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ABSTRACT

Vibrio bacteria are Gram negative, motile organisms that occur naturally in most 

coastal and estuarine ecosystems.  Some vibrios are important human pathogens, 

including Vibrio parahaemolyticus and Vibrio vulnificus.  The CDC estimates that vibrios 

cause 80,000 cases of disease each year in the United States alone.  Most cases are caused 

by V. parahaemolyticus, which infects humans after the consumption of contaminated 

raw or undercooked seafood, primarily oysters.  V. parahaemolyticus causes mild 

gastroenteritis that is self-limiting unless the patient is immunocompromised.  V. 

vulnificus has a much lower incidence of disease (100 cases in the USA yr-1); however, 

this organism causes much more severe infections, including necrotizing fasciitis (flesh 

eating disease) and sepsis when introduced into an open wound.  With global climate 

change, Vibrio outbreaks are expanding in size, frequency, and latitude.  This 

investigation examined the reliability of using “species specific” marker genes to identify 

a Vibrio strain, the distribution of pathogenicity islands (PAIs) within Vibrio genomes, 

and the distributions of potential pathogenic V. parahaemolyticus within oysters and 

oyster tissues.  We determined that some oysters, designated as “hot” oysters, can harbor 

significantly more vibrios than surrounding oysters.  These “hot” oysters, which occur at 

low frequency, may explain the sporadic (and difficult to predict) nature of V. 

parahaemolyticus infections.  The cytotoxic effects of environmental Vibrio strains and 

the interactions of vibrios with various marine microalgae were also studied. 
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INTRODUCTION 

Vibrio parahaemolyticus is a human pathogen that occurs naturally in most 

estuarine and coastal ecosystems.  When ingested in raw, undercooked, temperature 

abused, and/or mishandled oysters, this bacterium causes gastroenteritis.  Symptoms 

usually manifest between 12-24 hours after ingestion of contaminated shellfish, but it can 

take as long as four days for symptoms to appear.  Symptoms include diarrhea, nausea, 

vomiting, abdominal cramps, headache, fever, and chills.  Most cases in healthy 

individuals are mild and self-limiting, meaning the infection runs its course after 2 to 3 

days.  Hospitalization is not common for V. parahaemolyticus infections unless the 

patient is immunocompromised.  Tracking and monitoring outbreaks of V. 

parahaemolyticus is made difficult due to this problem of underreporting.  However, the 

CDC estimates that there are 80,000 cases of vibriosis (Vibrio gastroenteritis) per year in 

the United States (2018). 

V. parahaemolyticus is an environmental pathogen, meaning it occurs naturally in 

most coastal ecosystems.  A contamination event is not required for V. parahaemolyticus 

to be introduced into oysters.  With the right environmental parameters, such as elevated 

temperatures, densities of this organism in the environment will spike.  But in recent 

years this organism has invaded to typically cold-water regions such as the Baltic Sea 

(Eiler et al., 2006) and Alaska (McLaughlin et al., 2005; Martinez-Urtaza et al., 2010).  

This organism has also recently been responsible for oyster bed closures in typically 
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cooler months, such as September and October.  For example, oyster beds in Martha’s 

Vineyard, MA were closed in October 2013 and again in October 2017 due to confirmed 

cases of V. parahaemolyticus disease (Interstate Shellfish Sanitation Conference (ISSC), 

2018).  Oyster beds in British Columbia were closed in September 2015 due to V. 

parahaemolyticus infections (ISSC, 2018).  Oyster recalls also followed these shellfish 

bed closures.  These oyster bed closures are of note because they happened in cold water 

regions and during a time of year when it is thought that V. parahaemolyticus numbers 

are low enough to not cause disease.  Outbreaks of this organism are increasing in size, 

frequency, and latitude.  There is no way to accurately predict an outbreak of V. 

parahaemolyticus. Shellfish monitoring programs do routine monitoring of Vibrio levels 

in oysters; yet shellfish bed closures and recalls only occur after an outbreak (or a 

confirmed case of vibriosis) has occurred (ISSC, 2018).   

Not only do shellfish monitoring programs determine the number of V. 

parahaemolyticus cells in shellfish, officials must also differentiate between avirulent 

(non-pathogenic) and virulent (pathogenic) strains of this organism.  The standard 

method to determine if a strain of V. parahaemolyticus is pathogenic is via PCR 

amplification of two genes, tdh (the thermostable direct hemolysin gene) and trh (the tdh-

related gene).  tdh and trh have been implicated in V. parahaemolyticus virulence 

(Miyamoto et al., 1969; Shirai et al., 1990; Honda and Iida, 1993; DePaola and Kaysner, 

2004; Lovell, 2017).  TDH and TRH are tetrameric proteins that act as porins and 

facilitate efflux of divalent cations and other solutes from and influx of water molecules 

into intestinal cells (Yanagihara et al., 2010; Broberg et al., 2011; Ohnishi et al., 2011).  

In addition to tdh and trh, V. parahaemolyticus can utilize secretion systems to cause 
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damage to host cells (Makino et al., 2003).  However, PCR amplification of tdh and/or 

trh is the standard method to determine the pathogenic potential of V. parahaemolyticus 

strains (Kaysner and DePaola, 2004). 

Numerous studies have indicated that tdh and trh are found almost exclusively in 

clinical strains isolated from patients suffering from V. parahaemolyticus gastroenteritis 

(Miyamoto et al., 1969; Shirai et al., 1990).  Only about 1 to 2% of screened V. 

parahaemolyticus strains not derived from infected humans (“environmental strains”), 

were reported to carry these genes (Kaysner and DePaola, 2004; Baker-Austin et al., 

2008).  Put another way, it was thought that only 1-2% of environmental V. 

parahaemolyticus strains were pathogenic and able to cause human infections.  However, 

in 2013 Gutierrez-West redesigned the tdh and trh PCR primers used to amplify these 

genes.  With the advent of new and improved methods for virulence factor gene 

amplification, detection of tdh and trh in environmental V. parahaemolyticus rose to 

approximately 50% (Gutierrez-West et al., 2013).  

This investigation used the improved PCR primers of Gutierrez-West (2013) to 

determine the frequency of tdh and trh in oyster-derived environmental V. 

parahaemolyticus strains.  We detected these genes, previously thought to be rare in 

environmental isolates, in approximately half of the oyster isolates.  We also examined 

the reliability of using “species specific” marker genes to identify a Vibrio strain, the 

distribution of pathogenicity islands (PAIs) within Vibrio genomes, and the distributions 

of potential pathogenic V. parahaemolyticus within oysters and oyster tissues.  We 

determined that some oysters, designated as “hot” oysters, can harbor significantly more 

vibrios than surrounding oysters.  These “hot” oysters, which occur at low frequency, 
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may explain the sporadic (and difficult to predict) nature of V. parahaemolyticus 

infections.  The cytotoxic effects of environmental Vibrio strains and the interactions of 

vibrios with various marine microalgae were also studied.



5 

CHAPTER 1 

THE VIBRIO PARAHAEMOLYTICUS VIRULENCE RELATED GENES, TDH, TLH, AND 

VSCC2 OCCUR IN OTHER VIBRIONACEAE SPECIES 
1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Klein SL, West CK, Mejia DM, Lovell CR. 2014. Genes similar to the Vibrio 

parahaemolyticus-virulence related genes tdh, tlh, and vscC2 occur in other Vibrionaceae 

species isolated from a pristine estuary. Appl. Environ. Microbiol. 80:595-602. 

 

Reprinted here with permission of publisher.
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ABSTRACT 

Detection of the human pathogen Vibrio parahaemolyticus often relies on 

molecular biological analysis of species-specific virulence factor genes.  These genes 

have been employed in determinations of V. parahaemolyticus population numbers and 

the prevalence of pathogenic V. parahaemolyticus strains.  Strains of the Vibrionaceae 

species Photobacterium damselae, Vibrio diabolicus, Vibrio harveyi, Vibrio natriegens, 

and strains similar to Vibrio tubiashii were isolated from a pristine salt marsh estuary.  

These strains were examined for the V. parahaemolyticus hemolysin genes tdh, trh, and 

tlh, and for the V. parahaemolyticus Type III Secretion System 2α gene vscC2 using 

established PCR primers and protocols.  Virulence-related genes occurred at high 

frequencies in non-V. parahaemolyticus Vibrionaceae species.  V. diabolicus was of 

particular interest as several strains were recovered and the large majority (>83%) 

contained virulence-related genes.  Detection of these genes does not assure correct 

identification of virulent V. parahaemolyticus.  Further, the occurrence of V. 

parahaemolyticus-like virulence factors in other vibrios potentially complicates tracking 

of outbreaks of V. parahaemolyticus infections 

INTRODUCTION 

Vibrio parahaemolyticus is the leading cause of seafood-associated gastroenteritis 

in the US and the world (FDA, 2005).  Outbreaks of V. parahaemolyticus infections are 

increasing in frequency and expanding in geographic range (McLaughlin et al., 2005; 

Paranjype et al., 2012).  This organism is ubiquitous in nearshore marine waters and cell 

numbers are typically highest in surficial sediments (West, 2012; Gartmon et al., 

unpublished) and in turbid waters bearing high loads of resuspended sediment (Parveen et 
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al., 2008, Johnson et al., 2010).  Filter feeding bivalve mollusks, such as oysters and 

mussels, can concentrate V. parahaemolyticus and other pathogenic vibrios (e.g. Warner 

and Oliver, 2008; Froelich et al., 2013), resulting in levels in the mollusks capable of 

producing infection in a person that ingests them (DePaola et al., 1990).  Virulent V. 

parahaemolyticus strains are clearly a concern for seafood safety and their detection is 

important anywhere that elevated levels of this organism are found.  

Detection of V. parahaemolyticus in shellfish and environmental samples is 

typically based on molecular biological analysis of specific genes, particularly genes 

exclusive to this species and those strongly correlated with pathogenicity.  The gene 

encoding the thermolabile hemolysin (TLH), designated tlh, encodes a phospholipase A2 

(Zhang and Austin, 2005).  While its contribution to V. parahaemolyticus pathogenicity 

is unknown, expression of this gene is upregulated under conditions mimicking the 

human intestine (Broberg et al., 2011; Gotoh et al., 2010).  tlh is considered to be a 

species-specific marker for V. parahaemolyticus (Taniguchi et al., 1986; McCarthy et al., 

1999) and is frequently employed to identify this species (Bej et al., 1999; DePaola et al., 

2003; Nordstrom et al., 2007; Jones et al., 2012).  Genes encoding the thermostable direct 

hemolysin (TDH) and the homologous thermostable direct hemolysin-related hemolysin 

(TRH), tdh and trh, respectively, have been implicated in V. parahaemolyticus virulence 

(Miyamoto et al., 1969; Shirai et al., 1990; Honda and Iida, 1993).  TDH and TRH are 

tetrameric proteins that act as porins and facilitate efflux of divalent cations and other 

solutes from and influx of water molecules into intestinal cells (Yanagihara et al., 2010; 

Broberg et al., 2011; Ohnishi et al., 2011).  Occurrence of tdh is correlated with the 

Kanagawa Phenomenon, a β-hemolytic reaction on saline blood agar (Wagatsuma Agar) 



8 

(Miyamoto et al., 1969).  Numerous studies indicated that tdh and trh are found almost 

exclusively in clinical strains isolated from patients suffering from V. parahaemolyticus 

gastroenteritis (Miyamoto et al., 1969; Shirai et al., 1990).  Only about 1 to 2% of 

screened V. parahaemolyticus strains not derived from infected humans (“environmental 

strains”), were reported to carry these genes (e.g. Baker-Austin et al., 2008).  These 

results were due, at least in part, to inadequate methodology and recent studies have 

shown that high levels of environmental V. parahaemolyticus, 52% of strains from an 

area supporting intensive shrimp aquaculture (Velazquez-Roman et al., 2012) and 48% of 

strains from water and sediment in a pristine estuarine ecosystem (Gutierrez-West et al., 

2013), carry these genes.  In addition, V. parahaemolyticus strains can encode two Type 

Three Secretion Systems, T3SS1 on chromosome 1 and T3SS2 on chromosome 2 

(Makino et al., 2003).  T3SS1 has been found in all tested strains of V. parahaemolyticus 

while T3SS2 has been reported in virulent strains (Makino et al., 2003; Park et al., 2004).  

T3SSs are composed of 20-30 proteins and are responsible for translocating effector 

proteins directly into host cell cytoplasm.  There are over one hundred described effector 

proteins having effects ranging from autophagy to cytotoxicity (Kodama et al., 2007; 

Burdette et al., 2009).  Additionally, there are two distinct types of T3SS2 (Okada et al., 

2009).  T3SS2α has been found in strains that carry tdh, while T3SS2β is correlated with 

trh (Okada et al., 2009; Noriea et al., 2010).  Pathogenesis of V. parahaemolyticus does 

not appear to rely solely on a given virulence function, rather virulence is complex and 

different strains may employ somewhat different strategies. 

