
University of South Carolina University of South Carolina 

Scholar Commons Scholar Commons 

Theses and Dissertations 

2018 

Goodness of Fit via Residual Plots in Item Response Theory Goodness of Fit via Residual Plots in Item Response Theory 

Bryonna Bowen 
University of South Carolina 

Follow this and additional works at: https://scholarcommons.sc.edu/etd 

 Part of the Statistics and Probability Commons 

Recommended Citation Recommended Citation 
Bowen, B.(2018). Goodness of Fit via Residual Plots in Item Response Theory. (Master's thesis). Retrieved 
from https://scholarcommons.sc.edu/etd/4713 

This Open Access Thesis is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and 
Dissertations by an authorized administrator of Scholar Commons. For more information, please contact 
digres@mailbox.sc.edu. 

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/etd
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F4713&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/208?utm_source=scholarcommons.sc.edu%2Fetd%2F4713&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/4713?utm_source=scholarcommons.sc.edu%2Fetd%2F4713&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digres@mailbox.sc.edu


 
 

Goodness of Fit via Residual Plots in Item Response Theory  

 

by  

 

Bryonna Bowen  

 

Bachelor of Arts  
Brigham Young University, 2015 

 

________________________________________________ 

Submitted in Partial Fulfillment of the Requirements 

For the Degree of Master of Science in  

Statistics  

College of Arts and Sciences 

University of South Carolina  

2018 

Accepted by:  

 Brian Habing, Director of Thesis 

David Hitchcock, Reader 

Maureen Petkewich, Reader  

Cheryl L. Addy, Vice Provost and Dean of the Graduate School   



ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

© Copyright by Bryonna Bowen, 2018  
All Rights Reserved



iii 
 

 Acknowledgements  
 

I am very grateful to the many people who helped me complete this thesis. 

Foremost, I would like to thank my family for their encouragement and for David 

Edwards for always being there for me and his unwavering support.  

I would like to express my appreciation and gratitude to my advisor, Dr. Brian 

Habing. He always took the time to help me and support me. His flexibility in schedule 

allowed me to complete this project. Brian prepared me with the background and 

academic knowledge I needed for this project and gave me the programming input 

when I needed it the most. He encouraged me to always press forward. 

I would also like to thank Dr. David Hitchcock for his long lasting support and 

constant willingness to lend a hand when asked. The courses I took from him giving me 

a stronger academic background and I’m grateful he was willing to serve as a committee 

member. I would also like to thank Maureen Petkewich for her willingness to serve as 

committee member and for her input and expertise on the subject.  



iv 
 

Abstract 

Goodness-of-fit criteria developed for the evaluation of item response functions 

have been examined by many scholars using different theories and criteria. A number of 

potential graphical analysis approaches, such as residual plots, have been described in 

literature, but have received little attention from researchers. While many tests of 

goodness-of-fit are available, those that incorporate the analysis of residuals may be 

most useful. The unmistakable presence of a pattern in the residual plot for the logistic 

model item response functions even when we know the model fits raises a red flag up 

and calls for greater analysis. This study explores different methods to improve residual 

plots for a 3-Parameter logistic model and determine if residual plots are truly useful in 

determining goodness of model-data fit.  
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Introduction 

In order for education levels and academic abilities to be compared across 

classrooms, school districts, and state lines, standardized testing has become 

increasingly prominent. The most commonly used method to analyze these types of 

tests is item response theory (IRT). Consider a standardized math test; ideally, the test 

measures a student or examinee’s math ability, or in multidimensional cases the test 

can be broken down to measuring various math abilities such as algebra, geometry, and 

trigonometry. In either case, analysis models use test responses to simultaneously 

estimate item characteristics and examinee abilities. 

Various models have been developed to improve the accuracy of estimation and 

analysis for measuring tests and creating predictions. However, one of the primary 

assumptions for all item response models is that their benefits are only valid if the 

model fits properly. Addressing the goodness of model-data fit is therefore, a vital 

component to ensuring the appropriate model is selected. The literature available on 

model-data fit in IRT is still unsettled as to what constitutes the optimal approach.   

Residual plots are used as a standard of measurement for the goodness-of-fit 

from a given model. Randomness in the pattern of residuals indicates a good fit, while 

distinct non-random patterns suggest other models may be a better fit. For example, a 
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U-shape in the residuals for a linear regression points toward a non-linear model as a 

better fit. Many residual plots for IRT models show a clear pattern. Does the pattern in 

IRT residual plots indicate a poor model-data fit even if all model assumptions are met? 

Are there different ways to break up the data and improve the residual plots? If so, what 

are the ways? This thesis explores a ways to attempt to improve the residual plots for 

IRT parametric models.  

The following chapters provide a brief overview of the basics from item response 

theory, and the most widely used parametric monotone homogeneity models. Next, an 

overview of the IRT goodness-of-fit literature and previous studies will be included. The 

current study will then be explained in detail and the results of the study analyzed.  
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Chapter 1: Item Response Theory 

 In a world of countless tests measuring achievement, aptitude, and personality, 

the analysis of standardized tests is growing rapidly in interest and frequency. Such tests 

in education are used to determine if students meet educational standards. For 

instance, the ACT, SAT, GRE, MCAT, etc. are all tests used to determine students’ 

knowledge in targeted areas. While the construction and evaluation of these tests are 

subject to various shortcomings, psychometricians use item response theory (IRT) as the 

standard set of statistical tools to analyze them.  

Item response theory (IRT) is a class of methods of latent variable measurement 

models. In a binary test an examinee either gets the question correct or incorrect1. 

Plotting observed responses versus ability of the examinee would create essentially 

useless graphical representation due to the data’s dichotomous nature (see Figure 1.1). 

Mathematical models attempt to describe the relationship between the responses to 

the items (i.e. questions) on a test or questionnaire and the underlying latent trait(s) 

that the test is designed to measure. Mathematical models known as item response 

functions (IRFs) express the probability of an examinee getting an item correct as a 

function of the latent ability of the examinee. Similar to logistic regression, the item 

                                                           
1
 There are also partial credit models, to analyze what is known as polytomous or polychotomous data. 

However, we will only be considering dichotomous data and models in this study.  
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response function is s-shaped and plots the proportion of correct responses as a 

function of the ability in question. An example of an IRF is shown in Figure 1.2.  

 

 

Figure 1.1: Plotting Examinees’ Ability vs. Responses 

 

 

Figure 1.2: General Item Response Function Curve 
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The parameter of interest is a latent ability, meaning an ability that is present 

but is not apparent, which can also be construed as the existing potential of an 

examinee. IRT is based on the premise that (1) an examinee’s performance on a test 

item can be predicted by a set of abilities; and (2) the relationship between the 

performance of an examinee on an item and the underlying ability can be described by 

monotonically increasing item characteristic curve or item response function 

(Hambleton and Swaminathan and Rogers, 1991). 

IRT models have a long history with many of the central ideas being established 

as far back as the 1940s and 1950s (Lawley, 1943; Tucker, 1946; Lazarfeld, 1950; Lord, 

1952). Many experts consider the earliest complete application of IRT to be that of 

Birnbaum (1968) in a special section of Lord and Novick (1968). Computers and software 

caught up with the theory by the 1980s when it became possible to estimate 

parameters for problems of meaningful size in reasonable amounts of time. Since then 

there has been further research in IRT, including but not limited to creating new models, 

forming new methods of estimation, and writing new advanced software.  

When a given IRT model fits the test data there are several desirable features 

obtained. One distinguishing features of IRT is the property of invariance of item and 

ability parameters. The invariance property is even occasionally referred to as the 

cornerstone of IRT (Hambleton, Swaminathan, and Rogers, 1991). The property of 

invariance implies that the model parameters in IRT do not depend on the ability 

distribution of the examinees and that the set of test items is independent from the 

parameter characterizing an examinee. According to Hambleton, Swaminathan, and 
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Rogers (1985) features of the IRT include: (1) item parameter estimates are independent 

of the group of examinees sampled from the population of examinees, (2) examinee 

ability estimates are independent of the particular choice of test items used from the 

population of items, and (3) a statistic indicating the precision of each examinee’s ability 

estimate is known. 

Although these features are compelling, as with any mathematical model there 

are a set of assumptions about the data which must be met in order to obtain these 

qualities. It is also important to note that the extent to which these advantages may be 

obtained in practice is determined by how well the test data and the model “fit”.    

Assumptions of Item Response Theory  

Given that items on a test are dichotomous (2 categories: correct or incorrect) 

then a common set of assumptions for an item response theory model is (Swaminathan 

& Rogers, 1995): 

1. Ability (𝜃) is unidimensional  

2. Local Independence  

3. Monotonicity  

Unidimensionality is the first assumption. The most commonly used IRT models 

assume that a test is only measuring a single ability. For example, a constructed math 

test attempts to measure examinee’s math ability. However, if there are algebra and 

geometry and trigonometry questions then each of these subcategories of math are 

additional dimensions. A unidimensional test would measure only one of these abilities 

(i.e. an algebra test has only algebra related questions). In practice, this assumption is 
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nearly impossible to meet due to the nature of constructing ability. For instance, a word 

problem on a math test may measure math ability, but one’s reading comprehension is 

also a factor. There are almost always multiple abilities involved; however, the 

assumption is that one particular ability dominates the measurement, and is therefore, 

considered the measured ability. 

The second assumption is local independence. This means that responses are 

independent given the ability of an examinee. In other words, one question on the test 

does not affect the examinee’s answer on another question of the same test. Each 

question is therefore pairwise independent from all other questions on the test. This 

can be mathematically written as  

𝑃(𝑈1 = 𝑢1, 𝑈2 = 𝑢2, … , 𝑈𝑛 = 𝑢𝑛|𝜃) = 𝑃(𝑈1 = 𝑢1|𝜃) ∗ 𝑃(𝑈2 = 𝑢2|𝜃) ∗ … ∗ 𝑃(𝑈𝑛 = 𝑢𝑛|𝜃).  
 

The item response function is the probability of response ui occurring for an examinee 

with ability (𝜃) to item i. It follows that the examinee’s ability being measured is the 

only aspect determining the probability of that examinee getting a particular item 

correct. However, Jannarone’s (1986) conjunctive item response models introduce an 

alternative model where items are not necessarily locally independent.       

Monotonicity is the final assumption. This means that as the examinee’s ability 

increases the probability of responding correctly to an item also increases. This seems is 

intuitive—if an examinee knows a great deal about algebra he or she is more likely to 

get an algebra question correct compared to someone who has little knowledge of 

algebra. This assumption of monotonicity is not required in all IRT models, and its 

violation is central to Robert, Donoghue, and Laughlin’s unfolding model (1996).    
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With these three assumptions, a dichotomous item exam following the 

monotone homogeneity model stochastically orders ability by the observed total score. 

This means that for a fixed ability, 𝜃∗,  

𝑃(𝛩 > 𝜃∗|𝑆 = 𝑠1) ≤ 𝑃((𝛩 > 𝜃∗|𝑆 = 𝑠2) for all 𝑠1 < 𝑠2. 

Stochastic ordering is a property of the minimum model necessary for monotone 

homogeneity models and implies that the higher your sum score, the more likely you 

are to have a higher ability (𝜃).  

