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ABSTRACT

Multiferroic Janus nanofibers consisting of barium titanate (BaTiO3) and cobalt

ferrite (CoFe2O4) have the magnetoelectric effect between piezoelectric and mag-

netostrictive phases. By applying an external magnetic field on Janus nanofibers,

the dipole moment in piezoelectric phase would be formed and produce the elec-

tric field. Since poly(N-vinylcarbazole) (PVK) polymer has anisotropic property, the

birefringence can be induced by the electric field. We generalize the magnetic field-

birefringence quadratic equation and coupling constant for PVK polymer with Janus

nanofibers. Birefringence microscopy is used to observe the PVK birefringence under

an external magnetic field from 0 to 2500 Oe. The numerical results show that the

birefringence variation of the fourth digit after the dot can be obviously detected

by our microscope for the distance within 15 µm between two nanofibers in PVK

polymer.
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Chapter 1

Introduction and Motivation

Magnetoelectric multiferroics have been studied as the coupling interaction be-

tween piezoelectric and magnetostrictive materials. The magnetoelectric effect is

the phenomenon in multiferroic materials that an electric polarization is produced

by applying an external magnetic field or a magnetization is produced by applying

an external electric field. Janus nanofibers (Figure 1.1) manufactured by electro-

spinning method [1] have two different semi-cylindrical phases containing barium

titanate (BaTiO3) and cobalt ferrite (CoFe2O4). In order to understand the prop-

erties and applications of multiferroic materials, we can use Janus nanofibers and

poly(N-vinylcarbazole) (PVK) polymer to make samples and cure them with the

constant magnetic field. While curing, Janus nanofibers form long-chain alignment

along the field direction. Due to the magnetoelectric effect, the piezoelectric phase

is polarized and the electric field of dipole is produced from BaTiO3. According to

Kerr electro-optic effect, the electric field can induce birefringence in a PVK polymer

[2]. A polarized light microscopy is used to detect the birefringent behavior under

an applied magnetic field ranging from 0 to 2500 Oe. Chaper 2 includes theoretical

calculation for magnetic field-birefringence in a PVK solution with Janus nanofibers

using a Green’s function method, as well as [3][4] and the numerical results for PVK

and other polymers. In Chapter 3, we will discuss the birefringence spectroscopy

and simulation data analysis. Conclusion and suggested future work are included in

Chapter 4.
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Figure 1.1: Janus nanofiber consists of BaTiO3 (left side) and CoFe2O4 (right side).
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Chapter 2

Theory

Janus nanofibers exhibit the direct magnetoelectric effect which couples mag-

netostrictive and piezoelectric properties. In CoFe2O4, there are many randomly

oriented domains (Figure 2.1). When an external magnetic field is applied to the

system, each domain produces torque
#–

N = #–m× #–

B, which tries to rotate the domains

along the field direction. Due to the effect of orientation, a strain field is created that

change elongates the composite in Figure 2.2, an effect called magnetostriction [3][5].

Figure 2.1: Randomly oriented domains exist in CoFe2O4.
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Figure 2.2: The strain field forces the Janus nanofiber to extend the length.

Since the stress acts upon the barium titanate, the piezoelectric domains are

polarized and an electric dipole moment is formed in Figure 2.3.

To understand the magnetoelectric coupling in multiferroic composites, the Green’s

function method by Ce-Wen Nan [3][4] can be used to get an effective magnetoelectric

coefficient for Janus nanofibers. Birefringence can be induced in PVK by an electric

field. In Sec. 2.1, we obtain a quadratic equation for magnetic field-birefringence and

the coupling constant for a PVK solution with Janus nanofibers.

2.1 Magnetic field-birefringence coupling equation

For multiferroic composites, the constitutive equations for coupling magneto-

mechanical-electric interactions can be written as

4



Figure 2.3: The dipole moment in BaTiO3 creates an electric field as shown.

σij = Cijklskl − elijEl − qlijHl,

Di = eiklskl + εilEl + αilHl,

Bi = qiklskl + αliEl + µilHl,

(2.1)

where σ, C, s, e, q, E, D, B, H, ε, µ, and α are stress, stiffness, strain, piezoelectric

coefficient, piezomagnetic coefficient, electric field, electric displacement, magnetic

induction, magnetic field, dielectric constant, permeability, and magnetoelectric co-

efficient, respectively.

Janus nanofibers which have two different phases are nonhomogeneous materials.

