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ABSTRACT

 Integrating discrete time survival and mediation analytic approaches, discrete-

time survival mediation models (DTSM) help researchers elucidate the impact of 

predictors on the timing of event occurrence. Though application of this model has been 

gainful in various applied developmental and intervention research contexts, empirical 

work has yet to consider how DTSM models operate with a mediator that has a varying 

effect over time. The importance of examining this situation has important impacts for 

application of the model, given more complex statistical models are required, and 

subsequent interpretation of model parameters differ from the basic DTSM model. The 

overarching purpose of this dissertation was to understand how the addition of a mediator 

with a time variant effect impacts parameter estimation and fit of the DTSM model 

estimated in a mixture modeling framework. This investigation was done within the 

context of an applied example (Study One) to simultaneously inform applied 

considerations in timing to onset of youth alcohol use, as well as to evaluate statistical 

performance of the model in a related single-cell Monte Carlo study (Study Two) and an 

expanded simulation study (Study Three). Results are presented with discussion of future 

directions for this research and considerations for application of this modeling approach.  
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CHAPTER ONE 

INTRODUCTION 

Outcomes of interest in the social sciences at times relate to the occurrence of an 

event, such as initiation of substance use, school dropout, or onset of mental health 

symptomatology. Conventionally, researchers have often used logistic regression to 

answer questions relating to event occurrence, helping to illuminate the likelihood of 

experiencing an event (Menard, 2018). However, moving beyond simple questions of “if” 

an event occurs (and with what probability) to investigating questions that consider “if” 

and “when” an event occurs allows for the consideration of how different risk and 

protective factors impact timing of event occurrence. Survival analysis provides one such 

methodological tool to evaluate these questions (for review see Allison, 1984; Miller, 

2011). These models have widespread utility, especially when the timing of an event has 

critical ramifications, such as timing of youth alcohol use, where earlier onset of use is 

particularly problematic and is associated with higher risk for the development of alcohol 

abuse behaviors and dependence (Chou & Pickering, 1992; DeWit, Adlaf, Offord, & 

Ogborne, 2000).  

In the same way that investigating timing of an event can provide more 

information than looking at incidence alone, investigating the underlying reasons why (or 

how) given risk and protective factors exert an influence on timing of event occurrence 

can help inform etiology of different phenomena, as well as provide a foundation to 

develop intervention programs that target critical outcomes. Mediation analysis provides 
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a means to answer these questions (see Hayes, 2017; MacKinnon, 2008). Mediation 

analysis explains how a mediator or mechanism of interest (M) indirectly conveys the 

effect of a predictor (X) on an outcome (Y). Mediation is utilized in numerous fields to 

answer questions related to mechanisms of change. In the social sciences, mediation 

analysis can lend insight into questions related to developmental pathways and 

understanding the etiology of risk behaviors; additionally, mediation analysis can 

contribute to the evaluation of prevention and intervention programs (Fairchild & 

MacKinnon, 2014; MacKinnon, 2008; MacKinnon, Fairchild, & Fritz, 2007).  

Integrating these analytic approaches, discrete-time survival mediation models 

(DTSM; Fairchild, Abara, Gottschall, Tein, & Prinz, 2015; Fairchild, Cai, McDaniel, 

Masyn, & Gottschall, 2018) have the potential to help researchers elucidate the impact of 

predictors on the timing of a particular event occurrence. By simultaneously 

incorporating both mediation and discrete-time survival analysis, the model allows for the 

examination of direct and indirect effects of a predictor on the timing of occurrence of an 

event of interest (Fairchild et al., 2015; 2018). In applications, the model aims to illustrate 

the means by which a variable impacts the timing of an outcome. These models have 

been utilized to study how gang membership impacts incidences of pregnancy indirectly 

through partnership characteristics, contraceptive behaviors, and pregnancy intentions 

(Minnis et al., 2008), as well as how timing to university dropout is predicted by high 

school grade point average indirectly through college grades (Voelkle & Sander, 2008), 

and how putative mechanisms of action in an alcohol use prevention effort impact timing 

to onset of alcohol use (DeGarmo, Eddy, Reid, & Fetrow, 2009).  
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Though application of the DTSM model has been gainful in the aforementioned 

research contexts and others, no empirical work has considered how discrete time 

mediation models operate with covariates that have a time variant effect. It would bolster 

the utility of this methodological tool and subsequent applications to better understand 

how a mediator with a time variant effect impacts parameter estimation, type one error 

and power in models that combine mediation and discrete time survival analysis. 

Previous research has examined the DTSM model (Fairchild, PI, NIDA - R01DA030349; 

Fairchild, et al., 2018) in a Monte Carlo simulation study to evaluate the accuracy of 

DTSM model parameter estimates, power, and Type 1 error.  This work focused on a 

time invariant mediator in line with the standard proportional hazard odds assumption in 

discrete-time survival models, however (Cox, 1972).  Expanding consideration of DTSM 

models to include a mediator with a time-variant effect may elucidate how a mediator can 

impact onset to an event variably over time. Such information may be particularly 

relevant in developmental research in which predictors of outcomes can change over 

time.  

As one application, the DTSM model could help social scientists better 

understand how dynamic mechanisms impact timing to onset of youth alcohol use. 

Historically adolescence has been coined a period of “storm and stress”, given notable 

conflict, mood disruption, and risk-taking (Hall, 1904). Recent research suggests that this 

developmental period of risk-taking and conflict is normative and driven by contextual as 

well as biological factors (Arnett, 1999; Spear, 2000). However, while some risk-taking 

during this period can be viewed as positive, such as conflict with parents leading to 

increased autonomy, other risk-taking behaviors can be more problematic, such as 
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drinking alcohol (SAMHSA, 2014). Rates of drinking, and problematic drinking, are an 

especially critical issue in adolescence given that the brain is still developing and 

changing (Spear, 2000).  Youth drinking is linked to a myriad of poor health, behavioral, 

and social outcomes such as use of tobacco and illicit substances, drunk driving, 

unprotected sex, school failure, and even death (e.g., NHTSA, 2013; SAMHSA, 2014; 

USDHHS, 2007). In addition to poor youth outcomes, there is a substantial associated 

public health burden. In 2010, costs attributed to excessive drinking in the United States 

were around $249 billion, with underage drinking accounting for $24.3 billion in costs 

(Sacks, Gonzales, Bouchery, Tomedi, & Brewer, 2015).  

Early onset of alcohol use (i.e., alcohol use before 15), is particularly problematic 

and associated with higher risk for development of alcohol abuse and dependence while 

youth that start drinking later have lower rates of unhealthy drinking behaviors in the 

long run (Chou & Pickering, 1992; DeWit et al., 2000). There are known protective 

factors that may offset early onset alcohol use, to promote later onset of drinking 

behaviors and long term positive outcomes, such as good family functioning and positive 

parenting behaviors (e.g., parental monitoring; Anderson & Henry, 1994; Beyers, 

Toumbourou, Catalano, Arthur, & Hawkins, 2004; Resnick et al., 1997; Tildesley & 

Andrews, 2008). However, some scholars suggest that this impact of these predictors 

may vary over the course of child development and these relationships warrant further 

consideration in longitudinal studies (e.g., Dishion & McMahon, 1998). As such, 

parenting behaviors, such as parental monitoring, included as a mediator in a causal chain 

impacting timing to onset of alcohol use, could plausibly have differential impacts on 

onset of alcohol use across development. Extending investigation of the model to 
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consider time-varying covariates could enhance our understanding of dynamic risk and 

protective factors that can change in impact across time. 

Statement of Purpose 

The overarching purpose of this dissertation is to understand how the addition of a 

mediator with a time variant effect impacts parameter estimation and fit of the DTSM 

model estimated in a mixture modeling framework (Fairchild et al., 2015; Fairchild et al., 

2018; Masyn, 2014; Muthen & Masyn, 2005). This investigation will be done within the 

context of an applied example to simultaneously inform applied considerations in timing 

to onset of youth alcohol use, as well as to evaluate statistical performance of the model 

in a related single-cell, simulation study and an expanded Monte Carlo simulation study. 

Specifically, I will conduct an applied investigation which utilizes a DTSM model with a 

time variant mediator to understand how interparental support predicts timing to onset of 

youth alcohol use indirectly through parental monitoring (i.e., Study One). Parental 

monitoring will be free to have differential effects across time to better understand how 

this parenting behavior is differentially predictive over adolescent development. I will 

subsequently use information gathered from the applied example to inform parameter 

estimates in a single-cell simulation study (i.e., Study Two). With results of this single 

cell-simulation study as the foundation, I will conduct an expanded Monte Carlo study 

that varies sample size, number of waves of data, pattern of the time variant effect and 

model (mis)specification, with the ultimate intention to provide recommendations for the 

field about use of this model by examining bias in parameter estimation, power, type one 

error, confidence interval coverage and performance of fit statistics (i.e., Study Three).  

With respect to the three studies, I hypothesize: 
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1) In Study One, greater interparental support will predict greater parental 

monitoring in the applied example. In turn, greater parental monitoring will 

be associated with a lower hazard odds of onset to alcohol use in the younger 

adolescent years, but will be non-significant at older ages. It is predicted that 

there will be a varying effect of parental monitoring over the course of 

adolescent development. In addition, it is hypothesized that greater 

interparental support will be directly associated with later onset of alcohol 

use. 

2) In Study Two, results will suggest acceptable levels of relative bias in 

parameter estimates as well as acceptable type one error, power, and 

confidence interval coverage, given the large sample size and many waves of 

data in the applied example in Study One from which population parameters 

for the study will be derived.   

3) In Study Three, in which a variety of conditions are studied, it is anticipated 

that outcomes of interest will be impacted by sample size, number of waves of 

data, pattern of the time variant effect and model (mis)specification. More 

specifically, it is anticipated that bias in parameter estimation will increase 

with decreasing sample size and model misspecification. Power will increase 

with increasing sample size. And model fit statistics will perform best when 

there is the greatest discrepancy between the population model and the 

misspecified model and sample size is large.                                              
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CHAPTER TWO 

REVIEW OF THE LITERATURE 

Mediation Analysis 

Exploring the relationship between a predictor (X) and outcome (Y) can inform 

important hypotheses about whether a bivariate relationship exists between X and Y. 

However, once this relationship is supported, it may also be of interest to introduce a 

third variable to further understand how or why the relationship between X and Y occurs. 

Mediation analysis introduces a third variable to the model and, in its simplest form, 

explains how a mediator or mechanism of interest (M) indirectly conveys the effect of a 

predictor (X) on an outcome (Y). Here the effect of X on Y is decomposed into the direct 

effect and the indirect effect. The direct effect is the influence of X on Y, controlling for 

the mediator and the indirect effect is the effect of X on Y through M (for a 

comprehensive review of statistical mediation analysis see MacKinnon, 2008).  

The Single Mediator Model. The single mediator model simply describes how a 

single mediating variable (M) conducts the effect of a predictor (X) onto an outcome (Y). 

The model is represented conceptually in Figure 2.1 and defined by the following 

equations:  

� = ��� + �� + 
�                                          (1) 

� =  ��� + �� + �� +  
�                                             (2) 
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Figure 2.1 Single Mediator Model.  
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In Equation 1, the a coefficient is the regression coefficient relating X to M. In 

Equation 2, c’ represents the direct effect of X on Y, that is, the partial regression 

coefficient relating X to Y while controlling for M. The b coefficient relates M to Y 

while controlling for X. 1 

Use of Mediation Analysis in Psychology. Mediation analysis can inform 

questions related to developmental pathways and understanding the etiology of risk 

behaviors as well as in evaluation of prevention and intervention programs (for review 

see Chapter two in MacKinnon, 2008). Mediation models are beneficial in two research 

contexts: “mediation by design” and “mediation for explanation” (Fairchild & 

Mackinnon, 2014; MacKinnon, 2008). In mediation by design, mediation is used to 

design interventions or prevention programs; mediation variables are identified a priori, 

and researchers then examine whether an intervention created change on the targeted 

mechanism of action and whether the changes in the mediator were associated with 

changes in the ultimate outcome (Fairchild & MacKinnon, 2014; MacKinnon et al., 

2007).  The insight garnered from “mediation by design” analyses are a crucial part of 

program evaluation and can be used to improve and streamline subsequent interventions 

by focusing on the most effective components as well as help to identify which 

intervention components are most critical in changing outcomes (MacKinnon et al., 2007; 

MacKinnon, 2008). 

                                                           

1 While this is the simplest form of the mediation model, the model can be extended to 
include additional complexities such as multiple mediators, serial mediators, or multilevel 
data (for possible extensions of the model see MacKinnon, 2008). In addition, the model 
can be extended to include survival outcomes which are detailed later in this review (i.e., 
DTSM; Fairchild et al., 2015; 2018). 
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Alternatively, in “mediation for explanation” analyses, mediation analysis is used 

to answer research questions in investigations for which there is a known relationship 

between a predictor and outcome; the researcher wants to understand if there is an 

intermediate variable in the causal sequence between X and Y that could help elucidate 

their relationship (Fairchild & MacKinnon, 2014; MacKinnon, 2008). For example, given 

the economic burden and negative health, behavioral and social outcomes associated with 

early onset alcohol use, there is a need to understand the developmental risk and 

protective factors, as well as effective prevention and intervention efforts so that these 

negative outcomes can be ameliorated for high-risk youth. Application of mediation 

analysis to timely and critical research questions related to adolescent alcohol use in both 

mediation by design and mediation for explanation scenarios would inform both the 

developmental and prevention/intervention literatures. 

 Approaches for estimating the mediated effect. There have been several 

methods suggested for quantifying the mediated effect. In landmark publications, Judd 

and Kenny (1981) and Baron and Kenny (1986) presented the causal steps approach; a 

series of conclusions that must be met to provide evidence for a mediated effect. To 

briefly outline them, first, the predictor must influence the outcome. If there is no overall 

effect of X on Y, the authors suggest that it follows that there can be no indirect effect. 

However, it should be noted that more recent research has noted the fallibility of this 

requirement and is now often relaxed (MacKinnon & Fairchild, 2009; Shrout & Bolger, 

2002). Even so, in relation to the equations presented above, when used, this step is tested 

with an additional, initial regression equation in which the outcome (i.e., Y) is regressed 

only on the predictor (i.e., X): 
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� =  �� + � +  
                                                (3) 

The second proposed causal step by Kenny and colleagues was that the predictor 

must predict the mediator and subsequently, the mediator must predict the outcome, when 

controlling for the predictor. This conclusion establishes the “causal chain” or the indirect 

effect of X on Y through M. The final conclusion per Judd and Kenny (1981) was that the 

predictor no longer significantly predicts the outcome when controlling for the mediator. 

While this final step is needed to support a hypothesis of a fully mediated effect, Baron 

and Kenny (1986) later suggested that it is not needed to support partial mediation.  

In a brief literature review of two high impact journals in psychology, Fritz and 

MacKinnon (2007) found that researchers utilized the causal steps method to test for the 

presence of mediation five times more than other approaches. In a similar review of the 

literature in school psychology, Fairchild and McQuillin (2010) found that approximately 

31% of studies published that tested for a mediated effect utilized the causal steps 

method. However, while the causal steps approach to mediation is still commonly used, 

there are several notable limitations. The first limitation is that the causal steps approach 

requires a significant relationship between the predictor and the outcome. While this 

seems intuitive, there can be instances where X does not significantly predict Y, yet there 

is a significant indirect effect. For example, this may occur in “inconsistent mediation 

models” in which a suppression effect is present and the direct effect and indirect effect 

are in the opposite directions, potentially nullifying the overall effect (Davis, 1985; 

MacKinnon, Fairchild & Fritz, 2007; MacKinnon, Krull, & Lockwood, 2001). The 

assumption that there needs to be a relationship between the predictor and the outcome is 

one of the identifying features of this approach that separates it from more recent 
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approaches for testing mediation (MacKinnon et al., 2001; 2007). In addition, while 

Baron and Kenny (1986) and Judd and Kenny (1981) outline a series of logical steps that 

insinuate a mediational chain, it lacks a statistical test of the indirect effect; it neither 

yields a point estimate of the mediated effect nor a standard error (MacKinnon, 

Lockwood, Hoffman, West, & Sheets, 2002). In addition, as compared to more 

contemporary methods to test for mediated effects, the causal steps method is 

underpowered (Fritz & MacKinnon, 2007; MacKinnon et al., 2002;  MacKinnon, 

Lockwood, & Williams, 2004). Indeed, these methods are underpowered in detecting 

small indirect effects, even in sample sizes of 1,000 (MacKinnon et al., 2002); a sample 

of 20,886 is needed to detect a small mediated effect when there is complete mediation 

(i.e., c’=0; Fritz & MacKinnon, 2007). When c’ is equal to zero in the population, 

adequate power (i.e., β = .80; Cohen, 1992) is obtained for a medium sized indirect effect 

when sample sizes are approximately 500 or more and for large effects when sample 

sizes approximate 100 participants (MacKinnon et al., 2002). These findings are 

problematic in psychological research given that many effect sizes are small and it has 

been estimated that approximately half of studies testing for a mediated effect use a 

sample size of less than 200 (Fritz & MacKinnon, 2007; Rosnow & Rosenthal, 2003).  

