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ABSTRACT 

The engineering infrastructures have a growing demand for damage monitoring 

systems to avoid any potential risk of failure. Proper damage monitoring solutions are of a 

great interest to this growing demand. The structural health monitoring (SHM) and 

nondestructive evaluation (NDE) offer appropriate online and offline damage monitoring 

solutions for a variety of mechanical and civil infrastructures that includes unmanned aerial 

vehicles (UAV), spaceships, commercial aircraft, ground transportation, wind turbines, 

nuclear spent fuel storage tanks, bridges, naval ships, and submarines. The fundamentals 

of the ultrasonic SHM and NDE consist of multi-disciplinary fields. The dissertation 

addresses SHM and NDE using ultrasonic guided waves, with an emphasis on the 

development of an analytical solution for non-axisymmetric guided wave propagation, 

multiphysics simulation, and experimental study of acoustic emission from the structural 

fatigue damage. 

An analytical solution for non-axisymmetric coupled guided wave propagation in 

plate-like structures was developed based on the equations of motion and elasticity 

relations. A general non-axisymmetric solution of guided wave propagation in plate is 

needed to analyze the guided wave-scatter from non-axisymmetric damage as encountered 

in practice. Under non-axisymmetric conditions, the problem is highly coupled and no 

potential based analytical solution has been reported in the literature so far. Helmholtz 

decomposition theorem was applied to the Navier-Lame equations that yielded a set of four 

coupled partial differential equations in four unknowns, the scalar potential   and the 
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three components of the vector potential , ,r zH H H . A fourth equation, the ‘gauge 

condition’ was then added to the decomposition. A particular interpretation of the gauge 

condition is proposed. Our proposed approach decouples the governing equations and 

reduced the number of unknowns from four to three thus allowing one to express the 

solution in an elegant straight-forward way. The Rayleigh-Lamb characteristic equations 

were recovered and a general normal-modes expression for the solution was obtained. 

A hybrid global analytical and local finite element method was used to solve a 

practical aerospace rivet hole crack detection. The scatter cube of complex-valued wave 

damage interaction coefficients (WDICs) was developed to analyze any rivet hole of a 

multiple-rivet-hole lap joint system. It had been shown that not all parameters such as 

actuator-sensor locations, and frequencies were equally sensitive to the damage scatter. 

The optimum combination of parameters could better detect the crack in the rivet hole. The 

simulated time domain signals were produced for the optimum combination of parameters. 

Multiphysics simulations for fatigue crack generated acoustic emission (AE) were 

performed and the results were validated by the experiments. A novel application of 

inexpensive piezoelectric wafer active sensors (PWAS) has been explored. It has been 

shown that PWAS transducers successfully captured the fatigue-crack generated acoustic 

emissions in the thin plate-like aerospace materials. PWAS performance was compared 

with existing commercial AE sensors. It was found that PWAS captured richer frequency 

content than the existing AE sensors. Various AE waveform signatures were found from 

the fatigue crack advancement during the fatigue load evolution. Some AE waveform 

signatures were found to be related to the fatigue-crack extension while some of them were 

related to the fatigue-crack fretting, rubbing, and clapping. This observation was confirmed 
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by synchronizing the fatigue loading with AE measurement by the same AE instrument. 

The in-situ microscopic measurement was performed during fatigue loading in MTS which 

provided the insights of the AE waveform evolution. It was hypothesized that the crack 

length estimation could be related the AE waveform signatures. FEM simulations and 

experiments were conducted using laser Doppler vibrometer (LDV) to verify our 

hypothesis.  

Two case studies are discussed showing the implementation of SHM and NDE 

approach in practical applications: (1) horizontal crack detection, size, and shape 

estimation in stiffened structures, (2) impact damage detection in manufactured aerospace 

composite structures. 

The dissertation finishes with conclusions, major contributions, and suggestions for 

future work. 
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CHAPTER 1  

INTRODUCTION 

This chapter serves as the introduction to the entire dissertation by addressing the 

motivation and importance of conducting the research, discussing research goal, scope, and 

objectives, and introducing the organization of the dissertation. 

Structural Health Monitoring (SHM) is a multi-disciplinary field, which requires a 

strong background in elasticity, structural mechanics, fracture mechanics, and material 

science as well as proficiency in electrical signal analysis, sensors, and data acquisition. 

This involves similar approaches taken by nondestructive evaluation (NDE), only that 

SHM takes it one step further: SHM attempts to develop (a) damage detection sensors that 

can be permanently installed on the structure and (b) monitoring methods that can provide 

on-demand structural health bulletins. SHM aims at detecting, localizing and 

characterizing structural damage and provide diagnosis and prognosis of structural health 

status in real-time or on-demand, as required. With the advancement of SHM and NDE 

technology, the industry can significantly reduce the maintenance cost, shorten the machine 

service downtime, and improve the safety and reliability of engineering structures. SHM 

has shown great potential in both the health management of aging structures and the 

development of novel self-sensing smart and intelligent structures. Although the concept 

of SHM originated in the application to aerospace structures, later it has been also useful 

for civil infrastructures. 
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1.1 MOTIVATION 

The true motivation for this research comes from ensuring the safety of the public 

by designing efficient, low-cost and safer engineering infrastructure. In the U.S., more than 

2.5 million people travel every day through airlines [1]. The structural safety is a major 

concern to ensure proper operations of the airline flights. The structural safety has been 

drastically increased over the past decades because of continuous research and 

development. In last five years, there were only 0.1 fatal accidents per millions of flights 

in the U.S. whereas this number was five times higher twenty years ago [2]. Structural 

health monitoring (SHM) and nondestructive evaluation (NDE) have contributed to this 

achievement by ensuring the structural safety and reliability. 

Every four years, the American Society of Civil Engineers issues a report grading 

current infrastructure conditions and needs in the United States. According to the 2017 

infrastructure report card, the U.S. barely passed with a score of C+, which was identical 

to its 2013 score [3]. This shows that research furthering the safety of infrastructures is 

needed and that the early detection of failures is considerably important to American 

infrastructure. This report shows that 9.1% (56,007) bridges of total 614,387 bridges are 

structurally deficient and most of them are 50 years or older. More than 180 million trips 

take place across the structurally deficient bridges each day. In terms of infrastructure, data 

from the Congressional Budget Office (CBO) shows that the U.S. total infrastructure costs 

amounted to $416 billion in 2014 [4]. SHM and NDE can significantly contribute to our 

infrastructure by developing low-cost and efficient damage monitoring solutions for these 

aging structures.  
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Proper damage monitoring solutions for a variety of structures including but not 

limited to unmanned aerial vehicles (UAV), rockets, space shuttles, commercial aircraft, 

ground transportation, nuclear spent-fuel storage casks, bridges, naval ships, submarines 

are a growing demand. For example, SHM contributes to high altitude long endurance 

(HALE) UAV development of “Digital Twin” of Air Force research with a 20 years vision 

from now [5]. The U.S. Naval research is focusing on integrated system health management 

for navy ships as a part of continuous development from USS North Carolina to USS 

Gerald R. Ford Navy aircraft carrier [6]. A comprehensive motivation came from a keynote 

speech by National Aeronautics and Space Administration (NASA) scientists at Stanford 

University that explained SHM applications for NASA future aerospace vehicles [7]. This 

speech emphasized the need for ultrasonic guided wave based SHM. 

The development of a physics-based modeling approach for the SHM and NDE has 

always been an interest to the community. The underlying theories of the SHM and NDE 

technology are based on the fundamental laws of physics. Effective design of SHM and 

NDE systems requires a solid analytical understanding of the structures, guided wave 

propagation, and sensors. The equations of motion and the elasticity relations govern the 

guided waves and are most important for developing the analytical solutions for guided 

wave problems. The analytical methods are very lucrative because they provide a very fast 

solution as compared to the computationally expensive finite element method (FEM) and 

spectral element methods. 

In 1917, Prof. Horace Lamb mathematically developed an analytical solution for 

the guided waves propagating in an elastic plate [8]. Named after its discoverer, Lamb 

waves refer to elastic perturbations propagating in elastic plates (or layers) with free 



 

4 

boundaries. However, plane strain assumptions were made on the Lamb discoveries. Later, 

the analytical solutions for axisymmetric wave propagation were developed [9]. However, 

the presence of any damage in the thin-walled structure is no more axisymmetric. The 

detection of damage in the structure, which is the main objective of SHM and NDE, needs 

an analytical solution for non-axisymmetric guided wave propagation. Thus, it is of great 

importance to develop an accurate, efficient, and versatile analytical solution for non-

axisymmetric guided wave propagation. 

In practical engineering applications, the SHM can be performed into two main 

ways: (1) active SHM where a combination of transmitter and receiver sensors are used, 

and (2) passive SHM where only receiver sensors are used. Depending on the application, 

one way can be more suitable than the other. In some cases, a combination of active and 

passive SHM can be employed. In general, the passive SHM and NDE designs require less 

number of sensors and circuits than the active designs. The passive SHM and NDE mostly 

use acoustic emission (AE) technology. Acoustic emissions happen from any state change 

in the materials during any damage progression. Conventional AE techniques rely on the 

statistical hit-based approaches and sometimes provide a false indication of the criticality 

of the damage in the structure. A physics-based approach for AE analysis is demanded by 

the research community to overcome the shortcomings of the conventional approach. 

In addition, the current AE practice also does not possess an early warning 

capability. Such early warning capability, if existed, would greatly assist the effective 

management of structural fatigue in coordination with mission profile allocation and 

maintenance schedule. The physics-of-materials based approach considers all possible 

simultaneous physical events including the source of AE events, AE wave propagation 
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mechanism, interaction with structural discontinuity, physical microscopic changes in 

materials, and sensor characteristics. The physics-based AE approach may provide more 

deterministic and accurate indication of the progressive damage, hence offers a better 

diagnosis and prognosis. The experimental studies along with the multiphysics 

computational models may assist this process.  

The developed algorithms for enhanced SHM and NDE system are often required 

to be demonstrated in some practical applications. The theoretical analyses, FEM 

simulations, and experimental analyses should be combined together to demonstrate such 

applications. Hence, the demonstration of some case studies is always important for the 

fundamental scientific research. 

1.2 RESEARCH GOAL, SCOPE, AND OBJECTIVES 

The research goal of the Ph.D. work presented in this dissertation is to develop 

analytical, FEM, and experimental tools based on the physics of materials for accurate, 

efficient, and versatile damage monitoring solutions to be used with SHM and NDE 

ultrasonic guided wave systems. The scope of this research covers developing the 

analytical solutions, multiphysics FEM simulations, hybrid analytical–FEM methods, and 

AE-fatigue experiments to support the physics of material based approaches. It also 

discusses some practical applications by demonstrating some case studies, for example, 

horizontal-crack monitoring of stiffened structures and impact damage (i.e. bird strike) 

monitoring for aerospace composite structures. The objectives of the work presented in this 

dissertation are as follows: 

1. To develop an analytical solution for the non-axisymmetric coupled guided 

wave propagation.  
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2. To use the fundamental laws of physics to describe the vector fields in terms of 

Helmholtz potentials and obtain a relation among the potentials. 

3. To find the suitable elastodynamic gauge conditions for different wave 

propagation problems such as straight crested guided waves, circular crested 

guided waves, non-axisymmetric guided waves. 

4. To develop a scatter cube of wave damage interaction coefficients for an active 

SHM system of a practical problem such as multiple rivet holes in an aerospace 

lap joint.  

5. To use an efficient and versatile hybrid global analytical and local FEM 

framework to obtain the simulated signals for enhanced damage detection of 

cracks in rivet holes. 

6. To conduct multiphysics FE simulations for fatigue-crack generated acoustic 

emissions. 

7. To conduct in-situ AE-fatigue experiments under different conditions to collect 

the AE signals by using different types of sensors. 

8. To perform experimental AE signal analysis and develop new signal processing 

methods. 

9. To interpret the experimental AE signals and correlate with the fatigue crack 

growth mechanisms. 

10. To develop a comprehensive waveform-based method for analyzing the AE 

signals and study the AE sensor effect on the AE waveforms. 

11. To analyze the AE waveform signatures and correlate them with the fatigue 

load evolutions and estimation of the crack length. 
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1.3 ORGANIZATION OF THE DISSERTATION 

To achieve the objectives set forth in the preceding section, the dissertation is 

organized into nine chapters. The focus and contents of each chapter are introduced in 

Chapter 1. 

In Chapter 2, the fundamentals of guided waves, physics-based concepts of SHM 

and NDE, and different types of sensors, guided wave theory are briefly reviewed. Guided 

wave application to SHM is discussed, the sensing mechanism of piezoelectric wafer active 

sensors (PWAS) and AE sensors are discussed. 

In Chapter 3, the elastodynamic gauge condition is analytically derived from the 

equations of motion and the potential representation of the vector quantities. A novel 

concept of the gauge condition is proposed. This illustrates the application of the gauge 

condition to some classical problems. 

In Chapter 4, our concept of the gauge condition is applied to a complicated 

challenging problem which is the coupled non-axisymmetric guided wave propagation in 

a plate. This illustrates how efficiently the gauge condition makes it possible to analytically 

solve the complicated non-axisymmetric problem. The development of the Helmholtz 

potential based analytical solution for the non-axisymmetric guided wave propagation in a 

plate is presented. 

In Chapter 5, the application of the hybrid global analytical and local FEM method 

for enhanced damage detection in an aerospace rivet hole is illustrated. An aerospace lap 

joint with multiple rivet holes is considered. The development of a scatter cube of wave 

damage interaction coefficient (WDIC) for the rivet hole with butterfly cracks is discussed. 
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Efficient damage detection using the optimum sensor locations and frequencies is 

demonstrated. 

In Chapter 6, the multiphysics FEM simulations of a predictive design for a passive 

SHM system are described. For the multiphysics simulations, the practical problem of the 

detection a fatigue-crack generated acoustic emission is considered. The validation of the 

simulated results with experiments is illustrated. 

In Chapter 7, the physics-of-materials based analysis of acoustic emissions from in-

situ AE-fatigue experiments is discussed. Multiphysics FEM simulations to interpret the 

fatigue-crack generated AE signals are discussed. Distinguishing the crack growth related 

AE signals from the non-crack growth related AE signals is discussed. The difference 

between AE hit-based and AE waveform-based analyses is presented. The AE sensor effect, 

various AE signal group identification, their relation to cyclic fatigue load evolution, and 

AE source localization are discussed. 

In Chapter 8, the possibility of crack length estimation from the fatigue crack-

related AE waveforms is discussed. 

In Chapter 9, two case studies are presented: (1) NDE/SHM system for a 

manufactured composite plate and (2) horizontal-crack detection, size, and shape 

estimation in stiffened structures. 

The dissertation finishes in Chapter 10 with conclusions, major contributions, and 

future work.  
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CHAPTER 2  

FUNDAMENTALS OF GUIDED WAVES AND SENSORS FOR STRUCTURAL HEALTH

MONITORING 

Structural health monitoring methods based on elastic wave propagation are very diverse 

and constitute a vast area of study. In order to use ultrasonic elastic waves in nondestructive 

evaluation (NDE) and structural health monitoring (SHM), different types of waves must 

be studied to understand the underlying physical phenomena. This chapter deals with 

fundamentals of elastic waves and then an important class of elastic waves (guided waves) 

that have widespread applications in SHM. Guided waves are especially important for 

SHM because they can travel at large distances in structures. Thus, they enable the SHM 

of large areas from a single location. In addition, guided waves have the important property 

that they remain confined inside the walls of a thin–wall structure. Furthermore, guided 

waves can also travel inside curved walls. These properties make them well suited for the 

ultrasonic inspection of aircraft, missiles, pressure vessels, oil tanks, pipelines, etc. This 

study will also serve as the theoretical prerequisite for the complicated analysis of guided 

wave interaction modeling and simulation. This chapter also introduces a fundamental 

study of the guided-wave transducers including their working principle, their coupling with 

guided waves, and their operation modes. 
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2.1 STRUCTURAL HEALTH MONITORING USING GUIDED WAVES 

Structural Health Monitoring (SHM) is an area of growing multi-disciplinary field 

with wide applications. This technology evolves from the conventional nondestructive 

evaluation (NDE) and condition based maintenance (CBM), where the damage detection 

and evaluation are done in schedule based or condition-based manners. In contrast with 

NDE and CBM, SHM aims at developing real-time or on-demand damage detection and 

characterization systems for evaluation of structural health status. Within the scope of SHM, 

guided wave techniques are preferred for their capability of interrogating large areas of 

structure from a single location. In this section, fundamental SHM concepts are introduced, 

prevalent guided wave techniques are covered, and key points in a guided wave based SHM 

are discussed. 

2.1.1 STRUCTURAL HEALTH MONITORING CONCEPTS 

General sensing technology can be cast into two methodological categories: (1) 

active sensing and (2) passive sensing. Active sensing procedure has three main advantages 

for SHM applications: (1) it allows the real-time and on-demand inspection of the 

structures; (2) the excitation can be optimized for the most sensitive and effective response 

for damage detection; (3) the active sensing procedure is repeatable, which allows the 

comparison between two independent interrogations (a baseline data and a current status 

data). Passive sensing systems only passively record events which happened during the 

actual time of the event. By analyzing the recorded signal, diagnosis can be made on the 

health status of the structure. Examples of passive sensing SHM can be found in the 

acoustic emission (AE) monitoring and impact detection, where passive sensors are 

triggered by crack advancing or impact events. By analyzing the AE or impact signal, 
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location of the AE or impact source can be identified. By analyzing the AE data, diagnosis 

and prognosis can be made. The passive sensing may be advantageous in certain 

applications.  

A schematic representation of a generic SHM system is shown in Figure 2.1. The 

active sensors clusters are implemented in the critical areas of high monitoring interest, 

such as airplane wings, engine turbines, fuselage, and fuel tank. Permanently bounded on 

the host structures, the sensors can actively interrogate large areas from local cluster zones 

in a real-time or on-demand manner, sending the sensing data to the data concentrators. 

These data concentrators will transmit the data to the SHM processing unit, where the data 

will be processed and diagnosis will be made. 

 

 

Figure 2.1 Schematic representation of a generic SHM system, consisting of active 

sensors, data concentrators, wireless communication, and SHM central unit [10]. 

2.1.2 GUIDED WAVE TECHNIQUES 

The guided wave techniques include pitch-catch, pulse-echo, electro-mechanical 

impedance spectroscopy (EMIS), phased array, and sparse array time-reversal imaging 

method. There are also some nonlinear techniques that deal with the higher harmonic 

generation, subharmonic generation, and mixed frequency response [11]. 
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The pitch-catch active sensing method in SHM is shown in Figure 2.2. One 

transducer (sensor 1) acts as the transmitter and radiates the guided waves, and another 

transducer acts as the receiver and picks up the sensing signal. In the pristine case (baseline), 

the interrogating waves are generated by the transmitter, propagate along the structure, and 

are picked up by the receiver. In the damaged case, the interrogating waves generated by 

the transmitter, propagate along the structure, interact with the damage, carry the damage 

information with them, and are finally picked up by the receiver. The subtraction between 

these two states reveals the damage scattering response, which may indicate the presence 

and severity of the damage. 

 

 

Figure 2.2 Pitch-catch active sensing: (a) baseline response; (b) response with damage; 

(c) scattered response [12] 

Several sensors may work together in a systematically designed manner forming a 

sensor network and achieve more complicated diagnostic approaches. Advanced damage 

imaging techniques have been developed using a phased array and sparse array. Giurgiutiu 

and Bao [13] investigated the embedded-ultrasonics structural radar (EUSR) for in situ 
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monitoring of thin-wall structures. Figure 2.3a shows the 1-D phased array EUSR and its 

imaging result for a crack. Yu and Giurgiutiu [14] further extended the EUSR principle to 

2-D phased array using 64 sensors. Wang et al. [15] proposed the synthetic time-reversal 

imaging method for structural health monitoring. Figure 2.3b shows the sparse array with 

four sensors and its imaging result using a time-reversal method. 

 

 

 

Figure 2.3 (a) Phased array imaging using EUSR [13], (b) sparse array imaging using 

time-reversal method [15]. 

In addition to traveling wave techniques, standing guided wave SHM techniques 

such as EMIS can also be used. The continuous harmonic excitation of a transducer will 

excite the structure with guided waves, which will be reflected by structural boundaries 

and damage, forming standing waves between the wave source and the reflectors. This 

 (a) SPARSE ARRAY (TIME-REVERSAL) 
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standing wave formation will result in local mechanical resonance, which will be shown in 

the electrical response through the electromechanical coupling.  

Figure 2.4a shows the electromechanical coupling between the transducer and the 

structure. Figure 2.4b is a typical EMIS spectrum, showing that the damaged case spectrum 

deviates from the pristine case. 

 

 

Figure 2.4 (a) Electro-mechanical coupling between the PZT active sensor and the 

structure [16], (b) EMIS spectrum [17]. 

2.2 GENERAL THEORY OF ELASTIC WAVES  

The fundamentals of guided elastic waves are tied with the elastodynamic relations. The 

backbone of classical elastodynamics is the equations of motion which can be represented 

as the Navier-Lame equations for homogeneous linearly isotropic elastic solids [18], i.e.,  

 
2

( ( )u u u          (2.1) 

where u  is the displacement vector,   is the density,   and   are the Lame constants.  

2.2.3 WAVE EQUATIONS FOR POTENTIALS 

To construct the solutions of Navier-Lame equations, the displacement fields can be 

considered as the superposition of the gradient of a scalar potential   and the curl of the 

(b) (

A
(b) 
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vector potential H . Use the Helmholtz theorem (mentioned originally in ref. [19] and then 

in its translated version [20]) to write 

 u grad curlH H      (2.2) 

Substituting Eq. (2.2) into Eq. (2.1) one obtains 

 2( 2 0        (2.3) 

 2 0H H     (2.4) 

Assuming harmonic time variation with circular frequency   and defining 

( 2 ) /pc      , /sc    , Eq. (2.3) and (2.4) become 
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      (scalar wave equation) (2.5) 
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     (vector wave equation) (2.6) 

Eq. (2.5) indicates that the scalar potential   propagates with the pressure wavespeed pc , 

whereas Eq. (2.6) indicates that the vector potential H  propagates with the shear 

wavespeed sc . It can be shown that the pressure waves are irrotational waves i.e., have 

zero rotation, whereas the shear waves are equivolume waves, i.e., they have zero dilatation 

and are known as distortional waves [18]. From now on, we call the scalar potential   as 

pressure potential and the vector potential H  as shear potential. 

The pressure waves are also known as P waves and shear waves can be divided into 

SV waves and SH waves depending on the polarization of the displacement. SV waves have 

vertically polarized displacement whereas SH waves have horizontally polarized 

displacement. 
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2.3 GUIDED WAVES  

Under certain assumptions and boundary conditions, the general elastic waves turn 

into guided waves. Ultrasonic guided waves are sensitive to changes in the propagating 

medium, such as plastic zone, fatigue zone, cracks, delamination, disbonds, discontinuity. 

This sensitivity exists for both surface damage and cross thickness/interior damage because 

guided waves have various mode shapes throughout the cross-section of the waveguides.  

The assumption of straight crested wave or axisymmetric circular crested waves 

make the elastic wave problem to be split into two separate cases, (1) SH waves; and (2) 

P+SV waves. The P+SV waves in a plate give rise to the Lamb waves through multiple 

reflections on the plate’s lower and upper surfaces and through constructive and destructive 

interference. The Lamb waves consist of a pattern of standing waves in the thickness 

direction also known as Lamb wave modes. 

2.3.1 SHEAR HORIZONTAL PLATE WAVES 

Shear horizontal (SH) plate waves have a shear-type particle motion contained in 

the horizontal plane. Figure 2.5 shows the coordinate definition and particle motion of SH 

plate waves. According to the coordinate definition, an SH wave has the particle motion 

along the z  axis, whereas the wave propagation takes place along the x  axis. The particle 

motion has only the zu  component.  

The phase velocity dispersion curve of the SH plate wave can be calculated as 
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 (2.7) 

where   is given in Eq. (2.8) and d  is the half plate thickness. 
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    (2.8) 

By substituting the appropriate eigenvalue, one may obtain an analytical expression for the 

wave-speed dispersion curve of each SH wave mode. For detailed expressions, the readers 

are referred to ref. [21]. 

 

 

Figure 2.5 Coordinate definition and particle motion of SH plate waves [21]. 

Figure 2.6 shows the wave-speed dispersion curve of SH plate waves and the mode 

shapes. It can be noticed that the fundamental symmetric mode (S0) wave is non-dispersive 

and always exists starting from low frequency-thickness product values. This nice property 

makes it a good candidate for the interrogating waves in SHM systems. Recently, 

considerable research has been carried out on the transmission and reception of SH plate 

wave for SHM [22] [23]. Higher wave modes only appear beyond the corresponding cut-

off frequencies, showing dispersive characteristics, i.e., their phase velocity changes with 

frequency. For dispersive waves, group velocity is usually used to evaluate the propagation 

of wave packets. The definition of group velocity is given in Eq. (2.9). 
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Figure 2.6 (a) SH plate wave-speed dispersion curves, (b) symmetric mode shapes, (c) 

antisymmetric mode shapes [21]. 

 g
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


  (2.9) 

2.3.2 STRAIGHT CRESTED LAMB WAVES 

Lamb waves are a type of ultrasonic waves that are guided between two parallel 

free surfaces, such as the upper and lower surfaces of a plate. Lamb waves can exist in two 

basic types, symmetric and antisymmetric. Figure 2.7 shows the particle motion of 

symmetric and antisymmetric Lamb waves. The Lamb wave motion has asymptotic 

behavior at low frequency and high frequency. At low frequency, the symmetric mode 

resembles axial waves, while the antisymmetric mode resembles flexural waves. At high 

frequency, both symmetric and antisymmetric wave approaches Rayleigh waves, because 

the particle motion is strong at the surfaces and decays rapidly across the thickness. The 

axial wave and flexural wave, by their nature, are only low-frequency approximations of 

(b) 

(a) 

(c) 
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Lamb waves. The plate structure cannot sustain pure axial and flexural motion at large 

frequency-thickness product values. 

 

 

Figure 2.7 Particle motion of Lamb wave modes: (a) symmetric mode and (b) 

antisymmetric mode [21]. 

The straight crested Lamb wave equations are derived under z-invariant 

assumptions using pressure wave and shear vertical wave (P+SV) waves in a plate. 

Through multiple reflections on the plate’s lower and upper surfaces, and through 

constructive and destructive interference, the pressure waves and shear vertical waves give 

rise to the Lamb–waves, which consist of a pattern of standing waves in the thickness y–

direction (Lamb–wave modes) behaving like traveling waves in the x–direction. For a 

detailed derivation of Lamb wave equations, readers are referred to ref. [18] [21] [8]. The 

Rayleigh-Lamb equation has been obtained as characteristic equation of the wavenumbers, 

i.e., 

(a) 

Symmetric Lamb wave mode 

(b) 

Antisymmetric Lamb wave mode 



 

20 

 

 

1

2

2
2 2

tan 4

tan

S P S

P S

d

d

   

  



 
 

 
 

 (2.10) 

where +1 exponent corresponds to symmetric Lamb wave modes and -1 exponent 

corresponds to antisymmetric Lamb wave modes, d  is the half plate thickness,   is the 

frequency dependent wavenumber, 
P  and 

S  are given in Eq. (2.11),   and   are 

Lame’s constants of the material, and   is the material density. 
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Figure 2.8 (a) Wave speed dispersion curve; (b) wavenumber dispersion curve [11] 

Figure 2.8 shows the dispersion curves of aluminum plates calculated from the 

Rayleigh-Lamb equations. It can be noticed at least two wave modes (the fundamental 

symmetric mode: S0; the fundamental antisymmetric mode: A0) exist simultaneously. 

Beyond the corresponding cut-off frequencies, higher Lamb modes will participate in the 

propagation. At small frequency-thickness product values, the S0 mode is less dispersive 
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than A0 mode, and all the Lamb wave modes converge to non-dispersive Rayleigh waves 

at large frequency-thickness product values. The dispersive and multi-mode nature of 

Lamb waves add complexity in both Lamb wave propagation modeling and SHM 

application. 

In their multi-modal and dispersive nature, Lamb waves also have complicated 

frequency-dependent mode shapes associated with particle motion across the plate 

thickness. Even for certain Lamb modes, the mode shape changes under different 

frequencies. The displacement mode shapes can be calculated using Eq. (2.12) and Eq. 

(2.13) [21]. 

For symmetric Lamb modes: 
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For antisymmetric Lamb modes: 
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where 
SC  and 

AC  determine the mode shape amplitudes; y  is the location of interested 

point across the plate thickness; i  is the imaginary number; x coordinate is along the 

propagation direction. 

Figure 2.9 shows the mode shapes of fundamental S0 and A0 Lamb waves in a 2-

mm aluminum plate under various frequencies. It can be observed that for certain Lamb 

mode, the mode shapes vary a lot with frequency. Within low-frequency range, the mode 

shapes show that S0 and A0 Lamb modes could be approximated by axial and flexural 

wave motion. However, within high frequency range, the mode shapes become more 
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complicated and deviate from the axial-flexural approximation. At even higher frequency, 

e.g. at 10 MHz, the particle motions are mainly near the top and bottom surfaces of the 

plate, while the particles in the middle of the plate undergo very small oscillation. This 

shows that at high-frequency range, Lamb modes converge to Rayleigh waves. 

 

 

Figure 2.9 Modeshapes of S0 and A0 Lamb waves in a 2-mm thick aluminum plate [11] 

2.3.3 CIRCULAR CRESTED LAMB WAVES 

In their practical applications, the interrogating Lamb waves generated by a 

transmitter will propagate out in a circular crested wavefront instead of a straight crested 

wavefront, because the transmitter can be considered as a point source compared with the 

large inspection area. As the wave is propagating outward, this amount energy is distributed 
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over a larger and larger area. Thus, the amplitude of the interrogating wave is strong near 

the wave source and decays along the propagation direction. The circular crested Lamb 

wave solution can capture these effects due to outward propagation pattern. 

A detailed and rigorous derivation of axisymmetric circular crested Lamb waves is 

well documented in [21]. The derivation of circular crested Lamb waves is found to be 

more appropriate in a cylindrical coordinate system shown in Figure 2.10a. The derivation 

arrives at the same Rayleigh-Lamb equation as Eq. (2.10), which means the circular crested 

Lamb waves propagate with the same wave speed as the straight crested Lamb waves. 

 

 

Figure 2.10 (a) Cylindrical coordinate for problem derivation [21]; (b) circular crested 

wave pattern. 

The propagation pattern of circular Lamb waves admits the Bessel and Hankel 

function family solution. The Bessel functions 0J  and 1J  is appropriate for standing waves, 

and the Hankel functions  1
0H  and  1

1H  are appropriate for propagating waves. The Hankel 

functions of the first kind (  1
0H  and  1

1H ) describe an outward propagating wavefield when 

i te 
 is chosen as the convention for harmonic time variation. The Hankel functions of the 
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second kind (  2

0H  and  2

1H ) describe an outward propagating wavefield when 
i te 

 is 

chosen as the convention. The mode shape solutions for the circular crested Lamb waves 

are given below for outward propagating wave fields. 

Symmetric Lamb modes: 

 
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Antisymmetric Lamb modes: 
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where 
SC  and 

AC  are the amplitude factor for symmetric mode and antisymmetric mode, 

and can be determined from the wave generation calculation. The constants ,P S   are 

defined as 

 
2 2

2 2 2 2

2 2
;P S

P Sc c

 
        (2.16) 

It can be observed from Eq. (2.14) and Eq. (2.15) that the in-plane radial direction motion 

accepts as solution the Hankel function of the first kind and order one (1)
1H , while the out-

of-plane direction motion accepts as solution the Hankel function of the first kind and order 

zero (1)
0H . Figure 2.10b shows a typical outward propagation wave pattern calculated 

using Hankel function (1)
0H  describing an out-of-plane wave motion. It can be noticed that 

the wave amplitude at the wave source (coordinate center) is strong, and it decays as it 

propagates out. Figure 2.11 shows the plots of Hankel functions of order zero and order 
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one. It can be noticed that the amplitude is high near the origin of R , and beyond a certain 

distance, the amplitude becomes stable and changes more gradually. 

 

 

Figure 2.11 Hankel function of order zero, 
   1

0H R  and order one, 
   1

1H R . 

Lamb wave field radiating from a point source takes the following solution [21][24]: 
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where ru  is the radial displacement,  na z  is the thickness dependent modeshape of wave 

mode number n , and 
 1
1H  is the first kind Hankel function of order one. 

2.3.4 CIRCULAR CRESTED SH WAVES 

Shear horizontal (SH) waves irradiating from a point source can be derived starting 

from the governing equation, i.e., 

 

2
2

2 2 2

1

S

u u
u

r c t

 



  


 (2.18) 

where u  is the tangential displacement, Sc  is the shear wavespeed. In polar coordinate 

system and under axisymmetric assumption, Eq. (2.18) becomes 
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Assuming a harmonic wave field 
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Substitution of Eq. (2.20) into Eq. (2.19) yields 
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where /SH

sc   is the wavenumber of SH waves. Letting 
SHx r , y u , and  , 

Eq. (2.21) can be cast into the Bessel equation of order  . 
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Eq. (2.21) can be immediately recognized as the Bessel equation of order one and accepts 

the following solution for outward propagating waves, 
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where  nb z  is the modeshape of the nth SH mode, and 
 1
1H  is the first kind Hankel 

function of order one.  

2.4 PIEZOELECTRIC WAFER ACTIVE SENSORS 

Piezoelectric wafer active sensors (PWAS) are small, lightweight, inexpensive, and 

can be produced in different geometries. They are convenient enablers for generating and 

receiving guided waves. A PWAS mounted on the structure is shown in Figure 2.12.  
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Figure 2.12 (a) Piezoelectric wafer active sensors (PWAS), (b) PWAS measures in-plane 

and out-of-plane wave motion through in-plane strain sensing. 

PWAS transducers can be permanently bonded on host structures in large quantities 

and achieve real-time monitoring of the structural health status. They couple with the 

structure through in-plane motion and generate Lamb waves, which makes them suitable 

for inspection large areas of interest. 

2.4.1 PWAS PRINCIPLES AND OPERATION MODES 

PWAS transducers couple the electrical and mechanical effects (mechanical strain, 

ijS , mechanical stress, klT , electrical field, kE , and electrical displacement, jD ). The 

piezoelectric constitutive equations in tensor notations can be written as 

 

E

ij ijkl kl kij k

T

j klj kl jk k

S s T d E

D d T E

 

 
 (2.24) 

where 
E

ijkls  is the mechanical compliance of the material measured at zero electric field 

( 0E  ), 
T

jk  is the dielectric permittivity measured at zero mechanical stress ( 0T  ), and 

kljd  represents the piezoelectric coupling effect. PWAS utilize the 31d  coupling between 

in-plane strains, 1 2,S S  and transverse electric field 3E . 
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Figure 2.13 Schematic of PWAS application modes [21]. 

PWAS transducers can be used as both transmitters and receivers. Their modes of 

operation are shown Figure 2.13. PWAS can serve several purposes [21]: (a) high-

bandwidth strain sensors; (b) high-bandwidth wave exciters and receivers; (c) resonators; 

(d) embedded modal sensors with the electromechanical (E/M) impedance method. By 

application types, PWAS transducers can be used for (i) active sensing of far-field damage 

using pulse-echo, pitch-catch, and phased-array methods, (ii) active sensing of near-field 

damage using high-frequency E/M impedance method and thickness gage mode, and (iii) 

passive sensing of damage-generating events through detection of low-velocity impacts 

and acoustic emission at the tip of advancing cracks (Figure 2.13). The main advantage of 

PWAS over conventional ultrasonic probes is in their lightweight, low profile, and low 

cost. In spite of their small size, PWAS are able to replicate many of the functions 

performed by conventional ultrasonic probes. 
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2.4.2 PWAS COUPLED GUIDED WAVES AND TUNING EFFECT 

Figure 2.14 shows the coupling between PWAS and the host structure and 

illustrates how PWAS transducers generate Lamb waves. When an oscillatory electric 

voltage at ultrasonic frequencies is applied to PWAS, an oscillatory strain is induced in the 

transducer due to the piezoelectric effect. Since the structure constrains the motion of 

PWAS, the reacting force from the bonding layer will act as shear stress on the host 

structure and generate wave motion. 

