π).

A contour plot of the Mises stress and the convergence results on L2-norm are dis-

played in Figure 5.3. The graph shows that a simple Dirichlet boundary condition

on the the interface shifts the results toward lower error for both non-nodal XFEM

schemes. Also, this boundary condition leads to a slightly better convergence rates

for the proposed method.

The stresses are compared with exact solutions using both an 80× 80 struc-

Figure 5.3 Comparison of rates of convergence of the near-tip
crack field problem for non-nodal XFEM with and without
Dirichlet boundary condition on the interface: (a) contour plot of
Mises stress in deformed configuration (×1000); and (b) L2-norm
errors.

tured mesh and an irregular mesh which is fine around the crack tip as shown in

Figure 5.4(a)-(b). The stresses computed along θ = 0 from the crack tip are shown in

Figure 5.5(a)-(c) (respectively, 5.6) and the angular variation of stresses at r = 0.1a
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Figure 5.4 Mesh used for the stress convergence of the
near-tip crack problem: (a) an 80× 80 structured mesh; and
(b) an irregular mesh of around 13000 elements.

from the crack edge are shown in Figure 5.5(d)-(e) (resp. 5.6). As it can be seen,

the stresses oscillate near the crack tip for both meshes. The singularity at crack-tip

also has not been captured. This is expected because we have not introduced any

enrichment functions to capture the near-tip singular fields. However, with mesh

refinement, the computed stresses converge to the closed-form solutions.
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Figure 5.5 Stresses of the near-tip crack problem for the 80× 80
structured mesh: (a-c) ahead of the crack tip; (d-f) angular variation
along constant radius (r = 0.1a).
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Figure 5.6 Stresses of the near-tip crack problem for irregular mesh:
(a-c) ahead of the crack tip; (d-f) angular variation along constant
radius (r = 0.1a).
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5.2 Stress concentration in an infinite plate with a circular hole

To demonstrate the performance of the proposed method for modeling of discontinu-

ities in strains, an infinite plate with a small circular hole of radius a subjected to

uniform tension σ along X direction is considered (see Figure 5.7(a)). Since the exact

solution is given for the region close to the circle [21], we consider a square domain

of edge length 2b with the circular hole at its center as in [31]. To take advantage of

symmetry, only the upper right quadrant is considered as shown in Figure 5.7(b). The

symmetric constraints are imposed on bottom and left edges; the exact tractions are

imposed on top and right edges. The closed-form solutions for the stress distribution

in polar coordinates (r, θ) are given by

σ11(r, θ) = σ

[
1− a2

r2

(3
2 cos 2θ + cos 4θ

)
+ 3

2
a4

r4 cos 4θ
]
,

σ22(r, θ) = σ

[
−a

2

r2

(1
2 cos 2θ − cos 4θ

)
− 3

2
a4

r4 cos 4θ
]
,

σ12(r, θ) = σ

[
−a

2

r2

(1
2 sin 2θ + sin 4θ

)
+ 3

2
a4

r4 sin 4θ
]
.

The closed-form displacements are given by

u1(r, θ) = aσ

8µ

[
r

a
(k + 1) cos θ + 2 a

r
((1 + k) cos θ + cos 3θ)− 2 a

3

r3 cos 3θ
]
,

u2(r, θ) = aσ

8µ

[
r

a
(k − 3) sin θ + 2 a

r
((1− k) sin θ + sin 3θ)− 2 a

3

r3 sin 3θ
]
.

We take Young’s modulus E = 105 and Poisson’s ratio ν = 0.3. The analyses

are performed considering the following parameters: σ = 1, a = 0.3, and b = 1. A

convergence study is conducted using structured linear triangular elements in Fig-

ure 5.8.

The convergence rates were resulted slightly sub-optimal both for the stan-

dard XFEM and the proposed method; the proposed method obtains convergence

rates of 0.9 and 1.813 in the energy norm and L2-norm, respectively. However, the

method with only strong enrichment function gives the convergence rates of 0.498 and
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Figure 5.7 (a) Infinite plate with a circular hole subjected
to uniform tension; and (b) upper right quadrant of a
square of edge length 2b centered at (0, 0) is modeled due to
symmetry.

0.885. This is expected because the enrichment function Ψu can only capture strong

discontinuities while there is a weak discontinuity inside elements in this problem.

Figure 5.8 Rate of convergence for the plate with a hole in
center problem for four enrichment schemes: (a) Energy-norm
errors; and (b) L2-norm errors.