Unidimensional Logistic Models 

The logistic models included in the research take on some variation of the following 

general form 

𝑃𝑖(𝜃) = 𝑐𝑖 +
1 − 𝑐𝑖

1 + 𝑒−1.7𝑎𝑖(𝜃−𝑏𝑖)
, 𝑖 = 1, 2, … , 𝑛 

The probability that an examinee with ability θ correctly answers item i is 

represented by𝑃𝑖(𝜃). The ability, represented by 𝜃, typically follows a standard normal 

distribution (mean equal to 0 and standard deviation of 1). As with all probabilities, the 

probability of answering an item correct is given on a range from 0 to 1. The higher 

𝑃𝑖(𝜃) is the greater the probability an examinee of ability 𝜃 has of getting item 𝑖 correct.  

The discrimination parameter is given by 𝑎𝑖  and is proportional to the slope at 

𝜃 = 0 of the item response function. Discrimination of an item refers to how well the 

item separates low and high ability examinees. No discrimination (𝑎𝑖= 0) is the 

equivalent to flipping a coin, and negative discrimination indicates that the question is 

doing the opposite of what you want, such that the higher ability examinees get the 

item wrong. Therefore, negative discrimination (𝑎𝑖< 0) is highly undesirable. In practice, 
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discrimination factors range from 0 to 2 since it is rare that the discrimination factor is 

ever greater than 2.  

The item difficulty parameter is given by 𝑏𝑖 and measures how hard or difficult 

the item is. The larger 𝑏𝑖 gets the more ability an examinee needs to get the item 

correct (i.e. a harder question). It is the inflection point of item response functions.  

 The guessing parameter is given by 𝑐𝑖 and indicates the lower asymptote in the 3 

Parameter Logistic (PL) model. The guessing parameter shifts the item response 

function to account for guessing. Since the function is based on a multiple choice items, 

individuals may not know the correct answer yet still give the correct answer; this 

means they may have greater probability of answering the item correct despite a low 

ability.  

Additionally, we see the notation including the number of items on the test given 

by n. And the value of 1.7 in the exponent of the denominator is a standardizing 

constant such that it assures that the logistic models and the normal ogive will never 

differ by more than 0.01 (see Haley, 1952 as cited by Birnbaum, 1968) .  

Rasch Model  

 The most basic IRT model is the Rasch model (1960) also known as the one-

parameter logistic (1PL) model. It follows the form: 

 

𝑃𝑖(𝜃) =
1

1 + 𝑒−1.7(𝜃−𝑏𝑖)
, 𝑖 = 1, 2, … , 𝑛 
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 The Rasch model has a fixed discriminating factor (𝑎𝑖=1) meaning that all items 

modeled will have the same slope. It is therefore assumed that all items distinguish 

between all examinees equivalently and that all items are equally related to what ability 

the test is measuring. This model is popular for many psychometricians because items 

are easier or harder for everyone (i.e. the slopes don’t cross) making the model 

straightforward. Figure 1.3 shows three different items each of varying difficulty but as 

previously explained, their slopes do not intersect meaning that there is a clear 

distinction between which item is more difficult for everyone and which item is easiest 

for all examinees (i.e. Hambleton and Swaminathan, 1985). 

 

Figure 1.3: Examples of items following the Rasch model 
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Another reason the Rasch Model is often used is because if ability is estimated 

using maximum likelihood methods, it is not necessary to know whether the examinee 

got each item correct or not; a sufficient statistic, 𝑆 = ∑ 𝑈𝑖
𝑛
𝑖=1 , the sum total score is all 

the information needed to estimate 𝜃. This model is ideal for explanations to individuals 

with little statistical understanding—such as parents and legislators—because all 

examinees with the same S will have the same estimated ability, 𝜃 (Rasch, 1980). 

However, there are limitations to the Rasch model. For example, the Rasch model does 

not account for guessing hence 𝑐𝑖=0. Furthermore, some questions tend to be more 

discriminating than others in practice, which is not taken into account with this model. 

In essence, its simplicity is also its weakness.   

Two Parameter Logistic Model  

 Birnbaum’s (1968) two parameter logistic (2PL) model follows the following 

general form:  

𝑃𝑖(𝜃) =
1

1 + 𝑒−1.7𝑎𝑖(𝜃−𝑏𝑖)
, 𝑖 = 1, 2, … , 𝑛 

 

This 2PL function is similar to the Rasch model but adds a parameter accounting 

for the discrimination factor of each item. The discrimination parameter, ai, is 

proportional to the slope in the IRF. An item with larger ai value has a steeper slope 

which indicates higher discrimination factor; therefore, such an item will do better at 

separating higher ability examinees from lower ability examinees. With items allowed to 

have varying discrimination values, the item response functions of different items may 

have intersecting slopes. Figure 1.4 is an example of three items following a 2PL model. 
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Figure 1.4: Examples of 2PL Items with the Same Difficulty but  
Varying Discriminations 

 

 By examining Figure 1.4 we see all three items have the same difficulty, bi =0. 

Item 2 has the same discrimination factor, or slope, as the Rasch model (𝑎2 = 1). Item 1 

has a lower item discrimination (𝑎1 = 0.5) and item 3 has a high discrimination factor 

(𝑎3 = 1.5). To interpret this, we can say that item 1 is easiest and item 3 is most difficult 

for examinees with low ability. However, for examinees with high ability we see that 

item 3 is easiest and item 1 is most difficult at these higher abilities. Therefore, it cannot 

be said that one item is strictly easier or more difficult than other items. While this 

distinction complicates analysis, it also provides more information about the items by 

including the discrimination factor. Estimation in the 2PL model is harder because there 

is not a sufficient statistic for 𝜃. Neither the Rasch model nor the 2PL model account for 

examinees guessing on items. To include a guessing factor we must introduce the 3PL 

model.  
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Three Parameter Logistic Function  

 The more complicated but still commonly used IRF is the 3 parameter logistic 

(3PL) model (Birnbaum, 1968). The 3PL model accounts for the possibility of examinees 

guessing on items. The generalized form of the 3PL model follows: 

𝑃𝑖(𝜃) = 𝑐𝑖 +
1 − 𝑐𝑖

1 + 𝑒−1.7𝑎𝑖(𝜃−𝑏𝑖)
, 𝑖 = 1, 2, … , 𝑛 

 

In both the Rasch and the 2PL models, the guessing parameter 𝑐𝑖 = 0; in the 3PL 

model the range of 𝑐𝑖 is theoretically from 0 to 1, but is frequently thought of as being 

0.2(which would correspond to a multiple choice question with five response 

categories). The guessing parameter manifests itself via a lower asymptote in the IRF. 

This means that an examinee with hypothetically no ability still has a probability equal 

to  𝑐𝑖 of getting the item correct. This is relevant because many tests used for IRT are 

multiple choice and even if an examinee chooses a random answer there is still some 

chance that he or she guesses correctly. In Figure 1.5 we see an example of four 

different 3PL items. 

The addition of a guessing parameter is very evident in the graph of Figure 1.5. 

The lower asymptote is for item 1 is 0, like the 2PL model, but item 4 (𝑐𝑖 =  0.1) and 

items 2, 3 (𝑐𝑖 =  0.2) include guessing parameters. Note that item 4 has a lower 

guessing parameter than item 2 and item 3, which means that examinees with lower 

abilities have a lower chance of answering item 4 correctly than they do item 2 or 3 but 

a greater chance than getting item 1. The discriminating factor also changes for some of 
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the items above and therefore, the same inability to determine an overall easier or 

harder item from the 2 PL model is also in effect here 

 

Figure 1.5: Example of 3PL Items with Varying Parameters 
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Chapter 2: Residual Plots and Literature Review 

Residual Plots  

 Given that we now have a few monotone homogeneity models to choose from 

the following questions come to mind: How can you determine if a model fits the data? 

If there are multiple potential models to use, how can you tell which one of the models 

is most appropriate? What do we do when we have our data and we think a certain 

model fits? As with most analytical methods, we want some statistical way to go 

through and determine what model we should use for the data. 

 Direct diagnostic plots for the response variable are rarely useful because 

observations and response variables may be on different scales based on the levels of 

the predictor variable. Instead, the residuals are examined to determine the diagnostics 

for the dependent variable (Kutner et al., 2005). Residuals are the calculated differences 

between the predicted and observed values, typically for each individual or unit. The 

observed error, regarded as the residual, is defined as   

𝑒𝑖 = 𝑌𝑖 − 𝑌�̂� 

Residuals are often presented as standardized or studentized residuals, meaning 

that the residual is normalized by the estimate of its standard deviation at each 

predicted value. This allows us to compare residuals at different data points when they 

are calculated to be on the same scale. The following form of standardization is 

commonly used (Kutner et al., 2005): 
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𝑒𝑖
∗ =

𝑒𝑖 − �̅�

√𝑀𝑆𝐸
 

where √𝑀𝑆𝐸 is an estimate of the standard deviation of the residual. Hence, the 

statistic ei is referred to as the studentized or semistudentized residual (Kutner et al., 

2005). The unknown true error, εi, is given as: 

𝜀𝑖 = 𝑌𝑖 − 𝐸{𝑌𝑖} 

In standard linear regression, the error terms, 𝜀𝑖, are assumed to be independent 

normal random variables, with mean 0 and constant variance𝜎2. These properties 

assumed for 𝜀𝑖 should be reflected by the observed residual (or studentized residual) if 

the model is appropriate (Kutner et al., 2005).   

 A residual plot is a graph showing the residuals on the vertical axis and the 

independent variable values on the horizontal axis. If the residual plot shows no pattern, 

or in other words the residuals appear to be random, then we typically assume that the 

model is appropriate for the data. Otherwise, we usually believe another model is more 

appropriate, often times a non-linear or in the case of IRT perhaps a nonparametric 

model.  

 In general, the ideal residual plot has (1) residuals that are fairly symmetrically 

distributed and with mean equal to 0 and (2) no clear patterns in the plot. However, as 

George Box famously stated, “essentially, all models are wrong, but some are useful” 

(1976). So while the model may not be perfect and the residuals look like the model can 

improve, a decent model is better than no model at all.  In practice “how good is good 

enough?” is a judgment call everyone has to make depending on the intent of the 

research.  Given residual plots’ apparent usefulness in determining goodness-of-fit, it is 
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surprising that item response model researchers have not given residuals more 

attention.  

Previous Research  

Testing the goodness-of-fit of IRT models is essential to validating IRT models. 

Goodness-of-fit methods have lagged behind estimation methods for IRT models for 

some time (van der Linden & Hambleton, 1997; Maydeu-Olivares, 2013). At first overall 

goodness-of-fit tests involved contingency tables and frequencies (Bishop, Fienberg, & 

Holland, 1975). Over time several goodness-of-fit tests developed, including the more 

notable Pearson’s chi-squared (𝜒2) test and Likelihood ratio test (𝐺2). Many scholars 

have described the use of these statistics with IRT models and done in-depth research 

for which model assumptions appear to be violated and how the model assumptions 

affect the goodness-of-fit statistics (Lord & Novick, 1968; Thissen, 2013; Maydeu-

Olivares, 2013).  However, there are several other methods and statistics used to assess 

goodness-of-fit in IRT.  