The utility of any of these genes as a molecular marker for V. parahaemolyticus 

or for evaluation of the potential pathogenicity of V. parahaemolyticus strains relies upon 
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their specificity for V. parahaemolyticus.  Sporadic reports of V. parahaemolyticus-like 

virulence genes in other species have appeared in the literature (Nishibuchi et al., 1996; 

Xie et al., 2005; Gonzalez-Escalona et al., 2006; Wang et al., 2007; Okada et al., 2010; 

Gennari et al., 2012), but little is known regarding the distributions of these genes among 

Vibrionaceae.  In particular, occurrence of these genes in environmental strains has 

received very little attention.  We screened a collection of Vibrionaceae strains isolated 

from a pristine estuary for tlh, tdh and trh, and for a gene encoding a T3SS2α outer 

membrane protein, vscC2 (VPA1339), to evaluate the specificity of these genes for V. 

parahaemolyticus.   Our results show that tlh, tdh, and vscC2 are not found exclusively in 

V. parahaemolyticus.   

MATERIALS AND METHODS 

Sample site and strain isolation 

Strains were isolated from the pristine North Inlet estuary near Georgetown, SC 

(33°20’N, 79°12’W).  The North Inlet-Winyah Bay National Estuarine Research Reserve 

protects the third largest watershed on the east coast of the United States and 90% of the 

18,916 acres is in its natural state.  The keystone macrophyte Spartina alterniflora 

dominates the intertidal marsh except at lower salinity, higher elevations, where the 

subdominant Juncus roemerianus thrives.  Fiddler crabs of the genus Uca are the biomass 

dominant fauna within the marsh.  Their burrows are found throughout the intertidal and 

have been shown to contain high levels of V. parahaemolyticus (Gamble and Lovell, 

2011). 
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Sampling trips were made in August 2011 and again in September 2011, to 

coincide with periods of elevated Vibrio numbers (Gamble and Lovell, 2011; West, 

2012).   Samples were collected at low tide from bulk sediment, Uca burrow lining 

sediment, Uca burrow water, sediment pore water, and creek water as described 

previously (Gamble and Lovell, 2011; West, 2012).  All samples were diluted with 

phosphate buffered saline (400 mM NaCl, 1.75 mM NaPO4, pH 7.4) and plated on 

Thiosulfate Citrate Bile salts Sucrose (TCBS) agar (BD, NJ) following the FDA protocol 

(DePaola and Kaysner, 2004) without the use of enrichment media.  The TCBS plates 

were then incubated at 37ºC for 48 h.  Well-isolated colonies were streaked onto fresh 

TCBS plates for further characterization.  Green colonies (typical appearance of V. 

parahaemolyticus) were collected and routinely cultivated on saline Luria Agar (SLA; 

per L; 10 g tryptone, 5 g yeast extract, 27 g NaCl, 15 g Bacto Agar). 

Strain designations indicate source (S, sediment; BS, burrow lining sediment; 

BW, burrow water;  PW, porewater; CW, creek water), the month and year it was 

isolated (8-11 for August, 2011; 9-11 for September, 2011), and the isolate number.  For 

example, JS-8-11-4 refers to isolate number 4 from Juncus zone sediment (JS) collected 

on August, 2011 (8-11).   

Multilocus Sequence Analysis (MLSA)  

The identities of the North Inlet Vibrionaceae isolates were determined by 

Multilocus Sequence Analysis of concatenated 16S ribosomal RNA gene, recombinase A 

(recA), RNA polymerase alpha subunit (rpoA), and gyrase B (gyrB) gene sequences.  

Bacterial genomic DNA was extracted using the Wizard Genomic DNA Purification kit 
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(Promega, Madison, WI) and diluted to 25 ng µl-1.  The PCR program used to amplify 

recA, rpoA and gyrB consisted of an initial denaturation at 95°C for 5 min, three cycles of 

95°C for 1 min, 55°C for 2 min 15 s, and 72°C for 1 min 15 s, then thirty cycles of 95°C 

for 35 s, 55°C for 1 min 15 s and 72°C for 1 min 15 s and a final elongation at 72°C for 7 

min.  recA (~790 bp) and rpoA (~900 bp) amplification employed the primers of 

Thompson et al. (2005) and gyrB (~800 bp) amplification employed the primers of Ast 

and Dunlap (2004).  16S rRNA (~1500 bp) was amplified using the primers and 

protocols of Lane (1991).  PCR products were resolved on a 1.5% agarose gel and 

sequenced using an ABI Prism 3730 DNA analyzer.  Sequences were edited and 

Maximum-likelihood phylogenies were constructed using the Kimura 2 parameter model 

with Mega version 7 (Tamura et al., 2015).  Sequence data of reference Vibrionaceae 

species were obtained from the NCBI GenBank.   

Recovery and Analysis of Hemolysin and T3SS2 Genes 

All PCR reactions targeting tdh, trh and tlh were carried out in 25 µl volumes 

using Taq DNA polymerase (Qiagen, Valencia, CA).  The PCR thermocycling program, 

conditions, and primers of Bej et al. (1999) were employed for amplification of tlh.  PCR 

amplifications of the tdh and trh genes used the primers of Gutierrez-West et al. (2013) 

and were performed in separate reactions.  Each reaction included the following: 1x PCR 

buffer (Qiagen), 1.25 units of Taq, 0.5 µM of each primer, 200 µM of each dNTP 

(Qiagen) and yielded single bands of 245 bp (tdh) or 410 bp (trh).  The thermal cycling 

program for the three hemolysin genes was: denaturation at 95°C for 5 min, followed by 

40 cycles consisting of 95°C for 1 min, 62°C for 1 min, 72°C for 1 min, and a final 

elongation of 72°C for 2 min.   
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The T3SS2α gene vscC2 (VPA1339) encodes an outer membrane protein and has 

been used to determine the presence of T3SS2α, which is correlated with enterotoxicity 

due to V. parahaemolyticus (Park et al., 2004; Noriea et al., 2010).  Primers designed by 

Noriea et al. (2010) were used to amplify an approximately 330 bp segment of vscC2 in 

25 µl volumes using Taq DNA polymerase (Qiagen, Valencia, CA).  Each reaction 

included the following: 10x PCR buffer (Qiagen), 0.125 units of Taq, 1.25 µM of primer, 

0.5 µM of each dNTP (Qiagen) and 2 µM MgCl.  The thermal cycling program used for 

detection of vscC2 was: denaturation at 94°C for 4 min, followed by 32 cycles consisting 

of 94°C for 45s, 60°C for 40s, 72°C for 45s, and a final elongation of 72°C for 7 min.   

PCR products were sequenced and the resulting gene sequences were edited and 

Maximum-likelihood phylogenies were constructed using the Kimura 2 parameter model 

with Mega version 7 (Tamura et al., 2015).  Sequence data obtained from this work were 

submitted to the NCBI GenBank and assigned the accession numbers: JX453017-

JX453108, JX257004-JX257016, JX262950-JX262990, and KF197044-KF197068, 

KF569811-KF569825, and KF578086-KF578118. 

RESULTS 

 Fifty-five strains of vibrios produced green (sucrose non-fermenting) colonies on 

TCBS agar.  MLSA demonstrated that 18 of these strains were not V. parahaemolyticus 

(Figure 1.1).  Twelve of the North Inlet strains were identified as Vibrio diabolicus; these 

strains grouped with the V. diabolicus type strain HE800T in the MLSA tree.  Three 

strains grouped with the Vibrio tubiashii type strain LMG 10936T, but were not similar 

enough to the type strain to be considered true V. tubiashii strains.  These three strains 

(JPW-8-11-4, JPW-9-11-6, JPW-9-11-11) most likely represent a new species of Vibrio 
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that is related to V. tubiashii and are referred to in the present study as “V. tubiashii-like.”  

The other Vibrionaceae recovered from North Inlet were strains of Vibrio harveyi (TBS-

9-11-8), Vibrio natriegens (TBW-8-11-5), and Photobacterium damselae, subspecies 

damselae (JPW-8-11-6). 

All eighteen strains were screened for the three hemolysin genes (Table 1.1).  Six 

tlh amplicons were detected.  Two strains produced faint amplicons that after multiple 

attempts did not yield sequence data.  This has been observed previously for some 

authentic V. parahaemolyticus strains (Gutierrez-West et al., 2013).   tlh gene sequences 

were recovered from the other four strains (Figure 1.2).  The V. diabolicus strains JPW-9-

11-8 and JPW-8-11-8 contained tlh sequences that were each 99.3% similar to tlh gene 

sequence from the V. parahaemolyticus type strain ATCC 17802T.  tlh was also detected 

in JPW-9-11-11 (V. tubiashii-like) and JPW-8-11-6 (P. damselae).  tlh gene sequences 

from these species were 99.3% and 99.1% similar , respectively, to those from V. 

parahaemolyticus ATCC 17802T tlh. 

 tdh amplicons were detected in 5 V. diabolicus strains and 1 V. tubiashii-like 

strain (Figure 1.3).  Two of the strains produced faint amplicons that after multiple 

attempts did not yield sequence data, indicating that these strains might contain a variant 

of tdh.  Four amplicons, all from V. diabolicus, yielded sequence data.  Three of the tdh 

gene sequences had high similarities (97.6-99.2%) to the tdh sequence of the V. 

parahaemolyticus reference strain ATCC 33846, which was employed because the V. 

parahaemolyticus type strain ATCC 17802T does not contain tdh.  The tdh sequence from 

CW-9-11-1 appeared to be divergent, having only 83.2% similarity to the ATCC 33846 

tdh sequence.  The translated peptide encoded by the CW-9-11-1 tdh gene sequence was 
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75.9% similar to the peptide sequence from V. parahaemolyticus 33846.  The hemolysin 

gene trh was not recovered from any of the non-V. parahaemolyticus strains examined in 

this study.  This gene was also less common in North Inlet V. parahaemolyticus strains 

than tlh or tdh (Gutierrez-West et al., 2013). 

The T3SS2α gene vscC2 was detected at the highest frequency of the genes 

examined.  Twelve of the 18 non-V. parahaemolyticus strains (67%) contained vscC2.   

vscC2 was detected in 7 V. diabolicus strains, 2 V. tubiashii-like strains, and in a P. 

damselae strain, a V. natriegens strain, and a V. harveyi strain (Figure 1.4).  All of the 

vscC2 amplicons yielded sequences that were highly similar (92.9-98.8%) to the vscC2 

sequence from the V. parahaemolyticus clinical strain RIMD 2210633 in which V. 

parahaemolyticus T3SS2 was first described (Makino et al., 2003).  In total, at least one 

V. parahaemolyticus-like virulence gene was detected in sixteen of the 18 non-V. 

parahaemolyticus strains (89%) from North Inlet.  None of the genes of interest were 

detected in two of the V. diabolicus strains (strains JBS-8-11-1 and TBS-8-11-1). 

DISCUSSION 

All of the non-V. parahaemolyticus environmental Vibrionaceae strains examined 

in this study were identical in appearance to V. parahaemolyticus on TCBS agar.  TCBS 

agar is a medium commonly used in the isolation of clinical and environmental vibrios; 

however, only 67% of the presumptive V. parahaemolyticus colonies were confirmed by 

recA phylogenetic analysis (Gutierrez-West et al., 2013) to be V. parahaemolyticus.  

Clearly, results of TCBS agar plating and confirming physiological testing of the kind 

used here must be supported by further analysis to determine the identities of 

environmental strains. 
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The thermolabile hemolysin gene tlh has provided a high throughput and 

convenient means to determine V. parahaemolyticus numbers in samples, but this 

analysis is clearly subject to false positives arising from other Vibrio species.  Unlike 

previous studies (Xie et al., 2005), the tlh sequence data recovered from non-V. 

parahaemolyticus strains indicate that tlh gene sequences in V. diabolicus, V. tubiashii-

like, and P. damselae are highly similar to those in V. parahaemolyticus.   This makes 

unambiguous species discrimination, even employing gene sequences, much more 

difficult.   The mol% G+C content of tlh (47.6%) (Taniguchi et al., 1986) corresponds to 

the mol% G+C contents of these four Vibrionaceae species (43-49%) (Farmer and Janda, 

2005), which may indicate that any horizontal transfer of tlh within this family occurred 

far enough in the past for genetic drift to eliminate clear-cut evidence of this process.  