 

 

Figure 2.14 Lamb wave generation using PWAS transducers [21]  

The Lamb wave amplitude excited by PWAS depends on the PWAS size, plate 

thickness, and excitation frequency. For a given PWAS and plate geometry, the amplitudes 

of Lamb modes change with frequency. It was found that tuning possibility exists for 

generating single Lamb mode with PWAS transducers. The tuning effect is important 

because it overcomes the multimode difficulty for Lamb wave applications. The analytical 

expression on tuning effect was first developed by Giurgiutiu [25] as 
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Figure 2.15 (a) Strain Lamb wave tuning results from analytical solution (1.6-mm 

aluminum plate), (b) Experimental results from PWAS response [25]. 

A typical tuning curve for 7 mm PWAS on a 1.6 mm thick aluminum plate is shown 

in Figure 2.15. It is apparent that the amplitudes of S0 and A0 Lamb modes excited by the 

PWAS transducer change with frequency. Around 300 kHz, A0 Lamb mode reaches the 

rejection point where no A0 mode Lamb wave will be excited. This is a sweet spot for 

generating only S0 wave mode for structural inspection. 

 

2.5 ACOUSTIC EMISSION SENSORS AND THEIR FREQUENCY RESPONSES 

The acoustic emission (AE) is a passive SHM technique. It is also used for 

structural integrity testing, diagnosis, and prognosis. For AE measurements, commercially 

available AE sensors exist. For example, R15I-AST, R15α, R15, WSα, and conical AE 

sensors from Physical Acoustics Corporation (PAC) Mistras. The PWAS upon some 

customization may be used as AE sensor. The pictorial representation of these sensors is 

shown in Figure 2.16. A 7-mm diameter PWAS is shown in the picture for size comparison. 

(a) (b) 
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Figure 2.16 R15I-AST, R15α, R15, and WSα AE sensors from Physical Acoustics 

Corporation (PAC) Mistras; PWAS that has been customized in our lab. 

The miniature-sized AE sensors are also commercially available. A pictorial 

representation of miniature-sized AE sensors is shown in Figure 2.19. Three miniature AE 

sensors are nano-30, PICO, and S9225 from the PAC Mistras. A 7-mm diameter PWAS is 

also shown in the picture for size comparison. 

 

 

Figure 2.17 Nano-30, PICO, S9225 and R15 AE sensors from Physical Acoustics 

Corporation (PAC) Mistras; PWAS that has been customized in our lab. 
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Table 2.1 Dimensions and masses of the sensors 

Sensor name Dimension Mass (g) 

Diameter (mm) Height (mm) 

R15I-AST 28.5 31.7 68 

R15α 19 22.4 35 

WSα 19 21.3 29 

R15 17.5 16.8 20 

Nano 8 7 3 

PICO 4.75 4 0.5 

S9225 3.5 2.4 0.3 

PWAS 7 0.5 0.15 

 

The dimension and masses of the sensors are given in Table 2.1. In this table, R15I-

AST is bigger and heavyweight sensor and PWAS is the lightest sensor.  Knowing the 

frequency response for any sensor is very important to determine the applicability of the 

sensor. The frequency response curves of R15I-AST, WSα, and R15α are shown in Figure 

2.18. These response curves were generated following ASTM 976 standards- “determining 

the reproducibility of acoustic emission sensor response”. The frequency response curves 

of miniature AE sensors (nano-30, PICO, and S9225) are shown in Figure 2.19. These 

response curves were obtained from the PAC Mistras. 
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Figure 2.18 Frequency response curves of R15I-AST, WSα, and R15α (obtained from 

PAC-Mistras). 
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Figure 2.19 Frequency response curves of Nano-30, PICO, and S9225 (obtained from 

PAC-Mistras). 

2.6 AE SENSOR CONSTRUCTION AND SENSING MECHANISM 

The cross-section of a commercially available AE sensor is shown in Figure 2.20. 

It has several components inside a steel housing. It has a backing plate, PZT material, 

electrodes, and damping material inside the housing. The top electrode of PZT material is 
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connected to the center conductor of the connector and the bottom electrode is grounded 

to the housing. 

 

 

Figure 2.20 Cross-section of a typical commercial AE sensor. It measures out-of-plane 

wave motion. 

In general, the AE sensors can be classified into “resonant” type and “wideband”. 

For example, R15I-AST, R15α, and R15 are resonant type AE sensors and WSα, PICO. 

S9225 are wideband AE sensor. In both types, the sensing mechanism mainly depends on 

the piezoelectric effect of the PZT material. In resonant type AE sensor, when the AE 

waves strike the sensor surface, the PZT element oscillates at its resonant frequencies. The 

resonant frequency is, of course, modified by the associated damping material, backing 

plate and housing. Thus, proper calibration is necessary to find the exact resonant 

frequency. In other words, this type of sensor is mostly sensitive at the resonant frequency 

and not suitable for other frequencies. Thus, the resonance frequency is the decisive factor 

for which application these AE sensors can be used. These sensors are usually used if the 

frequency content itself is not of interest but only AE features such as amplitude, rise time, 

number of counts, arrival time or energy.  

Wideband AE sensors respond uniformly to a very wide range of excitation 

frequencies. Wideband AE-sensors with a flat frequency response curve are usually desired 
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if the frequency of interest is unknown or if different frequencies in one signal need to be 

analyzed. However, in practice, it is difficult to achieve a sensor with flat frequency 

response. Finding the right sensor for a specific application has to consider factors such as 

frequency range, material, specimen thickness, nature of damage, and background noise. 

The correct frequency range for a certain application can be determined experimentally 

where possible. 
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CHAPTER 3  

USING THE GAUGE CONDITION TO SIMPLIFY THE ELASTODYNAMIC ANALYSIS

OF GUIDED WAVE PROPAGATION 

In this chapter, the gauge condition in elastodynamics is explored to expose its potential 

capability of simplifying wave propagation problems in elastic medium. The inception of 

gauge condition in elastodynamics happens from the Navier-Lame equations upon 

application of Helmholtz theorem. In order to solve the elastic wave problems by potential 

function approach, the gauge condition provides the necessary conditions for the potential 

functions. The gauge condition may be considered as the superposition of the separate 

gauge conditions of Lamb waves and SH waves respectively, and thus, it may be resolved 

into corresponding gauges of Lamb waves and SH waves. The manipulation and proper 

choice of the gauge condition do not violate the classical solutions of elastic waves in plates; 

rather, it simplifies the problems [26]. The gauge condition allows one to obtain the 

analytical solution of complicated problems in a simplified manner. 

3.1 STATE OF THE ART 

Wave propagation in the elastic medium has a rich history. Pochhammer [27] in 

1876 and Chree [28] in 1889 independently formulated the solution of the wave 

propagation in an isotropic infinitely long rod and the Pochhammer-Chree frequency 

equation was developed based on the exact theory of elasticity. The straight-crested guided-

wave propagation in a plate (plane-strain condition) was considered in 1889 by Rayleigh 



 

38 

[29] and Lamb [30]. The resulting characteristic equation, the Rayleigh-Lamb equation [8], 

has the form 

 

1
2 2 2

2

tan ( )

tan 4

p s

s p s

d

d

  

   



 
   

  

 (3.1) 

where   is the wavenumber, d  is plate half-thickness, p  and s  are related to the 

pressure and shear wavenumbers, respectively. The solutions of Eq. (3.1)  yield the 

propagating modes of these axial-flexural multi-modal guided waves. 

The approach taken by Lamb [30] was to use the Helmholtz vector decomposition 

in terms of potentials. Since the problem was plane-strain, the axial-flexural multi-modal 

guided waves (now known as ‘Lamb waves’) were intrinsically decoupled from the multi-

modal shear horizontal (SH) waves. Goodman [9] extended this approach to circular-

crested Lamb waves (which, due to the implied axisymmetry, are also decoupled from the 

SH waves) and recovered the Rayleigh-Lamb equation (3.1).  

Graff [18] (pp. 442-446) presented the simultaneously handling of the z-invariant 

Lamb and SH waves using all the four unknown potentials , , ,x y zH H H . To obtain a 

solution, he used the gauge condition evaluated as an additional ‘boundary condition’ at 

the top and bottom faces of the plate. However, this work was limited to straight-crested 

plane-strain waves in which Lamb and SH waves were intrinsically decoupled. 

3.2 INTRODUCTION  

In elastodynamics, the equations of motion for homogeneous isotropic linearly 

elastic solids are represented by the Navier-Lame equations, in vector form, 

 
2

( ( )u u u          (3.2) 



 

39 

where, u  is the displacement vector,   is the density,   and   are the Lame 

constants.To construct the solutions of Navier-Lame equations, the displacement fields can 

be considered as the superposition of the gradient of scalar potential   and the curl of the 

vector potential H . Use the Helmholtz theorem (mentioned originally in ref. [19] and then 

in its translated version [20]) to write 

 u grad curlH H      (3.3) 

The potentials   and H  satisfy the wave equation, i.e., 

  2 2 2 2;        p sc c H H      (3.4) 

where, pc  and sc  are the pressure and shear wavespeeds, respectively. 

It can be noted from Eq.(3.3), in three dimensions, the three components of 

displacement are represented by four components of potentials , ,x y zH H H  . Thus, an 

additional unknown exists. In order to ensure the uniqueness of the solution, Eq. (3.3) is 

complemented by the gauge condition [19], i.e., 

  ,H f r t   (3.5) 

The gauge condition is needed to mitigate the requirement of the additional 

unknown in the potential formulation. However, the formula given in Eq.(3.5) is not the 

only possible form of the gauge condition; in fact, a multitude of alternative forms exist 

[31] as used in elastodynamics [32] [18] (pg. 465 ), and electrodynamics [33] [34] [35].  

3.2.1 GENERAL GUIDED WAVE SOLUTION IN TERMS OF POTENTIALS 

Meeker and Meitzler [36] developed the general solution for y -invariant straight-

crested guided waves (Figure 3.1) using the Helmholtz potentials 

 ( )cos sin i x tA z B z e          (3.6) 
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 ( )cos sin i x t

xH C z D z e         (3.7) 

 ( )cos sin i x t

yH E z F z e         (3.8) 

 ( )cos sin i x t

zH G z H z e         (3.9) 

and the gauge condition 

 0x z
H H

H
x z

 
   

 
 (3.10) 

 

 

Figure 3.1 Problem definition and displacement components in Cartesian coordinate 

system 

The constants , , , , , , ,A B C D E F G H  are eight unknowns to be determined from the 

six traction free boundary conditions on the top and bottom boundaries of the plate. 

Because the number of unknowns is greater than the number of conditions (8>6), the gauge 

condition Eq. (3.10) is used to produce two additional conditions. In ref. [36], this is done 

by evaluating the gauge condition at the top and bottom surfaces of the plate.  

In order to produce the required additional equations, Graff [18] suggested to 

substitute the complex-valued xH , zH  into equation Eq. (3.10) and to separate them into 

real and imaginary parts to produce four equations with four unknowns. However, the 

traction-free boundary condition equations were not separated into real and imaginary parts. 
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This complication may explain why the solution of SH waves is usually expressed in terms 

of displacement although the Lamb waves are elegantly solved using potentials functions 

[18] [8] [21]. Thus, the gauge condition seems to remain a redundant condition in these 

classical solutions. 

3.2.2 GENERAL SOLUTION IN TERMS OF DISPLACEMENTS 

Alternatively, Achenbach [37] [38] proposed a guided wave solution using an 

ingenious definition of the displacements that utilizes the solution of membrane wave 

equation, i.e., 

 

1
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      (Lamb wave) (3.11) 
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      (SH wave) (3.12) 

where, k  and l  are wavenumber-like quantities, n  is the mode number and the functions 

 ,   satisfies the membrane wave equation. (The details can be found in ref. [37] [38]) 

However, this approach does not involve the wave equation since the displacement 

satisfies the Navier-Lame equation but not the wave equation. 

3.2.3 THE SCOPE OF THIS CHAPTER 

In this chapter, we propose a unified potential-based solution to the guided wave 

propagation that is simpler (and has fewer unknowns) than that of ref. [32] [18] [36]. We 

will show that it is possible to reduce the eight unknowns of Eqs. (3.6)-(3.9) to only six 
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unknowns by the proper utilization and manipulation of the gauge condition and thus, 

produce a much simpler solution of the guided wave propagation problem.  

The origin of the gauge condition in elastodynamics is discussed in Section 3.3; it 

will be shown that the gauge condition can be chosen arbitrarily within certain limits. The 

different forms of the gauge condition in electrodynamics are discussed in Section 3.4. The 

proper choice and manipulation of the gauge condition of elastodynamics are discussed in 

Section 3.5; our manipulation on the gauge condition does not violate the fundamental 

elastodynamics assumptions. The use of the proposed method is demonstrated on two 

classical problems, i.e., the straight crested and the circular crested guided wave 

propagation in a uniform plate. 

3.3 GOVERNING EQUATIONS AND ORIGIN OF GAUGE CONDITION IN 

ELASTODYNAMICS 

3.3.1 GOVERNING EQUATIONS FOR HELMHOLTZ POTENTIALS 

The backbone of classical elastodynamics is the Navier-Lame equations [18]. The 

origin of the gauge condition can be traced to the Navier-Lame equations as follows: 

Substitute Eq. (3.3) into Eq. (3.2) to get 

   2( ( ) ( ) ( )H H H             (3.13) 

Upon rearrangement, 

  2 2( 2 ( ) ( ) ( ( ) ( )H H H                    (3.14) 

Applying the general vector property ( ) 0H    (divergence of any curl is 

zero), the third term drops out. Combining the similar potential functions, Eq. (3.14) can 

be written as 
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  2 2( 2 ( ) 0H H              (3.15) 

Eq. (3.15) is separated into two independent wave equations 

 2( 2 0         (scalar wave equation) (3.16) 

 2 0H H      (vector wave equation) (3.17) 

Assuming harmonic time variation with circular frequency   and defining 

( 2 ) /pc      , /sc    , Eq. (3.16) and (3.17) become 

 
2

2

2
0

pc


     (3.18) 

 
2

2

2
0

s

H H
c


    (3.19) 

Eq. (3.18) indicates that the scalar potential   propagates with the pressure 

wavespeed pc , whereas Eq. (3.19) indicates that the vector potential H  propagates with 

the shear wavespeed sc . It can be shown that the pressure waves are irrotational waves i.e., 

have zero rotation, whereas the shear waves are equivolume waves, i.e., they have zero 

dilatation and are known as distortional waves [18]. From now on, we call the scalar 

potential   as pressure potential and the vector potential H  as shear potential. 

3.3.2 INCEPTION OF THE GAUGE CONDITION 

Now let’s take a look at the dropped out term in Eq. (3.14), i.e., 

  ( ( ) 0H       (3.20) 

Using the vector property    ( ) ( )H H      , Eq. (3.20) can be written as 

  ( ( ) 0H       (3.21) 
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But ( 0    , hence, Eq. (3.21) can be written as 

  ( ) 0H     (3.22) 

Letting, H   , a scalar quantity, Eq. (3.22) becomes 

   0    (3.23) 

Eq. (3.23) represents the vector property that curl of any gradient field is zero. Thus, 

  can be chosen arbitrarily without affecting the generality of the solution; this is called 

gauge invariance conditions as described by Eq. (3.5). This is similar to the gauge 

invariance used in solving Maxwell’s equations in electrodynamics through the potential 

approach (see Section 2.5 of Chapter 2 of ref. [31]). Owing to the uniqueness of the 

physical problem, any solution that satisfies the Navier-Lame equations be the unique 

solution to the problem, regardless of the value assumed by  . In general,   can be 

written as 

 ( , )H f r                  (gauge condition) (3.24) 

The selection of the gauge depends on the nature of the problem. The simplest 

gauge condition may be selected as      which is similar to the Coulomb gauge 

[34] in electrodynamics. The physical quantities such as displacements and stresses do not 

depend on the choice of the gauge for a problem with unique solution. However, the proper 

choices of gauge make the problems easier to solve. As an example, Gazis used ( , )F r t   

[32] in order to simplify the shear potentials when developing the solution of wave 

propagation in a hollow cylinder. To avoid any confusion on the gauge condition, we can 

quote from ref. [39] a statement on the gauge condition used in electrodynamics “As a rule, 

one should keep in mind that there are no ‘right’ or ‘wrong’ admissible gauge choices. Any 
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proper gauge will lead to the same values of gauge invariant quantities. But, depending on 

an actual problem, a certain gauge can be more appropriate than others.”  

Therefore, the gauge condition may be used to simplify the problem. It is noted that 

the gauge condition does not depend on the pressure potential   ; rather, it depends only 

on the shear potential H . The proper choice and manipulation of the gauge condition 

should simplify complicated wave problems.  

3.4 DIFFERENT FORMS OF GAUGE CONDITION IN ELECTRODYNAMICS 

Helmholtz theorem gained its popularity for simplifying the problems in numerous 

fields of physics: hydrodynamics, elastodynamics, electrodynamics, etc. In 

electrodynamics, Maxwell’s equations are solved using Helmholtz potential functions with 

a gauge condition that is not necessarily to be zero; rather, actual fields are invariant of the 

gauge condition. The choice of gauge is arbitrary and does not change the physical 

quantities, and the potential functions are adjusted according to the choice of gauge [33]. 

However, a certain gauge may be more appropriate than a random choice and may make 

the problem easier to solve analytically. Researchers in electrodynamics have taken 

advantage of this by utilizing various forms of the gauge condition to solve various 

problems in classical electrodynamics and quantum electrodynamics. Different choices of 

the gauge condition have already been used to solve different problems in electrodynamics. 

For example, the gauge invariance of classical field theory applied to electrodynamics 

allows one to consider the vector potential A  with various gauge conditions [34], i.e., 

 0 (Coulomb gauge)A   (3.25) 

 0  (Lorenz gauge with )A

      (3.26) 

 
20  (Light cone gauge with =0)n A n

   (3.27) 
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 0  (Fock-Schwinger gauge)x A

   (3.28) 

 0oA          (Hamiltonian or temporal gauge) (3.29) 

where A  is the vector potential, n  is the time axis,   is the four gradient, x  is the 

position four-vector. Each of the gauge condition mentioned here was used to solve 

particular types of electrodynamic problem and the appropriate choice of gauge simplified 

the calculations. However, in elastodynamics, very few variations of the gauge condition 

has been observed so far.  

In this chapter, the proper choice and manipulation of the gauge condition will be 

demonstrated for two problems: (a) straight crested guided waves in a plate (Lamb waves 

and shear horizontal, SH waves) and (b) circular crested guided waves in a plate (Lamb 

waves and shear horizontal, SH waves). Both problems will be solved by a unified potential 

approach. 

3.5 APPLICATION OF GAUGE CONDITION TO STRAIGHT CRESTED GUIDED 

WAVES IN A PLATE  

The wave equations Eq. (3.18) and (3.19) can be expanded in Cartesian coordinates 

(Figure 3.1) as 
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The gauge condition takes the form 

 ( ,
yx z

HH H
f r

x y z


 
     

  
 (3.34) 

where (f r    may be chosen differently depending on the nature of the problem. 

Expansion of Eq. (3.3) gives the displacement components in terms of pressure and 

shear potentials as 
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  
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 (3.35) 
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 (3.36) 
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H H
u

z x y

 
  
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 (3.37) 

3.5.3 MANIPULATION OF THE GAUGE CONDITION IN CARTESIAN COORDINATES 

At first, we discuss the general case and then concentrate on the y -invariant case. 

Examination of Eq. (3.35), (3.36), (3.37) yields the following observations: 

xu  does not depend on shear potential xH   

yu  does not depend on shear potential yH  

zu  does not depend on shear potential zH  

xu , yu , zu  depend on pressure potential   

We notice that the pressure potential   contributes to all the displacement components. 

However, the shear waves may be divided into vertically polarized shear waves (SV waves) 

contained in the xz plane and horizontally polarized shear waves (SH waves) contained in 

the xy  plane (Figure 3.1). SV and SH waves may depend on all three shear potentials if 
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coupling between them is expected in a physical problem. However, SV waves have zu

particle motion that does not depend on zH  whereas SH waves have yu  particle motion 

that does not depend on yH . Since only two types of shear waves exist, it is apparent that 

SV waves must depend on yH  and SH waves must depend on zH . Therefore, the wave 

equations Eqs. (3.32) and (3.33) may be associated with SV and SH waves, respectively. 

2 2 2 2

2 2 2 2

y y y

y

s

H H H
H

x y z c

  
    

  
  (SV waves) (3.38) 

2 2 2 2

2 2 2 2

z z z
z

s

H H H
H

x y z c

  
    

  
  (SH waves) (3.39) 

The third potential xH  has contributions to both yu  and zu  particle motions as indicated 

by Eq. (3.36) and (3.37). 

In straight crested guided wave propagation through plate-like structures, SH and 

SV waves may be treated separately; SV waves combine with pressure waves to form 

Lamb waves [18] whereas SH waves remain independent. Depending on the initial and 

boundary conditions, the Lamb waves and SH waves can either exist alone or coexist in 

the elastic body. The problem where only one of these waves exists is much easier to deal 

with. In a problem where both waves coexist, they can be treated separately and then 

superimpose on each other. 

The gauge condition of Eq. (3.34) may be considered as a superposition of Lamb 

wave gauge ( LW ) and SH wave gauge ( SH ); hence, it can be resolved into two parts as 

follows 

( ,LW SH f r       (3.40) ("Bhuiyan-Giurgiutiu" gauge condition) 
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This partition of the gauge condition does not violate the classical solution; rather, 

it simplifies the problem. Considering that xH  is part of Lamb waves (eventually, xH  

becomes zero for the y -invariant case), the gauge condition Eq. (3.34) may be written as 

 ( ,
yx

LW

HH
f r

x y



  

 
  (Lamb wave gauge) (3.41) 

 ( ,z
SH

H
f r

z



 


  (SH wave gauge) (3.42) 

where ( , ( , ( ,LW SHf r f r f r      , with ( ,LWf r   and ( ,SHf r   being responsible 

for Lamb wave gauge and SH wave gauge, respectively.  

For the y -invariant problem, we may choose the simplest gauge ( , 0LWf r   . 

Hence, Eq. (3.41) becomes 

 0
yx

HH

x y


 

 
 (3.43) 

Since the problem is y -invariant, Eq. (3.43) yields 

 0xH

x





 (3.44) 

Integrating Eq. (3.44) gives 

 xH C  (3.45) 

where C  is a constant or a function of z . The simplest selection is 0C  . Thus, Eq. (3.45) 

becomes 

 0xH   (3.46) 

We have thus seen that the application of gauge condition in this simple y -

invariant problem has yielded the shear potential xH  to be zero. This illustrates how the 
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gauge condition has made the problem much simpler. Our result is similar to the solution 

of elastic waves in rods by Gazis [5] where one of the potentials was made zero using the 

gauge invariance property. 

3.5.4 SOLUTION FOR y -INVARIANT STRAIGHT CRESTED LAMB + SH WAVES IN A PLATE  

The application of the y -invariant condition, / 0y   , and Eq. (3.46) into Eqs. 

(3.30)-(3.33) allows us to group the equations into Lamb waves and SH waves, i.e.,  

Lamb waves: 
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 (3.48) 

SH waves: 
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The displacement equations Eqs. (3.35)-(3.37), can also be grouped, i.e.,  

Lamb waves: 
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SH waves: 
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Note that only three potentials  ,  y zH H  are involved in Eqs. (3.47)-(3.52), since 

0xH   according to Eq. (3.46). The Lamb waves are represented by two potentials  , 

yH , and the SH waves are represented by a single potential zH . 

The stress components can also be grouped as follows.  

Lamb waves: 
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SH waves: 
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 (3.57) 
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( )z
yz

H
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 


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 (3.58) 

The solution for the Lamb waves is obtained by applying plate boundary conditions 

0zz z d    and 0xz z d    that yield the Rayleigh-Lamb characteristic equation [21]. 

The Lamb wave solution is the classical solution [8] and will not be repeated here for the 

sake of brevity.  

For SH waves, the governing equation Eq. (3.49) can be solved for the shear 

potential zH  by using the separation of variables as 
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 1 2( sin cos ) i x

z s sH C z C z e     (3.59) 

where 1C , 2C  are constants, and   is the wavenumber in x  direction, and 

2 2 2 2/s sc    . 

Substituting Eq. (3.59) into Eq. (3.52), (3.57), (3.58), the expressions of 

displacement and stress components become 

 1 2( sin cos ) i x

z s su i C z C z e       (3.60) 

 2

1 2( sin cos ) i x

xy s sC z C z e       (3.61) 

 1 2( cos sin ) i x

yz s s si C z C z e         (3.62) 

The zero-traction boundary conditions apply at the top and bottom of the plate, i.e., 

 0yz z d    (3.63) 

Substitution of Eq. (3.62) into boundary conditions Eq. (3.63) yields 

 1 2cos sin 0s sC d C d    (3.64) 

 1 2cos sin 0s sC d C d    (3.65) 

Subtracting Eq. (3.64) from Eq. (3.65), the symmetric SH wave modes can be obtained and 

the characteristic equation corresponding to the symmetric modes becomes 

 sin 0sd   (3.66) 

Adding Eq. (3.64) and Eq. (3.65), the antisymmetric SH wave modes can be obtained and 

the characteristic equation corresponding to the antisymmetric modes becomes 

 cos 0sd   (3.67) 
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The characteristic equations Eqs. (3.66) and (3.67) obtained through the potential 

approach are the same as the solution of SH waves in terms of yu  [21] and subsequently, 

the solutions for displacements and stresses should be the same.  

3.6 APPLICATION OF GAUGE CONDITION TO CIRCULAR CRESTED GUIDED 

WAVES IN A PLATE  

The governing equations in cylindrical coordinates (Figure 3.2) are much more 

involved than in Cartesian coordinates. We can simplify the governing equations using the 

axisymmetric assumption, / 0   . For the present analysis, we will consider the 

axisymmetric problem and will demonstrate that the proper choice and manipulation of the 

gauge condition yields much simpler formulations. Our solution will be compared with 

existing classical solutions [18] [21]. 

 

 

Figure 3.2 Problem definition in cylindrical coordinate system 

3.6.5 AXISYMMETRIC CIRCULAR CRESTED GUIDED WAVES IN A PLATE 

Under the axisymmetric assumption / 0   , the governing equations Eqs. 

(3.18), (3.19) can be written in cylindrical coordinates as 
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 (3.71) 

The gauge condition takes the form 

 
1

( ,r z
r

H H
H f r

r r z


 
   

 
 (3.72) 

Displacements are expressed as 

 r

H
u

r z


 
 

 (3.73) 

 r zH H
u

z r


 
 

 
 (3.74) 

 z

H H
u

z r r

 
  
 

 (3.75) 

3.6.6 MANIPULATION OF THE GAUGE CONDITION IN CYLINDRICAL COORDINATES 

We follow a similar analogy that has already been discussed in Section 3.5.3 to 

allocate the potential functions to the Lamb waves and the SH waves. In cylindrical 

coordinates, pressure waves must depend on  ; SV waves must depend on H ; and SH 

waves must depend on zH . The third shear potential, rH  may have contributions to both 

SV and SH waves. However, when solving Eq. (3.69) and (3.70) by separation of variable 

methods, we notice that the shear potentials rH  and H  follow the same order (order 1) 

of Hankel function. On the other hand, the shear potential zH  has a different order (order 

0) of Hankel function.  
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The pressure waves and SV waves group up to generate Lamb waves whereas SH 

waves remain independent. Separating the gauge condition Eq. (3.72) into Lamb waves 

and SH waves yields: 

 
1

( ,r
r LW

H
H f r

r r



  


  (Lamb wave gauge) (3.76) 

 ( ,z
SH

H
f r

z



 


  (SH wave gauge) (3.77) 

where, ( , ( , ( ,LW SHf r f r f r      . 

For the axisymmetric problem, we may choose the simplest gauge ( , 0LWf r   . 

Hence, Eq. (3.76) becomes 

 
1

0r
r

H
H

r r


 


 (3.78) 

Using the differential product rule, Eq. (3.78) yields 

 
1

( ) 0rrH
r r





 (3.79) 

Integrating Eq. (3.79) gives 

 1rH C  (3.80) 

where 1C  can be a constant or a function of z . The simplest selection may be 1 0C  . Thus, 

Eq. (3.80) becomes 

 0rH   (3.81) 

This is similar to the y -invariant problem discussed for Cartesian coordinates in Section 

3.5.3.  
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3.6.7 SOLUTION FOR AXISYMMETRIC CIRCULAR CRESTED LAMB + SH WAVES IN A PLATE  

Upon manipulation of gauge condition we make 0rH   (Eq. (3.81)) and the 

governing equations Eqs. (3.68)-(3.71) can be grouped as follows. 

Lamb waves: 
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SH waves: 
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The displacement equations may also be grouped as follows. 

Lamb waves: 
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H
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r z
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 (3.85) 

 z

H H
u

z r r
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  
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 (3.86) 

SH waves: 

 zH
u

r



 


 (3.87) 

The stress components can also be grouped as follows.  

Lamb waves: 
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 (3.91) 

SH waves: 
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2 z z

r

H H

r r r
 

  
   
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 (3.92) 

 
2

z
z

H

r z
 


 

 
 (3.93) 

The Lamb wave expressions for displacements and stresses are the same as for the 

classical solution [21]. The Rayleigh-Lamb equation is obtained from the plate boundary 

conditions; the complete Lamb wave solution will not be repeated here for the sake of 

brevity. 

The SH wave solution in terms of potentials is discussed next. The governing 

equation Eq. (3.84) can be solved for shear potential zH  by using separation of variables, 

i.e., 

 1

1 2 0( sin cos ) ( )z s sH A z A z H r     (3.94) 

where 1A , 2A  are constants,   is the wave number in the r  direction, 2 2 2 2/s sc    , 

and 1

0 ( )H r  is the Hankel function of the first kind and order zero. 

The traction free boundary conditions apply at the top and bottom of the plate i.e. 

 0z z d    (3.95) 
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Substituting Eq. (3.94) into Eq. (3.93) gives 

 1

1 2 0( cos sin )( ( )) 'z s s sA z A z H r        (3.96) 

Substitution of Eq. (3.96) into boundary conditions Eq. (3.95) yields 

 1 2cos sin 0s sA d A d    (3.97) 

 1 2cos sin 0s sA d A d    (3.98) 

Subtraction and addition of Eq. (3.97) and (3.98), yields the symmetric and 

antisymmetric SH wave modes; the characteristic equations corresponding to the 

symmetric  and antisymmetric modes are 

 sin 0   (symmetric) ;       cos 0   (antisymmetric) s sd d    (3.99) 

The characteristic equations indicated by Eq. (3.99) are the same as the classical 

solutions of SH waves; subsequently, the solutions for displacements and stresses are also 

same. Hence, the potential approach has been shown to be easily implemented through the 

manipulation of the gauge condition. 

3.7 CONCLUSION 

The gauge condition originated in elastodynamics from the Navier-Lame equations 

upon application of Helmholtz theorem. The proper choice and manipulation of the gauge 

condition may simplify the problem and permits a straightforward analytical solution. The 

gauge condition provides the necessary conditions for the complete solution of the elastic 

waves in plates by the potential function approach. The gauge condition may be considered 

as the superposition of separate gauge conditions for Lamb waves and SH waves, 

respectively. Each gauge condition contains a different combination of the shear potential 

components. The gauge condition established a bridge between Lamb waves and SH waves. 

The gauge condition may decouple for the physical problems in which the Lamb and SH 
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waves are expected to decouple. The decoupling of the gauge condition does not violate 

the classical Lamb wave and SH wave solutions; rather, it simplifies the problem. The 

gauge condition plays a vital role in the separation of Lamb waves and SH waves; thus, it 

transforms a complicated problem into two simpler problems. In this chapter, the 

manipulation of the gauge condition has been illustrated on two well-known problems of 

guided waves in plates in which the Lamb waves and SH waves can be physically 

decoupled. The next challenge for this approach would be to address a coupled problem 

(Lamb waves + SH waves) such as the non-axisymmetric guided wave propagation in a 

plate; this problem will be discussed in the next chapter. 
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CHAPTER 4  

A HELMHOLTZ POTENTIAL BASED SOLUTION TO THE NON-AXISYMMETRIC

COUPLED GUIDED WAVE PROPAGATION IN A PLATE 

This chapter presents a cylindrical-coordinates solution for the coupled non-axisymmetric 

plate guided-wave propagation using Helmholtz potentials and a particular interpretation 

of the gauge condition. The non-axisymmetric guided wave problem contains coupled 

Lamb and shear horizontal (SH) waves. A general non-axisymmetric solution of guided 

wave propagation in plate is needed to analyze the guided wave scattering from non-

axisymmetric damage as encountered in practice. Application of the Helmholtz 

decomposition theorem to the Navier-Lame equations yields a set of four coupled partial 

differential equations in four unknowns, the scalar potential   and the three components 

of the vector potential , ,r zH H H . A fourth equation, the ‘gauge condition’ is then added 

to the decomposition. Under non-axisymmetric conditions, the problem is highly coupled 

and no Helmholtz-type solution has been published so far. We propose a Helmholtz-type 

solution in terms of potentials which is developed through a particular interpretation of the 

gauge condition. Our proposed approach decouples the governing equations and reduces 

the number of unknowns from four to three thus allowing one to express the solution in an 

elegant straight-forward way. The Rayleigh-Lamb characteristic equations are recovered 

and a general normal-modes expression for the solution is obtained. 
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4.1 INTRODUCTION 

4.1.1 STATE OF THE ART 

The state of the art for z-invariant and axisymmetric Lamb and SH wave was 

presented in Section 3.1 of previous Chapter 3. Here, we continue the discussion by 

addressing the non-axisymmetric case. A non-axisymmetric Helmholtz approach was 

developed by Gazis [40] [32] for the wave propagation in an infinitely long hollow cylinder. 

A particular form of the gauge condition was utilized. However, the case of guided wave 

propagation in a hollow cylinder is much simpler than that of non-axisymmetric guided 

wave propagation in a plate. Gazis’ approach may serve as inspiration but cannot be applied 

directly. 

The non-axisymmetric guided wave propagation in a plate due to the application of 

half-ring normal loads was studied by Scott and Miklowitz [41] using a special form of the 

vector potential H  and multi-integral transforms (Laplace, Fourier, and inverse Hankel 

transforms). 

An integral representation of the non-axisymmetric wave displacement components 

to analyze the shear impact and oblique impact on plates was developed by Davids et al. 

[42] [43] through the use of trigonometric angular functions. 

A comprehensive solution for the coupled non-axisymmetric guided-wave 

propagation in a plate was developed by Achenbach [38] [37] using an ingenious definition 

of the wave displacements based on the membrane solution combined with thickness-wise 

mode functions as discussed in Section 3.2.2 of Chapter 3.  Subsequently, Achenbach’s 

solutions have been extensively used to analyze guided-wave scattering from generic non-
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axisymmetric damage [44] [45] [46]. However, this approach does not use the Helmholtz 

decomposition in which the contributing potentials satisfy the wave equation. 

To our knowledge, no solution has yet been proposed for solving the coupled non-

axisymmetric guided wave problem using the Helmholtz decomposition in cylindrical 

coordinates. Finding such a solution in which the contributing potentials explicitly satisfy 

the wave equation is the objective of this chapter. 

4.1.2 WHY DOES ONE NEED THE HELMHOLTZ APPROACH FOR NON-AXISYMMETRIC 

GUIDE-WAVE SOLUTION? 

Helmholtz, in his ground-breaking 1858 paper, proposed a vector-field 

decomposition theorem of wide-ranging utility [19] [20]. Helmholtz decomposition 

theorem is a mathematically robust approach that has been applied to many vector-field 

physics problems [31]. For elastodynamics, the Helmholtz decomposition theorem has the 

form 

 u grad curlH H      (4.1) 

where u  is a vector field,   is a dilatational scalar potential, and H  is an equivoluminal 

vector potential. The displacement field u  satisfies the Navier-Lame equations of motion 

[18], i.e.,  

 
2

( ( )u u u          (4.2) 

where   is the density,   and   are the Lame constants. In cylindrical coordinates (Figure 

4.1) 
r r z zH H e H e H e    . It can be noted from Eq. (4.1), that the three-component 

displacement vector u  is represented by four unknown potentials: the scalar potential   

and the three components , ,r zH H H  of the vector potential H . To make the 
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decomposition unique [31], an additional equation is added in the form of the “gauge 

condition”. 