A variation on the causal steps method is the test of joint significance. This test 

suggests the presence of a mediation effect when both the a path and the b path are 

significant (Kenny, Kashy, & Bolger, 1998; MacKinnon et al., 2002).  This technique has 

greater power to detect effects as compared to the causal steps method, but also lacks a 

parameter estimate of the mediated effect. This method is adequately powered (i.e., β = 

.80) to detect a small effect when the sample size is approximately 500 or more, 
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adequately powered to detect a medium effect when sample sizes are approximately 

equal to or greater than 100 and powered to detect a large effect in small sample sizes 

(e.g., ~ 50; MacKinnon et al., 2002). Despite these improvements in power, this approach 

does not yield information on the point estimate or standard error of the mediated effect 

(i.e., ab; MacKinnon et al., 2002). This and other limitations of the causal steps method 

mentioned above spurred the establishment of other contemporary tests for mediation.  

Contemporary approaches to quantifying a mediated effect focus on either the 

difference in coefficients (i.e., c – c’) or the product of the coefficients (i.e., a*b; see 

MacKinnon, Warsi & Dwyer, 1995; MacKinnon, 2008).  In the difference of coefficients 

approach, the focus is on comparing the relationship between X and Y before and after 

controlling for M, where c – c’ defines the mediated effect and is estimated by two 

equations (i.e., Equation 2 and 3 above). The c parameter is estimated as the overall 

effect of X on Y, without consideration of M. (i.e., see Equation 3). The c’ parameter is 

the direct effect of X on Y when controlling for M (i.e., see Equation 2). The difference 

in these coefficient yields the point estimate of the mediated effect. If the c’ coefficient is 

equal to 0 then the effect of X on Y is completely mediated (Judd & Kenny, 1981; 

MacKinnon et al., 1995).  

Alternatively, in the product of the coefficients approach to quantifying the 

mediated effect, the product of the a and b parameters, discussed in relation to Equation 1 

and 2 above, conveys the indirect effect of X on Y through M. The a parameter reflects 

the impact of X on M and the b parameter represents the impact of M on Y. Together, ab 

represents the point estimate of  impact that a one unit change in X has on Y indirectly 

through M (MacKinnon, 2008; MacKinnon et al., 1995). The logic of this approach 
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derives from path analysis and path tracing rules to estimate indirect effects (Wright, 

1934). 

In many situations, both the product of coefficients and difference of the 

coefficients approaches will yield equivalent estimates (MacKinnon et al., 1995). For 

example, when the dependent variable is continuous and ordinary least squares estimation 

is utilized, the product of coefficients and difference of the coefficients approaches are 

algebraically equivalent (MacKinnon & Dwyer, 1993; MacKinnon, et al., 1995). 

However, this is not the case when the outcome is dichotomous (MacKinnon et al., 

2007). Research suggests that the product of the coefficients method is more flexible and 

amenable to models that are more complex than the single mediator model with a 

continuous outcome (MacKinnon, et al., 2007; MacKinnon et al., 1995). For example, in 

a multiple mediator model, the difference in coefficients approach does not allow for 

examination of individual mediated effects. Only one estimate of the overall mediated 

effect is estimated (i.e., c – c’). Therefore, the researcher cannot compare strength of 

different individual mediated effects. With these limitations in mind, the remainder of the 

discussion will focus on the product of the coefficients approach. 

Testing the significance of the mediated effect (i.e., ab). A general approach to 

testing the significance of the indirect effect is to divide the ab parameter by a standard 

error and compare the resulting test statistic to a standard normal distribution. While 

many estimates of the standard error for ab have been derived, the most commonly used  

normal theory estimator was derived by Sobel (1982, 1986) using the multivariate delta 

method based on a first order Taylor series approximation: 

����� =  ������� + �������                                                    (4) 
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Though standard error estimates based on the multivariate delta method are close 

to their true value in many conditions and have very low type one error rates (MacKinnon 

et al., 2002), this technique assumes that the distribution of ab is normally distributed and 

that the derived test statistic (i.e., ab/sab) can be compared to a standard normal 

distribution for testing statistical significance. However, the distribution of the product of 

two normally distributed parameters is not normally distributed (Aroian, 1947). Rather, 

the resultant sampling distribution of ab is often kurtotic and asymmetric (MacKinnon, 

Lockwood, & Hoffman, 1998). As such use of a normal theory estimator will be 

underpowered in small sample sizes (MacKinnon et al., 1998). To support this, Monte 

Carlo simulation studies suggest that in order to detect a small effect, a sample size of 

1000 is needed to be adequately powered when using the Sobel (1982, 1986) standard 

error (i.e., β ≥ .8; Cohen, 1992). This is problematic considering that many effects in the 

social sciences are small (Rosnow & Rosenthal, 2003). However, when considering 

medium and large effects, this method is adequately powered except in the case of a 

moderate effect and small sample size (i.e., n = 50 or less). Given that ab is not normally 

distributed and this has led to problems with an inability to detect effects when they are 

present, other estimation techniques have been recommended that better account for these 

issues.  

Distribution of the products methods of testing for mediation take into account the 

non-normal sampling distribution of ab. In the asymmetric distribution of the product 

test, critical values are obtained from the ab distribution and asymmetric confidence 

intervals are created to test for the presence of mediation. The distribution of the products 

methods stemmed from the work of Meeker, Cornwell, and Aroian (1981) whom created 
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tables of critical values for the distribution of the product of two normal variables. These 

tables described critical values for the indirect effect at different values of α, β, σα, σβ. 

MacKinnon et al. (2004) & MacKinnon et al. (2002) conceptualized a method to test for 

mediation using asymmetric confidence intervals derived from an expansion of Meeker et 

al. (1981) distribution of the product tables. These confidence intervals, that are 

asymmetric to reflect the true nature of the distribution of ab, can be constructed based on 

the following equations: 

��� =  ���� + ������ ����� ∗  �� !"#                                 (5) 

��� =  ���� + ������ �$%�� ∗  �� !"#                                 (6) 

Unlike confidence intervals based on a standard, normal distribution, calculation 

of the upper and lower confidence limits yield two different values given asymmetry in 

the distribution of ab. The upper limit of the confidence interval is created by multiplying 

the derived critical value associated with the distribution of the product of two random 

variables (Meeker et al., 1981) by the standard error of ab and adding it to the ab 

parameter estimate. The lower limit is calculated in the same manner but the lower level 

critical value is used.  

Alternative approaches to estimating asymmetric confidence intervals include 

resampling approaches, which build an empirical sampling distribution of ab to test the 

parameter for significance at desired levels of alpha (Efron & Tibsharani, 1994). 

Resampling approaches use the original dataset to create new datasets using sampling 

with replacement and then identify the corresponding percentiles of the sampling 

distribution associated with a desired level of alpha; parameter estimates, including ab, 

are then calculated in each of these datasets to create an empirical distribution of the 
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parameter estimate (Efron & Tibsharani, 1994; Shrout & Bolger, 2002). There are several 

resampling methods that can be used to produce these empirical distributions of ab 

including, but not limited to the non-parametric percentile, bias-corrected, and 

accelerated bias-corrected bootstrapping methods (Efron & Tibsharani, 1994). Results of 

several simulation studies suggest that the bias-corrected bootstrapped asymmetric 

confidence limits yield the best balance between adequate power to detect the presence of 

an indirect effect and Type one error rates (Fritz & MacKinnon, 2007; MacKinnon et al., 

2004; Shrout & Bolger, 2002). The bias-corrected bootstrap method takes into account 

the asymmetric distribution of the ab parameter distribution, as well as invokes a 

correction factor when the mean value of ab in the empirical sampling distribution is not 

equivalent to the sample estimate of ab (Efron & Tibshirani, 1994). However, while the 

bias corrected bootstrap has the greatest power, it can also have the highest Type 1 error 

rate (Fritz & MacKinnon, 2007; MacKinnon et al., 2004). Given that research in the 

social sciences is often clouded by small sample sizes, small effect sizes and the resulting 

reduced power to detect mediated effects, the bias-corrected bootstrap method will be 

used to test for mediation in both the simulations and applied example in this research.  

Assumptions of the Single Mediator Model. Many of the assumptions in 

mediation analysis are akin to those in general linear modeling (see MacKinnon, 2008 for 

a complete review of assumptions). First, correct functional form is assumed. More 

specifically, in a single mediator model where all variables are continuous, it is assumed 

relations between variables are linear. For example, a one unit increase in X is associated 

with a linear increase in M. While nonlinear relationships between variables can be 

specified, it is assumed that whatever model is specified is the correct functional form. 
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Additionally, it is assumed that there are no interactions among variables. That is to say, 

that there is a homogeneous effect of M on Y across levels of X as well as a homogenous 

effect of X on Y across levels of M. It is also assumed that variables are normally 

distributed, no variables are omitted from the model and variables are measured correctly 

without error. Finally, there are several assumptions about residuals. It is assumed that 

predictors do not correlate with residuals and that error terms across the two equations 

(i.e., Equations 1 and 2 when examining ab) do not correlate. And finally, mediation 

analysis requires homogeneity of variance across levels of the predictors as well as 

normally distributed residuals.  

Causality in Mediation Analysis. In addition to the assumptions outlined above, 

there are several additional assumptions that must be considered in relation to causal 

inference (see Chapter 13 in MacKinnon, 2008). To make causal inferences in mediation 

analysis, one needs to consider temporal precedence of variables in the model. To be 

causal, X should precede M, which should in turn precede Y. In addition, it is assumed 

that the timing of measurement captures the unfolding of the causal relationships. For 

example, one needs to consider if a change in M results in an instantaneous change in Y 

or whether the causal effect is delayed. In addition, unless the predictor (i.e., X) and the 

mediator (i.e., M) are both randomized, true causal inference is not tenable in the 

mediation model without additional statistical considerations. Researchers often want to 

make causal claims based on their research using mediation models and recent statistical 

approaches have been developed to address limitations in this domain, as well as have 

provided machinery to conduct sensitivity analyses to omitted confounders (e.g., 

VanderWeele, 2015). For example, in an application similar to the research proposed, 
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VanderWeele (2011) describes that in a mediation model with a rare proportional hazards 

outcome, the ab estimate is equivalent to causal inference approaches for estimating the 

indirect effect. While causal inference in mediation analysis is a well-studied and still 

burgeoning area of inquiry, it will not be addressed in the current research. However, 

causal inference in DTSM models represents an important domain for extension of this 

research in the future. 

Survival Analysis  

Survival analysis is a statistical model in which the outcome of interest is the 

timing of a particular event occurrence (Miller, 2011). In these models, time can be 

represented continuously or discretely. In either case, these analyses help answer 

questions about whether or not an event occurs and if so, when. It also allows researchers 

to garner information about the probability of survival (i.e., not experiencing an event of 

interest) and how survival rates can be impacted by covariates of interest (Cox, 1972). 

Survival analysis has origins in the study of human life and is steeped in terminology 

related to life and death (Cox, 1972). Indeed, the term ‘survival analysis’ is a result of the 

initial application of these analyses in medical research endeavors where the outcome of 

interest was death/survival. However, over time, similar methods concerned with event 

time analysis arose in different substantive areas (Allison, 1984). This methodology has 

been used in a wide breadth of applications over many decades, and has been more 

recently utilized in the social sciences (Allison, 1984; Singer & Willett, 1991) to 

understand phenomena such as the etiology of risky behavior, school failure and removal, 

as well as to evaluate prevention and intervention studies (e.g., (Clarke et al., 2001; Li et 

al., 2011; Plank, DeLuca, & Estacion, 2008).  
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In survival analysis, the survivor function represents the probability that a person 

survives longer than time t. In continuous time survival analysis, this equation is2: 

&'() = *'+ > ()                                                       (7) 

 The survivor function is a monotonically decreasing function, where the 

probability of surviving is one at baseline and falls toward zero as time reaches infinity. 

Thus, all survivor functions have a similar shape, a negatively accelerating extinction 

curve. This phenomena was noted by Hunt, Barnett, and Branch (1971) after examining 

84 studies related to relapse rates in addiction treatment and asserting that “all the curves 

were remarkably similar” (p. 455). The authors portended the utility of survivor functions 

by indicating that they "hoped to use the differences in slope between individual curves 

as a differential criterion to evaluate various treatment techniques" (p. 455).  

Though the survival function provides a strong basis for understanding survival 

models, estimation of a hazard function is arguably more crucial for conducting the 

analyses. In contrast to a focus on surviving, or not failing, the hazard function represents 

the instantaneous potential per unit time for failure to occur, given that the subject has 

survived up to time t (Miller, 2011). In continuous time survival models, the hazard 

function is represented by the following equation: 

h(t) = lim∆1 →�
34( ≤ + < ( + ∆(7+ ≥ (9

∆1                                     (8) 

The numerator is the conditional probability that an individual’s survival time 

(i.e., T) falls in the interval between the time point of interest (i.e., t) and a designated 

time interval (i.e., Δt), given that survival time is greater than or equal to the time point of 

                                                           

2 Much like ordinary least squares versus logistic regression, different equations are 
needed for continuous versus discrete time survival analysis.  
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interest. The numerator thus yields a probability per unit of time of survival, or the 

conditional failure rate. The hazard function is always nonnegative and has no upper 

bound. The hazard function is often the outcome variable in survival models given that it 

is an instantaneous measure of potential and can be used to identify an appropriate model 

form (e.g., exponential, Weibull, lognormal; Miller, 2011). 

Considerations for censored data in survival models. One critical feature of 

survival data that differentiates it from other types of data is censoring (Leung, Elashoff, 

& Afifi, 1997). Censoring occurs when some information about a study participant’s time 

to event is unknown; in this way censoring can be viewed as a special type of missing 

data mechanism. Individuals can have right, left, or interval censored data (see Table 

2.1). Survival times are considered to be right censored when a participant does not 

experience the event of interest during the study period.  This may occur when an 

individual participates for the duration of the study but does not experience the event of 

interest, or when a participant withdraws from a research study or is “lost to follow-up”.  

In these cases, it is known that survival time exceeds a certain point (i.e., beyond the 

period the individual was observed) but the exact timing of the event is unknown. Despite 

censoring, these cases yield critical information about event non-occurrence during the 

period that the individual was observed and they are included in the likelihood function 

for the data.  Alternatively, left censoring occurs when an individual experiences the 

event of interest prior to the study beginning. For example, as is indicated in Table 2.1, 

the left censored individual experiences the event (e.g., first occurrences of alcohol use, 

divorce, or unemployment) before the study’s first wave of data collection. However, the 

issue of left censored data may be completely obfuscated in a study if exclusion criteria is  
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Table 2.1 

Censoring in Survival Analysis 

Type of Censoring Before 
Study 

Time 1 Time 2 Time 3 Time 4 After 
Study 

Right Censoring 0 0 0 0 0 1 

Left Censoring 1 0 0 0 0 0 

Interval Censoring 0 0 Missing Missing 0 0 

 

Note. 0 = No event, 1 = event occurred, Missing = Participant not observed. 
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outlined that specifies an individual cannot be included in the study if they have already 

experienced the event of interest. Finally, an individual can be interval censored. In this 

case, an individual provides data for some time points but not all and the exact timing of 

event occurrence is not known. For example, in Table 2.1, an individual in year one did 

not experience the event of interest, they were not observed in years two through three 

but indicated at time four that the event occurred prior to year four. It is therefore 

unknown whether the event occurred in year two or three but it is known that the event 

did indeed occur and occurred prior to year four.  