Some previous reports of tlh in non-V. parahaemolyticus vibrios attributed its detection 

to false positive results (e.g. Croci et al., 2007).  False positive PCR amplification arising 

from sample contamination is certainly possible, but true tlh amplicons may have been 

recovered instead.  Additionally, tlh is highly similar to homologous hemolysin genes 

found in other Vibrio species; including, V. harveyi (vhh), V. tubiashii (vth), and V. 

vulnificus (vvh).  Wang et al. (2007) determined that DNA probes for tlh and vhh could 

be used interchangeably, thus demonstrating that tlh probing for V. parahaemolyticus 

lacks the necessary specificity.  Using tlh as the sole marker for V. parahaemolyticus 

densities may lead to overestimation of total V. parahaemolyticus counts by including 

other Vibrio species carrying tlh or similar hemolysins (V. harveyi, V. tubiashii, V. 

vulnificus).  The extent of this overestimation may be variable among different systems 
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and sample types.  It appears that no virulence factor gene sequence can be used to detect 

V. parahaemolyticus quantitatively without additional, supporting analyses. 

The thermostable direct hemolysin gene (tdh) and a T3SS2α gene, both typical of 

virulent V. parahaemolyticus strains, are also not restricted to this species.  In fact, 

virulence features generally attributed to V. parahaemolyticus were common in 

environmental Vibrionaceae strains that were isolated from an estuary having negligible 

human impacts.  The apparent rarity of thermostable hemolysin genes in environmental 

V. parahaemolyticus strains was refuted by Gutierrez-West et al. (2013).  Results of the 

present study extend those observations as frequencies of these genes in environmental 

non-V. parahaemolyticus are also quite high.  The Vibrionaceae species in which these 

toxin genes were detected also expand the list of species that carry genes correlated with 

pathogenicity.  tdh sequences have been recovered from clinical strains of Vibrio 

cholerae non-O1, Vibrio mimicus, and Vibrio hollisae (Nishibuchi et al., 1996), but 

environmental strains also carry this gene.  Non-V. parahaemolyticus tdh sequences 

recovered in this study were similar to those of V. parahaemolyticus tdh, with the 

exception of tdh from V. diabolicus CW-9-11-1, which was clearly divergent from the 

other sequences and might represent a variant of tdh.  It seems likely that these genes 

were transferred from an origin taxon to other Vibrio species, including, but perhaps not 

exclusively V. parahaemolyticus. 

 Recent studies have established a correlation between T3SS2 and hemolysin 

genes in V. parahaemolyticus, with T3SS2α distribution correlated with the presence of 

tdh and T3SS2β with trh (Okada et al., 2009; Noriea et al., 2010).  We found no 

correlation between the T3SS2α marker gene vscC2 and the presence of tdh.  vscC2 was 
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detected at high frequency in environmental Vibrionaceae.  The vscC2 gene sequences 

from V. parahaemolyticus strains are highly similar to those from non-V. 

parahaemolyticus strains.  This gene has been reported in other vibrios, including V. 

cholerae non-O1 and V. mimicus strains (Okada et al., 2009; 2010).  Evidence of vscC2 

in V. diabolicus, P. damselae, V. natriegenes, V. harveyi, and in V. tubiashii-like strains 

greatly expands the known distribution of the T3SS2α gene vscC2 in Vibrionaceae. 

V. parahaemolyticus hemolysin genes and T3SS2 genes have been detected 

previously in the highly pathogenic Vibrio cholerae non-O1 but also in vibrios that 

rarely, if ever, cause illness in humans, including V. alginolyticus, V. mimicus and V. 

hollisae (Terai et al., 1991; Nishibuchi et al., 1996; Xie et al., 2005; Gonzalez-Escalona 

et al., 2006; Okada et al., 2010; Gennari et al., 2012).  None of the non-V. 

parahaemolyticus strains we isolated belong to a species implicated in human infections, 

being either pathogenic to marine fauna (V. tubiashii, V. harveyi and P. damselae) or 

considered to be nonpathogenic (V. diabolicus and V. natriegens).  The V. diabolicus 

strains are of particular interest because this species has seldom been reported since its 

description by Raguenes et al. (1997).  The frequent recovery of V. diabolicus strains 

from the pristine North Inlet estuary suggests that this species is more broadly distributed 

than previously thought and the finding of V. parahaemolyticus-like virulence factor 

genes in this species implicates it as a reservoir for these genes.  Additionally, the high 

similarity of the V. diabolicus and V. parahaemolyticus tdh and vscC2 sequences may 

indicate that these genes are readily transferred among these and other Vibrionaceae 

species.
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Figure 1.1. Maximum-likelihood phylogeny (Kimura 2 parameter model) of concatenated 

16S rRNA gene, recA, rpoA, and gyrB sequences from environmental Vibrionaceae 

strains isolated from the North Inlet estuary.  Bootstrap values represent 1000 replications 

and values less than 50 are not shown.  Reference sequences were acquired from the 

NCBI GenBank
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JBW 9:11 8

TS 9:11 7

TBS 9:11 8

JBS 8:11 1

TBS 8:11 1

-V. tubiashii- like - - + green

CW 9:11 1

JS 8:11 4

TPW 9:11 4

TBW 8:11 5

JBW 8:11 4

JPW 8:11 4

JPW 9:11 11

JPW 9:11 8

JPW 8:11 8

JPW 8:11 6

JPW 9:11 6

JBW 8:11 3

JBW 8:11 1 V. diabolicus + + - +

V. diabolicus - - - - green

V. diabolicus - - - - green

V. harveyi - - - + green

V. diabolicus - - - + green

V. diabolicus - - - + green

V. diabolicus - - - + green

V. natriegens - - - + green

V. diabolicus - + - - green

V. diabolicus - + - - green

V. diabolicus - + - + green

V. diabolicus - + - + green

V. tubiashii- like + - - - green

P. damselae + - - + green

V. diabolicus + - - + green

V. diabolicus + - - - green

colony appearance 

on TCBS agar

V. tubiashii- like + + - + green

green

Strain designation Species tlh tdh trh vscC2

Table 1.1 Occurrence of genes and phenotypic characteristics considered diagnostic for virulence in Vibrio parahaemolyticus and also 

found in non-V. parahaemolyticus environmental Vibrionaceae strains 
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Figure 1.2. Maximum-likelihood phylogeny (Kimura 2 parameter model) of tlh gene 

sequences from environmental Vibrionaceae isolates.  Gene sequences of hemolysins 

homologous to tlh are also shown.  Bootstrap values represent 1000 replications and 

values less than 50 are not shown.  Phospholipase A2 gene sequences from Streptomyces 

violaceoruber served as the outgroup.  Reference sequences were acquired from the 

NCBI GenBank.  
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Figure 1.3. Maximum-likelihood phylogeny (Kimura 2 parameter model) of tdh gene 

sequences recovered from environmental Vibrionaceae isolates.  Bootstrap values 

represent 1000 replications and values less than 50 are not shown.  Reference sequences  

were obtained from the NCBI GenBank; the trh gene sequence of ATCC 17802T served 

as the outgroup.  
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Figure 1.4.  Maximum-likelihood phylogeny (Kimura 2 parameter model) of vscC2 gene 

sequences recovered from environmental Vibrionaceae isolates.  Bootstrap values 

represent 1000 replications; values less than 50 are not shown.  The yscC2 gene sequence 

of Yersinia pestis served as the outgroup and reference sequences were obtained from the 

NCBI GenBank
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CHAPTER 2 

THE HOT OYSTER: LEVELS OF VIRULENT VIBRIO PARAHAEMOLYTICUS STRAINS IN 

INDIVIDUAL OYSTERS 
1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Klein SL and Lovell CR. 2017. The hot oyster: levels of virulent Vibrio 

parahaemolyticus strains in individual oysters. FEMS Microbiol. Ecol. 93(2): fiw232 
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ABSTRACT 

Vibrio parahaemolyticus is the leading cause of seafood-associated gastroenteritis 

and is most commonly transmitted by raw oysters.  Consequently, detection of virulent 

strains of this organism in oysters is a primary concern for seafood safety.  V. 

parahaemolyticus levels were determined in 110 individual oysters harvested from two 

sampling sites in South Carolina, USA.  The majority of oysters (98%) contained low 

levels of presumptive V. parahaemolyticus.  However, two healthy oysters contained 

presumptive V. parahaemolyticus numbers that were unusually high.  These two “hot” 

oysters contained levels of presumptive V. parahaemolyticus within the gills that were 

approximately 100-fold higher than the average for other oysters collected at the same 

date and location.  Current V. parahaemolyticus detection practices require homogenizing 

a dozen oysters pooled together to determine V. parahaemolyticus numbers, a procedure 

that would dilute out V. parahaemolyticus in these “hot” oysters.  This study 

demonstrates the variability of V. parahaemolyticus densities taken from healthy, 

neighboring individual oysters in the environment.  Additionally, environmental V. 

parahaemolyticus isolates were screened for the virulence-related genes, tdh and trh 

using improved PCR primers and protocols.  We detected these genes, previously thought 

to be rare in environmental isolates, in approximately half of the oyster isolates.   

INTRODUCTION 

 Vibrio parahaemolyticus is a marine bacterium that can cause gastroenteritis in 

humans.  Symptoms occur 24 to 72 h after ingestion of raw or undercooked seafood, 

usually oysters.  More than 80,000 vibriosis cases occur in the United States each year 

(CDC, 2018); however, this may be an underestimate, considering that the majority of V. 
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parahaemolyticus infections go unreported.  V. parahaemolyticus occurs naturally in 

warm, brackish coastal environments and elevated cell densities are observed in surficial 

sediment (West, 2012), fiddler crab burrows (Gamble and Lovell, 2011), and bivalve 

mollusks (DePaola et al., 1990, Bisha et al., 2012).  Detection of virulent V. 

parahaemolyticus in oysters is a primary concern for seafood safety. 

 Diagnostic monitoring of virulent V. parahaemolyticus relies on PCR detection of 

virulence-related hemolysin genes.  The thermolabile hemolysin gene (tlh) is used as an 

indicator gene for V. parahaemolyticus (Taniguchi et al., 1986, Bej et al., 1999, DePaola 

et al., 2003, FDA, 2005).  tlh encodes a phospholipase A2 (Zhang and Austin, 2005), but 

is not thought to contribute substantially to V. parahaemolyticus pathogenicity (Bisha et 

al., 2012).  This gene was thought to be specific to V. parahaemolyticus but recent studies 

have found tlh in additional Vibrio species (Xie et al., 2005, Klein et al., 2014).  

Nonetheless, PCR amplification of tlh remains the most commonly used molecular 

method to identify V. parahaemolyticus.  Two additional hemolysin genes, tdh and trh, 

have been correlated with virulent strains of V. parahaemolyticus.  These genes encode 

the thermostable direct hemolysin (TDH) and the homologous tdh-related hemolysin 

(TRH).  tdh and trh encode porins that insert into the membranes of host cells and cause a 

nonspecific efflux of divalent cations and water molecules (Raimondi et al., 2000, 

Yanagihara et al., 2010, Broberg et al., 2011, Ohnishi et al., 2011), which is consistent 

with involvement in V. parahaemolyticus pathogenesis.     

 tdh and trh were thought to occur only rarely in environmental V. 

parahaemolyticus strains (i.e. 1-2% of strains) (e.g. Pillot-Robert et al., 2004, Baker-

Austin et al., 2008); however, recent studies employing improved detection methods have 
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found tdh and trh in roughly half of environmental V. parahaemolyticus strains isolated 

from sediment, water, and shrimp (Velazquez-Roman et al., 2012, Gutierrez-West et al., 

2013, Klein et al., 2014).  The distributions of tdh and trh in V. parahaemolyticus 

occurring in the Eastern oyster, Crassostrea virginica, has yet to be determined using 

these improved methods.  The purpose of this study was to determine frequencies of the 

virulence-related genes tdh and trh within Vibrio isolates recovered from C. virginica 

oysters.  Strong variability in Vibrio densities was observed between individual oysters, 

as well as among tissues of individual oysters. 

MATERIALS AND METHODS 

Sampling Sites, Oyster Harvesting and Oyster Processing 

 All environmental strains used in this study were isolated from two sampling 

sites:  North Inlet Estuary at the Belle W. Baruch Institute near Georgetown, SC 

(33°20’N, 79°12’W) and Whale Branch near Beaufort, SC (32°30’N, 80°47’W).  The 

pristine North Inlet-Winyah Bay Estuary is part of the National Estuarine Research 

Reserve System and consists of 18,916 acres of which more than 90% is in its natural 

state.  No commercial harvesting of oysters is allowed in North Inlet, which served in this 

study as a comparison site.  Whale Branch is a site of commercial oyster harvest. 

 C. virginica oysters were harvested May-October 2014 following practices 

commonly used by commercial oyster harvesters.  Oysters were either collected 

immediately after low tide exposure or while still submerged; oysters in the high 

intertidal that were subjected to elevated temperatures during low tide exposure were not 

sampled.  Discrete individuals were sampled, as well as oysters within clusters.  All 

harvested oysters were larger than 6 cm from hinge to lip and were inspected for signs of 
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boring sponge infection and weakness of the adductor muscle.  Oysters showing any 

overt sign of disease were not included in this study.  Water samples were collected in 

sterile 50 mL containers.  After harvesting, the oysters and water samples were placed on 

ice and immediately transported back to Columbia, SC for processing.  All oysters and 

water samples were processed within four hours of harvesting. 

 Oysters were scrubbed, shucked with a sterile knife, and weighed to determine 

their fresh weight.  Oysters were homogenized individually with sterile mortars and 

pestles in order to observe differences in Vibrio populations between oysters.  Oyster 

homogenate was diluted with phosphate buffered saline (PBS) (400 mM NaCl, 1.75 mM 

NaPO4, pH 7.4), and plated on Thiosulfate Citrate Bile salts Sucrose (TCBS) agar (BD, 

NJ) without the use of enrichment. TCBS plates were incubated at 37ºC for 48 h.  To 

avoid cross contamination, all implements were re-sterilized via ethanol flaming after 

each oyster.  