We may identify the following reasons for using the Helmholtz approach to solve 

the non-axisymmetric guided-wave problem in cylindrical coordinates: 

a) The Helmholtz approach is one of the most robust mathematical approaches for 

solving vector-field physics problems [31]. 

b) The Helmholtz approach has already been successfully used to solve many vector-

field physics problems in electrodynamics, fluid mechanics, elastodynamics. 

c) The gauge condition of the Helmholtz approach can be cast in various forms in 

order to simplify the problems (e.g., Coulomb gauge, Lorenz gauge, Fock-

Schwinger gauge, Hamiltonian gauge, etc.) [34] 

d) The Helmholtz approach had already been extensively used in elastodynamics 

(bulk-wave propagation, straight-crested guided-wave propagation in Cartesian 

coordinates, axisymmetric guided-wave propagation in cylindrical coordinates), 

but it has not yet been applied to the non-axisymmetric guided-wave propagation 

in cylindrical coordinates due to certain mathematical difficulties that are detailed 

later in this chapter. Why not attempt to solve this challenging problem and thus 

complete the suit of elastodynamics solutions based on the Helmholtz approach? 

4.2 DESCRIPTION OF THE NON-AXISYMMETRIC GUIDED WAVE PROBLEM 

IN CYLINDRICAL COORDINATES 

4.2.1 GOVERNING EQUATIONS 

Recall from Chapter 3, the wave equations for the potentials   and H , i.e., 

   2 2
pc        (wave equation for  ) (4.3) 
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  2 2
sc H H          (wave equation for H  ) (4.4) 

and the gauge condition 

 ( , )H f r t                  (gauge condition) (4.5) 

where pc  and sc  are the pressure and shear wavespeeds defined as  

 
2

pc
 




  ,                   sc




  (4.6) 

It is apparent from Eqs. (4.3), (4.6) that the scalar potential   is associated with 

pressure waves whereas the vector potential H  is associated with shear waves [18]. 

 

 

Figure 4.1 Non-axisymmetric guided wave propagation in a plate 

For time-harmonic waves of circular frequency  , Eq. (4.3), (4.4), and (4.5) becomes  
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 ( , )H f r                  (gauge condition) (4.9) 

In cylindrical coordinates, Eq. (4.7), (4.8) expands to  
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On the one hand, examination of Eqs. (4.10) and (4.11) reveals that potentials   and zH  

are uncoupled and hence these two governing equations can be solved independently. On 

the other hand, examination of Eqs. (4.12) and (4.13) reveals that potentials rH  and H  

are tightly coupled and hence, these two governing equations cannot be solved 

independently which makes the problem challenging and justifies the work presented in 

the rest of this chapter.  

4.2.2 DISPLACEMENT AND STRESS COMPONENTS 

Expansion of Eq. (4.1) yields the displacement components in cylindrical 

coordinates, i.e., 
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Hence, substitution of Eqs. (4.14)-(4.16) in the strain-displacement equations and then into 

the stress-strain relations yields the stress components (Figure 4.2). 

 

Figure 4.2 Tractions on a differential element of a plate in cylindrical coordinates 

Strain-displacement relations: 
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Stress-strain relations: 

 

                      

       and         

                      

rr rr r r
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     

     

 (4.18) 

where, 

 rr zz       (4.19) 

Recall governing equation (4.53) 
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 (4.20) 

Calculate the derivatives 
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 (4.21) 

Substitution of Eq. (4.17) into Eq. (4.19) yields 
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
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  
 (4.22) 

Substituting the related derivative in Eq. (4.22) and using Eq. (4.20) one gets 
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 (4.23) 

Substitution of Eq. (4.17) and (4.23) into Eq.(4.18) gives 
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     
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
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 (4.24) 

Substitution of Eq. (4.21) into Eq. (4.24) yields the stress components as 
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 (4.25) 
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 (4.26) 
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      

      
 (4.27) 
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 (4.28) 
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 (4.29) 
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 (4.30) 
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4.3 A JUDICIOUS FORM OF THE GAUGE CONDITION 

In this section, we showed the derivation of a judicious form of the gauge condition 

that can be used for the non-axisymmetric problem. The gauge depends on the nature of 

the problem. However, the proper choices of gauge make the problems easier to solve [34]. 

A multitude of choices exist [31] as used in elastodynamics [18] [32] and electrodynamics 

[33] [34] [35]. For example, Gazis [40] [32] used ( ,H F r t    in order to simplify the 

shear potentials when developing the solution of wave propagation in a hollow cylinder 

[32]. 

We propose to view the gauge condition Eq. (4.9) as a superposition of Lamb wave 

gauge ( LWf ) and SH wave gauge ( SHf ) [26]; hence we write Eq. (4.9) as: 

( , ( , ( ,LW SHH f r f r f r         (4.31) 

Expanding Eq. (4.31) in cylindrical coordinates yields 

1
( , ( ,r r z

LW SH

HH H H
f r f r

r r r z

  


 
     

  
 (4.32) 

On the one hand, we observe that the SH waves should not have any out-of-plane 

displacement component zu . On the other hand, it can be observed from Eq. (4.14) that 

the out-of-plane displacement component zu  does not depend on the potential zH . Hence, 

it is apparent that the zH   potential is associated with the SH waves and hence we can write 

the SH gauge part of Eq. (4.32) as 

( ,z
SH

H
f r

z



 


         (SH gauge) (4.33) 

This shear potential allocation also works for the axisymmetric and straight-crested guided 

waves as discussed in Chapter 3 and ref. [26]. 

("Bhuiyan-Giurgiutiu" gauge condition) 
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The remainder of Eq. (4.32) is allocated to the Lamb wave gauge, i.e.,  

 
1

( ,r r
LW

HH H
f r

r r r

 



   

 
      (Lamb wave gauge) (4.34) 

We take ( , ( , ,LW LWf r f r     . Hence, Eq. (4.34) becomes 
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HH H
f r

r r r

  



   

 
 (4.35) 

Differentiation of Eq. (4.35) with respect to z  gives 
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

 
  

    
 (4.36) 

Upon rearrangement and multiplication by r , Eq. (4.36) yields 
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r r
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r z z z





 
  

    
 (4.37) 

Using the differential product rule, Eq. (4.37) yields 

 ( ) ( )r
HH

r
r z z





 
 

   
 (4.38) 

We now introduce a new potential vH  such that 

   vr
HH

r
z 




 
      and    vH H

z r

 
 

 
    (alternate LW gauge condition) (4.39) 

Substitution of Eq. (4.39) into Eq. (4.38) yields the identity 

 
2 2

v vH H

r r 

 


   
 (4.40) 

Thus, the LW gauge condition Eq. (4.35) has been replaced by the new gauge condition 

Eq. (4.39). It can be noted from Eq. (4.39) that the new potential vH  creates a bridge 

between rH  and H  through the differential relation Eq. (4.39). As it will be shown in 

Section 4.4.2, the new potential vH  satisfies the wave equation. This new potential vH  
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can be used to coalesce the effect of the two potentials , rH H  and thus reduce the number 

of unknown potentials to only three ( , vH , zH ), instead of the original four ( , rH , 

H , zH ). 

4.4 SIMPLIFICATION OF THE NON-AXISYMMETRIC PROBLEM USING THE 

GAUGE CONDITION 

4.4.1 REDUCTION OF THE NUMBER OF POTENTIALS USING THE GAUGE CONDITION 

Recall the modified form of the gauge condition, Eq. (4.39), 

vr

v

HH
r

z

H H

z r








 

 
 

 

(4.41) 

We will use this relation to simplify the governing equations, displacement equations, and 

stress equations. 

4.4.2 SIMPLIFICATION OF THE GOVERNING EQUATIONS FOR NON-AXISYMMETRIC WAVES

IN CYLINDRICAL COORDINATES 

Recall Eq. (4.12) 
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2 2 2 2 2 2 2
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    
 (4.42) 

Differentiation of Eq. (4.42) with respect to z  yields 

23 2 3 3 2

2 2 2 3 2 2 2

1 1 2 1
0r r r r r r

s

HH H H H H H

r z r r z r z z r z r z c z

 
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 (4.43) 

Substitution of Eq. (4.41) into Eq. (4.43) yields, after some manipulation, 
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0v v v v v

s

H H H H H

r r r r z c
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    
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 (4.44) 

Equation (4.44) can be expressed as 
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 (4.45) 

Integration of Eq. (4.45) with respect to   and selection of the integration constant to be 

zero yields 
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 (4.46) 

Equation (4.46) is a wave equation. Thus, the new potential vH  also satisfies the wave 

equation and propagates with the wavespeed sc . 

Recall Eq. (4.13) 
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 (4.47) 

Differentiation of Eq. (4.47) with respect to z  gives 
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 (4.48) 

Substitution of the gauge condition Eq. (4.41) into Eq. (4.48) yields, after some 

manipulation, 
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 (4.49) 

Equation (4.49) can be expressed as 
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 (4.50) 

Integration of Eq. (4.50) with respect to r  and selection of the integration constant to be 

zero yields 
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 (4.51) 

Equation (4.51) is the same wave equation as Eq. (4.46). Thus, the two coupled 

governing equations in ,rH H  have combined into a single governing equation in the new 

potential vH . This new governing equation is a wave equation with wavespeed sc . The 

new shear potential vH  replaces the two initial shear potentials rH  and H . 

Hence, the use of Eq. (4.41) into Eqs. (4.12), (4.13) yields a single equation, i.e., 
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 (4.52) 

Equation (4.52) is the wave equation for the new potential vH . It can be noted that 

the new potential vH  propagates with wavespeed sc , hence it is associated with the shear 

waves just like the old potentials rH  and H . Thus, the governing equations for non-

axisymmetric wave propagation in cylindrical coordinates can now be reduced to three 

uncoupled equations in the potentials  , vH , zH , i.e., 
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 (4.55) 

4.4.3 SIMPLIFICATION OF THE DISPLACEMENT AND STRESS EXPRESSIONS 

Substitution of Eq. (4.41) into the expressions of ru  and u  of Eqs. (4.14), (4.15) 

gives 
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 (4.56) 

The displacement component zu  of Eq. (4.16) should also be represented in terms of   

and vH . For the moment, let, 

 v
z

H
u

z z



 
 

 (4.57) 

where   is a wavenumber parameter that can be determined as 2 2/ s    . (see Section 

4.5.2) 

Hence, the application of the new gauge condition Eq. (4.41) into Eqs. (4.14)-(4.16) 

yield the following simplified displacement expressions: 
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 (4.58) 
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 (4.60) 

Recall the strain-displacement relations: 
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

 
 

 

  
    
   

   
    

   

   
   
   

 (4.61) 
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Recall the stress-strain relations: 

 

                      

       and         

                      

rr rr r r

z z

zz zz rz rz

 

   

    

    

    

     

     

     

 (4.62) 

where   was calculated in Eq. (4.23) as 

 
2

2

pc


     (4.63) 

Calculate the derivatives 
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             

       
     
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z z z



  




  



    
    
          

  
 

    

  
 

    

  
 

  

(4.64)

Substituting Eq. (4.63) and Eq. (4.61) into Eq.(4.62), one gets 
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c z r z

 


 
 


    




    

 


    

  
        

   

     
          

     

  
      

  





 (4.65) 

Substitution of Eq. (4.64) into Eq. (4.65) yields the simplified stress expressions: 

 
2 22 2

2 2 2 2

1 1v z z
rr

p

H H H

c r r r r r


  

 

    
      

     
 (4.66) 
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2 22 2

2 2 2 2 2 2

1 1 1 1 1 1v vz z

p

H HH H

c r r r r r r r r r



  

   

     
        

       
 (4.67) 
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2 2 2

v
zz

p

H

c z z


   

  
    

  
 (4.68) 

 
2 2 22

2 2 2 2 2

2 2 2 2 1 1v v z z z
r

H H H H H

r r r r r r r r r r
 

    

       
       

         
 (4.69) 

 
2 222 1 v z

z

H H

r z r z r z



 

 

    
   

      
 (4.70) 

 
2 22 1

2 ( 1) v z
rz

H H

r z r z r z
  



   
    

      
 (4.71) 

It is observed from Eqs.(4.58)-(4.71) that the displacements and stress components are 

expressed in terms of only three potentials  , vH , zH . Hence only three potentials  , 

vH , zH   are needed to fully solve the non-axisymmetric guided-wave problem in 

cylindrical coordinates. 

4.5 SOLUTION OF THE NON-AXISYMMETRIC GUIDED WAVE PROBLEM IN 

CYLINDRICAL COORDINATES 

4.5.1 GENERAL SOLUTION FOR THE POTENTIALS 

Equations (4.53)-(4.55) may be solved by the method of separation of variables. 

Recall the governing equations Eq. (4.53)-(4.55) 

 
2 2 2 2

2 2 2 2 2

1 1
0

pr r r r z c





      
     

   
 (4.72) 
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2 2 2 2 2
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H H H H
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r r r r z c





   
    

   
 (4.73) 
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2 2 2 2

2 2 2 2 2

1 1
0z z z z

z

s

H H H H
H

r r r r z c





   
    

   
 (4.74) 

Let,  

 ( )cos ( )f r n F z   (4.75) 

Substitution of Eq. (4.75) into Eq. (4.72) yields 

2 2

2 2

1
( )cos ( ) cos ( ) cos ( ) cos ( ) 0

p

n
f f n F z f n F z f n F z f n F z

r r c


           (4.76) 

Divide Eq. (4.76) by ( )cos ( )f r n F z  and obtain 

 
2 2

2 2

1
0

p

f f n F

f r f r F c

  
      (4.77) 

Equation (4.77) can be written as 

 
2 2

2

2 2

1
p

p

f f n F

f r f r c F




  
            (separation constant) (4.78) 

Equation (4.78) can be separated into two equations 

 
2

2 2 2 2

2
( ) 0p

p

r f rf r f n f
c


       (4.79) 

 
2 0pF F   (4.80) 

Define 
2 2 2 2/ p pc    , thus Eq. (4.79) yields 

 2 2 2 2( ) 0r f rf r n f      (4.81) 

For an outward propagating wave, Eq. (4.81) accepts the solution  

 (1)

1( ) ( )nf r A H r  (4.82) 

Equation (4.80) accepts the solution 

 2 3( ) sin cosp pF z A z A z    (4.83) 
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Substitution of Eqs. (4.82), (4.83) into (4.75) and letting the constants 
1 2A A A  and 

1 3A A B yields 

 (1)( sin cos )cos ( )p p nA z B z n H r       (4.84) 

Adding the time-harmonic term i te  , Eq. (4.84) yields 

 (1)

1( )cos ( ) i t

nF z n H r e      (4.85) 

where 1( )F z  is given by 

 1( ) sin cosp pF z A z B z    (4.86) 

Similarly, taking 2

s  as separation constant and defining 2 2 2 2/ s sc     the solution of 

Eqs.(4.73), (4.74) can be written as  

 (1)

2 ( )cos ( ) i t

v nH F z n H r e     (4.87) 

 (1)

3( )sin ( ) i t

z nH F z n H r e     (4.88) 

where 2 ( )F z , 3( )F z  are given by 

 2( ) sin coss sF z C z D z    (4.89) 

 3( ) sin coss sF z E z F z    (4.90) 

Hence, for outward propagating waves, the solution of Eqs.(4.53)-(4.55) takes the 

form: 

 (1)

1( )cos ( ) i t

nF z n H r e      (4.91) 

 (1)

2 ( )cos ( ) i t

v nH F z n H r e     (4.92) 

 (1)

3( )sin ( ) i t

z nH F z n H r e     (4.93) 

where   is the radial wavenumber, n  is the number of azimuthal nodes, and (1)

nH  is the 

Hankel function of the first kind and order n . The number of azimuthal nodes n  represents 
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the number of terms in the Fourier-series azimuthal decomposition of the external loading. 

The thickness-wise variation functions 
1( )F z , 2 ( )F z , 3( )F z  are given by 

 1( ) sin cosp pF z A z B z    (4.94) 

 2( ) sin coss sF z C z D z    (4.95) 

 3( ) sin coss sF z E z F z    (4.96) 

where p , s  are transverse wavenumbers defined as 

 
2

2 2

2p

pc


   ,            

2
2 2

2s

sc


    (4.97) 

and , , , , ,A B C D E F are six unknown constants to be determined from the boundary 

conditions. For convenience, the time-harmonic function i te   shown in Eqs. (4.91)-(4.93) 

will be omitted from the sequel. 

4.5.2 DETERMINATION OF WAVENUMBER PARAMETER   

The wavenumber parameter   is obtained from the governing equation Eq. (4.55), 

the gauge condition Eq. (4.41), and the displacement equations Eq. (4.16) as follows. 

Recall the governing equation for vH  Eq. (4.55), i.e., 
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 (4.98) 

Recall the gauge condition Eq. (4.41) 
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




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 

 
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 (4.99) 
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Recall the zu  part of Eq.(4.16), i.e., 

 
1 r

z

H H H
u

z r r r

 



 
   
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 (4.100) 

Differentiating Eq. (4.100) with respect to z  gives 

 
2 22

2

1 1z r
H Hu H

z z r z r z r z

 



   
   

      
 (4.101) 

Upon rearrangement and using the gauge condition Eq. (4.99), one obtains 

 
2 22

2 2 2 2

1 1v v vz
H H Hu

z z r r r r 

    
   
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 (4.102) 

Rearrangement of Eq. (4.98) yields 
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r r r r z c




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    
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 (4.103) 

Substitution of Eq. (4.103) into Eq. (4.102) gives 
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vz
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s

Hu
H

z z z c

  
  
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 (4.104) 

Differentiation of Eq. (4.60) with respect to z  yields 

 
22

2 2

vz
Hu

z z z

  

 
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 (4.105) 

Comparison of Eq. (4.104) and (4.105) gives 

 
2 2 2

2 2 2

v v
v

s

H H
H

z z c



 

 
 

 (4.106) 

Recall the expression of vH  given by Eq. (4.92), i.e., 

 (1)( sin cos )cos ( )v s s nH C z D z n H r      (4.107) 

Differentiation of Eq. (4.107) with respect to z  twice yields 
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2

2

2
 v

s v

H
H

z



 


             (4.108) 

Substitution of Eq. (4.108) into Eq. (4.106) yields 

 
2

2 2

2s s

sc


       (4.109) 

Recall Eq.(4.97), i.e.,  

 
2

2 2

2s

sc


    (4.110) 

Using Eq. (4.110) into Eq. (4.109) gives 

 
2

2

s





   (4.111) 

Equation (4.111) indicates that the wavenumber parameter   depends on   and s . 

4.5.3 APPLICATION OF FREE-SURFACE BOUNDARY CONDITIONS 

The traction-free boundary conditions at the top and bottom faces of a plate of 

thickness 2d  are  

 0zz z d    ,         0z z d    ,           0rz z d    (4.112) 

Equation (4.112) expands to six boundary conditions that are used to determine the six 

unknowns A , B , C , D , E , F  of Eqs. (4.91)-(4.93).  

Recall Eqs. (4.68), (4.70), (4.71), (4.91), (4.92), (4.93), (4.94), (4.95), (4.97), i.e., 

 
22 2

2 2 2

v
zz

p

H

c z z


   

  
    
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 (4.113) 
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 (4.114) 
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2 22 1

2 ( 1) v z
rz

H H

r z r z r z
  



   
    
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 (4.115) 

 (1)

1( )cos ( ) i t

nF z n H r e      (4.116) 

 (1)

2 ( )cos ( ) i t

v nH F z n H r e     (4.117) 

 (1)

3( )sin ( ) i t

z nH F z n H r e     (4.118) 

 1( ) sin cosp pF z A z B z    (4.119) 

 2( ) sin coss sF z C z D z    (4.120) 

 
2

2 2

2p

pc


   ,            

2
2 2

2s

sc


    (4.121) 

Differentiation of Eqs. (4.116), (4.117) with respect to z  twice gives 
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2 2
,         v

p s v

H
H

z z
 

 
    
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             (4.122) 

Substituting Eq. (4.113) into Eq. (4.112) yields 

 
22 2

2 2 2
( ) 0v

zz z d z d

p

H

c z z


    

 
     

 
 (4.123) 

Substitute Eqs. (4.116), (4.117) into Eq. (4.123) and use Eqs. (4.121)-(4.122), the identity 

relation
2 2 2 2 2/ 2p p sc           [47], and 2 2/ s    , to get 

 2 2 2

1 2( ) ( ) 2 ( ) 0s F d F d      (4.124) 

 2 2 2

1 2( ) ( ) 2 ( ) 0s F d F d        (4.125) 

Substituting Eq. (4.114) into Eq. (4.112) yields 

 
2 222 1
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H H
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 

 
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   
    

     
 (4.126) 
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For convenience, change (1)

nH  into nJ  and substitute Eqs. (4.116)-(4.118) into Eq. (4.126) 

to get 

1 2 3

2 ( 1)
( )sin ( ) ( )sin ( ) ( )sin ( ) 0n n n

z d

n n
J r n F z J r n F z J r n F z

r r


     



  
      

 
 (4.127) 

Assume sin 0n   and divide by sin n  to get, upon rearrangement, 

 
1 2 3( ){2 ( ) ( 1) ( )} ( ) ( ) 0n n

z d

n
J r F z F z J r F z

r
  



 
       

 
 (4.128) 

Substituting Eq. (4.115) into Eq. (4.112) yields 

 
2 22 1

2 ( 1) )v z
rz z d z d

H H

r z r z r z
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
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  
    

     
 (4.129) 

Substitute Eqs. (4.116)-(4.118) into Eq. (4.129) to get 

 1 2 32 ( )cos ( ) ( 1) ( )cos ( ) ( )cos ( ) 0n n n

z d

n
J r n F z J r n F z J r n F z

r
      



 
        

 

 (4.130) 

Assume cos 0n   and divide by cosn  to get, upon rearrangement, 

 1 2 3( ){2 ( ) ( 1) ( )} ( ) ( ) 0n n

z d

n
J r F z F z J r F z

r
  



 
       

 
 (4.131) 

Equations (4.128), (4.131) may be combined to yield simpler expressions. Define ( )P z  

and ( )Q z  as 

 1 2( ) 2 ( ) ( 1) ( )P z F z F z     (4.132) 

 3( ) ( )Q z F z  (4.133) 

Hence, Eqs. (4.128), (4.131) can be expressed as 

 ( ) ( ) ( ) ( ) 0n n

z d

n
J r P z J r Q z

r
 



 
  

 
 (4.134) 
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 ( ) ( ) ( ) ( ) 0n n

z d

n
J r P z J r Q z

r
 



 
   

 
 (4.135) 

Eq. (4.134), (4.135) can be written in matrix form, i.e., 

  
( ) 0

( ) 0
z d

P z
M

Q z


   
   

   
 (4.136) 

where 

 

( ) ( )

[ ]

( ) ( )

n n

n n

n
J r J r

r
M

n
J r J r

r

 

 

 
 

  
 
  

 (4.137) 

The determinant of Eq. (4.137) is always nonzero since  

 
2

2 2

2
( ) 0n n

n
M J J

r
    (4.138) 

Hence, Eq. (4.136) has the null solution as the unique solution, i.e., 

 
( ) 0

( ) 0
z d

P z

Q z


   
   

   
 (4.139) 

Substitution of Eqs. (4.132), (4.133) into Eq. (4.139) yields 

 1 22 ( ) ( ( ) 0F d F d     (4.140) 

 1 22 ( ) ( ( ) 0F d F d       (4.141) 

 3( ) 0F d   (4.142) 

 3( ) 0F d    (4.143) 

Hence, the boundary conditions can be summarized as: 

 2 2 2

1 2( ) ( ) 2 ( ) 0s F d F d      (4.144) 

 2 2 2

1 2( ) ( ) 2 ( ) 0s F d F d        (4.145) 

 1 22 ( ) ( ( ) 0F d F d     (4.146) 
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 1 22 ( ) ( ( ) 0F d F d       (4.147) 

 3( ) 0F d   (4.148) 

 3( ) 0F d    (4.149) 

where the functions 
1( )F z , 2 ( )F z , 3( )F z  are given by Eqs. (4.94)-(4.96). Expansion of 

Eqs. (4.144)-(4.149) yields 

 2 2 2( )( sin cos ) 2 ( sin cos ) 0s p p s sA d B d C d D d            (4.150) 

 2 2 2( )( sin cos ) 2 ( sin cos ) 0s p p s sA d B d C d D d              (4.151) 

 2 ( cos sin ) ( ( cos sin ) 0p p p s s sA d B d C d D d            (4.152) 

 2 ( cos sin ) ( ( cos sin ) 0p p p s s sA d B d C d D d            (4.153) 

 cos sin 0s sE d F d    (4.154) 

 cos sin 0s sE d F d    (4.155) 

4.5.3.1 Manipulation of Lamb Wave Equations 

The Lamb wave equations Eqs. (4.150)-(4.153) can be rearranged into symmetric 

and antisymmetric Lamb wave boundary condition equations as follows. 

4.5.3.1.1 Symmetric Lamb wave boundary condition equations: 

Equation (4.150) plus Eq. (4.151) and Eq. (4.152) minus Eq. (4.153) yield 

 
2 2 2( ) cos 2 cos 0s p sB d D d        (4.156) 

 2 sin ( sin 0p p s sB d D d        (4.157) 

Equations (4.156), (4.157) can be written in matrix form, i.e., 

 

2 2 2( )cos 2 cos 0

2 sin ( sin 0

s p s

p p s s

d d B

d d D

    

    

     
     

      
 (4.158) 
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A solution of this homogeneous system of linear equations is only possible if the 

determinant of the coefficient matrix of Eq. (4.158) is zero, i.e.,  

 

2 2 2( )cos 2 cos
0

2 sin ( sin

s p s

p p s s

d d

d d

    

    





 (4.159) 

Expansion, rearrangement, and using 2 2/ s     in Eq. (4.159) yields 

 2 2 2 2( ) sin cos 4 sin coss s p p s p sd d d d            (4.160) 

Rearrangement of Eq. (4.160) gives the Rayleigh-Lamb equation for symmetric Lamb 

waves, i.e.,  

 
2 2 2

2

tan ( )

tan 4

p s

s p s

d

d

  

   


       (Symmetric Lamb waves) (4.161) 

Equation (4.161) has an infinite number of irrational solutions S  which are the 

eigenvalues of Eq. (4.158). For every eigenvalue S , the homogeneous system (4.158) 

admits the solution 

 

2

2 2

2 cos

( )cos

s

s p

B d

D d

 

  

 

 
 (4.162) 

The coefficients ,B D  have one degree of indeterminacy, i.e., can be scaled up or down by 

an arbitrary constant SC . 

4.5.3.1.2 Antisymmetric Lamb wave boundary condition equations: 

Equation (4.150) minus Eq. (4.151) and Eq. (4.152) plus Eq. (4.153) yield 

 
2 2 2( ) sin 2 sin 0s p sA d C d        (4.163) 

 2 cos ( cos 0p p s sA d C d        (4.164) 

Equations (4.163), (4.164) can be written in matrix form, i.e., 
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2 2 2( )sin 2 sin 0

2 cos ( cos 0

s p s

p p s s

d d A

d d C

    

    

     
     

      

 (4.165) 

A solution of this homogeneous system of linear equations is only possible if the 

determinant of the coefficient matrix of Eq. (4.165) is zero, i.e., 

 

2 2 2( )sin 2 sin
0

2 cos ( cos

s p s

p p s s

d d

d d

    

    





 (4.166) 

Expansion and rearrangement of Eq. (4.166) yields 

 
2 2 2 2( ) sin cos 4 sin coss p s p s s pd d d d            (4.167) 

Rearrangement of Eq. (4.167) gives the Rayleigh-Lamb equation for antisymmetric Lamb 

waves, i.e., 

 

2

2 2 2

tan 4

tan ( )

p p s

s s

d

d

   

  
 


     (Antisymmetric Lamb waves) (4.168) 

Equation (4.168) has an infinite number of irrational solutions A  which are the 

eigenvalues of Eq. (4.165). For every eigenvalue A , the homogeneous system (4.165) 

admits the solution 

 

2

2 2

2 sin

( )sin

s

s p

A d

C d

 

  

 

 
 (4.169) 

The coefficients ,A C  have one degree of indeterminacy, i.e., can be scaled up or down by 

an arbitrary constant AC . 

Equations (4.161), (4.168) can be expressed compactly as 

 

1
2 2 2

2

tan ( )

tan 4

p s

s p s

d

d

  

   



 
   

  

     (Rayleigh-Lamb equation) (4.170) 
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where 1  corresponds to symmetric Lamb wave modes, 1  corresponds to antisymmetric 

Lamb wave modes. 

4.5.3.2 Manipulation of SH Wave Equations  

The SH wave equations Eqs. (4.154), (4.155) can be rearranged into symmetric and 

antisymmetric SH boundary condition equations as follows. 

4.5.3.2.1 Symmetric SH wave boundary condition equations: 

Subtraction of (4.154) from Eq. (4.155) yields 

 2 sin 0sF d   (4.171) 

For a non-trivial solution, 0;F  hence, Eq. (4.171) gives 

 sin 0       i.e,            ( 0,1,2,...)s sd d m m      (4.172) 

Equation (4.172) has an infinite number of eigenvalue solutions SH . For every eigenvalue 

SH , the homogeneous equation (4.171) admits the solution 0F   with one degree of 

indeterminacy. We can give F   the value unity, i.e., 

 1F   (4.173) 

The coefficients F  can be scaled up or down by an arbitrary constant SHC . 

4.5.3.2.2 Antisymmetric SH wave boundary condition equations: 

Equation (4.154) plus Eq. (4.155) yields 

 2 cos 0sE d   (4.174) 

For a non-trivial solution, 0;E  hence, Eq. (4.174) gives 

 cos 0       i.e,      (2 1) / 2      ( 0,1,2,...)s sd d m m       (4.175) 
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Equation (4.175) has an infinite number of eigenvalue solutions AH . For every eigenvalue 

AH , the homogeneous equation (4.174) admits the solution 0E   with one degree of 

indeterminacy. We can give F   the value unity, i.e., 

 1E   (4.176) 

The coefficients E  can be scaled up or down by an arbitrary constant AHC . 

Equations (4.172), (4.175) can be expressed compactly as 

 cos sin 0s sd d         (SH waves) (4.177) 

4.5.3.3 Matrix Representation of the Boundary Conditions 

Equations (4.156), (4.157), (4.163), (4.164), (4.171), (4.174) can be represented in 

matrix form as 

2 2 2

2 2 2

0 0 0

0 0 0

00 0

00 0

00 0 0 0 sin
00 0 0 0 cos

( )cos 2 cos 0 0

2 sin ( sin 0 0

0 0 ( )sin 2 sin

0 0 2 cos ( cos

0

0

s p s

p p s s

s p s

p p s s

s

s

d

d

d d B

d d D

Ad d

Cd d
F

E




    

    

    

    


     
          
     
     

     
     
     

     

(4.178) 

For constants , , , , ,A B C D E F  to be nonzero, the determinant of the coefficient 

matrix must be zero thus yielding the characteristic equations for Lamb and SH waves. 

4.5.4 CHARACTERISTIC EQUATIONS 

The characteristic equations from Eqs. (4.170) and (4.177) are summarized as 

 

1
2 2 2

2

tan ( )

tan 4

p s

s p s

d

d

  

   



 
   

  

     (Lamb waves) (4.179) 

 cos sin 0s sd d         (SH waves) (4.180) 

In Eq. (4.179), 1  corresponds to symmetric Lamb wave modes, whereas 1  

corresponds to antisymmetric Lamb wave modes. In Eq. (4.180), sin 0sd   corresponds 
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to symmetric SH waves and cos 0sd   corresponds to antisymmetric SH waves. Eq. 

(4.179) is the Rayleigh-Lamb characteristic equation for Lamb waves [8] and Eq. (4.180) 

is the characteristic equation for SH waves [18]. The solutions of Eq. (4.179) and Eq. 

(4.180) are the radial wavenumber   for Lamb wave modes and SH wave modes, 

respectively. In Eq.(4.180), symmetric SH wave follows sin 0sd   or, sd m   and 

antisymmetric SH wave follows cos 0sd   or, (2 1) / 2sd m    ( 0,1,2,3...m  ). 

Once the wavenumbers are calculated from the characteristic equations Eqs. (4.179)

-(4.180), the unknowns , , , , ,A B C D E F  can be obtained from Eq. (4.178). Then, the 

potentials  , vH , zH  can be obtained from Eq. (4.91)-(4.96). The displacements and 

stresses can be obtained from Eqs. (4.58)-(4.60) and Eqs. (4.66)-(4.71), respectively. 

For straight-crested guided wave propagation, the Lamb waves and SH waves were 

completely decoupled from each other. The Lamb and SH waves are also decoupled for 

axisymmetric circular-crested guided wave propagation. In contrast, for the non-

axisymmetric guided-wave propagation considered here, the Lamb and SH waves are 

coupled and hence, displacements and stresses will contain both Lamb wave and SH wave 

components. 

4.6 GENERAL HELMHOLTZ SOLUTION FOR NON-AXISYMMETRIC GUIDED 

WAVES IN CYLINDRICAL COORDINATES 

4.6.1 SUMMARY OF THE GENERAL SOLUTION 

Equation (4.178) represents a system of six algebraic equations in six unknowns 

, , , , ,A B C D E F . However, this 6 6  system can be expressed as 2 2 , 2 2 , 1 1 , 1 1  

systems of which one set of 2 2  and 1 1  systems is for symmetric mode, and the other 
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2 2  and 1 1  systems is for antisymmetric mode. For every eigenvalue  , the 

homogeneous system Eq. (4.178) admits the solution given in Table 4-1. 

The coefficients ,B D  and ,A C  which are responsible for the symmetric and 

antisymmetric Lamb waves, respectively, can be scaled up or down by arbitrary constants 

SC  and AC , respectively. The coefficients F  and E , which are responsible for symmetric 

and antisymmetric SH waves, respectively, can be scaled up or down by arbitrary constants 

SHC  and AHC , respectively. The constants , , , , ,A B C D E F  of Table 4-1 can be substituted 

into Eqs. (4.91)-(4.93) to get the potentials  , vH , zH ; then Eqs.(4.58)-(4.60) and Eqs. 

(4.66)-(4.71) yield the displacements and stresses, respectively ( i te   can be added to 

explicitly express the harmonic time dependence).  

Table 4-1: The constants , , , , ,A B C D E F  for symmetric and antisymmetric modes 

Symmetric Lamb + SH wave modes Antisymmetric Lamb + SH wave modes 

0,  0,  0A C E    

22 cos sB d    

2 2( )coss pD d     

1F   

0,  0,  0B D F    

22 sin sA d    

2 2( )sins pC d     

1E   

Note: S   A   

 

The coefficients ,B D  and ,A C  which are responsible for the symmetric and 

antisymmetric Lamb waves, respectively, can be scaled up or down by arbitrary constants 

SC  and AC , respectively. The coefficients F  and E , which are responsible for symmetric 

and antisymmetric SH waves, respectively, can be scaled up or down by arbitrary constants 



 

92 

SHC  and AHC , respectively. The constants , , , , ,A B C D E F  of Table 4-1 can be substituted 

into Eqs. (4.91)-(4.93) to get the potentials  , vH , zH ; then Eqs.(4.58)-(4.60) and 

Eqs.(4.66)-(4.71) yield the displacements and stresses, respectively ( i te   can be added to 

explicitly express the harmonic time dependence).  

For an arbitrary non-axisymmetric external loading, the solution will be in the form 

of a double summation 
0 0n m

 

 

  , where the subscript m  indicates the number of 

thickness-wise modes (  0,1,2,...m ) whereas n  indicates the number of terms in the 

Fourier series azimuthal decomposition of the external loading. The generic expressions of 

the solution are given next. 