Contour plots for the normal stress σ11 are shown in Figure 5.9. Figure 5.9(a)

shows that the maximum normal stress for both standard XFEM and the proposed

method is 3.3 which is more than the theoretical value of 3.0. To improve the accuracy
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of the results, two Dirichlet boundary conditions on left and bottom edges are imposed

to the displacement jumps on the intersection points of the circular hole and square

edges, i.e., points A and B in Figure 5.7. These constraints can be expressed as

JūAKX = 0, JūBKY = 0

The resulted normal stresses are shown in Figure 5.9(b). As it can be seen, the

maximum normal stress is 3.1, which is very closed to the theoretical value.

Figure 5.9 Contour plots of the normal stress σ11 in deformed
configuration (×1000): (a) the proposed method and the
standard XFEM; and (b) the proposed method with interface
constrains.

5.3 edge-cracked plate under impulsive loading

The first dynamic numerical example deals with an experiment carried out by Kalthoff

and Winkler [19] in which a plate with two initial edge notches impacted by a pro-

jectile. Numerical results for this problem have been given by Belytschko et al. [8]

and Song et al. [30]. Kalthoff observed two different failure modes by modifying the

projectile speed V0; at lower impact velocities, a brittle fracture with a crack prop-

agation at an angle of about 70◦ was observed while at higher impact velocities, a

strain localization, i.e. a shear band was observed at a negative angle of about −10◦
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with respect to the notch. In this work, we consider only the brittle fracture mode.

Due to twofold symmetry, only the upper half of the plate is modeled. A

schematic description of the original problem and the upper part to be solved are

shown in Figures 5.10(a)-(b), respectively. The symmetry condition uy = 0 was im-

posed at the bottom edge of the model. The initial velocity is applied as a step

function on the left edge on 0 ≤ y ≤ 25mm. Assuming that the projectile and the

plate have identical elastic impedance, an applied velocity of 16.5m/s is chosen, which

is one-half of the projectile speed in the experiment for the brittle fracture.

The plate is a maraging steel 18Ni1900 with the following material param-

eters: ρ = 8000 kg/m3, E = 190GPa and ν = 0.3; so, the Rayleigh wave speed is

cR = 2799m/s. The critical stress intensity factor is taken as KIc = 68MPa
√
m which

leads to a fracture energy GF = 2.217× 104(J)/m2. We used a linear cohesive crack

model with a tensile strength of τmax = 844MPa which corresponds to a critical crack

opening displacement δmax = 5.245 × 10−5m. To observe the mesh sensitivity, we

have analyzed the model with three different uniform meshes: a 40× 40 coarse mesh,

a 80 × 80 medium mesh and a 120 × 120 fine mesh. The crack evolutions for each

mesh are shown in Figures 5.11-5.13.

The finite element meshes and their crack growth trajectories are shown in

Figure 5.14. The simulations terminated when the crack tip passed the upper bound-

ary; all simulations yielded quite similar crack propagation trajectories which agree

quite well with those obtained by the conventional XFEM [8, 30]. The numerical

results for each simulation are listed in Table 5.1. The data in Table 5.1 shows that

the crack begins to propagate at earlier times with mesh refinement, which leads to

a shorter simulation time. For all simulations, the crack first grows primarily along

an initial angle, then near the end of the simulation moves a little bit upward.

The initial and the overall crack propagation angles are increasing with mesh

refinement; the overall angle is approaching to the experimental value with mesh re-
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finement as the angle of 67.1◦ in fine mesh compares well with the experimental value

of 70◦ .

The crack tip propagation speeds for 40× 40 and 80× 80 meshes resulted

Figure 5.10 Experimental set-up and simulation model
(a) Kalthoff experimental set-up for crack propagation
under impulsive loading (b) Upper half of the plate used
in the analysis.

Table 5.1 Crack propagation angles and timing data for the
Kalthoff’s experiment.

Mesh Angles(◦) Time(µs)
Initial Overall Propagation Simulation

40× 40 60.16 62.45 25.61 81.28
80× 80 61.87 64.74 25.59 79.98

120× 120 63.34 67.1 19.79 77.4

by both the proposed method and the conventional XFEM are shown in Figure 5.15.

As it is demonstrated in Figure 5.15(a), for both meshes, the proposed method yields

very similar crack speeds. When the crack begins to propagate, its speed oscillates
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Figure 5.11 The computed crack paths on the 40× 40 deformed
mesh with a maximum principle stress at different time steps: (a)
t = 29.89µs; (b) t = 37.43µs; (c) t = 58.48µs; and (d) t = 81.28µs.

around 2000m/s and after 50µs, the cracktip speed slowly decreases up to the end

of the simulation. However, for the conventional XFEM, the crack speed for the fine

mesh is significantly higher than for the coarse mesh. These results confirm the pre-

vious results in Reference [8]. Therefore, we can conclude that the proposed method

demonstrates less mesh dependency than the conventional XFEM.

