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Abstract

In this dissertation, I will discuss two results on the oriented diameter of graphs

with certain properties. In the first problem, I studied the oriented diameter of

a graph G. Erdős et al. in 1989 showed that for any graph with |V | = n and

δ(G) = δ the maximum the diameter could possibly be was 3 n
δ+1 . I considered whether

there exists an orientation on a given graph with |G| = n and δ(G) = δ that has a

small diameter. Bau and Dankelmann (2015) showed that there is an orientation of

diameter 11 n
δ+1 +O(1), and showed that there is a graph which the best orientation

admitted is 3 n
δ+1 + O(1). It was left as an open question whether the factor of 11 in

the first result could be reduced to 3. The result above was improved to 7 n
δ+1 +O(1)

by Surmacs (2017) and I will present a proof of a further improvement of this bound

to 5 n
δ−1 +O(1). It remains open whether 3 is the best answer.

In the second problem, I studied the oriented diameter of the complete graph

Kn with some edges removed. We will show that given Kn with n ≥ 5 and any

collection of edges E ′, with |E ′| = n − 5, that there is an orientation of this graph

with diameter 2. It remains a question how many edges we can remove to guarantee

larger diameters.
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Chapter 1

Background And Introduction

1.1 Quick Trips on Networks

Many real world objects can be described in terms of graph theory, as graphs are

essentially networks. An example of finding small distances in graphs is well known

as the “Six Degrees of Kevin Bacon” problem. In this example, one wishes to show

the the “distance” of any actor to Kevin Bacon is less than six. This can be described

as a network, with the actors as nodes, where connections are made between nodes

if the actors have participated in a movie together. Most actors are within 4 steps

of Kevin Bacon. For a more thorough investigation of this problem, see the work by

Collins and Chow (1998). This phenomenon, the “Small World Phenomenon” can

be detected in different types of networks, and consequently is well studied in the

area of Network Science. The internet (Albert, Jeong, and Barabási 1999; Barabási,

Albert, and Jeong 2000), social networks (Perliger and Pedahzur 2011; Ugander et

al. 2011; Myers et al. 2014), brain neural networks(Sporns et al. 2004), and protein-

protein interaction networks (Bork et al. 2004; Van Noort, Snel, and Huynen 2004)

are just a few examples. The study of these social networks has given rise to a better

understanding of terrorist networks (Perliger and Pedahzur 2011) and the spread of

disease(Klovdahl et al. 1994). Distance in a graph is also used to form the base of

Google’s Page Rank algorithm (Page et al. 1999), which decides the order in which

pages show up in a Google search. In this case, two pages are connected if there is a

link on one page that goes to the other page, and the number of clicks needed to reach
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one from the other represents the distance of two pages. The Page Rank algorithm

uses this parameter to decide in what order to show webpages to answer a user search.

Other examples of networks where it is important to have the diameter, i.e. the largest

distance within the network, to be small include transportation networks (Woolley-

Meza et al. 2011; Kurant and Thiran 2006) and computer networks (Pandurangan,

Raghavan, and Upfal 2003; Royer and Toh 1999).

In unoriented graphs one can traverse the connections between the vertices in any

directions, a model that is clearly not appropriate for all applications, including some

mentioned before. Oriented graphs have the direction of traverse specified on these

connections; and this changes the nature of the problem of finding the (oriented)

distance and diameter in a network. The question of whether a bridgeless unoriented

graph of small diameter has an orientation with small oriented diameter has been

thoroughly investigated (Chvátal and Thomassen 1978; Kwok, Liu, and West 2010;

Chung, Garey, and Tarjan 1985). Many results have also been found about the

oriented diameter of certain classes of graphs (Gutin 1994; Koh and Tan 1996a; Koh

and Tan 1996b; Šoltés 1986). For a relatively comprehensive look at problems about

the oriented diameter of a graph, the interested reader can consult a survey by Koh

and Tay (2002). More current results on the oriented diameter can be found in the

following papers (Fomin, Matamala, and Rapaport 2004; Gutin et al. 2002; Gutin

and Yeo 2002; Koh and Ng 2005; Lakshmi 2011; Lakshmi and Paulraja 2007; Lakshmi

and Paulraja 2009). A more thorough explanation of these results can be found in

Chapter 2.

1.2 Initial Definitions

Definition 1.1. We write f(x) = O(g(x)) if there is a positive real number M and

a a real number x0 such that

|f(x)| ≤M |g(x)| for all x ≥ x0.

2



Definition 1.2. Given a set A, let
(
A
k

)
denote all k element subsets of A.

Definition 1.3. Let G = (V,E) denote a finite graph with vertex set V and edge set

E ⊆
(
V
2

)
. Let us only consider graphs without loops and multiple edges.

By |G| we mean the order of G, |V (G)|. We sometimes will denote |G| = n and

|E| = m.

Definition 1.4. Let Kn denote the complete graph on n vertices. That is, a graph

with |G| = n and G = (V,
(
V
2

)
).

Notation 1.5. Given an integer k > 0 let [k] = {1, 2, . . . , k}.

Definition 1.6. Let M denote a perfect matching of a graph on 2n vertices. That

is M = ([2n], {{2i− 1, 2i}|i ∈ [n]}).

Definition 1.7. Given two graphs, G and H with V (H) ⊆ V (G), let G − H =

(V (G), E(G) \ E(H)).

Definition 1.8. Let Pn denote the path on n vertices.

Definition 1.9. Let Ka,b denote the complete bipartite graph with partite sets of

size a and b respectively.

Definition 1.10. Given G = (V,E), a subgraph H of G, denoted H ≤ G, is a graph

H = (V ′, E ′) for which V ′ ⊆ V and E ′ ⊆ E ∩
(
V ′

2

)
.

Definition 1.11. Given G = (V,E), we consider the complement of the graph G,

denoted G, as the graph G = (V,E). That is, every edge not in the original graph is in

the complement. Note that E(G)∩E(G) = ∅ and if |G| = n, Kn = (V,E(G)∪E(G)).

Definition 1.12. If G and H are graphs, then G∪H means the disjoint union of G

and H. The edgeless graph on n vertices is denoted by nk1.

3



Definition 1.13. Given G and G, it may be easier to consider these graphs as a

coloring of the edges of a graph with red and blue. With the red edges representing

G, R = G, and the blue edges as the complementary edges, B = G.

Definition 1.14. If W ⊆ V , then the red and blue subgraph induced by W in R

and B, respectively, is denoted by R[W ] and B[W ].

Definition 1.15. An orientation of the graph G, denoted −→G = (V,A) is a digraph

with the same vertex set as G, where the arc set A is obtained from E(G) by assigning

a single direction to an edge. If the edge e = uv is oriented from u to v, we will denote

this arc −→uv.

Notation 1.16. Given a path P = v0v1 . . . v`, we mean by −→P the directed path (or

the orientation of P ) with arcs −−→v0v1,
−−→v1v2, . . . ,

−−−→v`−1v`. If ei = vi−1vi, we may also use
−→
P = −−−−−−→e1e2 . . . e` for the same object.

Notation 1.17. If U and W are disjoint subsets of V then we indicate by U → W

that for all x ∈ U and y ∈ W that are adjacent in R we orient the edge xy as −→xy, i.e.,

from x to y. If U or W consist of a single vertex u or w, respectively then we write

u→ W instead of {u} → W , and similarly U → w and u→ w.

Definition 1.18. Given a graphG and an edge set E ′ ⊆ E, defineG\E ′ = (V,E\E ′),

let G \ e = (V,E \ {e}).

Definition 1.19. For a set A ⊆ V (G), the induced subgraph of G on the vertex set

A is denoted by G[A]. That is, G[A] = (A,
(
A
2

)
∩ E).

Definition 1.20. Given a graph G, we call vertices u and v such that u, v ∈ V (G)

adjacent if uv ∈ E(G). Given v ∈ V (G), the degree of v in G is the number of vertices

adjacent to v. We denote this deg(v).

Symbolically deg(v) = |{uv : u ∈ V (G), u 6= v, uv ∈ E(G)}|.

4



Definition 1.21. The minimum degree of a graph G is δ(G) = min{deg(v) : v ∈

V (G)}. If no ambiguity arises, we let δ(G) = δ.

Definition 1.22. The closed neighborhood of a vertex v, i.e., the set comprising v

and all its neighbors, is denoted NG[v]. The open neighborhood, i.e., just the set of

neighbors of v is denoted NG(v). We may also consider N [v] and N(v) if no ambiguity

arises.

Definition 1.23. Given a graph G and a set of vertices A ⊆ V (G) we let NG(A) =

∪v∈ANG(v) and analogously NG[A] = ∪v∈ANG[v]. Again, we can consider N [A] and

N(A) if no ambiguity arises.

Notation 1.24. Given a path Q = v0v1 . . . vk, we say Q has length `(Q) = k, so

`(Pn) = n− 1.

Definition 1.25. A walk on k vertices is a sequence of vertices in which each adjacent

pair of vertices is adjacent to each other in the graph. A walk is considered closed if

it starts and ends at the same vertex.

Definition 1.26. A cycle on n vertices, denoted Cn is a closed walk with no repeti-

tions of edges or vertices allowed.

Definition 1.27. We define the distance between u and v in a graph G or digraph
−→
G as the minimum number of edges or arcs on a path from u to v. We denote

this as ρG(u, v) or ρ−→
G

(u, v). If there does not exist a path from u to v, we say that

ρG(u, v) =∞ or ρ−→
G

(u, v) =∞.

Definition 1.28. The eccentricity of a vertex, denoted ε(v), is the maximum distance

from v to any other vertex. Symbolically ε(v) = max{ρG(v, u) : u ∈ V (G)} or

ε(v) = max{ρ−→
G

(v, u) : u ∈ V (G)}

Definition 1.29. A component of G is a maximal set of vertices A for which for all

u, v ∈ A, ρG(u, v) <∞.

5



Definition 1.30. A graph is connected if it is comprised of one component.

Definition 1.31. A bridge of a connected graph G is an edge whose removal from

E(G) disconnects G into two components.

Definition 1.32. A graph G is bridgeless if it is connected and there is no edge which

is a bridge.

Definition 1.33. We call the maximum of all distances between two vertices in a

graph or digraph of G the diameter of G, denoted diam(G) or diam(−→G). In symbolic

terms, diam(G) = max{ρG(u, v) : u, v ∈ V (G)} and diam(−→G) = max{ρ−→
G

(u, v) :

u, v ∈ V (−→G)}.

Remark 1.34. Note that diameter is related to eccentricity. In particular, diam(G) =

max{ε(v) : v ∈ V (G)} and diam(−→G) = max{ε(v) : v ∈ V (−→G)}.

Definition 1.35. If diam(G) <∞, we call G connected. If diam(−→G) <∞, then we

call −→G strongly connected.

Definition 1.36. We call the minimum of the eccentricities of v for all v ∈ G or

v ∈
−→
G the radius of G, denoted rad(G) or rad(−→G). In symbolic terms, rad(G) =

min{ε(v) : v ∈ G} and rad(−→G) = min{ε(v) : v ∈ V (−→G)}.

Definition 1.37. Given subgraphs H and H ′ for which H ≤ G, H ′ ≤ G and V (H) (

V (H ′) and strongly connected orientations −→H <
−→
H ′, we call

−→
H ′ an extension of the

orientation −→H .

Notation 1.38. Given H, H ′, and H ′′ with H,H ′, H ′′ ≤ G, A = V (H ′), B = V (H ′′),

A ⊆ V (H), and B ⊆ V (H), let

ρH(A,B) = min{ρH(a, b) : a ∈ A, b ∈ B} = ρH(H ′, H ′′) = ρH(A,H ′′) = ρH(H ′, B)

. If A = {v}, let ρH(v,B) = ρH(A,B). If B = {u}, consider an analogous definition.

6



Notation 1.39. Given H, H ′, and H ′′ with H,H ′, H ′′ ≤ G, A = V (H ′), B =

V (H ′′), A ⊆ V (H), and B ⊆ V (H), we define diamH(A,B) = max{ρH(u, v) : u ∈

A, v ∈ B} and consider similar definitions for diamH(H ′, B), diamH(A,H ′′), and

diamH(H ′, H ′′). If A = {v}, let diamH(v,B) = diamH(A,B). If B = {u}, consider

an analogous definition.

Remark 1.40. Note that in either of the previous definitions, we could replace H

with −→H .

Remark 1.41. Note that since the distance function is symmetric for undirected

graphs, we have ρG(A,B) = ρG(B,A). Note that it is not necessarily true that

ρ−→
G

(A,B) = ρ−→
G

(B,A). To see this consider the cycle on n vertices Cn and an oriented

cycle on n vertices with n ≥ 3

Definition 1.42. We define the oriented diameter of a graph G as the following:

−−−→diam(G) = min{diam(−→G) : −→G is strongly connected}.

1.3 Outline of Results

In the rest of this dissertation, I will focus on two main results, both pertaining to

the oriented diameter of graphs. The first problem investigates the oriented diameter

of a graph G with |G| = n and δ(G) = δ.

It was shown by Bau and Dankelmann (2015) that for all bridgeless graphs G

with |G| = n, δ(G) = δ, that

−−−→diam(G) ≤ 11 n

δ + 1 +O(1).

Bau and Dankelmann (2015) also showed that there is a construction of a bridge-

less graph G with |G| = n, δ(G) = δ, and

−−−→diam(G) ≥ 3 n

δ + 1 +O(1).
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This means that for all G with |G| = n, δ(G) = δ, we have that

3 n

δ + 1 +O(1) ≤ −−−→diam(G) ≤ 11 n

δ + 1 +O(1).

It was believed that 11 n
δ+1 +O(1) was not the best possible upper bound by Bau

and Dankelmann (2015). I had preliminary results that suggested an upper bound

of 9 n
δ−1 + O(1). I was writing up this proof when I discovered a paper by Surmacs

(2017) that improved the bound to 7 n
δ+1 +O(1). In Chapter 3 I will show a proof of

a new bound of 5 n
δ−1 +O(1). It is still an open problem what the constant factor on

the upper bound should be.

The second problem I will consider will be an investigation of the oriented diameter

of the complete graph Kn with some edges removed. We will show that given Kn ≥ 5

and any collection of edges E ′, with |E ′| = n− 5, that −−−→diam(Kn \ E ′) ≤ 2.
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Chapter 2

Previous Results on the Diameter of Graphs

2.1 The Oriented Diameter of Given Graphs

A classical result by Robbins (1939) states that every bridgeless graph has a strongly

connected orientation. This result unfortunately gives no information on distances in

this orientation. It may be advantageous to know the diameter of these orientations.

In particular it can help to know if there is a graph with a small orientation. The

minimum diameter over all orientations of a given graph is referred to as the oriented

diameter of a graph. A formal definition of this is given in Section 1.2.

The first natural question that was posed was whether a bridgeless graph of diam-

eter d has an orientation of small diameter was shown to be affirmative by Chvátal

and Thomassen (1978), who showed the following theorem.

Theorem 2.1. Given a bridgeless graph G for which diam(G) = d,

−−→diam(G) ≤ 2d2 + 2d.

Chvátal and Thomassen (1978) also showed that there exist graphs of diameter d

for which every orientation has diameter at least 1
2d

2 +d. This implies a gap between
1
2d

2 + d and 2d2 + 2d, and it is unknown for d ≥ 3 what the maximum oriented

diameter is.

Chvátal and Thomassen (1978) also showed that finding the oriented diameter of a

bridgeless graph is NP-complete. While this is unfortunate, algorithms can be found

that give approximate answers. A linear time algorithm showing that a bridgeless

9



graph of diameter d has a strongly connected orientation of diameter at most 8d2 +8d

was given by Chung, Garey, and Tarjan (1985).

Definition 2.2. A complete bipartite graph is a graph where given vertex sets V1, V2,

|V1| = n, |V2| = m, V1 ∩ V2 = ∅ and E = {v1v2 : v1 ∈ V1, v2 ∈ V2}, G = Kn,m =

(V1 ∪ V2, E).

Definition 2.3. A complete k-partite graph is a generalization of a complete bipartite

graph where V = V1 ∪ · · · ∪ Vk, Vi ∩ Vj = ∅ for i 6= j, and E = {uw : u ∈ Vi, w ∈

Vj, i 6= j}.

The oriented diameter of a complete bipartite graph was shown to be between

3 and 4 by Šoltés (1986). It was shown that complete k-partite graphs with k ≥ 3

always have an oriented diameter of between 2 and 3 in the following papers (Gutin

et al. 2002; Plesník 1985).

Definition 2.4. In an undirected graph G, a dominating set is a set of vertices

S ⊆ V (G) for which every vertex is in S or is adjacent to S.

Definition 2.5. The domination number of a graphG, denoted γ(G), is the minimum

cardinality of such a set S.

The domination number is another parameter of interest to those who study

oriented diameter. In particular, Campan, Truta, and Beckerich (2015) showed the

following theorem:

Theorem 2.6. Every bridgeless graph with domination number γ has an orientation

of diameter at most 9γ − 5.

This was improved in the following theorem by Laetsch and Kurz 2012:

Theorem 2.7. Every bridgeless graph with domination number γ has an orientation

of diameter at most d7γ+2
2 e.
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Definition 2.8. Given the problem of finding an orientation of small diameter, we call

an algorithm an (a, b) approximation algorithm, if for every graph G, the algorithm

outputs an orientation −→H of G for which

diam(−→H ) ≤ a ·
−−−→diam(G) + b.

Definition 2.9. Given a cycle C, a chord is an edge e for which both endpoints are

in C, yet the edge is not in C. A chordless or induced cycle in a graph G is a cycle of

length more than 3 which has no chord. A graph G is chordal if it has no chordless

cycles.

Fomin, Matamala, and Rapaport (2004) proved that there exists an approximation

algorithm for the problem of finding an orientation of small diameter of any chordal

graph.

Theorem 2.10. There is a linear time (2, 1)-approximation algorithm for finding the

oriented diameter on the class of chordal graph.

In particular Fomin, Matamala, and Rapaport (2004) proved the stronger result

below. The authors also proved that this was the best possible result by showing the

construction below.