Vibrio distributions within the oyster were observed via dissection of selected 

individuals.  These oysters were scrubbed and shucked as described above.  The oyster 

gut and gills were weighed, homogenized separately, diluted with PBS and plated on 

TCBS agar.  The rest of the oyster (hereafter referred to as “oyster meat”) was also 

homogenized, diluted and plated separately.  One mL of the oyster mantle fluid was 

extracted using a sterile syringe, diluted with PBS, and plated on TCBS agar.  Water 

samples (50 mL) were filtered onto sterile 0.45 μm pore size polycarbonate membranes, 

which were then placed in PBS, vortexed and aliquots plated on TCBS agar.  These 

TCBS plates were also incubated at 37ºC for 48 h. 
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Colony counts of both green (sucrose non-fermenters - typical appearance of V. 

parahaemolyticus and/or Vibrio vulnificus) and yellow colonies (sucrose fermenters - 

typical appearance of Vibrio alginolyticus and/or Vibrio cholerae) (DePaola and Kaysner, 

2004) on TCBS agar were taken after the 48 h incubation.  Colony forming units (CFU) 

g-1 oyster fresh weight was calculated. CFU g-1 fresh weight of oyster meat, gills, and 

guts were determined for the dissected oysters; as well as CFU mL-1 of oyster mantle 

fluid.  In addition to V. parahaemolyticus counts from individual oysters, we also 

calculated the CFU g-1 if we had combined and homogenized all of the oysters from each 

sampling trip, following standard US Food and Drug Administration protocol (DePaola 

and Kaysner, 2004).  Selected well-isolated colonies were streaked onto saline Luria 

Agar (SLA; per L; 10 g tryptone, 5 g yeast extract, 27 g NaCl, 15 g Bacto Agar) for 

purification and further characterization.  Both green and yellow colonies were purified 

and routinely cultivated on SLA.  To determine if there was one part of the oyster that 

contained significantly higher presumptive V. parahaemolyticus, a Ryan-Einot-Gabriel-

Welsch (REGW) range test was performed employing the statistical software package 

SPSS version 20 (IBM, Armonk, NY). 

PCR Protocols and Procedures 

Colonies were screened for the V. parahaemolyticus hemolysin genes, tlh, tdh, 

and trh.  Isolates not demonstrating the appearance of V. parahaemolyticus on TCBS agar 

(yellow colonies) were also selected for PCR screening due to reports that V. 

parahaemolyticus virulence genes can occur in non-V. parahaemolyticus species (Xie et 

al., 2005, Gonzalez-Escalona et al., 2006, Okada et al, 2010, Klein et al., 2014).  Isolates 

were grown overnight at 37ºC in saline Luria broth (SLB) and crude DNA was extracted 
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by boiling the cells in distilled water for 15 min.  All PCR reactions were completed 

within three days of DNA extraction and used 1 μl of boiled DNA extract per reaction. 

A PCR reaction targeting the housekeeping gene recA (recombinase A) was 

performed on all isolates to confirm quality of the crude DNA extracts.  All reactions 

were carried out in 25 µl volumes using 1 µl of boiled DNA extract and Taq DNA 

polymerase (Qiagen, Valencia, CA).  recA (~790 bp) amplification employed the primers 

and protocols of Thompson et al. (2005).  PCR products were resolved on 1.5% agarose 

gels and arbitrarily selected amplicons were sequenced.  Sequencing was performed by 

Eurofins Genomics (Louisville, KY) using an ABI Prism 3730 DNA analyzer.  

Sequencing of the recA gene is sufficient to identify members of the Vibrionaceae family 

at the level of species (Thompson et al., 2005) while Vibrionaceae 16S rRNA gene 

sequences are too similar to support species-level resolution.  PCR amplification of the 

recA gene served as both a DNA quality control measure and a test for species, as a 

selected few were sent out for sequencing.  Sequences were edited and Maximum-

likelihood phylogeny were constructed using the Kimura 2 parameter model with Mega 

version 7 (Tamura et al., 2015).  Sequence data of reference Vibrionaceae species were 

obtained from the NCBI GenBank database.  recA sequence data determined in this study 

were submitted to the NCBI GenBank and assigned the accession numbers: KU306238-

KU306262. 

All PCR reactions targeting tlh, tdh and trh were also carried out in 25 µl volumes 

using Taq DNA polymerase and 1 μL of boiled DNA extract.  The PCR thermal cycling 

program, conditions, and primers of Bej et al. (1999) were employed for amplification of 

tlh (450 bp), the most commonly used molecular marker for V. parahaemolyticus.  PCR 
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amplifications of the virulence-related tdh and trh genes used the primers and protocols 

of Gutierrez-West et al. (2013) and were performed in separate reactions.  PCR products 

were resolved on 1.5% agarose gels.  A one tailed two proportion z test was used to 

determine if vibrios derived from independent sample types (water vs. oyster) 

significantly differed in their virulence gene content. This test is appropriate for 

comparisons of percentages or proportions of two independent groups, even when sample 

sizes differ.  A significance level of 0.05 was used. 

RESULTS 

 Nine sampling trips were made between May and October 2014, five to North 

Inlet estuary near Georgetown and four to Whale Branch in Beaufort.  Six to 18 oysters 

were collected during each sampling trip, totaling 110 oysters harvested throughout 2014.  

These oysters were homogenized individually and plated on TCBS agar so that the 

variability of green colonies (hereafter referred to as presumptive V. parahaemolyticus) 

between individual oysters could be determined.  Green colonies on TCBS are typically 

confirmed to be V. parahaemolyticus via sequencing of specific housekeeping genes 

(Gutierrez-West et al., 2013, Klein et al., 2014).  Sixty-six oysters were harvested from 

North Inlet; 44 were harvested from Whale Branch.  The levels of presumptive V. 

parahaemolyticus in 97% of individual oysters ranged from 0 CFU g-1 – 7,610 CFU g-1, 

with high variability between individual oysters (average of 632 CFU g-1, standard 

deviation 1,054).  High standard deviations reflect the high oyster-to-oyster variability in 

V. parahaemolyticus densities.  Ninety seven percent (107/110) of oysters contained 

presumptive V. parahaemolyticus levels considered to be safe for consumption, that is, 

less than 104 CFU g-1 (FDA, 2011).  Two Whale Branch oysters (numbers 47 and 96) 
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contained levels higher than 104 CFU g-1 (Figure 2.1).  Another Whale Branch oyster, 

number 104, contained 9,459 presumptive V. parahaemolyticus CFU g-1; only 541 CFU 

g-1 below the maximum level considered safe for consumption. 

 Standard methods (DePaola and Kaysner, 2004) suggest homogenizing a dozen 

oysters to determine V. parahaemolyticus densities.  This method would have diluted out 

V. parahaemolyticus densities from the “unsafe” oysters 47 and 96.  If oyster 47 was 

pooled and homogenized with the other individuals sampled from the same date and 

oyster bed, the result would have been 1,343 CFU g-1, which is well below the safe limit 

suggested by the FDA.  The same dilution effect is seen with oyster 96; the pooled 

homogenate would have yielded 2,924 CFU g-1 (Figure 2.1).  Combining many 

individuals for analysis does not reveal the high variability in V. parahaemolyticus 

densities between oysters and dilutes out potentially dangerous strains. 

Oysters 47 and 96 were harvested when the water temperature was approximately 

28ºC (June and August, respectively); oyster 104 was harvested in late September when 

the water temperature was approximately 24ºC.  The highest levels of presumptive V. 

parahaemolyticus from oysters 47 and 96 were found in the gills; 32,500 CFU g-1 and 

37,179 CFU g-1, respectively.  The presumptive V. parahaemolyticus densities in gills 

from these oysters are approximately 100-fold higher than the presumptive V. 

parahaemolyticus densities found in other dissected oyster gills (Figure 2.2A).  Oyster 

104 contained the highest numbers of presumptive V. parahaemolyticus within the mantle 

fluid (Figure 2.2B). 
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A total of 55 oysters were selected for dissections.  With the exception of the 

anomalous “hot” oysters, presumptive V. parahaemolyticus densities within oyster gills 

(average of 293 CFU g-1, standard deviation 982) and meat (average of 355 CFU g-1, 

standard deviation 736) were lower than in the oyster mantle fluid (average of 1132 CFU 

g-1, standard deviation 1,106) and gut (average of 964 CFU g-1, standard deviation 1,427) 

(Figure 2.2A-D).  However, even in the oyster gills and meat, standard deviations were 

high, meaning oyster-to-oyster variability in presumptive V. parahaemolyticus counts 

was also high (REGW Test- Table 2.1).   

Only well isolated colonies recovered from oysters were streaked to purity and 

employed in PCR analysis.  Colonies demonstrating the typical appearance of V. 

parahaemolyticus on TCBS agar (green) and colonies not appearing to be V. 

parahaemolyticus on TCBS agar (yellow) were selected for PCR screening; a total of 379 

colonies were screened.  Most of these (253) produced green colonies on TCBS agar; the 

other 126 produced yellow colonies.  Most Vibrio strains (225) selected for PCR were 

isolated from North Inlet oysters; the other 154 Vibrio isolates were recovered from 

Whale Branch oysters.  

Partial recA sequences were successfully amplified from all strains.  This step 

ensured that the boiled extraction method produced DNA of adequate quality and 

concentration for use in further PCR reactions.  Sequence data for 25 arbitrarily selected 

recA amplicons were obtained (Figure 2.3).  Eight of these strains were identified as 

Vibrio harveyi based on their placement in the recA phylogenetic tree.  V. harveyi varies 

in its utilization of sucrose (Farmer and Janda, 2005); five demonstrated sucrose 

fermentation (yellow colonies) on TCBS agar and three did not (green colonies).  Three 
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Photobacterium damselae strains were recovered, as well as one Vibrio brasiliensis 

strain.  V. brasiliensis was first isolated from scallop larvae and ferments sucrose; this 

strain produced yellow colonies on TCBS agar.  P. damselae does not ferment sucrose 

(Farmer and Janda, 2005), which is consistent with its appearance on TCBS agar.  

Thirteen strains were confirmed to be V. parahaemolyticus.  Eleven of these strains 

appeared green on TCBS agar, typical for V. parahaemolyticus; two strains appeared 

yellow on TCBS agar reflecting fermentation of sucrose to acidic end products. Out of 

the 17 presumptive V. parahaemolyticus strains (green colonies) chosen for recA 

sequencing, the majority (65%) were confirmed V. parahaemolyticus.   

The 379 Vibrio isolates from oysters were then screened for the V. 

parahaemolyticus hemolysin genes, tlh, tdh, and trh.  North Inlet oyster Vibrio isolates 

contained tlh, tdh, and trh at frequencies of 72%, 53%, and 58%, respectively (Table 2.2).  

Whale Branch oyster Vibrio isolates also contained relatively high frequencies of tlh 

(82%), tdh (38%), and trh (51%) (Table 2.3).  The V. parahaemolyticus virulence-related 

hemolysin genes were frequently amplified from presumptive non-V. parahaemolyticus 

isolates, that is, isolates producing yellow colonies on TCBS agar.  During October in 

North Inlet oysters, tlh, tdh, and trh were detected in 100%, 86%, and 100%, 

respectively, of yellow colonies.  The high detection frequency of the “species specific” 

marker gene tlh in non-V. parahaemolyticus vibrios (as well as the absence of this marker 

from some authentic V. parahaemolyticus strains) (Gutierrez-West et al., 2013, Klein et 

al., 2014) indicate that it is insufficient for identification of V. parahaemolyticus.  Vibrio 

isolates recovered from the surrounding water in North Inlet were also screened for the 

three hemolysin genes.  These 153 water isolates contained tlh, tdh, and trh at frequencies 
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of 58%, 22%, and 35%, respectively (Table 2.4).  There was no significant difference in 

the frequency of tlh detected from oyster or water Vibrio isolates in North Inlet.  

However, the frequencies of tdh and trh were significantly higher (p values <0.001) in 

oyster isolates, compared to water isolates. 

DISCUSSION 

 Standard methods to enumerate Vibrio populations within oysters usually require 

pooling a dozen individuals and homogenizing them together (DePaola and Kaysner, 

2004).  These protocols do not allow evaluation of oyster to oyster variability of Vibrio 

levels, which was a goal of this study.  Kaufman et al. (2003) also examined variability 

between individuals and found that >90% of oysters sampled contained 200-2,000 CFU 

g-1 of V. parahaemolyticus.  However, this group sampled one oyster with approximately 

20,000 V. parahaemolyticus CFU g-1; which was designated as a “hot” oyster.  They 

hypothesized that these “hot” oysters, which occur at low frequency, may explain the 

sporadic nature of V. parahaemolyticus infections.  Our results are consistent with this 

“hot oyster hypothesis.”  During 2014, we harvested two oysters we designate as “hot” 

due to their presumptive V. parahaemolyticus population densities being approximately 

20 times higher than the average.  These “hot” oysters were the only individuals out of 

110 that would not be considered safe to consume with minimal cooking, according to 

US FDA standards (2011), with presumptive V. parahaemolyticus levels in these oysters 

exceeding 104 CFU g-1.  The specific mechanisms resulting in the “hot” oyster have yet to 

be determined, but may be related to oyster physiological stress due to temperature, 

salinity, disease, or other factors.  It should be noted that the two “hot” oysters described 

here showed no signs of disease and were collected under conditions that would not be 
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considered overtly stressful.  Recent studies (Jones et al., 2016) have suggested that low 

tide exposure of oysters can result in an increase of V. parahaemolyticus and V. vulnificus 

levels.  All of the oysters we sampled were collected immediately after low tide exposure 

or while still submerged; none were subjected to warm ambient air temperatures during 

low tide exposure.  The “hot” oysters’ gills contained the highest levels of presumptive V. 

parahaemolyticus.  We determined that oysters harvested from the same oyster bed, at 

the same date and time, contained extremely variable levels of V. parahaemolyticus.  