The examples above were also solved using linear complete non-nodal en-

richment formulations. The crack evolutions for each mesh are shown in Figures

5.16-5.18. As demonstrated in Figure 5.19, similar to previous work, all simulations

resulted similar crack paths. More details for each simulation are listed in Table 5.2.
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Figure 5.12 The computed crack paths on the 80× 80 deformed
mesh with a maximum principle stress at different time steps: (a)
t = 28.83µs; (b) t = 38.09µs; (c) t = 57.0µs; and (d) t = 79.98µs.

The data in Table 5.2 shows that the overall crack propagation angle approaches to

the experimentally obtained value of 70◦ degrees with mesh refinement. These angles

are slightly bigger than the angles given by the Table 5.1. The difference may result

from capturing the independent linear displacements in the presented work which

yields to predict the strains more accurately.

The crack tip propagation speeds for 40 × 40 and 80 × 80 meshes are shown

in Figure 5.20. For the linear complete enriched formulation, Figure 5.20(a) displays

slightly bigger speed for 80 × 80 mesh than 40 × 40 mesh. For both meshes, when

the crack begins to propagate, its speed increases up to 2000m/s and after 50µs,
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Figure 5.13 The computed crack paths on the 120× 120 deformed
mesh with a maximum principle stress at different time steps: (a)
t = 28.96µs ; (b) t = 38.45µs; (c) t = 56.49µs; and (d) t = 77.4µs.

the cracktip speed decreases up to the end of the simulation. However, for the con-

ventional XFEM result shown in Figure 5.20(b), there is a significant difference in

the crack speeds for different meshes, which concludes that the proposed method

demonstrates less mesh dependency than the conventional XFEM.
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Figure 5.14 Comparison of crack propagation trajectories
at final simulation step using triangular linear elements (a)
40× 40 mesh; (b) 80× 80 mesh; and (c) 120× 120 mesh.

Figure 5.15 Crack speeds for the Kolthoff’s experiment
simulation: (a) the crack speed of this method and (b) the
crack speed of the standard XFEM.

5.4 crack pattern in three-point bending specimens with variable

offset notch

Experiments concerning mixed mode dynamic crack propagation in three point bend-

ing specimens subjected to impact loading were conducted by John and Shah [18].

The numerical solutions for this example can be found in [30, 36, 28, 5, 6]. The exper-
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Figure 5.16 The computed crack paths using linear complete
formulations on the 40× 40 deformed mesh with a maximum
principle stress at different time steps: (a) t = 28.6µs; (b)
t = 44.77µs; (c) t = 62.18µs; and (d) t = 84.55µs.

imental setup is shown in Figure 5.21(a). To induce mixed-mode condition, a notch

was located at a variable offset from the midspan. In these series of experiments, the

crack patterns and crack initiation angles of specimens are examined for the offset

notch at various locations. Finally, for several experiments, three crack propagation

patterns were reported depending on the location of the notch which can be described

by a normalized parameter γ.

γ = dnotch

L/2 (5.5)

where dnotch denotes the distance between the midspan and the notch, and L is the

distance between the supports. A transition point was observed in the notch location
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Figure 5.17 The computed crack paths using linear complete
formulations on the 80× 80 deformed mesh with a maximum
principle stress at different time steps: (a) t = 26.17µs; (b)
t = 39.83µs; (c) t = 55.5µs; and (d) t = 81.32µs.

γt, where failure changes from a crack growth at the offset notch (γ < γt) to a

crack growth at the midspan (γ > γt). For a narrow transition region where offset

parameter is close to γt, both notch and midspan crack initiate and propagate. The

experimentally obtained value of γt is 0.77.

Material properties are given as density ρ = 2400 kg/m3, Young’s modulus

E = 31.37GPa, Poisson’s ratio ν = 0.2 and tensile strength of 10.45MPa. A linear

cohesive crack model was used with a fracture energy of GF = 19.58 J/m2 and its

corresponding critical crack opening displacement δmax = 3.75×10−6 m. To model the

rubber pad between the beam and impact hammer, the velocity boundary condition
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Figure 5.18 The computed crack paths using linear complete
formulations on the 120× 120 deformed mesh with a maximum
principle stress at different time steps: (a) t = 25.72µs; (b)
t = 38.22µs; (c) t = 56.54µs; and (d) t = 78.68µs.

at the loading point is applied as a ramp function as

V (t) =


V0t/tramp t < tramp

V0 t > tramp

(5.6)

where V0 = 0.06m/s and tramp = 196µs. The imposed velocity was calibrated to re-

sult in a strain rate of 0.3 s−1 at the midspan which was reported in the experiments

(see Reference [36]).