Continuous versus discrete time survival analysis. Continuous time methods 

have dominated both the methodological and applied literature for survival models 

(Allison, 1984). However, discrete-time survival methods help overcome several 

challenges associated with continuous time methods and are often more appropriate in 

social science settings where discrete measurement is commonplace (Vermunt, 1997). 

First, discrete-time survival analysis is useful when outcomes are measured in a discrete 

fashion or actually occur in a discrete fashion (Allison, 1982; Singer & Willett, 1993; 

Willett & Singer, 1993). In many research applications, events are measured discretely 

(e.g., yearly) and when the time between measurement is large (e.g., months, years), it is 

likely more appropriate to model events in discrete time intervals (Allison, 1984). This 

can be useful in the social sciences, for example, when studying onset to drug use that is 

measured in weekly, monthly or yearly intervals. This methodology is also more flexible 

than continuous time methods and easily allows for the integration of time-varying 

covariates (Singer & Willett, 1993; Willett & Singer, 1993). Relatedly, the proportional 

hazards assumption, that requires the effect of a predictor to be constant over time, can be 
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easily relaxed in discrete time models to incorporate predictors that have time variant 

effects (Singer & Willett, 1993; Willett & Singer, 1993). 

In discrete-time survival analysis, the discrete-time hazard is the outcome of 

interest and represents the conditional probability that a randomly selected individual will 

experience the event of interest in time period j, given that they did not experience it 

beforehand: 

ℎ;= *�<+ = = | + ≥ =?                                                      (9)  

The Cox model is a semiparametric approach to survival analysis in which there 

are no distributional assumptions related to the occurrence of events but there is an 

assumption made about a specific functional form between the predictors and the 

outcome of interest (Cox, 1972). While the model is often applied to continuous time 

survival outcomes, it can also be applied to discrete-time onset to event outcomes (Willett 

& Singer, 1993) so that the function can have logistic dependence on the observed time 

periods and predictors: 

ln <ℎ4(A;9? = B�;CA;D + �����E� + ⋯ �G���EG                      (10) 

Here the dummy coded variables (i.e., CA;) represent a vector of the observed 

discrete time intervals while �; is the time specific baseline log-hazard rate. And the � 

coefficients represent the association with predictors of interest. Thus, we can ascertain 

risk associated with each discrete time period as well as the impact of predictors on the 

log-hazard function.  

Assumptions of the discrete time survival model. There are several 

assumptions associated with the discrete-time survival model that must be met to make 

inferences from the sample to the population (see Singer & Willett, 1993). First, 
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independent censoring is assumed and entails that missingness is not related to event 

occurrence. This suggests that individuals in the risk set are not systematically different 

from individuals that are censored and are representative of the population that is at risk 

for the event of interest.  It is also assumed that there is a linear relationship between 

predictors and the logit hazard probability, however, polynomial terms or interactions 

may also be included in the model. Next, it is an inherent model assumption that there is 

no unobserved heterogeneity in the logit hazard. As can be seen in Equation 10, there is 

no error term included in the discrete-time survival model. Rather, it is assumed that the 

covariates included in the model account for variation in the logit hazard across 

individuals. Finally, use of this model assumes that the impact of a predictor on the logit 

hazard is constant across time periods (i.e., proportionality assumption). However, as 

purported by Singer and Willett (1991): 

“But we hasten to add that we have found, in studies of a wide variety of 

phenomena – including teachers’ careers, child mortality, duration of 

breast feeding, time to undergraduate degree, time to doctorate, and age at 

first suicide ideation – that violations of the proportionality assumption are 

the rule, rather than the exception ” (Singer & Willett, 1991, p. 279). 

With this in mind, it is important to explore potential violations of this assumption 

as well as models that can accommodate nonproportionality. Should a violation arise, the 

model can easily be modified to account for this with the inclusion of an interaction of 

the covariate with time (Masyn, 2014; Willett & Singer, 1991; 1993). This is discussed in 

more detail below.  
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Discrete-time survival mediation models. Discrete time survival models can 

elucidate the impact of a predictor on the timing of event occurrence. However, it is often 

informative to move beyond these simplistic models to understand how or why a 

predictor influences timing to event outcomes by incorporating third variables. DTSM 

models (Fairchild et al., 2015) help researchers to elucidate the impact of predictors on 

the timing of occurrence of a particular event, such as the onset of drinking behaviors in 

youth.  DTSM models integrate mediation analysis and discrete-time survival analysis to 

facilitate investigations that look at the influence of a predictor on the timing of an event 

directly as well as indirectly through a mediator. The simplest DTSM model can be 

represented with one continuous predictor, one continuous mediator and a survival 

outcome, and is defined by two equations:  

� = �� + �� + 
�                      (11) 

� = HI J KLM| NLM, PLM
�Q KLM| NLM, PLMR =  B�;CA;D + ′�A; + ��A;              (12) 

Equation 11 reflects the impact of the predictor on the mediator. In Equation 12, the 

outcome is the log-hazard odds of event occurrence. The c’ coefficient represents the 

effect of the predictor, X, on the log-hazard odds of event occurrence and the b 

coefficient represents the effect of the mediator on the log-hazard odds. The indirect  

effect is defined by the product of the a and b parameters while the direct effect is 

defined by c’. 

To date, little methodological work has focused on estimating mediated effects in 

discrete-time models (i.e., versus continuous-time models) despite utility in research 

where data is not collected in a continuous-time manner or when outcome events do not 

occur in a continuous manner. Fairchild et al., (2018) conducted a simulation study of the 
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DTSM model to provide recommendations for the field about power, required sample 

size and accuracy of parameter estimation (NIDA - R01DA030349). While this guidance 

will promote utilization of this model in the field, the DTSM model has not been formally 

expanded to consider covariates that have varying effects over time. The impact of 

covariates with time variant effects is critical to understanding complex research 

questions, such as those related to the onset of alcohol use and the relationship with 

familial relationships and parenting behaviors. This research will build upon the Fairchild 

et al. (2018) work by extending the model to include a mediator with a time variant effect 

and examining the performance of the model in a Monte Carlo simulation study.  

DTSM models with a mediator with a time-varying effect. While time invariant 

covariates remain at a constant value across time, such as demographic attributes like 

race/ethnicity and sex, time-varying covariates can be defined as any variable in the 

model that changes in value over the course of study. In longitudinal research, it is often 

the case that time-varying covariates are measured and hypothesized to impact outcomes. 

For example, in developmental, longitudinal research, many facets of an individual are 

developing and measured repeatedly over time, such as social, emotional and cognitive 

abilities. Moreover, both time-invariant and time-varying covariates can exert either a 

time variant or time-invariant effect on the outcome. A time variant effect is present 

when the effect of a predictor on an outcome differs in magnitude across measurement 

waves (i.e., time). For example, a time variant predictor, such as parenting behaviors at 

baseline, could have a small effect on onset of alcohol use in waves representing early 

adolescence and null effects in later waves representing late adolescence as youth become 
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more independent. Different discrete time survival models are required to represent these 

possibilities (see “Types of covariates” in Masyn, 2014; Singer & Willett, 1991; 1993). 

Time-varying covariates can be included in the discrete-time survival model to 

allow events at time ti to be explained by covariates measured at that moment (Masyn, 

2014; Willett & Singer, 1991; 1993). These effects are interpreted similarly to fixed 

covariates if they have a time invariant effect. When this is the case, the inclusion of the 

time-varying variable does not violate the proportional hazard assumption, the 

assumption that the effect conveyed on the log-hazard by the covariate does not change 

over time periods. As mentioned above, in social science research this may be a rigid 

assumption, especially when considering the impact of predictors over the course of child 

and adolescent development (Willett & Singer, 1993). However, the model can be 

expanded to allow covariates to have a time variant effect by including a statistical 

interaction of the covariate with time. To adjust Equation 12 to allow a time variant effect 

of the mediator: 

� = HI T ℎA;| �A;,  �A;1 −  ℎA;| �A;,  �A;W =  B�;CA;D + ′�A; + ���� + ��'�� × C�) 

… �G4�� × C;9                                          (13) 

Here, all terms retain their previous meaning, however, one time-invariant mediator with 

a time variant effect (��), predicts the log-hazard function differentially over time 

periods, which is indicated in the equation by the statistical interaction terms (i.e., 

(�G4�� × C;9). Equation 11 remains as earlier defined. In this dissertation work, I will 

evaluate how inclusion of a time invariant, continuous mediator with a time variant effect 

influences estimation in DTSM models.   
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This model has particular public health relevance to answering questions related 

to alcohol use and abuse including understanding the trajectories associated with the 

onset of early youth alcohol use as well as evaluating dual-approach prevention and 

intervention programs. By incorporating both mediation and discrete-time survival 

analysis as well as a mediator with a time variant effect, the model allows for the 

examination of direct and indirect effects of a predictor on the timing of the occurrence of 

alcohol use while also considering the impact of the mediator may vary over time. In 

research on developmental trajectories, this model could help researchers understand how 

developmental pathways operate in concert with parenting behaviors to impact timing to 

onset of youth alcohol use. The information garnered could then inform how targets of 

treatment for youth alcohol use may change over the course of development. In turn, the 

model could be used in program evaluation of dual-focused prevention/intervention 

strategies by examining the impact of the intervention on time to onset of alcohol use 

through hypothesized mechanisms of action while simultaneously considering 

mechanisms of action that may have a varying effect over time. 

 DTSM models in a structural equation modeling framework. Mediation analysis 

and discrete time survival analysis can both be conducted in a structural equation 

modeling framework (e.g., Cole & Maxwell, 2003; Masyn, 2014; Muthén & Masyn, 

2005). Accordingly, models integrating both mediation analysis and discrete time 

survival analysis can be conducted in a structural equation modeling framework. 

Modeling in the structural equation modeling framework affords several benefits 

(Fairchild et al., 2015; Masyn, 2014; Muthen & Masyn, 2005). Most statistical models 

assume that variables in the model are measured without error, however, this is unlikely 
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to be true. In structural equation modeling, the researcher can model latent constructs by 

incorporating measurement models to partition true variance and error variance. 

Partitioning out measurement error in mediation analysis can help to guard against Type I 

and Type II errors (Cole & Maxwell, 2003). Further, modeling discrete time survival 

outcomes in a structural equation modeling framework easily allows for the inclusion for 

time invariant or time variant effects (Fairchild et al., 2015; Masyn, 2014).  

Fairchild et al., (2015) demonstrate how the DTSM model with time invariant 

effects of the covariates can be estimated in the SEM framework (see path model in 

Figure 2.2).  The model is denoted by the following equations: 

� = �� + �� + 
�                      (14) 

Z = HI J [\ ']M^�| NLM, PLM)
�Q [\ ']M^�| NLM, PLM)R =  _; + ′�A; + ��A;                 (15) 

Equation 14 can be interpreted identically to Equation 11. In Equation 15, Z is the 

ultimate outcome of interest, however, and defines a continuous latent variable 

representing the latent propensity for onset of the event. Moreover, �; is a time-specific, 

binary outcome indicator that denotes whether or not the event of interest occurred.  

Similarly, _; is a time-specific threshold value, with the negative value equal to the time-

specific intercept denoted in Equation 12. As noted by Fairchild et al., (2015), when 

using maximum likelihood estimation, the logistic regression approach to discrete time 

survival analysis and this latent variable modeling approach are equivalent: 

“[T]he log odds of the marginal hazard probabilities in the logistic 

regression-based approach are equivalent to the log odds of the event 

indicator probabilities in the SEM-based approach, such that maximum 

likelihood estimates of the event indicator probabilities in Equation [15]  
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Figure 2.2 DTSM Model in a SEM Framework.  
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will equal maximum likelihood estimates of the marginal hazard 

probabilities in Equation [12]” (Fairchild et al., 2015, p. 7). 

Further, as presented in Masyn (2014), there are several parameterizations of the 

discrete time survival model in a structural equation modeling framework that are 

equivalent models when using full information maximum likelihood and when 

considering time to onset of only single (i.e., non-recurring) events. Another equivalent 

model would be estimating the model presented in Equations 14 and 15 as a single class 

mixture model. Estimation in a mixture modeling framework can allow for further 

extensions, such as nonparametric modeling of frailties (i.e., unobserved heterogeneity) 

in the timing to event onset outcome and incorporation of growth mixture modeling 

(Muthen & Masyn, 2005). Muthen & Masyn (2005) introduce discrete time survival 

analysis estimated in a mixture modeling framework (Muthen & Muthen, 2001; Muthen 

& Shedden, 1999). In this approach, the expectation-maximization (EM) algorithm 

(Dempster, Laird & Rubin, 1976) is used to obtain maximum likelihood estimates in a 

general latent variable modeling framework (Muthen, 2004; Muthen & Shedden, 1999). 

Muthen & Masyn (2005) present estimation of multiple classes to understand “long term 

survivors” and to incorporate growth mixture modeling. While these extensions are out of 

the scope of the present research, given these benefits, in the present research the DTSM 

model will be modeled in a mixture modeling framework to allow future extensions of 

the model.  

Specifically, the discrete time survival mediation model with a time variant effect 

will be modeled as a single class mixture model. The model under study is depicted in 
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Figure 2.3 and largely remains the same as presented above in Equations 14, 15, and 

Figure 2.2, however to there are two important differences. First, the diagram denotes 

that the model is estimated as a single class mixture model (i.e., K = 1). In addition, with 

the integration of a mediator with a time variant effect into the model, there will be 

multiple mediated effects, one for each binary onset indicator (i.e., �; ) included in the 

model. The indirect effect at each time interval will be reflected by the a path parameter 

multiplied by the b path for each time interval. Alternatively, there will be only one direct 

effect, as the impact of X on Y while controlling for M is being modeled in a traditional 

proportional hazard approach with a time invariant effect.  
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Figure 2.3 DTSM Model with a Time Variant Effect Estimated in a Mixture Modeling 

Framework. 

 

 

 

 

 

 

 

 

 

 

 



35 

 

 

 

CHAPTER THREE 

STUDY ONE: APPLIED EXAMPLE 

Method 

 Data and participants. The data for the DTSM model application (i.e., Study 

One) derives from a subsample collected through the NLSY97, a national, longitudinal 

study of approximately 9,000 youth.  These data are part of the National Longitudinal 

Surveys program funded primarily by the Bureau of Labor Statistics to understand issues 

related to the youth labor force such as education, training, government program 

participation, among other topics. The broader project was supplemented by funds from 

the National Institute of Child Health and Human Development, the Department of 

Education, the Office of Juvenile Justice and Delinquency Prevention, the Department of 

Defense and the Department of Labor to fund special, additional sets of questions related 

to each funder’s interests. Currently, 16 waves of data have been collected with 79.5% of 

the original sample retained at the most recent interview. Data for this study were a 

subsample of youth that had two residential parents and were selected for completion of 

the parental monitoring measure.  

In wave one of data collection, an adult in each home completed the NLSY97 

screening measure. If a potentially eligible youth lived in the home, any NLSY97-eligible 

youth(s) and one of the youth's parents were interviewed using a computer-assisted 

personal interview instrument, administered by an interviewer with a laptop computer. 
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Software guided interviewers through the electronic questionnaire on a laptop, selecting 

the next question based on a participant's answers.  During sensitive portions, when an 

interview occurred in person, the participant entered responses directly into the laptop.  

For subsequent waves of data collection, the interviews were also conducted using a 

computer-assisted personal interview instrument or by telephone.   

Measures. Measures of constructs representing the predictor, mediator and time 

to event outcome are as follows:  

Interparental support. The inter-parental support (IS) measure was the predictor 

(i.e., X). This measure assessed the residential father’s support of the residential mother 

as reported by the youth at wave one of the study. The six-item rating scale was rated on 

a five point likert scale ranging from “never” to “always”. The items used were adapted 

from a measure used in another study (i.e., IOWA Youth and Family Project; Conger & 

Elder, 1994). Items are as follows: “Does he scream at her when he is angry?”;  “Is he 

fair and willing to compromise when they disagree?”; “Does he express affection or love 

for her?”; “Does he insult or criticize her or her ideas?”; “Does he encourage or help her 

with things that are important to her?”; “Does he blame her for his problems?” (Conger & 

Elder, 1994; Moore et al., 1999). The items “Does he scream at her when he is angry?”, 

“Does he insult or criticize her or her ideas?” and “Does he blame her for his problems?” 

were reverse coded before scoring so that higher scores on the IS measure would reflect 

higher levels of IS, as rated by the youth.  