The radial dependence of the outward propagating solution follows the (1)

nH  

Hankel function and its derivatives. For compactness, we denote 

 

 

(1)

0 0

(1) (1)

0 0 1

2
(1) 2 (1) (1)

0 0 0 12

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

r H r

d
r H r H r

dr

d
r H r H r H r

dr r

  

    


     



   

    

                   0n   (4.181) 

 

 

(1)

(1) (1) (1)

1

2 2 2 2
(1) (1) (1)

12 2

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

n n

n n n n

n n n n

r H r

d n
r H r H r H r

dr r

d n n r
r H r H r H r

dr r r

  

     

 
    







   

 
   

       1,2,3....n   (4.182) 

4.6.2 SYMMETRIC LAMB + SH WAVE SOLUTION 

For brevity, denote the following functions to represent the thickness-wise variation of the 

symmetric solution: 
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 

2 2

2 2 2

2

2

( ) 2 cos cos ( )cos cos

( ) 2 cos sin ( ) 1 cos sin

( ) cos( )

S S S

m m s p m s p s

S S S S

m m p s p m m s s p s

SH

m

V z d z d z

W z d z d z

U z m z d

      

         



   

  



;   0,1,2,....m  (4.183) 

Upon differentiation with respect to z , Eq. (4.183) yields 

2 2

2 2 2

2

2 2

( ) 2 cos sin ( )cos sin

( ) 2 cos cos ( )cos cos

( ) ( )sin( )

S S S

m m p s p s m s p s

S S S S

m m p s p m m s p s

SH

m

V z d z d z

W z d z d z

U z m d m z d

        

        

 

   

   

  

        (4.184) 

We also denote 

2 2 2( ) 2 ( )cos cosS S S

m m m p s pT z d z               (4.185) 

where the superscript S  indicates symmetric Lamb waves, 
S

m  is the wavenumber of the 

-thm  symmetric Lamb wave mode, and 
2S

m  means 
2( )S

m . With these notations, 

displacements and stresses take the forms given next. 

4.6.2.1 Displacements of Symmetric Lamb + SH Wave Solution 

( )cos  ( ) ( )cos ( )S S S S i t SH SH SH i t

r m n m m m n m m

n
u C r n V z e C r n U z e

r

           (4.186) 

( )sin  ( ) ( )sin ( )S S S S i t SH SH SH i t

m n m m m n m m

n
u C r n V z e C r n U z e

r

 

            (4.187) 

( )cos  ( )S S S S i t

z m n m mu C r n W z e       (4.188) 

where superscript SH  indicates symmetric SH waves, 
SH

m  is the wavenumber of the -thm

symmetric SH wave mode. 

4.6.2.2 Stresses of Symmetric Lamb + SH Wave Solution 
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4.6.3 ANTISYMMETRIC LAMB + SH WAVE SOLUTION 

For brevity, denote the following functions to represent the thickness-wise variation 

of the antisymmetric solution: 
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Upon differentiation with respect to z , Eq. (4.195) becomes 

   

2 2

2 2 2

2

2 2

( ) 2 sin cos ( )sin cos

( ) 2 sin sin ( )sin sin

( ) (2 1) 2 cos (2 1) 2

A A A

m m p s p s m s p s

A A A A

m m p s p m m s p s

AH

m

V z d z d z

W z d z d z

U z m d m z d

        

        

 

    

   

   

        (4.196) 

We also denote 
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2 2 2( ) 2 ( )sin sinA A A

m m m p s pT z d z               (4.197) 

where the superscript A  indicates antisymmetric Lamb waves, 
A

m  is the wavenumber of 

the -thm  antisymmetric Lamb wave mode, and 
2A

m  means 
2( )A

m . With these notations, 

displacements and stresses take the forms given next. 

4.6.3.1 Displacements of the Antisymmetric Lamb + SH Wave Solution 
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where superscript AH  indicates antisymmetric SH waves, AH

m  is the wavenumber of the 

-thm antisymmetric SH wave mode. 

4.6.3.2 Stresses of Antisymmetric Lamb + SH Wave Solution 
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4.7 SUMMARY AND CONCLUSION 

4.7.1 SUMMARY  

The Helmholtz vector decomposition theorem was applied to the Navier-Lame 

equation to obtain the governing equations in terms of potentials and the associated 

elastodynamic gauge condition. The non-axisymmetric problem in cylindrical coordinates 

was initially described in terms of four potentials  , rH , H , zH . This resulted in four 

coupled governing equations that posed certain mathematical difficulties. Subsequently, 

the governing equations were decoupled and the number of potentials was reduced from 

four,  , rH , H , zH , to three,  , vH , zH , through a judicious use of the gauge 

condition. This resulted in a set of only three uncoupled governing equations in  , vH , 

zH  which were independently solved. The general solution contained six unknowns (two 

for each of the three potentials). These unknowns were determined from the stress-free 

boundary conditions at the top and bottom faces of the plate. Manipulation of the boundary 

conditions yielded the characteristic equations for guided wave propagation (Lamb + SH 

waves). The general solution for displacements and stresses was finally expressed as a 

normal-modes expansion that contained both symmetric and antisymmetric Lamb and SH 

waves. 
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4.7.2 CONCLUSION 

This chapter has shown that it is possible to develop a Helmholtz potential solution 

for the coupled non-axisymmetric guided wave problem in cylindrical coordinates. The 

non-axisymmetric guided wave propagation in a plate is a situation where two of the 

potentials are tightly coupled. The coupling of the governing equations in terms of 

potentials has prevented so far the development of a complete solution. This chapter has 

shown how a judicious manipulation of the gauge condition can decouple the governing 

equations and leads to a straight-forward solution. The manipulation of the gauge condition 

yielded a new potential, vH  which replaces the effect of rH , H  and thus allowed us to 

replace two coupled governing equations in rH , H  by a single uncouple equation in vH . 

This judicious use of the gauge condition reduced the number of potentials, decoupled the 

governing equations and facilitated the obtaining of the complete solution for the non-

axisymmetric guided-wave propagation in cylindrical coordinates in an elegant straight-

forward way. 
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CHAPTER 5  

ANALYTICAL-FEM SIMULATION FOR ENHANCED DAMAGE DETECTION FOR

AEROSPACE RIVET HOLE  

In this chapter, guided wave propagation and interaction with a generic damage has been 

formulated using closed-form analytical solution while the local damage interaction, 

scattering, and mode conversion have been obtained from finite element analysis in the 

case of a rivet hole with cracks. The rivet hole cracks (damage) in the plate structure gives 

rise to the non-axisymmetric scattering of Lamb wave, as well as shear horizontal (SH) 

wave, although the incident Lamb wave source (primary source) is axisymmetric. The 

damage in the plate acts as a non-axisymmetric secondary source of Lamb wave and SH 

wave. The scattering of Lamb and SH waves are captured using wave damage interaction 

coefficient (WDIC). The scatter cubes of complex-valued WDIC are formed that can 

describe the 3D interaction (frequency, incident direction, and azimuth direction) of Lamb 

waves with the damage. The scatter cubes are fed into the exact analytical framework to 

produce the time domain signal. This analysis enables us to obtain the optimum design 

parameters for better detection of the cracks in a multiple-rivet-hole problem. The optimum 

parameters provide the guideline for the design of the sensor installation to obtain the most 

noticeable signals that indicate the presence of cracks in the rivet hole [48]. 
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5.1 INTRODUCTION 

The detection of various types of defects in structures, for example, corrosion, 

cracks, impact, and disbonds is an important research area of structural health monitoring 

(SHM) and nondestructive evaluation (NDE). Development of fatigue cracks at the rivet 

holes and fasteners in the aircraft structures is the most frequent problem encountered in 

aircraft maintenance. The cracks can grow to a critical size and jeopardize the structural 

integrity if they remain undetected. Ultrasonic guided wave methods can be employed 

instead of the laborious point-by-point inspection method for fast, accurate, and efficient 

detection of the crack initiation in rivet holes.  

5.1.1 MOTIVATION OF THE RESEARCH WORK 

The detection of cracks around the rivet hole has become an important topic of the 

NDE research field. In 2009, the probability of detection (POD) by a model-assisted 

approach has been demonstrated for the fatigue crack growth in wing lap joint, wing skin 

fastener holes, and airframe fastener holes [49]. In 2012, the use of the transfer function 

approach to model-assisted POD was investigated by Bode et al. [50] through the 

inspection of a specimen of aircraft lap joint. However, the researchers emphasized the 

detection of fastener hole cracks mainly based on nondestructive inspection (NDI) 

technique. In 2015, the SHM-based POD was obtained for the fatigue crack initiation in 

the lug with a wing attachment which acted as a representative airplane component [51]. 

The excitation signals of 200–1000 kHz center frequency were used to analyze the guided 

waves within fundamental Lamb wave modes. In 2014, Fu-Kuo Chang group [52] used 

ultrasonic SHM techniques to detect the damage and showed the variation of damage index 

with crack size. They determined the most influencing parameters to the sensitivity of 
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damage detection and compared the SHM and NDE techniques. A set of transmitter and 

receiver sensors were used around the cracked rivet hole. However, the study of the proper 

location of the installed sensors around the damage was not described. The motivation and 

importance of the present research work have been derived from this research. 

5.1.2 STATE OF THE ART 

Structural health monitoring techniques are increasingly being used for damage 

detection and characterization in aerospace structures [53]. The scattering of Lamb waves 

from various types of damage has been analyzed by many researchers [54]. Norris et al. 

[55] studied the scattering of flexural waves on thin plates and used ray method to obtain 

far-field scattering from a circular hole. They showed the azimuthal variation of the 

scattered flexural wave amplitude. A statistical approach to optimal sensor placement for 

SHM has been studied by Flynn et al. [56] and their approach in the active sensing methods 

to three different types of plates have been demonstrated. Bayes risk minimization 

implemented through the genetic algorithm (GA) has been used to find the optimal 

arrangement of the transducers [57]. The statistical model parameters were determined 

experimentally to avoid the difficulty in modeling the mechanical behavior of the 

individual transducers. However, artificial surface damages were generated at different 

locations of the plate to implement their statistical approach. Fromme et al. [58] used 

analytical-finite difference method (FDM) simulation to obtain the scattered field around 

the cracks at rivet holes, presented results at two different excitation frequencies, and 

compared these with experimental results. Lamb waves propagating in an infinite plate 

containing a circular hole, with or without edge cracks, were investigated by Chang and 

Mal [12] using a hybrid method called the global-local finite element method (FEM). 
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However, the research work was limited to the symmetric Lamb modes and the incident 

Lamb wave mode was perpendicular to the crack. Recent research has put emphasis on the 

simulated results using fast and efficient numerical techniques to understand the Lamb 

wave behavior prior to implementation of the results in the physical structures [59]. 

Numerical methods are becoming a popular tool for understanding the complex Lamb 

wave interaction with complicated boundary conditions [60]. The scatter field of a single 

rivet hole cracks with a single incident Lamb wave has been described by introducing the 

wave damage interaction coefficient (WDIC), and the non-reflective boundary (NRB) was 

implemented to simulate the infinite plate in a successful manner [61]. 

In the present research, the optimal placement of the transducer, as well as the 

excitation frequency for the actuator in an active sensing method of SHM, has been 

obtained based on the wave scattering phenomenon. The wave scattering phenomenon is 

obtained using FEM while the wave propagation is modeled using exact analytical 

formulations [62]. 

5.2 DESCRIPTION OF THE SHM OF MULTIPLE-RIVET-HOLE LAP JOINT 

The multiple-rivet-hole lap joint with transmitter and receiver sensors of an active 

SHM system is illustrated in Figure 5.1. When an electrical voltage is supplied to the 

piezoelectric transmitter (actuator), it generates mechanical excitation in the structure and 

produces Lamb waves that propagate in the structure. The Lamb waves interact with the 

damages, which act as the secondary sources of guided waves. The scattered guided waves 

propagate in the structures and are received by the piezoelectric sensor. The actuator 

dispatches Lamb waves to each of the rivet holes at a certain angle that can be calculated 

from the standoff distance (L) and pitch (P) of each rivet hole (Figure 5.1). The scattering 
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phenomenon depends on the direction (θ ) of incident Lamb waves as well as the azimuth 

direction ( ) around the damage (the azimuth direction   corresponds to the sensor 

placement direction). 

 

 

Figure 5.1 Illustration of the multiple-rivet-hole lap joint. 

The secondary source (cracked rivet hole) is asymmetric for a certain angle of 

incident Lamb waves, hence, it acts as a non-axisymmetric secondary source of scattered 

waves. The scattered waves contain scattered Lamb waves and shear horizontal (SH) waves. 

Understanding the non-axisymmetric scattered waves around the damage provides the 

ability to better detect the emanating cracks in the rivet holes. The actuator and sensor 

installations, as well as the excitation frequency, depend on the non-axisymmetric behavior 
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of the scattered guided waves. The design of proper transducer installation and selection of 

the center frequency of excitation enable better capturing of the damage signature 

originating from the cracks of the rivet holes. 

Since no closed form solution exists for the non-axisymmetric scattered waves, a 

combined analytical and finite element modeling has been introduced in the present chapter. 

Exact closed-form analytical formulation has been used for the propagation of Lamb waves 

from the actuator up to the damage in the structure. The interaction of the Lamb waves 

with the local damage is modeled using finite element analysis and the non-axisymmetric 

behaviors of the scattered waves are captured through the WDICs and scatter cubes. 

5.3 OVERVIEW OF COMBINED ANALYTICAL AND FEM APPROACH  

The overview of the combined analytical and FEM approach (CAFA) is illustrated 

in the schematic diagram as shown in Figure 5.2. It shows that the actuator excites the 

structure to generate the Lamb waves that propagate into the structure. Then the Lamb 

waves interact with the damage and undergo scattering and mode conversion. 

The scattered wave also propagates into the structure and is finally picked up by a 

sensor. In CAFA, the Lamb wave generation, propagation, damage interaction, and 

detection are modeled using the exact analytical expressions, while the wave damage 

interaction coefficients (WDICs) are extracted as a scatter cube from the small-size local 

FEM analysis [63], [64]. The findings of the present research have been extended to study 

the sensitivity and uncertainty analysis of SHM systems [65], [66]. 
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Figure 5.2 Overview of the combined analytical and FEM approach [11] 

5.4 DESCRIPTION OF THE ANALYTICAL MODEL 

The analytical model consists of several steps. Some steps are reproduced from ref. 

[11] for the completeness of the study. These steps are described below: 

5.4.1 LAMB WAVE GENERATION FROM THE ACTUATOR 

Lamb waves are generated from the axisymmetric circular PWAS actuator. Thus, 

the axisymmetric condition applies to the incident Lamb wave modeling. Lamb waves are 

generated in the plate and propagate toward the local damage. For outward propagating 

waves from the actuator, the radial displacement ( )ru r on the top surface of the plate at any 

distance r  from the actuator is given by Giurgiutiu [21], i.e., 
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where G   is the shear modulus of the plate, a is the radius of actuator and the 

components , , ,S A S AN N D D  are defined as 
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where 2d  is the thickness of the plate; P , S  are defined as 
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The wavespeeds 2 /Pc      and Sc     depend on the plate material 

properties (Lame constants  ,   and density  ). The wavenumber   depends on the 

frequency and is the roots of the Rayleigh-Lamb equation [18], i.e.,  

 

 

1

2

2
2 2

tan 4

tan

S P S

P S

d

d

   

  



 
 

 
 

 (5.4) 

where +1 and -1 is for symmetric and antisymmetric Lamb wave modes respectively. 

Considering the actuator is ideally bonded to the plate of thickness= 2d , and a  

is the shear stress between the plate and the transducer, the 1J  Hankel transform of the 

radial shear stress can be written as 

 
1

2

1( ) ( )J aa J a     (5.5) 

where 1J  is the first order Bessel function. Substituting Eq.(5.5) into Eq.(5.1) yields 
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The Hankel function of the first kind and order one 
 1
1H  represents an outgoing 

propagating wave. The wavenumber   depends on the frequency and is the roots of the 

Rayleigh-Lamb equation [18]. 

5.4.2 ACTUATOR TRANSFER FUNCTION 

The PWAS acts as an actuator which is supplied with a voltage input. The PWAS 

transfer function  PWASg   relates the applied voltage ( )TV   to shear stress a  and is 

defined as 

   ( )a a PWAS TF a g V     (5.7) 

where aF  is the reaction force per unit length from the structure due to the expansion of 

PWAS mounted on the surface of the structure, a  is the radius of actuator, ( )TV   can be 

obtained by the Fourier transform of the time-domain excitation signal ( )TV t . The transfer 

function  PWASg  of the actuator can be derived as  

  
 

 
31

11 1
PWAS E

rd
g

s r








 (5.8) 

where   ( ) /str PWASr k k   is the stiffness ratio between host structure and actuator, 31d  

is piezoelectric strain coefficient, 11

Es  is the mechanical compliance of the actuator material 

measured at zero electric field ( 0E  ). The detail derivation of Eq. (5.8). can be found in 

ref. [67]. 
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5.4.3 STRUCTURE TRANSFER FUNCTION  

The roots of the Rayleigh-Lamb equation Eq. (5.4) provide numerous symmetric 

and antisymmetric wavenumbers 
S , 

A  for a certain excitation frequency  . These 

wavenumbers are used in the summation process in Eq. (5.6). In general, the structural 

transfer function ( )G r  may be defined as the conversion of the frequency domain 

voltage ( )TV   and the displacement ( )ru r  induced in the host structure given by Eq. 

(5.9) 

  ( ) , ( )r Tu r G r V     (5.9) 

The structural transfer function ( )G r  can be obtained by substituting Eq. (5.7) 

into Eq.(5.6) and dividing by i te  . For convenience, the symmetric (S) and antisymmetric 

(A) part of the structure transfer function may be separated as 

  
  (1)1

1

( ) ( )
, ( )

2 ( )S

S S
PWASS SS

S

S

ag J a N
G r i H r

D

  
  

 
 


  (5.10) 

  
  (1)1

1

( ) ( )
, ( )

2 ( )A

A A
PWASA AS

A

S

ag J a N
G r i H r

D

  
  

 
 


  (5.11) 

5.4.4 INCIDENT WAVE AT DAMAGE LOCATION 

The structure transfer function can be multiplied by the frequency-domain 

excitation signal ( )TV   to obtain the direct incident waves at the sensing location, i.e., 

      , ( ) , ,S A

IN IN T IN INu R V G R G R        (5.12) 

where the distance INR  from actuator up to sensing location is used. 

Similarly, the structure transfer function can be multiplied by ( )TV   up to the 

damage location to obtain the interrogating waves arriving at the damage, i.e., 
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      , ( ) , ,S A

D D T D Du R V G R G R        (5.13) 

where the distance DR  from actuator up to the damage location is used  

It can be noticed that the Lamb modes propagate independently and the incident 

wave field is the superposition of symmetric and antisymmetric wave modes. 

5.5 EFFECT OF LOCAL DAMAGE THROUGH THE INSERTION OF SCATTER 

CUBE OF WDIC 

The WDIC obtained from the FEM analysis depends on the material properties of 

host structure while the final signal received depends on both the transducer material 

properties and host structure properties. The damage effect is contained in the wave 

damage interaction coefficients (WDIC) that contains the amplitude and phase information 

of the scattered waves. The concept of WDIC and the steps to calculate the WDICs are 

discussed below: 

5.5.1 CONCEPT OF WDIC AND MATHEMATICAL EXPRESSIONS FOR WDIC CALCULATION  

The displacement field of the incident wave ( INu ) may be calculated at the center 

point of the pristine model. The incident displacement field coming towards the center of 

the damage and the scattered displacement field recorded at the sensing boundary (Figure 

5.2b) follows a certain relation [68], i.e., 

            φ φ ω,θ,Φ 1 φ ω,θ,Φ
ω,θ,Φ ξ ω,θ,Φ

A B

IN SCi i iA B B

IN AB m SC
u e C e H r u e  

  (5.14) 

where 
φ

IN
i

IN
u e


  represents any incident mode A at the center of the damage;  

 φ ω,θ,Φ

ω,θ,Φ AB
i

AB
C e



 

represents the amplitude  ω,θ,Φ
AB

C  and phase  φ ω,θ,ΦABi
e


 of WDIC; r  is the radius of 

sensing boundary; 
   1

ξ
B

m
H r  is the Hankel function of 2-D scattered wave field ( B ) 

propagates in outward direction with m = 1. 
AB

C  stands for the incident A wave mode to the 
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scattered B wave mode that depends on the direction of incident Lamb wave, azimuthal 

direction of the damage and the circular frequency. On the right side    φ ω,θ,Φ
ω,θ,Φ

B

SC
iB

SC
u e

  

represents the scattered displacement field along the sensing boundary of radius r . 

Upon rearrangement, Eq. (5.14) yields 

      
   

 φ ω,θ,Φ φ ω,θ,Φ

1

ω,θ,Φ 1
ω,θ,Φ

ξ

AB AB

B

i iSC

AB A B

IN m

u
C e e

u H r

  
  (5.15) 

where,    φ ω,θ,Φ φ ω,θ,Φ φ
B A

SC IN
   . From Eq. (5.15), the amplitude and phase may be 

separated as 

  
 

 (1)

ω,θ,Φ 1
ω,θ,Φ

ξ
A

IN
m

B

AB B

uscC
u H r

  (5.16) 

    
     

1 1
φ ω,θ,Φ φ ω,θ,Φ

1 1
ξ 0

AB AB BH r Hm m

 
 
 
 
  

    


 (5.17) 

For instance, when incident symmetric Lamb wave mode (S0 mode) causes scattered S0 

mode, then both A and B corresponds to the parameters of S0 mode. When incident S0 

mode causes scattered symmetric SH mode, then A corresponds to the parameters of S0 

mode but B corresponds to the SH wave mode. 

WDIC depends on the thickness of the plate. The thickness of the upper and lower 

plate is considered to be the same for the present analysis. Hence, the result of the top plate 

will be the same for the bottom plate. That means in order to monitor the damage in the 

bottom plate, a similar arrangement of transducers is needed as in the top plate. In case of 

plates with different thickness, the two plates should be considered individually. Each plate 

should be analyzed using the proposed method to obtain the optimal configuration of the 

transducers for individual plates. However, there may occur some wave leakages between 
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the two riveted plates in the region where the two plates are in close contact being virtually 

bonded. Thus, the thickness of the bonded plate section will come into play and may 

modify the WDIC profile which can be addressed as well. In this present analysis, the wave 

leakage is not considered. 

5.5.2 SEPARATION OF THE MODES 

The displacement wave fields of the local damage can be solved using an FEM 

model. The scattered wave displacements at the top and bottom surface sensing nodes in 

both radial ( T

ru  and B

ru ) and tangential ( θ

Tu  and θ

Bu ) directions can be used to selectively 

separate each wave mode, as follows: 

 0 00 0 θ θ θ θ; ; ;  
2 2 2 2

S A

T B T BT B T B
SH SHS Ar r r r

SC SC SC SC

u u u uu u u u
u u u u

  
     (5.18) 

It should be clearly noted that in this study we focused on the fundamental Lamb 

wave modes (S0 and A0) and fundamental shear horizontal mode (SH0). The frequency 

range of our analysis is below the cut-off frequencies of the higher Lamb and SH wave 

modes. We denote fundamental SHso mode as SH mode. The extension of our approach to 

higher modes could be the topic of a future study. 

5.5.3 INSERTION OF WDICS IN THE ANALYTICAL MODEL 

The scattered displacement fields provide the scattered coefficients for the scattered 

wave modes ( , , , , ,
SS AS SA AA SSH ASH

C C C C C C ) following Eq. (5.15). Each scattered mode forms a 

scatter cube considering multiple directions of the incident Lamb wave. The scatter-wave 

source at the damage location is obtained by multiplying the incident waves at the damage 

with WDICs, i.e., 

        φ ω,θ,Φ φ ω,θ,Φ
ω,θ,Φ ω,θ,ΦSS ASi iS S A

N SS D AS Du C e u C e u
 

   (5.19) 
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        φ ω,θ,Φ φ ω,θ,Φ
ω,θ,Φ ω,θ,ΦSA AAi iA S A

N SA D AA Du C e u C e u
 

   (5.20) 

        φ ω,θ,Φ φ ω,θ,Φ
ω,θ,Φ ω,θ,ΦSSH ASHi iSH S A

N SSH D ASH Du C e u C e u
 

   (5.21) 

where 
S

Nu , 
A

Nu , and 
SH

Nu  represent the damage scatter-wave source for modes S0, A0, and 

SH0, respectively. The scatter-wave source (damage) irradiates the scattered waves that 

propagate to the sensing location. The 2-D Lamb wave irradiating from a point source 

accepts the following solution in the cylindrical coordinate system with reference to the 

new wave source location [21], 

      1 ω

1

1

ξLW LW i t

r n n

n

u a z H r e






  (5.22) 

      1 ω

1

1

ξSH SH i t

n n

n

u b z H r e






  (5.23) 

where  LW

n
a z  and  SH

n
b z  are the thickness dependent mode shapes for Lamb and SH waves 

of nth wave mode. 

5.5.4 SENSING THE SCATTERED WAVE SIGNALS 

Since the amplitude relationship between the interrogating waves and the scattered 

waves is contained in the WDICs, the transfer function from the damage up to the sensing 

location is simply 
 
 1

1
ξ

SC
H R , where SC

R  is the distance from the damage up to the sensing 

location. Thus, the scattered waves arriving at the sensing point can be calculated as 

            1 1 1

1 1 1ξ ; ξ ; ξS S S A A A SH SH SH

SC N SC SC N SC SC N SCu u H R u u H R u u H R    (5.24) 

Since the frequency domain excitation voltage (ω)
T

V  is used to derive the above relations, 

the inverse Fourier transform is used to obtain the time–domain scattered signal. The out-

of-plane displacement wavefield may be obtained through the multiplication of the in-plane 
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displacements by the mode-shape component ratio, and the out-of-plane velocity would be 

the time derivative of the out-of-plane displacement [21]. 

5.6 DESCRIPTION OF THE FEM MODELING  

At large distances from the origin, the behavior of circular-crested Lamb waves 

approaches asymptotically that of straight-crested Lamb waves, but the amplitude is 

affected by the factor which captures the geometric spreading of the circular wavefront 

[21]. Considering the standoff distance in the multiple-rivet-hole in Figure 5.1, i.e., the 

excitation source is far away from the damage, it is a good approximation to use straight-

crested Lamb modes as incident waves in the small local damage region during the nodal 

load calculations of FEM. A 40 mm × 40 mm 3D FE model of a 1.6 mm thick aircraft-

grade aluminum-2024-T3 plate is created using commercial ANSYS15 software (ANSYS, 

Inc., Canonsburg, USA). A non-reflective boundary (NRB) 20 mm wide at each side of the 

model is used. The crack length (2a) to diameter (d) of the hole ratio of 0.5 is used. 

5.6.1 IMPOSING THE NODAL POINT LOAD 

The 3D view of the local FEM model is shown in Figure 5.3c. Incoming Lamb 

waves are shown as three red signal signs on one face of the model. Lamb mode excitation 

is imposed through nodal forces by evaluating integrals of stress mode shape components 

on the loading nodes. The stress mode shapes are calculated analytically [21] and converted 

into nodal forces through boundary integration on each element along the loading line.  

The element nodal force can be evaluated by using Eq. (5.25) [69] as 

        
0 0

σ ; σ
e eL L

e e e e e e

ix xx i iy xy iF s N s ds F s N s ds    (5.25) 
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where subscript and superscript e  stands for element, e
L represents the element size, 

e

ix
F  

and 
e

iy
F  are nodal forces in x  and y  direction, i  is the element node number,  e

i
N s  is the 

shape function of selected element type. The nodal forces are updated for each calculation 

step, imposing Lamb mode excitation for each excitation frequency. The stress mode 

shapes in the thickness direction at 250 kHz is shown in Figure 5.3d.  

 

 

Figure 5.3 Illustration of local finite element method (FEM) modeling (a) Pristine model, 

(b) Local damage model with NRB, (c) 3D view of damage model (d) Stress modeshapes 

(e) FE loading in the thickness direction  

The stresses are calculated as follows: 

For symmetric modes: 

 

(d) Stress modeshapes 
(e) FE loading in the 

thickness direction 

-1 0 1
-0.8

-0.4

0

0.4

0.8

Normalized Amplitude

T
h
ic

k
n
e
s
s
 (

m
m

)

-1 0 1
-0.8

-0.4

0

0.4

0.8

Normalized Amplitude

T
h
ic

k
n
e
s
s
 (

m
m

)

Th
ic

kn
es

s 
(m

m
) 

Amplitude Amplitude 

S0 @ 250kHz A0 @ 250kHz 

σ
xy
 σ

xx
 

σ
xy
 

σ
xx
 

σ
xx
 

σ
xy
 

Loading line 

 

 

 

20 mm NRB 

NRB 

N
R

B
 

N
R

B
 

40 mm  

4
0

 m
m

  

(a) Pristine model 
(b) Local damage model with NRB 

(c) 3D view of damage model 



 

114 
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 (5.26) 

For antisymmetric modes: 

   

    

   

2 2 2 2 2

2 2

2
2 2 2

( , , ) 2 2 sin sin ( )sin sin

( , , ) 2 sin sin sin sin
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i x tA A
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x y t C d y d y e

x y t C d y d y e

x y t iC d y d y e
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 

 
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          







      
 

  

   
  

 (5.27) 

5.6.2 MESHING, IMPOSING NRB, AND VERIFICATION OF THE FE MODEL 

Non-reflective boundary (NRB) has been employed surrounding the local FEM 

model (as shown in Figure 5.3b) in order to avoid the reflections from the edges. The 

adequate non-reflective boundary is implemented following ref. [61] and is not discussed 

here for the sake of brevity. 

Eight-node structure elements (SOLID45) are used to mesh the plate, and spring-

damper elements (COMBIN14) are used to construct the NRB. In the thickness direction, 

0.4 mm mesh size is used, which is fair enough to capture the thickness mode shapes. Finer 

meshing is used in the crack region to accommodate the high-stress gradient and coarser 

meshing is used away from the crack and outside the sensing boundary. The finite element 

results are validated with the results obtained for Lamb wave incident at 0° degree in 

reference [68]. 

The analytical WDIC profiles for the Lamb wave and SH wave for a simple pristine 

plate was derived by Bhuiyan et al. [63], which showed that WDIC profiles for a pristine 

plate follow an ideal double-circled shape. The finite element result is compared with the 
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analytical result as shown in Figure 5.4. The finite element result shows very good 

agreement with the analytical result. 

 

 

Figure 5.4 Comparison between analytical and FEM results (a) WDICLW_LW (b) 

WDICLW_SH in polar coordinates (pristine plate). 

 

5.6.3 MODELING OF CRACKS IN THE RIVET HOLE 

Cracks in the rivet hole are modeled using the discontinuity at the adjacent pair of 

nodes along the cracks. There are actually two sets of nodes along the crack faces, and each 

set is representing the nodes on each face (Figure 5.5); the nodes are discontinuous along 

the crack faces. Two sets of nodes are adjacent to each other unlike the modeling of notch, 

where there is a small gap between those sets of nodes. Like the nodes, the solid elements 

are also separated along the crack faces. The modeling of the cracks in finite element using 

the above approach is good enough to model the actual cracks of rivet holes in the plate-

like structure [70]. 
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Figure 5.5 Crack modeling schematic. Two nodes along two crack-faces remained 

unmerged. 

 

5.6.4 SELECTION OF FREQUENCY DOMAIN FOR HARMONIC ANALYSIS 

The frequency domain of harmonic analysis was selected based on the dispersion 

curves shown in Figure 5.6. The frequency range corresponding to the fundamental Lamb 

and SH wave modes is selected in the present study. It enables us to avoid the complexities 

associated with higher Lamb and SH wave modes. However, at very low frequencies (<40 

kHz), the wavelength of the Lamb modes are very high (Figure 5.7) and requires very wide 

NRB, hence, requires more FEM computation resources. When incident fundamental 

Lamb wave modes (S0/A0) interact with the damage there could be non-propagating 

(evanescent) A1 modes present that die out at a certain distance from the source. It requires 

a longer distance to die out the non-propagating A1 mode of Lamb wave at very low and 

very high frequencies as shown in Figure 5.8. At higher frequencies (>900 kHz), the 

wavelength becomes very small and requires very fine mesh to capture the damage feature, 

thus, require more computation efforts. At higher frequencies, the higher modes (S1, A1, 

S2, A2 etc.) of Lamb and SH waves may also appear and make the analysis more complex. 

Considering these reasons, the frequency domain of 40 to 900 kHz with a frequency step 

of 2 kHz was selected for the harmonic analysis. 

Two crack faces 

hole 
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Figure 5.6 Dispersion curves for (a) Lamb wave and (b) SH wave for 1.6 mm thick 

aluminum plate 

 

 

 

Figure 5.7 S0 and A0 Lamb mode wavelength variation with frequencies for 1.6 mm 

thick aluminum plate 

S0 

A0 
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Figure 5.8 Die-out distance required for the non-propagating A1 mode 

The sensing boundary is located sufficiently far away from the crack so that all non-

propagating Lamb and SH scattered wave modes die out before they reach the sensing 

locations. Thus, the wave fields at the sensing locations around the rivet hole with cracks 

are the contributions of propagating Lamb and SH wave modes. 

Three sets of FEM simulations were carried out to find the contribution of the 

butterfly cracks to the WDICs: (a) Lamb wave interaction with rivet hole with butterfly 

cracks; (b) Lamb wave interaction with rivet hole; and (c) Lamb wave interaction with a 

pristine plate. In order to get the wavefield at the sensing boundary due to the presence of 

butterfly cracks in a rivet hole, the wave field of the hole was subtracted from the wave 

field of rivet hole with butterfly cracks. The wave field of the pristine plate provides the 

required direct incident wave fields in Eq. (5.16). The WDICs provide the indication of 

getting strong or weak signals around the damage. In order to readily identify those 

locations, the WDICs are plotted in polar coordinates. 

A1 

Horizontal line at 15 mm 
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5.7 DISCUSSION OF THE SIMULATION RESULTS  

After performing the FEM simulations, the WDICs are calculated using the 

mathematical expressions as discussed earlier. In this section, we discuss the WDICs in the 

form of a scatter cube i.e., their variation with frequency, incidence angle, and sensing 

angle values. This would give us a preliminary idea of what we should expect in the time 

domain signals. 

5.7.1 FORMATION OF SCATTER CUBE 

For each transmitting angle ( ), the WDICs are recorded at azimuth sensing angles 

( ) around the sensing boundary over the selected frequency domain. The results of the 

harmonic analyses of the 3D FEM model facilitate forming a “scatter cube” of complex-

valued WDICs. The three dimensions of the scatter cube contain the WDICs for various 

frequencies, angles of transmitting PWASs, and angles of sensing PWASs. These WDICs 

can describe the complicated 3-D interaction between the interrogating waves and damage, 

i.e., scattering and mode conversion. Since the problem of rivet hole with cracks is 

symmetric with respect to the midplane of the thickness direction, no antisymmetric wave 

mode is generated from incident symmetric Lamb wave and vice versa. 

5.7.2 DISTORTION OF WDIC PROFILE DUE TO THE PRESENCE OF CRACK  

The polar plot of WDIC (WDIC profile) of the scattered S0 Lamb mode and SH 

mode due to incident S0 Lamb mode at 9    is shown in Figure 5.9. An arbitrary 

frequency 486 kHzf   is selected for illustration purpose only. When there is no damage 

(pristine) in the plate, there is no scattered wave field and the WDIC profile is an ideal 

double-circled dipole.  
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Figure 5.9 Alteration of WDIC profiles of scattered Lamb and SH wave with different 

damage conditions 

When there is a rivet hole in the plate, the presence of scattered field makes 

distortion of the ideal shape of the WDIC profile as shown in Figure 5.9b. Note that the 

profile is symmetric about the line of incidence since the rivet hole is symmetric about the 

line of incidence. When there is damage (butterfly cracks) in the rivet hole, the additional 

scattered waves due to damage provides an additional distortion of the WDIC profile. The 

WDIC profile for hole+crack is not symmetric (Figure 5.9c) since the damaged rivet hole 

(hole+crack) is not symmetric about the line of incidence. In order to clearly identify the 

effect of damage in the plate, the scattered fields can be separated from the total fields.  