Numerical simulations with three different meshes were carried out: a coarse

mesh of around 1000 elements, a medium mesh of around 4000 elements and a fine

mesh of around 15000 elements. The finite element meshes are shown in Figures
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Figure 5.19 Comparison of crack propagation trajectories
using linear complete formulation at final simulation step
using triangular linear elements (a) 40× 40 mesh; (b)
80× 80 mesh; and (c) 120× 120 mesh.

Table 5.2 Crack propagation angles and timing data using
linear complete formulation for the Kalthoff’s experiment.

Mesh Angles(◦) Time(µs)
Initial Overall Propagation Simulation

40× 40 61.63 64.63 25.55 82.85
80× 80 63.02 65.88 22.50 78.43

120× 120 65.18 68.77 19.7 77.4

5.21(b)-(d). The numerical experiments were conducted with various offset parame-

ters to capture observed failure patterns. The numerical simulations show that the

initial notch location for the transition stage approaches to the experimentally deter-

mined value with mesh refinement. As shown in Figures 5.21(b)-(d), the γt for the

fine meshes was obtained as 0.78, which agrees quite well with experimental result of

0.77. The crack propagation paths for each mesh are shown in Figures 5.22-5.24.

The observed three numerical crack patterns for fine mesh are shown in Figure

5.25. As it is shown for γ = 0.75 the crack propagates only from the offset notch with

an angle of 59◦ which is very similar to the experimental value of 60◦ . At the final

stage of crack growth, the crack rotates a little bit toward the loading point which
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Figure 5.20 Crack speeds for the Kolthoff’s experiment
simulation: (a) the crack speed of linear complete formulation
and (b) the crack speed of the standard XFEM.

was also reported in experiments. For γ = 0.78 where the offset notch is in transi-

tion zone, two cracks are initiated both at the midspan and the notch and propagate

simultaneously, but the final failure occurs at the midspan. Finally, for γ = 0.785,

only one main crack is initiated at the midspan and propagates toward the loading

point.

5.5 crack extension and velocity in three-point bending specimens

In order to compare the crack speed of the proposed method with those reported

in experiments of three-point-bend specimens, we examined an experiment reported

by Guo et al. [17]. This experiment has been also numerically modeled by Gonzalo

Ruiz et al. [28] in three dimensions. The experimental set-up is shown in Figure

5.26(a). The offset notch is located at 25.4mm from beam midspan and extended by

approximately 13mm.

The material used in the simulation has the following properties: density

ρ = 2400kg/m3, Young’s modulus E = 32.3GPa and Poisson’s ratio ν = 0.2. Since

the load-line displacements were measured in experiments, the impact loading can be
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Figure 5.21 The geometry and boundary conditions of
three-point-bend specimens and finite element meshes
used in numerical simulations for the offset notch at the
transition point; (a) experiment set-up; (b) a coarse mesh
of around 1000 elements; (c) a medium mesh of around
4000 elements and (d) a fine mesh of around 15000
elements.

applied as a prescribed displacement (for more details, refer to References [28, 17]).

The dynamic tensile strength of 7.75MPa (2.5 times of tensile strength) is taken as

the maximum tensile stress. A linear cohesive crack model was used with fracture

energy of GF = 120Jm−2. To examine mesh sensitivity, three different triangular

meshes were used in the numerical simulations as illustrated in Figures 5.26(b)-(d).

Figure 5.27(a) shows the averaged crack path obtained in experiments. The

experiments show that, the crack first grows primarily along an initial angle θ1 mea-

sured from vertical line, then after passing half width of the beam, it rotates θ2 degrees

with respect to initial angle toward the loading point. As shown in Figure 5.27(a),

the experimentally computed values of θ1 and θ2, are 10◦ and 16◦ , respectively. The

crack patterns and the crack evolutions for three different meshes are shown in Figure

5.27(b)-(d) and Figures 5.28- 5.30, respectively. The simulation results are listed in
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Figure 5.22 The computed crack paths for γt = 0.75 on the fine
deformed mesh with a maximum principal stress at different time steps
(a) t = 1142µs ; (b) t = 1180µs; (c) t = 1227µs; and (d) t = 1305µs.

Table 5.3. The outcomes show that the crack starts propagating in an earlier time

with mesh refinement. All simulations have similar crack propagation paths. In these

simulations, the crack propagation angles θ1 and θ2 are in excellent agreement with

the experimentally observed value of 10◦ and 16◦ , respectively.