Psychometric assessment of this measure was conducted by Moore et al. (1999) 

using wave one data. The data were scored by creating a sum of the six items, resulting in 

possible scores falling between 0 and 24, with higher scores indicating more parental 
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support. The mean score for the 3,189 youth involved in the study was 19.00 (SD = 4.28). 

Cronbach’s alpha indicated adequate levels of internal consistency (α = .81; Cronbach, 

1951). In addition, this measured demonstrated predictive validity, with greater support 

being associated with lower levels of substance use, delinquency and emotional and 

behavioral difficulties. In the subsample to be utilized for these analyses, internal 

consistency decreased unremarkably from α = .81 to α  = .79; this indicates adequate 

levels of internal consistency in the current subsample (Cronbach, 1951).  

Parental monitoring. The parental monitoring (PM) measure was used as the 

mediator variable. NLSY procedures suggest that this measure was completed by a 

selected subsample of youth that were between 12 and 14 years old at wave one of data 

collection. This measure assessed youth-reported monitoring by the mother at wave two 

of the study. The four-item rating scale was rated on five point likert scale ranging from 

“knows nothing” to “knows everything”. The items were meant to be representative of 

items commonly used in the literature (Hetherington, Cox, & Cox, 1982; Maccoby & 

Mnookin, 1992). Items are as follows: “How much does she know about your close 

friends, that is, who they are”; “How much does he/she know about your close friends' 

parents, that is, who they are?”; “How much does she know about who you are with when 

you are not at home?”; “How much does she know about who your teachers are and what 

you are doing in school?” (Hetherington et al., 1982; Maccoby & Mnookin, 1992). The 

data were scored such that higher scores reflect greater monitoring by the mother, as 

reported by the youth. 

Psychometric assessment of this measure was conducted by Moore et al. (1999) 

using wave one data. The data were scored by creating a sum of the four items, resulting 
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in possible scores falling between 0 and 16. The mean score for the 5,240 youth was 

10.24 (SD = 3.30). Cronbach’s alpha indicated adequate levels of internal consistency (α 

= .71; Cronbach, 1951). In addition, this measure demonstrated predictive validity, with 

greater parental monitoring being significantly associated with higher report of parental 

limit-setting, greater parental strictness, decreased substance use and delinquency as well 

as decreased emotional and behavioral difficulties. In the subsample to be utilized for 

these analyses, internal consistency increased unremarkably from α = .71 to α = .73; this 

indicates adequate levels of internal consistency in the current subsample (Cronbach, 

1951). 

Onset to alcohol use. These outcome data are a series of binary outcome 

indicators for each age that the youth participated in the study.  These alcohol use onset 

indicators were created from questions regarding the age of a youth’s first drink at wave 

one and questions asked at subsequent waves about the youth having their first drink after 

the date of the prior interview. The data were coded so that there was a variable for each 

year of age of the youth (e.g., onset at 18 years of age).  Onset for this analysis was 

assessed up to 21 years of age, the legal drinking age in the United States. Each youth 

could only have one period indicated in which they onset use of alcohol. For each year 

before, in which a youth was considered at risk for initiating alcohol use, the variables 

were coded as zero.  For each year after onset, the data was coded as missing so that the 

youth was no longer included in the risk set. Further, because of assumptions in this data 

around a Bernoulli stochastic process (Ozarow & Leung-Yan-Cheong, 1979), which 

suggests that periods of this survival data outside of observation are complicated and 

ergonic, deterministic coding was utilized to account for interval censored data (Ozarow 



39 

& Leung-Yan-Cheong, 1979). For interval censored individuals, we assigned the earliest 

possible event time. For example, if onset data was missing for age 13 and 14 but it was 

known that the youth began using alcohol at some undetermined point before the 

interview at age 15, then onset was coded at age 13.  It is not believed that this will 

reduce variability in the outcome indicators as each individual could only have one 

period of onset overall (i.e., we do not allow multiple onset intervals). Right-censored 

individuals remained right-censored.  

Analytic plan. A model building procedure was conducted to illustrate finding 

the best fitting model in a structural equation modeling framework and to examine 

testable assumptions. In this model building approach, the log-likelihood ratio test was 

utilized to test for significantly better fit between a series of nested models, beginning 

with a null model with no relationships modeled between the predictor, mediator, and the 

latent propensity for onset. Note that the use of the loglikelihood test is appropriate in this 

instance of mixture modeling because all models were single class solutions (Muthen, 

2004; Muthen & Masyn, 2005). This would not be appropriate in situations in which 

models with different numbers of classes were compared (Muthen, 2004; Muthen & 

Masyn, 2005).  The Akaike Information Criterion (AIC; Akaike, 1973), Bayesian 

Information Criterion (BIC; Schwarz, 1978) and the sample size adjusted BIC (aBIC; 

Sclove, 1987) were used to supplement the loglikelihood ratio test; smaller values of the 

AIC, BIC and aBIC indicated better fitting models (Akaike, 1973; Schwarz, 1978; Sclove 

1987). The best fitting model based on these criteria was noted. However, regardless of 

fit, for demonstration purposes and for subsequent use of parameter estimates in Study 
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Two and Study Three, the focal model for this dissertation was interpreted (i.e., the 

DTSM model with a time variant effect of the mediator). 

 In this applied example using data from the NLSY97, the DTSM model with a 

time variant mediator was estimated in a mixture modeling framework (see Muthen & 

Masyn, 2005) to understand how IS impacts timing to onset of youth alcohol use directly 

and indirectly through PM. Analyses were run in Mplus (see code for running the applied 

example in Appendix A [i.e., DTSM model with time variant effects in the NLSY97 

sample]; Muthén & Muthén, 1998-2015) using the EM algorithm to obtain maximum 

likelihood estimates in a general latent variable modeling framework (Muthen, 2004; 

Muthen & Shedden, 1999). To investigate mediation, PM was regressed on IS to produce 

an a path estimate. The onset-to-event outcome indicators (i.e., onset of youth alcohol use 

from age 14 to 21) were regressed on the mediator, PM, to yield each of the b path 

estimates (i.e., b14 – b21). And the onset-to-event outcome latent variable was regressed 

on IS to yield the c’ parameter estimate. The a and b parameter estimates were multiplied 

to determine the significance of the indirect effects by examining bias-corrected 

bootstrapped confidence intervals, in line with currently recommended techniques in the 

literature (MacKinnon et al., 2004; Preacher & Hayes, 2008). 

Results 

Descriptive statistics. The final sample for analyses consisted of 1,026 youth that 

had completed the IS and PM measures and did not have left censored outcome data. 

Youth were primarily male (i.e., 52.6%), Caucasian (63.3%), and non-Hispanic (78.2%), 

with ages at wave one of data collection falling between 12 and 16 years of age (M = 

13.13, SD = .94).  
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Youth-reported levels of mother monitoring (i.e., PM) ranged from .00 - 4.00 with 

a mean of 2.69 (SD = .76). This suggests that on average, across the four PM items, a 

youth reported their mother fell between “knows some things” and “knows most things”. 

These scores approximated a normal distribution, with a skewness of -.76 (SE = .076) 

and kurtosis of .60 (SE = .15). Youth-reported father support of the mother (i.e., IS) 

ranged from .50 – 4.00 with a mean of 3.30 (SD = .66). This suggests that on average, 

across the six IS items, a youth reported their father “usually” to “always” engaged in 

supportive behaviors. Only 23% of the sample reported a total IS score lower than 3.00 

(i.e., father was “usually” supportive of the mother), suggesting that youth perception of 

IS was predominately positive. The IS total score was non-normally distributed, with 

skewness of -1.28 (SE = 0.08) and kurtosis of 1.66 (SE = 0.15). However, bootstrapped 

standard errors were utilized for analyses which are nonparametric estimates of the 

standard error (Efron, 1981; Efron & Tibshirani, 1993).  

Finally, youth were between the age of 14 and 18 at wave three of data collection, 

with a mean age of 15.74 (SD = .85). Accordingly, the sequence of outcome variables 

represent onset of alcohol use from age 14 to 21, the legal age of alcohol use in the 

United States. Youth were not included in these analyses if they began drinking before 

wave three (i.e., left censored). A table describing the number of youth at-risk and those 

that began drinking (i.e., onset) in a given period from age 14 to age 21 is presented in 

Table 3.1, as well as the respective hazard probability (i.e., h(j)).  

DTSM model building. A model building approach was utilized to determine 

which model best fit the data and then to assess the tenability of the testable assumptions  
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Table 3.1 

Timing of onset of youth alcohol use 

 Age 14 Age 15 Age 16 Age 17 Age 18 Age 19 Age 20 Age 21 

At-risk 31.00 445.00 676.00 754.00 561.00 422.00 322.00 219.00 

Onset 5.00 99.00 149.00 197.00 137.00 96.00 98.00 48.00 

h(j) .16 .22 .22 .26 .24 .23 .30 .22 
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associated with a DTSM model with a mediator that has a time variant effect. Fit 

information (i.e., Loglikelihood ratio test, AIC, BIC, aBIC) can be found in Table 2.2.  

The first model that was fit was a null model in which the means and variances of 

FI and PM were estimated. In addition, the latent construct representing onset, with mean 

and variance constrained to zero, was estimated with each of the onset variables loading 

equally (i.e., loadings of alcohol-use onset variables at ages 14-21 were constrained to 

load equally at 1.00). This model was utilized as the baseline model with a log-likelihood 

= - 4089.757, AIC = 8203.514, BIC = 8262.715 and aBIC = 8224.601. 

The alternative model built upon the previous model by regressing the timing to 

onset of adolescent alcohol use latent construct on the independent variables, IS and PM. 

Note that there was no indirect effect of IS on onset modeled here, only the direct effects 

of IS and PM on the time to onset latent construct. This model appeared to fit worse than 

the null model given a negligible change in the loglikelihood value as well as larger AIC, 

BIC and aBIC values. 

The next model that was fit was the DTSM model with a time invariant effect of 

the mediator, PM, on the latent propensity for onset outcome. That is, IS predicted the 

time to onset latent construct directly and indirectly through PM. The loglikelihood ratio 

test indicated that this DTSM model fit significantly better than the null model, χ2 (3) = 

28.05 , p < .05. This was further supported by AIC, BIC and aBIC values that were 

smaller than those obtained for the null model.  

Subsequently the DTSM model with time invariant effects was compared to the 

DTSM model with a time variant effect of the mediator. It did not appear that the model  
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Table 3.2 

Model building: Model fit indicators 

Model Free 

parameters 

Log-

likelihood  

Akaike 

(AIC) 

Bayesian 

(BIC) 

Adj. BIC 

(aBIC) 

Null 12 -4089.757 8203.514 8262.715 8224.601 

Alternative 14 -4089.739 8207.477 8276.545 8232.080 

DTSM 15 -4075.733 8181.466 8255.468 8207.826 

Add M time variant 22 -4070.328 8184.655 8293.191 8223.316 

Add frailties  23 -4070.592 8187.183 8300.652 8227.602 

Add X variant 29 -4067.924 8193.847 8336.916 8244.809 

Add X&M Moderator  23 -4069.881 8185.763 8299.232 8226.181 
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with a time variant effect of PM on the time to event indicators fit significantly better 

than the DTSM model with time invariant effects, χ2 (7) = 10.81, p > .05. 

This was corroborated by AIC, BIC and aBIC values that were larger than those 

obtained when estimating the DTSM model with a time invariant effect of the mediator. 

Given these findings, in a real data application, the DTSM model without a time variant 

effect of the mediator would likely be retained as the final model and assumptions would 

be checked accordingly. However, given that the goal of obtaining parameter estimates 

was to inform population parameters for a Monte Carlo study focused on estimation of 

the DTSM model with mediator they conveyed a time variant effect on the outcome, the 

DTSM model with a time variant mediator was treated as the best fitting model here. 

Since the model with a time variant effect of M and time invariant effect of X was 

retained, the remainder of the model building procedure was utilized to demonstrate the 

examination of the testable assumptions associated with a DTSM model with a time 

variant effect of the mediator. First, a frailty term was added to the model to test the 

assumption related to the presence of unobserved heterogeneity in the logit hazard. A 

smaller loglikelihood value and larger AIC and BIC values for this model suggested that 

this model assumption was reasonable. Next, I tested the assumption related to whether 

there was a time invariant effect of IS on the timing to onset of youth alcohol use by 

estimating a model where there was a time variant effect of both PM and IS on timing to 

onset of youth alcohol use and comparing fit of that model to the DTSM model with a 

time variant effect of PM and time invariant effect of IS. The model that was expanded to 

include the time variant effect of IS did not fit significantly better, χ2 (7) = 4.81 , p > .05, 

and also produced AIC, BIC and aBIC values that were larger than the more 
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parsimonious model. This suggests that the assumption related to no time variant effect of 

IS on the outcome was defensible. Finally, I tested the assumption that there was no 

significant interaction between the predictor (i.e., IS) and mediator (i.e., PM) by fitting a 

model that incorporated this interaction term. This model did not fit significantly better χ2 

(1) = .894, p > .05 and returned larger AIC and BIC values that the more parsimonious 

model, suggesting that this assumption was justifiable. 

I also assessed the tenability of the assumption related to linearity of the 

predictors on the timing to event outcome using the Box-Tidwell (1962) transformation 

test. When examining the linearity of the relationship between IS and the latent construct 

representing the discrete-time to event outcome, there was no statistically significant 

impact of the interaction between IS and it’s natural log. Similarly there was no 

statistically significant impact of PM and the interaction with it’s natural log on the 

outcomes. This suggested that these assumptions were sound. 

Results of the DTSM model with a time variant effect. Statistically significant 

paths of the DTSM model with a time variant effect are presented in Figure 3.1. As 

depicted, there was no statistically significant impact of the predictor, IS on the time to 

event latent construct, c’ = -.001 (.062), p = .992. This suggests that there is no direct 

impact of IS on the latent propensity for youth alcohol use (i.e., log odds in an observed 

variable model). Alternatively, there was a significant impact of IS on PM, a = .187 

(.039), p < .01. A one-unit scale change in IS was associated with a .187 unit change in 

PM. While there were no significant effects of PM on the log odds of event occurrence at 

age 14 and ages 16 - 21, there was a significant impact of PM on the log odds of youth 

alcohol use at age 15, b15 = - .318 (.156), p = .042. At age 15, increased PM was  
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Figure 3.1 

Applied Example: DTSM Model with a Time Variant Effect of the Mediator 

Note: Solid lines denote statistically significant paths.  

 

 

 

 

 

 

 

 

 

 



48 

associated with a decrease in the log odds of youth alcohol use. The overall indirect effect 

of IS on the log odds of event occurrence at age 15 was estimated to be statistically 

significant when examining a 95% bias-corrected, bootstrapped confidence interval, ab15  

= - .060,  CI = [-  .140, -  .012].  

Applied Example Discussion 

Results from these applied analyses suggested that the DTSM model with a time 

invariant impact of PM on the log odds of event occurrence fit the data best. However, 

given the focus of this dissertation, the DTSM model with a time variant mediator was 

retained as the final model for demonstration purposes as well as for parameter estimates 

for the following Monte Carlo studies. Model building and checking of assumptions 

suggested that the model assumptions were tenable. Results of the final, retained model 

suggested that there was no direct effect of IS on the latent propensity for event 

occurrence. However, there was a significant indirect effect of IS on the log odds of 

youth alcohol onset through PM at age 15.  

While this model was primarily estimated to supply parameter estimates for the 

subsequent Monte Carlo studies, it may also inform the applied youth alcohol use 

literature. Briefly, these findings align with the applied literature in this area in several 

ways. First, positive family environments have long been linked to healthy youth 

development, including the prevention of alcohol use (Anderson & Henry, 1994; Repetti, 

Taylor, & Seeman, 2002). Healthy family relationships and positive parenting behaviors, 

such as monitoring, have been implicated as important for delaying onset of youth  

alcohol use (Van Ryzin, Fosco, & Dishion, 2012). As expected, both IS and PM played a 

role in delaying time to onset of youth alcohol use. Some researchers suggest that this 
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impact of these predictors may vary over the course of child development (e.g.,Dishion & 

McMahon, 1998). This also aligned with the findings from this study given that IS and 

PM were only influential predictors of onset at age 15. This suggests that these important 

family functioning and parenting behaviors may be particularly important in earlier 

adolescence. It is anticipated that if there were not issues of data sparseness at age 14 (see 

Table 3.1), that the effect may have been observed at that age as well.  