One of the primary concerns of goodness-of-fit for IRT parametric models is that 

item bias affects the parameter of interest, i.e. ability. In such cases there is an “effect of 

misspecification on the goals of IRT analysis,” undermining the features previously 

mentioned in Chapter 1 (Obereki and Vermut, 2013). Therefore, understanding the 

efficiency of goodness-of-fit tests or having the ability to accurately interpret goodness-

of-fit statistics is of paramount importance.  A common approach to assessing IRT 

models’ goodness-of-fit is analyzed in the research by using comparing methods of 

calculating the goodness-of-fit statistics.  Stone and Zhang (2003), in addition to other 
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scholars, propose using posterior probabilities for responses across ability levels rather 

than using the traditional method of cross-classification of examinees and point 

estimates of θ (Stone, Mislevy, & Mazzeo, 1994; Donoghue and Hombo, 1999, 2001). 

Stone, Mislevy, and Mazzeo argue that the goodness-of-fit statistics approximated 

under the null distribution deviate according to the uncertainty in ability estimation. 

Donoghue and Hombo derived a distribution of the fit statistic in order to perform 

hypothesis testing. However, Hambleton and Swaminathan (1985) discuss other 

validation techniques and dispute that too much reliance has been placed on model fit 

statistical tests resulting in erroneous decision and serious flaws. This weakness in 

statistical tests of model fit has since become well-known and analyzed more deeply.  

 A comparison of observed and expected frequencies across score levels with a 

fit statistic that does not use ability estimates has been provided by Orlando and Thissen 

(2000). Sources of misfit have also been assessed using modification indices such as 

Lagrange multiplier tests, where statistics for residual means and covariances are tested 

(Maydeu-Olivares, 2013). However, many problems with types of goodness of fit tests 

have been thoroughly discussed in existing literature (see Hambleton & Swaminathan, 

1985; Mislevy & Bock, 1990; Muraki, 1997). In particular, these scholars present 

concerns about the inefficiencies and the issues with chi-square tests in general 

(Hambleton & Swaminathan, 1985; Bock, 1989) and the number of subgroups 

representing the “threat” (Muraki, 1997).  

A number of potential graphical analysis approaches have been described in 

literature, but have received little or no attention from researchers. Many tests of 
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goodness-of-fit are available as evident from the extensive research done; however, 

those that incorporate the analysis of residuals seem most useful (Hambleton & 

Swaminathan, 1985; McDonald, 1982). Wright and Stone (1979) compute a goodness-

of-fit statistic based on the residuals, but illustrate the difficulty of seeing how the 

magnitude of residuals could be directly correlated on the fit of the model. The shape of 

item characteristic curves and estimated abilities from different models compared to 

the raw scores is a visual method of seeing approximate model-data fit (Lord, 1970).  It 

was further determined by Lord (1974) that this relationship—model estimates versus 

raw data—may not be perfect but should be highly correlated.  

Hambleton and Swaminathan (1985; Hambleton, Swaminathan, & Rogers, 1991) 

have presented examples of residual plots used in assessing goodness-of-fit. They state 

that the “observed pattern of standardized residuals shown is due to the fact that the 

item is less discriminating than the average level of discrimination adopted for all items 

in the model” (Hambleton, Swaminathan, and Rogers ,1991). While clear improvements 

are gained by using the two-parameter and the three-parameter models, the pattern in 

the standardized residual plot is less evident but still clearly exists.  The unmistakable 

presence of a pattern in the residual plot for the IRF even when we know the model fits 

raises a red flag up and is the call for this study.  

While Hambleton, Swaminathan, and Rogers present a number of alternative 

residual analyses—including: observed and expected proportion correct for items, 

standardized residual plots, frequency distributions of standardized residuals , and 

average absolute standardized residuals against point-biserial correlations—this 
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research uses only the first two methods (observed and expected proportion correct for 

items, standardized residual plots) and focuses on, if possible, how the standardized 

residual plots can be improved to help determine goodness of fit of item response 

functions. 
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Chapter 3: Current Study 

While researchers have evaluated traditional IRT goodness-of-fit tests via test 

statistics and methods, this research explores possible improvement to residual plots 

that assess IRT models goodness-of-fit. In designing a goodness-of-fit investigation for 

IRT models, Stone and Zhang’s (2003) five step outline is used. Their outline of the 

traditional approach to assessing IRT model fit includes: 

1. Estimate the item and ability (𝜃) parameters 

2. Form a small number of ability subgroups 

3. Construct an observed score response distribution for each ability subgroup 

4. Form an expected score response distribution for an item using the IRT 

model across score categories 

5. Compare predictions and observed score responses  

Here we will also include a sixth step from Hambleton and Swaminathan (1985) to 

address the fit between different models.  

6. Determine the appropriateness of the intended application  

Before we can proceed with the outline approach it is necessary to obtain or 

create data to analyze. Researchers have used simulation studies as a valuable method 

to learn about item response models and how different applications of IRT compare 

(Hambleton, 1969, 1983b; Hambleton & Cook, 1983; Ree 1979; Hambleton & 
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Swaminathan, 1985). According to Hambleton and Swaminathan (1985) it is possible to 

simulate data with known properties to determine how well various models recover the 

true parameters.  In this case simulated data is generated to fit a 3PL model in R; 

therefore, we have data with a known model that should fit and the model assumptions 

can be assumed to have been met since this is a simulation study with a known model 

fit. The true plot or true model in this study is a three-parameter logistic model. 

The simulation used includes a test with 32 items and 2000 examinees. The 

discrimination parameters (ai) were set with a range of (.75, 1.5) in intervals of .05.  The 

difficulty parameters (bi) were was set from (-1,1) in intervals of 0.25. The guessing 

parameters were all set equal to 0.2, which is a very typical guessing parameter value in 

simulation studies. This simulation is not based off a specific test, or other results but 

rather attempts to cover general IRT data to explore the residual plots. 

To follow the outline above we had to first, estimate the item and ability (𝜃) 

parameters. PARSCALE (du Toit, 2003) statistical analysis software was used to fit a 3PL 

model to the simulated data. In practice, the simulations created should reflect the 

actual test parameters. This can be verified by Figure 3.1 which compares the actual 

ability values we simulated to what our model’s ability estimates are, and appears to be 

a reasonable 3PL model. 
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Figure 3.1 Model Predicted Ability vs. Simulated Ability Levels  

 

Secondly, a small number of ability subgroups is formed. Ability subgroups are 

represented by quadrature points and are calculated here using two different methods. 

Subgroups can be calculated by evenly dividing the range of ability into equal intervals 

(see Figure 3.2)   or they can be calculated by putting an equal number of examinees 

with similar abilities into each interval (see Figure 3.3).  Quadrature points using the 

midpoint rule are used such that quadrature point i is calculated by:   

𝑞𝑖 =
𝑎𝑖 + 𝑏𝑖

2
 

where 𝑎𝑖 is the lower bound of the interval and 𝑏𝑖 is the upper bound of the 

interval. In actuality, we would not have a bunch of people with tied thetas (abilities), 

but for the purpose of simplicity we use quadrature points to represent approximate 

examinee subgroups.  
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Figure 3.2: Ability Divided Evenly by Axis

 

Figure 3.3: Thetas Divided Evenly by Examinee Data   

Third, an observed score response distribution for each ability subgroup is 

constructed. The responses of examinees are binary (0 or 1) yet the predictor 

(probability of answering item correctly) is continuous. Therefore, in order to make the 

plot work the predictor can be calculated as the percentage of examinees in a set range 

of theta that got the item correct.  



25 
 

𝑃[𝑈𝑗𝑖 = 1] = �̂�𝑗𝑖 = �̂�𝑖 +
1 − �̂�𝑖

1 + 𝑒−1.7�̂�𝑖(�̂�𝑗−�̂�𝑖)
 

where,  

�̂�𝑗𝑖  is the percentage of people in subgroup j who get item i correct, 

�̂�𝑖 is the predicted discrimination parameter for item i, 

�̂�𝑖 is the predicted difficulty parameter for item i,  

�̂�𝑖 is the predicted guessing parameter c for item i, and  

𝜃�̂� is the predicted ability for the quadrature point j  

This percentage from the data should be close to the model curve or IRF for the correct 

model (See Figure 3.4). 

Fourth, expected score response distribution for an item using the IRT model are 

formed across score categories. Since our data is simulated to follow a 3PL we know 

that the parameters estimated from Parscale should closely represent a 3PL model (See 

Figure 3.4). 

Fifth, the predictions and observed score responses are compared. To do this we 

plot the IRF from the data and the IRF for the estimation for an item. Looking at Figure 

3.4 we see that the estimated values follow the true model well. However, in statistical 

analyses we rarely look at just “x vs. y plots” due to scaling. Instead, we evaluate 

goodness-of-fit via residual plots (See Figure 3.5). The residuals can be found in Figure 

3.4 if one were to draw a line of the shortest distance between the observed points and 

the predicted curve. The length of each of those lines is known as the residual. Due to 
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scaling and for ease of viewing the residuals we plot residuals on a graph where the 

horizontal axis is the ability and vertical axis is the residual value.  

 

Figure 3.4: Predicted and Observed Probabilities 3PL as 3PL   

 

 

Figure 3.5: Standardized Residual Plot 3Pl as 3Pl  
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There is a clear pattern seen in the residual plot in Figure 3.5. The low ability 

values have negative standardized residuals. And as ability increases the standardized 

residuals are increasing, ending with high positive residuals for the high ability values. 

This pattern is discouraging because it indicates a poor model fit, even though the 

model used is the “true” model (3PL model for 3PL data). This means that there is either 

a mistake in the calculations for the residual plot or we need to interpret it differently 

than what we usually think. There are many options behind these plots which may be 

investigated and are addressed in this study.  

First, how do we determine the manner in which to define and create 

quadrature points? At the ends of the ability scale in Figure 3.4 the curve is fairly flat, 

indicating that changing groups of examinees in this area may not change the estimates 

significantly. In the middle of the curve, the slope is steep; suggesting that the range of 

thetas or examinees in a subgroup will cause variation on the estimates (probability of 

getting item correct). One way to divide thetas up is divide the line up into equal 

intervals on the axis. We can also divide the theta up by the number of examinees in an 

interval. Classifying examinees with similar estimated abilities (𝜃) together with either 

method seems reasonable.  

Second, how many subgroups should be created for abilities? One thing to 

consider is that while using many subgroups increases the accuracy of the model 

estimates for a given value of ability, smaller subgroup populations also cause large 

standard deviations.  
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Third, the method of modeling may be off. When Bayesian estimation is used, 

examinee estimates are pulled toward the middle. The prior probability distribution 

pulls the estimated abilities in to the mean of the prior (typically a standard normal 

distribution with mean=0, sd=1). If the estimated abilities are being pulled in 

considerably from the true values then the estimated abilities are less compatible with 

the observed. A greater difference between the estimated and the observed values 

means the residuals will be larger. Thus, having a prior could affect the residuals.  

Finally, a new method of distributing the examinees to the quadrature points will 

be explored. By estimating the probability each examinee has of being in any given 

quadrature point, we can more accurately represent the data or examinees by 

quadrature points. This new method will be explored to determine if calculating 

quadrature points differently will improve the goodness-of-fit as shown in the residual 

plots.  