In order to consider the statistical combination of magnetostrictive and piezoelectric
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properties at a macroscopic level [6], we can take average of constitutive equations as

< σij > = C∗ijkl < skl > −e∗lij < El > −q∗lij < Hl >,

< Di > = e∗ikl < skl > +ε∗il < El > +α∗il < Hl >,

< Bi > = q∗ikl < skl > +α∗li < El > +µ∗il < Hl > .

(2.2)

The constitutive coefficients C(x), ε(x), and µ(x) can be wriiten by perturbation

theory [6] as

C(x) = C0 + C ′(x),

ε(x) = ε0 + ε′(x),

µ(x) = µ0 + µ′(x),

(2.3)

where C0, ε0, and µ0 are homogeneous terms and the notations of prime represent

fluctuations.

Consider the homogeneous boundary conditions on the external surface S and the

elastic displacement, electric potential, and magnetic potential are

ui(S) = u0i = s0ijxj,

φ(S) = φ0 = −E0
i xi,

V (S) = V 0 = −H0
i xi.

(2.4)

In static equlibrium, the differentiation of constitutive equations (2.1) are zero:

∂σij(x)

∂xj
= 0,

∂Di(x)
∂xi

= 0,

∂Bi(x)
∂xi

= 0.

(2.5)

Now, we substitute equations (2.1) and (2.3) into equation (2.5) and obtain

6



C0
ijkl

∂skl
∂xj

+ ∂
∂xj

(C ′ijklskl − enijEn − qnijHn) = 0,

ε0in
∂En

∂xi
+ ∂

∂xi
(eijnsjn + ε′inEn + αinHn) = 0,

µ0
in
∂Hn

∂xi
+ ∂

∂xi
(qijnsjn + αinEn + µ′inHn) = 0.

(2.6)

Take the derivative of skl, En and Hn and the equations (2.6) can be written as

C0
ijkl

∂2uk
∂xj∂xl

+ ∂
∂xj

(C ′ijklskl − enijEn − qnijHn) = 0,

ε0in
∂2φ

∂xi∂xn
+ ∂

∂xi
(eijnsjn + ε′inEn + αinHn) = 0,

µ0
in

∂2V
∂xi∂xn

+ ∂
∂xi

(qijnsjn + αinEn + µ′inHn) = 0.

(2.7)

We integrate the elastic displacement, electric potential, and magnetic potential

twice and the solutions can be described as

uk(x) = u0k +
∫
guki(x, x

′) ∂
∂x′j

(C ′ijklskl − enijEn − qnijHn)dx′,

φ(x) = φ0 +
∫
gφ(x, x′) ∂

∂x′i
(eijnsjn + ε′inEn + αinHn)dx′,

V (x) = V 0 +
∫
gV (x, x′) ∂

∂x′i
(qijnsjn + αinEn + µ′inHn)dx′,

(2.8)

where guki(x, x
′), gφ(x, x′), and gV (x, x′) are elastic displacement Green’s function,

electric potential Green’s function, and magnetic potential Green’s function [4].

If we differentiate equations (2.8) and use integration by parts to get strain, electric

field, and magnetic field, then

s(x) = s0 +

∫
G̃u(x, x′)[C ′(x′)s(x′)− eT (x′)E(x′)− qT (x′)H(x′)]dx′,

E(x) = E0 +

∫
G̃φ(x, x′)[e(x′)s(x′) + ε′(x′)E(x′) + α(x′)H(x′)]dx′, (2.9)

H(x) = H0 +

∫
G̃µ(x, x′)[q(x′)s(x′) + αT (x′)E(x′) + µ′(x′)H(x′)]dx′,

where G̃u(x, x′), G̃φ(x, x′), and G̃µ(x, x′) are modified elastic displacement Green’s

function, electric potential Green’s function, and magnetic potential Green’s function

[4]. The superscript T stands for the transpose of matrix.
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The equations (2.9) can be described in operator notation:

s(x) = s0 +Gu(C ′s− eTE − qTH),

E(x) = E0 +Gφ(es+ ε′E + αH),

H(x) = H0 +Gµ(qs+ αTE + µ′H).

(2.10)

Write equations (2.10) in matrix form:


s

E

H

 =


s0

E0

H0

 +


Gu 0 0

0 Gφ 0

0 0 GV



C ′ −eT −qT

e ε′ α

q αT µ′



s

E

H



=


s0

E0

H0

 +


GuC ′ −GueT −GuqT

Gφe Gφε′ Gφα

GV q GV αT GV µ′



s

E

H

 . (2.11)

If we move the field matrix to the left side and multiply the inverse of Green’s

function matrix on both sides, then we get


s

E

H

 =


T 11 T 12 T 13

T 21 T 22 T 23

T 31 T 32 T 33



s0

E0

H0

 , (2.12)

where T ij is the T-type tensor [3].