 

  2

  4

  6

10

190

20

200

30

210

40

220

50

230

60

240

70

250

80

260

90

270

100

280

110

290

120

300

130

310

140

320

150

330

160

340

170

350

1800

WDIC S0
S0

  2

  4

  6

10

190

20

200

30

210

40

220

50

230

60

240

70

250

80

260

90

270

100

280

110

290

120

300

130

310

140

320

150

330

160

340

170

350

1800

WDIC S0
S0

  2

  4

  6

10

190

20

200

30

210

40

220

50

230

60

240

70

250

80

260

90

270

100

280

110

290

120

300

130

310

140

320

150

330

160

340

170

350

1800

WDIC S0
S0

(b) Hole (c) Hole+Crack (a) Pristine (ideal) 

 

  

 

 

 
   

LW LW LW 

LW LW LW 

  2

  4

  6
  8

10

190

20

200

30

210

40

220

50

230

60

240

70

250

80

260

90

270

100

280

110

290

120

300

130

310

140

320

150

330

160

340

170

350

1800

WDIC S0
SHS0

  2

  4

  6

  8

10

190

20

200

30

210

40

220

50

230

60

240

70

250

80

260

90

270

100

280

110

290

120

300

130

310

140

320

150

330

160

340

170

350

1800

WDIC S0
SHS0

  2

  4

  6

  8

10

190

20

200

30

210

40

220

50

230

60

240

70

250

80

260

90

270

100

280

110

290

120

300

130

310

140

320

150

330

160

340

170

350

1800

WDIC S0
SHS0

 
 

 

LW LW LW 

 

 



 

121 

 

 

Figure 5.10 Subtracted WDIC profiles of scattered Lamb and SH wave to account the 

damage effect only 

 

To find out the scattered field due to the presence of hole, incident wave fields 

(wave fields due to pristine) needs to be subtracted from the total wavefield (incident + 

scattered) and the corresponding WDIC profile of only the hole is plotted in Figure 5.10a. 
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Similarly, to find out the scattered field due to the presence of only the crack, the 

scattered wave field of only the hole and the incident wave fields are subtracted from the 

total wave field which is due to incident field plus scatter from hole with crack. Figure 

5.10b shows the corresponding WDIC profile of scattered S0 Lamb wave and SH wave for 

only the crack. The WDIC profiles indicate that the magnitude of WDIC reaches to a larger 

value at certain azimuth angles  . 

 

5.7.3 WDIC VARIATION IN FREQUENCY DOMAIN FOR DIFFERENT AZIMUTHAL POSITIONS  

WDIC for a certain Lamb wave mode (S0 mode) incident from a particular 

direction ( 9   ) to the cracked rivet hole is shown in Figure 5.11. Five different 

azimuthal locations are picked arbitrarily to show the frequency domain variation of the 

WDICs. Note that at a certain location, a certain frequency of excitation provides the largest 

magnitude of WDIC. This frequency may be termed as “sensitive frequency” of that 

location. However, at a certain sensitive frequency, not all the azimuthal locations are 

necessarily equally sensitive. Thus the selection of the frequency of excitation as well as 

the location is important to capture the damage signature. By comparing all azimuthal 

location, it is possible to select a certain frequency that corresponds to the highest 

magnitude of the WDIC, for example, in this particular case, the star marked frequency 

( 538 kHzf  ) can be the most sensitive excitation frequency at location 5 (“most sensitive 

location”). 
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Figure 5.11 Frequency domain variation of WDICS0_S0 at different azimuthal positions 

( 9   ) 

 

 

Figure 5.12 Frequency domain variation of WDICS0_S0 for multiple incident directions 

5.7.4 WDIC VARIATION IN FREQUENCY DOMAIN FOR MULTIPLE INCIDENT DIRECTIONS 

The frequency domain variation of WDIC can be extended at the most sensitive 

locations for different directions of incident Lamb waves. Figure 5.12 illustrates all 

possible directions of incident Lamb waves for the multiple-rivet hole lap joint. This plot 

can be used to find out the optimum excitation frequency for a particular incident direction 
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of Lamb waves. For example, when S0 Lamb wave hits the cracked rivet hole at 27   , 

the excitation center frequency 610 kHzf  corresponds the highest WDIC.  

 

 

Figure 5.13 Frequency domain variation of WDICA0_A0 for multiple incident directions 

The similar frequency domain plots for scattered A0 mode can be produced from the scatter 

cube of A0 Lamb wave mode incident as shown in Figure 5.13. 

5.7.5 AZIMUTHAL VARIATION OF WDIC  

The polar plot refers to the azimuthal variation of WDIC and can be used to identify 

the locations where WDIC reaches a maximum. The azimuthal variation of WDIC for 

symmetric and antisymmetric Lamb wave incident at 27  to the rivet hole cracks are 

shown in Figure 5.14. As the frequency changes, the WDIC profile for both symmetric and 

antisymmetric Lamb wave changes. It is possible to get multiple sensitive locations around 

the damage for a certain frequency of transmitting signal. 
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Figure 5.14 Azimuthal variation of (a) S0_S0WDIC  (b) A0_ A0WDIC  at different 

frequencies 
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Sometimes, it may be important to classify the sensitive locations into two zones 

(forward and backward) because, depending on the application, there could be space 

limitations to install the sensors in a certain zone. In the problem of lap joint in real life 

structure, it is convenient to install the PWASs in the forward zone only and thus, the most 

sensitive locations in the forward zone will come into play for optimum design of the 

sensors. 

5.7.6 WDIC POLAR PLOTS FOR MULTIPLE INCIDENT DIRECTIONS  

Figure 5.15 shows the variations of WDIC profiles for different angles of incident 

S0 Lamb wave modes. For each angle of incident, the most sensitive frequency is selected 

for these polar plots and the most sensitive locations can be obtained based on the highest 

magnitude of WDIC of scattered S0 modes for each angle of incident. Those sensitive 

locations can be used to optimize the installation of the sensors around the multiple-rivet-

hole lap joints. Figure 5.15 shows the polar plots for incident directions from 0  to 90 . 

The results for 0  to 90   would be the same because of symmetry with respect to the 

line of incidence. Thus the all possible location of the actuator with respect to the rivet hole 

is considered in this analysis. It can be noticed that as the inclination increases, the 

magnitude of WDIC decreases. When the incident Lamb wave is in line with the cracks 

(   ), the damage becomes symmetric with respect to the line of wave incidence. 

Hence, the WDIC profile for     is symmetric about the line of incidence as shown in 

Figure 5.15. Though Figure 5.15 shows the WDIC for incident S0 mode only, the similar 

plots can be generated for A0 mode using the scatter cube of incident A0 mode. 
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Figure 5.15 WDICS0_S0 for various incident angles at most sensitive frequencies 

5.8 SIMULATED TIME DOMAIN SIGNALS 

The time domain signals vary with the selection of the frequencies and locations of 

the sensors. Three-count tone-burst excitation signal was applied to a 7-mm diameter 
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PWAS that was used as an actuator. The actuator was located at 100 mm away from the 

damage (rivet hole with butterfly cracks). The angular position of the sensor was varied 

around the damage. The radial distance from the damage to the sensor was kept at 30 mm. 

5.8.1 ILLUSTRATION OF SIGNAL EXTRACTION DUE TO CRACK 

The signal extraction process is illustrated in Figure 5.16. When there is only the 

rivet hole in the plate, the signal in the sensor is shown in Figure 5.16a. With the presence 

of cracks in the rivet hole, the sensor signal changes as shown in Figure 5.16b. By 

subtracting the two signals, the signals due to only the cracks can be obtained as shown in 

Figure 5.16c. This illustration is shown for a particular frequency of 538 kHz and when 

Lamb waves incident perpendicular to the rivet hole crack. 

 

 

Figure 5.16 (a) The baseline reference signal for the hole. (b) The signal due to Hole + 

Crack (c) Subtracted signal due to the crack only ( 538 kHzf  ,   ) 

5.8.2 DETERMINATION OF OPTIMUM PARAMETER FOR SOME EXAMPLE CASES 

In this present research, we considered a simplified case of the multiple-rivet-hole 

problem as shown in Figure 5.17 where the actuator is located at  . Later, some specific 

(a) 

(b) 

(c) 
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values of   are taken ( 9 , 18 , 27) for illustration. A single rivet hole is considered for 

determining the optimum location of the sensor and the optimum frequency of excitation. 

Furthermore, the rivet hole is considered located at sufficiently far away from the edge of 

the plate (the length, B, is large) so that: (1) the reflection from the edge dies out sufficiently 

before it reaches the sensor (2) the very low amplitude reflected signal, if any, would be 

seen in the trailing part of the main signal and can be easily discarded.  

 

 

Figure 5.17 A simplified case of the multiple-rivet-hole problem 

When there are multiple rivet holes, there will be mutual the interactions of the 

scattered waves among the rivet holes. When the plate edge is located close to the rivet 

holes, the plate boundary would act as a secondary source of the scattered waves and 

distance B would have an effect on the overall result. These complexities have not been 

included in this present study and will be focused in our future research. 
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5.8.3 OPTIMUM PARAMETER FOR LAMB WAVE INCIDENT AT 9    

Now we consider a case when the Lamb wave (S0 mode) incident on the damage 

at 9   . Only the sensing signal from the rivet-hole cracks is illustrated in Figure 5.18. 

Four different sets of parameters (frequency and location) are considered based on the 

analysis of scatter cube of complex-valued WDICs.  

 

(a) Set 1: 328 kHz, 355.5f     - corresponds to the low magnitude of WDIC 

(b) Set 2: 538 kHz, 355.5f     - corresponds to the highest magnitude of WDIC 

(c) Set 3: 728 kHz, 355.5f     - corresponds to a moderate magnitude of WDIC 

(d) Set 4: 538 kHz, 340f     - corresponds to a low magnitude of WDIC 

 

For the first three parameter sets, 1, 2, 3, the frequencies are changing while the 

location of the sensor is same. For set 4, the frequency is corresponding to the highest 

magnitude of WDIC while the angular location of sensor corresponds to a low magnitude 

of WDIC. It can be easily noticed from the Figure 5.18 that the parameter set 2 

( 538 kHz, 355.5f     ) provides the most noticeable crack signal picked up by the 

sensor. Thus the right frequency, as well as the right location of the sensor, is important to 

harness the damage information in the structure. For the Lamb wave incident at 9   , set 

2 has the optimum parameters and is the best choice for the NDE/SHM engineers. 
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Figure 5.18 Sensing signals for different sets of frequency-location (   ) 

5.8.4 OPTIMUM PARAMETER FOR LAMB WAVE INCIDENT AT    

Another case may be illustrated when the Lamb wave (S0 mode) hits the rivet hole 

at    which corresponds to one of the situations of the multiple-rivet-hole problem. 

The real-time domain signals are shown in Figure 5.19 for four different parameter sets. 

These parameter sets are selected based on the scatter cube analysis that was discussed in 

Section 5.7. 

(a) Set 1: 320 kHz, 350f     - corresponds to the low magnitude of WDIC 
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(b) Set 2: 486 kHz, 350f     - corresponds to the highest magnitude of WDIC 

(c) Set 3: 618 kHz, 350f     - corresponds to a moderate magnitude of WDIC 

(d) Set 4: 618 kHz, 75f     - corresponds to a low magnitude of WDIC 

By observing the time domain signal of Figure 5.19, the obvious selection of the 

parameter set is either (b) or (c), because both of them correspond to the most sensitive 

signal. Thus the excitation frequency of 486 or 618 kHz at the transmitter and the receiver 

sensor at   is the optimum design parameter set for detecting the cracks in the rivet 

hole. 

 

 

 

Figure 5.19 Sensing signals for different sets of frequency-location ( 18   ) 
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5.8.5 OPTIMUM PARAMETER FOR LAMB WAVE INCIDENT AT 27    

When the Lamb wave (S0 mode) is incident at, we choose four different parameters 

sets (frequency and location) based on the analysis of scatter cube of complex-valued 

WDICs. 

 

 

 

 

 

Figure 5.20 Sensing signals for different sets of frequency-location (  ) 

The four sets of parameters are shown below: 

(a) Set 1: 320 kHz, 348f     - corresponds to the low magnitude of WDIC 

(b) Set 2: 610 kHz, 348f     - corresponds to the highest magnitude of WDIC 
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(c) Set 3: 710 kHz, 348f     - corresponds to a moderate magnitude of WDIC 

(d) Set 4: 610 kHz, 292f     - corresponds to a low magnitude of WDIC 

In the first three parameter sets, 1, 2, 3, the frequencies are changing while the 

location of the sensor is same. In set 4, the frequency is corresponding to the highest 

magnitude of WDIC while the angular location of the sensor corresponds to a low 

magnitude of WDIC. It can be easily noticed from Figure 5.20 that, the parameter set 2 

( 610 kHz, 348f     ) provides the most noticeable crack signal picked up by the 

sensor. Thus, the right frequency, as well as the right location of the sensor, is important to 

extract the damage information from the structure. For the Lamb wave incident at 27   , 

set 2 has the optimum parameters and is the best choice for the NDE/SHM engineers.  

In this present study, the generalized procedure was illustrated followed by some 

specific examples. We may do a similar analysis for each rivet hole of the multiple-rivet-

hole problem and determine the optimum positions of the actuator and sensors. We can 

also optimize the required number of actuators and sensors, but that would require a future 

study. 

5.9 CONCLUSIONS  

The exact analytical formulation for wave propagation has been used throughout 

the structure, except for the local damage area, which was analyzed using the finite element 

method. In order to detect the crack in a multiple-rivet-hole lap joint, the Lamb waves have 

been impinging on the damage from all possible directions. Both symmetric and 

antisymmetric fundamental Lamb wave modes (S0 and A0) were used in the analysis. SH 

waves appeared in the scattered waves besides the Lamb waves. Due to the non-

axisymmetric nature of the problem, the wave damage interaction coefficient (WDIC) had 
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non-axisymmetric behavior around the damage. The scatter cubes were produced for the 

scattered waves to accommodate the 3D interaction of Lamb waves with the rivet hole 

cracks: frequency, incident direction, azimuthal sensing direction. From the frequency 

domain analysis and the azimuthal variation of the WDIC, the proper locations of the 

sensors and center frequency of excitation have been obtained through the demonstration 

of some particular cases. The physical time–domain signals were obtained using a 

piezoelectric transducer for different sets of frequency–location. The optimum selection of 

the location of the sensor and of the center frequency of excitation gave a strong signal that 

confirms a better detection of the cracks in the rivet hole. These optimum parameters can 

be used for making an algorithm of NDE/SHM unit for inspecting the multiple-rivet-hole 

lap joint. 
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CHAPTER 6 

MULTIPHYSICS FEM SIMULATIONS FOR FATIGUE-CRACK GENERATED

ACOUSTIC EMISSIONS VALIDATED BY EXPERIMENTS 

This chapter presents the multiphysics FEM simulation of fatigue-crack generated acoustic 

emissions captured by piezoelectric wafer active sensors (PWAS). PWAS are commonly 

used for detecting Lamb waves for structural health monitoring (SHM) applications. A new 

avenue of using the PWAS transducers for detecting the fatigue-crack related acoustic 

emission (AE) signals. These AE signals have relatively lower amplitudes than the 

actuator-generated wave signals of an active SHM system. Multiphysics 3D FEM 

simulations were performed with PWAS transducers under various dipole-loading 

configurations to simulate fatigue crack-related AE signals. The simulated results were 

validated by the experimental measurements. 

6.1 STATE OF THE ART 

The structural health monitoring (SHM) technology is increasingly used for the 

detection of progressive defects in critical aerospace structures [71]–[74]. SHM has been 

introduced for both active and passive damage identification for the real-time monitoring 

of the structures. Monitoring of AE signals from the progressive fatigue damage is 

categorized as passive online monitoring [48], [75], [76]. The AE signals from the fatigue 

crack have always been an interest to researchers [77]–[80]. However, the AE signals from 
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the fatigue crack are usually low-amplitude signals and challenging to detect using 

conventional AE sensors [81], [82]. 

Piezoelectric AE sensors such as PICO, S9225, WSA had been used to detect pencil 

lead break (PLB) simulated AE signals [83], [84]. They were also used for detecting the 

AE signals from impact damage [85], [86]. However, the AE signals from these sources 

were generally high-amplitude signals. They had higher-amplitude out-of-plane 

components and these AE sensors were also well-constructed to sense the out-of-plane 

wave motion. Thus the AE sensors could effectively sense the high-amplitude AE signals 

from these sources. However, the AE signals due to a fatigue crack in thin plate-like 

aerospace structures are much more complex than the simple PLB and impact damage 

signals [87]–[90].  

AE hits from the crack in a notched thick specimen were captured by the 

piezoelectric AE sensors [81]. However, the surface waves were dominant in these AE 

signals. AE signals from the fatigue damage in a round steel specimen were analyzed by 

Ould Amer et.al. [91]. Three clusters of elastic waveforms had been shown, one of which 

had very low energy content as compared to the other two. However, the fatigue loading 

cycle in relation to the AE signals was not discussed. Analytical analysis showed that the 

formation of a penny-shaped crack in the aluminum alloys emits acoustic waves [92]. They 

simulated different modes of crack formation by a sudden drop of the stress on the crack 

surface.  

The experimental analyses supported by numerical simulations provide deeper 

insight of the elastic wave propagation phenomena [93]–[95]. Many theoretical works were 

developed to correlate the AE waveforms to their sources [96]–[98]. In seismology, the 



 

138 

moment tensor approach was used to describe the movement of a fault during an 

earthquake [99]–[101]. The moment tensor comprises nine generalized couples including 

three dipoles. Buried monopole and dipole with various step functions and fracture 

mechanics-based methods were used to model the AE source [102]–[104]. However, the 

interaction of the AE waveform with the crack boundary in a thin plate is yet to be analyzed. 

In most cases, researchers rely on the finite element (FE) methods to analyze the near-field 

interaction [105]. The FE methods are the most effective tool to estimate the near acoustic 

wave field, however, computationally expensive for far-field estimation [86]. 

Piezoelectric wafer active sensors (PWAS) were commonly used for active SHM 

applications [10], [106]. These sensors successfully captured the guided waves in active 

detection technique [107], [108]. The active detection method required an user-defined 

excitation signal where the high-amplitude signals can be used to excite the structure. The 

potential advantage of using the PWAS transducer is that it can measure the in-plane and 

out-of-plane wave motion through the wafer strain sensing mechanism [10]. However, the 

use of PWAS transducers in application to fatigue-crack related AE signals are yet to be 

analyzed. Assessment of the PWAS transducers to capture the AE signals using 

multiphysics FEM simulation and experiment would be of interest to the SHM and NDE 

community. 

6.2 SCOPE OF THE CHAPTER 

This chapter focuses on the multiphysics simulation of fatigue-crack generated AE 

signals. Dipoles placed at the crack tips were used to simulate the AE event. The resulted 

elastic waves were captured by simulated PWAS transducers. The acoustic wave 

interaction with crack geometric feature was studied. The 3D multiphysics modeling, 
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fatigue crack modeling, and thickness-wise assignment of dipoles are discussed. The effect 

of rise time, dipole loading orientation, and distance of PWAS transducers are studied. 

6.3 DESCRIPTION OF 3D MULTIPHYSICS FEM SIMULATION  

Multiphysics simulations were performed on the three-dimensional FE models by 

combining the physics of piezoelectricity and structural dynamics. The PWAS transducers 

are modeled simultaneously with the host structure to accomplish the multiphysics 

simulation. The transient FE analysis was performed to obtain the time-domain signals and 

the acoustic wave propagation in the structure. Aircraft grade aluminum 2024-T3 material 

properties were used for the host structure. The modulus of elasticity of the material, 

E=73.1 GPa; Poisson’s ratio, ν= 0.33; the density, ρ=2780 kg/m3; and the shear wave speed, 

cs = 3140 m/s.  

In this research, numerous models were developed to study the effect of different 

parameters. A comprehensive description is given below for a model that contained all the 

parameters such as two PWAS transducers, a 20-mm fatigue crack, a dipole perpendicular 

to the crack, and non-reflective boundaries. This description may serve as a guide to 

perform AE modeling with fatigue cracks. One can easily generate other models by 

changing the parameter of interest such as dipole loading characteristic quantity (rise time), 

dipole loading orientation, number of PWAS transducers, crack length, and model 

geometry. The step by step description of the comprehensive model is discussed below: 

6.3.1 PRACTICAL ASPECTS OF THE MODEL 

The geometry of the model is shown in Figure 6.1. A thin (thickness = 1 mm) square 

plate with 120 mm side was modeled using ANSYS 15.0. Since it has been an interest for 

the fatigue crack-related AE signal simulation, a fatigue crack was introduced in the plate. 
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In practice, fatigue crack always initiates from some kind of discontinuities such as holes, 

notch, joints etc. By keeping this in mind, a small 1-mm diameter hole was modeled at the 

center of the plate. A 9.5-mm fatigue crack was modeled on each side of the hole. Thus, 

the total length (2a) of the crack was 20-mm (tip to tip). The host structure was meshed 

with eight nodes SOLID45 structural element. This geometry was chosen by keeping in 

mind that we could run an AE-fatigue experiment to validate the simulation results. 

 

6.3.2 MODELING OF THE FATIGUE CRACK 

There are numerous ways to model a fatigue crack in FEM [109], [110]. We 

adopted a popular and simpler method to model the crack. The crack was modeled by using 

the discontinuity at the adjacent pair of nodes along the two crack surfaces. Two sets of 

nodes exist along the crack faces and each set represents the nodes on each face. The nodes 

are discontinuous along the crack faces and there was no interaction between these nodes. 

Two sets of nodes were adjacent to each other and the solid elements were separated along 

the crack faces. This type of modeling represents a crack opening situation while crack 

grows near the peak load of the fatigue loading in practice. The modeling of the cracks 

using the above approach is fair enough for FE modeling of actual cracks with a small hole 

in a plate-like structure [70], [109]. The crack was symmetric about the center hole as 

shown in Figure 6.1a. 
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Figure 6.1 The meshed FEM model with in-plane dipole excitation: (a) overall view 

(obtained directly from ANSYS); (b) zoomed in view of crack tip area showing dipole 

loading; (c) side view showing the thickness-wise assignment of dipole components 

6.3.3 MODELING OF THE PWAS TRANSDUCERS 

Two PWAS transducers were modeled on the host aluminum structure. The size of 

each PWAS was 7-mm. One PWAS was modeled in the near-field of the crack and the 

center of the PWAS was at 5-mm from the crack. The other PWAS was modeled in the 

far-field of the crack and the center of the PWAS was at 25-mm from the crack. The PWAS 

was meshed with eight node SOLID5 coupled field element. This element with properly 

selected coupled field options can handle the coupling of piezoelectric and structural 

properties. The thickness-wise polarization was chosen for the modeled PWAS. The 

following material properties were chosen for PWAS transducers. 

(a) Overall view of the meshed FEM Model 

(b) Dipole loading (top view) 

(c) Dipole loading 

(thickness view)  

PWAS 1 

PWAS 2 

20-mm fatigue crack 

Non-reflective boundary (NRB) 

NRB 

NRB NRB 
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where C  is the elastic stiffness matrix,   is the dielectric matrix, and e  is the piezoelectric 

stress matrix. 

The piezoelectric transduction of the PWAS material gave the voltage signal 

directly as an output. Any mismatch due to meshing should be avoided for better FEM 

results. Thus, the PWAS and the underneath host structure was meshed using the same 

mesh topology. This ensured that each node of the PWAS element coincided with the 

corresponding node of the host structure element. The nodes between the PWAS element 

and the structural element are then merged together to simulate a perfect bonding between 

PWAS and host structure. One can model any additional layer of bonding between PWAS 

and structure to obtain better accuracy in comparison with experimental measurements. 

However, one should be careful of the thickness and material properties of the bonding 

layer. The additional accuracy due to bonding effect may easily be destroyed by improper 

aspect ratio or mismatch of the bonding layer element size, PWAS element size, and host 

structure element size. For simplicity, the bonding layer modeling was not included in the 
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current model. To know more about bonding effect, the readers are suggested to review the 

work of Santoni-Bottai [111], and Lin et al. [112] in our LAMSS group. 

6.3.4 MODELING OF THE ACOUSTIC EMISSION EVENT AT THE CRACK TIP 

The acoustic emission source at the crack tip was modeled using the dipole concept 

suggested by Hamstad et al. [102] and Prosser et al. [94]. The dipoles are basically the 

components of the moment tensor as discussed by Aki and Richards [99]. The moment 

tensor components were used to simulate the seismological acoustic events. After gaining 

knowledge, background, and insight from the previous research, the dipole concept was 

extended to the current research [113], [114]. Two dipoles were used to simulate the AE 

event due to fatigue crack growth. The dipoles were applied at the tip of the crack as shown 

in Figure 6.1b. The dipoles were placed at one element distance from each other to 

represented a unit growth of the fatigue crack. Since the crack in the thin plate usually 

happens along the entire thickness, the dipoles were placed along the thickness as a line 

dipole source (Figure 6.1c).  

Each dipole consisted of two self-equilibrating point forces of equal strengths. The 

magnitude of the point force follows a sharp rising step function. This type of step function 

represents a wideband AE source. The rise time was the characteristic parameter of the step 

function. A half-cosine bell rising step function with 1.5 μs rise time was used in the 

modeling. Following the ref. [102], mathematically, the half-cosine bell step function, ( )F t  

can be expressed as 

 
0.5(1 cos( / )); 0

( )
1;

t t
F t

t

  



  
 


 (6.4) 

where   is the rise time, t  is the time variable. 
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The time variation and the frequency spectrum of the half-cosine bell step function 

are shown in Figure 6.2. This type of the smoothing step-up function was used for the 

modeling since it provided a better simulation of the AE event as mentioned in ref. [102]. 

 

 

Figure 6.2 The dipole loading used for simulating the AE event at the crack tip. (a) A 

typical half-cosine bell step function and its frequency response (rise time = 1.5 µs), (b) 

the half-cosine bell step-up from 0 to 1 in the amplitude scale.  

(a) 

(b) 
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The meshing followed the criteria mentioned in ref. [102] to achieve better FEM 

results. The non-reflective boundary (NRB) was used in the FEM model to avoid the 

reflections from the plate edges. The NRB was modeled using the criteria mentioned in ref. 

[61]. 

6.4 MULTIPHYSICS FEM SIMULATION RESULTS 

The multiphysics simulation results showed that the acoustic event at the crack tip 

generated acoustic waves in the structures. These acoustic waves were captured by both 

PWAS transducers as AE signals. The simulated results can be discussed in two significant 

aspects as follows: 

6.4.1 ACOUSTIC EMISSION PROPAGATION AS GUIDED WAVE  

The effect of the AE event at the crack tip propagated as guided waves in the plate. 

Snapshots at various simulation times are shown in Figure 6.3. The snapshots are 

illustrating the following: (a) the acoustic wave traveling toward PWAS 1, (b) the waves 

arriving at PWAS 2 and the second tip of the crack, (c) the secondary AE event generated 

at the crack-tip, (d) the reflected AE waves traveling backward to the first crack tip, (e) the 

reflected AE waves hitting again PWAS 1, and (f) the back and forth AE waves along the 

crack followed by another secondary AE event at the second crack-tip. The AE event 

occurred at the original crack-tip is referred to as “primary AE event”. The resulting AE 

waves travel in the plate. The acoustic waves hit the near-field PWAS 1 and then passed it 

as the time progressed. Subsequently, the guided waves hit the far-field PWAS 2 and the 

other crack-tip. When the waves hit the second crack-tip, another AE event was generated; 

this is referred to as “secondary AE event”.  
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The back and forth motion of the acoustic waves may generate crack resonance as 

we verified with experimental measurement in a recently published paper [115]. Both 

primary and secondary AE events may generate the AE signals that were captured by the 

two PWAS transducers. It was observed that the acoustic waves propagate with Rayleigh 

surface wavespeed along the crack surface. The near-field PWAS may sense complex 

guided wave signals as it was placed near the source. The far-field PWAS may sense fully 

developed AE signals propagated throughout the plate. 

 

 

Figure 6.3 The animation snapshots of the acoustic wave propagation at different time of 

simulation.  

6.4.2 SIMULATED AE SIGNALS CAPTURED BY TWO PWAS TRANSDUCERS 

From the simulation, it was observed that both PWAS transducers captured the AE 

signals. The time domain signals of the two PWAS transducers are shown in Figure 6.4a,b. 

The fast Fourier transform (FFT) was performed to show the frequency spectra of the two 

PWAS 2  

PWAS 1  

(a) t = 4.6 µs  (b) t = 8.4 µs  (c) t = 9.4 µs  

(d) t = 10.4 µs  (e) t = 11.6 µs  (f) t = 29.8 µs  
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signals. Figure 6.4 shows that the highest peak of the PWAS 1 signal is at 50 kHz. The 

next consecutive peaks are located at 100, 200, 320 kHz. 

 

Figure 6.4 Multiphysics simulated AE signals from the two PWAS transducers: (a) near-

field PWAS 1 (b) far-field PWAS 2 

 

(a) 

Simulated AE signal (PWAS 1) 

 

50, 100-kHz 

 

(b) 

Simulated AE signal (PWAS 2) 

50,100-kHz 

200, 320, 450-kHz 
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The highest peak of the PWAS 2 signal is at 200 kHz frequency. The next 

consecutive peaks are located at 50, 100, 320, 450 kHz. The higher frequency peaks such 

as 100, 200, 320, 450 kHz seemed to increase in amplitude as compared to the 50-kHz 

frequency peak. This may be because these high-frequency signals may become fully-

developed as they travel away from the source. 

6.5 VALIDATION OF MULTIPHYSICS SIMULATION RESULTS WITH 

EXPERIMENTAL MEASUREMENTS  

6.5.1 DESCRIPTION OF EXPERIMENTAL SETUP 

To validate the multiphysics simulation results, an in-situ AE-fatigue experiment 

was designed with two PWAS transducers [116]. The AE signals emanated from the 

fatigue crack was measured with simultaneous measurement of the fatigue loading. 

Aircraft grade aluminum Al-2024 T3 material was used in the specimen. The dimension of 

the specimen was 305 mm length, 100 mm width, and 1 mm thickness. Wave-absorbing 

modeling clay boundary was used in the experiment as non-reflective boundary. The 

schematic diagram of the experimental setup is shown Figure 6.5a. 

For fatigue crack initiation, a small 1-mm hole was drilled at the center of the 

specimen and cyclic fatigue loading was applied by the MTS machine. The axial tensile 

cyclic fatigue loading was varied sinusoidally between 2.3 kN and 23 kN. These load levels 

gave a stress level of 6.5% and 65% of the yield limit (345 MPa) of the material as 

commonly used for practical aircraft testing for structural integrity [115]. A 20-mm fatigue 

crack was grown to mimic the simulation condition. During the initial crack experiment, 

no AE instrumentation was employed as shown in Figure 6.6a.  
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Figure 6.5 (a) Schematic diagram of the specimen with fatigue crack and a PWAS 

transducer bonded at 5-mm and 25-mm from the crack (b) Actual specimen with two 

PWAS transducers bonded at 5-mm and 25-mm from the crack. 

 

 

Figure 6.6 (a) Actual test coupon in the MTS grip without any AE instrumentation for the 

initial 20-mm crack (b) Instrumented Test coupon in the MTS grip for capturing fatigue-

crack related AE signals. Two PWAS transducers were used to capture the AE signals. 

Wave absorbing clay boundary 

Plate specimen 

5 mm PWAS 1 

20-mm Fatigue crack 
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PWAS 2 
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The specimen with 20-mm fatigue crack was then equipped with two PWAS 

transducers, wave absorbing clay boundary, and AE instrumentation system. The diameter 

of each PWAS transducer was 7 mm. Two PWAS transducers were bonded at 5-mm and 

25-mm from the crack (Figure 6.5b) thus mimicking the simulation configuration. The 

instrumented specimen was then continued under fatigue loading as shown in Figure 6.6b. 

A band-pass filter (30 kHz – 700 kHz) was used to avoid any interference from the low-

frequency noises such as hydraulic loading, MTS grips, and mechanical vibrations. A 40dB 

preamplifier was used in conjunction with the band-pass filter as recommended by the 

manufacturer of the AE system. Under the axial cyclic loading, the fatigue crack grew from 

20-mm to 25-mm. For the triggering of the AE signal measurement, a threshold was chosen 

at 2 dB above the environmental noise level. 

6.5.2 FATIGUE CRACK GENERATED AE SIGNALS CAPTURED BY THE TWO PWAS 

TRANSDUCERS 

The AE signals from the fatigue crack were captured by the two PWAS transducers. 

Typical AE signals coming from the same AE event captured by the two sensors are shown 

in Figure 6.7. The time domain waveform and their frequency spectra of the AE signals of 

a particular AE event are illustrated in Figure 6.7. The same AE event was captured by the 

two PWAS sensors. The amplitude of the near-field PWAS 1 signal was higher than that 

of the captured the far-field PWAS 2 signal, as expected. This is because of the geometric 

spreading of the acoustic wave. The frequency spectra of the two signals (Figure 6.7) show 

some considerable differences. The highest peak of PWAS 1 signal is located at 50 kHz. 

There are also other peaks at 100 kHz and 170 kHz. On the PWAS 2 frequency spectrum, 
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the highest peak is located at 100 kHz. There are also some other peaks at 50, 170, 220, 

320 kHz frequencies.  

 

Figure 6.7 Experimentally measured AE signals by the two PWAS transducers: (a) near-

field PWAS (b) far-field PWAS. 

6.5.3 COMPARISON BETWEEN THE MULTIPHYSICS SIMULATION VS EXPERIMENTAL 

RESULTS 

The multiphysics simulation and the experimental study suggested that the PWAS 

transducer were capable of sensing the AE signals. The experimental results show the 

agreement with the simulation results in the following aspects. 

6.5.3.1 The Lower Amplitude Signals as the AE Waves Travel Away from the Crack 

The multiphysics simulation showed that the amplitude of the AE signal captured 

by far-field PWAS 2 was lower than that of the AE signal captured by near-field PWAS 1. 

The same observation was found true for the experimentally measured AE signals. This is 

intuitive and expected for any guided wave generated from a point source in 2D geometry. 

Thus, we may conclude that the AE signals travel as guided waves in the structure. Besides, 

we may construe that the experimentally measured AE signals were generated from the tip 

of the fatigue crack. 

(a) (b) 

Time-domain signal-PWAS 2 Time-domain signal-PWAS 1 

50, 100-kHz 50, 100-kHz 

170, 220, 320-kHz 
170-kHz 
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6.5.3.2 The Evolution of the Higher Frequency Contents of the AE Signal 

The multiphysics simulation and the experiment both showed the first two peaks of 

the AE signals as 50 kHz and 100 kHz. Both near-field and far-field PWAS transducers 

captured these two peaks. In the frequency spectra of the near-field PWAS 1 signals, 

simulation and experiment both showed the highest peak as 50 kHz.  

Multiphysics simulation showed that some higher-frequency contents of the AE 

signal were developing as the acoustic waves were traveling away from the source. For 

example, in Figure 6.3, the 100, 200, 320 kHz frequencies gained amplitude as the AE 

signal traveled to far-field PWAS 2. The experimentally measured AE signals also showed 

similar trends on the higher frequencies. For example, in Figure 6.7, 100, 170, 220, 320 

kHz frequencies gained amplitude as the AE signal traveled to far-field PWAS 2. This was 

not so intuitive. Thus, to capture all the frequencies of the AE signal, the sensor should be 

installed in such a way that the AE signals have enough room to become fully developed 

signals. 

6.5.3.3 Discussion of the Differences in Simulation and Experimental Results 

Besides similarities between the simulation and experimental AE signal, we also 

observed some differences. The simulated near-field PWAS signal showed some frequency 

peaks at 200, 320 kHz. These frequency peaks were not so dominant in the experimental 

near-field PWAS 1 signal. Also, on the far-field AE signal, the 450 kHz peak was observed 

in the simulation but not in the experimental signal. There could be several reasons for 

these differences such as the geometry of the actual fatigue crack was not perfectly straight, 

the crack may not happen entirely throughout the thickness, one component of moment 

tensor may not be enough to assume in the simulation. 
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Despite the differences discussed above, the multiphysics simulation results were 

in very good agreement with the experimental results. The main objective, which was to 

assess the capability of PWAS transducer to capture the low-amplitude fatigue crack-

related AE-signals, was well-supported by both multiphysics simulation and the 

experimental measurement. 