While most of these densities remained well below the “safe limits” recommended by the 

FDA, there was still high variability, as seen in the high standard deviations in the TCBS 

counts data. 

How a healthy oyster becomes “hot” by accumulating more V. parahaemolyticus 

than neighboring oysters is not yet known.  Further studies on the “hot” oyster are 

needed.  Perhaps mesocosm experiments would help to illuminate the mechanism behind 

the “hot” oyster.  Also, further studies examining how to lower V. parahaemolyticus 

densities from “hot” oysters could be useful, especially to commercial harvesters.  “Hot” 

oysters are indistinguishable from other individuals, as they do not show any overt signs 

of disease, so preventative measures used by commercial harvesters could stop these 

“hot” oysters from reaching costumers.  When Alaskan oysters produced cases of 

vibriosis in consumers, oyster harvesters in Prince William Sound started lowering their 

oyster cages below the thermocline (<10⁰ C) (Martinez-Urtaza et al., 2010).  This 

resulted in reduction of V. parahaemolyticus densities by 1 log (Martinez-Urtaza et al., 

2010).  This wouldn’t be possible in the SC systems we sampled, but other preventative 

measures could be possible.  
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The infectious dose of V. parahaemolyticus is estimated to be 107 to 108 cells 

(Sanyal and Sen, 1974); however in a recent Alaskan V. parahaemolyticus outbreak, the 

dose was determined to be significantly lower (103 to 104 cells) (Martinez-Urtaza et al., 

2010).  This low infectious dose could have been due to an especially virulent V. 

parahaemolyticus strain, as 100% of Alaskan oysters tested positive for the tdh gene 

(Martinez-Urtaza et al., 2010).  If the infectious dose of V. parahaemolyticus is as low as 

103 cells, then the “hot” oysters found in SC would certainly be capable of causing 

disease, especially given the high detection of both tdh and trh genes within SC oysters.  

If the infectious dose is as high as 108 cells, then these oysters would not be expected to 

produce disease. 

Most of the presumptive V. parahaemolyticus isolates we selected for recA 

analysis were later confirmed to be V. parahaemolyticus.  Sequencing of housekeeping 

genes (excluding 16S rRNA genes for Vibrionaceae) remains the most reliable way to 

identify Vibrio species.  Biochemical identifiers and molecular markers can be used as 

presumptive tests in strain identification, but these methods are not perfect.  The content 

of tlh, tdh, or trh alone is also insufficient to confirm V. parahaemolyticus identity due to 

the occurrence of these genes in other Vibrionaceae (Xie et al., 2005, Gonzalez-Escalona 

et al., 2006, Okada et al, 2010; Klein et al., 2014).  The majority of our green colonies 

(presumptive V. parahaemolyticus) were confirmed V. parahaemolyticus.  We found no 

V. vulnificus during our sequencing efforts, even though V. vulnificus and V. 

parahaemolyticus can co-occur and look similar on TCBS agar (Jones et al. 2016); the 

systems we sampled have higher salinities than would favor growth of V. vulnificus.  All 
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three V. parahaemolyticus virulence-related genes that we examined were routinely 

found in presumptive non-V. parahaemolyticus isolates (yellow colonies on TCBS agar).   

 Our findings support other recent studies in that V. parahaemolyticus virulence 

factor genes occur at relatively high frequencies in environmental isolates (Velazquez-

Roman et al., 2012, Gutierrez-West et al., 2013, Klein et al., 2014).  We detected more 

tdh and trh from oyster-derived vibrios than water-derived vibrios or sediment-derived 

vibrios from North Inlet estuary (Gutierrez-West et al., 2013).  This could indicate that 

there is a positive selection for tdh and/or trh-containing Vibrio strains within the oyster 

niche.  Perhaps these hemolysin genes (or other genetic loci linked to the hemolysin 

genes) aid in the persistence of vibrios within oyster tissues, acquisition of nutrients, or 

evasion of oyster hemocytes.  Further study is required to determine if tdh and/or trh play 

a role in environmental persistence of V. parahaemolyticus. 

 Detection of hemolysin genes, especially tdh and trh, at such high frequencies in 

C. virginica oysters further confirms that these genes are not rare in environmental Vibrio 

isolates.  trh and tdh, the most commonly cited virulence factors of V. parahaemolyticus, 

occurred in the majority of Vibrio isolates recovered from oysters.  Perhaps V. 

parahaemolyticus gastroenteritis is induced after ingestion of a “hot” oyster, that is, an 

oyster enriched in vibrios to levels far exceeding the average.  Since “hot” oysters occur 

so infrequently (1-3%), V. parahaemolyticus gastroenteritis remains a sporadic illness 

that is somewhat difficult to predict.  
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Figure 2.1. Presumptive Vibrio parahaemolyticus levels in individual Crassostrea 

virginica oysters.  Closed circles are oysters from North Inlet Estuary and open circles 

are oysters from Whale Branch.  Red open circles are the two “hot” oysters from Whale 

Branch.  The horizontal line indicates the maximum level of V. parahaemolyticus (10,000 

CFU g-1) considered safe for consumption with minimal cooking by the FDA.  Triangles 

indicate the V. parahaemolyticus levels (per g) if oysters were pooled and homogenized 

together, as standard methods suggest.  This was only determined for the two sampling 

trips that reared “hot” oysters
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Figure 2.2. Presumptive Vibrio parahaemolyticus levels in dissected Crassostrea virginica oysters.  Closed circles are oysters from 

North Inlet Estuary and open circles are oysters from Whale Branch.  Dissected sections of the oysters include (A) the oyster gills, (B) 

the oyster mantle fluid, (C) the oyster gut, and (D) the oyster meat. The oyster’s gut, gills, and mantle fluid were dissected out and all 

other tissues were considered oyster meat. 
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Table 2.1. Results of REGW range test for presumptive Vibrio parahaemolyticus.  

Homogeneous and statistically significant subsets are displayed.  Values presented are 

based on observed means.  Alpha = 0.05. 
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Figure 2.3. Maximum-likelihood phylogeny (Kimura 2-parameter model) of recA gene sequences recovered from oyster Vibrio 

strains.  The bootstrap values represent 1,000 replications, and values of less than 50 are not shown. The reference sequences 

were acquired from NCBI GenBank. Green font indicates the isolate does not ferment sucrose (is green on TCBS agar); orange 

font indicates the isolate does ferment sucrose (is yellow on TCBS agar)
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Table 2.2. Sampling date, physiological appearance on TCBS agar and Vibrio 

parahaemolyticus virulence-related gene distributions in Vibrio isolates recovered from 

North Inlet Crassostrea virginica oysters. 
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Table 2.3. Sampling date, physiological appearance on TCBS agar and Vibrio 

parahaemolyticus virulence-related gene distributions in Vibrio isolates recovered from 

Whale Branch Crassostrea virginica oysters. 

 

 

 

 

 

 

 

 

Table 2.4. Physiological appearance on TCBS agar and Vibrio parahaemolyticus 

virulence-related gene distributions in Vibrio isolates recovered from North Inlet water. 

 

 



 

44 

CHAPTER 3 

PATHOGENICITY ISLAND OCCURRENCE IN ENVIRONMENTAL 

VIBRIO STRAINS1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Klein SL, Pipes SE, and Lovell CR.  Submitted to Applied Microbiology and 

Biotechnology on 4/15/2018 
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ABSTRACT 

 Pathogenicity islands (PAIs) are large genomic regions that contain virulence 

genes, which aid pathogens in establishing infections.  While PAIs in clinical strains 

(strains isolated from a human infection) are well-studied, less is known about the 

occurrence of PAIs in strains isolated from the environment.  In this study we describe a 

PAI found in an environmental Vibrio parahaemolyticus strain, as well as a genomic 

fitness island found in a Vibrio diabolicus strain.  All islands had markedly different GC 

profiles than the rest of the genome, indicating that these islands were acquired via lateral 

gene transfer.  Genes on the PAI and fitness island were characterized.  The PAI found in 

V. parahaemolyticus contained the tdh gene, a collagenase gene, and genes involved in 

the Type 3 Secretion System II (T3SS2).  Toxin-antitoxin (TA) genes were found on the 

V. diabolicus fitness island and on the V. parahaemolyticus PAI. 

INTRODUCTION 

 Some Vibrio species can cause illnesses in humans, with an estimated 80,000 

cases occurring annually in the United States (Scallan et al., 2011; CDC, 2018).  The 

hospitalization and mortality rates of V. parahaemolyticus gastroenteritis are 22% and 

1%, respectively (Scallan et al., 2011).  Although cases are usually mild and tend to 

resolve themselves after 1 to 3 days, V. parahaemolyticus is responsible for the majority 

of vibriosis cases (Scallan et al., 2011).  Pathogenesis of this species is complex, and 

while some virulence factor genes have been implicated, the mechanisms underlying V. 

parahaemolyticus virulence are not well understood (Broberg et al., 2011; Lovell, 2017). 

Pathogenicity Islands (PAIs), a subgroup of genomic islands that aid in and 

contribute to pathogenesis, have been found in clinical strains of V. parahaemolyticus 
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(Makino et al., 2003).  PAIs are large chromosomal regions that are flanked by tRNA 

genes, and are usually associated with mobile genetic elements, such as phage, plasmid, 

integron, and transposon genes.  A genomic island must contain at least one virulence 

gene, or gene that contributes to pathogenesis, to be considered a PAI.  The size of PAIs 

ranges from 10-200 kbp (Schmidt and Hensel, 2004; Hacker and Kaper, 2000; Hacker 

and Carniel, 2000) and the average Vibrio genome is 4.5 mbp (Pipes et al., in 

preparation), meaning that a single PAI could make up as much as 4% of a Vibrio 

genome.  PAIs are flanked by highly conserved tRNA genes that act as both integration 

and excision sites.  The majority (approximately 75%) of PAIs discovered have tRNA 

flanking sequences (Schmidt and Hensel; Hacker and Kaper, 2000).  Additionally, tRNA 

loci are often found on extrachromosomal elements, such as plasmids and 

bacteriophages.  This indicates that the most likely mechanism for extrachromosomal 

element insertion is homologous recombination between the extrachromosomal element 

tRNA and PAI flanking tRNA loci (Hacker and Kaper, 2000).   

There is considerable evidence that PAIs are acquired horizontally via one or 

more lateral transfer events.  Within some PAIs there is evidence of one large transfer 

event, while other PAIs are more “mosaic-like.”  The “mosaic-like” composition of 

certain PAIs is caused by multiple, independent lateral transfer events (Hacker and 

Kaper, 2000; Schmidt and Hensel, 2004).  PAIs usually differ in codon usage biases and 

have a markedly lower or higher GC content than the rest of the genome (Schmidt and 

Hensel, 2004; Hacker and Kaper, 2000; Hacker et al., 1997; Hacker and Carniel, 2000).  

This supports the idea that recognizable PAIs are incorporated into a genome via lateral 

gene transfer from a dissimilar or unrelated organism (donor) having differing GC 
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content and codon usage than the recipient (Schmidt and Hensel, 2004).  However, PAI 

GC content may not differ from that of the core genome if the donor and recipient 

microorganisms are closely related (Hacker and Kaper, 2000).  Dissimilarities in base 

composition confirm that detectable lateral transfer of PAIs must have been of recent 

origin, as insufficient time for genetic drift has passed (Schmidt and Hensel, 2004). 

 PAIs have been found in clinical strains of V. parahaemolyticus (e.g: Makino et 

al., 2003; Wang et al., 2006; Sugiyama et al., 2008).  Nine PAIs have been identified in 

V. parahaemolyticus, with VPAI-1 and VPAI-7 (V. parahaemolyticus pathogenicity 

island one and V. parahaemolyticus pathogenicity island seven) being the most studied 

(Ceccarelli et al., 2013).  VPAI-1 is a 22 kbp island that is found on chromosome 1 in 

some strains, and chromosome 2 in others (Wang et al., 2006; Chen et al., 2011).   This 

observation provides evidence for the mobility of this genomic island.  VPAI-7 is the 

largest Vibrio genomic island found to date.  This island contains the virulence factors 

TDH (thermostable direct hemolysin) and Type III Secretion System 2 (T3SS2) (Makino 

et al., 2003; Sugiyama et al., 2008).  Other names for VPAI-7 include VPaIα or tdhVPA 

(Xu et al., 2017) and parts of VPAI-7 have been found in other Vibrio species, such as 

Vibrio mimicus (Gennari et al., 2012). 