However, there are notable limitations with the current research and findings 

should be interpreted with caution. First, analyses were conducted with a small subset of 

youth in the NLSY97 study that completed the IS and PM measures (i.e., youth with two 

residential parents and in the selected subsample for collection of the PM measure). 

While the broader NLSY sample was collected to be nationally representative, it is not 

anticipated that the subsample used for these analyses will mirror national characteristics. 

For example, for inclusion, youth in this sample were required to have two residential 

parents. In addition, given that the goal of this applied example was to garner parameter 

estimates for the subsequent simulation studies, the model was simplified and no 

covariates were included (e.g., gender, peer influences, etc.). Many other factors are 

anticipated to play a role in this complex, longitudinal process (e.g., see Donovan, 2004). 

And as noted above, there were issues of data sparseness (i.e., see Table 3.1), particularly 

at age 14 and findings related to these onset indicator variables should be interpreted with 

caution. 

So that the remaining simulations are rooted in conditions that reflect real-world 

research, parameters from this applied example serve as the foundation for the 

subsequent simulation studies. All aspects of the applied model were retained for the next 
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simulation study including the sample size and parameter estimates. However, the 

number of data waves was reduced by two waves. Specifically, onset at ages 14 and ages 

21 were not modeled in the subsequent studies. The number of valid cases in these cells, 

especially age 14, was notably sparse. Though this data sparseness warrants further 

consideration, it is outside of the scope of the current work. Therefore, further simulation 

studies utilized estimates for onset measured at six time points. Moreover, it is believed 

that fewer waves of data may be more representative of what is feasible for collection in 

the context of many applied research projects.  
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CHAPTER FOUR 

STUDY TWO: SINGLE – CELL SIMULATION STUDY 

Method 

In Monte Carlo simulation studies, data are generated as specified by the 

researcher so that population values of parameters are known (Muthén & Muthén, 2002). 

When population parameters are generated and known, it allows for examination of 

quantitative properties such as bias in parameter estimation and standard error, statistical 

power, and type one error rates (Muthén & Muthén, 2002). Using parameter estimates 

obtained from the NLSY application, a Monte Carlo simulation study was conducted of 

the DTSM model that incorporated a mediator with a time variant effect to assess bias in 

parameter estimation, power, type one error and coverage of the bias-corrected, 

bootstrapped confidence intervals. Given no previous work provides a strong foundation 

for effect sizes of parameters in the model under review, we will consider the ability of 

the model to recapture estimates from the applied analysis in Study One, which will serve 

as the population. 

Population model. This project was conducted in Mplus and R software 

packages (Muthén & Muthén, 1998-2015; R Core Team, 2017). Data generation and 

model estimation were run in Mplus, through MplusAutomation in R, given the 

software’s flexibility and utility in modeling (see code for Study Two in Appendix B; 

Hallquist & Wiley, 2018; Muthén & Muthén, 1998-2015; RCore Team, 2017). One 
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thousand datasets were generated in line with the parameter estimates, sample size (i.e., 

1026) and number of data waves from the abbreviated NLSY applied example (i.e., a 

total of eight waves without onset at age 14 and 21; see Figure 4.1).  

The exogenous predictor (i.e., X) was generated as a continuous variable with a 

mean and variance determined by the applied example (i.e., μ = 0, σ2 = .438). All 

endogenous variables in the model were generated according to Equations 14 and 15. 

More specifically, M was specified from the linear regression of M on X, with an 

intercept equal to zero and disturbance term equal to .554. The timing to occurrence of an 

event outcome data were generated in line with applied example parameter estimates in 

the context of a disproportional hazard odds model. Data for each time point were 

generated using the threshold values obtained in the abbreviated applied example (i.e., 

see Table 4.1). These data were coded such that after the first instance of onset, the 

subsequent outcome time points were coded as missing. Given that investigation of 

multi-spell survival models that accommodate investigation of repeated events is outside 

of the scope of this project (Willett & Singer, 1995), this coding was necessary for 

estimation of this model so that after the first occurrence, the case was removed from the 

risk set.  

Model estimation. The DTSM model with a time variant mediator was estimated 

in a mixture modeling framework as a single class mixture model (see Muthen & Masyn, 

2005). Analyses were run in Mplus (Muthén & Muthén, 1998-2015) through 

MplusAutomation in R (Hallquist & Wiley, 2018; RCore Team, 2017) using the EM 

algorithm to obtain maximum likelihood estimates in a general latent variable modeling 

framework (Muthen, 2004; Muthen & Shedden, 1999).  



53 

 

Figure 4.1 

Population Model for Study Two 

Note. Dashed lines indicate non-significant paths (i.e., these paths were equal to zero in 

the population model) 
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Table 4.1 

Event Indicator Thresholds and Baseline Hazard Rates 

Event indicator Threshold (τ) h(j) 

1 1.26 .22 

2 1.26 .22 

3 1.04 .26 

4 1.13 .24 

5 1.23 .23 

6 0.82 .30 
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In each sampled data set, the DTSM model with a mediator with a time variant effect was 

estimated using the logit link for the time-to-event outcome data. As discussed in the 

review of the literature, the bias-corrected bootstrap has the greatest power to detect the 

mediated effect (MacKinnon et al., 2004). In this resampling method of testing for the 

significance of  the mediated effect, the empirically built distribution accounts for the 

asymmetry in the sampling distribution of ab and builds the empirical distribution around 

the true population parameter (Efron & Tibshirani, 1994). I utilized 1,000 bootstrap 

draws to construct the bias-corrected confidence intervals in each replicated sample.  

Simulation outcomes. To understand how this model recaptures parameter 

estimates of the indirect effect, I evaluated relative bias in parameter estimation as well as 

several other statistical properties related to the significant and non-significant mediated 

effects including power, type one error and confidence interval coverage.  

Bias in parameter estimation. Due to sampling from the overall population, the 

parameter estimates in each sample varied around the specified population parameters. 

To understand this variability, I examined percentage relative bias of the nonzero ab 

parameter estimate (i.e., on time to event indicator one in Figure 4.1). Relative bias can 

be defined as the average deviance of a given sample estimate from the population 

parameter estimate, relative to the population parameter value and is denoted by the 

following equation: 

`a 4b�9 =  ∑ Jdefg QdL 
dL Rhi;^� / Ik                                              (16) 

Here bA; is the parameter estimate in the sample, bA represents the population 

parameter and Ik reflects the number of replications. This estimate can then be multiplied 

by 100% to yield an estimate of the percentage relative bias. Lower values of bias are 
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preferred. A boundary of percentage relative bias less than 5% has been suggested as an 

indicator of an unbiased parameter estimate (Hoogland & Boomsma, 1998). The values 

obtained were compared to this criterion. 

Power. Power was explored to detect the mediated effect that was nonzero in the 

population model (i.e., indirect effect on time to event indicator one in Figure 4.1). 

Empirical power was calculated as the number of times that the parameter estimate of 

interest was statistically significant across the 1,000 replication samples, utilizing a 95% 

bias-corrected, bootstrapped confidence interval for hypothesis testing. Often, a value of 

.80 power is sought (Cohen, 1992); the power estimate for the significant mediated effect 

in the population model was compared to this criterion.  

Type one error. To further understand the accuracy of hypothesis testing with the 

95% bias-corrected, bootstrapped confidence interval, I examined type one error 

associated with mediated effect parameter estimates that were equal to zero in the 

population model (i.e., mediated effects on time to event indicators two-six in Figure 

4.1). In this context, a type one error occurs when the null hypothesis is rejected but the 

null is true. Type one errors are represented when a significant mediated effect is detected 

in a replication from which the population effect is null. The type one error rate was 

calculated as the number of times this occurs, divided by the number of replications. 

These rates were compared to the nominal value of .05, conventionally used as the α- 

level in the applied literature. More specifically, rejection rates between 2% and 8% were 

deemed acceptable (Shi, DiStefano, McDaniel & Jiang, 2018). 

Confidence interval coverage. In this vein, I also examined confidence interval 

coverage to understand how often the nonzero mediated effect population value was 
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contained within the 95% bias-corrected, bootstrapped confidence interval (i.e., indirect 

effect on time to event indicator one in Figure 4.1). It was anticipated that the population 

value would be contained within the interval in approximately 95% of the replications; 

the obtained value was compared to this expected value to understand accuracy of the 

95% bias-corrected, bootstrapped confidence interval. Moreover, it has been suggested 

that a confidence interval with coverage values of less than 90% is too wide and 

problematic (Collins, Schafer & Kam, 2001; Enders, 2001). As stated by Collins, Shafer 

and Kam (2001): 

 Accurate coverage translates directly to an accurate Type I error rate. If 

the coverage of a nominal 95% interval is actually 90%, then the actual 

Type I error rate for a testing procedure with a .05-level criterion is twice 

as high as it ought to be. (p. 340). 

Results 

 All replications converged and were thus retained for examination of the 

following outcomes.  

 Percentage relative bias. Percentage relative bias was calculated for the single, 

significant mediated effect (i.e., ab1 in Figure 4.1). Average percentage relative bias 

across the 1,000 replications was 1.848% (see Figure 4.2). The condition average fell 

well below a stringent criterion of ± 5.00%, indicating that the parameter estimate was 

generally unbiased under the conditions specified (Hoogland & Boomsma, 1998). 

However, while the mean percentage relative bias suggested that on average, an estimate 

of the mediated effect would be unbiased under these conditions, it was noted that there  
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Figure 4.2 

Distribution of Percentage Relative Bias across Replications 

 

 

 

 

 

 

 



59 

was a wide range of relative bias across the 1,000 replications within the condition (i.e., 

Range: -90.00% to 150%). 

 Power.  Power was examined for the single, nonzero indirect effect (i.e., ab1 in 

Figure 4.1). Of the 1,000 replications, 908 presented with a significant mediated effect 

using a 95% bias-corrected, bootstrapped confidence interval to test for statistical 

significance (i.e., power = .908). Compared to a desirable level of power (i.e., .80; Cohen, 

1992), under the conditions modeled here, there was adequate power to detect the 

mediated effect.    

 Type one error. Type one error was examined for the five, non-significant 

mediated effects (i.e., ab2 – ab6 in Figure 4.1). Type one error rates ranged from .068 - 

.056 and are presented in Table 4.2. All rates fell within the acceptable range (i.e., 2% - 

8%), suggesting that Type one error rates were in line with their expected nominal values 

(i.e., α = .05).  

Coverage. The population parameter for the significant mediated effect (i.e., ab1 

= - .060) was represented in 952 of 1,000 95% bias-corrected, bootstrapped confidence 

intervals. Confidence interval coverage in 95.2% of replications falls directly in line with 

an expected value of representation in 95% of replications and is well above the 

suggested 90% criterion (Collins, Schafer & Kam, 2001; Enders, 2001). This suggests 

adequate confidence interval coverage under these population conditions.  

Single-Cell Monte Carlo Discussion 

 Closely mirroring the applied example, a simulation study was conducted to study 

percent relative bias, power, type 1 error, and confidence interval coverage associated 

with estimating mediated effects in the discrete time survival mixture framework. Results  
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Table 4.2 

Type One Error for ab2 – ab6 

 
ab2 ab3 ab4 ab5 ab6 

Type one error .068 .061 .063 .060 .056 
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suggested that under conditions of large model size (i.e., n = 1,026) eight waves of data, 

and one mediated effect (ab1 = -.060), outcomes of interest were found to be ideal. For  

the significant mediated effect, power was above the desired .80 value, indicating that 

there was more than adequate power to detect the mediated effect.  Confidence interval 

coverage was 95.2% which was directly in line with the expected 95% value. This 

indicates that the coverage rate is accurate and that type one error is controlled. Similarly, 

when examining the type one error rates of the non-significant indirect effects, all type 

one error rates were within acceptable limits. This suggests under the population 

conditions in the single-cell simulation study, type one error was controlled.  

Finally, the average percent relative bias was generally small indicating that the 

mediated effect parameter estimate was not biased on average under the specified 

population conditions. However, there was a wide standard deviation associated with this 

mean estimate of percentage relative bias. While a researcher may not expect biased 

parameter estimates on average, the reality is that bias varied widely from replication to 

replication in the study. 

 Altogether, results were favorable. This was anticipated given the ideal conditions 

that were modeled in this single cell Monte Carlo study (e.g., large sample size, many 

waves of data). Given these results, the Monte Carlo study was expanded to include 

conditions that were less ideal for model estimation and more realistic in applied social 

sciences research. Conditions modeled are detailed extensively below.   
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CHAPTER FIVE 

STUDY THREE: EXPANDED MONTE CARLO STUDY 

Method 

Based on the favorable results of the single cell Monte Carlo study, the simulation 

study was expanded to reflect conditions that may be more typical in applied social 

sciences research. For example, the population model in the single cell study entailed 

many waves of data (i.e., eight) and a large sample size (i.e., n = 1,026). These are ideal 

conditions that may not often be realistic in applied research settings. In the expanded 

Monte Carlo study, conditions were manipulated to understand how variations in sample 

size, number of waves of data, pattern of the mediated effects and model 

(mis)specification impacted estimation of the DTSM model with a mediator with a time 

variant effect.  

Simulation conditions. The factors manipulated in each condition were sample 

size, number of waves of data, pattern of the mediated effects and model 

(mis)specification. Levels of the factors were as follows: 

Sample size. The sample size in the single cell simulation was 1,026 to mirror the 

sample size in the applied example. Smaller samples sizes were modeled in the expanded 

study to understand how sample size impacted estimation of the DTSM model with a 

time variant effect in a mixture modeling framework. More specifically the sample sizes 

modeled included 250, 500 and 1,000, with the smaller sample sizes (i.e., 250 and 500) 
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falling more in line with sample sizes that may be observed in applied social sciences 

research. 

Waves of data. The single cell simulation study consisted of eight waves of data. 

That is, the predictor was measured at time one, the mediator at time two, and the timing 

to onset indicators were measured from waves three to eight (i.e., six separate timing to 

onset indicators). To understand how the number of waves of data impact estimation in 

the DTSM model with a time variant effect of the mediator, a condition with six waves of 

data was also included in the expanded Monte Carlo study. When there were six waves of 

data, the predictor was assessed at wave one, the mediator at wave two and the time to 

event indicators from wave three to six (i.e., four separate timing to onset indicators). 

Thus, there were two levels of this condition (i.e., six or eight waves) 

Pattern of time variant effect. There was only one nonzero mediated effect in the 

population model for the single cell Monte Carlo study. To understand how the number 

of nonzero time variant effects impacted estimation, this factor was varied. In some 

conditions only one mediated effect was nonzero, akin to the applied example and single 

cell Monte Carlo study (i.e., see Figure 4.1). At the other level of this factor, half of the 

mediated effects were nonzero, with the same population parameter estimate for each 

nonzero mediated effect (i.e., ab = -.060). It is important to note, when there were eight 

waves of data, with six time to event outcomes, there were three nonzero mediated effects 

in the ‘half significant’ condition. Alternatively, when there were only six waves of data, 

with four time to event indicators, there were two nonzero mediated effects in the ‘half 

significant’ condition.  



64 

Model (mis)specification. Finally, to understand how model specification 

impacted model estimation, model specification was varied. In the correctly specified 

condition, the model from which the data were generated was fit to the data (i.e., the 

DTSM model with a mediator with a time variant effect). In the misspecified conditions, 

a nested model with a time invariant effect of the mediator was fit to the data (i.e., DTSM 

model), ignoring the time variant mediated effects in the population model. Exploring 

model misspecification is of particular importance in mixture modeling given that 

previous research insinuates that misspecification may bias estimates and cloud 

interpretation of fit statistics (e.g., see Enders & Tofighi, 2008; Gray, 1994; Tofighi, & 

Enders, 2008)  

 These conditions resulted in a fully crossed design consisting of three sample 

sizes (i.e., n = 250, 500, 1,000) x two waves of data (i.e., 6 or 8) x two patterns of time 

variant effects (i.e., one nonzero mediated effect, half nonzero mediated effects) x two 

levels of specification (i.e., correctly specified, misspecified), ultimately yielding 24 

unique parameter combinations and 12,000 data sets to investigate (i.e., the correctly 

specified and misspecified models were estimated in each data set). 