6.6 EFFECT OF RISE TIME ON THE SIMULATED AE SIGNALS 

 

 

Figure 6.8 Effect of rise time on the simulated AE signals.  

The rise time influences the simulated AE signals. In general, as the rise time 

decreases the higher frequency contents of the signals increases. It should be noted that 

shorter rise time needs higher computational time. This study was performed to understand 
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the behavior of different types of AE signals as we observed during the experiments. This 

gave us an idea that among many parameters of the simulations, the rise time plays a vital 

role in simulating various AE signals. The AE signals corresponding to two rise times (0.75 

µs and 1.5 µs) are plotted in Figure 6.8. 

6.7 EFFECT OF DIPOLE ORIENTATION IN THE SIMULATED AE SIGNALS 

 

 

Figure 6.9 The meshed FEM model with in-plane dipole excitation: (a) overall view; (b) 

top view zoomed into crack tip area showing dipole loading; (c) side view showing the 

thickness-wise assignment of dipole components, (d) simulated AE signals 

(a) Overview of the FEM model with 

dipole parallel to the crack 

NRB -Non-reflective boundary 

(d) Simulated 

AE Signals 
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Another major contributing factor to different AE signals is the dipole orientation. 

Simulated AE signal corresponding to a dipole parallel to the crack is shown in Figure 6.9, 

which shows that the simulated signals contain higher frequencies than that for the 

perpendicular dipole discussed earlier. These factors (rise time and dipole orientation) may 

be considered for simulating various types of AE signals as we may encounter in practice. 

6.8 CONCLUSION 

Piezoelectric wafer active sensors (PWAS) successfully captured the fatigue crack-

related acoustic emission (AE) signals. Both multiphysics simulations and experiments 

supported this result. The fatigue crack generates low-amplitude AE signals as it grows. 

The AE signals appear in every cycle of the fatigue loading. This indicates that the AE 

events happen at every cycle as the fatigue crack grows. The AE hits provide the global 

information of the physical problem whereas the AE signal analysis provides the detail 

information of the physical system. The effect of the crack-tip AE event travels as guided 

acoustic waves throughout the plate. The AE signals show the geometric spreading of the 

energy and associated reduction of amplitudes as expected in 2D traveling guided waves. 

The distance of the PWAS transducer has an effect on the sensed AE signals. Near-field 

PWAS captures higher amplitude AE signals than the far-field PWAS. Higher-frequency 

content of the AE signals seems to evolve as the AE waves travel away from the crack. 

The effect of rise time and dipole orientation has been also investigated. We found that 

these two factors significantly affect the simulated AE signals. Thus, these factors may be 

used to simulate various types of AE signals depending on applications. 
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CHAPTER 7  

PHYSICS OF MATERIALS BASED ANALYSIS OF AE SIGNALS FROM IN-SITU AE-

FATIGUE EXPERIMENTS  

This chapter mainly focused on physics of materials based experimental analysis of 

acoustic emission (AE) waveforms emanating from fatigue cracks. This was accomplished 

by simultaneous measurement of all possible physical events such as fatigue load, strain, 

AE, and crack growth. These measurements were synchronized in time to interpret the 

physics of the AE signals. The design of test plans and procedures are discussed. Proper 

AE instrumentation was used to capture the AE signals from the growing crack. An in-situ 

microscope-camera and a high-resolution video camera with extension tubes were installed 

on the MTS column to optically monitor the fatigue crack growth. The crack growth was 

observed from centimeter range all the way to micrometer range. Multiple sensor types 

were used for capturing AE signals; the sensor performances were compared. Many such 

in-situ experiments were designed and conducted to discover different aspects of the AE 

signals. In this chapter, three major findings from these in-situ AE-fatigue experiments are 

discussed:  

(1) Sensor effect on the AE waveforms 

(2) Various AE waveform groups with fatigue load evolution 

(3) Distinguishing crack growth related AE signals from crack rubbing/fretting 

related AE signals 
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7.1 INTRODUCTION AND STATE OF THE ART 

The study of metal fatigue has always been an interest to the engineering 

community [117]–[121]. Acoustic emission (AE) technique had been used to monitor 

progressive defects such as fatigue crack of engineering structures [122]–[124]. 

Researchers in nondestructive evaluation (NDE) and structural health monitoring (SHM) 

used AE as a passive method for the detection of structural damage [81], [84], [125]. This 

method had been tested on metallic, concrete, and composite structures [82], [126], [127]. 

AE monitoring had also been used for micro-damage evolution in human bones [128]. 

However, most of them focused on AE-hit analysis to assess the structural damage. One of 

the major concerns in analyzing the acoustic emissions was that a simple fatigue 

experiment could generate a huge amount of AE data that inhibited a detailed analysis of 

the AE waveforms [129]. 

A statistical Bayesian approach was developed to analyze the huge amount of AE 

data by Agletdinov et. al. [130]. The AE hit amplitude and cumulative signal strength have 

been used for capturing damage evolution under static loading in concrete specimens [131]. 

Nam and Mal [132] emphasized the importance of analyzing the AE waveforms and 

suggested that the AE waveforms could provide much more information than just hit-based 

statistical analysis. They identified three types of elastic waves during a fatigue experiment 

on aluminum alloy specimen. However, no relation between the fatigue loading and the 

acoustic waves was investigated. 

Small fatigue crack growth had been investigated by various methods [133]–[136]. 

The dynamics of multi-scale deformation mechanism in the materials had been explained 

by using digital image correlation methods [137]. A dislocation-based crack growth model 
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was used to investigate crack initiation and growth in aluminum alloys [135]. Theoretically, 

it had been shown that the crack formation in aluminum alloys emitted acoustic waves [92]. 

Experiments and simulation were also performed to detect the fatigue crack using 

acoustic emissions [77]–[79], [85], [90], [138]. The AE signals can be detected by using 

surface mounted piezoelectric transducers. Both experiment and multiphysics simulation 

proved that the piezoelectric wafer active sensors (PWAS) successfully captured the AE 

signals [108], [116]. Acoustic guided wave approaches were used to characterize and 

localize the defects in thick steel plates, aluminum alloys, and welded joints [139]–[142]. 

Fatigue crack length estimation by using the AE signals had been attempted [115], [143].  

The issue of mechanical joint (bolt connections) related fretting AE noise was 

considered in the past [144], [145]. These fretting noises were separated from the valid AE 

signals by comparing the AE events of pre and post lubrication in the mechanical joints. 

They showed that the load position of the AE event may help interpreting the sources of 

the AE signals. They used autocorrelation lag and statistical measure (histogram of mean, 

standard deviation, skewness, and kurtosis) based pattern recognition to address the critical 

AE signals. They successfully separated the fatigue crack AE signals into three clusters. 

There are other pattern recognition methods developed for various applications [146]. The 

AE pattern recognition method had been attempted to use for the crack monitoring in 

pressure vessels [147], [148] and aircraft structures [149]. 

Most of the prior work so far primarily focused on the hit-driven statistical methods. 

In contrast, a few authors, including the current one, prefer the physics-based approach and 

hence directed their attention to understanding the origin and causation of the wave signals 

recorded by the AE sensors and developing the computational models to assist this 

understanding process. 
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7.2 SCOPE OF THE CURRENT RESEARCH 

There are two main phenomena that may be related to AE generation during fatigue 

crack growth under cyclic fatigue loading: (1) crack initiation and incremental propagation 

and (2) fretting, rubbing and clapping of the crack faying surfaces. The first one is referred 

to as “crack growth” events and the second one is referred to as “non-crack growth” events. 

Both types of events may produce AE waves. The main issue is how can one distinguish 

the AE signals from the crack events from the non-crack events. The ability to gain 

understanding of the unique markers in the AE signals to allow us to positively identify 

crack events and separate them from non-crack events that also produce elastic wave 

signals that are picked up by the AE sensors.  

With our physics-of-materials based approach, we found that a fatigue crack 

advancing in a thin metallic plate generates AE signals that possess diverse and complex 

spectral signatures. These spectral signatures are highly related to the physical changes 

undergoing in the material. The main issue of distinguishing between crack events and non-

crack events has been resolved. With the scientific process adopted in this research, several 

aspects such as sensor effect, several waveform groups identification, and AE source 

localization were investigated as discussed next. 

7.3 SENSOR EFFECT ON THE AE WAVEFORMS 

Six sensors were used to study the sensor effect: (1) two miniature AE sensors 

model - S9225 from PAC MISTRAS Inc., (2) two miniature AE sensors model - PICO 

from PAC MISTRAS Inc., and (3) two piezoelectric wafer active sensors (PWAS) [150]. 

First two sensor types are commercially available; they sense mostly out-of-plane wave 
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motion. The third type is an in-plane strain sensor which was customized in our lab for 

fatigue AE sensing. 

7.3.1 IN-SITU AE-FATIGUE EXPERIMENTAL SETUP 

In-situ AE-fatigue experiment was designed to measure the AE signals from the 

fatigue crack growth under application of cyclic axial fatigue loading. A commonly used 

material for fatigue-prone aircraft components, aluminum Al-2024 T3, was used to make 

the test coupons. A thin plate-like specimen geometry was designed and manufactured. 

The specimen dimensions were 305 mm length, 100 mm width, and 1 mm thickness. This 

specimen was relatively longer and wider than typical dog-bone shaped narrow specimens 

(25-mm width) that were tested initially. The main purpose of the bigger specimen was to 

grow longer fatigue crack before fracture and thus better resemble the actual situation in 

aerospace structures. The longer fatigue crack growth would generate more AE waves. 

Practically, it would represent a bigger structure where edge-boundary reflected waves 

diminish before they reach to the sensors. Furthermore, the bigger specimen would allow 

using a wave-absorbing clay boundary around the area of interest to minimize the edge 

reflection from the plate edges. The repeatability of the experimental results was confirmed 

by testing three identical specimens under the same loading condition. One of such 

experiments is discussed below. 

The overall fatigue experiment was conducted in two main stages: first stage and 

second stage. In the first stage, a small 1-mm diameter hole was drilled at the center of the 

test specimen. A hydraulic MTS machine (manufacturer: MTS Systems Corporation) was 

used to apply the fatigue loading to the test specimen. The specimen was mounted on the 

MTS grip with appropriate grip pressure and axial tensile cyclic fatigue loading fatigue 
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loading was applied. The pictorial representation of the experimental setup for initial 

fatigue crack generation without any AE instrumentation is shown in Figure 7.1. The load 

level was sinusoidally varied between a maximum and minimum value maintaining an R-

ratio (
min max/  ) of 0.1. The minimum and maximum load levels (2.2 kN and 22 kN) were 

calculated based on the stress level of 6.5% and 65% of the yield strength of the material 

(345 MPa), respectively. These load levels were selected since they are commonly used 

load level in practical aircraft testing [151], [152]. The loading rate was 4 Hz. The fatigue 

crack was initiated from the hole after about 28,000 fatigue cycles. A 20-mm marking was 

used to track the fatigue crack growth. When the fatigue crack touched the 20-mm marking, 

the first stage of the experiment was stopped and prepared for the second stage of the 

experiment. 

 

 

Figure 7.1 Test specimen on the MTS machine for initial 20-mm fatigue crack generation 
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In the second stage of the experiment, the specimen was equipped with AE 

instrumentation. The specimen was instrumented with AE sensors and the wave-absorbing 

clay boundary. Six AE sensors were bonded to the specimen. On one side of the specimen, 

there were two S9225 sensors and a strain gauge. On the other side of the specimen, there 

were two PWAS transducers and two PICO transducers. There were only four channels 

available in the AE system. Thus, we used only four sensors at a time to capture the AE 

signals. The fatigue loading was continued at a slower rate (0.05 Hz) and the loading level 

was reduced to 1.23 kN - 12.3 kN. These settings allowed fatigue crack growth in a 

controlled manner.  

The fatigue crack was grown from 20-mm to 30-mm. The strain gauge was used to 

monitor the strain which was then converted into the load. This allowed monitoring directly 

the load applied to the specimen. Even though there was a load monitoring from the MTS 

computer connected to the load cell of the MTS frame, we considered that the load 

information taken directly from the specimen would give better results for synchronizing 

AE with fatigue loading. There were two purposes for bonding the strain gauge to the 

specimen: (1) bonding at 40-mm from the crack would give far-field loading information 

directly from the specimen and (2) acquiring loading data by AE system by routing the 

strain output to AE machine.  

Three parallel measuring systems were used simultaneously during the AE-fatigue 

experiment: (a) fatigue loading by the MTS machine, (b) AE and load measurement by the 

Mistras AE system, and (c) optical fatigue crack growth measurement by a microscope 

camera and a high-resolution video recorder with extension tubes.  



 

163 

 

Figure 7.2 Schematic diagram of the experimental setup with two PWAS and two S9225 

AE sensors. 
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Precise synchronization of fatigue load with AE measurement was possible because 

the AE recording and the load recording was performed by the same AE instrumentation 

system. A preamplifier with a built-in band-pass filter (30 to 700 kHz) was used with each 

sensor. A 40-dB gain was selected for the preamplifiers. Thresholds of the sensors were 

selected just above at 2 dB, the environmental noise level. Higher sampling rate (10 MHz) 

was chosen to capture the high-frequency AE signals. 

7.3.2 AE SPECIMEN INSTRUMENTED WITH PWAS AND S9225 AE SENSORS 

First, the experimental schematic and results from PWAS and S9225 are discussed; 

then, we will discuss that from PWAS and PICO. The schematic diagram of the 

instrumented specimen with two PWAS and two S9225 is shown in Figure 7.3a. The 

diameter of the PWAS transducer was 7-mm and the diameter of the S9225 sensor was 

3.5-mm. PWAS and S9225 sensors were bonded symmetrically about the crack. The near-

field PWAS and S9225 were bonded at 5-mm from the crack and the far-field PWAS and 

S9225 were bonded at 25-mm from the crack.  

The near-field sensors would pick up low-amplitude AE signals which would 

otherwise diminish as they travel away from the crack due to geometric spreading and 

material damping. Furthermore, it would capture waveforms from any local interaction of 

the AE waves and the crack. The instrumented specimen mounted in the MTS grips is 

shown in Figure 7.3. The close-up views the two sensors are shown in Figure 7.3b,c. The 

fatigue loading was continued and the corresponding AE signals were captured by all the 

sensors. 
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Figure 7.3 (a) Experimented test coupon on MTS load frame subjected to fatigue loading, 

(b) S9225 AE sensors were bonded to one side of the plate and (c) PWAS transducers 

were bonded to the other side of the plate.  

7.3.3 AE-HIT BASED ANALYSIS: SIMILARITY BETWEEN PWAS AND S9225 AE-HITS  

The AE signals from the fatigue crack growth were captured by both near-field and 

far-field PWAS and S9225 AE sensors. For comparative study, the near-field sensor results 

are extensively discussed below. One can obtain a similar result from the far-field sensor 

results except for the amplitude being diminished by geometric spreading. The AE-hit plots 

of Figure 7.4 show similar patterns for both near-field PWAS and S9225 (60 fatigue cycle 

results are shown here). The AE-hit amplitude corresponds to the maximum amplitude of 

an AE waveform converted into a decibel (dB) scale.  
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Figure 7.4 AE hits captured by (a) PWAS transducer and (b) S9225 AE sensors, both of 

them showing the similar trend. 

It can be observed from the PWAS AE hit plot that there is a baseline of AE-hits at 

an almost constant 70 dB amplitude level. Similarly, a baseline of AE-hits can be observed 

in the S9225 AE-hit plot at about 45 dB amplitude level. These baseline AE hits were 

named “group A”. The inception of some new AE hits happened after 550 s and it was 

observed in both plots. The new AE hits were gaining amplitude in the “transition” period 

and then became almost constant after 600 s. The new AE hits with the highest amplitude 

after the transition were named as “group B”.  

Although the pattern of the two AE-hit plots is similar as shown in Figure 7.4, the 

AE-hit amplitudes were different. The PWAS captured group B AE-hits have about 96 dB 

hit-amplitudes and the S9225 captured group B AE-hits have about 68 dB hit-amplitudes. 

Similar AE-hit amplitude difference can be observed for group A as well. This may be 

because the size of the PWAS transducer (7-mm diameter) is larger than the size (3.5-mm 
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(b) S9225 AE hits  
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diameter) of the S9225 AE sensor. Also, they have different piezoelectric transduction 

factors and sensing mechanisms.  

7.3.4 AE-WAVEFORM BASED ANALYSIS: DIFFERENCES BETWEEN PWAS AND S9225 AE-

WAVEFORMS 

Based on the AE-hit analysis discussed in Section 7.3.3, we concluded that both 

AE sensors are in sync in capturing the AE-hits. No apparent difference was observed 

between the two sensors from the AE-hit based analyses. We further performed a deeper-

level analysis, i.e., AE waveform analysis.  

 

 

Figure 7.5 “Group A” AE waveform and its frequency spectrum captured by (a) PWAS 

transducer and (b) S9225 AE sensor at the same time. 

Figure 7.5 shows a typical time domain waveform and the frequency spectrum of 

group A AE signals captured at the same time by PWAS and S9225. The frequency spectra 

show low-frequency peaks at 40 and 100 kHz successfully captured by both PWAS and 

S9225 AE sensors. However, PWAS transducer captured an additional 370 kHz frequency 

peak that is missing in the S9225 frequency spectrum. 
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 370 kHz missing 
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Figure 7.6 shows the time domain waveform and the frequency spectrum of the AE 

signal during the “transition” period captured at the same time by PWAS and S9225. The 

amplitude of this particular transition AE signal was about five times higher than that of 

the group A waveform. There was also a difference between the frequency spectrum of 

group A and of transition AE signals such as the 220 kHz and 450 kHz frequency peaks of 

the transition AE signals were not observed in group A signals. The low-frequency peaks 

up to 100 kHz were captured by both PWAS and S9225. However, PWAS transducer 

captured 220 kHz and 450 kHz frequency peaks that were missing in the frequency 

spectrum of S9225. 

 

Figure 7.6 “Transition” AE waveform and its frequency spectrum captured up by (a) 

PWAS transducer and (b) S9225 AE sensor at the same time.  

 220, 450 kHz missing 

(a) PWAS (b) S9225 



 

169 

 

 

Figure 7.7 “Group B” AE waveform and its frequency spectrum captured by (a) PWAS 

transducer and (b) S9225 AE sensor at the same time.  

Figure 7.7 shows the time domain and frequency spectra of group B AE waveforms 

captured at the same time by PWAS and S9225. Note that after the transition period (Figure 

7.4), there are group A and group B AE hits. The hit-amplitudes of the group B AE 

waveforms appeared to be constant at a higher level. The frequency spectrum of group B 

is similar to the transition waveform but different from the group A waveforms. Figure 7.7 

shows that the low-frequency peaks up to 100 kHz were successfully captured by both 

PWAS and S9225. However, PWAS transducer captured 220 kHz and 450 kHz frequency 

peaks that were missing in the frequency spectrum of S9225 as marked by the dotted 

ellipses. 

7.3.5 EXPLANATION OF WHY S9225 WAS SHOWING WEAK RESPONSES AT SOME HIGHER 

FREQUENCIES 

To find the reason for S9225 AE sensor missing two frequency peaks in the 

frequency spectrum, we obtained the frequency response curve of S9225 from the 

manufacturer. Figure 7.8b shows the frequency response of the S9225 sensor for a wide 

220, 450 kHz missing 

(a) PWAS (b) S9225 
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range of frequencies. It can be observed from Figure 7.8b that there is a weak response in 

the frequency range of 170-300 kHz. S9225 also showed a weak response in that frequency 

range as shown in Figure 7.8a. This explains why S9225 was missing 220-kHz frequency 

peak. 

 

 

Figure 7.8 (a) Sensing AE signal by the S9225, (b) the frequency response plot of S9225 

(from the manufacturer); (b) shows is a weak response in the frequency range of 170-300 

kHz and the S9225 also sense a weak signal in this range 

S9225 was also missing 370-kHz and 450-kHz frequency peaks as compared to the 

PWAS transducer. This may indicate that the high-frequency AE signals from the fatigue-

crack are related to the in-plane wave motion. Since PWAS transducer measures in-plane 

and out-of-plane motion through surface strain sensing, it captured the high-frequency in-

plane wave motion [153]. 

7.3.6 AE INSTRUMENTED SPECIMEN WITH PWAS AND PICO AE SENSORS 

The experimental schematic and the AE measurement with near-field PWAS and 

PICO are discussed here. One can obtain a similar result from the far-field sensor results 

except for the amplitude being diminished by geometric spreading. The schematic of the 

test specimen with near-field PWAS and PICO sensor is shown in Figure 7.9a. The relative 

170-300 kHz 

170-300 kHz 

Frequency response of S9225 Sensing AE waveform (S9225) 

(a) (b) 
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position of the PWAS and PICO on the actual specimen is shown in Figure 7.9b. Both 

sensors were bonded at 5-mm from the fatigue crack. The diameter of the PWAS was 7-

mm and the diameter of the PICO was 4.75-mm. The thickness of the PWAS was 0.5-mm. 

The in-situ AE-fatigue experiment on the same specimen with the similar settings was 

performed as discussed earlier. The results discussed here are obtained from 50-fatigue 

cycles after the previous 60-fatigue cycles. 

 

 

Figure 7.9 (a) Schematic diagram of the experimental setup with PWAS and PICO AE 

sensors. (b) A zoomed-in view of the PWAS and PICO with respect to the fatigue crack. 

For scale, please note, the hole has 1-mm diameter. 
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7.3.7 SIMILARITY BETWEEN PWAS VS PICO FROM AE-HIT BASED ANALYSIS 

The AE hits were captured by the PWAS and PICO AE sensors as the fatigue crack 

grew. The AE hits captured by the PWAS and PICO for 50 fatigue cycles are shown in 

Figure 7.10. In these particular 50-fatigue cycles, crack growth was optically measured as 

300-µm. The average crack growth can be calculated as 6-µm/cycle. In these plots, PWAS 

has 427 hits and S9225 has 305 hits. 

 

 

Figure 7.10 The AE hits captured by the PWAS and PICO AE sensors. Both of them are 

showing a similar trend in the AE-hit plots. 

In Figure 7.10, both PWAS and PICO show a similar pattern in the hit-amplitude. 

In PWAS AE hit plot, there are higher-amplitude AE hits of almost constant amplitude of 

96 dB. There are densely populated AE hits of variable amplitudes between 57 to 78 dB. 

Similarly, in PICO AE hit plot, there are higher-amplitude AE hits of almost constant 
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amplitude of 78 dB. There are densely populated AE hits of variable amplitudes between 

45 to 63 dB.  

It can be noted that PICO AE hit amplitudes were higher than that of the S9225. 

This may be caused by the size of the PICO (4.75 mm diameter) being larger than the size 

of the S9225 (3.5 mm diameter) AE sensor. The PWAS hit amplitudes were higher than 

that of the PICO. This may be because the size of PWAS was larger than that of the PICO. 

Also, they had different piezoelectric transduction factors and sensing mechanisms. In this 

particular 50 cycles, PWAS captured 427 AE hits while the PICO captured 305 AE hits 

because some of the low-amplitude AE hits fell below the threshold setting of PICO. 

Except these very low-amplitude AE hits, both of them successfully captured AE events 

generated by the fatigue crack. 

The PWAS and PICO AE hits and the fatigue loading plotted on a common timeline 

are shown in Figure 7.11. Only 10-fatigue cycle results are shown in this figure to maintain 

the clarity of AE hit variation with fatigue loading. It shows that the multiple AE hits 

happened at every cycle. At a particular instant, a pair of AE hits can be observed: one 

captured by PWAS (marked by blue “square”), other captured by PICO (marked by red 

“diamond”). This indicated that they captured the same AE event at almost same time. The 

AE hits occurred during the cyclic loading period (from minimum load to maximum load) 

only. In the unloading period (from maximum load to minimum load), no AE hits were 

observed.  

The AE hits started appearing at 53% of the maximum load level and continued 

until 84% of the maximum load level at some intervals. So far, the PWAS and PICO 
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showed the very similar pattern from the AE-hit based analysis. Both of them captured the 

fatigue crack generated AE hits with a very similar level of detail. 

 

 

Figure 7.11 PWAS and PICO AE hits synchronized with the fatigue loading cycle.  

7.3.8 COMPARISON BETWEEN PWAS AND PICO FROM THE AE-WAVEFORM BASED 

ANALYSIS 

PWAS and PICO AE sensors were compared based on the AE waveforms and their 

frequency spectra. It was found that all the PWAS and PICO AE waveforms were different 

even though the AE hits from the same AE event were compared. Three pairs of AE hits 

as marked by “1”, “2”, “3” on Figure 7.11 were considered for comparison. Pairs “1” and 

“2” are representatives of all the higher amplitude AE hits. Pair “3” is representative of the 

lower amplitude AE hits. 

The PWAS and PICO AE waveforms for a particular AE event that happened at 

360.36 s (“1”) are shown in Figure 7.12a,b. The AE hits corresponding to this AE event 
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belong to the higher amplitude AE hits (group B) of the previous 60-cycle results discussed 

in an earlier section. The PWAS-captured AE waveform was consistent with the previous 

60 fatigue cycle results. But the PICO waveform (Figure 7.12a) was different from the 

S9225 waveform (Figure 7.7b) even though they had the same mechanism of sensing. The 

PICO waveform contained a ringing tone.  

 

 

Figure 7.12 The comparison between PWAS and PICO AE waveforms and their 

frequency spectra for the same AE event at approx. 360.36 s (marked by “1” on Figure 

7.11). 

The frequency spectra of the PWAS and PICO are also illustrated in Figure 7.12a,b. 

It shows that the low-frequency peaks such as 30, 60, 110 kHz are captured by both PWAS 

and PICO AE sensors. But the PICO had the highest peak at 170-kHz and there was a 

sudden drop in the frequency spectrum after 170-kHz. On the other hand, PWAS captured 

the 220-kHz and 450-kHz frequency peaks. The PICO showed a very weak response at 

these frequencies.  
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The time-domain waveforms and frequency spectra captured by PWAS and PICO 

are shown in Figure 7.13a,b. These waveforms are corresponding to the pair of AE hits that 

are captured at 378.79 s (marked by “2” on Figure 7.11). The frequency spectra show that 

the low-frequency peaks are somewhat similar in both PWAS and PICO AE sensors. But 

the PICO had the highest peak at 170-kHz and there was a sudden drop in the frequency 

spectrum after 170-kHz. The PWAS captured a wideband frequency of 110-300 kHz. The 

PICO showed a very weak response after 200-kHz. The PICO waveform also contained a 

ringing tone.  

 

 

Figure 7.13 The comparison between PWAS and PICO AE waveforms and their 

frequency spectra for the same AE event at approx. 378.79 s (marked by “2” on Figure 

7.11).  

The PWAS and PICO AE waveforms corresponding to the AE hits at 400.36 s (“3”) 

are shown in Figure 7.14a,b. It verifies that the AE waveforms of the 400.36 s (“1”) are 

same as that of the 360.36 s (“3”). Thus the same observation as Figure 7.12 can be made 

for Figure 7.14. 
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Figure 7.14 The comparison between (a) PWAS and (b) PICO AE waveforms and their 

frequency spectra for the same AE event at approx. 400.36 s (marked by “3” on Figure 

7.11).  

Hence, we conclude that the AE signals captured by the PWAS and PICO showed 

a significant difference based on the AE waveform analysis and frequency spectrum 

comparison.  

7.3.9 EXPLANATION OF WHY PICO WAS SHOWING WEAK RESPONSE AT SOME HIGHER 

FREQUENCIES 

A typical PICO sensing signal and its frequency spectrum are shown Figure 7.15a. 

The frequency response plot obtained from the sensor manufacturer is shown in Figure 

7.15b. The frequency response plot shows a peak at 170 kHz. This explained why the 

frequency spectrum of the sensed signal showed a peak frequency at 170 kHz. Also, the 

PICO frequency characteristic plot shows a weak response at 180-270 kHz band. Thus, it 

showed a weak response at 180-270 kHz band in the sensed signal (Figure 7.15a). 
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The PICO was also showing a weak response for higher frequencies such as 300, 

450 kHz. This may be because the AE waves propagate as symmetric Lamb wave modes 

which have predominantly in-plane wave motion. But the PICO sensor was sensitive to the 

out-of-plane wave motion. 

 

Figure 7.15 (a) A typical AE waveform and its frequency spectrum captured by the PICO 

AE sensor, (b) frequency response curve of PICO (obtained from the manufacturer). 

In both experiments, the PWAS and the commercial AE sensors (S9225 and PICO) 

showed a very similar pattern from the AE hit based analysis. But they showed significant 

differences from the AE-waveform based analysis. In both cases, PWAS captured the 

richer frequency information than that of the S9225 and PICO AE sensors. 

7.4 VARIOUS AE WAVEFORM GROUPS WITH FATIGUE LOAD EVOLUTION 

The second major finding of the physics-based AE approach is to identify various groups 

of AE signatures. First, the experimental background of this finding is discussed and then 

the AE data analysis is illustrated. 
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7.4.1 IN-SITU AE-FATIGUE EXPERIMENTAL SETUP 

The in-situ AE-fatigue experiment was designed and performed to simultaneously 

measure the AE signals while the fatigue crack grew under fatigue loading. Aircraft grade 

aluminum Al-2024 T3 material was used to make the test specimen. The dimension of the 

specimen was 305-mm length, 100-mm width, and 1-mm thickness. The experimental 

procedures and parameter settings were similar to the previous experiments and are not 

repeated for the sake of brevity. The only difference was an emphasis on optical crack 

growth measurement and near-field PWAS AE measurement (schematic is shown in Figure 

7.16).  

 

 

Figure 7.16 Schematic diagram of the fatigue test plate-specimen with a PWAS 

transducer, 5-mm from the crack.  
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An in-situ microscope was used to optically monitor the fatigue crack growth as 

shown in Figure 7.17. A digital camera was attached to the microscope that allowed 

capturing still images as well as video recordings of the fatigue crack growth. A gooseneck 

light was used to illuminate the crack zone. It was also used to illuminate the crack from 

the front and the back of the plate. Various combination of the light adjustment was used 

for proper image capturing. A high-resolution video recording with extension tube was also 

attempted to capture crack growth as shown in Figure 7.18. 

 

Figure 7.17 The actual fatigue test specimen mounted in the MTS grips with an in-situ 

microscope 
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Three parallel measuring systems were used simultaneously during the in-situ AE-

fatigue experiment: (a) fatigue loading by the MTS machine, (b) AE and load measurement 

by the AE system, and (c) fatigue crack growth measurement by an in-situ microscope 

camera. Since the AE recording and the fatigue load recording was performed in the same 

AE measuring instrument, it would allow better synchronization between the fatigue load 

and AE measurement. Thus, the measured AE hit and the fatigue load had a common 

timeline with respect to the global time of reference. 

 

 

Figure 7.18 The fatigue test specimen mounted in the MTS grips and a high-resolution 

video camera with an extension tube to measure fatigue crack growth. 
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7.4.2 AE HITS SYNCHRONIZED WITH THE FATIGUE LOADING 

The cyclic fatigue loading and the AE hits were measured in a common timeline. 

The similar nature of AE hits was also observed in other AE sensors but it is not discussed 

here for the sake of brevity. The synchronized plot of the fatigue loading and the AE hits 

captured by the near-field PWAS is shown in Figure 7.19. The AE hit amplitude was 

measured in dB scale. The fatigue loading was varied sinusoidally between a minimum 

(Fmin=1.23 kN) and maximum (Fmax=12.3 kN) load level with a slow loading rate (0.05 Hz). 

 
 

Figure 7.19 AE hits captured by the PWAS transducer are plotted in synchronization with 

the cyclic fatigue loading. 

To preserve the clarity of the load-hit synchronization plot, only 50 fatigue cycles 

results are shown in Figure 7.19. The near-field PWAS transducer captured 427 AE hits in 

the 50 fatigue cycles. In this particular 50 cycles, the fatigue crack growth was optically 

measured as approx. 300-µm. It can be noticed that there are high-amplitude AE hits at 

about 96 dB. They happened at almost every cycle near the peak load of the fatigue cycle. 
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There are numerous AE hits in the range of 55-75 dB. At every cycle, there were multiple 

AE hits. 

AE hits were observed during the loading cycle when the fatigue load was going 

from minimum to the maximum level. On the unloading cycle, when the fatigue load was 

going from maximum to minimum, no AE hits were observed. Each AE hit corresponded 

to an AE waveform. Individual waveform analysis of the AE hits was performed to find 

any possible similarities in the AE signals. That allowed grouping the AE hits as discussed 

next. 

7.4.3 AE WAVEFORMS GROUPS IN RELATION TO THE FATIGUE LOADING 

Since PWAS captured richer frequency information than the PICO and S9225 AE 

sensors, the PWAS AE hits were extensively analyzed. The AE hits were analyzed at 

individual waveform level. The waveform of each AE hit was analyzed as both time-

domain signal and frequency spectrum. Fast Fourier transform (FFT) was used to obtain 

the frequency spectrum from the time-domain signal. It was found that there were some 

groups of AE hits that had the same time-domain signal and frequency spectrum. Once the 

AE waveforms were sorted based on the frequency spectra, the load level similarity was 

automatically obtained [154]. 

7.4.3.1 AE Waveform Groups A, B, C Repetitive at Every Fatigue Cycle 

From Figure 7.19, one can easily distinguish two different zones of AE hits: the 

higher-amplitude zone at 96 dB and a denser low-amplitude zone at 55-75 dB. In the denser 

zone, it was identified that there exist a group of AE hits which had the same time-domain 

signal and frequency spectrum. They were named “group A”. The hit amplitudes of group 

A were almost constant at 72 dB. Interestingly, all of them happened at approximately 84% 
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of maximum fatigue load. It indicated that there was a certain AE source due to a change 

happen in fatigue crack at 84% of maximum load. Group A hits are shown in Figure 7.20a 

and marked by a dotted ellipse.  

 

 

Figure 7.20 (a) Group A, B AE hits are plotted in sync with the cyclic fatigue loading. 

They happened at every cycle but at different load levels; group A happened at 84% of 

maximum load level while group B happened at 78% of maximum load level. (b),(c) The 

waveforms and frequency spectra of group A, B, respectively; the major frequency peaks 

of each group are marked by dotted ellipses. 
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All the higher-amplitude (96 dB) AE hits have the same time-domain signal and 

frequency spectrum. These AE hits were assigned to “group B” and shown in Figure 7.20a. 

In Figure 7.20a, the AE-hit amplitudes are scaled in such a way that the maximum 

amplitude of group B has a unit hit amplitude and the other hit-amplitudes were divided by 

that maximum number. All the AE hits in group B happened at 78% of maximum load 

level. 

7.4.3.2 Load Level Determination for a Certain AE Waveform Group 

The load level determination for group A and B waveforms are illustrated in Figure 

7.21. First, a vertical line was drawn from each AE hit to the loading cycle which gives the 

time when the AE hit happened. Then a horizontal line was drawn from that intersection 

point to the load axis that gave the load level of that particular AE hit. A similar approach 

has been used for determining the load level of all the AE hit groups. 

 
 

Figure 7.21 Load level determination of group A and group B AE hit.  

84% Fmax 

78% Fmax 

Group B AE hit 

Group A AE hit 

100% F
max
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7.4.3.3 Similarities in the Signals Belonging to One Group 

 

  

Figure 7.22 Similarity between the AE events happened at two different times (~350 s, 

~800 s) in a particular group. For illustration purpose, only two groups (A, B) are 

presented here. The time-domain and the frequency spectrum of each signal are plotted. 