Theorem 2.11. There is a linear-time algorithm such that, given a chordal graph G,

it computes an orientation −→G of G such that for all pairs of vertices u, v ∈ V (G),

ρ−→
G

(u, v) ≤ 2ρG(u, v) + 1.

Theorem 2.12. There exists a chordal graph Gn for which diam(Gn) = 2n + 1 and

diam(−→Gn) = 2diam(Gn) + 1 for every strongly connected orientation −→Gn of Gn.

More results on the oriented diameter of graphs can be found in the following

papers Gutin 1994; Gutin et al. 2002; Gutin and Yeo 2002; Koh and Ng 2005; Lakshmi

2011; Lakshmi and Paulraja 2007; Lakshmi and Paulraja 2009.
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Noticing that the complete graph, Kn, for n ≥ 5 admits an orientation of diameter

at most 2, the natural question of how many edges you can remove from the graph

and have that there still exists an orientation of diameter 2. We discuss this problem

in Chapter 4.

2.2 The Oriented Diameter of a Graph with Minimum Degree

Given a graph with large minimum degree, it would be expected that the oriented

diameter of the graph would be small, as large minimum degree means that a lot of

the vertices are connected to each other. A well known result by Erdős et al. 1989

shows that the diameter of a connected graph of order n and minimum degree δ is at

most 3 n
δ+1 + O(1). Note that this result is for the diameter of an unoriented graph.

We wish to consider results of similar form for oriented diameter. That is, we wish

to consider if given a graph G, there is an orientation of diameter c n
δ+1 +O(1).

A reminder that Bau and Dankelmann (2015) showed that there is an orientation

of diameter 11 n
δ+1 +O(1), and showed that there is a graph which the best orientation

admitted is 3 n
δ+1 + O(1). It was left as an open question whether the factor of 11 in

the first result could be reduced to 3.

The result above was improved to 7 n
δ+1 + O(1) by Surmacs (2017) and I will

present a proof in chapter 3 of a further improvement of this bound to 5 n
δ−1 +O(1).
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Chapter 3

The Oriented Diameter of a Graph with

Minimum Degree

In this chapter I will prove the following theorem:

Theorem 3.1. Given a graph G, with |G| = n and δ(G) = δ,

−−→diam(G) ≤ 5 n

δ − 1 +O(1).

The proof of this theorem is quite involved, so it is split into different sections.

Section 3.1 will introduce the requisite definitions and the main lemma we will need

to prove the theorem. This main lemma will be proved in two distinct stages, outlined

in sections 3.2 and 3.3. Finally, in section 3.4 we will prove the theorem using the

main lemma.

3.1 Introduction to the Main Lemma

Let H ≤ G, A ⊆ V (H) and δ(G) = δ.

Definition 3.2. Given A ⊆ V (G), call A a δ-set if |N [A]| ≥ (δ − 1)|A|.

Definition 3.3. Given H ≤ G and A ⊆ V (H), if

P1 A is a δ-set, and

P2 there exists an orientation −→H of H of diameter at most 5|A|.

we call (−→H,A) a target pair.
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Definition 3.4. Given a target pair (−→H1, A1), if there exists a vertex v of G with

ρ(v,H1) = 6, we call (−→H1, A1) an extendable target pair. We will denote by v6 a

vertex such that ρG(v6, H1) = 6, P = v0v1v2v3v4v5v6 is a shortest path from V (H) to

v6. We further let ei = vi−1vi. See 3.1 for an example of this labelling of edges and

vertices.

−→
H1 e1

v1

e2
v2

e3
v3 v5

e6
v4

e4 e5
v6

Figure 3.1 An example of an extendable target pair and a path of length 6.

Definition 3.5. We call (−→H2, A2) an extension of a target pair (−→H1, A1) if (−→H2, A2)

is a target pair itself, A2 ⊃ A1, and
−→
H2 is an extension of −→H1.

Definition 3.6. Let `i(a, b) = ρG\{e1,...,ei}(a, b).

Definition 3.7. If `i(vi, H1) < ∞, let Pi = vi,0vi,1 . . . vi,`i(vi,H1) be a shortest path

from vi to H1 in G \ {e1, . . . , ei}.

Remark 3.8. Notice that for k ≤ i, G \ {e1 . . . ek} ≤ G \ {e1 . . . ei}, which implies

`k(a, b) ≤ `i(a, b). We also have for all i that `i(vi, H1) ≥ ρ(vi, H1) = i.

See Figure 3.2 for an example of an extendable target pair (−→H1, A1) with three

vertices v1, v2 and v3 for which `1(v1, H1) = 2, `2(v2, H1) = 2, and `3(v3, H1) = 8 and

a labeling of the vertices on those paths.

Definition 3.9. Let j be the smallest index for vi ∈ V (P ) such that |NG[vi] ∩

NG[H1]| ≤ 2. Let s1 := vj.
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−→
H1

v1 = v1,0

v1,1

v2 = v2,0 = v3,6

v2,1 = v3,7

v3 = v3,0

v3,1

v3,2

v3,3

v3,4

v3,5

Figure 3.2 Labels of vertices on paths back to the original
graph.

Remark 3.10. Notice that 1 ≤ j ≤ 3, since for i ≥ 3, ρG(vi, H1) = i ≥ 3, so

NG[v3] ∩NG[H1] = ∅.

Consider Figure 3.3 for some examples of how j is found. Note that these examples

are drawn as if every path of length `i(vi, H1) is included in the figure.

Definition 3.11. Given an extendable target pair (−→H1, A1). If `j(s1, H1) ≥ 5, let s2

be the last vertex on the path Pj such that |N [s2] ∩N [s1]| ≥ 3. If `j(s1, H1) ≤ 4, let

s2 = vj,1.

Note that it is possible that s2 = s1, so s2 exists.

Definition 3.12. Let Lj := `j(vj, H1).

Lemma 3.13. Given a bridgeless graph G of minimum degree δ = δ(G), there exists

a target pair (−→H1, A1). Moreover, if (−→H1, A1) is an extendable target pair, then there

exists an extension (−→H2, A2) of (−→H1, A1).
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−→
H1

vj

−→
H1

vj

vj

−→
H1

−→
H1

vj

Figure 3.3 Examples of graphs with the first special vertex labelled.

Choose any vertex v ∈ G and let A1 = {v} and H = ({v}, ∅). Since deg(v) ≥ δ

we have |N [A1]| ≥ δ + 1 ≥ δ − 1, so property P1 holds. H1 has no edges that need

to be oriented, and −−−→diam(H) = 0 ≤ 5, hence property P2 holds. We now show that

given an extendable target pair, (−→H1, A1), we can find an extension to another target

pair (−→H2, A2). We will prove this in two stages with several lemmas.

3.2 Stage 1

Note that in all figures after Figure 3.5, the labelling of a vertex as a special vertex

of some kind may imply other edges and vertices exist in the graph. These may

sometimes be left out of a figure for simplicity even though they may still exist in the

underlying graph G.

Let (−→H1, A1) be an extendable target pair.

Lemma 3.14. `j(vj, H1) <∞.
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−→
H1

vj = s1vj = s1

−→
H1

vj,1 = s2

vj,1 = s2

vj = s1

vj,1 = s2

−→
H1

Figure 3.4 Examples of graphs with both the first and
second special vertex labelled where the length is less
than 4.

Proof. We first have that for 1 ≤ p < j, |NG[vp] ∩ NG[H1]| ≥ 3, so `p(vp, H1) ≤ 2

and any path of length `p(vp, H1) ≤ p + 1 from vp to H1 must be disjoint from

{ep+1, . . . , ej}. If such a path contained an edge eq ∈ {ep+1, . . . , ej} then such a path

would be a path of length at least q+ 1 ≥ p+ 2 ≥ 2. Hence `j(vp, H1) ≤ p+ 1 for all

p ∈ [j − 1].

Since G is bridgeless, G−ej contains a path from vj to V (H1)∪{v1, . . . , vj−1}. Let

Q be a shortest such path. Q does not contain any of the edges e1, . . . , ej−1. Hence Q

is a path in G−{e1, . . . , ej}. If Q ends in a vertex of H1, then `j(vj, H1) = `(Q) <∞.

If Q ends at vp, p ∈ {1, . . . , j−1}, then Q together with a shortest (vp, H1)-path form

a (vj, H1)-walk in G \ {e1, . . . , ej} of length at most `(Q) + p + 1. In both cases we

conclude that `j(vj, H1) <∞.

Lemma 3.15. Given an extendable target pair (−→H1, A), and a set A′ ⊆ V (G) \ A

such that |N [A′]| − |N [H1] ∩N [A′]| ≥ (δ − 1)|A′|, A ∪ A′ is a δ-set of G.

Proof. Let A ⊆ V (H1) with |N [A]| ≥ (δ − 1)|A|, A′ ⊆ V (G) \ A, and |N [A′]| −
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−→
H1

s2

vj = s1

−→
H1

vj = s1 = s2

s2

−→
H1

vj = s1

s2

vj = s1

−→
H1

vj = s1

s2
−→
H1

Figure 3.5 Examples of graphs with both the first and second special vertex
labelled where the length is greater than or equal to 4.

|N [A′] ∩N [H1]| ≥ (δ − 1)|A′|.

|N [A ∪ A′]| = |N [A] ∪N [A′]|

= |N [A]|+ |N [A′]| − |N [A] ∩N [A′]|

≥ |N [A]|+ |N [A′]| − |N [H1] ∩N [A′]|

≥ (δ − 1)|A|+ (δ − 1)|A′|

= (δ − 1)|A ∪ A′|.

This means that in any case where we want to extend a δ-set A to a new δ-set A′∪A

with A ∩ A′ = ∅ it is sufficient to prove that |N [A′]| − |N [H1] ∩N [A′]| ≥ (δ − 1)|A′|

18



for it to be a δ-set.

Definition 3.16. Let V ′ = V (H2) \ V (H1).

Lemma 3.17. Given H1 ≤ G, a strong orientation −→H1, and
−→
H2, an extension of −→H1,

diam(−→H2) ≤ max{diam−→
H2

(−→H1, V
′), diam−→

H2
(V ′,−→H1), diam−→H2

(V ′, V ′), diam(−→H1)}.

Proof. Since −→H1 is a strongly connected orientation and V (H2) = V (H1) ∪ V ′

diam(−→H2) = max{ρ−→
H2

(u, v) : u, v ∈ V (−→H2)}

= max{max{ρ−→
H2

(u, v) : u ∈ V (−→H1), v ∈ V ′},

max{ρ−→
H2

(u, v) : u ∈ V ′, v ∈ V (−→H1)},

max{ρ−→
H2

(u, v) : u ∈ V ′, v ∈ V ′},

max{ρ−→
H2

(u, v) : u ∈ V (−→H1), v ∈ V (−→H1)}}

≤ max{diam−→
H2

(u, v), diam−→
H2

(V ′,−→H1), diam−→H2
(u, v), diam(−→H1)}.

Lemma 3.18. Given a graph H1 with a strongly connected orientation −→H1, and an

extension −→H2 of −→H1 such that E(−→H2) \E(−→H1) constitutes a trail of length q that starts

and ends in V (H1), diam(−→H2) ≤ diam(−→H1) + q − 1.

Proof. Let V ′ = V (H2) \ V (H1).

Notice that the following inequalities hold:

diam−→
H2

(−→H1, V
′) ≤ diam(−→H1) + (q − 1)

diam−→
H2

(V ′,−→H1) ≤ diam(−→H1) + (q − 1)

diam−→
H2

(−→H1,
−→
H1) ≤ diam(−→H1)

diam−→
H2

(V ′, V ′) ≤ diam(−→H1) + (q − 1).

So by Lemma 3.17 we find that diam(−→H2) ≤ diam(−→H1) + q − 1.

Recall s1 := vj, and if `j(vj, H1) ≥ 5, then s2 is the last vertex on the path Pj

such that |N [s2] ∩N [s1]| ≥ 3. If `j(vj, H1) ≤ 4, then s2 = vj,1.
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Lemma 3.19. Let (−→H1, A1) be an extendable target pair, k = b `j(s2,H)−1
3 c, A′ =

{vj,Lj−3s|s ∈ [k]} ∪ {vj}, and A2 = A′ ∪ A1. Then A2 is a δ-set.

Proof. Let (−→H1, A1) be an extendable target pair, k = b `j(s2,H)−1
3 c,

A′ = ⋃
s∈[k]{vj,Lj−3s} ∪ {vj}, and A2 = A1 ∪ A′.

If k = 0, A′ = {vj}, so |N [A′]| ≥ δ+1. By the definition of vj, |N [H1]∩N [A′]| ≤ 2.

Hence, |N [A′]| − |N [H] ∩N [A′]| ≥ (δ − 1)|A′|, so by Lemma 3.15, A2 is a δ-set.

If k > 0, let A′ = ⋃
s∈[k]{vj,`−3s}∪{vj}. For s ∈ [k]\{1}, and 0 < p < j there must

be no edges vj,Lj−3svp. If there were such an edge, then this edge vj,`−3svp together

with Pp would form a (vj,` − 3s,H)-path Q of length at most 3 in G − {e1, . . . , ej},

and since s > 1, the (vj,Lj−3s, H)-section of Pj has length at least six. Hence Pj would

not be a shortest (vj, H)-path in G− {e1, . . . , ej}, a contradiction.

For all s, t ∈ [k], s 6= t, `j(vj,Lj−3s, vj,Lj−3t) ≥ 3, since Pj is a shortest (vj, H) path.

Hence, N [vj, ` − 3s], s ∈ [k] are pairwise disjoint. Notice that N [vj,Lj−3] ∩ N [A1] ⊆

{v1}. If there were another vertex, there would be a length 2 path edge disjoint

from e1 . . . ej from vj,Lj−3 to H a contradiction to the definition of Pj. Notice that

N [vj,Lj−3] ∩ N [vj] ⊆ {vj−1} for a similar reason. By our arguments above |N [A′]| ≥

|⋃a∈A′ N [a]\{vj−1}| ≥ |A′|(δ+ 1)− 1. Since N [vj,Lj(vj ,H)−3]∩N [A1] ⊆ {v1}, |N [H]∩

N [A′]| ≤ |N [vj] ∩ V (H)| ≤ 2 and either {v1} ⊆ N [vj] ∩N [H], or N [vj] ∩N [H] = ∅.

Since |A′| ≥ k + 1 ≥ 2, |N [A′]| − |N [H] ∩ N [A′]| ≥ (δ + 1)|A′| − 3 ≥ (δ − 1)|A′|, so

by Lemma 3.15, A2 is a δ-set in G.

See Figure 3.6 to see an example of this with k > 0. In this figure, dashed lines

represent edges that do not exist in the graph. Note that A′ is comprised of the

vertices that are represented as diamonds.

Lemma 3.20. If `j(vj, H1) ≥ 6, `j(s2, H1) ≥ 4.

Proof. Let `j(vj, H1) ≥ 6. This implies `j(vj, vj,3) ≥ 3. Note that if j ≥ 2 and

vj,3 = vj−1, then `j(vj−1, H1) ≥ 3. This implies that |N [vj−1] ∩ N [H1]| ≤ 2, a
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−→
H1

vj

s2

Figure 3.6 An example of a long path and the possible
connections.

contradiction to the definition of vj, so vj−1 6= vj,3. If there was a vertex v 6= vj−1

such that v ∈ N [vj,3]∩N [vj], then `j(vj,3, vj) = 2, a contradiction to the definition of

Pj, so N [vj,3]∩N [vj] ⊆ {vj−1}. Hence, |N [vj,3]∩N [vj]| ≤ 1. Hence, s2 ∈ {vj, vj,1, vj,2},

which implies `j(s2, H1) ≥ `j(vj,2, H1) = `j(vj, H1)− 2 ≥ 4.

Lemma 3.21. Given an extendable target pair (−→H1, A1), if j + Lj ≤ 6, there exists

an extension (−→H2, A2) of (−→H1, A1).

Proof. Let j + Lj ≤ 6. Let A2 = A1 ∪ {vj}, and
−→
H2 = −→H1 ∪ {−−−−→e1 . . . ej} ∪

−→
Pj.

By Lemma 3.19, Property P1 holds for A2. Since the edges we added to −→H1 to

get −→H2 make a directed trail from −→H1 to −→H1 of length at most 6, we have by Lemma

3.18

diam(−→H2) ≤ diam(−→H1) + (6)− 1 = diam(−→H1) + 5.
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Since |A2 \ A1| = 1

diam(−→H2) ≤ diam(−→H1) + 5 ≤ 5|A1|+ 5 = 5|A2|.

Hence, property P2 holds.

See Figure 3.7 for examples of orientations in this case. We again represent as

diamonds any vertex which is in A′.

−→
H1

vj vj

−→
H1

vj

−→
H1

vj

−→
H1

Figure 3.7 Examples of extensions with a short directed trails
and one special vertex added.

Lemma 3.22. Given an extendable target pair (−→H1, A1), if `j(s2, H1) ≥ 4, there exists

an extension (−→H2, A2) of (−→H1, A1).

Proof. Let `j(s2, H1) ≥ 4, and k = b `j(s2,H1)−1
3 c. Note that k ≥ b `j(s2,H1)−1

3 c ≥

b4−1
3 c ≥ 1. Let A2 = A1 ∪

⋃
p∈[k]{vj,Lj−3p} ∪ {vj}. By Lemma 3.19, and since j ≤ 3,

A2 satisfies PropertyP1. Since s2 is the first vertex on Pj for which |N [vj]∩N [s2]| ≤ 2,

we have that 1 ≤ `j(vj, s2) ≤ 3.

Let −→H2 = −→H1∪−−−−−−→e1e2 . . . ej ∪
−→
Pj. Note that −−−−−−→e1e2 . . . ej ∪

−→
Pj is a trail of length at most

j + 3 + 3(k + 1). By Lemma 3.18 and since j ≤ 3,

diam(−→H2) ≤ diam(−→H1 ∪ −−−−−−→e1e2 . . . ej ∪
−→
Pj)
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≤ diam(−→H1) + j + 3 + 3(k + 1)− 1

≤ diam(−→H1) + 3(k + 1) + 7.