There are many new things to consider about residual plots for item response 

functions that are already well explored or defined for linear regression. Since this thesis 

works entirely with simulated data, the “true” model is known and the residual plots 

analyzed. However, the only way residual plots are useful is if one knows what they 

should look like when the assumptions and model are true. Even if the true model has 

satisfactory residual plots, if an incorrect model has similar appearing residual plots then 

the residual plots are not helpful in differentiating a model of good fit. This is of 

paramount importance because the true model is never known when using real data in 

the world. Therefore, after analyzing the residual plots for the true model simulations, 
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an incorrect model—a Rasch model—will be fit to the simulated 3PL data to determine 

if the residuals are useful for determining a model’s goodness-of-fit in IRT.  
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Chapter 4: Results  

Every item of an exam uniquely contributes to the estimation of an examinee’s 

ability. The two main differences for each item are quantified by the difficulty and 

discrimination parameters of the items. The difficulty and discrimination of an item may 

also strongly influence the residuals. Therefore, at each of the stages of analysis five 

different items will be used. The items selected were based on combinations of low and 

high discrimination and low and high difficulty parameters. Additionally, three 

simulations each based on the same true parameters will be used for each item. 

Simulations imitate the randomness and interdependence of real-life data without 

having sampling and human error. This idealizes the type of data received and used in 

IRT analyses. The use of multiple simulations is to verify that the patterns seen in the 

residual plots are not just random by chance, if they occur for a given item for all three 

simulations.  In each of the following residual plots all three of the simulations are 

plotted on the same figure. Table 4.1 shows the parameter values of the items for each 

simulation used in this analysis and the symbol used for that simulation on each of the 

graphs. For each exploration in this thesis, the residual plot for one item is presented in 

the paper, and the resulting figures from the other items are included in Appendix A.  
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Table 4.1: Parameter Values for Items Chosen 

 
Symbol: 

Simulation 1  

 

Simulation 2  
+ 

Simulation 3 

 
 ai bi ci ai bi ci ai bi ci 

Item 7 0.968 0.679 0.167 1.074 0.802 0.198 1.101 0.853 0.196 
Item 12 1.247 0.032 0.192 1.329 0.097 0.205 1.283 0.115 0.219 
Item 17 0.694 -1.071 0.205 0.683 -0.951 0.196 0.716 -1.016 0.189 
Item 21 1.099 0.357 0.244 1.012 0.302 0.192 1.007 0.401 0.237 
Item 32 1.955 1.111 0.231 1.577 1.042 0.210 1.565 1.022 0.189 

 
 
 

Dividing the Thetas (Quadrature Type)  

There was not a clear indication of which method of dividing the thetas worked 

best. For some items the quadrature points based on the data seemed to have more 

randomized residuals plots, which other items indicated using the axis to divide the 

thetas was better. If we divide the thetas based on the axis, the intervals are equal in 

length, but there will be more examinees included in the middle intervals and in a small 

sample there is a chance that the intervals in the tail ends will not have examinees. In 

this simulation, the tail ends did not have examinees, meaning that by dividing on the 

axis there were 2 fewer quadrature points included on the plots.  On the other hand the 

thetas could be divided up by the data having an equal number of examinees in each 

group. However, dividing theta based on the number of examinees means that some 

intervals may be rather large and should not be grouping such differing abilities 

together.  

There may again be greater issues at the tail ends. Dividing by the data will either 

(1) force some of the examinees with higher ability down the low ability end quadrature 
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point, and some examinees with lower abilities will be represented by a higher ability 

quadrature point; or (2) pull all the quadrature points to the middle of the theta 

distribution since that is where the majority of the examinees are.  Overall, either 

method seems reasonable since they are grouping examinees with similar thetas 

together, but in detail each method has limitations as well. In Figure 4.1 the residual 

plots for item 12 are shown where quadrature points are based on division of the axis 

and data respectively.  

 

Figure 4.1: Residual Plots for Item 21 Based on Quadrature Interval Type 

After examining both residual plots there is a still a clear pattern in either, where 

the residuals are negative at the low ability and get progressively higher and more 

positive as ability increases. Unfortunately, without a clear indication of which method 

is better, we will move forward using the division of examinees into quadrature points 

based on the axis since there appears to be slightly less of a pattern in the axis based 

quadratures.  
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Number of Quadrature Points  

 Continuing to calculate the quadrature points based on the axis, we next looked 

at how many quadrature points should be included. While more quadrature points 

would indicate a closer fit and smaller residuals, too many groups results in very few 

individuals in each group causing the standard deviation to explode.  Therefore, with 

2000 examinees it seems reasonable to analyze a range of 5 to 30 quadrature points.  

 

  Figure 4.2: Item 17 Standardized Residual Plots for Varying Number  
of Quadrature Points 

 

Figure 4.2 shows the residual plots with varying numbers of quadrature points 

for Item 17. When more quadrature points are included the residuals appear more 

randomized; however, too many groups also show larger residuals and in theory may 

cause inflation of the standard deviation. Therefore, we want as few quadrature points 

as seems reasonable and gives more random appearing residuals. Given that in reality 



34 
 

no two examinees have the same thetas; it seems extreme to analyze dozens of 

examinees as if they had the same theta which occurs when only five or ten quadrature 

points are used. We conclude that 20 quadrature points appears to be the best number 

of quadrature points to include, addressing enough but not too many quadrature points. 

With 2000 examinees in this simulation, having 20 quadrature points seems reasonable, 

although the number of quadrature points may need to be readdressed with smaller 

sample sizes, and calls for additional study.  

Effect of Priors  

Our next analysis looked at how much a having a prior on the parameters affects 

the residuals. Using the same simulated data I used PARSCALE once again to calculate 

the estimates without using priors on any of the parameters. Unfortunately, this hardly 

changed anything in the data because the simulated data was already similar to what 

the standard normal priors would have pulled them towards. It is likely with real life 

data and skewed distributions that the prior will have a greater effect on the residuals 

than it does in this simulation.  Figure 4.3 shows how little change occurred in the 

residual plots for item 32.  

While the residual plot looks okay on its own in Figure 4.3 there is not a clear 

distinction in the residual plots as to whether including a prior improves the model fit 

via the residual plots. None of the above typical methods gave clear indication of how to 

improve model fit interpretation through residual plots. 
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Figure 4.3: Item 32 Standardized Residual Plots with a Prior and with No Prior  
Quadrature Calculations 

 
   The final exploration introduces two new methods of calculating the quadrature 

points. The first method involves calculating an examinee’s probability of being at any 

given quadrature point. This calculation may be done because we have the predicted 

abilities and their predicted standard errors (se). We can then find the estimated 

probability that each examinee is at each quadrature point in a manner similar to part of 

the E step in the expectation-maximization (EM) algorithm/Bayes modal estimation of 

the item parameters.   

In this calculated matrix of probabilities each row represents an examinee and 

the sum of each row is equal to 1. Each column represented a quadrature point and 

each column adds to the effective number of examinees at that quadrature point. The 

data matrix (0=incorrect and 1= correct) is multiplied by the above calculated 

quadrature weight matrix resulting in a matrix of the observed total amount of correct 

responses at each quadrature point. This matrix must then be standardized in order to 

account for scaling problems. From the item response function we get a corresponding 
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expected total amount of correct responses at each quadrature point. The standardized 

residuals are calculated as usual (observed-expected) and plotted. Figure 4.4 shows the 

respective standardized residual plot and the original method standardized residual plot 

for item 17. 

 

Figure 4.4: Standardized Residual Plots using Different Quadrature Calculation 
Methods 

As evident from the Figure 4.4 the new calculations for the quadrature points 

decreases the magnitude of the residuals, but a pattern of negative residuals for low 

ability and positive residuals for high abilities can still be somewhat seen, although it is 

less of a pattern.  

The second method of calculation uses the same above method for calculating 

each examinees probabilities for each quadrature point; however, the average theta (�̅�)  

of all weighted examinees at the quadrature point is used to calculate the observed 
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probability of getting the item correct. This calculation is based on the estimation 

procedures of long tests from Mathilda du Toit (2003).  

±2√𝑃𝑖(�̅�ℎ)[1 − 𝑃𝑖(�̅�ℎ)]/𝑁ℎ 

where  

𝑃𝑖(�̅�ℎ) is the probability of correctly answering item i, for the average thetas at 

quadrature point h and  

Nh  is the total number of examinees at quadrature point h.  

 

Figure 4.5: Item 7 Standardized Residual Plots using Varying Methods for Quadrature 
and Observed Calculation 

 

Figure 4.5 compares the three calculations of residual plots. The original method 

is using standard quadrature calculations, the method 1 uses the calculation of the 

probability of a given examinee at each quadrature point, and the method 2 uses the 

average ability within the quadrature point.  Unfortunately, this new calculation of 

residuals by using the average ability of each quadrature makes the residuals about the 

same magnitude as the original and larger than the first quadrature method.  
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True model vs. Wrong Model  

The only way residual plots are useful is if you know what they should look like 

when the assumptions are true. After creating improved residual plots for the 

simulations in this study, does it actually help determine the goodness-of-fit for the 

model? If the residual plot for the wrong model looks the same as the residuals for the 

true model then the goodness-of-fit interpreted from the residual plots in inconclusive. 

The true model for real life data is never known; therefore, if the residual plots for a 

true model and an incorrect model appear very similar in a simulation, it is unreliable to 

assess goodness-of-fit via the residual plots. Using the method of calculating an 

examinee’s probability of being at any given quadrature point the true model is 

compared to an incorrect model. A wrong model example was estimated using the same 

simulated data but instead an incorrect model, a Rasch (1PL) model was fit to the 3PL 

simulated data.  

 

Figure 4.6: True Model vs. Incorrect Model Standardized Residual Plots for Item 12 

In Figure 4.6 we compare the standardized residual plot of the true model fit 

with an incorrect model fit. The incorrect model is a Rasch model fit to the 3PL data. 
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There is a clear indication that the residuals of the true model are closer to zero and the 

Rasch model on 3PL data has larger residuals. While there is not a clearly distinctive 

pattern differentiation between the two, the magnitude of the residuals can distinguish 

between the true model and the incorrect model. If the true model were not known, as 

would be the case in real data situation, it may be extremely difficult to determine if a 

model fit or not based on residual plot patterns alone.  
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Conclusion 

The ad hoc manipulations to the residual plots may have slightly improved, or 

eliminated what was originally determined as worrisome pattern in the residuals. 

However, there is not enough distinction between true model and incorrect model to 

make goodness-of-fit analysis via residual plots clear without a true model to compare 

the incorrect model residuals to. However, as seen in Figure 4.6, the magnitude of the 

residuals may be able to be used to determine a model’s goodness-of-fit. 

In real life, no data set actually comes from a model, but will be more 

complicated in actuality. In order to compare residual plots with real data perhaps the 

best thing to do is (1) fit the model in question to the data, (2) simulate data sets based 

on the parameter estimates from the real data, (3) create plots of what it would look 

like if the model was true from the simulated data, (4) compare the one from real data 

to the simulated data. If the real model looks like the simulated model then perhaps 

your model fits well. The magnitude of the residuals from a true model to the sample 

data can also be compared to help judge goodness-of-fit.  