The constitutive equations (2.1) can be written in matrix form:


σ

D

B

 =


C −eT −qT

e ε α

q αT µ



T 11 T 12 T 13

T 21 T 22 T 23

T 31 T 32 T 33



s0

E0

H0
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=


CT 11 − eTT 21 − qTT 31 CT 12 − eTT 22 − qTT 32 CT 13 − eTT 23 − qTT 33

eT 11 + εT 21 + αT 31 eT 12 + εT 22 + αT 32 eT 13 + εT 23 + αT 33

qT 11 + αTT 21 + µT 31 qT 12 + αTT 22 + µT 32 qT 13 + αTT 23 + µT 33



s0

E0

H0



=


R11 R12 R13

R21 R22 R23

R31 R32 R33



s0

E0

H0

 , (2.13)

where Rij represents the matrix element.

We take the average of matrix in equation (2.13) and then


< σ >

< D >

< B >

 =


< R11 > < R12 > < R13 >

< R21 > < R22 > < R23 >

< R31 > < R32 > < R33 >



< s0 >

< E0 >

< H0 >

 . (2.14)

Now, the averaged constitutive equations (2.2) can be written in matrix form:


< σ >

< D >

< B >

 =


C∗ −eT ∗ −qT ∗

e∗ ε∗ α∗

q∗ αT
∗

µ∗



< s >

< E >

< H >



=


C∗ −eT ∗ −qT ∗

e∗ ε∗ α∗

q∗ αT
∗

µ∗



< T 11 > < T 12 > < T 13 >

< T 21 > < T 22 > < T 23 >

< T 31 > < T 32 > < T 33 >



< s0 >

< E0 >

< H0 >



=


< U11 > < U12> < U13 >

< U21 > < U22> < U23 >

< U31 > < U32 > < U33 >



< s0 >

< E0 >

< H0 >

 , (2.15)

where < U ij > is the averaged element of matrix.

Compare the matrix elements < R23 > and < U23 > from equations (2.14) and

9



(2.15) and obtain

< eT 13 + εT 23 + αT 33 >= e∗ < T 13 > +ε∗ < T 23 > +α∗ < T 33 > . (2.16)

Owing to the fact that the magnetoelectric effect doesn’t exist in both individual

phases, α = 0. The piezomagnetic effect doesn’t exist in piezoelectric phase, so q = 0

and T 23 can be neglected [3].

The effective magnetoelectric coefficient can be described as

α∗ =< (e− e∗)T 13 >< T 33 >−1, (2.17)

where α∗ is nonzero for multiferroic composites.

The effective electric polarization of barium titanate is

p∗ = α∗ < H > . (2.18)

The matrix form of equation (2.18) is


p1
∗

p2
∗

p3
∗

 =


α∗11 α∗12 α∗13

α∗21 α∗22 α∗23

α∗31 α∗32 α∗33



< H1 >

< H2 >

< H3 >

 . (2.19)

Since we apply an external magnetic field along z-axis in Figure 2.4, < H1 > and

< H2 > are zeros and the effective polarization of z-direction would be

p∗3 = α∗33 < H3 >= α∗33H
ext
3 , (2.20)

where Hext
3 stands for the external magnetic field.

10



Figure 2.4: An external magnetic field is applied to a Janus nanofiber in the z-
direction.

For the 1-3 type magnetostrictive-piezoelectric composite, the effective magneto-

electric coefficient α∗33 obtained by non-self-consistent approximation (NSCA) [3][5]

can be described as

α∗33 = − f(1− f)q31e31
mk +p m+ f(pk −m k)

, (2.21)

where k = C11+C12
2

, m = C11−C12
2

, and f is the volume fraction of the magnetostrictive

phase. Table 2.1 shows the parameters of piezoelectric and magnetostrictive phases

[3].

Since the polarization is regarded as the combination of many tiny dipole moments

in BaTiO3, the dipole moment in Figure 2.5 could be

pdip = p∗3V, (2.22)

where V is the volume of piezoelectric phase.
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Table 2.1: Parameters of BaTiO3 and CoFe2O4.