The crack length history and speed for different meshes are illustrated in

Table 5.3 Crack propagation angles and timing data for the
Guo’s experiment simulations

Mesh Angles(◦) Propagation Time (µs)Initial( θ1) Final( θ2)
Coarse mesh 9.5 11.85 360
Medium mesh 9.0 13.1 319
Fine mesh 10.0 14.0 305

Figure 5.31. As it can be seen, the crack speed for the coarse mesh is substantially

higher than the experimental speed. For the medium and fine meshes, the crack

speeds compare well with observed values. This example demonstrates that in gen-

eral, the crack speed may not be modeled accurately with very coarse meshes.

Guo’s experiment were also solved using linear complete enriched XFEM.
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Figure 5.23 The computed crack paths for γt = 0.78 on the fine
deformed mesh with a maximum principal stress at different time steps
(a) t = 1329µs ; (b) t = 1350µs; (c) t = 1364µs; (d) t = 1385µs; (e)
t = 1423 s; and (f) t = 1456µs.

Figures 5.32(b-d) show the crack path obtained in numerical experiments. The crack

evolutions for three meshes are shown in Figure 5.33-5.35. The simulation results are

also listed in Table 5.4. The results show that the first angle θ1 has been captured

quite accurately with mesh refinement. The second angle θ2 was obtained slightly

less that the experimentally obtained value. These results show that the proposed

method can well reproduce the failure in three-pint bend specimens.

The crack length history and speed for different meshes are shown in

Figure 5.36. The crack speeds for the linear complete formulation show less mesh

dependency than those obtained by previous work depicted in Figure 5.31. However,

the crack speed for the coarse is mesh is still higher than the experimental speed.

For the medium and fine meshes, the crack speeds compare very well with observed

values.
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Figure 5.24 The computed crack paths for γt = 0.785 on the fine
deformed mesh with a maximum principal stress at different time steps
(a) t = 1316µs ; (b) t = 1330µs; (c) t = 1361µs; and (d) t = 1429µs.

Figure 5.25 Fine mesh crack patterns for different offset
parameter γ (a) γ = 0.75; (b) γ = 0.78; and (c) γ = 0.785.

Table 5.4 Crack propagation angles and timing data resulted
from linear complete enriched formulation for the Guo’s
experiment

Mesh Angles(◦) Propagation Time (µs)Initial( θ1) Final( θ2)
Coarse mesh 14.5 9.0 331.6
Medium mesh 11.5 13.2 309.7
Fine mesh 10.8 12.5 295.4
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Figure 5.26 The geometry and boundary conditions of Guo’s
experiment and finite element meshes used in numerical simulations;
(a) experiment set-up; (b) a coarse mesh of around 1100 elements;
(c) a medium mesh of around 7700 elements and (d) a fine mesh of
around 17200 elements.

Figure 5.27 The crack patterns for different meshes: (a)
coarse mesh (b) medium mesh and (c) fine mesh.
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Figure 5.28 The crack evolution for coarse mesh: (a)t = 369.41µs;
(b)t = 486.89µs; (c)t = 606.82µs; and (d) t = 697.72µs.

Figure 5.29 The crack evolution for medium mesh: (a)t = 370.43µs;
(b)t = 531.64µs; (c)t = 607.73µs; and (d) t = 742µs.

Figure 5.30 The crack evolution for fine mesh: (a)t = 346.58µs;
(b)t = 531µs; (c)t = 616µs; and (d) t = 618µs.
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Figure 5.31 Crack length history and crack speeds
obtained in numerical simulations for different meshes
compared to the Guo’s experiment: (a) the crack length
histories; and (b) the crack speeds.

Figure 5.32 The crack patterns using linear complete
enriched formulation for different meshes: (a) coarse mesh
(b) medium mesh and (c) fine mesh.
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Figure 5.33 The crack evolution resulted from linear complete
enriched formulations for coarse mesh: (a)t = 331.16µs;
(b)t = 467.04µs; (c)t = 611.79µs; and (d) t = 785.72µs.

Figure 5.34 The crack evolution resulted from linear complete
enriched formulations for medium mesh: (a)t = 311.36µs;
(b)t = 461.87µs; (c)t = 606.87µs; and (d) t = 838.92µs.
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Figure 5.35 The crack evolution resulted from linear complete
enriched formulation for fine mesh: (a)t = 327.57µs; (b)t = 499µs;
(c)t = 612.02µs; and (d) t = 773.68µs.