Call for Further Study 

Advantages from Item response models are “only obtained in practice… when 

there is a close match between the model selected for use and the test data” 

(Hambleton and Swaminathan, 1985: 151-52). This study is only a preliminary analysis to 
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determine goodness-of-fit using residuals. To determine if the conclusions of residual 

magnitude hold for more general cases, a continuing analysis should be done with a 

small sample size simulation, a short exam, and a longer exam. The 2PL model should 

also be included to compare to the 3PL and the Rasch models. This study could also be 

extended by examining the magnitude of residuals for true vs. incorrect models. The 

true model appears to have residuals closer to zero whereas the incorrect model has 

larger residuals. Can this be an indication of whether the chosen model fits? Without a 

rule of thumb for the how large “good fitting” residuals may be, there is no indication 

that a model may be determined to fit well using residual plots at this time.  
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Appendix A: Additional Items’ Residual Plots 

 

Quadrature Type: Data vs. Axis 

 

 

Figure A.1: Residual Plots for Item 7 Based on Quadrature Interval Type 

 

Figure A.2 Residual Plots for Item 12 Based on Quadrature Interval Type 
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Figure A.3: Residual Plots for Item 17 Based on Quadrature Interval Type 

 

 

Figure A.4: Residual Plots for Item 32 Based on Quadrature Interval Type 
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Number of Quadrature Points   

 
Figure A.5: Item 7 Standardized Residual Plots for Varying Number  
  of Quadrature Points 

 
Figure A.6: Item 12 Standardized Residual Plots for Varying Number  
  of Quadrature Points 
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Figure A.7: Item 21 Standardized Residual Plots for Varying Number  
  of Quadrature Points 

 

 

Figure A.8: Item 32 Standardized Residual Plots for Varying Number  
  of Quadrature Points 
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Prior Effect on Residual Plots  

 

 
 

Figure A.9: Item 7 Standardized Residual Plots with a Prior and with No Prior 

 

 
Figure A.10: Item 12 Standardized Residual Plots with a Prior and with No Prior 
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Figure A.11: Item 17 Standardized Residual Plots with a Prior and with No Prior 

 

 

 
 

Figure A.12: Item 21 Standardized Residual Plots with a Prior and with No Prior 
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Appendix B: R and PARSCALE code 

Functions  

 
irf.logistic<-function(ability=0,items=data.frame(A=1,B=0,C=0)) 
{ 
  irf.aux<-function(x){items$C+(1-items$C)/(1+exp(-1.7*items$A*(x-items$B)))} 
  t(sapply(ability,irf.aux)) 
} 
 
irf.normal<-function(ability=0,items=data.frame(A=1,B=0,C=0)) 
{ 
  irf.aux<-function(x){items$C+(1-items$C)*pnorm(items$A*(x-items$B))} 
  t(sapply(ability,irf.aux)) 
} 
irf<-function(ability=0,items=data.frame(A=1,B=0,C=0)) 
{ 
  irf.aux<-function(x) {items$C+(1-items$C)/(1+exp(-1.7*items$A*(x-items$B)))} 
  t(sapply(ability,irf.aux)) 
} 
 
irtgen<-function(ability=0,A=1,B=0,C=0,type=c("logistic","normal")){ 
  items<-data.frame(A,B,C) 
  n<-dim(items)[1] 
  nexmn<-length(ability) 
  data<-matrix(0,nrow=nexmn,ncol=n) 
  type<-match.arg(type) 
  if (type=="logistic"){ 
    p<-irf.logistic(ability,items)} 
  if (type=="normal"){ 
    p<-irf.normal(ability,items)}   
  try<-runif(nexmn*n,0,1) 
  data[try < p]<-1 
  return(data) 
} 
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quadresids<-function(dat,scores,pars,ngroup=20,qtype="axis"){ 
  scor<-as.matrix(scores) 
  pars<-as.matrix(pars) 
  dat<-as.matrix(dat) 
  nexam<-nrow(dat) 
  nquad<-ngroup-1 
  q<-seq(-3,3,6/nquad) 
  Qmat <- matrix(0,nrow=nexam, ncol=length(q)) 
  thetahat<-as.vector(scores)[,1] 
  sehat<-as.vector(scores)[,2] 
    for( i in 1:length(q)){ 
    Qmat[,i]<-dnorm(q[i],thetahat,sehat) 
  } 
  
    quadtotal<-matrix(apply(Qmat,1,sum),nrow=nexam,ncol=length(q),byrow=T) 
   
  quadsplit <- Qmat/quadtotal 
  weights<-quadsplit 
  weights2<-quadsplit^2 
   
  nperquad<-apply(quadsplit,2,sum)# equals the number of examinees at each 
quadrature point 
  sumweights2<-apply(weights2,2,sum)#sum weights squared  
  sumweights<-apply(weights,2,sum) # (sum of weights)  
  sum2weights<-sumweights^2 # (sum of weights)^2 
    #sum(nperquad)  # sum(nperquad) should be total number of examinees  
  examineecheck<-apply(quadsplit,1,sum) # each examinee has a row add to 1  
  #mean(examineecheck) 
  obsquad<- t(dat)%*%quadsplit 
   
  npquadmatrix<-matrix(nperquad,ncol=length(q),nrow=length(dat[1,]),byrow=T) 
  observedquad<-obsquad/npquadmatrix 
  #list(nperquad=nperquad, examineecheck=examineecheck, observedquad=obsquad) 
  #return(observedquad) 
   
  thetas<-as.matrix(scores)[,1] 
  #pars<-as.matrix(pars) 
  #dat<-as.matrix(dat) 
  obsmat<-t(as.matrix(observedquad)) 
  avec<-pars[,1]#(1x32) 
  bvec<-pars[,3] 
  cvec<-pars[,5] 
  #nquad<-ngroup-1 
  #q<-seq(-3,3,6/nquad) 
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  n<-nrow(observedquad) #number of items 
  N<-nrow(dat) #number of examinees  
  Q<-ncol(observedquad) # number of quad points 
  pmat<-matrix(0,ncol=n,nrow=Q) 
  for (i in 1:n){ 
    pmat[,i]<-irf(q,items=data.frame(A=avec[i],B=bvec[i],C=cvec[i])) 
  } 
  rmat<-obsmat-pmat 
  vmat<-pmat*(1-pmat) 
   
  o<-obsmat 
  r<-rmat 
  cc<-nperquad 
  s<-sqrt(vmat/matrix(cc,nrow=Q,ncol=n,byrow=F)) 
  t<-q 
   
  cc2<-sumweights2 
  sq2<-sqrt(vmat*matrix(cc2,nrow=Q,ncol=n,byrow=F)/matrix(sum2weights,nrow=Q, 
ncol=n, byrow=F)) 
      
  list(obspct=o,resid=r,sresid=r/s,sresidweighted=r/sq2, 
theta=t,weights=cc,sumsqweights=cc2, ss=sq2, pmat=pmat, aw=quadsplit) 
} 
 
irfquadresidplot<-function(item,dat,scores,pars,ngroup=20,label=""){ 
  temp<-quadresids(dat,scores,pars,ngroup) 
  irfplot(A=pars[item,1],B=pars[item,3],C=pars[item,5]) 
  par(new=T) 
  plot(temp$theta,temp$obspct[,item],xlim=c(-3.5,3.5),ylim=c(0,1),main=label, 
       xlab="",ylab="") 
} 
 
itemquadresidplot<-
function(item,dat,scores,pars,ngroup=20,qtype="axis",label="",xlim=c(-3.5,3.5),ylim=c(-
3,3)){ 
  temp<-quadresids(dat,scores,pars,ngroup,qtype) 
  plot(temp$theta,temp$sresid[,item],xlim=xlim,ylim=ylim,main=label, 
       xlab="Ability",ylab="Standardized Residual") 
  lines(xlim,c(0,0)) 
} 
 
itemquadweightresidplot<-
function(item,dat,scores,pars,ngroup=20,qtype="axis",label="",xlim=c(-3.5,3.5),ylim=c(-
3,3)){ 



54 
 

  temp<-quadresids(dat,scores,pars,ngroup,qtype) 
  plot(temp$theta,temp$sresidweighted[,item],xlim=xlim,ylim=ylim,main=label, 
       xlab="Ability",ylab="Standardized Residual") 
  lines(xlim,c(0,0)) 
} 
 
Creating 3 Simulations for 3PL data  
U31<-irtgen(thetasim, A=A, B=B, C=C) 
obs<-(0001:2000) 
observations<-sprintf("%05d",as.numeric(obs)) 
aaa<-rep("a",2000) 
sim1<-cbind.data.frame(observations,aaa,U31) 
write.table(sim1, "c:/thesis/sim1parscale.txt", col.names = F, row.names = F)  
write.table(U31, "c:/thesis/sim1.txt",col.names=F, row.names=F) 
 
U32<-irtgen(thetasim, A=A, B=B, C=C) 
obs<-(0001:2000) 
observations<-sprintf("%05d",as.numeric(obs)) 
aaa<-rep("a",2000) 
sim2<-cbind.data.frame(observations,aaa,U32) 
write.table(sim2, "c:/thesis/sim2parscale.txt", col.names = F, row.names = F)  
write.table(U32, "c:/thesis/sim2.txt",col.names=F, row.names=F) 
 
U33<-irtgen(thetasim, A=A, B=B, C=C) # third simulation of 3PL data  
obs<-(0001:2000) 
observations<-sprintf("%05d",as.numeric(obs)) 
aaa<-rep("a",2000) 
sim3<-cbind.data.frame(observations,aaa,U33) 
write.table(sim3, "c:/thesis/sim3parscale.txt", col.names = F, row.names = F)  
write.table(U33, "c:/thesis/sim3.txt",col.names=F, row.names=F) 
 
Parscale Code:  
>COMMENT 
This is the 3PL as 3PL .PSL file for thesis  
>FILE    DFNAME='C:/thesis/U3.txt',SAVE; 
>SAVE    PARM='C:/thesis/3plfit.PAR',SCORE='C:/thesis/3plfit.SCO'; 
>INPUT   NIDCHAR=5,NTOTAL=32,NTEST=1,LENGTH=32; 
(5A1,1X,32A1) 
>TEST    ITEM=(1(1)32),NBLOCK=1; 
>BLOCK  NITEMS=32,NCAT=2,ORIGINAL=(0,1),GUESSING=(2,ESTIMATE); 
>CAL     NORMAL,NQPTS=40,CYCLES=(40,40,40,40,40,1), 
         CRIT=0.001,NEWTON=20,SPRIOR,TPRIOR,GPRIOR; 
>SCORE   EAP,DIST=2,ITERATION=(0.001,40),NQPT=40; 
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Reading in Parscale estimates and parameters  
setwd("C:/Thesis") 
 
sim1<-read.table(file="c:/thesis/sim1.txt", header=FALSE) 
sim1scores<-read.table("sim1.SCO",head=F,fill=T)[(1:2000)*2,7:8]  
colnames(sim1scores)<-list("estimate","se")  
rownames(sim1scores)<-1:2000 
#fit3plscores[1:5,] 
sim1plpbase<-read.table("sim1.PAR",head=F,fill=T,skip=5)  
sim1pars<-sim1plpbase[1:32,3:8]  
colnames(sim1pars)<-c("a","se.a","b","se.b","c","se.c")  
rownames(sim1pars)=1:32 
 
sim2<-read.table(file="c:/thesis/sim2.txt", header=FALSE) 
sim2scores<-read.table("sim2.SCO",head=F,fill=T)[(1:2000)*2,7:8]  
colnames(sim2scores)<-list("estimate","se")  
rownames(sim2scores)<-1:2000 
#fit3plscores[1:5,] 
sim2plpbase<-read.table("sim2.PAR",head=F,fill=T,skip=5)  
sim2pars<-sim2plpbase[1:32,3:8]  
colnames(sim2pars)<-c("a","se.a","b","se.b","c","se.c")  
rownames(sim2pars)=1:32 
 
sim3<-read.table(file="c:/thesis/sim3.txt", header=FALSE) 
sim3scores<-read.table("sim3.SCO",head=F,fill=T)[(1:2000)*2,7:8]  
colnames(sim3scores)<-list("estimate","se")  
rownames(sim3scores)<-1:2000 
# 
sim3plpbase<-read.table("sim3.PAR",head=F,fill=T,skip=5)  
sim3pars<-sim3plpbase[1:32,3:8]  
colnames(sim3pars)<-c("a","se.a","b","se.b","c","se.c")  
rownames(sim3pars)=1:32 
           