Noticing that |A2| − |A1| = (k + 2) ≥ 2,

diam(−→H2) ≤ diam(−→H1) + 3(k + 1) + 7

≤ 5|A1|+ 3(k + 2) + 4

≤ 5|A1|+ 3(|A2 \ A1|) + 2(|A2 \ A1|)

≤ 5|A1|+ 5|A2 \ A1|

≤ 5|A2|.

Hence, property P2 holds.

See Figure 3.8 for some examples of orientations of this case. Again, the vertices

that are represented by diamonds are added to A′.

−→
H1

vj vj

−→
H1

s2
s2

Figure 3.8 Examples of extensions with a long paths back to the
original subgraph and two or more special vertices added.
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Theorem 3.23. Given an extendable target pair (−→H1, A1), assume that one of the

following holds:

1. j = 1,

2. j = 2 and Lj 6= 5,

3. j = 2, Lj = 5, and `j(s2, H1) ≥ 4

4. j = 3, Lj /∈ {4, 5}, or

5. j = 3, Lj ∈ {4, 5}, and `j(s2, H1) ≥ 4.

Then there exists an extension (−→H2, A2) of (−→H1, A1).

Proof. Case 1: j = 1

If Lj ≤ 5 use Lemma 3.21 to extend the target pair (−→H1, A1) to the target pair

(−→H2, A2). If Lj ≥ 6, use Lemmas 3.20 and 3.22 to extend the target pair (−→H1, A1)

to the target pair (−→H2, A2). By Lemma 3.14, Lj < ∞, hence we have considered all

cases where j = 1.

Case 2: j = 2 and and Lj 6= 5,

If Lj ≤ 4 use Lemma 3.21 to extend the target pair (−→H1, A1) to the target pair

(−→H2, A2). If Lj ≥ 6, use Lemmas 3.20 and 3.22 to extend the target pair (−→H1, A1) to

the target pair (−→H2, A2). By Lemma 3.14 we find that Lj <∞.

Case 3: j = 2, Lj = 5, and `j(s2, H1) ≥ 4

Use Lemma 3.22 to extend the target pair (−→H1, A1) to the target pair (−→H2, A2).

Case 4: j = 3, Lj /∈ {4, 5}

If Lj ≤ 3 use Lemma 3.21 to extend the target pair (−→H1, A1) to the target pair

(−→H2, A2). If Lj ≥ 6 use Lemmas 3.20 and 3.22 to extend the target pair (−→H1, A1) to

the target pair (−→H2, A2). By Lemma 3.14 we find that Lj < ∞. So we are only left

to consider the case of 4 ≤ Lj ≤ 5.

Case 5: j = 3, Lj ∈ {4, 5}, and `j(s2, H1) ≥ 4
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If `j(s2, H1) ≥ 4, use Lemma 3.22 to extend the target pair (−→H1, A1) to the target

pair (−→H2, A2).

The only cases left to prove in Stage II are:

1. j = 2, `j(vj, H1) = 5 and `j(s2, H1) ≤ 3, or

2. j = 3, 4 ≤ `j(vj, H1) ≤ 5 and `j(s2, H1) = 3.

Note that if `j(vj, H1) = 5, since N |[s2] ∩N [s1]| ≥ 3, we have that `j(s1, s2) ≤ 2,

so `j(s2, H1) ≥ `j(s1, H1) − `j(s1, s2) ≥ 3. So `j(s2, H1) = 3. So in the case that

j = 2, `j(vj, H1) = 5 and `j(s2, H1) ≤ 3, we may assume `j(s2, H1) = 3.

3.3 Stage 2

For Stage II, assume that one of the following hold:

Q1 j = 2, `j(vj, H1) = 5 and `j(s2, H1) = 3, or

Q2 j = 3, 4 ≤ `j(vj, H1) ≤ 5 and `j(s2, H1) = 3.

−→
H1

vj = s1 vj

−→
H1

s2 s2

Figure 3.9 Examples of the structures we will consider in Stage 2.
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If there is a path of length 2 between s1 and s2 that includes ej+1, redefine Pj :=

vjvj+1s2 ∪ Pj[s2 . . . vj,Lj
], even if s1s2 ∈ E(G). Notice that this increases `(Pj) by at

most 1.

Definition 3.24. Let
−→
H ′1 be the extension of −→H1 defined by

−→
H ′1 := −→H1∪{−−−−−−→e1, . . . , ej}∪

−→
Pj. Define v′0 = vj, v′1 = vj+1, . . . ,v′6−j = v6. Let e′i = v′i−1v

′
i for i = 1, 2, . . . , 6 − j.

Let `′i(a, b) = ρG\{e′
1,...,e

′
i}(a, b). Let L

′
i = `′i(v′i, H ′1). If L′i <∞, let P ′i = v′i,0v

′
i,1 . . . v

′
i,Li

be a shortest path from v′i to H ′1 in G \ {e′1, . . . , e′i}. Given an extendable target

pair (−→H1, A1) and the extension of −→H1 to −→H1
′, call (

−→
H ′1, A1) an augmented extendable

target pair.

The labeling does not necessarily imply the existence of other vertices in these

figures. In Figure 3.10 you will find an example of an augmented extendable target

pair. In this figure labels will imply the existence of other vertices for simplicity.

Consider Figure 3.11 for examples of how the vertex v′m is defined. Here we have

added all the possible necessary vertices for v′1, v′2, . . . , v′m to make the definitions

more clear.

−→
H1

vj = s1 vj

−→
H1

s2 s2

Figure 3.10 Example of augmented extendable target pairs.

Definition 3.25. Let m ∈ {1, 2, . . . , 6− j} be the smallest value for which |N [v′m]∩

N [s1]| ≤ 2 and |N [v′m] ∩ N [s2]| ≤ 2. Since ρ(s1, H1) = j ≤ 3 and ρ(s2, H) ≤
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−→
H1

vj = s1 = v′0

s2

v′1 v′2 = v′m v′3

v′1 v′3 = v′m

−→
H1

vj = s1 = v′0

s2

v′2

Figure 3.11 Examples giving the definition of the second special path
vertex in Stage 2.

`j(s2, H1) ≤ 3, we have by ρ(v′6−j, H1) = 6 and the triangle inequality that

ρG(v′6−j, {s1, s2}) ≥ 3.

So there exists such an m with this property. A similar proof to that of Lemma 3.14

shows that L′m <∞.

Definition 3.26. Let the vertex s3 := v′m,t be defined as the first vertex on P ′m for

which `′m(v′m, s3) ≥ 3 and either:

1. |N [s3] ∩N [s2]| ≥ 3, or

2. |N [s3] ∩N [s1]| ≥ 3.

If such a vertex does not exist, let t = L′m.
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Lemma 3.27. Given an augmented extendable target pair (−→H1
′, A1) and

q = b
`′m(v′m, v′m,t)− 1

3 c

,

1. if q ≥ 1, let A′ = {vj, v′m} ∪
⋃
s∈[q] v

′
m,3s,

2. if q = 0 and L′m ≤ 3, let A′ = {vj, v′m},

3. if q = 0 and 4 ≤ L′m ≤ 5, and |N [s3] ∩N [s2]| ≥ 3 and |N [s3] ∩N [s1]| ≥ 3, let

A′ = {vj, v′m},

4. if q = 0 and 4 ≤ L′m ≤ 5, `j+m(s3, H1) ≤ 2, let A′ = {vj, v′m}, and

5. if q = 0 and 4 ≤ L′m ≤ 5, `j+m(s3, H1) ≥ 3 and there exists sl ∈ {s1, s2} for

which |N [s3] ∩N [sl]| ≤ 2, let A′ = {sl, v′m, s3}.

In all cases A2 := A′ ∪ A1 is a δ-set.

Proof. Let (−→H1
′, A1) be an augmented extendable target pair and q = b `

′
m(v′

m,v
′
m,t)−1

3 c.

Case 1: q ≥ 1.

Then A′ = {vj, v′m} ∪
⋃
s∈[q]{v′m,3s}.

Claim 1: |N [A′] ∩N [H1]| ≤ 2.

Since j + m ≥ 3, N [v′m] ∩ N [H1] = ∅. Since j ∈ {2, 3} and `j(vj, H1) ≥ 4, we

have that |N [vj] ∩ N [H1]| ≤ 1. Also, for any c < q, N [v′m,3c] ∩ N [H1] = ∅. If not,

`′m(v′m, H ′1) ≤ 3c + 3 ≤ 3q, a contradiction to the fact that 3q < `′m(v′m, s3). Also,

N [v′m,3q] ∩ N [H1] ⊆ {v1}, otherwise `′m(v′m,3q, H ′1) ≤ 2, and t = 3q, a contradiction.

Hence, |N [A′] ∩N [H1]| ≤ 2.

To consider |N [A′]| we will count the number of times a vertex shows up in the

pairwise intersection of any v, w ∈ A′ and subtract this from (δ+1)|A′|. The pairwise

intersections are described in the following claim.
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Claim 2: Let x 6= y ∈ A′.

(a) If {x, y} 6= {vj, v′m}, {vj, v′m,3q}, {v′m, v′m,3q′}, then

N [x] ∩N [y] = ∅.

(b) If {x, y} is one of {v′m, v′m,3q}, {vj, v′m}, or {vj, v′m,3q}, then

N [v′m] ∩N [v′m,3q] ⊆


∅ if m = 1

{v′m−1} if m ≥ 2,

|N [vj] ∩N [v′m]]| ≤


2 if m ≤ 2

0 if m ≥ 3,

|N [vj] ∩N [v′m,3q]| ≤ 2.

Considering case (a), we find that for all c, d ∈ [q], c 6= d, `′m(v′m,3c, v′m,3d) ≥ 3, since

`(P ′m) = L′m. Hence for all c ∈ [q], N [v′m,3c] are all pairwise disjoint. For c ∈ [q − 1],

|N [v′m,3c] ∩ N [v′m]| = ∅, since otherwise either `′m(v′m,3c, v′m) = 2 a contradiction to

the definition of v′m,3c or v′i ∈ N [v′m,3c] ∩ N [v′m] for some i such that 1 ≤ i < m in

which case L′m ≤ 3c + 2 < 3q a contradiction. A similar argument shows that the

intersection N [v′m,3c] ∩N [vj] is empty for c < q.

Considering case (b), first we will consider N [v′m]∩N [v′m,3q]. If there exists a vertex

v ∈ V (H ′1) such that v ∈ N [v′m] ∩ N [v′m,3q], then `′m(v′m, H ′1) ≤ 4 a contradiction. If

there exists a vertex v /∈ V (P ′m) ∪ V (H ′1) such that v ∈ N [v′m] ∩ N [v′m,3q], then

`′m(v′m, v′m,3q) ≤ 2 a contradiction to the definition of v′m,3q. Hence we find that if m =

1, then N [v′m]∩N [v′m,3q] = ∅. If m ≥ 2, and there exists a vertex v ∈ N [v′m]∩N [v′m,3q]

such that v ∈ V (P ′m) \ (V (H ′1)∪{v′m, v′m−1}), then we must have that m ≥ 3 and this

implies that `(v′m, v) = 1 a contradiction to the fact that v 6= v′m−1.

It remains to consider N [vj] ∩N [v′m] and N [vj] ∩N [v′m,3q].

For N [vj]∩N [v′m], if m ≥ 3, since ρG(vj, v′m) = m, we have N [vj]∩N [v′m] = ∅. If

m ≤ 2, by the definition ofm we have |N [v′m]∩N [vj]| ≤ 2. IfN [vj]∩N [v′m,3q] > 2, then
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q would be a vertex such that |N [s3] ∩N [s1]| ≥ 3, yet q < t which is a contradiction

to the definition of t in Definition 3.26.

Claim 3: |N [A′]| ≥ (δ + 1)|A′| − 4.

It follows from Claim 2 by summation over all 2-element subsets of A′ that

∑
{x,y}⊆A′

|N [x] ∩N [y]| ≤ 5

. In order to prove Claim 3 it suffices to show that this inequality is strict since

then in ∑
x∈A′ |N [x]| at most four vertices were counted twice, and so |N [A′]| =

|⋃x∈A′ N [x]| ≥ ∑x∈A′ |N [x]| − 4 ≥ (δ + 1)|A′| − 4.

Now suppose to the contrary that ∑{x,y}⊆A′ |N [x] ∩ N [y]| = 5. Then the first and

second part of Claim 2(b) yield that firstly m ≥ 2 and N [vj] ∩ N [v′m,3q] = {v′m−1},

and secondly m ≤ 2. Hence m = 2 and so v′1 ∈ N [vj] ∩ N [v′m] ∩ N [v′m,3q]. But then

v′1 is counted three times in ∑x∈A′ |N [x]|, while two other vertices are counted twice,

which leads to an overcount of four. Hence |N [A′]| ≥ (δ + 1)|A′| − 4 follows.

Claim 4: A2 is a δ-set.

We find that |N [A′]| − |N [H1] ∩ N [A′]| ≥ (δ + 1)(q + 2) − 6 ≥ (δ − 1)(q + 2) ≥

(δ − 1)|A′|. So by Lemma 3.15 A2 is a δ-set in G.

Case 2: q = 0, conditions (2,3,4)

Assume that q = 0 and conditions (2), (3) or (4) of Lemma 3.27 apply, so A′ =

{vj, v′m}. By definition of v′m we have that |N [v′m]∩N [vj]| ≤ 2 so |N [A′]| ≥ 2(δ+1)−2.

Since we have that 2 ≤ j ≤ 3, because all other cases were considered in Stage I,

j + m ≥ 3, which implies N [v′m] ∩ N [H1] = ∅. We also have by definition of vj

that |N [vj] ∩ N [H1]| ≤ 2. Hence we find that |N [A′] ∩ N [H1]| ≤ 2. So we find that

|N [A′]| − |N [H1]∩N [A′]| ≥ 2(δ+ 1)− 4 ≥ (δ− 1)2 ≥ (δ− 1)|A′|. So by Lemma 3.15

A2 is a δ-set in G.

Case 3: q = 0, condition (5).
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In order to bound |N [A′]| from below, we consider the intersections N [v′m]∩N [s3],

N [v′m] ∩N [s`] and N [s`] ∩N [s3].

Claim 5: N [v′m] ∩N [s3] ⊆ {v′m−1}.

If there were an x 6= v′m−1 such that x ∈ N [v′m] ∩N [s3], then we would have that

`′m(v′m, s3) ≤ 2 a contradiction to the definition of s3, so N [v′m] ∩N [s3] ⊆ {v′m−1}.

Claim 6 (a): If ` = 1 then s` = vj and

|N [vj] ∩N [v′m]| ≤


2 if m ≤ 2,

0 if m ≥ 3,

|N [vj] ∩N [s3]| ≤ 2.

(b) If ` = 2 then

N [v′m] ∩N [s2] ⊆ {v′m−1},

|N [s2] ∩N [s3]| ≤ 2.

(a) Since ` = 1 and since by condition (5) of this lemma we have |N [vj]∩N [s3]| =

|N [s1] ∩ N [s3]| ≤ 2. We have N [vj] ∩ N [v′m] = ∅ if m ≥ 3 since otherwise, if vj and

v′m had a common neighbor, we would have m = ρG(vj, v′m) ≤ 2, a contradiction. If

m ≤ 2 then |N [vj] ∩N [v′m]| ≤ 2 by the definition of v′m.

(b) Since ` = 2 and by condition (5) of this lemma we have |N [s2] ∩N [s3]| ≤ 2. The

inclusion N [v′m] ∩ N [s2] ⊆ {v′m−1} follows from the fact that if there were a vertex

x 6= v′m−1 with x ∈ N [v′m] ∩N [s2] then `′m(v′m, s2) ≤ 2, a contradiction to L′m ≥ 4.

Claim 7: |N [A′]| ≥ |A′|(δ + 1)− 4.

It follows from Claim 6 by summation over the three 2-element subsets of A′ that∑
{x,y}⊆A′ |N [x] ∩ N [y]| ≤ 5. In order to prove Claim 7 if suffices to show that this

inequality is strict since then in∑x∈A′ |N [x]| at most four vertices were counted twice,

31



and so |N [A′]| = |⋃x∈A′ N [x]| ≥ ∑x∈A′ |N [x]| − 4 ≥ (δ + 1)|A′| − 4.

Now suppose to the contrary that ∑{x,y}⊆A′ |N [x] ∩ N [y]| = 5. Then ` = 1, so

A′ = {vj, v′m, s3}. By Claim 6(a) we have firstly m ≤ 2 and so v′1 ∈ N [vj] ∩ N [v′m],

and secondly N [v′m]∩N [s3] = {v′m−1}. This impliesm = 2 and so v′1 ∈ N [vj]∩N [v′m]∩

N [v′m,3q]. But then v′1 is counted three times in ∑x∈A′ |N [x]|, while two other vertices

are counted twice, which leads to an overcount of four. Hence |N [A′]| ≥ (δ+1)|A′|−4

follows.

Claim 8: |N [A′] ∩N [H1]| ≤ 3.

If ` = 1, then A′ = {vj, v′m, s3}, and if ` = 2, then A′ = {s2, v
′
m, s3}. For each of the

vertices in A′ we consider its joint closed neighborhood with H1.

We have N [v′m] ∩ N [H1] = ∅ since ρ(v′m, H1) = j + m ≥ 3. We also have

N [s3]∩N [H1] ⊆ {v1} since by condition (v) of this lemma we have `j+m(s3, H1) ≥ 3,

and if there were a vertex x ∈ N [s3]∩N [H1] with x 6= v1, then x would give rise to a

path of length at most two from s3 to H1 not containing any edge of P , a contradic-

tion. We also find similarly that N [s2] ∩ N [H1] ⊆ {v1}, since by conditions Q1 and

Q2 we have `j(s2, H1) = 3.