Work on Vibrio PAIs is heavily skewed toward clinical strains, with the 

pathogenic potential of naturally-occurring (environmental) strains rarely considered.  In 

this study, we characterized genomic islands found in environmental Vibrio strains: a PAI 

within a V. parahaemolyticus strain, and a novel fitness island found in a Vibrio 

diabolicus strain.  Environmental Vibrio strains, and the PAIs within them, could serve as 

reservoirs for virulence genes.   
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MATERIALS AND METHODS 

Strain Isolation and Whole Genome Sequencing 

Environmental V. parahaemolyticus and V. diabolicus strains were isolated 

previously (Gutierrez West et al., 2013; Klein et al., 2014) from the pristine North Inlet 

salt marsh estuary near Georgetown, SC, USA (33°20’N, 79°12’W).  Vibrio strains were 

routinely cultivated on saline Luria Agar (SLA; per L; 10 g tryptone, 5 g yeast extract, 27 

g NaCl, 15 g Bacto Agar). 

Genomic DNA was isolated through the Wizard Genomic DNA Purification kit 

following the protocol for Gram negative organisms (Promega, Madison, WI).  After 

DNA was extracted, DNA quantity was measured via Quibit fluorimetry.  Libraries were 

prepared and then sequenced using an Illumina MiSeq (V3 26300 base) at the Indiana 

University Center for Genomic Studies as a part of the Genome Consortium for Active 

Teaching NextGenSequencing Group (GCAT-SEEK) shared run (Buonaccorsi et al., 

2011, 2014).  Sequencing reads were filtered (median phred score 0.20), trimmed (phred 

score 0.16), and assembled using the paired-end de novo assembly option in NextGENe 

V2.3.4.2 (SoftGenetics, State College, PA).  The assembled genomes were uploaded to 

the Rapid Annotation with Subsystem Technology (RAST) web service (Aziz et al., 

2008; Overbeek et al., 2014) for analysis, guided contig reordering and assembly 

improvement.  Genomes were aligned based on completed sequences using dotplot 

comparisons.  Whole genome sequence data obtained from this work were submitted to 

the NCBI GenBank and assigned the accession numbers: PKQA00000000, 

PKPY00000000, and PKPZ00000000. 
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PAI detection and characterization  

 The fully sequenced genomes were uploaded to TUBIC (Tiajin University 

Bioinformatics Center) to determine their GC profiles (http://tubic.tju.edu.cn/).  This tool 

displays GC content variation across a genome and can be useful for identifying genomic 

regions that differ from the rest of the genome in GC content (Gao and Zhang, 2006).  

Genomic islands that were detected via TUBIC were isolated and the island nucleotide 

sequence was uploaded to RAST to identify and characterize the specific genes found on 

the genomic islands (http://rast.nmpdr.org/).  NCBI GenBank was also used to 

characterize genomic island genes (http://www.ncbi.nlm.nih.gov/genbank/).  Gene 

sequences of interest were edited and maximum-likelihood trees were constructed using 

the Kimura 2-parameter model with Mega version 7.  DNAPlotter was used to visualize 

the circular chromosomes of the Vibrio strains (Carver et al., 2009). 

RESULTS AND DISCUSSION 

The defining feature of a PAI is the presence of virulence genes, or genes 

employed in pathogenesis.  Chromosomal regions that appear to be PAIs but lack 

virulence factor genes are considered to be genomic, metabolic, or fitness islands 

(Schmidt and Hensel, 2004).  There is much controversy surrounding the occurrence of 

PAIs in non-pathogenic or non-clinical (environmental) strains. Some groups argue that 

PAIs only occur in pathogenic, disease-causing clinical strains and that PAIs found in 

non-clinical (environmental) isolates should be referred to as fitness islands (e.g. Hacker 

et al., 1997; Hacker and Carniel, 2000).  Other groups state that as long as the genomic 

island contains at least one virulence factor gene, it is considered a PAI, regardless of the 
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origin of the strain (e.g. Schmidt and Hensel, 2004; Hasan et al., 2010; Dobrindt et al., 

2004).  We agree with the latter argument, especially considering previous work that 

demonstrated virulence genes can occur in a majority of non-clinical Vibrio strains 

(Gutierrez West et al., 2013; Klein et al., 2014; Klein and Lovell, 2017).  Therefore, we 

define PAIs as genomic islands having at least one virulence factor gene, even if the PAI 

is found in an environmental strain. 

V. parahaemolyticus island 

 V. parahaemolyticus strain TS-8-11-4 was isolated from salt marsh sediments 

(Gutierrez West et al., 2013; Klein et al., 2014) at the pristine North Inlet estuary in South 

Carolina, USA.  This strain has a genome of 4.98 mbp; chromosome 1 is 3.19 mbp in 

length and chromosome 2 is 1.78 mbp in length.  The majority of the genome contained a 

GC content of 45.57%, which is typical for V. parahaemolyticus (Farmer and Janda, 

2005).  However, this strain contained a 223 kbp island that had a markedly lower GC 

content not typical of V. parahaemolyticus (Figure 3.1A). 

This genomic island lies on the second chromosome of TS-8-11-4 and it harbors 

virulence genes (Figure 3.2A).  The thermostable direct hemolysin gene (tdh) was found 

on this island, as well as genes involved in the Type Three Secretion System II (T3SS2).  

The tdh gene and T3SS2 complex are the two major virulence factors implicated in V. 

parahaemolyticus pathogenesis (Makino et al., 2003; Park et al., 2004; Yanagihara et al., 

2010).  A collagenase gene was found on the island; collagenase is thought to be involved 

in V. parahaemolyticus virulence (Gode-Potratz et al., 2010).  The genomic island of V. 

parahaemolyticus strain TS-8-11-4 is a PAI, and more specifically, because it contains 



 

51 

tdh and T3SS2 genes, we designate this island as a VPAI-7 (VPaIα or tdhVPA) (Makino 

et al., 2003; Sugiyama et al., 2008; Xu et al., 2017).  

Four genes involved in capsule production, as well as one integron gene and a 

Na+/H+ antiporter (nhaA) were also found on this PAI.  Capsules aid pathogens in 

evasion of host immune defenses, establishing infections, and survival in harsh 

environments, such as the stomach.  V. parahaemolyticus virulence is correlated with 

capsule production (Broberg et al., 2011; Letchumanan et al., 2014).  One capsule gene 

had high homology with Gram positive capsule production genes.  This is interesting 

because vibrios are Gram negative organisms, meaning that this gene may have been 

acquired laterally.  An integrase gene was found towards the center of the island.  

Integrase genes are associated with PAIs and function to integrate foreign DNA into the 

genome (Hacker and Kaper, 2000).  Usually VPAI-7 does not contain an integrase gene, 

but a few transposon genes instead (Ceccarelli et al., 2013).  Finally, we determined that 

a nhaA gene is located on this genomic island.  nhaA genes encode Na+/H+ antiporters, 

which transport ions to balance pH.  Na+/H+ antiporters aid V. cholerae in environmental 

persistence (Vimont and Berche, 2000) and are essential for Yersinia pestis virulence 

(Minato et al., 2013).  The majority (69%) of genes on the TS-8-11-4 PAI could not be 

assigned specific identities and were thus determined to be hypothetical.   

V. diabolicus island 

 V. diabolicus strain JBS-8-11-1 was isolated previously from North Inlet salt 

marsh sediments (Gutierrez West et al., 2013; Klein et al., 2014).  Its genome (5.04 mbp) 

is comprised of two chromosomes, the first (3.23 mbp) being larger than the second (1.81 

mbp).  Its GC content was typical of other V. diabolicus genomes (44.91%) (Goudenege 
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et al., 2014) except for a 182 kbp island located on chromosome 2 (Figure 3.1B).  82% of 

the island consisted of hypothetical genes.  This island harbored no known virulence 

genes; it is hereafter referred to as a fitness island (Figure 3.2B).  Three genes, a phage 

DNA synthesis gene, a phage DNA replication gene, and a gene encoding a phage capsid 

protein, were located very close to each other on the fitness island.  All three of these 

phage genes had high nucleotide sequence similarities to phage ɸX174 genes (100%, 

99%, and 100%, respectively).  At least part of this island was most likely inserted into 

JBS-8-11-1’s genome from the same ɸX174 phage.  

 Thirteen genes involved in toxin-antitoxin (TA) systems were located on the 

fitness island.  TA systems are found either on plasmids, genomic islands, or within the 

chromosome and are made up of closely linked toxin and antitoxin genes.  The encoded 

labile antitoxin protects the host from the stable toxin, while competitor cells that do not 

have the TA system (and respective antitoxin) are eliminated (Hayes, 2003; Van 

Melderen and Saavedra De Bast, 2009).  Sometimes TA systems are referred to as 

“addiction modules” because the host cell is dependent on the antitoxin; without the TA 

system and encoded antitoxin, the host cell would die (Van Melderen and Saavedra De 

Bast, 2009).  The toxin and respective antitoxin loci are usually found neighboring each 

other, often overlapping (Hayes, 2003).  Seven Type II TA toxins were found on JBS-8-

11-1’s fitness island, along with their neighboring respective antitoxins.  Type I TAs 

include RNA antitoxins, while Type II TAs have protein antitoxins (Hayes, 2003).  The 

relE, yafQ, and yoeB toxin genes encode mRNA interferase endoribonucleases; all three 

of these toxin genes were detected on this fitness island.  The doc toxin gene (death on 

curing) inhibits translation by blocking translation elongation at the 30S ribosomal 
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subunit (Liu et al., 2008); three copies of the doc toxin gene and three copies of its 

antitoxin partner gene, phd (prevent host death) were found on JBS-8-11-1’s fitness 

island.  doc toxin genes and phd antitoxin genes are widespread in vibrios and were also 

found on V. parahaemolyticus strain TS-8-11-4’s PAI as well as V. vulnificus strain WR-

2-BW’s PAI (Figure 3.3).  

Lateral Gene Transfer in Environmental Strains 

  PAIs are present in environmental Vibrio strains and are most likely acquired via 

lateral gene transfer.  All of the islands described here have significant lower GC content 

than the rest of the genome, providing evidence that these islands originated from a 

foreign source and were transferred into these genomes relatively recently.  Additional 

evidence includes mobile genetic elements, such as phage and plasmid genes, integrases, 

and transposons. Virulence loci on VPAI-7 have been detected in environmental species 

that do not cause human infections: Vibrio mimicus, Vibrio harveyi, and Vibrio 

natriegens (Gennari et al., 2012; Klein et al., 2014).  Clearly, lateral transfer of individual 

virulence loci and/or entire PAIs is occurring between and among environmental vibrios.  

It is well documented that V. cholerae enters a natural competency state in the presence 

of chitin or under low-nutrient conditions (Hazen et al., 2010; Metzger and Blokesch, 

2016); however, less is known about uptake of exogenous DNA by other Vibrio species.  

Further studies should be done on the rates of lateral transfer among vibrios in the 

environment.  Because vibrios survive, persist and can undergo rapid population 

expansions (bloom) in coastal ecosystems, the pathogenic loci (and potential of said loci 

to be transferred laterally) of naturally occurring environmental strains should no longer 

be overlooked.
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Figure 3.1. GC profile of (A) Vibrio parahaemolyticus environmental strain TS-8-11-4 and (B) Vibrio diabolicus environmental strain 

JBS-8-11-1.  All GC profiles were made using TUBIC software. 
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Figure 3.2. Circular presentation of the second chromosome of (A) Vibrio parahaemolyticus environmental strain TS-8-11-4, and (B) 

Vibrio diabolicus environmental strain JBS-8-11-1.  Track one shows the forward coding sequences; track 2 is the reverse coding 

sequences.  tRNA genes are shown on track 3 and islands are shown on track 4.  Red indicates pathogenicity islands (PAIs); blue 

indicates genomic fitness islands.  Virulence and virulence-associated genes are located on track 5, genes involved in toxin-antitoxin 

systems are on track 6, and mobile genetic elements are shown on track 7 



 

56 

 

 

Figure 3.3. Maximum-likelihood phylogeny (Kimura 2-parameter model) of doc toxin 

genes and phd antitoxin genes.  Bold indicates sequences obtained from this study.  The 

bootstrap values represent 1,000 replications, and values of less than 50 are not shown. 