Model Estimation. Two different models were estimated in this Monte Carlo 

study. In correctly specified conditions, the DTSM model with a time variant effect of 

the mediator was estimated in a mixture modeling framework as a single class mixture 

model (see Muthen & Masyn, 2005). Similarly, in misspecified conditions, the DTSM 

model with a time invariant effect of the mediator was estimated in a mixture modeling 

framework as a single class mixture model (see Muthen & Masyn, 2005). All analyses 

were run in Mplus (Muthén & Muthén, 1998-2015) through MplusAutomation in R 
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(Hallquist & Wiley, 2018; RCore Team, 2017) using the EM algorithm (Dempster, Laird 

& Rubin, 1976) to obtain maximum likelihood estimates in a general latent variable 

modeling framework (Muthen, 2004; Muthen & Shedden, 1999). In each sampled data 

set the DTSM model with a mediator with a time variant effect and with a mediator with 

a time invariant effect was modeled using the logit link for the time-to-event outcome 

data. As discussed in the review of the literature, the bias-corrected bootstrap has the 

greatest power to detect the mediated effect (MacKinnon et al., 2004). In this resampling 

method of testing the significance of  the mediated effect, the empirically built 

distribution accounts for the asymmetry in the sampling distribution of ab and builds the 

empirical distribution around the true population parameter (Efron & Tibshirani, 1994). I 

utilized 1,000 bootstrap draws to construct the bias-corrected confidence intervals in each 

replicated sample.  

 Simulation Outcomes. Several of the outcomes of interest in the applied example 

are synonymous with the outcomes investigated above, including percentage bias in 

parameter estimation of the nonzero indirect effect(s), confidence interval coverage, 

power, and type one error. In addition, in the expanded study, performance of the 

loglikelihood ratio test, AIC, BIC and aBIC to discern the correct population model was 

examined. 

Bias in parameter estimation. To understand variability in estimates of nonzero 

mediated effects, I examined percentage relative bias of nonzero ab parameter estimates. 

Relative bias can be defined as the average deviance of a given sample estimate from the 

population parameter estimate, relative to the population parameter value and is denoted 

by the following equation: 
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`a 4b�9 =  ∑ Jdefg QdL 
dL Rhi;^� / Ik                                              (16) 

Here bA; is the parameter estimate in the sample, bA represents the population 

parameter and Ik reflects the number of replications. This estimate can then be multiplied 

by 100% to yield an estimate of the percentage relative bias. Lower values of bias are 

preferred. A boundary of percentage relative bias less than 5% was used as the criterion 

for an unbiased parameter estimate (Hoogland & Boomsma, 1998). The values obtained 

were compared to this criteria for both correctly and misspecified conditions. Under both 

conditions, empirical estimates were compared to a population mediated effect of -.060. 

Power. Power to detect a mediated effect that was nonzero in the respective 

population model was also explored across all conditions. Empirical power for each 

condition was calculated as the number of times that the mediated effect parameter 

estimate was statistically significant across the 1,000 replication samples; Bias-corrected, 

bootstrapped confidence intervals (95%) were utilized for hypothesis testing. Often, a 

value of .80 power is sought (Cohen, 1992); the power estimate for each nonzero 

mediated effect in the population model was compared to this criterion.  

Type one error. To further understand the accuracy of hypothesis testing with the 

95% bias-corrected, bootstrapped confidence intervals, I examined type one error 

associated with mediated effect parameter estimates that were zero in the respective 

population model in correctly specified conditions3. Type one errors were represented 

when a significant mediated effect was detected in a replication from which the 

                                                           

3 Note that there was only one mediated effect estimated in misspecified conditions. The 
number of times this effect was statistically significant was explored; there was no 
opportunity to explore type one error in misspecified conditions. 
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population effect was null. The type one error rate was calculated as the number of times 

this occurs, divided by the number of replications. These rates were compared to the 

nominal value of .05, conventionally used as the α- level in the applied literature. More 

specifically, rejection rates between 2% and 8% were deemed acceptable (Shi, DiStefano, 

McDaniel & Jiang, 2018). 

Confidence interval coverage. Confidence interval coverage was also examined 

in correctly specified conditions to understand how often the mediated effect population 

value was contained within the 95% bias-corrected, bootstrapped confidence interval4. It 

was anticipated that the population value will be contained within the interval in 

approximately 95% of the replications; the obtained value was compared to this expected 

value to understand accuracy of the 95% bias-corrected, bootstrapped confidence 

interval. Moreover, it has been suggested that a confidence interval with coverage values 

of less than 90% is too wide and problematic (Collins, Schafer & Kam, 2001; Enders, 

2001); confidence interval coverage greater than 90% was deemed acceptable. 

 Model fit. Both the correctly specified and misspecified models that are being 

observed here are conceptualized and estimated as single class mixture models. Given 

that these models have the same number of classes, the loglikelihood ratio test can be 

used to determine the better fitting model (Muthen & Masyn, 2005). When comparison 

involves models that have differing numbers of classes, the BIC is recommended for 

usage (Muthen & Masyn, 2005). While model comparisons in this simulation study do 

                                                           

4 Confidence interval coverage was not examined in misspecified conditions. While it 
was of interest to understand how frequently the mediated effect was significant across 
misspecified conditions, it was not anticipated that looking at confidence interval 
coverage with a population parameter of ab = -.060 would be particularly meaningful.  
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not involve models with differing numbers of classes, the BIC as well as aBIC and AIC 

were studied as possible additional indicators of model fit. In this study, to understand if 

the nested loglikelihood ratio test, AIC, BIC and aBIC were likely to detect a 

misspecified model, model fit statistics were compared between correctly (i.e., a DTSM 

model with a time variant effect of the mediator) and incorrectly specified models (i.e., a 

DTSM model with a time invariant effect of the mediator). More specifically, the 

percentage of times that the nested loglikelihood ratio test indicated that the DTSM 

model with a time variant effect was significantly better fitting was calculated. Higher 

percentage rates indicate greater rates of indicating the correctly specified model. In 

addition, the rates at which the AIC, BIC and aBIC denote that the DTSM model with a 

time variant effect was a better fitting model were calculated (i.e., the AIC/BIC/aBIC is 

smaller for the DTSM model with a time variant effect than the DTSM model with a time 

invariant effect).  

Results 

 All model replications converged across cells in the simulation study.  

Percentage relative bias. Percentage relative bias for nonzero mediated effects is 

presented below in Table 5.1. In correctly specified conditions, all but two values were 

below the 5% relative bias criterion, suggesting that mediated effects were predominately 

unbiased (Hoogland & Boomsma, 1998). In the conditions in which the model was 

correctly specified, there were eight waves of data, and sample size was small (i.e., 250), 

percentage relative bias reached 6.35% when half of the mediated effects were nonzero 

and 5.06% when only one of the mediated effects was nonzero. Percentage relative bias 

generally increased in magnitude with decreasing sample size. The exception was for the  
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Table 5.1 

Percentage Relative Bias in Nonzero Mediated Effects 

   Correctly Specified Misspecified 

Pattern Waves N ab1 ab2 ab3 ab1 

1 8 1000 1.25 -- -- -70.15 

  500 1.53 -- -- -69.61 

  250 5.06 -- -- -67.89 

1 6 1000 -0.07 -- -- -63.43 

  500 0.38 -- -- -63.53 

  250 0.56 -- -- -62.99 

2 8 1000 1.17 0.60 -4.53 -30.57 

  500 1.46 1.00 -3.81 -29.97 

  250 4.89 6.35 -2.33 -27.64 

2 6 1000 -0.12 -0.19 -- -36.15 

  500 0.39 -0.53 -- -36.19 

  250 0.60 0.34 -- -35.00 
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specific mediated effect, ab3, which decreased in magnitude with decreasing sample size. 

In addition, while the pattern of the mediated effect did not seem to impact the level of 

relative bias, the magnitude of bias was attenuated with fewer waves of data. That is, 

percentage relative bias was smaller when there were six waves of data as compared to 

eight waves of data.  

While mediated effects were predominately overestimated in correctly specified 

conditions, effects were underestimated, and to a larger degree, in misspecified 

conditions. In all conditions, the mediated effect was severely biased when the model was 

misspecified. Similar to correctly specified conditions, when there was only one nonzero 

mediated effect, bias was smaller in magnitude in conditions with six waves of data. 

However, when half of the mediated effects were nonzero, bias was smaller when there 

were eight waves of data. In contrast to correctly specified conditions, bias decreased in 

magnitude with decreasing sample size.  

 Coverage. Bias-corrected, bootstrapped confidence interval coverage was 

adequate across all studied conditions (see Table 5.2). Confidence interval coverage 

ranged from 92.9% – 96.4%, falling well above the suggested 90% criterion (Collins, 

Schafer & Kam, 2001; Enders, 2001). 

Type one error. Akin to results related to confidence interval coverage, Type I 

error was well controlled across all studied conditions (see Table 5.3). Acceptable values 

were deemed to fall between 2% and 8% (Shi, DiStefano, McDaniel & Jiang, 2018), and 

across all correctly specified conditions, rates fell between .040 and .076.  

Power. In correctly specified conditions, power to detect a nonzero mediated 

effect reached the .80 criterion (i.e., Cohen, 1992) only in conditions with large sample 
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Table 5.2 

Coverage of Mediated Effect in Correctly Specified Models 

Pattern Waves N ab1 ab2 ab3 

1 8 1000 96.4 -- -- 

  500 95.9 -- -- 

  250 95.8 -- -- 

1 6 1000 94.2 -- -- 

  500 94.6 -- -- 

  250 95.2 -- -- 

2 8 1000 96.3 94.1 95.2 

  500 95.7 94.3 95.4 

  250 95.6 92.9 94.2 

2 6 1000 94.0 95.5 -- 

  500 94.6 94.8 -- 

  250 95.4 93.7 -- 
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Table 5.3 

Type One Error of Mediated Effects in Correctly Specified Models 

Pattern Waves n ab1 ab2 ab3 ab4 ab5 ab6 

1 8 1000 -- .076 .059 .064 .058 .062 

  500 -- .075 .065 .073 .075 .073 

  250 -- .058 .040 .063 .051 .058 

1 6 1000 -- .073 .066 .069 -- -- 

  500 -- .061 .060 .072 -- -- 

  250 -- .048 .053 .070 -- -- 

2 8 1000 -- -- -- .070 .056 .061 

  500 -- -- -- .074 .074 .072 

  250 -- -- -- .057 .055 .044 

2 6 1000 -- -- .071 .068 -- -- 

  500 -- -- .068 .067 -- -- 

  250 -- -- .052 .063 -- -- 
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sizes (i.e., n = 1,000; see Table 5.4). Even when sample size was large, there were eight 

waves of data and half of the mediated effects were nonzero (i.e., ab1-3 = -.060), power to 

detect ab3 was low (i.e., power = .658). In general, power to detect nonzero mediated 

effects decreased with decreasing sample size. Power was conspicuously low when 

sample size was small (i.e., 250); this was especially so to detect ab3 when sample size 

was small, there were eight waves of data and half of the mediated effects were nonzero 

(i.e., power = .195) as well as to detect ab2 when sample size was small, there were six 

waves of data and half of the mediated effects were nonzero (i.e., power = .245). In 

conditions where there was more than one nonzero mediated effect, power decreased 

with increasing time points (i.e., power to detect  ab1 > power to detect ab2). In addition, 

power to detect the mediated effect was greater when there were more data points (i.e., 

waves = 8).  

In the misspecified model conditions in which a time invariant effect of the 

mediator was modeled on the time to event outcome, there were a handful of conditions 

in which power to detect a nonzero mediated effect exceeded the .80 criterion (Cohen, 

1992). When half of the mediated effects were nonzero in the population model and 

sample size was large, power was high (i.e., > .93) to detect a nonzero mediated effect. 

Similarly, when there were eight waves of data, half of the mediated effects were nonzero 

in the population model and sample size was moderate, the time invariant mediated effect 

was significant in 810 of 1,000 replications. In all other misspecified conditions, power 

fell below .80, ranging from .140 - .658. Across these conditions, power decreased with 

decreasing sample size as well as increased when there was more than one nonzero 

mediated effect in the population model.  



74 

Table 5.4 

Power to Detect Mediated Effects 

   Correctly Specified Misspecified 

Pattern Waves n ab1 ab2 ab3 ab1 

1 8 1000 .927 -- -- .447 

  500 .672 -- -- .258 

  250 .366 -- -- .140 

1 6 1000 .906 -- -- .516 

  500 .641 -- -- .322 

  250 .327 -- -- .158 

2 8 1000 .927 .821 .658 .984 

  500 .672 .567 .430 .810 

  250 .362 .291 .195 .458 

2 6 1000 .903 .807 -- .935 

  500 .645 .547 -- .658 

  250 .327 .245 -- .327 
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Model fit. The percentage of times that the loglikelihood ratio test indicated the 

correctly specified model was low across all studied conditions, ranging from .15 - .57 

(see Table 5.5). This percentage was highest when the sample size was large; the number 

of waves of data and pattern of mediated effects did not appear to impact the percentage 

of times the loglikelihood ratio test indicated the correctly specified model.  

 The AIC appeared to perform better than the loglikelihood ratio test; the AIC 

indicated that the correctly specified model was better fitting more often than the 

loglikelihood ratio test. In general, the AIC appeared to perform better in terms of model 

selection when sample size was large and there were fewer waves of data (i.e., waves = 

six). The pattern of the mediated effect did not seem to play an important role in the 

performance of the AIC.  

 The BIC performed worst in terms of model selection (i.e., selecting the true 

population model as the better fitting model). The BIC indicated that the population 

model was the better fitting model in 0 – 50 replications per condition (i.e., out of 1,000 

total replications per condition). The BIC performed better when there were fewer waves 

of data and when sample size was larger. Like findings related to the performance of the 

loglikelihood ratio test and AIC, the pattern of the mediated effects did not seem to 

impact the performance of the BIC.  

 Finally, the aBIC performed more favorably than the BIC but still not as well as 

the loglikelihood ratio test and AIC. The performance of the aBIC followed a similar 

pattern to the loglikelihood ratio test and AIC in that it’s performance decreased with 

decreasing sample size. Additionally, the aBIC seemed to perform better when there were 

fewer waves of data (i.e., waves = 6). For example, when there was one, nonzero  
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Table 5.5 

Model Fit 

  8 Waves 6 Waves 

Pattern n LRT AIC BIC aBIC LRT AIC BIC aBIC 

1 1000 .56 .63 .00 .17 .56 .71 .04 .34 

 500 .28 .34 .00 .11 .32 .47 .02 .24 

 250 .17 .21 .00 .13 .18 .30 .01 .23 

2 1000 .53 .59 .01 .16 .57 .72 .05 .34 

 500 .26 .34 .00 .10 .31 .45 .02 .23 

 250 .15 .21 .00 .13 .15 .28 .01 .20 
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mediated effect, and sample size was large (i.e., n = 1,000) the aBIC retained the 

population model in 17% of replications when there were eight waves of data and in 34% 

of replications when there were six waves of data. The pattern of the mediated effect did 

not appear to have a substantial impact on the performance of the aBIC.  

Discussion of the Expanded Monte Carlo Study 

The expanded Monte Carlo study was conducted to evaluate a mixture modeling 

framework for estimating a discrete time survival mediation model with a time variant 

effect of the mediator in conditions that were less ideal than those simulated in the single-

cell Monte Carlo study presented in Study Two. Results suggest that across all correctly 

specified conditions, Type one error was well controlled and confidence interval 

coverage was adequate. Additionally, in correctly specified conditions, estimates of the 

indirect effect were predominately unbiased, with only two values exceeding the 5% 

cutoff. Therefore, on average across replications in correctly specified conditions studied, 

there is little concern regarding bias in mediated effects. In addition, in correctly 

specified conditions, power for the mediated effects exceeded the .80 cutoff when sample 

size was large (i.e., n = 1,000). However, even when sample size was large, power to 

detect the third mediated effect fell below the desired threshold (i.e., power for ab3 = 

.658). This is expected, given that sample size for the discrete-time outcome indicators 

decreases with increasing waves of data collection. As described in the review of the 

literature and discussion of the coding scheme for the outcome data in Study One, once a 

subject experiences the event of interest, the subject’s onset indicators at subsequent time 

points are coded as missing so that they are no longer included in the risk set. Therefore, 

it is understandable that power to detect the mediated effect decreases with increasing 
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time points. Although not studied here, it is likely that power would continue to decrease 

for mediated effects observed in later onset periods (e.g., on the onset indicator at waves 

4-6). This warrants investigation in future research. 