In the case that ` = 1, by the definition of vj we have |N [vj] ∩ N [H1]| ≤ 2. If

N [vj]∩N [H1] = ∅, we find that N [{vj, v′m, s3}]∩N [H1] ⊆ {v1}. If N [vj]∩N [H1] 6= ∅,

then j = 2, so {v1} ⊆ N [vj] ∩ N [H1], so N [{vj, v′m, s3}] ∩ N [H1] = N [vj] ∩ N [H1],

hence |N [vj]∩N [H1]| = |N [{vj, v′m, s3}]∩N [H1]| ≤ 2. In the case that ` = 2, we find

that N [{s2, v
′
m, s3}] ∩N [H1] ⊆ {v1}.

From the above we conclude that |N [A′] ∩ N [H1]| ≤ 2 in both cases ` = 1 and

` = 2.
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Claim 9: A2 is a δ-set

Since |A′| = 3, we find |N [A′]| ≥ (δ + 1)|A′| − 4 and |N [A′]| − |N [H1] ∩N [A′]| ≥

(δ + 1)|A′| − 6 ≥ (δ − 1)|A′|. By Lemma 3.15, A2 is a δ-set in G.

We will consider the following cases given an augmented extendable target pair

(−→H1
′, A1). These cases will be considered in order, so going to the next item implies

none of the previous items occur.

• s3 6= v′m,L′
m
or

• s3 = v′m,L′
m
and s3 ∈ {s2, s1, vj,1} or

• s3 = v′m,L′
m
and s3 ∈ V (Pj) \ {s2, s1, vj,1}

• s3 = v′m,L′
m
and s3 ∈ {v1, . . . , vj−1}

• s3 = v′m,L′
m
and s3 ∈ V (H1)

We will first prove some properties about some subgraphs that arise in the fol-

lowing cases:

• s3 6= v′m,L′
m
or

• s3 = v′m,L′
m
and s3 ∈ {s2, s1, vj,1}

Note that if we have that s3 6= v′m,L′
m
, this implies that either

• |N [s3] ∩N [s1]| ≥ 3 and |N [s3] ∩N [s2]| ≥ 3 or

• |N [s3] ∩N [s1]| ≥ 3 and |N [s3] ∩N [s2]| ≤ 2 or

• |N [s3] ∩N [s2]| ≥ 3 and |N [s3] ∩N [s1]| ≤ 2.

Lemma 3.28. If either

1. s3 = v′m,L′
m
and s3 ∈ {s1, s2} ∪ {vj,1} or
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2. |N [s3] ∩N [s1]| ≥ 3 and |N [s3] ∩N [s2]| ≥ 3,

there exists an oriented subgraph −→W that is well defined given −→H1
′ and has the following

properties:

1. ρ−→
W

(s3, s1) ≤ 4,

2. ρ−→
W

(s3, s2) ≤ 2,

3. ρ−→
W

(s1, s2) ≤ 2,

4. diam(−→W, s2) ≤ 3,

5. diam(−→W ) ≤ 6,

6. diam(s1,
−→
W ) ≤ 5, and

7. diam(−→W, s1) ≤ 5.

If either

1. |N [s3] ∩N [s1]| ≥ 3 and |N [s3] ∩N [s2]| ≤ 2 or

2. |N [s3] ∩N [s2]| ≥ 3 and |N [s3] ∩N [s1]| ≤ 2,

there exists an oriented subgraph −→W that is well defined given −→H1
′ and has the following

properties:

1. ρ−→
W

(s3, s1) ≤ 4,

2. ρ−→
W

(s3, s2) ≤ 4,

3. ρ−→
W

(s1, s2) ≤ 2,

4. diam(−→W, s2) ≤ 5,

5. diam(−→W ) ≤ 6,
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6. diam(s1,
−→
W ) ≤ 5, and

7. diam(−→W, s1) ≤ 5.

Notice that when pairwise comparing each of these parameters, the maximum in

the second case can only increase by 2 when comparing to the maximum in the first

case.

Proof. Since |N [s2] ∩ N [s1]| ≥ 3, we find that there exist at least two edge disjoint

paths of length at most 2 from s1 to s2, call them R1 and R2. If one of these is a

subgraph of Pj, let it be R1 and orient it as −→R1 = −−−−→s1 . . . s2, and orient −→R2 = −−−−→s2 . . . s1.

If one of the two includes ej (note that since R1 is edge disjoint from e1, . . . , ej this

can’t be R1) label it as
−→
R2 = −−−−→s2 . . . s1, and orient the other one −→R1 = −−−−→s1 . . . s2 if it is

not already. We will eventually orient P as −→P , so the only conflicts will be if one of

the paths includes the edge ej or ej+1. Consider the following cases:

1. Let s3 = v′m,L′
m

and s3 ∈ {s1, s2, vj,1}. In this case, let W := W1. Notice by

examination that all of the properties hold.

s1

s2

s3

s1

s2

s1 = s3

s2 = s3

Figure 3.12 Example of widgets in H1 case 1.

2. Let s3 6= v′m,L′
m
and |N [s3] ∩N [s1]| ≥ 3 and |N [s3] ∩N [s2]| ≥ 3.
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Notice that in this case, because W1 is a cycle of order 2, 3 or 4 that |(N(s1) ∩

N(s2) ∩ V (W1)) ∩N(s3)| ≤ 2.

2.1. Let |(N(s1)∩N(s2)∩V (W1))∩N(s3)| = 2, then there exist vertices u, v ∈ W1

such that W1 = −−−−−→s2vs1us2, and s3u, s3v ∈ E(G). Orient s3u as −→s3u, and orient

s3v as −→vs3. Notice by examination that the properties hold.

s1

s2

v u
s3

Figure 3.13 Example of a widget in
case 2.1.

2.2. Let |(N(s1)∩N(s2)∩V (W1))∩N(s3)| ≤ 1. Since |N [s3]∩N [s1]| ≥ 3, we must

have that either s3s1 ∈ E(G), s3vj+1 ∈ E(G), or if not, there exists some path

of length two from s1 to s3 which is edge disjoint from P ∪W1∪Pj[{s2 . . . vj,`j ].

If s1s3 ∈ E(G) orient this edge as −−→s1s3. If s3s1 /∈ E(G), then we must have

that either s3vj+1 ∈ E(G) or there exists some path of length two from s1 to

s3 which is edge disjoint from P ∪W1 ∪ Pj[{s2 . . . vj,`j ]. In either case orient

such a path as −−−−→s1 . . . s3. Since |N [s3] ∩ N [s2]| ≥ 3, either s3s2 ∈ E(G), in

which case orient this edge as −−→s3s2. Or if s3s2 /∈ E(G), then we must have

that there exists some path of length two from s2 to s3 which is edge disjoint

from P ∪W1 ∪ Pj[{s2 . . . vj,`j ]. Orient such a path as −−−−→s3 . . . s2.
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Let W := −→W1 ∪ −−−−−−−−−→s1 . . . s3 . . . s2, where −−−−−−−−−→s1 . . . s3 . . . s2 are the paths we found in

the two cases above. Notice by examination that the properties hold.

s1

s2

v u
s3

Figure 3.14 Example of a widget in case 2.2.

3. Let s3 6= v′m and s3 6= v′m,L′
m
and either

• |N [s3] ∩N [s1]| ≥ 3 and |N [s3] ∩N [s2]| ≤ 2 or

• |N [s3] ∩N [s2]| ≥ 3 and |N [s3] ∩N [s1]| ≤ 2

3.1. Let |(N(s1) ∩ N(s2) ∩ V (W1)) ∩ N(s3)| = 2, do the same as in the case of

|N [s3] ∩ N [s1]| ≥ 3 and |N [s3] ∩ N [s2]| ≥ 3. See Figure 3.13 for an example

of this case.

3.2. Let |(N(s1) ∩N(s2) ∩ V (W1)) ∩N(s3)| ≤ 1, we split into two cases:

3.2.1. Let |N [s3] ∩N [s1]| ≥ 3 and |N [s3] ∩N [s2]| ≤ 2.

If {vj−1, vj+1} ⊆ N [s3] ∩ N [s1], then let W = W1 ∪ −−−−−−−−−−→s3vj−1vjvj+1s3.

Notice by examination that the properties hold. If vj−1 ∈ N [s3]∩N [s1]

and vj+1 /∈ N [s3]∩N [s1], since |(N(s1)∩N(s2)∩V (W1))∩N(s3)| ≤ 1,

there is a path edge disjoint from W1, ej, and ej+1 of length at most

2 from s1 to s3, call it R3. In this case, let W := W1 ∪ −−−−−→s3vj−1s1 ∪
−→
R3.
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Notice by examination that the properties hold. If vj+1 ∈ N [s3]∩N [s1]

and vj−1 /∈ N [s3]∩N [s1], since |(N(s1)∩N(s2)∩V (W1))∩N(s3)| ≤ 1,

there is a path edge disjoint from W1, ej, and ej+1 of length at most

2 from s3 to s1, call it R4. In this case, let W := W1 ∪ −−−−−→s3vj−1s1 ∪
−→
R4.

Notice by examination that the properties hold. If vj−1 /∈ N [s3]∩N [s1]

and vj+1 /∈ N [s3]∩N [s1], since |(N(s1)∩N(s2)∩V (W1))∩N(s3)| ≤ 1,

there are two paths edge disjoint from W1, ej, and ej+1 of length at

most 2 from s1 to s3, call them R5 and R6. Orient −→R5 = −−−−→s3 . . . s1 and
−→
R6 = −−−−→s1 . . . s3. In this case, let W := W1 ∪ −−−−−→s3vj−1s1 ∪

−→
R5 ∪

−→
R6. Notice

by examination that the properties hold.

3.2.2. Let |N [s3] ∩N [s2]| ≥ 3 and |N [s3] ∩N [s1]| ≤ 2.

Let s2 = vj,a. If vj,a+1 ∈ N [s3] ∩ N [s2], since |N [s3] ∩ N [s2]| ≥ 3 and

|(N(s1) ∩ N(s2) ∩ V (W1)) ∩ N(s3)| ≤ 1, there is a path of length at

most 2 from s3 to s2 that is edge disjoint from W1 and vj,avj,a+1, call

it R. Let −→W := −→W1 ∪ −−−−−−→s2vj,a+1s3 ∪
−→
R . Notice by examination that the

properties hold. If vj,a+1 /∈ N [s3]∩N [s2], since |N [s3]∩N [s2]| ≥ 3 and

|(N(s1) ∩N(s2) ∩ V (W1)) ∩N(s3)| ≤ 1, there are two paths of length

at most 2 from s3 to s2 that are edge disjoint from W1 and vj,avj,a+1,

call them R1 and R2. Orient −→R1 = −−−−→s2 . . . s3 and −→R2 = −−−−→s3 . . . s2.

Lemma 3.29. Given an augmented extendable target pair (
−→
H ′1, A1), if

1. s3 6= v′m,L′
m
or

2. s3 = v′m,L′
m
and s3 ∈ {s2, s1, vj,1}

then we can extend (−→H1, A1) to (−→H2, A2).
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s1

s2

v u
s3

Figure 3.15 Example of a widget in case
3.2.1.

s1

s2

v u
s3

Figure 3.16 Example of a widget in case
3.2.2.

Proof. Let −→Q2 = −→H1 ∪ −−−−−−→e1 . . . ej+m ∪
−−−−−−−−−−−−−→
Pj[s2vv,t+1 . . . vj,`j ] ∪

−−−−−−−−−−−−−−→
P ′m[vm,0 . . . vm,t−1s3] ∪

−→
W .

Where −→W is defined as in the lemma above. For 1 ≤ p < m, |N [v′p] ∩ N [s1]| ≥ 3,

so there exists a path P ′′p from v′p to
−→
H ′1 ∪

−→
W , of length at most two which is edge

disjoint from
−→
H ′1 ∪

−→
W , or there exists some edge not in

−→
H ′1 ∪

−→
W , call it v′pw such that

diam−→
Q2

(w, {s1, s2, s3}) = 1. Let −→H2 = −→Q2 ∪
−→
P ′′1 ∪ · · · ∪

−−−→
P ′′m−1 ∪

−→
W .
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Let V ′′m := −→H2 \ V (
−→
H ′1 ∪

−→
W ). Let V ′′j :=

−→
H ′1 \

−→
W . We have that L′m ≥ 1, so

`′m(v′m, s3) = 3q + r + 1, where q ≥ 0 and 0 ≤ r ≤ 2.

Let

1. s3 6= v′m and |N [s3] ∩N [s1]| ≥ 3 and |N [s3] ∩N [s2]| ≥ 3 or

2. s3 = v′m,L′
m
and s3 ∈ {s1, s2} ∪ {vj,1}

let A2 = {vj, v′m} ∪
⋃
s∈[q] v

′
m,3s. By lemma 3.27 we have that property P1 of 3.13

holds for A2.

Given the properties for the above cases in Lemma 3.28, we find the following

inequalities:

diam−→
H2

(V ′′j , V ′′m) ≤max{2 + diam(−→H1) + j +m+ 3q + 2,

2 + diam(−→H1) + j +m− 1 + 1}

≤10 + diam(−→H1) + 3q

diam−→
H2

(V ′′j , V ′′j ) ≤ diam(−→H1) + j + ρ−→
W

(s1, s2) + 2

≤ diam(−→H1) + 7

diam−→
H2

(V ′′m, V ′′j ) ≤ max{3q + 2 + 1 + ρ−→
W

(s3, s2) + 3 + j − 1,

2 + diam−→
W

({s3, s1}, s2) + 3 + diam(−→H1) + j − 1}

≤ diam(−→H1) + 10 + 3q

diam−→
H2

(V ′′m, V ′′m) ≤max{2 + diam−→
W

({s3, s1}, s1) +m− 1 + 1,

2 + diam−→
W

({s3, s1}, s1) +m+ 3q + 2,

3q + 2 + ρ−→
W

(s3, s1) +m− 1 + 1}

≤diam(−→H1) + 10 + 3q

diam−→
H2

(−→W,
−→
W ) ≤ 6

diam−→
H2

(−→W,V ′′j ) ≤ diam(−→W, s2) + 3 + diam(−→H1) + j − 1

≤ 10 + diam(−→H1)
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diam−→
H2

(V ′′j ,
−→
W ) ≤ 2 + diam(−→H1) + j + diam(s1,

−→
W )

≤ 10 + diam(−→H1)

diam−→
H2

(V ′′m,W ) ≤ max{3q + 2 + diam(−→W ), 2 + diam(−→W )}

≤ 3q + 7

diam−→
H2

(W,V ′′m) ≤ max{diam(−→W, s1) +m+ 3q + 1, diam(−→W, s1) +m+−1 + 1}

≤ 3q + 10.

Putting these inequalities together with Lemma 3.17, we find that in these cases

that diam(−→H2) ≤ diam(H1) + 3q + 10.

Noticing that |A2| − |A1| = (q + 2) ≥ 2, we find that:

diam(−→H2) ≤ diam(−→H1) + 3q + 10

≤ 5|A1|+ 3(q + 2) + 4

≤ 5|A1|+ 3(|A2 \ A1|) + 2(|A2 \ A1|)

≤ 5|A1|+ 5|A2 \ A1|

≤ 5|A2|.

Hence, property P2 of Lemma 3.13 holds.

See Figure 3.17 for an example of such an orientation that is of low diameter.

Here we represent all the possible subgraphs W that could be plugged in, with s1, s2

and s3 on the edge of the subgraph W .

Lemma 3.30. Given an augmented extendable target pair (
−→
H ′1, A1), if

s3 6= v′m,L′
m
and either

• |N [s3] ∩N [s1]| ≥ 3 and |N [s3] ∩N [s2]| ≤ 2 or

• |N [s3] ∩N [s2]| ≥ 3 and |N [s3] ∩N [s1]| ≤ 2,

then we can extend (−→H1, A1) to (−→H2, A2).
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−→
H1

W
s1

s2 s3

vj

v′m

Figure 3.17 An orientation of the edges in the extended orientation.

Proof. We consider a similar proof to 3.29, using the note that because in 3.28 we

noted that we only increased the maximum of any value by 2 in this case. Noting

that we only used one term from the properties lists in any of our calculations for

diam(−→H2), we notice that diam(−→H2) ≤ diam(−→H1) + 3q + 10. If q ≥ 1, let A2 remain

the same, and since (q + 2) ≥ 3 notice that 3(q + 2) + 6 ≤ 5(|A2 \ A1|). If q = 0,

add s3 to A2. By 3.27, we have that Property P1 of Lemma 3.13 still holds. Since

diam(−→H1) ≤ 12, |A2|− |A1| = 3, and 12 ≤ 5(|A2|− |A1|), property P2 of Lemma 3.13

holds.

Lemma 3.31. Given an augmented extendable target pair (
−→
H ′1, A1), if

• s3 = v′m,L′
m
and s3 ∈ V (Pj) \ {s2, s1, vj,1} or

• s3 = v′m,L′
m
and s3 ∈ {v1, . . . , vj−1} or

• s3 = v′m,L′
m
and s3 ∈ V (H1),

then we can extend (−→H1, A1) to a new target pair (−→H2, A2).

Proof. If s3 ∈ {v1, . . . , vj−1}, since |N [vi]∩N [H1]| ≥ 3, there exists a path Q of length

at most 2 from s3 to V (−→H1) edge disjoint from P . If s3 ∈ V (Pj) \ {s2, s1, vj,1}, then

let Q = s3 . . . vj,Lj
, where Q follows Pj. Note that Q is a path of length at most 2

from s3 to V (−→H1) which is edge disjoint from P .
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Let P ′′m := P ′m[{v′m, v′m,1, . . . , s3}] ∪Q.

Let A2 = A1∪{vj, vj+m}∪{v′m,3s|s ∈ [q]}. By Lemma 3.27 we have that property

P1 of 3.13 holds for A2.

Let −→H2 = −→H1 ∪−−−−−−→e1 . . . ej+m ∪
−→
P ′′m. Since we have q = b `

′
m(v′

m,s3)−1
3 c, this implies that

`′m(v′m, s3) ≤ 3q + 3.

Note that in all of these cases we add to −→H1 an oriented trail of length at most

(j+m) + `′m(v′m, s3) + `j+m(s3, H1) ≤ (j+m) + 3q+ 3 + 2 ≤ 6 + 3q+ 3 + 2 ≤ 3q+ 11.