  ### Rasch Model for 3PL DATA #####  
rasch1scores<-read.table("rasch1.SCO",head=F,fill=T)[(1:2000)*2,7:8]  
colnames(rasch1scores)<-list("estimate","se")  
rownames(rasch1scores)<-1:2000 
# 
rasch1plpbase<-read.table("rasch1.PAR",head=F,fill=T,skip=5)  
rasch1pars<-rasch1plpbase[1:32,3:8]  
colnames(rasch1pars)<-c("a","se.a","b","se.b","c","se.c")  
rownames(rasch1pars)=1:32 
###Sim2 as Rasch 
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rasch2<-read.table(file="c:/thesis/sim2.txt", header=FALSE) 
rasch2scores<-read.table("rasch2.SCO",head=F,fill=T)[(1:2000)*2,7:8]  
colnames(rasch2scores)<-list("estimate","se")  
rownames(rasch2scores)<-1:2000 
# 
rasch2plpbase<-read.table("rasch2.PAR",head=F,fill=T,skip=5)  
rasch2pars<-rasch2plpbase[1:32,3:8]  
colnames(rasch2pars)<-c("a","se.a","b","se.b","c","se.c")  
rownames(rasch2pars)=1:32 
 
### Sim3 as Rasch 
rasch3<-read.table(file="c:/thesis/sim3.txt", header=FALSE) 
rasch3scores<-read.table("rasch3.SCO",head=F,fill=T)[(1:2000)*2,7:8]  
colnames(rasch3scores)<-list("estimate","se")  
rownames(rasch3scores)<-1:2000 
# 
rasch3plpbase<-read.table("rasch3.PAR",head=F,fill=T,skip=5)  
rasch3pars<-rasch3plpbase[1:32,3:8]  
colnames(rasch3pars)<-c("a","se.a","b","se.b","c","se.c")  
rownames(rasch3pars)=1:32 
 
######################    no prior models ######################### 
 
sim1nopriorscores<-read.table("sim1noprior.SCO",head=F,fill=T)[(1:2000)*2,7:8]  
colnames(sim1nopriorscores)<-list("estimate","se")  
rownames(sim1nopriorscores)<-1:2000 
sim1nopplpbase<-read.table("sim1noprior.PAR",head=F,fill=T,skip=5)  
sim1nopriorpars<-sim1nopplpbase[1:32,3:8]  
colnames(sim1nopriorpars)<-c("a","se.a","b","se.b","c","se.c")  
rownames(sim1nopriorpars)=1:32 
 
sim2nopriorscores<-read.table("sim2noprior.SCO",head=F,fill=T)[(1:2000)*2,7:8]  
colnames(sim2nopriorscores)<-list("estimate","se")  
rownames(sim2nopriorscores)<-1:2000 
sim2nopplpbase<-read.table("sim2noprior.PAR",head=F,fill=T,skip=5)  
sim2nopriorpars<-sim2nopplpbase[1:32,3:8]  
colnames(sim2nopriorpars)<-c("a","se.a","b","se.b","c","se.c")  
rownames(sim2nopriorpars)=1:32 
 
sim3nopriorscores<-read.table("sim3noprior.SCO",head=F,fill=T)[(1:2000)*2,7:8]  
colnames(sim3nopriorscores)<-list("estimate","se")  
rownames(sim3nopriorscores)<-1:2000 
sim3nopplpbase<-read.table("sim3noprior.PAR",head=F,fill=T,skip=5)  
sim3nopriorpars<-sim3nopplpbase[1:32,3:8]  
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colnames(sim3nopriorpars)<-c("a","se.a","b","se.b","c","se.c")  
rownames(sim3nopriorpars)=1:32 
 
 
General IRT Plots  
par(mfrow=c(1,1)) 
##Figure 2.1  
plot(thetasim,U3scores$estimate,ylab="Estimated Ability",xlab="Acutal (simulated) 
Ability") 
#Figure 2.2 &Figure 2.3  
x <- seq(-4, 4, length=1000) 
y <- dnorm(x, mean=0, sd=1) 
plot(x, y, type="l", lwd=1,xlab="Ability", ylab="Examinees") 
 
## Figure 2.4  
irfresidplot(12,sim2,sim2scores,sim3pars,ngroup=10,qtype="data") 
 
 
## Figure 2.5  
itemresidplot(8,U3,U3scores,U3pars,label= "Standardized Residuals for Item 8") 
 
Residua Plots for Analysis  
#############    parameter values for  the items ############## 
 
sim1params<-cbind(1:32,sim1pars[,1],sim1pars[,3],sim1pars[,5]) 
sim2params<-cbind(1:32,sim2pars[,1],sim2pars[,3],sim2pars[,5]) 
sim3params<-cbind(1:32,sim3pars[,1],sim3pars[,3],sim3pars[,5]) 
 
sim1params[c(7,12,17,21,32),] 
sim2params[c(7,12,17,21,32),] 
sim3params[c(7,12,17,21,32),] 
 
 
###################################################################### 
#####################    Qtype     ################################## 
#################################################################### 
#Figure 3.1 and 3.2   
#par(mfrow=c(2,1),oma=c(0,0,2,0)) 
par(mfrow=c(1,2)) 
par(new=F,pch=1) 
itemresidplot(7,sim1,sim1scores,sim1pars,qtype="dat",label="qtype by data 
Item 7")  
par(new=T,pch=3) 
itemresidplot(7,sim2,sim2scores,sim2pars,qtype="dat")  
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par(new=T,pch=16) 
itemresidplot(7,sim3,sim3scores,sim3pars,qtype="dat") 
 
par(new=F,pch=1) 
itemresidplot(7,sim1,sim1scores,sim1pars,qtype="axis",label="qtype by axis 
Item 7")  
par(new=T,pch=3) 
itemresidplot(7,sim2,sim2scores,sim2pars,qtype="axis")  
par(new=T,pch=16) 
itemresidplot(7,sim3,sim3scores,sim3pars,qtype="axis")  
 
#title("Item 7", outer=TRUE) 
 
######## 
 
par(new=F,pch=1) 
itemresidplot(12,sim1,sim1scores,sim1pars,qtype="dat",label="qtype by data 
Item 12") 
par(new=T,pch=3) 
itemresidplot(12,sim2,sim2scores,sim2pars,qtype="dat")  
par(new=T,pch=16) 
itemresidplot(12,sim3,sim3scores,sim3pars,qtype="dat")  
 
par(new=F,pch=1) 
itemresidplot(12,sim1,sim1scores,sim1pars,qtype="axis",label="qtype by axis 
Item 12")   
par(new=T,pch=3) 
itemresidplot(12,sim2,sim2scores,sim2pars,qtype="axis") 
par(new=T,pch=16) 
itemresidplot(12,sim3,sim3scores,sim3pars,qtype="axis") 
 
#title("Item 12", outer=TRUE) 
 
######## 
 
par(new=F,pch=1) 
itemresidplot(17,sim1,sim1scores,sim1pars,qtype="dat",label="qtype by data 
Item 17")  
par(new=T,pch=3) 
itemresidplot(17,sim2,sim2scores,sim2pars,qtype="dat") 
par(new=T,pch=16) 
itemresidplot(17,sim3,sim3scores,sim3pars,qtype="dat") 
 
par(new=F,pch=1) 
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itemresidplot(17,sim1,sim1scores,sim1pars,qtype="axis",label="qtype by axis 
Item 17") 
par(new=T,pch=3) 
itemresidplot(17,sim2,sim2scores,sim2pars,qtype="axis") 
par(new=T,pch=16) 
itemresidplot(17,sim3,sim3scores,sim3pars,qtype="axis") 
 
#title("Item 17", outer=TRUE) 
 
####### 
 
par(new=F,pch=1) 
itemresidplot(21,sim1,sim1scores,sim1pars,qtype="dat",label="qtype by data 
Item 21") 
par(new=T,pch=3) 
itemresidplot(21,sim2,sim2scores,sim2pars,qtype="dat") 
par(new=T,pch=16) 
itemresidplot(21,sim3,sim3scores,sim3pars,qtype="dat") 
 
par(new=F,pch=1) 
itemresidplot(21,sim1,sim1scores,sim1pars,qtype="axis",label="qtype by axis 
Item 21") 
par(new=T,pch=3) 
itemresidplot(21,sim2,sim2scores,sim2pars,qtype="axis") 
par(new=T,pch=16) 
itemresidplot(21,sim3,sim3scores,sim3pars,qtype="axis") 
 
#title("Item 21", outer=TRUE) 
 
####### 
 
par(new=F,pch=1) 
itemresidplot(32,sim1,sim1scores,sim1pars,qtype="dat",label="qtype by data 
Item 32") 
par(new=T,pch=3) 
itemresidplot(32,sim2,sim2scores,sim2pars,qtype="dat") 
par(new=T,pch=16) 
itemresidplot(32,sim3,sim3scores,sim3pars,qtype="dat") 
 
par(new=F,pch=1) 
itemresidplot(32,sim1,sim1scores,sim1pars,qtype="axis",label="qtype by axis 
Item 32")  
par(new=T,pch=3) 
itemresidplot(32,sim2,sim2scores,sim2pars,qtype="axis") 
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par(new=T,pch=16) 
itemresidplot(32,sim3,sim3scores,sim3pars,qtype="axis") 
 
#title("Item 32", outer=TRUE) 
 
################################################################### 
#################     NGroup      ################################# 
################################################################### 
par(mfrow=c(2,2),oma=c(0,0,2,0)) 
 
par(new=F,pch=1) 
itemresidplot(7,sim1,sim1scores,sim1pars,ngroup=5,label="ngroup=5") 
par(new=T,pch=3) 
itemresidplot(7,sim2,sim2scores,sim2pars,ngroup=5,label="ngroup=5")  
par(new=T,pch=16) 
itemresidplot(7,sim3,sim3scores,sim3pars,ngroup=5,label="ngroup=5")  
 
par(new=F,pch=1) 
itemresidplot(7,sim1,sim1scores,sim1pars,ngroup=10,label="ngroup=10") 
par(new=T,pch=3) 
itemresidplot(7,sim2,sim2scores,sim2pars,ngroup=10,label="ngroup=10")  
par(new=T,pch=16) 
itemresidplot(7,sim3,sim3scores,sim3pars,ngroup=10,label="ngroup=10")  
 
par(new=F,pch=1) 
itemresidplot(7,sim1,sim1scores,sim1pars,ngroup=20,label="ngroup=20") 
par(new=T,pch=3) 
itemresidplot(7,sim2,sim2scores,sim2pars,ngroup=20,label="ngroup=20")  
par(new=T,pch=16) 
itemresidplot(7,sim3,sim3scores,sim3pars,ngroup=20,label="ngroup=20")  
 
par(new=F,pch=1) 
itemresidplot(7,sim1,sim1scores,sim1pars,ngroup=30,label="ngroup=30") 
par(new=T,pch=3) 
itemresidplot(7,sim2,sim2scores,sim2pars,ngroup=30,label="ngroup=30")  
par(new=T,pch=16) 
itemresidplot(7,sim3,sim3scores,sim3pars,ngroup=30,label="ngroup=30")  
 
title("Item 7", outer=TRUE) 
 