BaTiO3 CoFe2O4

C11 (GPa) 166.2 286.0
C12 (GPa) 76.5 173.0
C13 (GPa) 77.4 170.5
C33 (GPa) 161.4 269.5
ε33/ε

0 1350 10
µ33/µ

0 8 125
e31 (C/m2) -4.22 0
e33 (C/m2) 18.6 0
q31 (N/Am) 0 580.3
q33 (N/Am) 0 699.7

The dipole potential becomes

Vdip(r, θ) =
r̂ · #–p dip
4πε0r2

. (2.23)

To calculate the electric field, we take the negative gradient of Vdip in spherical

coordinates:

#–

Edip(r, θ) =
#–

Erdip +
#–

Eθdip +
#–

Eφdip

= −∇Vdip

= −(∂V
∂r
r̂ + 1

r
∂V
∂θ
θ̂ + 1

rsin θ
∂V
∂φ
φ̂)

= −(−−2pdip cos θ

4πε0r3
r̂ − pdip sin θ

4πε0r3
θ̂ + 0

=
pdip

4πε0r3
(−2 cos θr̂ + sin θθ̂).

(2.24)

Assume that the other fiber is next to the original one and the electric fields from

both fibers should be

#–

E1dip =
p1dip

4πε0r13
(−2 cos θ1r̂ + sin θ1θ̂),

#–

E2dip =
p2dip

4πε0r23
(−2 cos θ2r̂ + sin θ2θ̂).

(2.25)
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Figure 2.5: The dipole moment pdip points in the z-direction.

Let’s consider the case of the midpoint between both fibers. Since θ1 = θ2 = 180o,

the total electric field in Figure 2.6 would point along the negative z-direction:

#–

Etotal = − 2
4πε0

(
P1dip

r13
+

P2dip

r23
)r̂

= − 2
4πε0

(
P1dip

r13
+

P2dip

r13
)r̂

= − 2
4πε0

(P1dip
+P2dip

)

r13
r̂

= − 1
2πε0

α∗33H
ext
3 (V1+V2)

r13
r̂

= − 1
2πε0

α∗33H
ext
3 (V1+V2)

( d
2
)3

r̂

= − 4
πε0

α∗33H
ext
3 (V1+V2)

d3
r̂

= − 4
πε0

α∗33(V1+V2)

d3
250
π
Hr̂

= −1000α∗33(V1+V2)

π2ε0d3
Hr̂,

(2.26)

where d is the distance between both fibers. The unit conversion of magnetic field is

Hext
3 = H(Oe) = 1000

4π
H(A/m) = 250

π
H(A/m).

The birefringence of PVK polymer [2] is

∆n = ne − no = (4.96× 10−7)E2 + 5.12× 10−4. (2.27)
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Figure 2.6: We choose the midpoint between two nanofibers to calculate the total
electric field.

We plug equation (2.26) into equation (2.27) and the birefringence-magnetic field

coupling equation would be

∆n = (4.96× 10−7)[
(1×106)α∗33

2(V1+V2)2

π4ε02d6
H2] + 5.12× 10−4

=
0.496α∗33

2(V1+V2)2

π4ε02d6
H2 + 5.12× 10−4

= βH2 + 5.12× 10−4,

(2.28)

where the coupling constant β ≡ 0.496α∗33
2(V1+V2)2

π4ε02d6
.

2.2 Numerical results of PVK polymer

Since the volume ratio between both phases is 1 : 1 [1], the volume fraction of the

magnetostrictive phase f is 1
2
. We plug the numerical values into the equation (2.21)

14



to get the effective magnetoelectric coefficient as

α∗33 ' 2.78× 10−15 (s/µm). (2.29)

Assume that two Janus nanofibers have the same volumes (V = 1600 µm3) and

then we calculate the coupling constant as

β ' 5.14× 10−3

d6
(m2/A2). (2.30)

Substituting the equation (2.30) into the equation (2.28), we obtain

∆n =
5.14× 10−3

d6
H2 + 5.12× 10−4. (2.31)

From the equation (2.31), we understand that different distances between two

nanofibers would affect the polymer birefringence. In Figure 2.7, the slope of red

curve increases more rapidly than others. When applying an external magnetic field

from 0 to 2500 Oe, the fourth digit after the decimal point of PVK birefringence can

clearly be distinguished. Since our experiment can detect the birefringence variation

of 1 part in 104 and falls off as 1
d6

, it is critical for the fiber distribution that the

distance between two nanofibers should be within 15 µm. Therefore, a distance of 15

µm is used in equation (2.31), and we obtain the equation of PVK birefringence as

∆n = (4.51× 10−10)H2 + 5.12× 10−4. (2.32)
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Figure 2.7: Birefringences of PVK polymer with distances varying from 15 µm to 30
µm.