By Lemma 3.18 we find the following:

diam(−→H2) ≤ diam(−→H1 ∪ −−−−−−−−→e1e2 . . . ej+m ∪
−→
P ′′m)

≤ diam(−→H1) + 3q + 11− 1

≤ diam(−→H1) + 3(q + 2) + 4.

Noticing that |A2| − |A1| = (q + 2) ≥ 2, we find that:

diam(−→H2) ≤diam(−→H1) + 3(q + 2) + 4

≤5|A1|+ 3(q + 2) + 4

≤5|A1|+ 3(|A2 \ A1|) + 2(|A2 \ A1|)

≤5|A1|+ 5|A2 \ A1|

≤5|A2|.

Hence, property P2 of Lemma 3.13 holds.

3.4 Proof of Theorem

First consider the following theorem by Chvatal and Thomassen (cite Chvatal and

Thomassen).

Theorem 3.32. Every bridgeless graph of radius r admits an orientation of radius

at most r2 + r.

43



Let rad(−→G) represent the radius of −→G . We will use this theorem with Lemma 3.13

to prove our theorem.

Theorem 3.33. Given G = (V,E), a bridgeless graph of order n and minimum

degree δ, we have that
−−→diam(G) ≤ 5 n

δ − 1 + 60.

Proof. In Lemma 3.13, we showed that there is target pair (−→H,A) such that ∀v ∈

V (G), ρG(v,H) ≤ 5.

Since A is a δ set, we have that |N [A]| ≥ (δ − 1)|A|, since N [A] ⊆ V (G), we find

that (δ − 1)|A| ≤ n, so |A| ≤ n
δ−1 . Hence,

−−−→diam(H) ≤ 5 n
δ−1 .

Contract V (H) to one vertex. Call this multi/loopy graph G∗. Theorem 3.32

shows that there is an orientation of G∗, −→G∗, such that rad(−→G∗) ≤ r2 + r. Since

rad(−→G∗) ≤ diam(−→G∗) ≤ 2rad(−→G∗, we have diam(−→G∗) ≤ 2(r2 + r). By expanding V (H)

we find that for two vertices in V (G) \ V (H), if in G∗, a shortest path between them

did not pass through V (H), then they are at most distance 2(r2 + r) apart. If the

shortest paths between them only pass through V (H), then they are at most distance
−−−→diam(H) + 2(r2 + r) = 5 n

δ−1 + 2(r2 + r). Since rad(G∗) ≤ 5, we find that:

−−−→diam(G) ≤ 5 n

δ − 1 + 60.
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Chapter 4

The Oriented Diameter of a Complete Graph

with Some Edges Removed

4.1 Introduction

In this section we relate the existence of an orientation of diameter two of graph

of given order to its size. Füredi et al. (1998) gave an asymptotically sharp lower

bound on the number of edges in a graph of given order that admits an orientation

of diameter two. The purpose of this section is to determine for every n ≥ 5 the

minimum value m(n) = |E(G)| such that every simple graph of order n = |G| and

size at least m(n) has an orientation of diameter two.

Proposition 4.1 (Koh and Tay 2002). For n ≥ 5, the graph obtained from a complete

graph on n− 1 vertices by adding a new vertex and edges joining it to three vertices

in the complete graph does not have an orientation of diameter two. Hence m(n) ≥(
n
2

)
− n+ 5 for n ≥ 5.

Conjecture 4.2 (Koh and Tay 2002). This construction is best possible, so m(n) =(
n
2

)
− n+ 5 for n ≥ 5.

For n ≥ 5, the graph Gn, obtained from a complete graph on n − 1 vertices by

adding a new vertex v and edges joining v to three vertices in the complete graph,

does not have an orientation of diameter two. Indeed, suppose to the contrary that

Gn has an orientation D of diameter two. Then v has either two in-neighbors and

one out-neighbor, or vice versa. We may assume the former. Let u be the out-
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neighbor of v in D. Since every vertex is at distance at most two from v, every vertex

in V (D) − {u, v} is adjacent from u. Hence, if x ∈ V (D) − {u, v} is a vertex not

adjacent to v in D, a shortest (x, u)-path goes through v and has thus length at least

three, a contradiction to D having diameter two. Hence Gn has no orientation of

diameter two. It follows that m(n) ≥ m(Gn) + 1 =
(
n
2

)
− n + 5 for n ≥ 5. This

was observed by Koh and Tay (2002), who conjectured that this construction is best

possible, and so m(n) =
(
n
2

)
− n + 5 for n ≥ 5. It is the aim of this paper to show

that this conjecture is true by proving the following theorem.

Theorem 4.3. Let G be a simple graph of order n, where n ≥ 5, and size at least(
n
2

)
− n+ 5. Then G has an orientation of diameter two.

Our proof of Theorem 4.3 consists of a sequence of Lemmas. An outline of the

proof is as follows. We suppose to the contrary that the theorem is false and that G is

a counterexample of minimum order and size. Our proof focuses on the complement

G of G, defined as the graph on the same vertex set as G, where two vertices are

adjacent in G if and only if they are not adjacent in G.

In Section 4.3 we give some sufficient conditions for graphs to have an orientation

of diameter two, and we present a list of several graphs that have an orientation of

diameter two. In Section 4.4 we present some useful properties of the graph G that

will be useful later; in particular we show that each component of G contains neither

three independent vertices nor two non-adjacent vertices that share more than one

neighbour. These results, together with some results in Section 4.5 on the components

of G that are trees, will be used in Section 4.6 to show that each component of G is

either a short path or one of four types of graphs. We show that the presence of any

of these four types of graphs either allows us to apply certain reductions to the graph

G to obtain a smaller counterexample G′, or that G is one of the graphs in the list

of graphs with an orientation of diameter two presented in Section 4.3, so G is not
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a counterexample. Finally, we conclude the proof by dealing with the case that all

components of G are trees.

4.2 Notation

All graphs and digraphs in this paper have neither loops nor multiple edges. Let G

be a graph of order n = n(G) and size m = m(G). We define the excess of G by

ex(G) = m(G) − n(G). We find it convenient to consider G and G as obtained by

colouring the edges of a complete graph on n vertices either red or blue, with the

edges of G being the red, and the edges of G as blue edges. Accordingly, we usually

denote G as R, and G as B. We denote the vertex set common to R and B by V . If

W ⊆ V , then the red and blue subgraph induced by W in R and B, respectively, is

denoted by R[W ] and B[W ].

Let u, v be vertices of a graph G or digraph D. If uv ∈ E(G) then we say that u

and v are adjacent in G and that u is a neighbor of v. The set of all neighbors of v

is the neighborhood of v in G, denoted by NG(v). The closed neighborhood NG[v] of

v in G is defined as NG(v) ∪ {v}. If −→uv is a directed edge of D, then we say that v is

an out-neighbor of u and that u is an in-neighbor of v. The degree of vertex v in G

is the number of neighbors of v, it is denoted by degG(v).

By Kn, Pn, Cn, and Ka,b we mean the complete graph on n vertices, the path on

n vertices, the cycle on n vertices, and the complete bipartite graph whose partite

sets have a and b vertices, respectively. If n is even, then Kn−M denotes a complete

graph of order n with a perfect matching removed. If G and H are graphs, then

G∪H means the disjoint union of G and H. If a is a positive integer, then aG means

the disjoint union of a copies of G, so the edgeless graph on n vertices is denoted by

nK1.

If U and W are disjoint subsets of V then we indicate by U → W that for all

x ∈ U and y ∈ W that are adjacent in R we orient the edge xy as −→xy, i.e., from x
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to y. If U or W consist of a single vertex u or w, respectively then we write u→ W

instead of {u} → W , and similarly U → w and u→ w.

If A,B are sets of vertices in H, then dH(A,B) is defined as minu∈A,v∈B dH(u, v),

and dH(u,B) and dH(A, v) are defined analogously.

As usual, [n] = {1, 2, 3, . . . , n} and for a set A and k ∈ N,
(
A
k

)
denotes the

collection of k-element subsets of A.

4.3 Some Sufficient Conditions for an Orientation of Diameter two

In this section we present some sufficient conditions for the existence of an orientation

of diameter two of a graph. Using these conditions we obtain a list of several graphs

that have an orientation of diameter two. This list will be used extensively in later

sections.

Definition 4.4. Let W ⊆ V . An orientation D of R[W ] is good if there exists a

partition of W into two sets U1 and V1, which we call the partition classes of W (or

of D), such that

(i) dD(x, y) ≤ 2 whenever x and y are both in U1 or both in V1,

If in addition

(ii) every vertex in U1 has an in-neighbor and an out-neighbor in V1 and vice versa,

then D is a non-trivial good orientation. If R[W ] has a (non-trivial) good orientation,

then we sometimes say simply that W has a (non-trivial) good orientation.

The following lemma is based on a construction of digraphs of diameter two with

no 2-cycles having close to the minimum number or edges by Füredi et al. (1998).

Lemma 4.5. Let a, b ∈ N with 2 ≤ a ≤ b ≤
(

a
ba/2c

)
. If R[W ] contains Ka,b as a span-

ning subgraph, then R[W ] has a non-trivial good orientation. If R[W ] is isomorphic

to K1,1, then R[W ] has a good orientation.

See Figure 4.1 for an example of an orientation of K4,6 using Lemma 4.5.
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x1

x2

x3

x4

y1

y2

y3

y4

y5

y6

Figure 4.1 A good orientation of K4,6 using
Lemma 4.5. Missing edges in Ka,b are oriented
from xi to yj.

Proof. Clearly it suffices to prove the lemma for the case that R[W ] is isomorphic to

Ka,b. Any orientation of K1,1 is vacuously good, so assume 2 ≤ a ≤ b.

Assume the vertices of the partite classes of Ka,b are x1, . . . , xa and y1, . . . , yb.

Let U1 = {x1, . . . , xa} and V1 = {y1, . . . , yb}. Let c = ba2c and consider an injection

f : [b] →
(

[a]
c

)
such that for i ∈ [a] ⊆ [b] we have f(i) = {i + 1, . . . , i + c} (where

numbers in the set are taken modulo a). Such an injection exists by the conditions

on a and b. Orient the edge yixj as −−→yixj if j ∈ f(i), and as −−→xiyi otherwise. For

i 6= k, i, k ∈ [b], both f(i) \ f(k) and f(k) \ f(i) are nonempty, ensuring a directed

path of length 2 in both directions between yi and yk. For 1 ≤ i < k ≤ a, let ` ∈ [a]
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such that ` ≡ k + c mod a, then we have that i ∈ f(i) \ f(k) an ` ∈ f(k) \ f(i),

which ensures a directed path of length 2 in both directions between xi and xk. Hence

condition (i) is satisfied.

Clearly every vertex yi ∈ V1 has ba2c in-neighbors and d
a
2e out-neighbors in U1. Every

vertex xi ∈ U1 is adjacent from yi and to yi−1. Hence condition (ii) is satisfied.

Definition 4.6. Given two complete graphsK` andKk with ` ≤ k. Label the vertices

of K` with [`] and the vertices of Kk with i′ where i ∈ [k]. We define K` �Kk as the

disjoint union of K` and Kk with the edges ii′ included for i ∈ [`].

See Figure 4.2 for an example of K3 �K5.

Figure 4.2 A drawing of K3 �K5.

Lemma 4.7. Let a, b ∈ N with 3 ≤ a ≤ b ≤ 2a. Assume R[W ] contains Ka,b as a

spanning subgraph with partite sets X and Y , B[X] ≤ Ka, and B[Y ] ≤ Ka �Kb−a,

then R[W ] has a non-trivial good orientation.

See Figure 4.3 for an example with B[V ] = K3 � K3 and an orientation of the

edges of R[V ].

See Figure 4.4 for an example of an orientation of the red graph associated with

B = K3 ∪K3 �K3.
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Figure 4.3 On the left, see a drawing of K3 �K3, on the right see
the orientation of K3 �K3 to be used in 4.7.

Proof. Assume 3 ≤ a ≤ b ≤ 2a and R[W ] contains Ka,b as a spanning subgraph with

partite sets A and B, R[X] ≤ Ka, and R[Y ] ≤ Ka � Kb−a. It suffices to prove the

lemma for the case that R[W ] is isomorphic to Ka,b, and R[Y ] = Ka �Kb−a. Label

the vertices of X as i ∈ [a]. Label a of the vertices in Y with i′ where i ∈ [a]. Label

the other b− a vertices in Y with i′′ where i ∈ [b− a].

For i ∈ [a] orient the edges ii′ as
−→
ii′ . For i, j ∈ [a] where i 6= j, orient the edges

ij′ as
−→
j′i. For i ∈ [b− a] orient the edges ii′′ as

−→
i′′i. For i, j ∈ [b− a] orient the edges

ij′′ as
−→
ij′′. For i, j ∈ [b − a] with i 6= j orient the edges i′′j′ as

−→
i′′j. Notice that the

oriented pairs within the vertex set Y are exactly a Ka �Kb−a.

Certainly all vertices in X have an in-neighbor and out-neighbor in Y and vice
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Figure 4.4 A good orientation using Lemma 4.7.
Missing edges in Ka,b are oriented from yi to xj.

versa. It is left to show that for any vertices v1, v2 ∈ X or v1, v2 ∈ Y that dD(v1, v2) ≤

2. Given two vertices i, j ∈ X with i 6= j, consider a path of length two along the

arcs
−→
ii′ and

−→
i′j. Given two vertices i′, j′ ∈ Y , consider the path of length two along

the arcs
−→
i′j and

−→
ji′. Given two vertices i′, j′′ ∈ Y , to get from i′ to j′′ consider the

path of length two along the arcs
−→
i′i and

−→
ij′′. To get from j′′ to i′ consider the path of

length one along the arc
−→
j′′i′. Hence the conditions for the existence of a non-trivial

good orientation hold.

Corollary 4.8. For a vertex set W ⊆ V , if B[W ] is a disoint union of paths, as long

as the components of B[W ] can be partitioned into sets X and Y such that |X| = a
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and |Y | = b for which 3 ≤ a ≤ b ≤ 2a, then R[W ] has a non-trivial good orientation.

Proof. Let B[W ] be the disjoint union of paths which can be partitioned into sets X

and Y such that |X| = a and |Y | = b for which 3 ≤ a ≤ b ≤ 2a. Notice that since we

have a partition of the components of B[W ], R[W ] has Ka,b as spanning subgraph

with partite sets X and Y . Also, note that B[X] ≤ Pa ≤ Ka and B[Y ] ≤ Pb ≤

Ka �Kb−a.

Lemma 4.9. If V can be partitioned into two disjoint sets W and Z so that ther is

no edge in B joining a vertex in W to a vertex in Z, R[W ] has a non-trivial good

orientation, and one of the following holds for Z:

(i) Z has a non-trivial good orientation, or

(ii) 2 ≤ |Z| ≤ 3 and the vertices in Z are isolated in B, or

(iii) |Z| = 2 and the two vertices of Z form a component of order 2 in B,

then R has an orientation of diameter 2.

Proof. (i) Let R[W ] and R[Z] be non-trivially well orientable. Let D1 be a non-trivial

good orientation of R[W ] with a corresponding partition of W into sets U1 and V1.

Let D2 be a non-trivial good orientation of R[Z] with a corresponding partition of

Z into sets U2 and V2. We assign the orientation U1 → U2, U2 → V1, V1 → V2, and

V2 → U1. We also include D1 and D2 in the orientation. It is easy to verify that this

orientation indeed has diameter 2.

(ii) Assume thatW has a non-trivial good orientation, and let Z = {y1, y2, . . . , yk},

with k = n− |W |, with 2 ≤ k ≤ 3. Let D1 be a non-trivial good orientation of R[W ]

with a corresponding partition of W into sets U1 and V1. For y1 orient U1 → y1 and

y1 → V1, and further orient {y2, y3, . . . , yk} → U1 and V1 → {y2, y3, . . . , yk}. Finally,

if k = 3 orient the edges in R[Z] to form a tournament of diameter two and if k = 2

orient the edge y1y2 arbitrarily. It is easy to verify that this orientation indeed has
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diameter two.

(iii) The proof is analogous to (i) and (ii) and thus omitted.

Lemma 4.10. The following graphs have an orientation of diameter two:

1. K5,

2. Kn −M ,

3. K4 ∪ 7K1,

4. DB4,3 ∪ 8K1,

5. DB4,2 ∪ 7K1,

6. DB4,1 ∪ 7K1,

7. DB3,3 ∪ 6K1 or DB3,3 ∪K2 ∪ 5K1,

8. SDB3,3 ∪ 6K1 or SDB3,3 ∪K2 ∪ 5K1,

9. DB3,2 ∪ aP1 ∪ bP2, with a, b ≥ 0 and a+ b = 5,

10. C5 ∪ aP1 ∪ bP2, with a, b ≥ 0 and a+ b = 5,

11. DB3,1 ∪ aP1 ∪ bP2, with a, b ≥ 0 and a+ b = 5,

12. K3 ∪ aP1 ∪ bP2, with a, b ≥ 0 and a+ b = 5, and

13. aP1 ∪ bP2 ∪ cP3 ∪ dP4, with a, b, c, d ≥ 0 and a+ b+ c+ d = 5.

Proof. For many of these graphs, we will find a partition of V two disjoint sets W

and Z so that ther is no edge in B joining a vertex in W to a vertex in Z for which

the conditions of Lemma 4.9 hold. Since R[W ] is non-trivially well orientable, let its

corresponding sets be U1 and V1. If R[Z] is similarly non-trivially well orientable,

let its corresponding sets be U2 and V2. In this case, we will notate this partition
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by (U2, V2, U1, V1). If R[Z] = 2K1 or R[Z] = P2, we will notate these partitions as

(K1, K1, U1, V1) and (P2, U1, V1) respectively. We will do case (4) in full detail.

1. Let R = K5. Label the vertices of K5 as {v1, v2, . . . , v5} and consider the

orientation −−→v1v2,
−−→v2v3,

−−→v3v4,
−−→v4v5,

−−→v5v1,
−−→v1v3,

−−→v3v5,
−−→v5v2,

−−→v2v4, and −−→v4v1. It is easy

to verify that this orientation has diameter two.