Figure 5.36 Crack length history and crack speeds
obtained from linear complete enriched formulation for
different meshes compared to the Guo’s experiment: (a)
the crack length histories; and (b) the crack speeds.
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Chapter 6

Conclusion and Future Research

New XFEM-based methods within an explicit time integration scheme have been

developed for modeling strong discontinuities in two dimensional planes, which we

referred to as non-nodal XFEM methods. In this method, by assigning the enrich-

ment parameters to a set of non-nodal points on the interface and defining their

associated enrichment functions such that they satisfy C0 continuity condition, the

discontinuity is modeled within an element without involving element nodes. This

feature, in contrast to conventional XFEM, enhances the approximation capabilities

to reproduce discontinuous functions and at the same time the polynomial functions

required for finite element completeness. Furthermore, excluding the element nodes

from construction of enrichment functions dramatically simplifies the XFEM imple-

mentation.

A linear complete enriched element within the framework of non-nodal XFEM

has been developed for three-node triangular elements. Linear completeness is a cru-

cial criterion for the convergence of finite element methods. In order to reproduce

independent linear functions on either side of the interface, a new set of enrichment

functions and parameters were introduced for weak discontinuities in a function. Fur-

thermore, a general methodology for constructing the enrichment functions within the

framework of non-nodal XFEM for arbitrary discontinuous functions within multi-

node elements were introduced.

It was demonstrated through three examples that the proposed method can

be successfully used in dynamic crack modeling. In the Kalthoff’s experiment, this
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method resulted very similar crack patterns independent of the mesh. Furthermore,

the crack tip speed discrepancy was negligible with mesh refinement, in contrast to

conventional XFEM. For mixed-mode crack propagation in three-point-bend speci-

mens, we analyzed the experiments conducted by John and Shah [18] and Guo et al.

[17]. In these sequence of numerical experiments, the overall crack propagation paths

agree quite well with those values determined in the experiments. However, the crack

propagation angles and the crack tip speeds approached to the experiments by mesh

refinement. The numerical examples demonstrate that the method can be used for

modeling discontinuities with the added advantage of excluding the element nodes

from extended interpolation.

Finally, we would like to point out that the proposed methodology may be

used to model different discontinuities and also include higher order polynomials in

extended part of interpolation.

The following areas are worthwhile for further study: Menouillard et al. [23]

showed that to efficiently solve the system of equations, a lumped mass matrix can

be derived by making the kinetic energy for basic motions to be exact. However,

their method can be only used for unshifted enrichment functions, which are rarely

used in FE programs. Since in the non-nodal XFEM, the enrichment parameters

are physically-based quantities, the Menouillard method could potentially be used to

introduced a lumped mass matrix.

This dissertation proposed a new XFEM to remove the difficulties arisen by

standard XFEM in modeling the strong discontinuities, i.e. cracks. Additional dis-

continuities could be considered in future models such as crack-tip modeling, weak

discontinuities in bi-material elements, strains localizations by shear bands and crack

branching. Lastly, the non-nodal XFEM formulation could be further generalized for

higher-order elements.
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Appendix A

Reproducing Conditions of Non-Nodal XFEM in

Two Dimensions

We want to show that the extended approximation in Equation (2.2) can reproduce

the linear fields with identical normal at both sides of the interface as given in the

following
θ+(X, Y ) = α0 + λ1X + λ2Y

θ−(X, Y ) = β0 + λ1X + λ2Y
(A.1)

where θ is the scalar field with a strong discontinuity along a straight line as demon-

strated in Figure 2.2. In Equation (A.1), the identical normal to the fields can be

verified as

n+ = n− = ∇θ+

‖∇θ+‖
= ∇θ−

‖∇θ−‖
= 1√

λ2
1 + λ2

2

 λ1

λ2

 (A.2)

The nodal values for the linear displacement in Equation (A.1) are given by

θ1 = α0 + λ1X1 + λ2Y1

θ2 = β0 + λ1X2 + λ2Y2

θ3 = β0 + λ1X3 + λ2Y3

JθK1 = α0 − β0

JθK2 = α0 − β0

⇒



θ1

θ2

θ3

JθK1

JθK2



=



+1 0 X1 Y1

0 +1 X2 Y2

0 +1 X3 Y3

+1 −1 0 0

+1 −1 0 0





α0

β0

λ1

λ2


(A.3)
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The XFEM approximation can be written in matrix format as follows

 θ+

θ−

 =

 N
′
1 N

′
2 N

′
3 Ψ+

1 Ψ+
2

N
′
1 N

′
2 N

′
3 Ψ−1 Ψ−2





θ1

θ2

θ3

JθK1

JθK2


(A.4)