The reference sequences were acquired from NCBI GenBank  
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CHAPTER 4 

CYTOTOXICITY OF ENVIRONMENTAL VIBRIO VULNIFICUS AND 

VIBRIO PARAHAEMOLYTICUS STRAINS 
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ABSTRACT 

Bacteria in the genus Vibrio occur naturally in coastal environments and some 

species pose significant threats to human health.  Two pathogenic Vibrio species were 

used in this study, Vibrio vulnificus and Vibrio parahaemolyticus, both of which cause 

mild to severe gastroenteritis (vibriosis) after ingestion of raw or undercooked seafood.  It 

is estimated there are 80,000 cases of vibriosis each year in the US.  In addition to 

vibriosis, some V. vulnificus strains can infect open wounds to cause necrosis and invade 

the bloodstream to cause septicemia.  The mortality rate of V. vulnificus septicemia is 

50%.  The release of lactate dehydrogenase (LDH) from cultured epithelial colorectal 

carcinoma cell line HCT 116 was measured to quantify the cytotoxic effect of both Vibrio 

species.  LDH is released during tissue damage from eukaryotic cells that have lost 

membrane integrity.  Tested strains of V. vulnificus had varying combinations of three 

virulence factor genes; the hemolysin gene, vvhA, the repeat toxin gene, rtxA1, and the 

vvpE gene, which encodes a metalloprotease.  The V. parahaemolyticus virulence factors 

studied were the two hemolysin genes, tdh and trh, and the Type III Secretion System 2 

marker gene vscC2.  Both environmental and clinical strains of each species were used.  

We determined that even environmental Vibrio strains where no virulence factors were 

detected can cause significant damage to human colorectal epithelial cells.  This suggests 

that the distinction between clinical and environmental Vibrio strains may not be as 

straightforward as previously thought. 
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INTRODUCTION 

 The CDC (2018) estimates that Vibrio bacteria cause 80,000 cases of 

gastroenteritis (vibriosis) each year in the United States alone.  Most cases occur after the 

consumption of raw or undercooked seafood, primarily oysters.  Vibriosis is a global 

issue wherever raw or undercooked seafood is ingested; it is estimated that in Japan, 

where raw seafood is prominent in many diets, 20-30% of food poisoning cases are 

caused by Vibrio (Toyofuku, 2013).  Vibriosis is caused by two species, Vibrio 

parahaemolyticus and Vibrio vulnificus.  Although cases are mild and tend to resolve 

themselves after 1 to 3 days, V. parahaemolyticus is responsible for the majority of 

vibriosis cases.  The hospitalization and mortality rates of V. parahaemolyticus 

gastroenteritis are 22% and 1%, respectively (Scallan et al., 2011).    V. vulnificus cases 

are less common; only about 100 occur each year in the United States (Scallan et al., 

2011).  However, the hospitalization and mortality rates of this bacterium are much 

higher, at 92% and 35%, respectively (Scallan et al., 2011).  V. vulnificus can also cause 

sepsis and necrotizing fasciitis if introduced into open wounds.  The majority of reported 

V. vulnificus cases are from wound infections (45%) and septicemia (43%); only 5% are 

gastroenteritis (Scallan et al., 2011).  The mortality rate of V. vulnificus when it invades 

the bloodstream (sepsis) increases to 60%.   

 Pathogenesis of both species is complex, and while some virulence factor genes 

have been implicated, the mechanisms underlying V. vulnificus and V. parahaemolyticus 

virulence are not well understood (Broberg et al., 2011; Lovell et al., 2017).  V. 

parahaemolyticus virulence was long thought to be caused by two hemolysin genes, tdh 

(thermostable direct hemolysin) and trh (tdh-related hemolysin) (Miyamoto et al., 1969; 
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Shirai et al., 1990; Honda and Iida, 1993; DePaola and Kaysner, 2004; Lovell, 2017).  

These genes encode toxic proteins that act as porins to disrupt host cell membranes 

(Yanagihara et al., 2010; Broberg et al., 2011; Ohnishi et al., 2011).  However, recent 

whole genome sequencing of the RIMD strain has revealed secretion systems that may 

contribute to V. parahaemolyticus pathogenesis (Makino et al., 2003).  Secretion systems 

inject toxic effector proteins into host cells and one of these secretion systems, the Type 

III Secretion System 2 (T3SS2) is thought to play a role in pathogenesis (Makino et al., 

2003; Park et al, 2004).   

 The V. vulnificus mechanism of pathogenicity also remains unclear.  Three genes 

are thought to contribute to V. vulnificus virulence, vvhA, rtxA1, and vvpE. (Kim et al., 

2008; Warner and Oliver, 2008; Jones and Oliver, 2009).  vvhA is another hemolysin 

gene that encodes a toxic porin; it is used as a marker for V. vulnificus because the 

majority of strains contain this gene (Warner and Oliver, 2008; Jones and Oliver, 2009).  

rtxA1 encodes a repeat toxin and vvpE encodes a metalloprotease (Kim et al., 2008; Lee 

et al., 2016).   It is still unclear if content of one, two, or all three of these virulence factor 

genes are required to cause infections in virulent V. vulnificus strains.  An additional 

gene, the “virulence correlated gene” vcg, is used to differentiate pathogenic from non-

pathogenic strains of V. vulnificus.  vcg encodes a hypothetical protein of unknown 

function (Warner and Oliver, 2008; Jones and Oliver, 2009).  While this gene is not 

thought to contribute directly to virulence, there is a correlation between content of the 

clinical variant of vcg and disease-causing strains.  The vcgE variant has been reported as 

prevalent in environmental, avirulent V. vulnificus; the vcgC variant has mostly been 
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found in clinical, disease causing strains (Warner and Oliver, 2008; Jones and Oliver, 

2009).  

 Current thinking is that most environmental Vibrio strains are unlikely to cause 

infection.  This was supported by reports that only 1-2% of environmental V. 

parahaemolyticus strains contained tdh, trh, and other virulence-related genes; and that 

most of the environmental (80-90%) V. vulnificus are of the avirulent vcgE variety.  

However, with recent improvements in detection of V. parahaemolyticus virulence-

related genes, they have been detected at a higher frequency (50-70%) in environmental 

vibrios (Gutierrez-West et al., 2013; Klein et al., 2014; Klein and Lovell, 2017).  

Environmental strains are defined, in this study, as any strain isolated from a non-clinical, 

environmental source, such as water or sediment; clinical strains are any that were 

isolated from an infected patient.  Establishing an infection in a human host requires 

more than just content of one or two virulence genes; but the pathogenic potential of 

environmental vibrios has been largely ignored and understudied.  In this study we 

determine that environmental Vibrio strains are capable of causing cytotoxicity to human 

gastrointestinal epithelial cells in vitro.  We compared the cytotoxic effect of 

environmental Vibrio strains to clinical strains and found that they both cause similar 

degrees of damage to human cells in vitro.  We also evaluated correlations between 

cytotoxicity and detection of particular virulence genes. 

MATERIALS AND METHODS 

Environmental Vibrio strain isolation 
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V. parahaemolyticus strains were isolated from the pristine North Inlet salt marsh 

estuary near Georgetown, SC, USA (33°20’N, 79°12’W).  Strains were isolated from 

water and sediment in August and September 2011.   Strain designations indicate source 

(S, sediment; BS, burrow lining sediment; BW, burrow water;  PW, porewater; CW, 

creek water), the month and year it was isolated (8-11 for August, 2011; 9-11 for 

September, 2011), and the isolate number.  For example, JS-8-11-4 refers to isolate 

number 4 from Juncus roemerianus (black needle rush) zone sediment (JS) collected on 

August, 2011 (8-11).  Presumptive vibrios were isolated on Thiosulfate Citrate Bile salts 

Sucrose (TCBS) agar (BD, NJ) without the use of an enrichment step. 

 V. vulnificus strains were isolated from lower salinity systems, Winyah Bay and 

the Waccamaw River near Georgetown, SC, USA.  V. vulnificus isolates were not 

recovered from North Inlet estuary samples, most likely due to the high salinities (40 to 

44 ppt) during sampling for strain isolation (West, 2012).  Strains used in this study were 

isolated from bottom (BW) and surface water (SW) in August from oyster bed areas in 

Winyah Bay (shellfish isolates) and five sampling stations in the Waccamaw River (WR-

1 through WR-5).  For example, WR-4 SW 5 refers to isolate number 5 isolated from 

Waccamaw River sampling site 4 (WR-4) surface water (SW).  Presumptive V. vulnificus 

were isolated on CHROMagar Vibrio (DRG International, Springfield, NJ) following the 

FDAs Bacteriological Analytical Manual protocol for isolation of vibrios (DePaola and 

Kaysner).  Presumptive Vibrio isolates were collected and routinely cultivated on saline 

Luria Agar (SLA; per L; 10 g tryptone, 5 g yeast extract, 27 g NaCl, 15 g Bacto Agar).  

Along with environmental Vibrio isolates, we employed two clinical V. parahaemolyticus 

strains and three clinical V. vulnificus strains from the American Type Culture Collection 
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(ATCC).  The two clinical V. parahaemolyticus strains were isolated from patients 

suffering from vibriosis (gastroenteritis) and the three clinical V. vulnificus strains were 

isolated from septic patients. 

Vibrio DNA extractions and species identification 

Isolates were grown overnight at 37ºC in saline Luria broth (SLB) and crude 

DNA was extracted by boiling the cells (95-100⁰C) in distilled water for 15 min.  All 

PCR reactions were completed within three days of DNA extraction and used 1 μl of 

boiled DNA extract per reaction.  Presumptive V. parahaemolyticus and V. vulnificus 

strains were confirmed via PCR amplification and sequence analysis of the housekeeping 

gene, recombinase A (recA) using the primers and protocols of Thompson (2005).  The 

16S rRNA gene is the standard for bacterial species identification but vibrio 16S rRNA 

genes are too similar for adequate resolution at the species level.  Thompson et al. (2005) 

recommended using other housekeeping genes, such as recA, to identify Vibrio.  recA 

PCR products (790 bp) were resolved on a 1.5% agarose gel and sequenced using an ABI 

Prism 3730 DNA analyzer.  Sequences were edited and Maximum-likelihood 

phylogenies were constructed using the Kimura 2 parameter model with Mega version 7 

(Tamura, 2015).  Sequence data of reference Vibrionaceae species were obtained from 

the NCBI GenBank.   

Vibrio parahaemolyticus virulence-correlated genes PCR protocols and procedures 

Confirmed V. parahaemolyticus strains used in cytotoxicity assays were screened 

for three virulence-correlated genes, tdh, trh, and vscC2.  All PCR reactions targeting tdh 

and trh were carried out in 25 µl volumes using Taq DNA polymerase (Qiagen, Valencia, 
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CA).  The PCR thermocycling program, conditions, and primers of Bej et al. (1999) were 

employed for amplification of tlh.  PCR amplifications of the tdh and trh genes used the 

primers of Gutierrez-West et al. (2013) and were performed in separate reactions.  Each 

reaction included the following: 10x PCR buffer (Qiagen), 1.25 units of Taq, 0.5 µM of 

each primer, 200 µM of each dNTP (Qiagen) and yielded single bands of 245 bp (tdh) or 

410 bp (trh).  The thermal cycling program for the three hemolysin genes was: 

denaturation at 95°C for 5 min, followed by 40 cycles consisting of 95°C for 1 min, 62°C 

for 1 min, 72°C for 1 min, and a final elongation of 72°C for 2 min.   

The T3SS2α gene vscC2 (VPA1339) encodes an outer membrane protein and has 

been widely used as a marker for T3SS2α.  Primers designed by Noreia et al. (2010) were 

used to amplify a 330 bp segment of vscC2 in 25 µl volumes using Taq DNA polymerase 

(Qiagen, Valencia, CA).  Each reaction included the following: 10x PCR buffer (Qiagen), 

0.125 units of Taq, 1.25 µM of primer, 0.5 µM of each dNTP (Qiagen) and 2 µM MgCl.  

The thermal cycling program used for detection of vscC2 was: denaturation at 94°C for 4 

min, followed by 32 cycles consisting of 94°C for 45s, 60°C for 40s, 72°C for 45s, and a 

final elongation of 72°C for 7 min.  PCR products were sequenced and the resulting gene 

sequences were edited and Maximum-likelihood phylogenies were constructed using the 

Kimura 2 parameter model with Mega version 7 (2015). 

Vibrio vulnificus virulence-correlated genes PCR protocols and procedures 

 Confirmed V. vulnificus strains used in cytotoxicity assays were screened for three 

virulence-correlated genes, vvhA, rtxA1, and vvpE.  V. vulnificus strains were also 

screened for two variants of the vcg gene, vcgE and vcgC.  Amplification of the vcg 
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variants is the standard method for differentiating pathogenic and non-pathogenic V. 

vulnificus (Warner and Oliver, 2008; Jones and Oliver, 2009). 

 PCR primers of Warner and Oliver (2008) were used to amplify vvhA (410 bp), 

vcgE (199 bp), and vcgC (97 bp).  The primers of Liu et al. (2007) were used to amplify a 

the rtxA1 gene and the primers of Jeong et al. (2001) were used to amplify a 697 bp 

segment of the vvpE gene.  Each reaction included the following: 10x PCR buffer 

(Qiagen), 1.25 units of Taq, 0.5 µM of each primer, 200 µM of each dNTP (Qiagen), and 

150 µM MgCl (Qiagen); distilled water used in reactions was supplemented with 10% 

DMSO.  The thermal cycling program used for detection of all V. vulnificus virulence-

correlated genes was: denaturation at 94°C for 3 min, followed by 29 cycles consisting of 

94°C for 45s, 55°C for 45s, 72°C for 45s, and a final elongation of 72°C for 2 min. 

Colorectal Carcinoma Epithelial Cell Line 

 HCT 116 gastrointestinal epithelial cell line was used for cytotoxicity assays.  