2. Let R = Kn −M with n even and n ≥ 6.

For n = 8, consider the partition (P2, P2, P2, P2), using Lemma 4.5 and Lemma

4.9 to find an orientation of diameter two. For n = 2k with k = 3 or k ≥ 5,

consider the partition (P2, bk−1
2 cP2, dk−1

2 eP2), using Lemma 4.5 and Lemma 4.9

to find an orientation of diameter two.

3. Let B = K4 ∪ 7K1. Consider the partition (K1, K1, K4, 5K1) and use Lemmas

4.5 and 4.9 to find an orientation of diameter two.

4. Let B = DB4,3 ∪ 8K1. Consider the partition (K1, K1, 6K1, DB4,3). Note

that n(DB4,3) = 7 and n(6K1) = 6. Since 6K1 and DB4,3 form a partition

into two independent graphs U1 and V1, with |U1| = a and |V1| = b, where

2 ≤ a ≤ b ≤
(
a
ba

2 c

)
, then the condition for Lemma 4.5 holds. Noticing that

U2 = K1 and V2 = K1 we find the conditions of Lemma 4.9 are satisfied, so

there exists an orientation of diameter two..

5. Let B = DB4,2 ∪ 7K1. Consider the partition (K1, K1, 5K1, DB4,2) and use

Lemmas 4.5 and 4.9 to find an orientation of diameter two.

6. Let B = DB4,1 ∪ 7K1. Consider the partition (K1, K1, 5K1, DB4,1) and use

Lemmas 4.5 and 4.9 to find an orientation of diameter two.

7. Let B = DB3,3 ∪ 6K1 or DB3,3 ∪K2 ∪ 5K1. Consider the partitions

(K1, K1, 4K1, DB3,3) or (K1, K1, 3K1 ∪K2, DB3,3) and use Lemmas 4.5 and 4.9

to find an orientation of diameter two.
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8. Let B = SDB3,3 ∪ 6K1 or SDB3,3 ∪K2 ∪ 5K1. Consider the partitions

(K1, K1, 4K1, SDB3,3) or (K1, K1, 3K1 ∪K2, SDB3,3) and use Lemmas 4.5 and

4.9 to find an orientation of diameter two.

9. Let B = DB3,2∪aP1∪bP2, with a, b ≥ 0 and a+b = 5. There must be two paths

of the same size, choose the pair of paths of shortest length and let them be Pi.

Let H be the union of the remaining three paths. Note that DB3,2 ≤ K3 �K2,

DB3,2 ≤ K4 �K1, and DB3,2 ≤ K5. Clearly, 3 ≤ n(H) ≤ 6. If 3 ≤ n(H) ≤ 5,

then consider the partition (Pi, Pi, H,DB3,2) and use Lemmas 4.7 and 4.9 to

find an orientation of diameter two. If n(H) = 6, then consider the partition

(Pi, Pi, DB3,2, H) and use Lemmas 4.5 and 4.9 to find an orientation of diameter

two.

10. Let B = C5 ∪ aP1 ∪ bP2, with a, b ≥ 0 and a + b = 5. Let H and the pair of

paths be as in case (9). Note that C5 ≤ K3 � K2. If n(H) = 3, consider the

partition (Pi, Pi, H, C5) and use Lemmas 4.7 and 4.9 to find an orientation of

diameter two. If 4 ≤ n(H) ≤ 5, consider the same partition, except use Lemma

4.5 instead of Lemma 4.7. If n(H) = 6, consider the partition (Pi, Pi, C5, H),

and use Lemmas 4.5 and 4.9 to find an orientation of diameter two.

11. Let B = DB3,1 ∪ aP1 ∪ bP2, with a, b ≥ 0 and a + b = 5. Consider a similar

pair of paths and graph H as in case (9). Note that DB3,1 ≤ K3 � K1 and

DB3,1 ≤ K4. If 3 ≤ n(H) ≤ 4, consider the partition (Pi, Pi, H,DB3,1) and use

Lemmas 4.7 and 4.9 to find an orientation of diameter two. If 5 ≤ n(H) ≤ 6,

consider the partition (Pi, Pi, DB3,1, H) and use Lemmas 4.5 and 4.9 to find an

orientation of diameter two.

12. Let B = K3 ∪ aP1 ∪ bP2, with a, b ≥ 0 and a + b = 5. Consider a similar pair

of paths and a graph H as in case (9). Noting that 3 ≤ n(H) ≤ 6, consider the
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partition (Pi, Pi, K3, H) and use Lemmas 4.7 and 4.9 to find an orientation of

diameter two.

13. All cases where n(G) < 10 were considered using a computer search.

See Appendix A for an explanation of how this search was done.

Let B = aP1 ∪ bP2 ∪ cP3 ∪ dP4, with a, b, c, d ≥ 0 and a+ b+ c+ d = 5. Let H

be the union of two paths, Pi say, of equal length as in Case (9), let Pj, Pk, P`

be the remaining paths, and let Pj be the longest of these paths.

Case 1: i = 1.

Let i = 1 and from the remaining paths consider the longest path, let it be Pj.

Let the two remaining paths be Pk and P`.We only need to consider n(G) ≥ 10

so we have 2i + j + k + ` = 2 + j + k + ` ≥ 10. If j ≤ 2, we have that

k + ` ≥ 6, so max{k, `} ≥ 3, a contradiction to the fact that j was the longest

of the remaining paths, so we have that 3 ≤ j ≤ 4. Since j ≤ 4, we have that

k+` ≥ 4, so j ≤ k+`. Since j ≥ k and j ≥ `, it is also true that j ≤ k+` ≤ 2j.

Consider the partition (P1, P1, Pj, Pk ∪ P`) and use Lemmas 4.7 and 4.9 to find

an orientation of diameter two.

Case 2: i ≥ 2.

Let i ≥ 2 and from the remaining paths consider the longest path, let it be Pj.

Let the two remaining paths be Pk and P`.

Since i ≥ 2, we have that it can not be that k = ` = 1, otherwise we would be

in case 1, so it must be true that k + ` ≥ 3.

Case 2a: k + ` ≤ j.

Since 3 ≤ k + ` ≤ j ≤ 4, consider the partition (Pi, Pi, Pk ∪ P`, Pj) and use

Lemmas 4.7 and 4.9 to find an orientation of diameter two.

Case 2b: j ≤ k + `.
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If i = 2, n = 10, and j = 2, then either k = ` = 2 i.e. R = K10 −M , a case

we proved earlier, or max{k, `} ≥ 3, a contradiction to the fact that j ≥ k and

j ≥ `. If i = 2 and n ≥ 11, we must have that j = max{j, k, `} ≥ 3. Since

i is the order of the shortest pair of paths that have the same length, if i ≥ 3

and n ≥ 10, we have three paths Pj, Pk, P` for which j = max{j, k, `} ≥ 3.

Otherwise, there would be a pair of paths of order 1 or a pair of order 2. We

have that 3 ≤ j.

Since j ≥ k and j ≥ `, we have that 3 ≤ j ≤ k + ` ≤ 2j. Consider the

partition (Pi, Pi, Pj, Pk ∪P`) and use Lemmas 4.7 and 4.9 to find an orientation

of diameter two.

Definition 4.11. LetW ⊆ V such that B[W ] is the union of one or more components

of B. We say that W is a reducible unit if R[W ] has a good orientation. We say that

W is a reduction if R[W ] has a non-trivial good orientation. and ex(B[W ]) ≥ −1.

Lemma 4.12. If V can be partitioned into at least 3 reducible units, then R has an

orientation of diameter 2

Proof. Assume that V can be partitioned into k reducible units W1,W2, . . . ,Wk,

where k ≥ 3. Then for each i ∈ {1, 2, . . . , k}, Wi has a good orientation Di with

partite classes Ui and Vi of Wi.

Consider an orientation D′ of diameter two of the complete graph on the vertex

set {u1, v1, u2, v2, . . . , uk, vk} with the perfect matching {uivi | 1 ≤ i ≤ k} removed.

Such an orientation exists by Lemma 4.10.

We now combine D′ and ⋃ki=1 Di to obtain an orientation of diameter two of R.

The sets U1, V1, U2, V2, . . . , Uk, Vk form a partition of V (G). Let xy be an edge of R.

If x and y are in the same set Wi, then orient xy as in Di. The remaining edges of

R are oriented as follows: whenever −−→uiuj (−−→uivj, −−→viuj, −−→vivj) is an edge in D′ then we
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assign the orientation Ui → Uj (Ui → Vj, Vi → Uj, Vi → Vj). Let D be the resulting

orientation.

To see that between any two vertices of D there is a path of length at most two

note that for x, y ∈ V (D) either both vertices are in the same set Ui (or Vi), in which

case there is a path of length at most two in Di, or they are in different sets, for

example x ∈ Ui and y ∈ Uj, in which case the (ui, uj)-path in D′ gives rise to an

(x, y)-path in D.

4.4 Some Properties of B

From now on we assume that G is a minimal counterexample, that is, G is a graph on

n vertices, n ≥ 5 and at least
(
n
2

)
− (n− 5) edges that has no orientation of diameter

two, and among those graphs let G be a graph of minimum order and of minimum

size. Clearly, if G has n vertices then G has exactly
(
n
2

)
− (n− 5) edges. Hence the

corresponding graph B has order n and size n− 5. Moreover, it follows from Lemma

4.10 that n 6= 5, 6, so n ≥ 7.

In this section we show that a minimal counterexample cannot have a reduction.

We also show that no components of B contains three independent vertices, and that

no component has two independent vertices that have to common neighbors. These

properties will be used extensively in the following sections.

Lemma 4.13. Let G be a minimal counterexample. Then B has no reduction.

Proof. Suppose to the contrary that B has a reduction W . Then |W | > 2 and, by

m(B[W ]) ≥ |W | − 1, also W 6= V . Let D be a non-trivial good orientation of R[W ]

and let U1 and V1 be the classes of D. Replace in B the vertices of W with two

vertices, u1, v1 and a blue edge connecting u1v1, to obtain the blue graph B∗ on n∗

vertices and m∗ edges. Note that B[W ] is a union of components of B, so B contains

no edges joining vertices in W to vertices in V −W . Then n∗ = n+ 2− |W | < n and
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by m(B[W ]) ≥ |W | − 1,

m∗ = (n− 5)−m(B[W ]) + 1 ≤ n− 3− |W | = n∗ − 5.

In particular, 1 ≤ n∗ − 5, so 5 < n∗. Since B was a minimal a counterexample, the

red graph R∗ corresponding to B∗ has an orientation D∗ of diameter 2.

We now make use of D and D∗ to obtain an orientation of diameter 2 of R. Let

x, y ∈ V . If x, y ∈ W then orient xy as in D. If x, y ∈ V −W then orient xy as

in D∗. The remaining edges, joining a vertex in x ∈ V −W to a vertex in y ∈ W

are oriented as follows. If xu1 has received the orientation −→xu1 in D∗ then we orient

x → U1, and if xu1 has received the orientation −→u1x in D∗ then we orient U1 → x.

Similarly, if xv1 has received the orientation −→xv1 in D∗ then we orient x→ V1, and if

xv1 has received the orientation −→v1x in D∗ then we orient V1 → x.

As in the proof of Lemma 4.12 we now conclude that the resulting orientation of

R has diameter 2. But then G is not a counterexample, a contradiction. Hence G

has no reduction.

Lemma 4.14. Let G be a minimal counterexample. If x1, x2, x3 is an independent

set of order 3 in B, and Ni is the set of vertices in v ∈ V −{x1, x2, x3} having exactly

i neighbors (in B) in {x1, x2, x3} for i ∈ {2, 3}, then

|N2| ≤ 1 and N3 = ∅. (4.1)

Proof. Suppose to the contrary that there are three independent vertices x1, x2, x3 in

B such that (4.1) does not hold. Create a new blue graph B∗ on n′ = n− 2 vertices

by identifying x1, x2 and x3 to a new vertex x and removing multiple edges. Then

n(B∗) = n− 2 and

m(B∗) = m(B)− |N2| − 2|N3| ≤ m(B)− 2 = n− 7 = n(B∗)− 5.

Therefore, since G is a minimal counterexample, the red graph R∗ corresponding to

B∗ has an orientation D∗ of diameter 2.
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We now make use of D∗ to obtain an orientation D of R of diameter 2. Orient

every edge uv with u, v /∈ {x1, x2, x3} as in D∗. If an edge ux is present in R∗, then

all edges uxi, i = 1, 2, 3 are present in R, and depending on whether ux is oriented

as −→ux or as −→xu in D∗, we orient them u→ {x1, x2, x3} or {x1, x2, x3} → u. If an edge

uxi is present in R, but ux is not present in R∗, then orient uxi arbitrarily. Finally

orient the edges x1x2, x2x3 and x3x1 as −−→x1x2, −−→x2x3 and −−→x3x1, respectively.

To see that D is an orientation of diameter 2, consider two vertices u and v of D.

If u, v ∈ {x1, x2, x3}, then clearly there exists a (u, v)-path of length at most two in

D[{x1, x2, x3}], the subdigraph of D induced by {x1, x2, x3}. If u ∈ {x1, x2, x3} and

v ∈ V − {x1, x2, x3} or vice versa then the (x, v)-path of length at most two in D∗

gives rise to a (u, v)-path of the same length in D. If u, v ∈ V −{x1, x2, x3} then the

(u, v)-path of length at most two in D∗ gives rise to a (u, v)-path of the same length

in D. This shows that D is an orientation of R of diameter 2, a contradiction to G

being a counterexample.

Lemma 4.15. Let G be a minimal counterexample. Then no component of B has

three independent vertices.

Proof. Suppose to the contrary that B has a component which contains three inde-

pendent vertices x1, x2 and x3. We may assume that

dB(x1, {x2, x3}) = 2. (4.2)

Indeed, if dB(x1, {x2, x3}) ≥ 3 then let x′1 be a vertex on a shortest path in B from

x1 to {x2, x3} that is at distance two from {x2, x3}. The new set {x′1, x2, x3} is

independent and satisfies (4.2).

By (4.2) we may assume, possibly after renaming vertices, that dB(x1, x2) = 2. A

similar argument as above now yields that we can choose x3 such that also

dB(x3, {x1, x2}) = 2. (4.3)
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Hence we can choose {x1, x2, x3} such that it contains at least two pairs of vertices

at distance two in B. Hence, possibly after renaming the vertices, we have

dB(x1, x2) = dB(x2, x3) = 2. (4.4)

Now (4.4) implies that there exists a common neighbor y12 of x1 and x2, and a

common neighbor y23 of x2 and x3 in B. If y12 = y23, then the set N3 of vertices

with three neighbors {x1, x2, x3} contains y12 and is thus not empty, a contradiction

to Lemma 4.14. If N3 = ∅, then y12 6= y23 and so the set N2 of vertices with exactly

two neighbors in {x1, x2, x3} contains y12 and y23, again a contradiction to Lemma

4.14.

Lemma 4.16. Let G be a minimal counterexample. If x1, x2 are independent vertices

in B, then x1 and x2 have at most one common blue neighbor.

Proof. Suppose to the contrary that B has two vertices x1 and x2 that share two

neighbors. Then x1 and x2 are in the same component of B. Choose a vertex x3 from

another component. Such a component exists since B has at least 5 components by

Lemma 4.17. Then x1, x2, x3 are independent vertices, for which the set N2 of vertices

having exactly two neighbors in {x1, x2, x3} has at least two elements, a contradiction

to Lemma 4.14.

4.5 On Tree Components of B

Since B has n vertices and n − 5 edges, B is not connected. In this section we give

useful lower bounds on the number of components of B that are trees, and we show

that for a given order t we can find a union Ft of tree components of B whose order is

close to t. This will be useful in the case that B has a non-tree component B1 of order

t whose size is much greater than t. Since the order of B1 and Ft are close to each

other, we will often be able to apply Lemma 4.5 to show that V (B1)∪V (Ft) has a non-
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trivial good orientation and, provided B1 has sufficiently large excess, that they form

a reduction. Recall that the excess of a graph H is defined as ex(H) = m(H)−n(H).

Lemma 4.17. If B contains a component B1 that is not a tree, then B has at least

ex(B1) + 5 components that are trees. B contains at least five components that are

trees.

Proof. Let T1, T2, . . . , Tk be the components of B that are trees, and B1, B2, . . . , B`

the components that are not trees. Then ex(Ti) = −1 for all i ∈ {1, 2, . . . , k} and

ex(Bi) ≥ 0 for all i ∈ {1, 2, . . . , `}. Since m(B) = n− 5, we have ex(B) = −5, and so

−5 = ex(B) =
k∑
i=1

ex(Ti) +
∑̀
i=1

ex(Bi) = −k +
∑̀
i=1

ex(Bi) ≥ −k.

and so k ≥ 5. Hence B has at least five components that are trees.

If B contains a component that is not a tree, B1 say, then a similar argument yields

that

−5 =
k∑
i=1

ex(Ti) +
∑̀
i=1

ex(Bi) = −k +
∑̀
i=1

ex(Bi) ≥ −k + ex(B1),

and so k ≥ 5 + ex(B1), as claimed.

Lemma 4.18. Let B′ be a subgraph of B containing t or more tree components of B

whose size does not exceed M0. Then there exists t0 with t ≤ t0 ≤ t + M0 such that

some subset of the tree components in B′ forms a forest Ft in B′ satisfying n(Ft) = t0

and m(Ft) ≥ t0 − t, and thus ex(Ft) ≥ −t. If B′ contains a tree of size m0 and if

t > m0, then m(Ft) ≥ t0 − t+m0 and thus ex(Ft) ≥ −t+m0.

Proof. Let T1, T2, . . . , Tt the t tree components of B′. Since each B′ has at least t tree

components, T1∪T2∪· · ·∪Tt contains at least t vertices. Let j be the smallest positive

integer such that T1∪T2∪· · ·∪Tj contains t or more vertices. Let Ft = T1∪T2∪· · ·Tj

and let t0 = n(Ft). Since Tj has size at most M0 and thus order at most M0 + 1, we

have t ≤ t0 ≤ t + M0. Moreover, since T1 ∪ T2 ∪ · · · ∪ Tj−1 has less than t vertices,

it follows that Tj has at least t0 − t + 1 vertices and at least t0 − t edges. Hence
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m(F1) ≥ m(Tj) ≥ t0 − t, and thus ex(Tt) ≥ −t.