Substituting nodal values in Equation (A.3) into Equation (A.4) will result in

 θ+

θ−

 =

 N
′
1 N

′
2 N

′
3 N4Q

4 N4Q
3

N
′
1 N

′
2 N

′
3 −N

4Q
1 −N4Q

2





+1 0 X1 Y1

0 +1 X2 Y2

0 +1 X3 Y3

+1 −1 0 0

+1 −1 0 0





α0

β0

λ1

λ2


=

=


4∑
I=1

N4Q
I 0

3∑
I=1

N
′
IXI

3∑
I=1

N
′
IYI

0
4∑
I=1

N4Q
I

3∑
I=1

N
′
IXI

3∑
I=1

N
′
IYI





α0

β0

λ1

λ2


=

=

 α0 + λ1X + λ2Y

β0 + λ1X + λ2Y


(A.5)

where the second equation is obtained by considering the key equations of the isopara-

metric shape functions given by
4∑
I=1

N4Q
I = 1,

3∑
I=1

N
′
I = 1 and Equation (2.6).
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Appendix B

Mapping Among Physical, Parent and Duffy’s

Coordinates

A triple mapping among physical Cartesian coordinate system, triangular parent

domain and Duffy’s rectangular parent domain have been illustrated in Figure B.1.

Node number 1 plotted in red is considered the node that mapped to an edge in Duffy’s

domain. Using Mapping 3 which maps the Duffy’s rectangular parent coordinates to

Figure B.1 Mapping among different
coordinate systems: (a) physical coordinates;
(b) parent coordintes; and (c) Duffy’s
coordinate.
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triangular parent coordinates we can obtain

ξ = N
′
1 × 1 +N

′
2 × 0 +N

′
3 × 0

η = N
′
1 × 0 +N

′
2 × 1 +N

′
3 × 0

(B.1)

Using Equation (2.6), Equation (B.1) is rewritten by

ξ = 0.5(1 + ξ
′)

η = 0.25(1− ξ′)(1 + η
′)

(B.2)
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Appendix C

Representation of a Crack with Non-Nodal

Enrichment Parameters in One Dimension

Considering the displacement jump JuK at the point of discontinuity shown in Figure

C.1(a) as the enrichment parameter, Equation (2.1) will be rewritten as

u(X, t) =
2∑
I=1

NI(X)uI(t) + Ψ(X)JuKX=Xc (C.1)

Note that since there is only one discontinuity point in one-dimensional crack, the

index J has been omitted from enrich part. Substituting the Heaviside step function

into Equation (2.17) we will have

Ψ+ = N1

Ψ− = −N2

(C.2)

This enrichment function is illustrated in Figure C.1(b).

Similar to Appendix A, it can be shown that the interpolation in Equation

(C.1) can reproduce a displacement field including two parallel lines on both side of

the crack which can be expressed as

u+(X) = α0 + λX

u−(X) = β0 + λX
(C.3)
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Figure C.1 Strong discontinuity in one dimension: (a) The
representation of a discontinuity in a one-dimensional crack model;
and (b) One-dimensional crack enrichment function.
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Appendix D

reproducing conditions of leaner complete

non-nodal xfem in one dimension

We want to show that the extended approximation in Equation (3.2) can reproduce

independent linear fields at both sides of the interface as given in the following

θ+(X) = α0 + α1X

θ−(X) = β0 + β1X
(D.1)

where θ is the scalar field with strong and weak discontinuities along a straight line

as demonstrated in Figure 3.2(a). The nodal values for the linear displacement in

Equation (D.1) are given by

θ1 = β0 + β1X1

θ2 = α0 + α1X2

JθK = α0 + α1X
c − β0 − β1X

c

JLe∇θK = Le(α1 − β1)

(D.2)

The above nodal values can be rearranged in a matrix format as

θ1

θ2

JθK

JLe∇θK1


=



0 0 1 X1

0 X2 0 0

1 Xc −1 −Xc

0 Le 0 −Le





α0

α1

β0

β1


(D.3)
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The XFEM approximation can be also written in matrix format as follows

 θ+

θ−

 =

 N1 N2 N1 −sN1

N1 N2 −N2 −(1− s)N2





θ1

θ2

JθK

JLe∇θK


(D.4)

Substituting nodal values in Equation (D.3) into Equation (D.4) will result in

 θ+

θ−

 =

 N1 N2 N1 −sN1

N1 N2 −N2 −(1− s)N2





0 0 1 X1

0 X2 0 0

1 Xc −1 −Xc

0 Le 0 −Le





α0

α1

β0

β1


=

=


2∑
I=1

NI

2∑
I=1

NIXI 0 0

0 0
2∑
I=1

NI

2∑
I=1

NIXI





α0

α1

β0

β1


=

=

 α0 + α1X

β0 + β1X


(D.5)

where the second equation is obtained by considering the key equations of the isopara-

metric shape functions given by
2∑
I=1

NI = 1 and
2∑
I=1

NIXI = X
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Appendix E

reproducing conditions of linear complete

non-nodal xfem in two dimensions

Let us consider two independent linear fields for the crack position given in Figure