2.3 Comparison with other polymers

In addition to PVK polymer, we know that Poly(L−lactide) (P-L-LA), Poly(D,L−

lactide) (P-D,L-LA), and Poly(ST−Na−AMPS) also display field-induced birefrin-

gence [7][8]. Here, we also use a distance between both nanofibers of 15 µm because

we have obtained the numerical results in the previous section and would like to com-

pare the differences among other polymers. The birefringences of these three kinds

of polymers with different solute concentrations are shown in Table 2.2. Figure 2.8

shows that the birefringence change is only 1 part in 107 with magnetic field. The val-

ues are so small that we will not be able to detect them with our current experiment.

Thus, P-L-LA and P-D,L-LA are not suitable polymers for us. In Figure 2.9, the

slopes of curves for Poly(ST − Na − AMPS) are negative, since the extraordinary

index of refraction ne is smaller than the ordinary index of refraction no. For the con-

centration c = 6.87× 10−4g/mL, we predict that 1 part in 104 can be observed while

varying the magnetic field. Therefore, both PVK and Poly(ST −Na−AMPS) with
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Table 2.2: Birefringences of Poly(ST −Na−AMPS), P-L-LA, and P-D,L-LA with
different concentrations.

Birefringence ∆n Polymer Concentration c
∆n=(1.24× 10−12)H2 P-L-LA c = 11.1mg/cm3

∆n=(1.07× 10−12)H2 P-L-LA c = 9.59mg/cm3

∆n=(6.53× 10−13)H2 P-L-LA c = 5.87mg/cm3

∆n=(5.15× 10−13)H2 P-L-LA c = 4.62mg/cm3

∆n=(2.70× 10−13)H2 P-L-LA c = 2.42mg/cm3

∆n=(2.45× 10−13)H2 P-L-LA c = 2.20mg/cm3

∆n=(5.16× 10−13)H2 P-D,L-LA c = 11.1mg/cm3

∆n=(4.46× 10−13)H2 P-D,L-LA c = 9.59mg/cm3

∆n=(2.73× 10−13)H2 P-D,L-LA c = 5.87mg/cm3

∆n=(2.15× 10−13)H2 P-D,L-LA c = 4.62mg/cm3

∆n=(1.13× 10−13)H2 P-D,L-LA c = 2.42mg/cm3

∆n=(1.02× 10−13)H2 P-D,L-LA c = 2.20mg/cm3

∆n=−(1.00× 10−9)H2 Poly(ST−Na−AMPS) c = 0.000687g/mL
∆n=−(1.49× 10−10)H2 Poly(ST−Na−AMPS) c = 0.00126g/mL

the concentration c = 6.87× 10−4g/mL could enable a birefringence measurement.
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Figure 2.8: Birefringences of P-L-LA and P-D,L-LA polymers with different concen-
trations.

Figure 2.9: Birefringences of Poly(ST − Na − AMPS) polymer with different con-
centrations.
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Chapter 3

Experiment

3.1 Fabrication sample

In order to make the solution, we can put 1.5 mg Janus nanofibers into 6 ml PVK

polymer liquid. Since the nanofibers can settle out in the container, the solution is

mixed with a tip sonicator for 2 minutes. To avoid any dust on glass, we use a cotton

swab with methanol to clean it first. A pipette is used to drop 50 µl solution on

glass and put it on a spin coater with a speed of 450 rpm for 30 seconds to uniformly

distribute the solution on the glass wafer. The sample is placed in an electromagnet

with a high constant field to cure the sample for 1 hour. Then the nanofiber alignment

and chaining experiment can be performed. The electric field from the piezoelectric

phase can orient the PVK polymer along the specific direction by Kerr electro-optic

effect. A microscope is then used to measure the polymer birefringence.

3.2 Birefringence measurement

In this experiment, we can use white light (λ = 580nm) to do the measurement.

When the light passes through a polarizing material, it splits into two orthogonal rays

called ordinary and extraordinary rays. This phenomenon is called birefringence [9].

Ordinary rays have a refractive index given by Snell’s law, while extraordinary rays

do not obey Snell’s law. Thus, a birefringence measurement obtains the difference

between the extraordinary and ordinary refractive indices. PVK polymer is chosen in
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our research because it has this property of field-induced birefringence.

Figure 3.1: PVK chemical structure [by Sketchc89 from Wikipedia].