If t > m0, then we may assume that T1 is a tree of size m0. The same argument as

above yields that m(Ft) ≥ m(T1) +m(Tj) = m0 + t0 − t and thus ex(Ft) ≥ −t+m0,

as desired.

We will see in the next section that the tree components of B have at most four

vertices. Hence the following corollary, obtained from Lemma 4.18 by settingM0 = 3,

is useful.

Corollary 4.19. Let B′ be a subgraph of B containing t or more tree components of

B which have order at most four. Then there exists t0 with t ≤ t0 ≤ t + 3 such that

some subset of the tree components in B′ forms a forest Ft in B′ satisfying n(Ft) = t0

and m(Ft) ≥ t0− t, and so ex(Ft) ≥ −t. If t ≥ m0 and B′ contains a tree of size m0,

then ex(Ft) ≥ −t+m0.

4.6 Describing the components of B

In this section we prove further properties of the graph B of a minimal counterexam-

ple. We show that each component of B is either a a path on at most four vertices,

a complete graph, a proper dumbbell, a proper short dumbbell, or a 5-cycle. We

further show that the order of a component of B cannot exceed six.

Lemma 4.20. Let G be a minimal counterexample and B1 a component of B.

(a) If B1 is a tree, then B1 is a path Pi with 1 ≤ i ≤ 4.

(b) If B1 is not a tree, then B1 is either

(i) a complete graph Ki with i ≥ 3, or

(ii) a proper (k, `)-dumbbell, or

(iii) a proper short dumbbell, or

(iv) a 5-cycle.
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Proof. If B1 is complete, then the lemma holds, so we assume that B1 is not complete.

Let x1 and x2 be two vertices of B1 with dB(x1, x2) = diam(B1) ≥ 2.

Case 1: diam(B1) ≥ 3.

Since B1 does not have three independent vertices by Lemma 4.15, we conclude that

dB(x1, x2) = 3, that V (B1) is the disjoint union of NB[x1] and NB[x2], and that each

NB[xi] forms a clique.

Since B1 is connected, B1 has an edge joining a vertex y1 ∈ NB(x1) to a vertex

y2 ∈ NB(x2). We show that B1 does not contain a further edge joining a vertex

z1 ∈ NB(x1) to a vertex z2 ∈ NB(x2). Indeed, if y1 = z1 then {y1, x2} would be

a set of two independent vertices that share two neighbors, if y2 = z2 then {y2, x1}

would be a set of two independent vertices that share two neighbors, and if y1 6= z1

and y2 6= z2 then {y1, z2} would be a set of two independent vertices that share two

neighbors, contradicting Lemma 4.16. It follows that B1 is an (n1, n2)-dumbbell with

ni = |NB[xi]| ≥ 2 for i = 1, 2. If B1 is a tree, then this implies that B1 = P4. If B1 is

not a tree, then this implies that B1 is a proper dumbbell.

Case 2: diam(B1) = 2.

Then NB[x1] ∪ NB[x2] = V (B1) since B1 does not have three independent vertices

by Lemma 4.15. Moreover, x1 and x2 have a common neighbor y in B1. By Lemma

4.16, y is the only common neighbor of x1 and x2 in B1. We consider two subcases:

Case 2a: degB(x1) = 1 or degB(x2) = 1.

Assume without loss of generality that degB(x1) = 1, so NB(x1) = {y}. Since

diam(B1) = 2, every vertex in V (B1)− {x1, y} is adjacent to y in B1. Since B1 does

not contain three independent vertices, V (B1)− {x1, y} induces a complete graph in

B1. Therefore B1 is a short (2, n(B1) − 1)-dumbbell. If B1 is a tree, then it follows

that B1 = P3. If B1 is not a tree, then it follows that B1 is a proper dumbbell.

Case 2b: degB(x1) ≥ 2 and degB(x1) ≥ 2.

Since B1 does not contain three independent vertices, NB[xi]\{y} induces a complete
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graph in B for i ∈ {1, 2}. If y is adjacent to all vertices in C, then clearly B1 is a

short dumbbell, so assume that there is a vertex z1 to which y is non-adjacent in

B1. We may assume that z1 ∈ NB[x1]. Then dB(z1, x2) = 2, so z1 and x2 have a

common blue neighbor z2. Since x1 and z2 are non-adjacent in B and thus cannot

have two common neighbors, z2 and y are non-adjacent in B. Since also the edges

x1x2, x1z2 and x2z1 are not present in B, we conclude that x1, y, x2, z2, z1, x1 is an

induced 5-cycle in B1. Hence B1 contains an induced 5-cycle.

Rename the vertices of the 5-cycle as v0, v1, v2, v3, v4, v0. We show that B1 contains

only these five vertices. Suppose not. Then there exists a vertex w adjacent to a

vertex in {v0, v1, v2, v3, v4} in B1. If v is adjacent to only one or two vertices in

{v0, v1, v2, v3, v4}, then it is easy to see that v together with two suitably chosen

vertices in {v0, v1, v2, v3, v4} forms an independent set of cardinality three, which

is impossible. Hence v is adjacent to at least three vertices in {v0, v1, v2, v3, v4}.

But then v has two neighbors among these vertices that are not adjacent, without

loss of generality v1 and v3, so that v1 and v3 are non-adjacent vertices with two

common neighbors, a contradiction to Lemma 4.16. This proves that B1 contains

only {v0, v1, v2, v3, v4}, and so B1 is a 5-cycle.

Lemma 4.21. Let G be a minimal counterexample. Then B contains no component

of order greater than six.

Proof. Suppose to the contrary that B contains a component B1 with more than six

vertices. Let n1 and m1 be the order and size, respectively, of B1. We first prove that

m1 ≥
⌈1
4n

2
1 −

1
2n1 + 1

⌉
. (4.5)

By Lemma 4.20, B1 is a complete graph, a dumbbell, or a short dumbbell. It is

easy to see that among all such graphs of order n1 the dumbbell DBdn1/2e,bn1/2c is

the unique graph of minimum size. A simple calculation shows that DBdn1/2e,bn1/2c =

d1
4n

2
1 − 1

2n1 + 1e, and (4.5) follows.
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Case 1: n1 ≥ 8.

Let t := n1 − 2. Then B contains at least t tree components since by Lemma 4.17

B contains at least ex(B1) + 5 tree components, and by (4.5) we have ex(B1) + 5 ≥
1
4n

2
1 − 1

2n1 + 6 ≥ n1 − 2, as can easily be verified.

By Corollary 4.19, B contains a forest Fn1−2 of order t0 and excess at least −n1 + 2

for some t0 with n1 − 2 ≤ t0 ≤ n1 + 1 that is the union of tree components of B.

Let W := V (B1) ∪ V (Fn1−2). We show that W is a reduction. Clearly the graph

R[W ] contains a spanning subgraph Kn1,t0 . Since n1 − 2 ≤ t0 ≤ n1 + 1 it is easy to

verify that either n1 ≤ t0 ≤
(
n1
2

)
or t0 < n1 ≤

(
t0
2

)
holds, so R[W ] has a non-trivial

orientation by Lemma 4.5. By (4.5) we also have

ex(B[W ]) = ex(B1) + ex(Fn1−2)

≥ 1
4n

2
1 −

1
2n1 + 1− n1 + (−n1 + 2)

= 1
4n

2
1 −

5
2n1 + 3

≥ −1,

with the last inequality holding since the term 1
4n

2
1− 5

2n1 + 3 attains its minimum for

n1 = 8. Hence W is a reduction. This contradiction to Lemma 4.13 shows that Case

1 cannot occur.

Case 2: n1 = 7 and B1 6= DB3,4.

It follows from (4.5) that m1 ≥ 10, with equality if and only if B1 is the dumbbell

DB3,4. Since B1 6= DB3,4 we have m1 ≥ 11 and thus ex(B1) ≥ 4. Now exactly the

same argument as in Case 1 yields a contradiction.

Case 3: n1 = 7 and B1 = DB3,4.

Then m1 = 10, so ex(B1) = 3. If now B − B1 contains only singleton components,

then m(B) = n − 5 implies that n = 15 and that B − B1 contains exactly eight

components, so B = DB3,4 ∪ 8K1. But DB3,4 ∪ 8K1 has an orientation of diameter

two by Lemma 4.10, so B contains a component with at least one edge. Now Corollary
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4.19 with t = 5 and m0 ≥ 1 yields that there exists a forest F5 of order t0, where

5 ≤ t0 ≤ 8, and excess at least −5 + 1 = −4. that is the union of tree components

of B. Let W = V (B1) ∪ V (F5). As above we show that R[W ] has a non-trivial good

orientation by Lemma 4.5. Moreover,

ex(R[W ]) = ex(B1) + ex(F5) ≥ 3 + (−4) = −1.

Hence W is a reduction, a contradiction to Lemma 4.13.

Lemma 4.22. Let G be a minimal counterexample. If B contains a component B1

that is not a tree, then B − B1 has exactly ex(B1) + 5 components, and all of them

are trees.

Proof. Suppose to the contrary that B−B1 contains a component B2 that is also not

a tree. Then ex(B1) ≥ 0 and ex(B2) ≥ 0. Let n1 and n2 be the order of B1 and B2,

respectively. We may assume that n1 ≥ n2. By Lemma 4.21 we have n1 ≤ 6. Also,

n2 ≥ 3. If n1, n2 ∈ {4, 5, 6}, then V (B1) ∪ V (B2) has a non-trivial good orientation

by Lemma 4.5 and is thus a reduction since ex(B1 ∪ B2) = ex(B1) + ex(B2) ≥ 0.

If n1 ∈ {4, 5, 6} and n2 = 3, then B contains no tree component B3 or order 4 or

3 since otherwise V (B1) ∪ V (B3) or V (B2) ∪ V (B3) would form a reduction. Hence

B contains a tree component B3 of order n3 ∈ {1, 2}. Then it is easy to verify that

V (B1) ∪ V (B2) ∪ V (B3) form a reduction. In all cases we get a contradiction to

Lemma 4.13. Hence all components of B −B1 are trees.

Let B − B1 have k components, B2, B3, . . . , Bk+1 say. Since each tree has excess

−1, and since ex(B) = −5, we have

5 = ex(B) =
k+1∑
i=1

ex(Bi) = ex(B1)− k,

and so k = ex(B1) + 5, as desired.

Lemma 4.23. Let G be a minimal counterexample. Then B contains no component

that is a complete graph on three or more vertices.
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Proof. Suppose to the contrary that B contains a component B1 that is a complete

graph of order n1 ≥ 3.

Case 1: n1 ≥ 5.

By Corollary 4.19, B contains a collection of tree components which form a forest

Fn1 of order n(Fn1) = n0 and excess ex(Fn1) ≥ −n1 where n1 ≤ n0 ≤ n1 + 3.

Let W = V (Kn1) ∪ V (Fn0). Then R[W ] contains Kn1,n0 . Since n1 ≥ 5 we have

n1 ≤ n0 ≤ n1 + 3 ≤
(
n1
2

)
, where the last inequality holds since n1 ≥ 5. Now Lemma

4.5 yields that R[W ] has a non-trivial good orientation. Since also

ex(B[W ]) = ex(Kn1) + ex(Fn1)

≥
(
n1

2

)
− n1 − n1

= 1
2n1(n1 − 5)

≥ −1,

W is a reduction, a contradiction to Lemma 4.13.

Case 2: n1 = 4.

Then B1 = K4 and so ex(B1) = 2. If all components of B − B1 are singletons, then

B = K4 ∪ 7K1 since B − B1 has exactly seven components by Lemma 4.22. Hence

G = K4 ∪ 7K1. But K4 ∪ 7K1 has an orientation of diameter two by Lemma 4.10, so

G is not a counterexample. Hence we assume that B−B1 has a component B2 of size

m0 ≥ 1. By Lemma 4.22, B2 is a tree, and by Lemma 4.20 B2 is a path on at most

four vertices. If B2 = P4, then it is easy to verify that V (B1)∪ V (B2) is a reduction,

hence we may assume that B − B1 contains only paths on at most three vertices.

Letting M0 ≤ 2 and m0 ≥ 1 in Lemma 4.18 we get that there exists a forest F4 of

order t0, where 4 ≤ t0 ≤ 6, with ex(F4) ≥ −3. Since V (B1)∪ V (F4) has a non-trivial

good orientation by Lemma 4.5, and since ex(B[V (B1) ∪ V (F4)]) ≥ 2 + (−3) = −1,

it follows that V (B1) ∪ V (F4) is a reduction, a contradiction to Lemma 4.13.

Case 3: n1 = 3.
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By Lemma 4.22 the graph B − B1 has exactly ex(K3) + 5 = 5 components, which

by Lemma 4.20 are paths on at most four vertices. If B − B1 contains a component

B2 that is P3, then it is easy to verify that V (B1) ∪ V (B2) form a reduction, a

contradiction to Lemma 4.13. Hence B −B1 contains only components that are K1,

K2 or P4. Hence we have B = K3 ∪ aK1 ∪ bK2 + cP4 for some nonnegative integers

a, b, c with a+ b+ c = 5. But by Lemma 4.10, all such graphs have an orientation of

diameter two. So G is not a counterexample, a contradiction.

Lemma 4.24. Let G be a minimal counterexample. Then B contains no component

that is a proper dumbbell.

Proof. Suppose to the contrary that B contains a proper dumbbell B1, and let n1 be

its order. Since B1 is a proper dumbbell we have n1 ≥ 4, and by Lemma 4.21 we

have n1 ≤ 6. Let B2 be a largest component in B−B1, and let n2 be its order. B2 is

a tree by Lemma 4.22, and so B2 is a path and n2 ≤ 4 by Lemma 4.20. We cannot

have n2 = 4 since in this case V (B1) ∪ V (B2) would form a reduction, a contraction

to Lemma 4.13. Hence n2 ≤ 3.

Case 1: n1 = 6.

B1 is either a (5, 1)-dumbbell, a (4, 2)-dumbbell or a (3, 3)-dumbbell. We consider all

three possibilities.

(i) Let B1 be a (5, 1)-dumbbell. Then m(B1) = 11 and ex(B1) = 5. Setting M0 ≤ 2

in Lemma 4.18 we get that there exists a forest F4 of order t0 and excess at least −4

for some t0 ∈ {4, 5, 6}. V (B1) ∪ V (F4) has a non-trivial good orientation by Lemma

4.5, and since ex(B[V (B1) ∪ V (F4)]) ≥ 5 + (−1) ≥ −1, the set V (B1) ∪ V (F4) is a

reduction, a contradiction to Lemma 4.13.

(ii) Let B1 be a (4, 2)-dumbbell. Then m(B1) = 8 and ex(B1) = 2. If all components

of B−B1 are singletons, then B = DB4,2∪7K1 since by Lemma 4.22 the graph B−B1

has exactly ex(B1)+5 = 7 components. But DB4,2 ∪ 7K1 has an orientation of diam-
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eter two by Lemma 4.10, so it is not a counterexample. Hence we assume that B−B1

contains a component of order at least two. Also, B−B1 contains no component that

is a path on three vertices since otherwise, if there was such a component B2, then

V (B1)∪V (B2) would be a reduction. Now settingM0 = 2 andm0 = 1 in Lemma 4.18,

we get that B−B1 contains a union of components that is a forest F4 of order t0 with

4 ≤ t0 ≤ 6 and ex(F4) ≥ −3. Now ex(B[V (B1) ∪ V (F4)]) ≥ 2 + (−3) = −1 and by

Lemma 4.5, V (B1)∪ V (F4) has a non-trivial good orientation. Hence V (B1)∪ V (F4)

is a reduction, a contradiction to Lemma 4.13.

(iii) Let B1 be a (3, 3)-dumbbell, so m(B1) = 7 and ex(B1) = 1. By Lemma 4.22,

B − B1 contains exactly ex(B1) + 5 = 6 components which are trees, and thus

paths on at most four vertices by Lemma 4.20. If B − B1 consists of six single-

ton components or of five singleton components and a K2, then G = DB3,3 ∪ 6K1 or

G = DB3,3 ∪K2 ∪ 5K1. In both cases Lemma 4.10 shows that G has an orientation

of diameter two. Hence we may assume that B − B1 contains a path on three or

four vertices, or two components K2. In both cases we get that B −B1 contains two

tree components whose union F4 is a forest of order t0 with 4 ≤ t0 ≤ 6 and with

ex(F4) ≥ −2. By Lemma 4.5, V (B1) ∪ V (F4) has a non-trivial good orientation, so

it forms a reduction, a contradiction to Lemma 4.13.

Case 2: n1 = 5.

Now B1 is either a (4, 1)-dumbbell or a (3, 2)-dumbbell. We consider both possibili-

ties.

(i) If B1 is a (4, 1)-dumbbell, then precisely the same proof as in Case 1(ii) shows

that either G = DB4,1 ∪ 7K1, which by Lemma 4.10 is not a counterexample, or B

contains a reduction, a contradiction to Lemma 4.13.

(ii) Let B1 be a (3, 2)-dumbbell. Then m(B1) = 5, so ex(B1) = 0. Hence B − B1

contains exactly five components, which are trees, by Lemma 4.22. If one of these,

B2, is a P3 or P4 notice since P3 ≤ K3, B1 ≤ K3 �K2, P4 ≤ K4, and B1 ≤ K4 �K1,
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that using 4.7 these are a reduction. Since also ex(B[V (B1) ∪ V (B2)]) = −1, the

set V (B1) ∪ V (B2) is a reduction, a contradiction to Lemma 4.13. It follows that

n2 ≤ 2. By Lemma 4.22 B − B1 has exactly ex(B1) + 5 = 5 components, hence

B = DB3,2 ∪ aK1 + bK2 for some nonnegative integers a, b with a + b = 5. But

all such graphs have an orientation of diameter two by Lemma 4.10, so G is not a

counterexample, and we obtain a contradiction.