Fairchild and colleagues (2018) examined a general linear modeling approach to 

estimating the DTSM model under correctly specified conditions (i.e., with the logit link 

and estimating only time invariant effects). Under correctly specified conditions, results 

obtained here using a mixture modeling framework and with a time variant effect of the 

mediator generally align with this previous research. Given that Fairchild and colleagues 

(2018) only examined conditions in which the estimated model was correctly specified, 

only conditions in the current study that were correctly specified can be compared across 

overlapping outcomes (i.e., percentage relative bias, Type one error, and power to detect 

the mediated effect). Like results in the current study suggest, Fairchild et al., (2018) 

found that across all conditions studied the estimates of the mediated effect were 

unbiased (i.e., percentage relative bias < 1.5% across all studied conditions). In the 

current study, bias was of greater magnitude than the previous study but below a 5% 

criterion in all but two conditions. Fairchild et al., (2018) ascertained that none of the 

conditions studied influenced the magnitude of bias (i.e., number of waves of data, 

sample size, effect sizes of parameter estimates). However, in the current study it appears 

that bias generally increased in magnitude with decreasing sample size. In addition, while 

the pattern of the mediated effect did not seem to impact the level of relative bias, the 

magnitude of bias was attenuated with fewer waves of data. However, as suggested by 

Fairchild et al., (2018) it appears that, in general, there should be little alarm regarding 

bias in the mediated effect estimate when the model is correctly specified. 
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Similarly, like the work of Fairchild and colleagues (2018) exemplified, Type one 

error was well controlled across all correctly specified conditions studied. Also, akin to 

results of Fairchild et al., (2018) sample size impacted power to detect the mediated 

effect. However, in the previous study, sample size was implicated as impacting power 

through a series of interactions with parameter estimate effect sizes. For example, sample 

size interacted with the effect size of the a parameter estimate to impact power to detect 

the mediated effect.  As sample size increased power also increased, but the gains were 

qualified by the magnitude of a, such that the change in power across sample size was 

most disparate when the effect size of a was small. It is anticipated that similar effects 

may have been observed in the current study, however, levels of the effect size of 

parameter estimates were not varied, so these effects could not have been observed in the 

current work. Rather, the mediated effect(s) were held constant (ab = -.060). In addition 

to sample size, in the present study, when conditions were correctly specified, power to 

detect the mediated effect was greater when there were more data points (i.e., waves = 8); 

an effect of waves of data on power was not denoted by Fairchild and colleagues (2018).  

In general, results across both studies converge. Percentage relative bias was 

negligible, with slightly higher rates in the current study. Type one error was well 

controlled across both studies. And power to detect the mediated effect was similarly 

impacted by sample size across both studies, however, in the Fairchild et al., (2018) study 

the effect was moderated by effect sizes of parameter estimates, which were not 

manipulated in the current study. In addition, in the current study, number of waves of 

data impacted power to detect the mediated effect, with more waves of data associated 

with greater power. 
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The current research also extended the Fairchild et al., (2018) work by studying 

misspecified models. More specifically, data were generated to reflect a time variant 

effect of the mediator on the outcome indicators but a time invariant effect of the 

mediator was estimated. As a whole, results in misspecified conditions suggest that the 

model is sensitive to model misspecification, but that the relative fit indices are 

underpowered to reject a misspecified model in all conditions studied here. In 

misspecified conditions, percentage relative bias ranged from -27.64% to -70.15%, all 

grossly underestimating the nonzero time variant, mediated effect(s). This aligns with 

literature that suggests that misspecifications of finite mixture models can result in bias in 

estimation (Enders & Tofighi, 2008; Gray, 1994; McLachlan & Peel, 2000; Muthen, 

2004). Bias was more pronounced in conditions with only one nonzero mediated effect in 

the population model, with percentage relative bias ranging from -62.99% to -70.15% in 

these conditions; estimates ranged from -27.64% to -36.15% when half of the mediated 

effects were nonzero in the population model. These findings align with power to detect 

the mediated effect in misspecified models. When there was only one significant 

mediated effect in the population model, the mediated effect modeled in the misspecified 

model was only significant in 14.0% to 51.6% of replications. Alternatively, when half of 

the population effects were significant but only one invariant effect was estimated in the 

misspecified model, 32.7% to 98.4% of indirect effects were statistically significant. 

Indeed, there was adequate power to detect a significant mediated effect in three of six 

conditions in which half of the mediated effects were nonzero in the population model. 

Together, this suggests that when there is only one significant mediated effect in the 

population model with a time variant effect of the mediator, but a single time invariant 
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effect of the mediator is estimated in a misspecified model, bias is likely to be high and 

the single, estimated mediated effect is unlikely to be nonzero, overall masking “how” or 

“why” a process unfolds at a particular time point. 

This issue is further compounded by the fact that all of the relative fit indices 

observed in this study were underpowered across all studied conditions to detect a 

misspecified model.  The focal model of this study, the DTSM with a time variant effect 

of the mediator, was conceptualized and estimated as a single class mixture model. The 

misspecified model was similarly conceptualized and estimated as a single class mixture 

model, but with a time invariant effect of the mediator. Given that these models have the 

same number of classes, the loglikelihood ratio test can be used to determine the better 

fitting model (Muthen & Masyn, 2005). Both the loglikelihood ratio test and AIC were 

consistently underpowered to reject the misspecified model, however, performed much 

better than the BIC and aBIC. Both the BIC and aBIC demonstrated very low power to 

reject the misspecified model, with the BIC performing worst. When comparison 

involves models that have differing numbers of classes, the BIC is recommended for 

comparing between models (Muthen & Masyn, 2005). In fact, it has been suggested in 

the finite mixture modeling literature that the BIC and aBIC have particular utility in 

class enumeration (Jedidi, Jagpal, & DeSarbo, 1997; Nylund, Asparouhov, & Muthén, 

2007; Tofighi & Enders, 2006; Yang, 2006). While class enumeration was not the goal 

here, it was anticipated that the BIC and aBIC would informatively supplement the 

loglikelihood ratio test. However, it appears that when the number of classes is held 

constant, the loglikelihood ratio and AIC are most powered to reject the misspecified 

model, yet still not at desired levels (i.e., power = .80). Given the issues discussed above 
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regarding bias in the mediated effect and power to detect the mediated effect, being 

unable to detect a misspecified model is particularly problematic. 

There are several limitations in the current study that should be addressed in 

future work in this area. First, performance of the model was only examined in 24 unique 

conditions. Future research should extend the currently studied conditions by examining 

additional levels of the factors studied here as well as other factors that were not 

considered in the current research. For example, it is anticipated that if significant 

indirect effects had been modeled at one of the latest event indicators, power to detect the 

indirect effect would be even lower. Similarly, as there were important effects noted in 

the work by Fairchild et al., (2018) involving effect sizes of various parameter estimates, 

this would warrant investigation in future research. Studying different patterns of the time 

variant mediated effects may also be important; varying the size of the mediated effects 

within a single population may produce interesting findings. 

 More subtly, in the Fairchild et al., (2018) research, the percentile bootstrapped 

confidence interval was utilized to assess the significance of the mediated effect in 

contrast to the bias-corrected bootstrapped confidence interval. Prior research indicates 

that the bias-corrected bootstrapped confidence interval has increased power over other 

approaches to detect a mediated effect, however, also demonstrates increased Type one 

error rates (Fritz & MacKinnon, 2007). However, it is worth nothing that in the 

conditions studied in the current work, the bias-corrected, bootstrapped confidence 

interval did not demonstrate inflated Type one error rates. 
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CHAPTER SIX 

INTEGRATED DISCUSSION 

The overarching goal of this work was to extend the existing research on DTSM 

models estimated in a structural equation modeling framework by incorporating a 

mediator with a time variant effect in a mixture modeling framework (Fairchild et al., 

2015; Fairchild et al., 2018; Masyn, 2014; Muthen & Masyn, 2005). First, an applied 

example was utilized to demonstrate a model building approach to determine the best 

fitting model and to garner parameter estimates to be utilized in a Monte Carlo study (i.e., 

Study One). Next, a single cell simulation study was conducted using parameter estimates 

and data characteristics (i.e., sample size, number of waves of data) from the applied 

example to understand estimation of the DTSM model in a mixture modeling framework 

in conditions that were based in a real-world application but were also ideal (i.e., large 

sample size and many waves of data; Study Two). Finally, an extended Monte Carlo 

study was conducted to observe estimation of the model in less ideal conditions (i.e., 

sample size, number of waves of data, pattern of time variant effect of the mediator and 

[mis]specification) to determine how these factors impacted power, Type one error and 

confidence interval coverage of the mediated effect(s) as well as model fit.  

Results of the applied example in Study One suggested that the DTSM model 

with a time invariant impact of PM on the log hazard odds of event occurrence fit the 

data best. However, given the focus of this research, the DTSM model with a time variant 
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mediator was retained as the final model for demonstration purposes as well as for 

parameter estimates for the subsequent Monte Carlo studies. Results of the final, retained 

model suggested that there was no direct effect of interparental support on the latent 

propensity for event occurrence. However, there was a single, significant indirect effect 

of IS on the log hazard odds of youth alcohol onset through parental monitoring at age 

15.  

It is interesting to consider the results of the model building procedure used in the 

NLSY97 data application after the explication of the results from the expanded Monte 

Carlo study (i.e., Study Three). Results of Study Three suggested that the loglikelihood 

ratio, AIC, BIC, and aBIC infrequently indicate that the correctly specified model is the 

best fitting model, even in ideal conditions similar to those observed in the NLSY97 

application (e.g., large sample size). It may be that the fit indices were underpowered to 

detect that the DTSM model with a time invariant effect of the mediator was not the best 

fitting model. Interestingly, when the DTSM model with a time variant effect of the 

mediator was estimated, there was a single, significant mediated effect at age 15. If these 

findings are accurate, they may provide important insight to interventionists on timing of 

prevention and intervention efforts aimed at familial relations and parenting. These 

findings are masked by potentially underpowered fit indicators.  

Parameter estimates and characteristics of the data from the applied example were 

used to conduct a single cell simulation. Results of the single-cell Monte Carlo in Study 

Two purported that under conditions similar to the applied example, power, type one 

error, confidence interval coverage and bias of the indirect effect were all within 
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acceptable limits. These favorable results served as the foundation for studying less ideal 

conditions in the expanded Monte Carlo study (i.e., Study Three).  

Results of the expanded simulation in Study Three provided important 

information related to misspecification of DTSM models in a mixture modeling 

framework. In correctly specified conditions, type one error was well controlled and 

confidence interval coverage was adequate. Similarly, in correctly specified conditions, 

estimates of the indirect effect were predominately unbiased. Findings in misspecified 

conditions were quite disparate. The model appears to be quite sensitive to model 

misspecification, however, the relative fit indices appear to be unlikely to reject a 

misspecified model in all conditions studied here. Given the issues discussed above 

regarding relative bias in the mediated effect and power to detect the mediated effect, 

being unable to detect a misspecified model is particularly problematic. Future research 

should consider additional fit indices as well as additional investigation into the currently 

studied indices under additional conditions.  

This work integrates and extends the extant literature in several ways. The current 

research expands the work by Fairchild and colleagues (2015; 2018) by extending the 

model to look at a mediator with a time variant effect. Traditionally, discrete time 

survival analysis assumes that the impact of a predictor on the logit hazard is constant 

across time periods (i.e., proportionality assumption; see Singer & Willett, 1993). 

However, it may be that "violations of the proportionality assumption are the rule, rather 

than the exception” (Singer & Willett, 1991, p. 279). Given this important observation, it 

is critical to consider the utilization of models that relax this assumption, such as the 

DTSM model with a time variant effect of the mediator. By incorporating both mediation 
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and discrete-time survival analysis as well as a mediator with a time variant effect, the 

model allows for the examination of direct and indirect effects of a predictor on the 

timing of the occurrence of an event while also considering that the impact of the 

mediator may vary over time. In research on developmental trajectories related to youth 

alcohol use, this model could help researchers understand how developmental pathways 

operate in concert with parenting behaviors to impact timing to onset of youth alcohol use 

differentially over time. The information garnered could then inform how targets of 

prevention or treatment for youth alcohol use may change over the course of 

development. 

In addition to extending DTSM models to incorporate time variant effects of 

covariates, the current work integrates the work of Fairchild and colleagues (2015; 2018) 

and Muthen and Masyn (2005) by estimating the DTSM model in a finite mixture 

modeling framework. The current study estimates the model in its simplest mixture form 

as a single class mixture model (Muthen & Masyn, 2005). Estimating the model in the 

mixture modeling framework offers many attractive extension opportunities. In general, 

in structural equation modeling, latent constructs can be modeled by incorporating 

measurement models to partition true variance and error variance. Partitioning out 

measurement error in mediation analysis can help to guard against Type I and Type II 

errors (Cole & Maxwell, 2003). In particular, estimation in a mixture modeling 

framework can allow for further extensions, such as nonparametric modeling of frailties 

(i.e., unobserved heterogeneity) in the timing to event onset outcome and incorporation of 

other modeling techniques, such as growth mixture modeling (Muthen & Masyn, 2005). 

However, these gains come with notable limitations associated with mixture modeling, 
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such as sensitivity to model misspecification, that warrant careful consideration (Enders 

& Tofighi, 2008; Gray, 1994; McLachlan & Peel, 2000; Muthen, 2004).  
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APPENDIX A 

APPLIED EXAMPLE MPLUS CODE 

TITLE: DTSM Model with a Time Variant Effect of the Mediator 
 
- X: Father reported support of mother (FISM5) 
- M: mother monitoring (MM3a, MM3b; duplicate variables) 
- Y: onset of substance use 14 years on (de14-de21) 
 
DATA:  
FILE IS MIXTUREdata.csv; 
 
VARIABLE:  
NAMES ARE de14 de15 de16 de17 de18 de19 
de20 de21 FISM5 MM3a MM3b; 
USEVARIABLES ARE de14 de15 de16 de17 de18 de19 
de20 de21 FISM5 MM3a MM3b; 
CATEGORICAL = de14 de15 de16 de17 de18 de19 
de20 de21; 
MISSING ARE ALL (999); 
CLASSES = class (1); 
 
DEFINE: 
CENTER FISM5 MM3a MM3b(GRANDMEAN); 
 
ANALYSIS:  
TYPE = MIXTURE; 
ESTIMATOR = ML; 
LINK = LOGIT; 
ALGORITHM = EM INTEGRATION; 
BOOTSTRAP = 1000; 
 
MODEL: 
%OVERALL% 
 MM3a ON FISM5 (p1); 
FISM5; 
[FISM5]; 
[de14$1 de15$1 de16$1 de17$1 de18$1 de19$1 de20$1  
de21$1]; 
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ONSET BY de14@1 de15@1 de16@1 de17@1 de18@1 de19@1  
de20@1 de21@1; 
ONSET@0; 
ONSET ON FISM5; 
ONSET ON MM3b@0; 
ONSET ON MM3a@0; 
de14 de15 de16 de17 de18 de19 de20 de21 ON MM3b (p2 - p9); 
 
MODEL CONSTRAINT: 
NEW (ab1-ab8); 
ab1 = p1 * p2; 
ab2 = p1 * p3; 
ab3 = p1 * p4; 
ab4 = p1 * p5; 
ab5 = p1 * p6; 
ab6 = p1 * p7; 
ab7 = p1 * p8; 
ab8 = p1 * p9; 
 
OUTPUT:  
SAMPSTAT; 
CINTERVAL(bcboot); 
 