To illustrate the similarities of the signals belonging to one group, few AE events 

from group A and group B were picked up. The time-domain signals and frequency spectra 

of the AE waveforms are plotted in Figure 7.22. The AE events at two different times (~350 

s, ~800 s) are shown here. Figure 7.22a shows that both time-domain signals and frequency 

spectra of group A are very similar to each other even though they happened at two 

(a) Similarity between Group A AE signals 

(b) Similarity between Group B AE signals 
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different times (~350 s, ~800 s). Figure 7.22b shows that both time-domain signals and 

frequency spectra of group B are very similar to each other even though they happened at 

two different times (~350 s, ~800 s). A similar observation was true for AE signals of other 

groups. 

 

 

Figure 7.23 (a) Group C AE hits are plotted in sync with the cyclic fatigue loading; the hit 

amplitude varied over the fatigue cycles, they happened at every cycle approx. 81% of 

maximum load; (b) the time domain signal and frequency spectrum of a representative 

group C waveform. 
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Representative waveforms from groups A, B were plotted in Figure 7.20b and c, 

respectively. Both time-domain signals and frequency spectra are shown here. It was 

observed that the AE waveform of group A was different from that of B. Group A has 

frequency peaks at 40, 100, 350 kHz whereas the group B has frequency peaks at 30, 50, 

100, 230, 450 kHz. Group B waveform contained some of the frequency peaks of group A, 

for example, 100 kHz. The amplitude of the group B waveform was several orders higher 

than that of the group A. When we compared the time of occurrences of the two waveforms, 

we found that during the fatigue loading, group B (at 78% Fmax) happened earlier than the 

group A (at 84% Fmax). Both of them happened at every fatigue cycle. 

Group C AE hits that happened in between group A and B can be also identified. 

They happened at 81% of fatigue loading. The AE hit-load plot of group C is shown in 

Figure 7.23a. It can be shown that until 400s, group C happened once at every fatigue cycle 

whereas, after 400 s, two group C waveforms happened at every cycle. The amplitudes of 

the group C hits were not constant unlike group A, B rather they varied. When two group 

C hits happened as a cluster, one had a higher amplitude than the other. It seemed like the 

acoustic energy from the fatigue crack had been split into two wave packets. 

The time-domain signal and the frequency spectrum of a representative group C 

waveform are shown Figure 7.23b. They are different from the group A, B. The major 

frequency peaks of group C waveform are 30, 100 kHz. The low-frequency peaks are 

dominant in this group. 

7.4.3.4 Group D Appeared, Continued, and then Disappeared 

Group D AE hits happened at 78% of fatigue loading. The AE hit plot of group D 

synchronized with the fatigue loading is shown in Figure 7.24a. They appeared for some 



 

189 

time and then discontinued after 320 s. The amplitude of group D was relatively smaller 

than the group A, B, C. The time-domain signal of a representative group D waveform is 

shown Figure 7.24b. It can be noticed that there is a regular noise floor before and after the 

main signal. This can easily be removed to obtain a denoised waveform as plotted in Figure 

7.24c.  

 

 

Figure 7.24 (a) Group D AE hits are plotted in sync with the cyclic fatigue loading; they 

happened at approx. 78% of maximum load, they appeared in the beginning and 

disappeared after approx. 300s; (b) the raw time domain signal of group D; (c) denoised 

waveform of (b); (d) frequency spectrum of the denoised group D waveform. 

The frequency spectrum of the denoised waveform is shown in Figure 7.24c. They 

have same frequency content as group B waveforms except for an additional peak at 550 

kHz in group D. They also happened at the similar fatigue load level as group B. The group 

B and D may be related to the same AE event due to a change in the fatigue crack. 

7.4.3.5 Group E Appeared as a Cluster at Every Cycle 

Group E AE hits in sync with the cyclic fatigue loading are plotted in Figure 7.25a. 

The main feature of these hits was that they happened as a cluster of two or three hits in 
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every cycle. They happened between 51-58% of maximum load in the fatigue loading cycle. 

They appeared after approx. 250 s and then continued in every fatigue cycle. In a cluster, 

the first hit had a higher amplitude than the second and third hits. The time-domain signals 

and frequency spectra of these AE hits in a cluster are exactly same except the amplitudes. 

The waveform of a representative AE hit is shown in Figure 7.25b. The first AE hit of a 

particular cluster is shown in this figure. The frequency spectrum shows that the dominant 

frequency peaks are located at 30, 60, 200 kHz.  

 
 

Figure 7.25 (a) Clustered Group E AE hits in sync with the cyclic fatigue loading (b) the 

time domain signal and frequency spectrum of a representative group E waveform. 
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Figure 7.26 Similarity in the frequency spectra of clustered (Group E) AE waveforms 
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A clustered group E AE hits, their respective waveforms, and frequency spectra in 

a particular cycle are illustrated in Figure 7.26. It shows that the frequency spectra of all 

the waveforms are the same, only that the amplitude is getting weaker from first AE hit to 

last AE hit of a cluster. 

7.4.3.6 Possible Explanation for Clustered Group E Waveforms 

There may be a sequence of small AE events that were happening in every cycle at 

relatively low loading levels (51-58% Fmax). These loading levels were too low to cause 

crack extension. The possible explanation for the cluster group E AE hits could be:  

a) Crack surfaces have a zigzag saw-tooth thickness-wise pattern because cracks in thin-

gauge specimens happen on shear planes. The zigzag nature of the crack was captured 

by the in-situ microscopic images and is shown in Figure 7.27. The faying surfaces 

along the thickness can be perceived from Figure 7.27 and its schematic (Figure 7.28). 

The light was shining directly from behind the fatigue crack.  

b) Because crack propagation has a zigzag path, cracks are not perfectly straight and may 

“catch” when opening. 

c) Repeated saw-tooth crushing seems to happen, first at 51% load level and then at 

slightly higher loads, but of progressively smaller AE intensity. 

d) When the first crushing is happening at 51% load, it is releasing higher amplitude AE 

signals. Subsequent crushings are causing lower amplitude AE signals. 
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Figure 7.27 The view of the zigzags and the faying surfaces of the fatigue crack. The 

image was captured at maximum load level; two different locations along the fatigue 

crack length are shown here; the light was shining behind the crack. 

 

 

Figure 7.28 Schematic representation of the faying surfaces of the fatigue crack 

7.4.3.7 Characteristics of Group F, G, H AE Waveforms  

Group F AE hits are shown in Figure 7.29a. These hits happened at the similar time 

of group E. They also happened at every fatigue cycle. The time-domain signal and the 

frequency spectrum of a representative group F waveform are shown in Figure 7.29b. The 

frequency spectrum was same as that of group E except that it had an additional higher 

frequency at 450 kHz. They happened at 57% of maximum load level. The AE source of 

group F may be closely related to that of group E. 

Group G AE hits happened in between 78% to 81% of maximum load level during 

fatigue loading period. The AE-hit load synchronization plot is shown in Figure 7.30a. 

They happened sporadically over the fatigue cycles. The time-domain signal and the 

0.5 mm 0.5 mm 

Thickness-wise 
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frequency spectrum of a representative group G waveform are shown in Figure 7.30b. They 

were similar to the group C AE hits based on the frequency spectrum except for the low-

frequency peaks at 40 kHz. The other difference as that they happened at a variable load 

level from 78% to 81% Fmax. 

 

 

Figure 7.29 (a) Group F AE hits are plotted in sync with the cyclic fatigue loading; they 

happened at every cycle and at approx. 57% of maximum load, they appeared after 

approx. 250s and then continued; (b) the time domain denoised signal and frequency 

spectrum of a representative group F waveform. 

Fmax
 

Fmin
 

Group F AE hits (57% max load)  

L
o
ad

 

Group F waveform 

~200 kHz 

~30, 60 kHz 

~450 kHz 

(b) 

(a) 



 

195 

A few AE hits were observed near very low load level (e.g., 23%Fmax). These were 

assigned as group H. The hits sync with the fatigue load is shown in Figure 7.31a. They 

appeared for some cycles, then disappeared, and then again appeared. The time-domain 

signal and the frequency spectrum of a representative group H waveform are shown in 

Figure 7.31b. The major frequency peaks of the group H waveform were 40, 70, 100, 200 

kHz. 

 

Figure 7.30 (a) Group G AE hits appeared sporadically over the cycles at approx. 78-81% 

of maximum load; (b) the denoised time domain signal and the frequency spectrum of a 

representative group G waveform. 
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Figure 7.31 (a) Group H AE hits are plotted in sync with the cyclic fatigue loading; they 

appeared a few times over the cycles at relatively lower load level (23% of max. load); 

(b) the denoised time domain signal and the frequency spectrum of a representative group 

H waveform. 

We also observed a very few irregular AE hits happened randomly at different load 

levels (not shown here). Most of them had a sharp peak and we classified them as “rogue”. 

They had a wideband frequency as mentioned in the summary Table 7.1. They happened 

somewhere between 23% - 94% Fmax. They had a very wide range of hit amplitudes that 

resulted in large standard deviation. 
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The summary statistics of the 427 AE hits in 50 fatigue cycles is shown in Table 

7.1. We had nine different groups of AE hits from A, B, C,...H, Rogue. The number of AE 

hits, the load level of occurrence, and major frequency peaks for each group are detailed in 

Table 7.1. 

Table 7.1 Summary statistics of the 427 AE hits over the 50 fatigue cycles with 300-µm 

crack growth 

 

 

7.5 SOURCE LOCALIZATION OF THE AE SIGNAL GROUPS 

A source localization was performed to be certain that fatigue crack generated these 

various groups of waveforms. This section illustrates a simple methodology for the source 

localization. A schematic diagram of the fatigue test specimen is shown in Figure 7.32a. It 

shows the relative positions of the four sensors (two PICO and two PWAS transducers). 

The actual specimen is shown in Figure 7.32b.  

7.5.4 ALL POSSIBLE AE SOURCES 

From the close observation of the AE-fatigue test system we could identify three 

most possible AE sources of the AE signals: 

(1) fatigue crack 

(2) upper grip 

 Waveform 

type  
Number 

of hits  
Load level 

(%F
max

 )  
Major freq. bands/peaks 

(kHz)  

A  53  84  40, 100, 350  
B  50  78  30, 50, 100, 230, 450  
C  89  81  30, 100  
D  8  78  30, 70, 100, 230, 450, 550  
E  154  51-58  30, 60, 200  
F  43  57  30, 60, 200, 450  
G  15  78-81  40, 100  
H  6  23  40, 70, 100, 200  

Rogue  9  23~94  350-1000  
Total= 427   
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(3) lower grip 

The possible AE sources are marked by “star” sign in Figure 7.32a. The close-up 

view of the near-field PWAS and PICO is shown in Figure 7.33. It shows that the edge of 

the PWAS is closer to the crack than the PICO sensor since the size of the PWAS is larger 

than the PICO sensor. 

 

Figure 7.32 (a) Schematic diagram for the source localization of the AE signals; two 

PWAS transducers and two PICO AE sensors were bonded symmetrically about the 

fatigue crack and at same distances (5-mm, 25-mm) from the crack; (b) actual fatigue test 

specimen mounted on the MTS grip showing the positions of the four sensors. 

(b) 

(a) 

25-mm 

25-mm 

5-mm 

5-mm 
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7.5.5 FOUR HYPOTHESES ON THE SEQUENCE-OF-ARRIVALS 

The time-of-flights of the AE signals from the four sensors were needed for the 

illustration. Four hypotheses may be considered based on the sequence-of-arrival (SOA). 

They are illustrated in Figure 7.34. If the crack is the AE source, the AE waves would hit 

the near-field PWAS first (1), then the near-field PICO (2), then far-field PWAS (3) and at 

last far-field PICO (4). The number indicates the sequence of arrival. When we cast these 

sequence number by the left column of Figure 7.34, one would get SOA4-2-1-3. 

Similarly, if the upper grip is the AE source then SOA1-2-3-4; if the lower grip is the 

AE source then SOA4-3-2-1; if upper and lower grips are the AE source then SOA2-

4-3-1. 

 

 

Figure 7.33 Relative position of the near-field PWAS and PICO sensors. The centers of 

the two sensors were at an equal distance, 5-mm from the crack. [scale: the hole is 1-mm 

diameter] 

Fatigue crack 

PWAS transducer (7-mm dia) 

PICO (3.75-mm dia) 
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Figure 7.34 Four possible hypotheses on the sequence-of-arrival (SOA) of the AE signals.  

 

 

Figure 7.35 Group B AE signals captured by the four sensors: (a) near-field PICO, (b) 

near-field PWAS, (c) far-field PICO, (d) far-field PWAS.  
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7.5.6 EXPERIMENTAL RESULTS OF THE SEQUENCE-OF-ARRIVALS 

From the experimental AE measurement, the group B AE signals were identified 

and plotted in Figure 7.35. The near-field PICO and PWAS captured the higher-amplitude 

AE hits than the far-field PICO and PWAS. The decrease in amplitude in the far-field 

sensors would give us a preliminary idea that these AE hits may be coming from the crack.  

 

 

Figure 7.36 The four AE-hit plots of Figure 7.35 are overlapped together in a common 

timeline and zoomed-in a particular portion around 240 s. A particular AE event occurred 

around 240 s was captured by the four sensors. The actual time of arrival is stamped by 

these AE hits.  

The four AE-hit plots are overlapped together on a common timeline. A particular 

portion (170 s to 310 s) of the overlapped plot is zoomed-in as shown in Figure 7.36. It 

shows that the same AE event at a particular time is captured by the four sensors. The time 

of arrivals of the AE signals were different since they were at different distances from each 

other. As an example, an AE event happened near 240 s is picked up and the exact time of 

arrival is shown in Figure 7.36 by the time stamp near the AE hits. The time of arrival is 

µs 

µs 

µs 

µs 



 

202 

shown in micro-second (µs) unit and all of them have the same global time of reference. It 

shows that the time of arrival for near-field PWAS is 240322041.3 µs, near-field PICO is 

240322043.5 µs, far-field PWAS is 240322046 µs, and far-field PICO is 240322049 µs. 

Thus, experimentally measured SOA is found to be 4-2-1-3. 

Hence, we conclude that the AE source is the crack.  

Table 7.2 Source localizations for the different groups of AE signals 

Group A B C D E F G H Rogue 

No. of AE hits 
(427) 

53 50 89 8 154 43 15 6 9 

Sequenc
e of 

Arrival 

Far 
PICO 

4 4 4 4 4 4 4 4 - 

Near 
PICO 

2 2 2 2 2 2 2 2 - 

Near 
PWAS 

1 1 1 1 1 1 1 1 2 

Far 
PWAS 

3 3 3 3 3 3 3 3 1 

Source location Crack Crack Crack Crack Crack Crack Crack Crack 
MTS 
Grips 

 

The same SOA was found to be true for all the AE hits (not shown here). This 

method was also examined for other groups of AE signals. For all of them except 9 AE 

hits, the same SOA was obtained from the experimental measurement of the time of flight 

and not discussed for the sake of brevity. These nine rogue AE hits were picked up by the 

far PWAS first, then the near PWAS. These were not picked up by the PICO sensors since 

they were on the other side of the crack. Hence, we conclude that these rogue AE hits were 

coming from the lower grip of the MTS. The complete summary of the sources of various 

groups of AE waveforms is shown in Table 7.2. 
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7.6 DISTINGUISHING CRACK GROWTH AND CRACK-RUBBING/FRETTING 

AE SIGNALS 

The source localization analysis as discussed in the previous section concluded that, 

out of the 427 AE hits (from 300-µm crack growth), 418 AE hits were coming from the 

fatigue crack and the remaining 9 AE hits were coming from the MTS grips (not related to 

crack). The waveform group analyses discussed earlier revealed that 418 crack-related 

waveforms can be further sorted into eight distinguishable AE waveform signatures 

(groups A, B, C, …, H). The load level synchronization with the AE waveform in a 

common timeline allowed further separation of the AE signals. Some AE waveform groups 

occurred at relatively higher load level, such as groups A, B, C, D, G. These five groups 

occurred above 78% of the maximum load level (please see Table 7.1). These five groups 

totaled 215 AE waveforms. These groups may be responsible for direct extension (growth) 

of the fatigue crack. 

The remaining three waveform groups (E, F, H) happened at relatively lower load 

level. For example, group E, F happened within 51-57% of maximum load level and group 

H happened at 23% of maximum load level. Another important feature of these lower load 

level AE signals was that they happened in a cluster. A sequence of 3-4 of these AE hits 

happened in every cycle. These AE hits may represent some kind of crushing, rubbing, 

fretting of the saw-tooth shaped fatigue crack faying surfaces. It seems that the faying crack 

surfaces are catching while the crack tends to open under the applied fatigue loading. These 

three groups totaled 212 AE waveforms which may be responsible micro-fracture events 

caused by the rubbing and fretting of the crack faying surfaces but may not be related to 

crack growth. 
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Several groups of AE waveforms related to crack growth may represent several 

crack growth mechanisms. The crack growth mechanism in relation to a particular 

waveform group should be considered in future investigations. Following the physics of 

materials based approach discussed in this chapter, the AE signals corresponding to longer 

crack growth (e.g. 10-mm long fatigue crack) may be separated into crack growth and 

crack-rubbing-fretting related AE signals based on the waveform signatures. 

7.7 CONCLUSION 

The physics of materials based analysis of AE signals may explain the complex 

phenomena of metal fatigue and crack growth. The AE-hit analysis currently used in AE 

practice may not be sufficient to capture detail fatigue crack growth mechanisms. The AE-

waveform analysis may give a more comprehensive idea of the metal fatigue. In addition, 

we found that different types of AE sensors significantly affect the captured AE waveforms. 

Depending on the application, a certain type of sensor may be more suitable than others. It 

was found that PWAS transducers may be used to capture the fatigue crack generated AE 

signals from thin-wall structures. PWAS seems to capture richer frequency spectra than the 

commercial PICO and S9225 sensors. It is important to distinguish the fatigue crack-related 

AE signals from the rogue AE signals that may come from non-crack events. AE source 

localization confirmed the sources of the AE signals. 

During fatigue crack growth, various AE waveform groups may be generated. 

These groups can be sorted based on the spectral signatures. During the fatigue crack 

growth in a thin metallic specimen, nine different AE waveform groups were observed. A 

particular waveform group represents a particular source of AE event related to the crack 

growth. The AE waveforms evolved with fatigue load level. 
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The fatigue crack extension, as well as the rubbing and fretting of crack faying 

surfaces, may generate AE signals. The AE waveform group sorting with load level 

synchronization may be used to distinguish the crack extension related AE signals from 

the rubbing/fretting AE signals. It was found that certain groups (A, B, C, D, G) were 

generated from the crack extension while other groups (E, F, H) were generated by crack 

rubbing and fretting. Micro-fracture events may occur during the crack rubbing and fretting 

of the crack faying surfaces which may generate AE signals in a clustered form. Some AE 

waveform groups happened at relatively lower load level (e.g. group E) and appeared as a 

clustered form. These waveforms may represent the “catching” of the crack faying surfaces. 
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CHAPTER 8  

CAN WE HEAR CRACK LENGTH FROM ACOUSTIC WAVEFORMS? 

In this chapter, we focus on analyzing the acoustic waveforms to extract the crack length 

information. This is an inverse problem and a challenging task. To accomplish the objective, 

we started with a proof-of-concept development. In this stage, we studied various 

parameters that could be related to the crack length. We performed 3D multiphysics 

simulation to visualize the wave propagation in presence of a crack in a plate. An acoustic 

emission (AE) event was simulated at the tip of the crack. The acoustic waves generated 

by the AE events and they propagated as guided waves in the plate. The guided waves 

along the crack faces showed some local vibration modes (crack resonance). A laser 

Doppler vibrometry experiment was performed to identify the crack resonance 

phenomenon and the experimental results were used to verify the simulated results [115].  

 

8.1 INTRODUCTION AND STATE OF THE ART 

The SHM and NDE researchers are always looking for new the techniques to assess 

the health of the structure [52], [155]–[157]. The acoustic emission (AE) technique of 

NDE/SHM has been used for structural defects detection for many years [81], [84], [96], 

[97], [125], [143], [158], [159]. The AE technique has a wide range of applicability such 

as the damage monitoring in the isotropic materials, anisotropic composites, and concrete 

structures [82], [94], [95], [104], [160], [161]. AE has been employed for various purposes 

such as damage source localization, characterization, crack growth monitoring, etc. [85], 
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[87], [162], [163]. It was observed that many AE methods just focus on the first few AE 

wave peaks. These few wave peaks examination gives limited information to extract a few 

parameters such as the AE wave amplitude, average frequency, time of arrival, and 

duration, etc. To understand the AE source mechanism, some finite element and analytical 

work has been reported [104] [164]. In fact, the complex nature of the AE wave generation, 

propagation, and interaction with the structural features makes the AE waveforms difficult 

to analyze.  

In the past, efforts were made to retrieve the structural feature related information 

from the AE waveforms [125]. Gagar et al. [143] developed some correlations between AE 

signals generated during fatigue crack growth and corresponding cyclic loads to determine 

the crack length. Parametric relationship of AE and fracture mechanics to estimate the 

crack length in concrete structures was reported by Sagar et al. [165]. However, these 

methods predominantly rely on experimental data-driven statistical models to understand 

the AE signatures. To successfully extract more information from the AE events due to 

fatigue crack growth, it is important to analyze the AE waveforms and to find any clue on 

estimating the crack length information. 

The present study addresses fatigue crack length estimation based on the AE 

waveform analysis. FEM simulations and experimental results are presented. 

8.2 3D FEM SIMULATION OF AE WAVEFORM GENERATION AND CRACK 

RESONANCE  

A 3-D FEM time-domain simulation was performed. The details of the FEM 

simulation method were described in Chapter 6. Here, the key features of this particular  

FEM model are briefly reviewed. The illustration of the 3-D FEM modeling is shown in 
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Figure 8.1. A 10-mm fatigue crack was modeled in a 100 X 100 mm2 square plate-like 

model of thickness 1-mm. The material properties of the aluminum 2024-T3 specimen 

were chosen to be 73.1GPaE  ,   , 3kg/m    with 3140m/ssc  . The AE source at 

the crack tip was modeled using the extended dipole concept as detailed in Chapter 6. 

 

 

Figure 8.1 3-D FEM model for harmonic analysis (a) top view (b) front view (c) dipole 

loading at the crack tip (d) line load along the thickness 

Non-reflective boundary (NRB) was used in the FEM model to avoid the wave 

reflections from the model edges. The criteria for accurate FEM results given in ref. [102] 

were implemented: / 15m cs  , / 7D s  , and / 5m s  , where, 
m  be the minimum 

wavelength, cs  be the cell size in the FEM model, D is the distance between the source 

and the sensing location, s  is the source size. The minimum wavelength 
m  is defined as 

/m sc f  , with 
sc being the shear wave speed and f being the maximum frequency. With 

(a) Top View of the 3D model 

(b) Front View of the 3D model 

(c) Dipole Loading 

(d) Along the thickness 

AE Source 

Sensor 

NRB 

NRB 

NRB NRB 

10-mm fatigue crack 
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these parameters, the FEM simulation can accurately predict the results for the frequency 

range of up to 840 kHz with / 100D s  . 

 

 

Figure 8.2 Animation snapshots of transient FEM simulation as the time progress (a) 

1.5t s , (b) 3t s ,  (c) 3.9t s , (d) 4.8t s  

Animation snapshots of the transient FEM simulation are presented in Figure 8.2. 

The acoustic wave emitted at one crack tip travels along the crack faces. When the waves 

hit the other tip of the crack, it generates secondary waves. The reflected waves travel back 

along the crack faces. This may cause crack resonances. 

Waves travel along crack 

faces 

Waves travel toward 

other tip  

Crack tip as secondary 

source 
Reflecting waves 

(a) (b) 

(c) (d) 

crack crack 

crack crack 
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Figure 8.3 FEM simulation results for (a) the crack resonance captured at the mouth of 

the crack in harmonic analysis, (b) comparison between FFT of AE waveform of the hole 

and hole+10 mm crack (sensing at 20 mm away from the hole) in transient analysis [166].  

Harmonic FEM analysis of the 3-D model was performed by my colleague Dr. 

Poddar [166]. Harmonic FEM simulation was performed for a plate with a hole + two 5-

mm butterfly cracks. The harmonic FEM results are illustrated in Figure 8.3. The crack 

opening displacement at the mouth of the crack was recorded over the wide frequency band 

as shown in Figure 8.3a. This also showed that the crack opening resonances occurred at 

regular frequency intervals. Although the results were shown for a wide range of 

frequencies, the results of interest were up to 1000 kHz where most of AE signal frequency 

content was available.  

Transient analysis of the same model showed the similar frequency spectra of the 

displacement responses for the two situations as illustrated in Figure 8.3b. This showed 

(a) 

(b) 

Crack resonance for 10 mm crack length 

Harmonic analysis results 

FFT of time domain analysis results 



 

211 

that the AE signals are modified by the presence of the crack. This gave us an indication 

that the geometry of the crack may also be estimated from the recorded AE signals. The 

length of the crack is directly related to the resonance frequencies of the crack. It is also 

interesting to note that the resonance phenomena captured at the mouth of the crack in 

harmonic analysis were similar to that captured at 20 mm away from the crack in transient 

analysis. The comparison between the frequency peaks is illustrated by the dotted lines. 

8.3 EXPERIMENTAL VERIFICATION OF CRACK RESONANCES  

The finite element simulation results suggest that the fatigue crack resonates during 

an AE event. A laser Doppler vibrometer (LDV) experiment was performed to verify this 

hypothesis. The experimental setup is shown in Figure 8.4. A 1 mm thick 2024-T3 

aluminum plate with 1.2 m x 1.2 m dimension was used. The large size of the specimen 

was used to avoid the plate edge reflections. A 16 mm long through thickness slit was made 

to simulate a fatigue crack. Two 7 mm diameter circular PWAS transducers were mounted 

as excitation sources at the tip of the slit on opposite faces of the plate. 

 
Figure 8.4 Laser Doppler Vibrometer (LDV) experimental setup 

(a) LDV controller with data acquisition using a 

computer 

(b) PWAS exciter at the 

tip of slit 

sl
it
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A single count tone burst signal of a center frequency of 350 kHz was used to excite 

the sensors placed at the crack tip. The reason for choosing the single count tone burst 

signal was to achieve a wider band in the frequency (up to 800 kHz). To correctly simulate 

an AE signal at the crack tip, the frequency content of the PWAS excitation at the crack tip 

should cover the entire frequency range of the actual AE waveform. LDV measured the 

out-of-plane vibration velocity of the plate surface at 20 mm away from the crack. 

The out-of-plane velocity of a point at 20 mm away from the center of the crack 

was measured by LDV. Fourier transform of the time domain signal was used to obtain the 

frequency spectrum of the signal as shown in Figure 8.5. Several peaks are clearly 

identified and labeled in the frequency spectrum. Evidently, these peaks represent the 

frequencies for which the out-of-plane velocity reaches a maximum. 

 

 

Figure 8.5 LDV experimental results (out-of-plane velocity) measured at 20 mm away 

from the slit. The resonance frequencies are labeled in the frequency spectrum [167]. 

Resonance phenomena 
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Comparing the experimental data with the FEM simulation results, we can see that 

both results were able to capture several resonances of the crack. However, the amplitude 

trend is increasing with frequency in the experiment while the opposite happened in the 

simulation. The reason is the excitation signal in the experiment was tone burst which has 

a higher amplitude near the center frequency while in the FEM simulation, the excitation 

was a cosine bell step function which has higher amplitudes in the lower frequencies. This 

may explain why the trend in the amplitude of the frequency response curve from the two 

results is not directly comparable. Nonetheless, in both experiment and FEM simulation, 

some frequency peaks caused by the crack resonance were observed within the AE 

frequency band.  

8.4 SUMMARY AND FINDINGS 

The AE waveform generated from the crack tip may interact with the crack itself 

and cause crack resonance. Transient and harmonic analyses were carried out using a 3-D 

FEM model to simulate the AE wave generation, propagation, and its interaction with a 

fatigue crack. Both analyses confirm the local crack resonance phenomena due to the 

interaction between AE waveform and fatigue crack and showed that they are related to 

the crack length. LDV experiments were conducted to verify the computational results. 

Both experimental and simulation results suggested that the AE waveform may be used for 

determining the fatigue crack length. 
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CHAPTER 9  

TWO CASE STUDIES 

This chapter discusses the two case studies that were performed on a metallic stiffened 

structure and on a carbon fiber composite structure by using a combination of active and 

passive SHM as well as using commercial ultrasonic NDI equipment. A more realistic 

scenario was considered in these case studies as discussed next [168], [169]. 

9.1 CASE STUDIES #1: ACTIVE SHM FOR HORIZONTAL CRACK DETECTION, 

SIZE, AND SHAPE ESTIMATION IN STIFFENED STRUCTURES 

9.1.1 OBJECTIVE 

In the past, simplistic structures were often considered for analyzing the guided 

wave interaction with defects. In this study, we focused on more realistic and relatively 

complicated structure for detecting defects by using a non-contact sensing approach. A 

plate with a stiffener was considered for analyzing the guided wave interactions as shown 

in Figure 9.1. PWAS transducers were used to produce excitation in the structures. The 

excitation generated multimodal guided waves (aka Lamb waves) that propagate in the 

plate with stiffener. The presence of stiffener in the plate generated scattered waves. The 

direct wave and the additional scattered waves from the stiffener were experimentally 

recorded and studied. These waves were considered as a pristine case in this research. A 

simulated horizontal semi-circular crack was manufactured in the stiffener using electric 

discharge machining in the same stiffener. The frequency was chosen to be 200 kHz based 

on our separate study on the frequency domain [170]. 
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The presence of the crack in the stiffener produces additional scattered waves and 

trapped wave modes. These scattered waves and trapped wave modes from the cracked 

stiffener were experimentally measured by using a scanning laser Doppler vibrometer 

(SLDV). These waves were analyzed and compared with those from a pristine specimen. 

The analyses suggested that both size and shape of the horizontal crack may be predicted 

from the pattern of the scattered waves. Different features (reflection, transmission, and 

mode-conversion) of the scattered wave signals were analyzed. We found that the direct 

transmission feature for incident A0 wave mode and the mode-conversion feature for 

incident S0 mode are most suitable for detecting the crack in the stiffener. The reflection 

feature may give a better idea of sizing the crack.  

9.1.2 MANUFACTURING OF THE PLATE WITH STIFFENER 

The manufacturing of the plate with stiffener was a little bit tricky and worth 

discussing with the readers. An aircraft grade aluminum 6061 material was used to 

manufacture the plate specimen. A 24-in by 24-in square plate with an initial thickness of 

0.5 inches was used. In order to make a continuous stiffener in the mid-section of the plate, 

a milling process was carried out on the entire plate except for a the stiffener portion. The 

milling process was carried in several iterations to remove one-third of an inch of materials 

from the plate. This process gave a continuous stiffener on the plate. Thus, the stiffener 

was an integral continuous part of the plate. 



 

216 

 

 

Figure 9.1 Geometric dimension of the plate with stiffener used for manufacturing. 

The isometric view of the plate with stiffener is shown in Figure 9.1a. The side 

view of the plate is shown in Figure 9.1b. The dimension of the stiffener was 0.333 inches 

thick, 0.333 inches wide and 20 inches long. After the milling process, the plate thickness 
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was 0.167 inches everywhere. A small half-penny-shaped simulated crack was then 

manufactured at a certain location (6 inches from the plate edge) of the stiffener. Practically, 

a slit of a finite dimension had been made by using a ram electric discharge machining 

(EDM). Since the thickness of the slit was very small (0.01 inch, about 3% of the stiffener 

thickness), it may be referred to as a “crack” for ultrasonic applications. This very thin slit 

may exhibit similar ultrasonic wave scattering behavior as a crack of similar dimension. 

The diameter of the penny-shaped crack was 0.333 inches. 

9.1.3 EXPERIMENTAL SETUP 

A test plan was made for the guided wave crack detection of the plate with stiffener 

using a non-contact sensing approach. A schematic diagram of the test plan is illustrated in 

Figure 9.2. The plate was sub-divided into two sections. One section contained the half-

penny-shaped crack and the other section had no crack.  The section that contains the crack 

is hereafter referred to as “cracked” and the section without crack is hereafter referred to 

as “pristine”.  

Two PWAS transducers were used as transmitters in each section of the plate. 

These PWAS transducers were bonded back to back on the opposite surfaces of the plate. 

This was performed by careful measurement of the transmitter location since both of them 

have to be bonded at the same location: one at the top and other at the bottom of the plate. 

These PWAS transducers were used to excite the structure with a selective type of Lamb 

wave modes (S0 and A0). 

A wave-absorbing clay boundary was used around the plate to minimize the wave 

reflections from the plate edges. This wave absorbing boundary was applied very carefully 

by maintaining a linearly varying thickness profile from inner edge to outer edge of the 
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boundary. In the past, it was found that a linearly varying profile of the wave absorbing 

boundary successfully minimized the edge wave reflections. This allowed us to analyze the 

wave signals that are solely from the stiffener and the crack. 

 

 

Figure 9.2 Test plan for the ultrasonic inspection of the plate to detect crack in the 

stiffener using non-contact laser measurement. 
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Figure 9.3 (a) Experimental setup for scanning using laser Doppler vibrometer (LDV), 

(b) The test specimen with a laser beam at the center of the scanning area. 

Laser Doppler vibrometry (LDV) was used in this experiment as a non-contact 

sensing methodology. A laser receiver had been used to capture the waveforms at different 

locations. The experimental setup is illustrated in Figure 9.3a. It is worthwhile discussing 

(a) 

(b) 

Test specimen 

LDV Controller 

Function Generator 

Oscilloscope 

LDV laser head 

Test specimen 

Laser beam 

PWAS transmitter 



 

220 

the working principle of the LDV briefly. In LDV, a laser beam is directed to a certain 

location of the plate specimen and the reflected laser beam is compared with an internal 

reference beam. The out-of-plane motion of the surface changes the frequency and phase 

of the reflected beam which is measured by an interferometer. The out-of-plane velocity is 

measured by using the Doppler shift in frequency of the reflected laser beam. This process 

is internal to the LDV instrument. In our experiments, the laser beam was directed at 

desired locations by using a motion controller (model: gantry x-y controller). The laser 

head was kept at a fixed height from the plate (about 32 inches).  

The laser measurements were performed over an area by using a suitable 

discretization. Out-of-plane velocity measurements at certain fixed locations (1, 2, 3 in 

Figure 9.2) were also performed. The test specimen with a laser beam is shown in Figure 

9.3b. A very thin reflective tape was used to improve the signal-to-noise ratio of the laser 

measurement. 

9.1.4 RESULTS AND DISCUSSIONS 

The laser scanning was performed over an area of 15 inches by 2 inches. Both S0 

and A0 Lamb wave modes were excited by the PWAS transducers.  

9.1.4.1 Wavefield Analysis for Crack Detection, Shape and Size Estimation 

The laser measurement results for the pristine and cracked stiffener with S0 Lamb 

wave excitation are illustrated in Figure 9.4a and Figure 9.4b, respectively. In case of the 

pristine stiffener, one sees waves reflected by the stiffener and waves transmitted through 

the stiffener. Both the reflected and transmitted waves maintain a straight-crested 

wavefront. 

For the cracked stiffener, waves reflected from the stiffener and transmitted through 

the stiffener also exist. In addition, there are reflected and transmitted waves associated 
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with the crack in the stiffener. Thus, the straight-crested nature of the reflected and 

transmitted waves is broken. Interestingly, the straight-crested nature in the reflected waves 

is broken more than in the transmitted waves as observed from the wavefield shown in 

Figure 9.4b. 

 

 

Figure 9.4 LDV scanning results for comparison of the wavefield due to the pristine and 

cracked stiffener. In both cases, S0 Lamb waves are incident waves. The wavefields are 

captured at the same time of 74-µs. (a) The wavefield due to the pristine stiffener: 

reflected and transmitted waves are straight-crested waves, (b) the wavefield due to the 

cracked stiffener: reflected and transmitted waves are no more straight-crested waves; 

trapped wavemodes are generated within the half-penny-shaped crack; the effect of crack 

is carried by the propagating waves in the plate. 

In addition, trapped wave modes exist within the half-penny-shaped crack. The 

trapped waves are originated from multiple reflections within the semi-circle boundary of 

the crack which is the line of discontinuity. The back and forth motion of the trapped waves 
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may produce additional waves that can travel on the reflected and transmitted sides of the 

stiffener. 