#### 
 
par(new=F,pch=1) 
itemresidplot(12,sim1,sim1scores,sim1pars,ngroup=5,label="ngroup=5") 
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par(new=T,pch=3) 
itemresidplot(12,sim2,sim2scores,sim2pars,ngroup=5,label="ngroup=5")  
par(new=T,pch=16) 
itemresidplot(12,sim3,sim3scores,sim3pars,ngroup=5,label="ngroup=5")  
 
par(new=F,pch=1) 
itemresidplot(12,sim1,sim1scores,sim1pars,ngroup=10,label="ngroup=10") 
par(new=T,pch=3) 
itemresidplot(12,sim2,sim2scores,sim2pars,ngroup=10,label="ngroup=10")  
par(new=T,pch=16) 
itemresidplot(12,sim3,sim3scores,sim3pars,ngroup=10,label="ngroup=10")  
 
par(new=F,pch=1) 
itemresidplot(12,sim1,sim1scores,sim1pars,ngroup=20,label="ngroup=20") 
par(new=T,pch=3) 
itemresidplot(12,sim2,sim2scores,sim2pars,ngroup=20,label="ngroup=20")  
par(new=T,pch=16) 
itemresidplot(12,sim3,sim3scores,sim3pars,ngroup=20,label="ngroup=20")  
 
par(new=F,pch=1) 
itemresidplot(12,sim1,sim1scores,sim1pars,ngroup=30,label="ngroup=30") 
par(new=T,pch=3) 
itemresidplot(12,sim2,sim2scores,sim2pars,ngroup=30,label="ngroup=30")  
par(new=T,pch=16) 
itemresidplot(12,sim3,sim3scores,sim3pars,ngroup=30,label="ngroup=30")  
 
title("Item 12", outer=TRUE) 
 
#### 
 
par(new=F,pch=1) 
itemresidplot(17,sim1,sim1scores,sim1pars,ngroup=5,label="ngroup=5") 
par(new=T,pch=3) 
itemresidplot(17,sim2,sim2scores,sim2pars,ngroup=5,label="ngroup=5")  
par(new=T,pch=16) 
itemresidplot(17,sim3,sim3scores,sim3pars,ngroup=5,label="ngroup=5")  
 
par(new=F,pch=1) 
itemresidplot(17,sim1,sim1scores,sim1pars,ngroup=10,label="ngroup=10") 
par(new=T,pch=3) 
itemresidplot(17,sim2,sim2scores,sim2pars,ngroup=10,label="ngroup=10")  
par(new=T,pch=16) 
itemresidplot(17,sim3,sim3scores,sim3pars,ngroup=10,label="ngroup=10")  
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par(new=F,pch=1) 
itemresidplot(17,sim1,sim1scores,sim1pars,ngroup=20,label="ngroup=20") 
par(new=T,pch=3) 
itemresidplot(17,sim2,sim2scores,sim2pars,ngroup=20,label="ngroup=20")  
par(new=T,pch=16) 
itemresidplot(17,sim3,sim3scores,sim3pars,ngroup=20,label="ngroup=20")  
 
par(new=F,pch=1) 
itemresidplot(17,sim1,sim1scores,sim1pars,ngroup=30,label="ngroup=30") 
par(new=T,pch=3) 
itemresidplot(17,sim2,sim2scores,sim2pars,ngroup=30,label="ngroup=30")  
par(new=T,pch=16) 
itemresidplot(17,sim3,sim3scores,sim3pars,ngroup=30,label="ngroup=30")  
 
title("Item 17", outer=TRUE) 
 
#### 
 
par(new=F,pch=1) 
itemresidplot(21,sim1,sim1scores,sim1pars,ngroup=5,label="ngroup=5") 
par(new=T,pch=3) 
itemresidplot(21,sim2,sim2scores,sim2pars,ngroup=5,label="ngroup=5")  
par(new=T,pch=16) 
itemresidplot(21,sim3,sim3scores,sim3pars,ngroup=5,label="ngroup=5")  
 
par(new=F,pch=1) 
itemresidplot(21,sim1,sim1scores,sim1pars,ngroup=10,label="ngroup=10") 
par(new=T,pch=3) 
itemresidplot(21,sim2,sim2scores,sim2pars,ngroup=10,label="ngroup=10")  
par(new=T,pch=16) 
itemresidplot(21,sim3,sim3scores,sim3pars,ngroup=10,label="ngroup=10")  
 
par(new=F,pch=1) 
itemresidplot(21,sim1,sim1scores,sim1pars,ngroup=20,label="ngroup=20") 
par(new=T,pch=3) 
itemresidplot(21,sim2,sim2scores,sim2pars,ngroup=20,label="ngroup=20")  
par(new=T,pch=16) 
itemresidplot(21,sim3,sim3scores,sim3pars,ngroup=20,label="ngroup=20")  
 
par(new=F,pch=1) 
itemresidplot(21,sim1,sim1scores,sim1pars,ngroup=30,label="ngroup=30") 
par(new=T,pch=3) 
itemresidplot(21,sim2,sim2scores,sim2pars,ngroup=30,label="ngroup=30")  
par(new=T,pch=16) 
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itemresidplot(21,sim3,sim3scores,sim3pars,ngroup=30,label="ngroup=30")  
 
title("Item 21", outer=TRUE) 
##### 
 
par(new=F,pch=1) 
itemresidplot(32,sim1,sim1scores,sim1pars,ngroup=5,label="ngroup=5") 
par(new=T,pch=3) 
itemresidplot(32,sim2,sim2scores,sim2pars,ngroup=5,label="ngroup=5")  
par(new=T,pch=16) 
itemresidplot(32,sim3,sim3scores,sim3pars,ngroup=5,label="ngroup=5")  
 
par(new=F,pch=1) 
itemresidplot(32,sim1,sim1scores,sim1pars,ngroup=10,label="ngroup=10") 
par(new=T,pch=3) 
itemresidplot(32,sim2,sim2scores,sim2pars,ngroup=10,label="ngroup=10")  
par(new=T,pch=16) 
itemresidplot(32,sim3,sim3scores,sim3pars,ngroup=10,label="ngroup=10")  
 
par(new=F,pch=1) 
itemresidplot(32,sim1,sim1scores,sim1pars,ngroup=20,label="ngroup=20") 
par(new=T,pch=3) 
itemresidplot(32,sim2,sim2scores,sim2pars,ngroup=20,label="ngroup=20")  
par(new=T,pch=16) 
itemresidplot(32,sim3,sim3scores,sim3pars,ngroup=20,label="ngroup=20")  
 
par(new=F,pch=1) 
itemresidplot(32,sim1,sim1scores,sim1pars,ngroup=30,label="ngroup=30") 
par(new=T,pch=3) 
itemresidplot(32,sim2,sim2scores,sim2pars,ngroup=30,label="ngroup=30")  
par(new=T,pch=16) 
itemresidplot(32,sim3,sim3scores,sim3pars,ngroup=30,label="ngroup=30")  
title("Item 32", outer=TRUE) 
 
 
##################################################################### 
################      No Prior       ################################ 
##################################################################### 
par(mfrow=c(1,2),oma=c(0,0,2,0)) 
 
par(new=F,pch=1) 
itemresidplot(7,sim1,sim1scores,sim1pars,ngroup=20,label="Prior included") 
par(new=T,pch=3) 
itemresidplot(7,sim2,sim2scores,sim2pars,ngroup=20) 
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par(new=T,pch=16) 
itemresidplot(7,sim3,sim3scores,sim3pars,ngroup=20) 
 
par(new=F,pch=1) 
itemresidplot(7,sim1,sim1nopriorscores,sim1nopriorpars,ngroup=20,label="No Prior") 
par(new=T,pch=3) 
itemresidplot(7,sim2,sim2nopriorscores,sim2nopriorpars,ngroup=20) 
par(new=T,pch=16) 
itemresidplot(7,sim3,sim3nopriorscores,sim3nopriorpars,ngroup=20) 
title("Item 7", outer=TRUE) 
 
par(new=F,pch=1) 
itemresidplot(12,sim1,sim1scores,sim1pars,ngroup=20,label="Prior included") 
par(new=T,pch=3) 
itemresidplot(12,sim2,sim2scores,sim2pars,ngroup=20) 
par(new=T,pch=16) 
itemresidplot(12,sim3,sim3scores,sim3pars,ngroup=20) 
 
par(new=F,pch=1) 
itemresidplot(12,sim1,sim1nopriorscores,sim1nopriorpars,ngroup=20,label="No Prior") 
par(new=T,pch=3) 
itemresidplot(12,sim2,sim2nopriorscores,sim2nopriorpars,ngroup=20) 
par(new=T,pch=16) 
itemresidplot(12,sim3,sim3nopriorscores,sim3nopriorpars,ngroup=20) 
title("Item 12", outer=TRUE) 
 
 
par(new=F,pch=1) 
itemresidplot(17,sim1,sim1scores,sim1pars,ngroup=20,label="Prior included") 
par(new=T,pch=3) 
itemresidplot(17,sim2,sim2scores,sim2pars,ngroup=20) 
par(new=T,pch=16) 
itemresidplot(17,sim3,sim3scores,sim3pars,ngroup=20) 
 
par(new=F,pch=1) 
itemresidplot(17,sim1,sim1nopriorscores,sim1nopriorpars,ngroup=20,label="No Prior") 
par(new=T,pch=3) 
itemresidplot(17,sim2,sim2nopriorscores,sim2nopriorpars,ngroup=20) 
par(new=T,pch=16) 
itemresidplot(17,sim3,sim3nopriorscores,sim3nopriorpars,ngroup=20) 
title("Item 17", outer=TRUE) 
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par(new=F,pch=1) 
itemresidplot(21,sim1,sim1scores,sim1pars,ngroup=20,label="Prior included") 
par(new=T,pch=3) 
itemresidplot(21,sim2,sim2scores,sim2pars,ngroup=20) 
par(new=T,pch=16) 
itemresidplot(21,sim3,sim3scores,sim3pars,ngroup=20) 
 
par(new=F,pch=1) 
itemresidplot(21,sim1,sim1nopriorscores,sim1nopriorpars,ngroup=20,label="No Prior") 
par(new=T,pch=3) 
itemresidplot(21,sim2,sim2nopriorscores,sim2nopriorpars,ngroup=20) 
par(new=T,pch=16) 
itemresidplot(21,sim3,sim3nopriorscores,sim3nopriorpars,ngroup=20) 
title("Item 21", outer=TRUE) 
 