_________________ 
Programming Notes: 
TITLE command:  
 Create a title for the analysis. 
DATA command:  
 Indicate the data file. 
VARIABLE command:  
 Name each variable in the dataset. Specify which variables will be  used in the 
 analyses. Specify the binary event outcome indicators for each time period by 
 defining them as categorical. Identify the missing value code. Specify the 
 estimation of a single class.  
DEFINE command: 
 Center predictors. 
ANALYSIS command:  
 Specify a mixture model with ML estimation, the logit link  function and EM 
 algorithm. Request 1000 bootstrap draws.  
MODEL command:  
 Estimate the a path of the mediation model by regressing M on X and name the 
 parameter. Estimate the mean and variance of X. Create a latent factor defined by 
 the binary event indicators. Constrain all the factor loadings to be equal,
 estimate all thresholds and fix the variance of the latent factor to zero. Estimate 
 the c’ path of the mediation model by regressing the latent factor on X and name 
 the parameter. Constrain the effect of the mediator (and it’s duplicate) on the 
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 latent construct at zero. Estimate the time variant effect of the mediator on each 
 event indicator by regressing each binary outcome indicator on the mediator. 
 Name each b parameter. 
MODEL CONSTRAINT command: 
  Define each indirect effect by naming the indirect effect and calculate it using 
 the respective estimated parameters. 
OUTPUT command:  
 Request sample statistics and the bias-corrected, bootstrapped confidence 
 intervals. 
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APPENDIX B 

EXAMPLE SIMULATION R CODE 

c=1 
 
path=sprintf("C:\\DissSim\\c%d",c)  
setwd(path) 
 
batch<-paste0('C:\\Program Files\\Mplus',' 
              ', 
              'Mplus  ', path,'\\Sim.inp', '  ', path,'\\Sim.out  
              EXIT') 
 
write.table(batch, "BATCH.bat", sep="",row.names=F,col.names = F,quote = F) 
 
imp<-paste0('MONTECARLO: 
             names = x m1 on1 on2 on3 on4 on5 on6;  
            generate = on1-on6(1);  
            categorical = on1-on6;   
            nrep = 1000;  
            seed = 051218;  
            nobs = 1026;  
            genclasses = c (1); 
            classes = c (1); 
            missing = on2-on6; 
            repsave=all;  
            save=rep*.DAT;  
             
            ANALYSIS:  
            TYPE = MIXTURE; 
            ESTIMATOR = ML; 
            LINK = LOGIT; 
            ALGORITHM = EM INTEGRATION; 
             
            MODEL POPULATION:                    
             
            %OVERALL% 
             
            x@.438; 
            [x@0]; 
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            m1 ON x@.187; 
            m1*.554; 
             
            [ 
            on1$1*1.256 
            on2$1*1.264 
            on3$1*1.041 
            on4$1*1.133 
            on5$1*1.233 
            on6$1*.826 
            ]; 
             
            ONSET BY on1@1 on2@1 on3@1 on4@1 on5@1 on6@1;  
             
            ONSET@0; 
             
            ONSET ON x@0; 
            ONSET ON m1@0; 
             
            on1 ON m1@-.319; 
            on2 ON m1@0; 
            on3 ON m1@0; 
            on4 ON m1@0; 
            on5 ON m1@0; 
            on6 ON m1@0; 
             
            MODEL MISSING: 
             
            %OVERALL% 
             
            [on2-on6@-15]; 
            on2 ON on1@30; 
            on3 ON on1-on2@30; 
            on4 ON on1-on3@30; 
            on5 ON on1-on4@30; 
            on6 ON on1-on5@30; 
            ') 
 
write.table(imp, "Sim.inp", sep="",row.names=F,col.names = F,quote = F) 
shell ("BATCH.bat")  
 
batch<-paste0('C:\\Program Files\\Mplus',' 
              ', 
              'Mplus  ', path,'\\ana.inp', '  ', path,'\\ana.out  
              EXIT') 
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write.table(batch, "BATCH2.bat", sep="",row.names=F,col.names = F,quote = F) 
 
NR=1000 
 
ONonX=c(rep(NA,NR)) 
ONonXse=c(rep(NA,NR)) 
ONonXp=c(rep(NA,NR)) 
 
M1onX=c(rep(NA,NR)) 
M1onXse=c(rep(NA,NR)) 
M1onXp=c(rep(NA,NR)) 
 
On1onM2=c(rep(NA,NR)) 
On1onM2se=c(rep(NA,NR)) 
On1onM2p=c(rep(NA,NR)) 
 
On2onM2=c(rep(NA,NR)) 
On2onM2se=c(rep(NA,NR)) 
On2onM2p=c(rep(NA,NR)) 
 
On3onM2=c(rep(NA,NR)) 
On3onM2se=c(rep(NA,NR)) 
On3onM2p=c(rep(NA,NR)) 
 
On4onM2=c(rep(NA,NR)) 
On4onM2se=c(rep(NA,NR)) 
On4onM2p=c(rep(NA,NR)) 
 
On5onM2=c(rep(NA,NR)) 
On5onM2se=c(rep(NA,NR)) 
On5onM2p=c(rep(NA,NR)) 
 
On6onM2=c(rep(NA,NR)) 
On6onM2se=c(rep(NA,NR)) 
On6onM2p=c(rep(NA,NR)) 
 
XMEAN=c(rep(NA,NR)) 
XMEANse=c(rep(NA,NR)) 
XMEANp=c(rep(NA,NR)) 
 
XVAR=c(rep(NA,NR)) 
XVARse=c(rep(NA,NR)) 
XVARp=c(rep(NA,NR)) 
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M1INT=c(rep(NA,NR)) 
M1INTse=c(rep(NA,NR)) 
M1INTp=c(rep(NA,NR)) 
 
M1RES=c(rep(NA,NR)) 
M1RESse=c(rep(NA,NR)) 
M1RESp=c(rep(NA,NR)) 
 
ON1TH=c(rep(NA,NR)) 
ON1THse=c(rep(NA,NR)) 
ON1THp=c(rep(NA,NR)) 
 
ON2TH=c(rep(NA,NR)) 
ON2THse=c(rep(NA,NR)) 
ON2THp=c(rep(NA,NR)) 
 
ON3TH=c(rep(NA,NR)) 
ON3THse=c(rep(NA,NR)) 
ON3THp=c(rep(NA,NR)) 
 
ON4TH=c(rep(NA,NR)) 
ON4THse=c(rep(NA,NR)) 
ON4THp=c(rep(NA,NR)) 
 
ON5TH=c(rep(NA,NR)) 
ON5THse=c(rep(NA,NR)) 
ON5THp=c(rep(NA,NR)) 
 
ON6TH=c(rep(NA,NR)) 
ON6THse=c(rep(NA,NR)) 
ON6THp=c(rep(NA,NR)) 
 
ab1=c(rep(NA,NR)) 
ab1L= c(rep(NA,NR)) 
ab1H= c(rep(NA,NR)) 
 
ab2=c(rep(NA,NR)) 
ab2L= c(rep(NA,NR)) 
ab2H= c(rep(NA,NR)) 
 
ab3=c(rep(NA,NR)) 
ab3L= c(rep(NA,NR)) 
ab3H= c(rep(NA,NR)) 
 
ab4=c(rep(NA,NR)) 
ab4L= c(rep(NA,NR)) 



103 

ab4H= c(rep(NA,NR)) 
 
ab5=c(rep(NA,NR)) 
ab5L= c(rep(NA,NR)) 
ab5H= c(rep(NA,NR)) 
 
ab6=c(rep(NA,NR)) 
ab6L= c(rep(NA,NR)) 
ab6H= c(rep(NA,NR)) 
 
Rep= c(rep(NA,NR)) 
Condition= c(rep(NA,NR)) 
 
for(j in 1:1000){  
  ana<-paste0('data: file is rep',j,'.dat; 
               VARIABLE: 
               NAMES ARE ON1 
              ON2 
              ON3 
              ON4 
              ON5 
              ON6 
              X 
              M1 
              C; 
               
              USEVARIABLES ARE ON1 
              ON2 
              ON3 
              ON4 
              ON5 
              ON6 
              X 
              M1 
              M2; 
               
              CATEGORICAL = ON1 
              ON2 
              ON3 
              ON4 
              ON5 
              ON6; 
               
              MISSING ARE ALL (999); 
               
              CLASSES = class (1); 
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              DEFINE: 
              M2 = M1; 
               
              ANALYSIS: 
              TYPE = MIXTURE; 
              ESTIMATOR = ML; 
              LINK = LOGIT; 
              ALGORITHM = EM INTEGRATION; 
              BOOTSTRAP = 1000; 
               
              MODEL: 
               
              %OVERALL% 
               
              M1 ON X (p1); 
               
              X; 
              [X]; 
               
               
              [ON1$1 ON2$1 ON3$1 ON4$1 ON5$1 ON6$1]; 
               
              ONSET BY ON1@1 ON2@1 ON3@1 ON4@1 ON5@1 ON6@1; 
               
              ONSET@0; 
               
              ONSET ON X; 
              ONSET ON M1@0; 
              ONSET ON M2@0; 
               
              ON1 ON2 ON3 ON4 ON5 ON6 ON M2 (p2 - p7); 
               
              MODEL CONSTRAINT: 
               
              NEW (ab1-ab6); 
              ab1 = p1 * p2; 
              ab2 = p1 * p3; 
              ab3 = p1 * p4; 
              ab4 = p1 * p5; 
              ab5 = p1 * p6; 
              ab6 = p1 * p7; 
                                       
              OUTPUT: SAMPSTAT; CINTERVAL(bcboot); 
              ') 
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  write.table(ana, "ana.inp", sep="",row.names=F,col.names = F,quote = F) 
  shell ("BATCH2.bat")  
   
  library(MplusAutomation) 
  ab_CIs<-extractModelParameters("C:\\DissSim\\c1\\ana.out", recursive = 
FALSE)$ci.unstandardized 
   
  ab1[j]=ab_CIs[nrow(ab_CIs)-5,6] 
  ab1L[j]=ab_CIs[nrow(ab_CIs)-5,4] 
  ab1H[j]=ab_CIs[nrow(ab_CIs)-5,8] 
   
  ab2[j]=ab_CIs[nrow(ab_CIs)-4,6] 
  ab2L[j]=ab_CIs[nrow(ab_CIs)-4,4] 
  ab2H[j]=ab_CIs[nrow(ab_CIs)-4,8] 
   
  ab3[j]=ab_CIs[nrow(ab_CIs)-3,6] 
  ab3L[j]=ab_CIs[nrow(ab_CIs)-3,4] 
  ab3H[j]=ab_CIs[nrow(ab_CIs)-3,8] 
   
  ab4[j]=ab_CIs[nrow(ab_CIs)-2,6] 
  ab4L[j]=ab_CIs[nrow(ab_CIs)-2,4] 
  ab4H[j]=ab_CIs[nrow(ab_CIs)-2,8] 
   
  ab5[j]=ab_CIs[nrow(ab_CIs)-1,6] 
  ab5L[j]=ab_CIs[nrow(ab_CIs)-1,4] 
  ab5H[j]=ab_CIs[nrow(ab_CIs)-1,8] 
   
  ab6[j]=ab_CIs[nrow(ab_CIs),6] 
  ab6L[j]=ab_CIs[nrow(ab_CIs),4] 
  ab6H[j]=ab_CIs[nrow(ab_CIs),8] 
   
  unstand<-extractModelParameters("C:\\DissSim\\c1\\ana.out", recursive = 
FALSE)$unstandardized 
   
  ONonX[j]=unstand[nrow(unstand)-27,3] 
  ONonXse[j]=unstand[nrow(unstand)-27,4] 
  ONonXp[j]=unstand[nrow(unstand)-27,6] 
   
  M1onX[j]=unstand[nrow(unstand)-24,3] 
  M1onXse[j]=unstand[nrow(unstand)-24,4] 
  M1onXp[j]=unstand[nrow(unstand)-24,6] 
   
  On1onM2[j]=unstand[nrow(unstand)-23,3] 
  On1onM2se[j]=unstand[nrow(unstand)-23,4] 
  On1onM2p[j]=unstand[nrow(unstand)-23,6] 
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  On2onM2[j]=unstand[nrow(unstand)-22,3] 
  On2onM2se[j]=unstand[nrow(unstand)-22,4] 
  On2onM2p[j]=unstand[nrow(unstand)-22,6] 
   
  On3onM2[j]=unstand[nrow(unstand)-21,3] 
  On3onM2se[j]=unstand[nrow(unstand)-21,4] 
  On3onM2p[j]=unstand[nrow(unstand)-21,6] 
   
  On4onM2[j]=unstand[nrow(unstand)-20,3] 
  On4onM2se[j]=unstand[nrow(unstand)-20,4] 
  On4onM2p[j]=unstand[nrow(unstand)-20,6] 
   
  On5onM2[j]=unstand[nrow(unstand)-19,3] 
  On5onM2se[j]=unstand[nrow(unstand)-19,4] 
  On5onM2p[j]=unstand[nrow(unstand)-19,6] 
   
  On6onM2[j]=unstand[nrow(unstand)-18,3] 
  On6onM2se[j]=unstand[nrow(unstand)-18,4] 
  On6onM2p[j]=unstand[nrow(unstand)-18,6] 
   
  XMEAN[j]=unstand[nrow(unstand)-17,3] 
  XMEANse[j]=unstand[nrow(unstand)-17,4] 
  XMEANp[j]=unstand[nrow(unstand)-17,6] 
   
  XVAR[j]=unstand[nrow(unstand)-8,3] 
  XVARse[j]=unstand[nrow(unstand)-8,4] 
  XVARp[j]=unstand[nrow(unstand)-8,6] 
   
  M1INT[j]=unstand[nrow(unstand)-16,3] 
  M1INTse[j]=unstand[nrow(unstand)-16,4] 
  M1INTp[j]=unstand[nrow(unstand)-16,6] 
   
  M1RES[j]=unstand[nrow(unstand)-7,3] 
  M1RESse[j]=unstand[nrow(unstand)-7,4] 
  M1RESp[j]=unstand[nrow(unstand)-7,6] 
   
  ON1TH[j]=unstand[nrow(unstand)-14,3] 
  ON1THse[j]=unstand[nrow(unstand)-14,4] 
  ON1THp[j]=unstand[nrow(unstand)-14,6] 
   
  ON2TH[j]=unstand[nrow(unstand)-13,3] 
  ON2THse[j]=unstand[nrow(unstand)-13,4] 
  ON2THp[j]=unstand[nrow(unstand)-13,6] 
   
  ON3TH[j]=unstand[nrow(unstand)-12,3] 
  ON3THse[j]=unstand[nrow(unstand)-12,4] 
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  ON3THp[j]=unstand[nrow(unstand)-12,6] 
   
  ON4TH[j]=unstand[nrow(unstand)-11,3] 
  ON4THse[j]=unstand[nrow(unstand)-11,4] 
  ON4THp[j]=unstand[nrow(unstand)-11,6] 
   
  ON5TH[j]=unstand[nrow(unstand)-10,3] 
  ON5THse[j]=unstand[nrow(unstand)-10,4] 
  ON5THp[j]=unstand[nrow(unstand)-10,6] 
   
  ON6TH[j]=unstand[nrow(unstand)-9,3] 
  ON6THse[j]=unstand[nrow(unstand)-9,4] 
  ON6THp[j]=unstand[nrow(unstand)-9,6] 
   
  Rep[j]=j 
  Condition[j]=1 
   
} 
 
result=data.frame(Condition, Rep, ab1, ab1L, ab1H, 
                  ab2, ab2L, ab2H, 
                  ab3, ab3L, ab3H,  
                  ab4, ab4L, ab4H,  
                  ab5, ab5L, ab5H,  
                  ab6, ab6L, ab6H,  
                  ONonX, ONonXse, ONonXp,  
                  M1onX, M1onXse, M1onXp,  
                  On1onM2, On1onM2se, On1onM2p,  
                  On2onM2, On2onM2se, On2onM2p,  
                  On3onM2, On3onM2se, On3onM2p,  
                  On4onM2, On4onM2se, On4onM2p,  
                  On5onM2, On5onM2se, On5onM2p,  
                  On6onM2, On6onM2se, On6onM2p,  
                  XMEAN, XMEANse, XMEANp,  
                  XVAR, XVARse, XVARp,  
                  M1INT, M1INTse, M1INTp,  
                  M1RES, M1RESse, M1RESp,  
                  ON1TH, ON1THse, ON1THp,  
                  ON2TH, ON2THse, ON2THp,  
                  ON3TH, ON3THse, ON3THp,  
                  ON4TH, ON4THse, ON4THp,  
                  ON5TH, ON5THse, ON5THp,  
                  ON6TH, ON6THse, ON6THp) 
 
write.table(result, "result.csv",col.names=TRUE,row.names=FALSE, sep = ",") 
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