3.4(a) as
θ+(X, Y ) = α0 + α1X + α2Y

θ−(X, Y ) = β0 + β1X + β2Y
(E.1)

We want to show that such independent linear functions at both sides of the crack can

be reproduced by substituting the nodal and enriched variables in the interpolation

given in Equation (3.6). The nodal values for the linear displacement in Equation

(E.1) are given by

θ1 = α0 + α1X1 + α2Y1

θ2 = α0 + α1X2 + α2Y2

θ3 = α0 + α1X3 + α2Y3

JθK1 = JθKX=Xc
1

= α0 + α1X
c
1 + α2Y

c
1 − β0 − β1X

c
1 − β2Y

c
1

JLc
1∇θ.ec

1K1 = JLc
1∇θ.ec

1KX=Xc
1

= (α1 − β1)(Xc
1 −Xc

3) + (α2 − β2)(Y c
1 − Y c

3 )

JθK2 = JθKX=Xc
2 = α0 + α1X

c
2 + α2Y

c
2 − β0 − β1X

c
2 − β2Y

c
2

JLc
2∇θ.ec

2K2 = JLc
2∇θ.ec

2KX=Xc
2

= (α1 − β1)(Xc
1 −Xc

2) + (α2 − β2)(Y c
1 − Y c

2 )
(E.2)
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The above nodal values can be rearranged in a matrix format as

θ1

θ2

θ3

JθK1

JLc
1∇θ.ec

1K1

JθK2

JLc
2∇θ.ec

2K2



=



1 X1 Y1 0 0 0

0 0 0 1 X2 Y2

0 0 0 1 X3 Y3

1 Xc
1 Y c

1 −1 −Xc
1 −Y c

1

0 Xc
1 −Xc

3 Y c
1 − Y c

3 0 −Xc
1 +Xc

3 −Y c
1 + Y c

3

1 Xc
2 Y c

2 −1 −Xc
2 −Y c

2

0 Xc
1 −Xc

2 Y c
1 − Y c

2 0 −Xc
1 +Xc

2 −Y c
1 + Y c

2





α0

α1

α2

β0

β1

β2


(E.3)

where we have used

ec
1 = 1

Lc
1

 X1 −X3

Y1 − Y3

 ec
2 = 1

Lc
2

 X1 −X2

Y1 − Y2

 (E.4)

The XFEM approximation can be written in matrix format as follows

 θ+

θ−

 =

 N
′
1 N

′
2 N

′
3 Ψu+

1 Ψ∇u+
1 Ψu+

2 Ψ∇u+
2

N
′
1 N

′
2 N

′
3 Ψu−

1 Ψ∇u−
1 Ψu−

2 Ψ∇u−
2





θ1

θ2

θ3

JθK1

JLc
1∇θ.ec

1K1

JθK2

JLc
2∇θ.ec

2K2



(E.5)
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Substituting the unknowns in Equation (E.3) into Equation (E.5) will result in θ+

θ−

 =

 N
′
1 N

′
2 N

′
3 Ψu+

1 Ψ∇u+
1 Ψu+

2 Ψ∇u+
2

N
′
1 N

′
2 N

′
3 Ψu−

1 Ψ∇u−
1 Ψu−

2 Ψ∇u−
2

×

1 X1 Y1 0 0 0

0 0 0 1 X2 Y2

0 0 0 1 X3 Y3

1 Xc
1 Y c

1 −1 −Xc
1 −Y c

1

0 Xc
1 −Xc

3 Y c
1 − Y c

3 0 −Xc
1 +Xc

3 −Y c
1 + Y c

3

1 Xc
2 Y c

2 −1 −Xc
2 −Y c

2

0 Xc
1 −Xc

2 Y c
1 − Y c

2 0 −Xc
1 +Xc

2 −Y c
1 + Y c

2





α0

α1

α2

β0

β1

β2



=

=
3∑
I=1

N
′
I

 1 XI YI 0 0 0

0 0 0 1 XI YI





α0

α1

α2

β0

β1

β2



=

=

 α0 + α1X + α2Y

β0 + β1X + β2Y


(E.6)

where we have used the key equations of the isoparametric shape functions. Further-

more, we have extensively used the side-splitter theorem to substitute the parameters

s1 and s2. Figure E.1 illustrates two different triangles for the computation of s1 that

leads to two different equations.
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Figure E.1 Application of side-splitter theorem for the
computations of s1; the red triangle gives s1 = (Y c

1 − Y3)/(Y1 − Y3)
and the blue triangle gives s1 = (Xc

1 −X3)/(X1 −X3).
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