 
 
par(new=F,pch=1) 
itemresidplot(32,sim1,sim1scores,sim1pars,ngroup=20,label="Prior included") 
par(new=T,pch=3) 
itemresidplot(32,sim2,sim2scores,sim2pars,ngroup=20) 
par(new=T,pch=16) 
itemresidplot(32,sim3,sim3scores,sim3pars,ngroup=20) 
 
par(new=F,pch=1) 
itemresidplot(32,sim1,sim1nopriorscores,sim1nopriorpars,ngroup=20,label="No Prior") 
par(new=T,pch=3) 
itemresidplot(32,sim2,sim2nopriorscores,sim2nopriorpars,ngroup=20) 
par(new=T,pch=16) 
itemresidplot(32,sim3,sim3nopriorscores,sim3nopriorpars,ngroup=20) 
title("Item 32", outer=TRUE) 
 
#################################################################### 

New Quadrature Calculations (quadresid and 2.0) 
################################################################## 
par(mfrow=c(1,3),oma=c(0,0,2,0)) 
 
par(new=F,pch=1) 
itemresidplot(17,sim1,sim1scores,sim1pars,ngroup=20,label="Original Method") 
par(new=T,pch=3) 
itemresidplot(17,sim2,sim2scores,sim2pars,ngroup=20) 
par(new=T,pch=16) 
itemresidplot(17,sim3,sim3scores,sim3pars,ngroup=20) 
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par(new=F,pch=1) 
itemquadresidplot(17,sim1,sim1scores,sim1pars,ngroup=20,label="New Quadrature 
Method 1") 
par(new=T,pch=3) 
itemquadresidplot(17,sim2,sim2scores,sim2pars,ngroup=20) 
par(new=T,pch=16) 
itemquadresidplot(17,sim3,sim3scores,sim3pars,ngroup=20) 
 
par(new=F,pch=1) 
itemquadresidplot2.0(7,sim1,sim1scores,sim1pars,ngroup=20,label="New Quadrature 
Method 2") 
par(new=T,pch=3) 
itemquadresidplot2.0(7,sim2,sim2scores,sim2pars,ngroup=20) 
par(new=T,pch=16) 
itemquadresidplot2.0(7,sim3,sim3scores,sim3pars,ngroup=20) 
title("Item 17", outer=TRUE) 
 
 
 
#################################################################### 

True vs. Incorrect using   New Quadrature Calculation 
################################################################## 
par(mfrow=c(1,2),oma=c(0,0,2,0)) 
 
par(new=F,pch=1) 
itemquadresidplot(7,sim1,sim1scores,sim1pars,ngroup=20,label="True Model 
Residuals") 
par(new=T,pch=3) 
itemquadresidplot(7,sim2,sim2scores,sim2pars,ngroup=20) 
par(new=T,pch=16) 
itemquadresidplot(7,sim3,sim3scores,sim3pars,ngroup=20) 
 
par(new=F,pch=1) 
itemquadresidplot(7,sim1,rasch1scores,rasch1pars,ngroup=20,label="3PL as Rasch 
Residuals") 
par(new=T,pch=3) 
itemquadresidplot(7,sim2,rasch2scores,rasch2pars,ngroup=20) 
par(new=T,pch=16) 
itemquadresidplot(7,sim3,rasch3scores,rasch3pars,ngroup=20) 
title("Item 7", outer=TRUE) 
 
par(new=F,pch=1) 
itemquadresidplot(12,sim1,sim1scores,sim1pars,ngroup=20,label="True Model 
Residuals") 
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par(new=T,pch=3) 
itemquadresidplot(12,sim2,sim2scores,sim2pars,ngroup=20) 
par(new=T,pch=16) 
itemquadresidplot(12,sim3,sim3scores,sim3pars,ngroup=20) 
 
par(new=F,pch=1) 
itemquadresidplot(12,sim1,rasch1scores,rasch1pars,ngroup=20,label="3PL as Rasch 
Residuals") 
par(new=T,pch=3) 
itemquadresidplot(12,sim2,rasch2scores,rasch2pars,ngroup=20) 
par(new=T,pch=16) 
itemquadresidplot(12,sim3,rasch3scores,rasch3pars,ngroup=20) 
title("Item 12", outer=TRUE) 
 
par(new=F,pch=1) 
itemquadresidplot(17,sim1,sim1scores,sim1pars,ngroup=20,label="True Model 
Residuals") 
par(new=T,pch=3) 
itemquadresidplot(17,sim2,sim2scores,sim2pars,ngroup=20) 
par(new=T,pch=16) 
itemquadresidplot(17,sim3,sim3scores,sim3pars,ngroup=20) 
 
par(new=F,pch=1) 
itemquadresidplot(17,sim1,rasch1scores,rasch1pars,ngroup=20,label="3PL as Rasch 
Residuals") 
par(new=T,pch=3) 
itemquadresidplot(17,sim2,rasch2scores,rasch2pars,ngroup=20) 
par(new=T,pch=16) 
itemquadresidplot(17,sim3,rasch3scores,rasch3pars,ngroup=20) 
title("Item 17", outer=TRUE) 
 
par(new=F,pch=1) 
itemquadresidplot(21,sim1,sim1scores,sim1pars,ngroup=20,label="True Model 
Residuals") 
par(new=T,pch=3) 
itemquadresidplot(21,sim2,sim2scores,sim2pars,ngroup=20) 
par(new=T,pch=16) 
itemquadresidplot(21,sim3,sim3scores,sim3pars,ngroup=20) 
 
par(new=F,pch=1) 
itemquadresidplot(21,sim1,rasch1scores,rasch1pars,ngroup=20,label="3PL as Rasch 
Residuals") 
par(new=T,pch=3) 
itemquadresidplot(21,sim2,rasch2scores,rasch2pars,ngroup=20) 
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par(new=T,pch=16) 
itemquadresidplot(21,sim3,rasch3scores,rasch3pars,ngroup=20) 
title("Item 21", outer=TRUE) 
 
par(new=F,pch=1) 
itemquadresidplot(32,sim1,sim1scores,sim1pars,ngroup=20,label="True Model 
Residuals") 
par(new=T,pch=3) 
itemquadresidplot(32,sim2,sim2scores,sim2pars,ngroup=20) 
par(new=T,pch=16) 
itemquadresidplot(32,sim3,sim3scores,sim3pars,ngroup=20) 
 
par(new=F,pch=1) 
itemquadresidplot(32,sim1,rasch1scores,rasch1pars,ngroup=20,label="3PL as Rasch 
Residuals") 
par(new=T,pch=3) 
itemquadresidplot(32,sim2,rasch2scores,rasch2pars,ngroup=20) 
par(new=T,pch=16) 
itemquadresidplot(32,sim3,rasch3scores,rasch3pars,ngroup=20) 
title("Item 32", outer=TRUE) 
 
 
######################################################################## 
############## Quad 2.0 Using theta-bar to calculate residuals ######### 
######################################################################## 
par(mfrow=c(1,2))#,oma=c(0,0,2,0)) 
 
par(new=F,pch=1) 
itemquadresidplot2.0(7,sim1,sim1scores,sim1pars,ngroup=20,label="True Model 
Residuals") 
par(new=T,pch=3) 
itemquadresidplot2.0(7,sim2,sim2scores,sim2pars,ngroup=20) 
par(new=T,pch=16) 
itemquadresidplot2.0(7,sim3,sim3scores,sim3pars,ngroup=20) 
 
par(new=F,pch=1) 
itemquadresidplot2.0(7,sim1,rasch1scores,rasch1pars,ngroup=20,label="3PL as Rasch 
Residuals") 
par(new=T,pch=3) 
itemquadresidplot2.0(7,sim2,rasch2scores,rasch2pars,ngroup=20) 
par(new=T,pch=16) 
itemquadresidplot2.0(7,sim3,rasch3scores,rasch3pars,ngroup=20) 
title("Item 7", outer=TRUE) 
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par(new=F,pch=1) 
itemquadresidplot2.0(12,sim1,sim1scores,sim1pars,ngroup=20,label="True Model 
Residuals") 
par(new=T,pch=3) 
itemquadresidplot2.0(12,sim2,sim2scores,sim2pars,ngroup=20) 
par(new=T,pch=16) 
itemquadresidplot2.0(12,sim3,sim3scores,sim3pars,ngroup=20) 
 
par(new=F,pch=1) 
itemquadresidplot2.0(12,sim1,rasch1scores,rasch1pars,ngroup=20,label="3PL as Rasch 
Residuals") 
par(new=T,pch=3) 
itemquadresidplot2.0(12,sim2,rasch2scores,rasch2pars,ngroup=20) 
par(new=T,pch=16) 
itemquadresidplot2.0(12,sim3,rasch3scores,rasch3pars,ngroup=20) 
title("Item 12", outer=TRUE) 
 
par(new=F,pch=1) 
itemquadresidplot2.0(17,sim1,sim1scores,sim1pars,ngroup=20,label="True Model 
Residuals") 
par(new=T,pch=3) 
itemquadresidplot2.0(17,sim2,sim2scores,sim2pars,ngroup=20) 
par(new=T,pch=16) 
itemquadresidplot2.0(17,sim3,sim3scores,sim3pars,ngroup=20) 
 
par(new=F,pch=1) 
itemquadresidplot2.0(17,sim1,rasch1scores,rasch1pars,ngroup=20,label="3PL as Rasch 
Residuals") 
par(new=T,pch=3) 
itemquadresidplot2.0(17,sim2,rasch2scores,rasch2pars,ngroup=20) 
par(new=T,pch=16) 
itemquadresidplot2.0(17,sim3,rasch3scores,rasch3pars,ngroup=20) 
title("Item 17", outer=TRUE) 
 
par(new=F,pch=1) 
itemquadresidplot2.0(21,sim1,sim1scores,sim1pars,ngroup=20,label="True Model 
Residuals") 
par(new=T,pch=3) 
itemquadresidplot2.0(21,sim2,sim2scores,sim2pars,ngroup=20) 
par(new=T,pch=16) 
itemquadresidplot2.0(21,sim3,sim3scores,sim3pars,ngroup=20) 
 
par(new=F,pch=1) 
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itemquadresidplot2.0(21,sim1,rasch1scores,rasch1pars,ngroup=20,label="3PL as Rasch 
Residuals") 
par(new=T,pch=3) 
itemquadresidplot2.0(21,sim2,rasch2scores,rasch2pars,ngroup=20) 
par(new=T,pch=16) 
itemquadresidplot2.0(21,sim3,rasch3scores,rasch3pars,ngroup=20) 
title("Item 21", outer=TRUE) 
 
par(new=F,pch=1) 
itemquadresidplot2.0(32,sim1,sim1scores,sim1pars,ngroup=20,label="True Model 
Residuals") 
par(new=T,pch=3) 
itemquadresidplot2.0(32,sim2,sim2scores,sim2pars,ngroup=20) 
par(new=T,pch=16) 
itemquadresidplot2.0(32,sim3,sim3scores,sim3pars,ngroup=20) 
 
par(new=F,pch=1) 
itemquadresidplot2.0(32,sim1,rasch1scores,rasch1pars,ngroup=20,label="3PL as Rasch 
Residuals") 
par(new=T,pch=3) 
itemquadresidplot2.0(32,sim2,rasch2scores,rasch2pars,ngroup=20) 
par(new=T,pch=16) 
itemquadresidplot2.0(32,sim3,rasch3scores,rasch3pars,ngroup=20) 
title("Item 32", outer=TRUE) 
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