Case 3: n1 = 4.

Since DB3,1 is the only proper dumbbell of order 4 we have B1 = DB3,1 and thus

ex(B1) = 0. By Lemma 4.22, B − B1 has exactly ex(B1) + 5 = 5 components, each

being a path of order at most four. If B−B1 contains a component B2 that is a path

on four or three vertices, by a similar proof to case 2 we find that V (B1) ∪ V (B2)

has a non-trivial good orientation by Lemma 4.7, and since ex(B[V (B1)∪ V (B2)]) =

0 + (−1) = −1, V (B1)∪V (B2) is a reduction, a contradiction to Lemma 4.13. Hence

B − B1 contains only components that are paths of order at most two. It follows

that B = DB3,1 ∪ aK1 + bK2 for some nonnegative integers a, b with a+ b = 5. But

in all cases G has an orientation by Lemma 4.10, so G is not a counterexample, a

contradiction.

Lemma 4.25. Let G be a minimal counterexample. Then B contains no component

that is a proper short dumbbell.

Proof. Suppose to the contrary that B contains a proper short dumbbell B1 and let

n1 be its order. By Lemma 4.21 we have n1 ≤ 6. It is easy to check that the only

proper short dumbbells of order not more than six are SDB4,3 and SDB3,3.

First let B1 = SDB4,3. Then m(B1) = 9 and ex(B1) = 3. By Lemma 4.18 there

exist tree components of B−B1 whose union is a forest F4 or order t0 with 4 ≤ t0 ≤ 7

and ex(F4) ≥ −4. By Lemma 4.5 V (B1) ∪ V (F4) has a non-trivial good orientation,

and ex(B[V (B1) ∪ V (F4)]) = ex(B1) + ex(F4) ≥ −1. Hence V (B1) ∪ V (F4) form a

reduction, a contradiction to Lemma 4.13.
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Now let B1 = SDB3,3. Then m(B1) = 6 and ex(B1) = 1. A proof identi-

cal to that of Lemma 4.24, Case 1(iii) shows that either G = SDB3,3 ∪ 6K1 or

G = SDB3,3 ∪K2 ∪ 5K1, or B has a reduction. But Lemma 4.10 shows that both,

SDB3,3 ∪ 6K1 and SDB3,3 ∪K2 ∪ 5K1, have an orientation of diameter two, so they

are not counterexamples. Hence B has a reduction, a contradiction to Lemma

4.13.

Lemma 4.26. Let G be a minimal counterexample. Then B contains no component

that is a 5-cycle.

Proof. Suppose to the contrary that B contains a component B1 that is a 5-cycle.

Then ex(B1) = 0, and by Lemma 4.22 the graph B −B1 has exactly ex(B1) + 5 = 5

components which are trees. By Lemma 4.20, these components are paths on at most

four vertices. If B−B1 contained a component, B2 say, with B2 = P4, then it is easy

to verify that V (B1) ∪ V (B2) form a reduction, contradicting Lemma 4.13. Hence

B − B1 does not contain P4 as a component. If B − B1 contained a component, B2,

with B2 = P3, notice that P3 ≤ K3 and C5 ≤ K3 �K2, so the conditions of 4.7 hold,

hence V (B1) ∪ V (B2) form a reduction, contradicting Lemma 4.13.

Therefore all components of B−B1 are either P2 or P1. Hence G = C5 ∪ aP2 + bP1

for some non-negative integers a, b with a+b = 5. But then Lemma 4.10 shows that G

has an orientation of diameter two, so G is not a counterexample, a contradiction.

We are now ready to complete the proof of Theorem 4.3.

Proof. Suppose to the contrary that Theorem 4.3 is false. Let G be a minimal coun-

terexample, that is a graph of minimum order and minimum size for which the theo-

rem does not hold. Clearly, m(G) = n(G)− 5. It follows from Lemma 4.10 that the

theorem holds for K5 and K6 − e, the graph obtained from K6 by removing a single

edge. Hence n(G) ≥ 7.
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It follows from Lemma 4.20 that every component of B that is not a tree is either a

complete graph on at least three vertices, a proper dumbbell, a proper short dumbbell,

or a 5-cycle. B contains no component that is a complete graph on three or more

vertices by Lemma 4.23, no component that is a proper dumbbell by Lemma 4.24, no

component that is a proper short dumbbell by Lemma 4.25, and no component that

is a 5-cycle by Lemma 4.26. Hence every component of B is a tree. Let B1, B2, . . . , Bk

be the components of B. Sincem(B) = n−5 we have ex(B) = −5. Since ex(Bi) = −1

for i = 1, 2, . . . , k we have −5 = ex(B) = ∑k
i=1 ex(Bi) = −k, so k = 5. Hence B has

exactly five components B1, B2, B3, B4, B5. By Lemma 4.20 each Bi is a path on at

most four vertices. Hence G = aP4 ∪ bP3 ∪ cK2 ∪ dK1 for some non-negative integers

a, b, c, d with a + b + c + d = 5. But each such graph has an orientation of diameter

two by Lemma 4.10. Hence G is not a counterexample. This contradiction proves

Theorem 4.3.
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Chapter 5

Future Directions

5.1 The Oriented Diameter of Graphs with Given Minimum Degree

The question of whether the upper bound on the oriented diameter of a graph with

given order and minimum degree is closer to 3 n
δ+1 + O(1) than 5 n

δ−1 + O(1) is still

open.

Conjecture 5.1. Given a sufficiently large graph G with |G| = n and δ(G) = δ, we

can find an orientation of diameter 3 n
δ+1 +O(1).

We have also considered the same problem with different parameters added.

Namely the girth of a graph and the connected domination number.

Definition 5.2. Given a graph G the girth of G, denoted g, is the smallest cycle in

G.

I believe that a similar bound to our original exists for graphs of a certain or-

der given minimum degree and girth as parameters. In particular, I conjecture the

following.

Conjecture 5.3. Given a sufficiently large graph G with |G| = n, δ(G) = δ, and

girth g, we can find an orientation of diameter g n∑b g
2 c

i=1 δ
i

+O(1).

Definition 5.4. A dominating set in a graph G is a set of vertices for which every

vertex is either in the set or connected to a vertex in the set.
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Definition 5.5. The domination number of a graph G, denoted γ is the minimum

size dominating set.

The domination number and its variants are much studied, as they have important

applications in social networks (Basuchowdhuri and Majumder 2014; Borgatti 2006).

Definition 5.6. A connected dominating set in a graph G is a dominating set of

vertices that induces a connected graph.

Definition 5.7. The connected domination number is the minimum size connected

dominating set in a graph G.

Question 5.8. Can we find an upper bound on the oriented diameter of a graph of

a given order and connected domination number?

5.2 The Oriented Diameter of a Complete Graph with Some Edges

Removed

We proved the following theorem.

Theorem 5.9. Given Kn with n ≥ 5 and any collection of edges E ′, with |E ′| = n−5,
−−→diam(Kn \ E ′) ≤ 2.

The following natural question arises.

Question 5.10. Let k > 0 be given. Is there a function f(k, n) for which given any

collection of edges E ′ with |E ′| ≤ f(k, n) and the property that Kn \ E ′ is bridgless,

that −−−→diam(Kn \ E ′) ≤ k?
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Appendix A

Sage Code

A.1 Introduction

In order to perform the calculations needed for the low cases in Case (13) of Lemma

4.10 and to find the diameter two orientation of K5 I used SageMath 8.0. SageMath

(Sage) is meant to be an open source replacement for traditional Mathematical Pro-

gramming languages like Mathematica or Maple. It has a very robust set of graph

theory functions and operators already linked in. I will notate the code below in com-

ments so if someone else wanted to run it, they could. This code can also be found

on the research page of my website: http://math.garnercochran.com/research.

html.

I needed to use the _strong_orientations_of_a_mixed_graph function within

the orientations library in Sage. Using the package

_strong_orientations_of_a_mixed_graph gave me access to

strong_orientations_iterator(), which is an iterator that starts with an undi-

rected graph and can iterates through each of the possible strong orientations of that

graph without having to enumerate a full list of them. This is advantageous, because

it saves memory.

A.2 Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%This imports the strong_orientations_iterator() function that I need
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%%to use to find diameter 2 orientations of these graphs.

%%

%%The package time allows me to see how long a computation takes to

%%complete.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

>> from sage.graphs.orientations

import _strong_orientations_of_a_mixed_graph

>> import time

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%This function takes in the generated iterator for strong

%%orientations, then runs through all orientations in order to find

%%one of diameter 2.

%%

%%It outputs a directed graph of diameter two if one exists. Note that

%%it may throw an error if one doesn’t exist.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

>> def giveMeDiamTwo(graphiterator):

for graph in graphiterator:

if graph.diameter()==2:

return graph

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%This function takes two inputs, the order of the graph and the edges
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%%of the graph to be removed. It creates a graph with edges

%%{0,1,2,\dots, n-1}, and deletededgesfromgraph should be a list of

%%lists where each inside list has length 2 and represents the pairs

%%that are missing from the graph.

%%It will output an orientation of diameter 2 if one exists.

%%Example: checkThisGraph(6,[[0,1],[2,3],[4,5]]) will return an

%%an orientation of the complete graph on 6 vertices minus a matching.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

>> def checkThisGraph(n,deletededgesfromgraph):

start_time = time.clock()

BigGraph=graphs.CompleteGraph(n)

for edges in deletededgesfromgraph:

BigGraph.delete_edge(edges[0],edges[1])

DiamTwoGraph=giveMeDiamTwo(

BigGraph.strong_orientations_iterator())

print time.clock() - start_time, "seconds"

return DiamTwoGraph

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%This function checks all graphs of order n that we wished to find a

%%diameter two orientation. It will iterate through all the possible

%%collections of n-5 edges as unions of at most 5 paths of length 4

%%as blue graphs.

%%

%%It returns a list of the orientations these graphs.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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>> def checkAllGraphs(n):

PartsList=Partitions(n, length=5,max_part=4).list()

diamTwoGraphs=[]

for BlueGraph in PartsList:

deletededges=[]

pointer=0

for Paths in BlueGraph:

if Paths==1:

pointer+=1

else:

for i in range(Paths-1):

deletededges.append([pointer,pointer+1])

pointer+=1

pointer+=1

diamTwoGraphs.append(checkThisGraph(n,deletededges))

return diamTwoGraphs

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%This checks all the possible graphs of order n that are missing

%%edges n-5 edges that make up a disjoint union of paths for 5<=n<10.

%%It makes a list called listOfOrientations that is a list of lists,

%%where listOfOrientations[i] is a list of the orientations of the

%%graphs that have n-5 edges as unions of at most 5 paths of length 4

%%as blue graphs.

%%

%%Directed adjacency matrices for these graphs can be found in
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%%Appendix B.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

>> listOfOrientations=[]

for i in range(5,10):

listOfOrientations.append(checkAllComplements(i))

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%The next two lines return orientations of diameter 2 of the complete

%%graphs on 6 and 8 vertices with a matching missing.

%%

%%Directed adjacency matrices for these graphs can be found in

%%Appendix B.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

>> checkThisGraph(6,[[0,1],[2,3],[4,5]])

>> checkThisGraph(8,[[0,1],[2,3],[4,5],[6,7]])

A.3 Outputs

In this section I will give the outputs that my code gives in the form of adjacency

matrices. In particular, I ran the following code in order to print the adjacency

matrices in LATEXand import them into figures here. The adjacency matrices are

defined where if on the vertex set {0, . . . , n − 1}, an edge is oriented −→ij , then the

entry Mi+1,j+1 = 1 where Mi+1,j+1 represents the element in the i + 1st row and

j + 1st column. For any other element Mk,`, we let Mk,` = 0.

The first outputs we need to consider are diameter two orientations of K5, K6−M
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and K8 −M .

In order to do this we consider the following pairs of code and the matrix output.

>> latex(checkThisGraph(5,[]).adjacency_matrix())


0 1 1 1 0
0 0 1 0 1
0 0 0 1 1
0 1 0 0 1
1 0 0 0 0



Figure A.1 The
adjacency matrix
for an orientation
of diameter 2 of
K5.

>> latex(checkThisGraph(6,[[0,1],[2,3],[4,5]]).adjacency_matrix())



0 0 1 1 0 0
0 0 0 1 1 0
0 1 0 0 0 1
0 0 0 0 1 1
1 0 1 0 0 0
1 1 0 0 0 0



Figure A.2 The
adjacency matrix for
an orientation of
diameter 2 of
K6 −M.

>> latex(checkThisGraph(8,[[0,1],[2,3],[4,5],[6,7]])

.adjacency_matrix())
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

0 0 1 1 1 0 0 0
0 0 0 1 0 1 1 0
0 1 0 0 1 1 0 1
0 0 0 0 1 1 1 1
0 1 0 0 0 0 1 1
1 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0



Figure A.3 The adjacency
matrix for an orientation of
diameter 2 of K8 −M.

Below you will find the outputs from the following, given the functions and vari-

ables from above in Section A.2. Note that in Lemma 4.10 we had reduced to the

case where each path had at most 4 vertices.When we reach the case where |G| = 9,

we need to remove 4 edges as a disjoint union of paths. We can not have all these

edges be in one path. That would give a path with 5 vertices, so for |G| = 9 we only

need to consider the cases where (if each union of paths is pairwise vertex disjoint)

G is K9− (P4 ∪P2), K9− (P3 ∪P3), K9− (P3 ∪P2 ∪P2), or K9− (P2 ∪P2 ∪P2 ∪P2).

for i in range(len(listOfOrientations)):

for j in range(len(listOfOrientations[i])):

print latex(listOfOrientations[i][j].adjacency_matrix())
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
0 1 1 1 0
0 0 1 0 1
0 0 0 1 1
0 1 0 0 1
1 0 0 0 0



Figure A.4 The
adjacency matrix
for an orientation
of diameter 2 of
K5.



0 0 1 0 1 0
0 0 1 1 0 0
0 0 0 1 1 1
1 0 0 0 1 1
0 1 0 0 0 1
1 1 0 0 0 0



Figure A.5 The
adjacency matrix for
an orientation of
diameter 2 of
K6 − P2.



0 0 1 0 1 1 0
0 0 0 1 1 0 0
0 0 0 1 0 0 1
1 0 0 0 1 1 1
0 0 1 0 0 1 1
0 1 1 0 0 0 1
1 1 0 0 0 0 0



Figure A.6 The
adjacency matrix for an
orientation of diameter 2
of K7 − P3.
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

0 0 1 0 1 1 0
0 0 0 1 1 0 0
0 0 0 1 0 0 1
1 0 0 0 1 1 1
0 0 1 0 0 1 1
0 1 1 0 0 0 1
1 1 0 0 0 0 0



Figure A.7 The
adjacency matrix for an
orientation of diameter 2
of K7 minus 2 edges.



0 0 0 1 1 0 0 1
0 0 0 1 0 0 1 0
1 0 0 0 1 1 0 0
0 0 0 0 1 1 1 1
0 1 0 0 0 1 1 1
1 1 0 0 0 0 1 1
1 0 1 0 0 0 0 1
0 1 1 0 0 0 0 0



Figure A.8 The adjacency
matrix for an orientation of
diameter 2 of K8 − P4.
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

0 0 1 1 1 1 0 0
0 0 0 1 1 0 1 0
0 0 0 0 1 1 1 0
0 0 1 0 0 0 1 1
0 0 0 0 0 1 1 1
0 1 0 1 0 0 1 1
1 0 0 0 0 0 0 1
1 1 1 0 0 0 0 0



Figure A.9 The adjacency
matrix for an orientation of
diameter 2 of
K8 − (P3 ∪ P2), where P3
and P2 are vertex disjoint.



0 0 1 1 1 1 0 0
0 0 0 1 1 0 1 0
0 0 0 0 1 1 1 0
0 0 1 0 0 0 1 1
0 0 0 0 0 1 1 1
0 1 0 1 0 0 1 1
1 0 0 0 0 0 0 1
1 1 1 0 0 0 0 0



Figure A.10 The
adjacency matrix for an
orientation of diameter 2 of
K8 − (P2 ∪ P2 ∪ P2), where
each pair of P2 are vertex
disjoint.
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

0 0 0 1 1 0 0 0 1
0 0 0 1 0 1 0 1 0
1 0 0 0 1 1 1 0 0
0 0 0 0 1 1 1 1 1
0 1 0 0 0 0 1 1 1
1 0 0 0 0 0 1 1 1
1 1 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0 1
0 1 1 0 0 0 0 0 0



Figure A.11 The adjacency
matrix for an orientation of
diameter 2 of K9 − (P4 ∪ P2),
where each pair of paths are
vertex disjoint.



0 0 1 0 0 1 1 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 1 1 1 1 0
1 0 1 0 0 1 0 1 1
1 0 0 0 0 0 1 1 1
0 1 0 0 0 0 1 1 1
0 1 0 1 0 0 0 1 1
1 1 0 0 0 0 0 0 1
1 1 1 0 0 0 0 0 0



Figure A.12 The adjacency
matrix for an orientation of
diameter 2 of K9 − (P3 ∪ P3),
where each pair of paths are
vertex disjoint.
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

0 0 1 1 1 0 1 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 1 1 1 1 0
0 0 1 0 0 0 1 1 1
0 0 0 0 0 1 1 1 1
1 0 0 1 0 0 0 1 1
0 1 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0 1
1 1 1 0 0 0 0 0 0



Figure A.13 The adjacency
matrix for an orientation of
diameter 2 of
K9 − (P3 ∪ P2 ∪ P2), where
each pair of paths are vertex
disjoint.



0 0 0 1 1 0 0 1 0
0 0 1 1 0 1 1 0 0
1 0 0 0 1 1 0 0 1
0 0 0 0 1 1 1 1 1
0 1 0 0 0 0 1 1 1
1 0 0 0 0 0 1 1 1
1 0 1 0 0 0 0 0 1
0 1 1 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0



Figure A.14 The adjacency
matrix for an orientation of
diameter 2 of
K9 − (P2 ∪ P2 ∪ P2 ∪ P2),
where each pair of paths are
vertex disjoint.
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