The shape of the crack can be visualized from the wavefield isolines (isoline - line 

with equal signal amplitude and phase) of the as shown by the dotted lines in Figure 9.4b. 

In addition, the size of the deformed isoline is pretty much similar to the size of the crack. 

It is interesting to note that these isolines deformed more on the reflection side than the 

transmission side of the stiffener. 

9.1.4.2 Waveform analysis for Incident A0 Lamb Waves 

In SHM, it is important to study the propagating wavemodes that give an idea how 

far the effect of the crack can be detected. In other words, by studying this effect one can 

predict how far off one can put sensors to detect the crack in the stiffener. 

The transmitted wave packets due to A0 incident Lamb wave are illustrated in 

Figure 9.5. It shows the comparison between the pristine case and cracked case. Three 

waveforms are captured at three different locations such as 4.2, 4.6, 4.8 inches from the 

stiffener. It can be observed that the amplitude of the transmitted A0 wave packet is a 

distinguishing factor between the pristine and cracked cases. The amplitude of the 

transmitted A0 packet is increased in each of the signal obtained from cracked stiffener. 

Since this is a horizontally oriented crack, the A0 waves find an easier path to go directly 

through the plate with less interruption in the crack area of the stiffener.  

At a shorter distance from the stiffener, it would be much stronger signals. As the 

distance becomes larger, the geometric spreading of the waves causes lower amplitudes. 

Despite that, we observed that at about 5 inches away from the stiffener, we can clearly see 

the difference between the pristine and cracked signals.  
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Figure 9.5 Transmitted waveform comparison between pristine and cracked stiffener due 

to A0 incident Lamb wavemode. The waveforms are captured at three different locations 

on the transmission side as marked by 1, 2, 3 in Figure 9.2. The points 1, 2, 3 are located 

at 4.2, 4.6, 4.8 inches from the stiffener. Due to the presence of a horizontally oriented 

crack, more transmission of A0 mode is observed. 

9.1.4.3 Waveform Analysis for Incident S0 Lamb Waves 

The transmitted wave packets due to S0 incident Lamb wave are illustrated in 

Figure 9.6. It shows the comparison between the pristine and cracked cases. Three 

waveforms are captured at three different locations such as 4.2, 4.6, 4.8 inches from the 

stiffener. It can be observed that the amplitude of the first S0 packet is more or less same 
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for pristine and cracked stiffeners which was not the case for incident A0 as discussed 

earlier. 

 

 

Figure 9.6 Transmitted waveform comparison between pristine and cracked stiffener due 

to S0 incident Lamb wavemode. The waveforms are captured at three different locations 

on the transmission side as marked by 1, 2, 3 in Figure 9.2. The points 1, 2, 3 are located 

at 4.2, 4.6, 4.8 inches from the stiffener. Due to the presence of horizontally oriented 

crack, less mode-conversion of the S0 model is observed. 

For S0 incident wave, it can be observed that mode conversion is the distinguishing 

factor between the cracked and pristine signal. For cracked stiffener, there is less mode 

conversion (from S0 to A0) than for the pristine stiffener. The stiffener is the source of 
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asymmetry in the plate, which causes the mode conversion from S0 to A0. Since the crack 

is oriented horizontally, producing a semi-circular discontinuity, the S0 waves experience 

less mode conversion in this area. The crack area in the stiffener eases the path of S0 wave 

propagation without being mode converted from the stiffener. 

At a shorter distance from the stiffener and in the reflection side of the stiffener, 

there would be much stronger distinguishing signals between the pristine and cracked 

stiffeners. The transmission side is less sensitive than the reflection side. Despite that, we 

still clearly see the difference between the pristine and cracked signals when we look at the 

appropriate distinguishing features (mode conversion in this case) at about 5 inches away 

from the stiffener. 

9.1.5 SUMMARY AND FINDINGS 

A more complicated, but realistic structure has been used for the experimental study 

of ultrasonic guided Lamb wave interaction with structural damage. A plate with a pristine 

stiffener and the same plate with a horizontal half-penny-shaped crack in the stiffener were 

studied. The presence of crack in the stiffener produces additional scattered waves and 

trapped waves. These scattered waves and trapped waves were experimentally measured 

by a scanning laser Doppler vibrometer (SLDV). The scattered waves from the pristine 

stiffener and cracked stiffener were analyzed and compared. The analyses suggested that 

both size and shape of the horizontal crack in the stiffener may be predicted from the pattern 

of the scattered waves. In addition, we found that certain features of the scattered waves 

may be more suitable than others. Identification of an appropriate feature of the scattered 

waves may provide better information of the damage. For instance, in this experiment, the 

direct transmission feature may be used to detect the crack for incident A0 Lamb wave. 
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The mode-conversion feature may be used to detect the crack for incident S0 Lamb wave. 

The reflection feature may be used to determine the shape and size of the crack. 

9.2 CASE STUDIES #2: SHM AND NDE OF A MANUFACTURED COMPOSITE 

PLATE 

9.2.1 OBJECTIVE 

In this case study, we focus on composite structures which possess more complexity 

in the guided wave propagation because of anisotropic behavior of composite materials. 

Aircraft structures often experience impacts from many different sources, for example, 

bird-strike, airport debris, flying objects. A composite plate was manufactured by using 

compression molding process with proper pressure and temperature cycle. Eight layers of 

woven composite prepreg were used to make the plate. The pristine composite plate is 

inspected by using a phased array based nondestructive tool (Rollerform). An area scan is 

performed to monitor any internal manufacturing flaws in the pristine plate. Relatively 

higher number of elements (64) with high frequency (3.5 MHz) phased array probe is used 

to detect any smaller defects during the manufacturing. The signatures of the wave signals 

show a minimal amount of defects in the plate. This NDE scanning process confirmed that 

there was no additional source of scattered waves inside the composites. The composite 

plate was then used for more practical application i.e. impact detection and localization. 

An SHM technique is implemented with PWAS transducers to detect and localize the 

impact on the plate. The guided acoustic waves generated from the impact travel in the 

plate and are recorded by two clusters of sensors. The acoustic signals are then analyzed 

using a wavelet transform based time-frequency analysis. The proposed SHM technique 
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successfully detects and localizes the impact event on the plate. The experimentally 

measured impact locations are compared with the actual impact locations. 

9.2.2 COMPOSITE PLATE MANUFACTURING USING COMPRESSION MOLDING PROCESS 

Polyphenylene Sulfide (PPS) fabric prepreg from TenCate Cetex was used to 

manufacture a thermoplastic composite (TPC) plate. The PPS prepreg was a pre-

consolidated reinforced laminate with continuous woven carbon fibers. The prepreg was 

first cut from a big roll of fabric according to the desired shape (square in this case) with a 

dimension of 305 mm by 305 mm (12 inches by 12 inches) as shown in Figure 9.7. Each 

cutting section served as a layer.  

 

 

Figure 9.7 Cutting and laying up the PPS prepreg fabrics according to the desired size 

Eight layers of woven fabric were stacked up to form a laminate. Proper personal 

safety equipment such as gloves and safety glasses are always recommended during 

handling the carbon fibers. 

9.2.2.1 Laminate Preparation 

The eight-layer laminate was placed between two flat platens of a hot press as 

shown in Figure 9.8. Two thin protective films of plastics with a very high melting point 
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were used on top and bottom of the stack up. The protective films should be about 6 inches 

bigger in all around the fabric laminate to accommodate any extra resin flow during the 

curing process. These films (1) protected the platens from resin sticking up, (2) maintained 

a uniform flow of resin during the curing process, (3) helped to remove the plate from the 

platen after the curing process.  

 

 

Figure 9.8 Composite layers are placed in the hot-press machine to apply heat and 

pressure 

9.2.2.2 Curing Process in the Hot-Press 

The melting temperature of the PPS fabric is 5360F. Hence, a cure cycle must 

contain a temperature higher than the melting point for proper melting and flow of the resin. 

Figure 9.9 shows a standard cure cycle used for this laminate. A constant pressure of 150 

psi was applied during the cure cycle.  

Top platen 

Composite layers 

Bottom platen 



 

229 

 
Figure 9.9 Cure cycle for the PPS prepreg 

 

 

Figure 9.10 Final composite plate after cutting the extra resin flow around the plate 

Heating was adjusted in the hot-press machine for raising the laminate temperature 

to 6100F within 45 minutes. Then the temperature of the laminate dwelled at 6100F for 30 

minutes. At the end of dwell time, the laminate was air cooled from 6100F to room 

temperature in 30 minutes. 

After the cure cycle completed in about 2 hours, the laminate was taken out from 

the platen. The extra resin flow at the edges of the laminate was trimmed. Figure 9.10 
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shows the final composite laminate after the trimming process. The resulting plate had a 

thickness of 1.6-mm. The dimension of the final composite plate was 387 mm by 276 mm 

(11.3 inches by 10.9 inches). The manufactured composite plate was then tested 

nondestructively as discussed next. 

9.2.3 NONDESTRUCTIVE INSPECTION (NDI) OF COMPOSITE PLATE USING PHASED ARRAY 

ROLLER FORM  

An ultrasonic nondestructive inspection (NDI) was performed on the manufactured 

composite plate. The purpose of this NDI was to verify if there is any major flaws, 

delamination or defects during the manufacturing process. An ultrasonic scanning was 

performed on the plate, which can detect defects or delamination across its thickness. The 

Olympus OmniScan instrument and Rollerform were used to inspect the composite 

specimen. The Olympus Rollerform is a phased array wheel probe designed for C-scan 

inspection of the aerospace composite, aluminum panels, and similar components. This 

device can be used to detect internal porosity, detect and size delaminations and other types 

of defects. 

9.2.3.1 NDI Experimental Setup  

The Olympus Rollerform sends ultrasonic waves through the plate and then receive 

the reflected signals through a phased array system. It records the signals from the entire 

inspection area through a data acquisition system. The Olympus OmniScan instrument 

processes these signals to generate A-scan, C-scan, and S-scan representations. These plots 

help visualize, analyze, and measure the results using the OmniScan MXU software. 
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Figure 9.11 NDI experimental setup for damage inspection of the composite plate using 

phased array based Rollerform from Olympus and Omniscan 

The NDI experimental set up is shown in Figure 9.11. There are several necessary 

components for this inspection such as Omniscan device, Roller form, water spray bottle 

and the composite test specimen. 

9.2.3.2 Phased Array Based Wheel Probe 

The acoustic tire contained the phased array probe. It can create a 25 mm delay line 

in the water for smooth scanning and optimized C-scan inspection of aerospace 

components. The key feature includes a swappable Olympus 64 element linear phased area 

probe with frequency 3.5 MHz for scan coverage greater than 50 mm, as shown in Figure 

9.12. The effective length of the phased array beam is equal to approximately 49 mm. The 

tire chamber should be filled with distilled deionized water the night before the experiment 

to make sure the water is free from bubbles. The second step is to set up the Olympus 

Omniscan for wheel probe. The properties of the inspected plate can be selected carefully.  
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Figure 9.12 The phased array wheel probe element [171] 

The internal software parameters have been chosen appropriately following the 

guideline provided by the Olympus OmniScan. The inspection area should be defined in 

the scan area menu in each axis.  

9.2.3.3 Performing Ultrasonic Scanning  

In this experiment, an inner inspection area of 245 mm by 240 mm was chosen 

since the wheel probe may generate erroneous signals while it is very close to the specimen 

edge. The inspection area was divided into 5 segments as shown in Figure 9.13. Each 

segment is 240 mm long and 49 mm wide (the effective beam probe length). The divided 

area was inspected line after line by the roller form wheel. The scan segments were stitched 

together to generate a complete ultrasonic image of the composite plate inspection area. 
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Figure 9.13 The NDI inspection area and the division scheme for ultrasonic scanning 

9.2.3.4 3D Ultrasonic Scanning Results 

The ultrasonic 3D scanning results are summarized in Figure 9.14. The overall C-

scan is represented by a color map as shown in Figure 9.14a. The color map shows an 

uniformity in color despite few gray spots here and there. This indicates that the composite 

plate is healthy enough without any defect or delamination. The gray spots might represent 

some manufacturing flaws or they could be originated from the measurement artifacts, 

however, they are less than 0.1%. Thus, the manufactured composite plate can be 

considered as a healthy plate. It also shows that there are no defects across the thickness of 

the plate.  
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Figure 9.14 NDI 3D scanning results of the manufactured composite plate 
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In order to understand more, the signatures of the ultrasonic signals are analyzed in 

the thickness direction. The A-scan and S-scan of run 1 and 5 are illustrated in Figure 

9.14b,c. From the A-scan the top and bottom surface of the plate can be identified by 

looking at the signature of the signals. The distance between these two signatures represents 

the plate thickness. The S-scan or sectorial scan represents the two-dimensional 

representation of signal-amplitude distribution over the length of the scan run and thickness 

of the plate. The S-scans from two different positions show that there are no defects across 

the plate thickness. 

9.2.4 IMPACT DETECTION AND LOCALIZATION USING SHM TECHNIQUE  

After we confirm that the manufactured composite plate contains no significant 

internal defects from the NDE scanning process, we conducted an impact test on the plate. 

The impact is a common damage situation that can occur in real-life structures. In this 

experiment, an SHM technique is implemented to detect and localize the impact. Six 

PWAS transducers were permanently bonded to the composite plate. Each PWAS 

transducer was 7-mm in diameter and 0.5-mm in thickness. Experience from previous 

experiments performed by my colleague Asaad Migot [172], [173] on using PWAS 

transducer networks for impact localization has been implemented in our study. 

9.2.4.1 SHM Experimental Setup for Impact Detection and Localization 

The experimental setup is shown in Figure 9.15. Two clusters of PWAS sensors 

were used as named as C1 and C2. In each cluster, there were three PWAS transducers 

placed at 90 deg. orientation. This configuration of sensors is especially useful when one 

does not know the exact material properties of the plate. This method can accurately predict 

the location of the impact by analyzing the signals received by the sensors without knowing 

the material properties. The theoretical background of this model can be found in ref. [174]. 
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Figure 9.15 SHM scheme for impact detection and localization on the manufactured 

composite plate 

The plate was subjected to impact by a steel ball at five different locations. These 

locations are marked by 1, 2, 3, 4, 5 in Figure 9.15. At each location, three impact events 

were created to check the repeatability of the test. The steel ball was freely impact 

following a special guide fixture from a height of about 2 inches. When the steel ball hits 

the plate it generates acoustic emissions (AE). The AE energy propagates as guided waves 

in the plate. The guided waves produce stress and strain waves in plate. The strain waves 

were captured by the permanently bonded PWAS transducers. Since the six PWAS 

transducers were located at different distances, the times of flight (TOF) of the received 

signals were different. 

9.2.4.2 Experimental Signal Analysis and Impact Detection 

The six signals from the six sensors are illustrated in Figure 9.16 and Figure 9.17. 

Figure 9.16 corresponds to the signals received from impact location #1 and Figure 9.17 

1 2 

3 

5 
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corresponds to the signals received from impact location #3. These signals received by the 

sensors indicate that there was an impact event. In this experiment, low energy impact 

(height was intentionally kept low) was used to show how sensitive the proposed SHM 

system is. In case of high energy impact, it would be much easier to detect the impact event 

since it would produce higher amplitude AE signals. 

 

 

Figure 9.16 PWAS recorded acoustic signals due to impact at location #1 

9.2.4.3 Impact Localization 

To localize the impact event in the plate, it is important to determine the time-of-

flight in a correct manner. Just by looking at the time-domain signals, often it is hard to 

determine the time of flight. The accurate way is to use a signal processing method to 

determine TOF. A wavelet transform based method was used in this paper to determine the 

TOF. The wavelet transform based method is demonstrated in Figure 9.18. As an example, 

two PWAS signals received from impact event#3 are considered.  
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Figure 9.17 PWAS recorded acoustic signals due to impact at location #3 

 

 

Figure 9.18 Wavelet transform of the PWAS recorded signals to determine time of flight 

(TOF) (for location #3) 

 

PWAS #1 signal PWAS #2 signal 

TOF TOF 
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In wavelet transform (WT), adjustable windows can better keep track of time and 

frequency information as compared to short-time Fourier transform (STFT), another 

popular method. WT can zoom in on short bursts and zoom out to detect long, slow 

oscillations by auto adjustment of the windows. Since the nature of the signal is unknown 

during an impact, WT provides more accurate information from the time-frequency 

analysis. A freeware Vallen WT software was used to perform the signal WT.  

The frequency-time plot using the WT is shown by the color plots in Figure 9.18. 

It shows the amplitude mapping over various frequencies and time. At each time and 

frequency, a WT coefficient variation can be plotted as shown on the bottom-left of each 

box. An overall maximum of the WT coefficient has been plotted. The time at which the 

WT profile matches the overall WT maxima provide the TOF. This process has been 

repeated for all PWAS signals to determine the TOFs.  

Once the TOFs for all the AE signals were known, a localization algorithm was 

used to determine the impact location. The localization algorithm was developed based on 

the theory proposed by Kundu et al. [174] as used in ref. [173]. The experimental 

measurement and the actual impact location is summarized in Table 9.1. The visual 

representation of the actual impact location and measured impact location is shown in 

Figure 9.19. It shows that the experimentally measured impact locations are in good 

agreement with the actual impact location. 
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Figure 9.19 Experimentally measured impact location and actual impact location on the 

manufactured composite plate 

Table 9.1 Experimental measurement vs. actual location of the impact 

Impact event Actual location  

(x, y) mm 

Measured location 

(x, y) mm 

#1 (120, 170) (117.7, 161.9) 

#2 (170, 170) (166, 163.8) 

#3 (150, 200) (147.4, 197.8) 

#4 (100, 200) (101.8, 195.5) 

#5 (130, 250) (131.7, 251.6) 
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9.2.5 SUMMARY AND FINDINGS 

A hot press with proper cure cycle was used for manufacturing a composite plate 

without any significant internal defects. We found that the manufactured plate had a 

minimal to no defect that can affect the impact detection and localization. A phased array 

based 3D ultrasonic scanning was used for fast inspection of internal damage in a 

manufactured plate. Relatively high number of elements (64) with a high frequency (3.5 

MHz) phased array probe was used to detect any manufacturing defects. No significant 

internal defects were found. PWAS transducers were permanently bonded to the 

composites to detect and localize impact events. A wavelet transform based signal 

processing was used to accurately determine the time of flight of the acoustic signals. The 

proposed SHM technique can successfully be implemented in practice to monitor impact 

damage. We found that the experimental measurements are in good agreement with actual 

impact localization. 
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CHAPTER 10  

CONCLUSIONS AND FUTURE WORK 

This dissertation has presented physics-based approaches to structural health monitoring 

and nondestructive evaluation with ultrasonic guided waves. The focus has been on the 

development of analytical, finite element, and experimental techniques for guided wave-

based active and passive sensing procedures. 

The dissertation started with a literature review and fundamentals of guided waves, 

physics-based concepts of SHM and NDE, and different types of sensors. The 

elastodynamic gauge condition was analytically derived from the equations of motion and 

the Helmholtz potential representation of the physical vector quantities. A novel concept 

of the gauge condition was proposed. The application of the new gauge condition was 

demonstrated on two well-known plate guided wave problems: (a) straight-crested guided 

waves, (b) axisymmetric circular-crested guided waves. These demonstrations primarily 

showed how the use of the new gauge condition simplified the elastodynamic analysis of 

guided wave propagation. Then, our concept of the gauge condition was applied to a 

complicated problem which was the coupled non-axisymmetric guided wave propagation 

in a plate. An analytical solution based on Helmholtz potential was developed for the first 

time for the non-axisymmetric guided wave propagation in a plate. Normal-mode 

expressions for the displacements and stresses were developed and presented. 

The dissertation continued with a hybrid global analytical and local FEM approach 

to enhanced damage detection in aerospace rivet holes. An aerospace lap joint with 
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multiple rivet holes was considered. A scatter cube of wave damage interaction coefficient 

(WDIC) was developed for a rivet hole with butterfly cracks. The scatter cube contained 

the damage information for all possible directions of wave interactions at all possible 

frequencies. The analysis of the scatter cube showed the optimum combination between 

actuator-sensor locations around the damage site and frequencies of transmitting signals. 

A few examples were demonstrated by showing the simulated time-domain signals in some 

particular cases. 

The dissertation continued with multiphysics FEM simulations of a predictive 

design for a passive SHM system. For the multiphysics simulations, it considered a 

practical problem which was the detection of acoustic emissions (AE) generated by a 

fatigue-crack. Various design parameters were studied. The underpinning of the acoustic 

emission source modeling, fatigue crack modeling, wave propagation visualization, and 

crack resonance was developed. 

The dissertation continued with the physics of materials-based analysis of in-situ 

AE signals from AE-fatigue experiments. Multiple experiments were conducted to validate 

the multiphysics simulation results and interpret the fatigue-crack generated AE signals. 

Various types of AE sensors were used to capture the AE signals. Hit-based and waveform-

based analyses were performed on the AE signals. Various groups of AE waveform 

signatures and their sources were localized from the waveform-based analysis. A fatigue 

crack length estimation was proposed based on the AE waveforms. Two case study 

experiments of practical active and passive SHM usage were demonstrated. A review of 

the main conclusions of this research is given next. 
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10.1 RESEARCH CONCLUSIONS 

10.1.1 ELASTODYNAMIC GAUGE CONDITION  

The gauge condition originated in elastodynamics from the Navier-Lame equations 

upon application of Helmholtz theorem. The proper choice and manipulation of the gauge 

condition may simplify the problem and permits straightforward analytical solutions. The 

gauge condition provides the necessary conditions for the complete solution of the elastic 

waves in plates by the potential function approach. The gauge condition may be considered 

as the superposition of separate gauge conditions for Lamb waves and SH waves, 

respectively. Each gauge condition contains a different combination of the shear vector 

potential components. The gauge condition established a bridge between Lamb waves and 

SH waves. The gauge condition may decouple in the case of physical problems in which 

the Lamb and SH waves are expected to decouple. The decoupling of the gauge condition 

does not violate the classical Lamb wave and SH wave solutions; rather, it simplifies the 

problem. The gauge condition plays a vital role in the separation of Lamb waves and SH 

waves; thus, it transforms a complicated problem into two simpler problems. In Chapter 3 

of the dissertation, the manipulation of the gauge condition was illustrated on two well-

known problems of guided waves in plates in which the Lamb waves and SH waves can 

be physically decoupled. The next challenge for this approach, i.e., solving a coupled 

problem (Lamb waves + SH waves) such as the non-axisymmetric guided wave 

propagation in a plate, was addressed next. 

10.1.2 ANALYTICAL SOLUTION TO THE NON-AXISYMMETRIC PROBLEM 

In Chapter 4 of the dissertation, we showed that it is possible to develop a 

Helmholtz potential solution for the coupled non-axisymmetric guided wave problem in 
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cylindrical coordinates by manipulating the gauge condition. The non-axisymmetric 

guided wave propagation in cylindrical coordinates is a situation where two of the 

potentials are tightly coupled. The coupling of the governing equations in terms of 

potentials has prevented so far the development of a complete Helmholtz solution for this 

difficult problem. Chapter 4 showed how a judicious manipulation of the gauge condition 

can decouple the governing equations and leads to a straight-forward solution. The 

manipulation of the gauge condition yielded a new potential, vH , which replaces the effect 

of rH , H  and thus allowed us to replace two coupled governing equations in rH , H  by 

a single uncouple equation in vH . This judicious use of the gauge condition reduced the 

number of potentials, decoupled the governing equations and facilitated the obtaining of 

the complete solution for the non-axisymmetric guided-wave propagation in cylindrical 

coordinates in an elegant straight-forward way. 

10.1.3 ANALYTICAL-FEM APPROACH FOR RIVET HOLE CRACK DETECTION 

An exact analytical formulation has been used throughout the structure, except for 

the local damage area, which was analyzed using the finite element method. In order to 

detect multiple-rivet-hole lap joint cracks, Lamb waves impinging on the damage from all 

possible directions were considered. Both symmetric and antisymmetric fundamental 

Lamb wave modes (S0 and A0) were used in the analysis. Besides the Lamb waves, SH 

waves also appeared in the scattered waves. Due to the non-axisymmetric nature of the 

problem, the wave damage interaction coefficient (WDIC) had non-axisymmetric behavior 

around the damage. Scatter cubes were produced for the scattered waves to accommodate 

the three-way interaction (frequency, incident direction, azimuthal direction) of Lamb 

waves with the rivet hole cracks. From the frequency domain analysis and the azimuthal 
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variation of the WDIC, the proper locations of the sensors and the appropriate center 

frequency of excitation were obtained. Some particular example cases were demonstrated. 

The simulated time-domain signals were obtained for different frequency–location 

combinations by using a global analytical framework. The optimum selection of sensor 

location and center frequency of excitation gave a strong signal that confirmed a better 

crack detection in the rivet hole. The optimum parameters can be used to make an effective 

NDE/SHM algorithm for inspecting the multiple-rivet-hole lap joint. 

10.1.4 MULTIPHYSICS FEM SIMULATIONS OF FATIGUE-CRACK GENERATED AE 

PWAS transducers successfully captured the fatigue crack-related AE signals. Both 

multiphysics simulations and experimental results supported this finding. The fatigue crack 

generates low-amplitude AE signals as it grows. We recorded AE signals being produced 

in every fatigue loading cycle. This indicates that the AE events happen at every cycle as 

the fatigue crack grows. During a low cycle fatigue experiment, the AE hits provide the 

global information of the physical problem whereas the AE signal analysis provides the 

detail information of the physical phenomenon. The AE event produced at the crack tip 

travels as guided acoustic waves throughout the structure. The AE signals show the 

geometric energy spreading and amplitude reduction. The distance between the PWAS 

transducer and the AE source has an effect on the sensed AE signals. Near-field PWAS 

captures higher amplitude AE signals than far-field PWAS. Some higher-frequency 

contents of the AE signals seem to develop as they travel away from the crack tip AE 

source. The effect of the rise time and dipole orientation in the FEM simulation was also 

investigated. We found that these two factors significantly affect the simulated AE signals. 
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Thus, these factors may be used to simulate various types of AE signals for various 

applications. 

10.1.5 PHYSICS-BASED ANALYSIS OF EXPERIMENTAL AE SIGNALS 

The physics of materials based analysis of AE signals may explain the complex 

phenomena of metal fatigue. The current AE hit based analysis may not be sufficient to 

capture detailed fatigue crack growth mechanisms. The AE-waveform based analysis may 

give a comprehensive idea of the fatigue crack growth phenomenon. Different types of 

sensors significantly affect the recorded AE waveforms. Depending on the application, a 

certain type of sensor may be more suitable than others. It was found that PWAS 

transducers may be used to capture the fatigue crack generated AE signals in thin wall 

structures. PWAS seems to capture richer frequencies than the commercial PICO and 

S9225 sensors. It is also important to distinguish the fatigue crack-related AE signals from 

the rogue AE signals that may come from non-crack events. AE source localization 

confirmed the sources of the AE signals. 

During the fatigue crack growth, various AE waveforms may be generated. These 

AE waveforms can be sorted into groups based on their spectral signatures. During fatigue 

crack growth in a thin metallic specimen, nine different AE waveform groups were 

observed. A particular waveform group represents a particular source of AE event related 

to the crack growth. The AE waveforms evolved with fatigue load level. 

Fatigue crack extension, as well as rubbing and fretting of crack faying surfaces, 

may generate AE signals. AE waveform sorting synchronized with load level was used to 

distinguish the AE signals related to crack extension from the rubbing and fretting AE 

signals. It was found that certain groups (A, B, C, D, G) were generated from the crack 
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extension while certain groups (E, F, H) are generated by the crack rubbing and fretting. 

Micro-fracture events may occur during the crack rubbing and fretting of the crack faying 

surfaces which may generate AE signals in a clustered form. Some AE waveform groups 

happened at relatively lower load level (e.g. group E) and appeared in cluster form. These 

waveforms may represent the “catching” of the crack faying surfaces. 

10.1.6 CAN WE “HEAR” CRACK LENGTH FROM AE WAVEFORMS? 

The AE waveform generated from the crack tip may interact with the crack itself 

and cause crack resonance. Transient and harmonic analyses were carried with a 3-D FEM 

model to simulate the AE wave generation, propagation, and its interaction with a fatigue 

crack. Both analyses confirmed the local crack resonance phenomena due to the interaction 

between an AE waveform and a fatigue crack and showed that they are related to the crack 

length. LDV experiments were conducted to verify the computational results. Both 

experimental and simulation results suggested that the AE waveform may be used for 

determining the fatigue crack length. 

10.1.7 FINDINGS OF CASE STUDIES 

A plate with a pristine stiffener and a stiffener with a horizontal half-penny-shaped 

crack were simulated and experimentally tested. The presence of the crack in the stiffener 

produces additional scattered waves and trapped waves. These scattered waves and trapped 

waves were experimentally measured by a scanning laser Doppler vibrometer (SLDV). 

The scattered waves from the pristine stiffener and cracked stiffener were analyzed and 

compared with each other. The analyses suggested that both the size and the shape of the 

horizontal crack may be predicted from the scattered wave pattern. In addition, we found 

that certain feature of the scattered waves may be more suitable for damage detection than 
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others. Identification of an appropriate feature of the scattered waves may provide better 

information about the damage. For instance, in this experiment, the direct transmission 

feature may be used to detect the crack for incident A0 Lamb wave, whereas the mode-

conversion feature may be used to detect the crack for incident S0 Lamb wave. The 

reflection feature may be used to determine the shape and size of the crack. 

A hot press process with proper cure cycle was used to manufacture a composite 

plate without any significant internal defect. A phased array based 3D ultrasonic scanning 

was used for fast inspection of internal damage in the manufactured plate. Relatively higher 

number of elements (64) with high frequency (3.5 MHz) phased array probe was used to 

detect any smaller defects produced during the manufacturing. We found that the 

manufactured plate had a few small internal defects but these did not affect the impact 

detection and localization. PWAS transducers were permanently bonded to the composite 

plate to detect and localize impact events. A wavelet transform based signal processing 

was used to accurately determine the time of flight of the acoustic signals. The proposed 

SHM technique can be successfully implemented in practice to monitor impact damage. 

We found that the experimental measurements are in good agreement with actual impact 

locations. 

10.2 MAJOR CONTRIBUTIONS 

This dissertation has contributed to the SHM and NDE research in a variety of ways. 

The major contributions of this dissertation to the SHM/NDE state of the art are listed 

below: 

1. A novel concept of the elastodynamic gauge condition was proposed. We found 

that the gauge condition may be considered as the superposition of separate 
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gauge conditions for Lamb waves and SH waves, respectively. Each gauge 

condition contains a different combination of the shear vector potential 

components. The gauge condition established a bridge between Lamb waves 

and SH waves in plate-guided waves. It was found that the gauge condition 

played a vital role in developing simplified analytical solutions of several 

guided-wave propagation problems.  

2. An analytical solution to the non-axisymmetric problem was developed for the 

first time in cylindrical coordinates using the Helmholtz-potential based 

approach which has not been reported elsewhere. The judicious use of the gauge 

condition reduced the number of potentials, decoupled the governing equations 

and facilitated the obtaining of a complete solution for the non-axisymmetric 

guided-wave propagation in cylindrical coordinates in an elegant straight-

forward way. 

3. An enhanced damage detection technique for aerospace rivet holes has been 

proposed. The scatter cube of wave-damage interaction coefficients was 

developed. An analytical framework developed by a previous researcher was 

used to incorporate the scatter cube and obtain the time domain signals. The 

optimum combination of frequency and sensor location was obtained for a 

better design of SHM systems. 

4. Multiphysics 3D FEM simulation of the fatigue-crack generated acoustic 

emission and propagation was performed in ways which have not yet been 

reported in the literature. The underpinning of the acoustic emission source 

modeling, fatigue crack modeling, and crack resonance was developed. 
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5. Piezoelectric wafer active sensors (PWAS) were shown to be effective low-cost 

AE sensors for capturing the fatigue crack generated AE signals. It has been 

verified by using both multiphysics simulations and experiments that the PWAS 

can successfully capture the features of the fatigue crack generated AE.  

6. It was found that the AE sensors had a significant effect on the sensing AE 

signals. A certain sensor may be more suitable than others depending on the 

application. For fatigue crack generated AE in a thin plate, PWAS captured 

richer frequency information of the AE waveforms than the commercially 

available AE sensors (PICO and S9225). 

7. A methodology for the AE waveform analysis was developed which would give 

much more information than the existing AE hit-based approaches. It was found 

that the AE hit-based analysis may not be sufficient for understanding the 

fatigue crack-related AE signals.  

8. Various waveform signatures were captured from in-situ AE-fatigue 

experiments. Source localization confirmed that they were generated from the 

fatigue crack. Aspects of the complex metal fatigue mechanism were explained 

using the waveform signatures which have not been reported elsewhere. 

9. A fatigue crack length estimation method based on the analysis of the fatigue 

AE waveforms was proposed.  

10. Two case studies on realistic problems have been performed based on a 

combination of active and passive SHM/NDE techniques. 
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10.3 RECOMMENDATION FOR FUTURE WORK 

This dissertation has presented generalized analytical solutions, multiphysics 

simulation techniques, and an experimental methodology for ultrasonic guided-wave based 

SHM and NDE. This work has laid the foundation for future investigations to extend the 

methodologies to more complicated structures. The suggestions for future work are listed 

below: 

1. The general solution of the non-axisymmetric guided-wave problem developed 

in this dissertation may be used for any plate guided-wave problem with non-

axisymmetric excitation. For example, a plate subjected to an arbitrary 

azimuthal variation of loading. The nature of the azimuthal loading will 

determine the number and magnitude of the angular modes to be considered in 

the Fourier expansion. 

2. One of the major applications of the general non-axisymmetric solution would 

be the theoretical analysis of guided wave scattering from a damage of arbitrary 

shape. This is a problem of continuous interest in ultrasonic nondestructive 

evaluation (NDE) and structural health monitoring (SHM). The general non-

axisymmetric guided wave solution can be used for dealing with the scattering 

of guided waves from non-axisymmetric damage such as corrosion, fatigue 

crack, notches, etc. The incident guided waves and the non-axisymmetric 

guided waves scattered from a damage should satisfy the local boundary 

conditions at the damage site. These boundary conditions would be used to 

determine the coefficients of the complex-mode expansion representation of the 

stresses and displacements. Upon knowing the coefficients of the complex-
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mode expansion, one can analytically determine the scatter wavefield. 

Subsequently, the predicted reflection, transmission, and mode conversion 

coefficients could be used to achieve a better design of the NDE and SHM 

systems for specific applications.  

3. One can determine the proper gauge condition using the methodology proposed 

in the dissertation applied to other elastodynamic problem. 

4. An experiment may be designed based on the simulated results to detect the 

rivet-holes crack with Lamb waves incident from multiple directions. The SHM 

system design may be extended for making an algorithm for the multiple-rivet-

hole lap joint and detecting the cracks in any of the rivet holes. The research 

may be further extended by considering the interactions among the rivet holes 

and the boundary reflections from the edges. In the overlapped section of the 

lap joint, some wave leakages may occur, thus, the overlapped thickness of the 

plate would come into play. The wave leakage effects may be considered while 

obtaining the optimum parameters. 

5. The full history of the AE hits for the fatigue crack growth from beginning to 

failure may be analyzed at the waveform level. It would be a labor-intensive 

but worthwhile analysis if we could establish possible relations between the AE 

signal-groups and the fatigue crack length. The AE waveforms would be further 

analyzed to capture any possible local interaction between the AE signals and 

the fatigue crack. A multiphysics simulation could be performed to predict the 

failure mechanism corresponding to different AE signal groups. 
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6. The mechanism of crack growth within one fatigue cycle may be established 

from the captured AE signals. In-situ microscopic measurement of the fatigue 

crack length would be performed and correlate with the captured AE signals. 

The AE system, MTS machine, and the optical measurement could be 

synchronized together for better understanding and interpretation of the AE 

signals. 

7. The crack resonance phenomenon observed in the multiphysics simulation of 

the AE waveform may be further analyzed to extract the fatigue crack length 

information. The multiphysics simulation at the intermediate length of the crack 

may be performed to obtain the AE waveforms at these lengths. 
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