Once PVK polymer is oriented by the electric field mentioned in the previous

section, the Carbon-Carbon (C-C) bond in PVK (Figure 3.1) forms as a long chain.

The refractive index depends on the polarizability of this chemical bond [9]. When

the polarized light enters the polymer, the speed of light perpendicular to C-C bond

goes slower than the parallel part. We know that the refractive index is

n =
c

v
, (3.1)

where c is speed of light in vacuum and v is speed of light in media. The birefringence

is thus written as

∆n = n‖ − n⊥, (3.2)

where n‖ and n⊥ represent the refractive indices for light travelled parallel and per-

pendicular to the direction of orientation. The phase shift between both orthogonal

beams is

δ =
2π∆nd

λ
, (3.3)

where d is the thickness of sample and λ is the wavelength of light.
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(a) Photo. (b) Illustration.

Figure 3.2: Microscope setup.

The microscope is shown in Figure 3.2. First, we apply a constant magnetic field

to cure the sample and orient the PVK polymer. In Figure 3.3, a polarizer is used to

produce the polarized light from white light. Since the polarizer is set at an angle θ

relative to the polymer orientation, the polarized light can be rotated by the sample.

The light then passes through the analyzer which is perpendicular to the polarizer

and a fraction of the light is transmitted through the analyzer. We use a Charge-

Coupled Device (CCD) to collect these transmitted rays and analyze the intensity of

light.

The light intensity I for birefringence measurement is

I = I0 sin2(2θ) sin2(
δ

2
), (3.4)

where I0 is the initial light intensity produced from polarizer.
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Figure 3.3: Polarized light microscopy.

3.3 Simulation and data analysis

The structure of polymer can create two orthogonal beams with a relative phase

shift, and Table 3.1 shows these phase shifts in the polymer film for external magnetic

fields ranging from 0 to 2500 Oe. We put these values into the equation (3.4) and

obtain the angle-light intensity plots in Figure 3.4. As shown in Figure 3.4, the

sinusoidal curves oscillate between 0 and a maximum value of light intensity while

adjusting the angles of polarizer and analyzer to detect light intensity vs. magnetic

fields. The data simulation can help us predict the experimental data quantitatively

if we follow the sample making process and procedure of birefringence measurement

mentioned in Sections 3.1 and 3.2 to do an experiment by our microscope.

22



Table 3.1: Phase shifts.

H (Oe) δ (degrees) sin2( δ
2
)

0 247.88 0.688285
250 261.53 0.573622
500 302.50 0.231385
750 370.77 0.00880083
1000 466.35 0.64071
1250 589.23 0.826496
1500 739.43 0.02847
1750 916.93 0.978326
2000 1121.74 0.126938
2250 1353.86 0.466299
2500 1613.29 0.996579

(a) θ - I plot for 0 Oe.

Figure 3.4: Polarizer angle θ - Light intensity I plots.
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(b) θ - I plot for 250 Oe.

(c) θ - I plot for 500 Oe.

Figure 3.4: Polarizer angle θ - Light intensity I plots (cont.).
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(d) θ - I plot for 750 Oe.

(e) θ - I plot for 1000 Oe.

Figure 3.4: Polarizer angle θ - Light intensity I plots (cont.).
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(f) θ - I plot for 1250 Oe.

(g) θ - I plot for 1500 Oe.

Figure 3.4: Polarizer angle θ - Light intensity I plots (cont.).
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(h) θ - I plot for 1750 Oe.

(i) θ - I plot for 2000 Oe.

Figure 3.4: Polarizer angle θ - Light intensity I plots (cont.).

27



(j) θ - I plot for 2250 Oe.

(k) θ - I plot for 2500 Oe.

Figure 3.4: Polarizer angle θ - Light intensity I plots (cont.).
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Chapter 4

Conclusion and Future work

In this thesis, I have generalized the magnetic field-birefringence coupling equation

from the magnetoelectric effect of Janus nanofibers and Kerr electro-optic effect of

PVK polymer. Using the equation (2.32), I have shown that the distance between

two fibers should be within 15 µm to obtain effective values of birefringence of PVK

polymer that could be measured. Also, I found that Poly(ST − Na − AMPS)

with concentration c = 6.87× 10−4g/mL could be another option for a birefringence

experiment. Future work involves making samples of PVK and Poly(ST − Na −

AMPS) with concentration c = 6.87× 10−4g/mL to observe the largest response for

birefringence measurement. Then, we can compare experimental data with theoretical

predictions and analyze the difference between them.
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