This epithelial cell line was derived from an adult male suffering from colorectal 

carcinoma (ATCC, 2018).  Since V. parahaemolyticus and V. vulnificus have been 

implicated in gastroenteritis infections, a gastrointestinal epithelial line was deemed most 

appropriate for this study.  HCT 116 cells were grown up in RPMI 1640 medium 

(Corning, Manassas, VA) supplemented with 10% fetal bovine serum (FBS) in a 5% CO2 

incubator at 37°C.  Every three days, when the cells reached an approximate 

concentration of 105, the epithelial cells were trypsinized using 0.25% trypsin EDTA 

(Corning, Manassas, VA).  This protocol breaks the adherent monolayer that the HCT 
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116 cells form while growing.  After trypsinization, cells were counted using a 

hemocytometer and used in cytotoxicity assays.   

Cytotoxicity Assays 

Vibrio cells were grown in SLB at 37°C with shaking for 5 h.  Vibrio culture 

media was discarded and cells were resuspended in phosphate buffered saline (PBS).  

Immediately after trypsinization, HCT 116 cells were diluted as needed, and co-incubated 

in a tissue-culture treated 96 well plate with Vibrio cells at a multiplicity of infection 

(MOI) of 100:1.  A CytoTox-Fluor Cytotoxicity reagent (Promega, Madison, WI) was 

used, following the manufacturer’s protocols.  This assay uses a fluorogenic substrate to 

measure lactate dehydrogenase (LDH) activity, which is released from eukaryotic cells 

that have lost membrane integrity. The substrate gives no signal from live, intact cells.  

Each Vibrio strain was tested in 6 wells per 96 well plate.  For true replication, each 96 

well plate was repeated three times. Low controls included epithelial cells incubated with 

an avirulent Vibrio, Vibrio pacinii, and epithelial cells with no vibrios.  The high control 

was epithelial cells co-incubated with 1% Triton X-100.  Vibrio strains and epithelial 

cells were co-incubated for 2 h in a 5% CO2 incubator at 37°C without shaking.  

Fluorescence was measured immediately after co-incubation and every hour using a 

SpectraMax Gemini EM microplate reader (Molecular Devices, Sunnyvale, CA).  Percent 

cytotoxicity was calculated after 2 h co-incubation using the following equation: 

𝐶𝑦𝑡𝑜𝑡𝑜𝑥𝑖𝑐𝑖𝑡𝑦 (%) = (
𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙−𝑙𝑜𝑤 𝑐𝑜𝑛𝑡𝑟𝑜𝑙

ℎ𝑖𝑔ℎ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑙𝑜𝑤 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
) 𝑥 100 

Percent cytotoxicity of vibrios were compared to the avirulent V. pacinii low control by 

using a One Way ANOVA.  Multiple comparisons were made versus the control group 
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(V. pacinii) using the Holm-Sidak method (SigmaPlot, 2016).  The significance level 

used was 0.05.  Student’s t-tests were used to compare the percent cytotoxicity of clinical 

and environmental strains. 

Dose Response Curve 

To determine the effect of Vibrio dosage on the in vitro experiments, vibrios were 

serially diluted in PBS.  The diluted vibrios were co-incubated with the HCT 116 cells, 

the concentration of which was not altered.  MOIs of 100:1, 75:1, 50:1, 25:1, and 1:1 

were used in dose response curves.  The CytoTox-Fluor Cytotoxicity reagent (Promega, 

Madison, WI) was added, fluorescence was measured hourly for 2 h, and percent 

cytotoxicity was calculated. 

 Adherent monolayer Coverage Assay and Trypan Blue Exclusion Assays 

 In order to visualize Vibrio damage to the HCT 116 epithelial cell adherent 

monolayer, Vibrio strains were used in a percent coverage assay.  HCT 116 cells were 

grown for 3 days in a tissue-treated petri dish to reach an approximate concentration of 

105.  The Vibrio strain was added to the petri dish at a MOI of 100:1.  Photographs of the 

HCT 116 cell monolayer were taken immediately after inoculation and every hour for 2 h 

at 20x magnification.  Percent coverage of the HCT 116 epithelial cell monolayer was 

calculated using Vidana software (2017).  

 To determine if there was damage to the individual epithelial cells after adherent 

monolayer coverage assays, a trypan blue exclusion assay was used.  Trypan blue only 

stains cells that have lost membrane integrity.  If epithelial cells take up the trypan blue 

dye, they are no longer considered viable.  A 0.4% solution of trypan blue in PBS was 
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used to stain cells and cell counts were performed using a hemocytometer.  The percent 

of viable cells in the population was calculated.  

RESULTS 

V. parahaemolyticus cytotoxicity 

 Thirteen V. parahaemolyticus strains were used in cytotoxicity assays (Table 4.1).  

Two clinical isolates were used; these strains were isolated from patients suffering from 

V. parahaemolyticus gastroenteritis.  The V. parahaemolyticus type strain was used 

(ATCC 17802T) as well as a well-studied reference strain (ATCC 33846); both of these 

strains contain at least one virulence factor gene.  Eleven environmental V. 

parahaemolyticus strains were used in cytotoxicity assays.  Seven of these environmental 

strains contained at least one virulence factor gene (tdh, trh, or vscC2), while no 

virulence factors were detected in four strains.   

 All V. parahaemolyticus strains used in this study, regardless of isolation source 

(clinical or environmental), were cytotoxic to HCT 116 epithelial cells (Figure 4.1).  

There was no significant difference in cytotoxicity between clinical strains and 

environmental strains (Student’s t-test, p value=0.211).  There was also no significant 

difference in cytotoxicity between the environmental strains that contained virulence 

factors and environmental strains where no virulence factors were detected (Student’s t-

test, p value=0.362). 

 Dose response experiments were conducted at different MOIs (Figure 4.2).  As 

the concentration of V. parahaemolyticus cells decreased, so did the cytotoxic effect of 

the vibrios.  However, even at the extremely low MOI of 1:1, some cytotoxic effects were 

observed.  For example, environmental V. parahaemolyticus strain JS-9-11-6 caused 
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67.20% cytotoxicity at an MOI of 100:1; at an MOI of 1:1 the same strain caused 19.68% 

cytotoxicity.  The cytotoxic effects were always detected, even at an MOI of 1:1. 

V. vulnificus cytotoxicity  

 All 15 V. vulnificus strains used in cytotoxicity assays tested positive for the vvhA 

hemolysin gene, the rtxA1 toxin gene, and the vvpE protease gene (Table 4.2).  Three 

clinical strains were used; all were isolated from patients suffering from V. vulnificus 

sepsis and all clinical strains were determined to be vcgC variants.  Twelve 

environmental strains were used; 6 vcgC variants and 6 vcgE variants.  As with V. 

parahaemolyticus, all V. vulnificus strains were cytotoxic to gastrointestinal epithelial 

cells (Figure 4.3).  We determined that there was no significant difference in cytotoxicity 

between clinical and environmental V. vulnificus strains (Student’s t-test, p value=0.114).  

There was also no significant difference in cytotoxicity between vcgC variants and vcgE 

variants (Student’s t-test, p value=0.552).  As seen with V. parahaemolyticus, as the MOI 

decreased, so did the degree of cytotoxicity (Figure 4.4).  

 V. vulnificus-mediated adherent monolayer dysregulation 

 HCT 116 epithelial cells grow in an adherent monolayer connected by adherens 

and tight junctions (Niessen, 2007; ATCC, 2018).  Cytotoxicity assays were performed 

while HCT 116 epithelial cells were in suspension.  However, we wanted to test what 

effect vibrios had on the epithelial cell adherent monolayer, so co-incubations with 

vibrios were also performed while HCT 116 cells were growing in their monolayer 

adhered to the bottom of a tissue-treated petri dish.  After a 2 h incubation, V. vulnificus 

caused disruption (dysregulation) of the epithelial cell monolayer, releasing it from the 

bottom of the petri dish (Figure 4.5).  This was seen consistently after 2 h with all V. 
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vulnificus strains tested, regardless of isolation source or vcg variant.  This disruptive 

effect on the epithelial cell monolayer was never observed with any V. parahaemolyticus 

strain tested.  After the epithelial cell monolayer was dysregulated, a trypan blue 

exclusion assay was performed to determine how many individual cells were 

compromised during the monolayer disruption.  We determined that >90% of the 

population of epithelial cells that had come into suspension due to V. vulnificus-mediated 

dysregulation of the monolayer had lost membrane integrity and were no longer viable 

(Table 4.3). 

DISCUSSION 

 There have been many studies on the cytotoxic potential of V. parahaemolyticus 

and V. vulnificus (Raimondi et al., 2000; Park et al., 2004; Lee et al., 2007; Kim et al., 

2008; Hiyoshi et al., 2010; Mahoney et al., 2010; Lee et al., 2016, etc). However, these 

studies either use inappropriate human cell lines as hosts (such as cervical cancer HeLa 

cells) or exclusively look at Vibrio strains isolated from a clinical source and therefore 

ignore the potential pathogenic effects of environmental strains.  There is a fascination 

with Vibrio strains that have been isolated from sick patients, which causes a clinical 

strain bias.  This also leads to the erroneous idea that environmental and clinical strains 

are inherently dissimilar.  A study by Mahoney and company (2010) used 13 

environmental V. parahaemolyticus strains in their cytotoxicity assays and they also 

found that environmental strains have cytotoxic capabilities like those of clinical strains.  

Putative virulence factor genes such as tdh and trh were not detected in any of the 13 

strains Mahoney used (2010).  To our knowledge, there have been no cytotoxicity assays 

done with environmental V. vulnificus strains. 
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 One of most unexpected results of this study (and Mahoney’s) is that V. 

parahaemolyticus strains having no detectable virulence factor genes can still cause 

significant (and dramatic) cytotoxicity to intestinal epithelial cells.  We suggest three 

explanations for this observation.  The first explanation is that in vitro cytotoxicity assays 

are unreliable indicators of actual virulence and pathogenic potential.  This seems 

unlikely given that in vitro cytotoxicity assays like the kind employed in this study have 

been used abundantly for years to determine the pathogenic potential of microorganisms.  

The second explanation is that all V. parahaemolyticus strains (regardless of virulence 

gene content and isolation source) can cause disease.  This would mean outbreaks solely 

rely on an increase in V. parahaemolyticus population densities, not virulence factor 

acquisition. 

Another reason could be that the actual mechanism for V. parahaemolyticus 

virulence has nothing to do with tdh, trh, or vscC2 and the correct V. parahaemolyticus 

virulence mechanism(s) have not yet been identified.  More V. parahaemolyticus 

genomes need to be sequenced to determine if there are previously unrecognized 

virulence factors within the genome.  It’s important to note that before Makino et al. 

(2003) sequenced the first V. parahaemolyticus genome, it was not known that this 

organism could utilize secretion systems or that one V. parahaemolyticus strain could 

contain up to nine pathogenicity islands. With more high-quality genomic sequencing, 

our understanding of V. parahaemolyticus virulence will only grow.      

 All of the V. vulnificus strains tested in this study contained all virulence factors 

screened for (vvhA, rtxA1, and vvpE); these strains were divided based on whether they 

contained the E or C variant of the vcg gene.  This is the standard method to determine 
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the pathogenic potential of V. vulnificus; however, we found no difference in cytotoxicity 

between vcgE and vcgC variants.  The vcg gene, which encodes a hypothetical protein 

with unknown function, is an unreliable indicator of virulence in V. vulnificus.  vcgE 

variants (thought to be only found in the environment) have also been isolated from a 

clinical source, a patient suffering from V. vulnificus sepsis (Warner and Oliver, 2008).  

However, there is no suitable replacement for the vcg gene as a V. vulnificus virulence-

correlated marker at present. 

 We also found that V. vulnificus dysregulates the epithelial cell adherent 

monolayer.  Many V. vulnificus infections start in the gastrointestinal tract and then turn 

septic when the bacterium then enters the bloodstream (Scallan et al., 2011).  We propose 

V. vulnificus breaks down the epithelial cell layers, causing the intestinal epithelia to 

slough off and that is how V. vulnificus then invades the bloodstream to become septic.  

Lee et al. (2016) determined that the protease gene vvpE was responsible for disruption of 

tight junctions between epithelial cells.  V. vulnificus mutants with a nonfunctional vvpE 

gene did not dysregulate the tight junctions, wild-type V. vulnificus with a fully 

functional vvpE gene caused dysregulation of the adherent monolayer.  Our data support 

this study; all V. vulnificus strains tested contained the vvpE gene and all V. vulnificus 

strains tested caused dysregulation of the adherent monolayer.  Our V. parahaemolyticus 

strains did not cause dysregulation to the epithelial cell monolayer.  This was expected as 

V. parahaemolyticus infections are overwhelmingly gastrointestinal and no cases of V. 

parahaemolyticus gastroenteritis leading to sepsis have been reported.   

 The results of this study indicate that there is still much to be done in 

characterizing Vibrio virulence and pathogenesis.  There are still no reliable molecular 
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markers of virulence for V. parahaemolyticus or V. vulnificus.  There are still no reliable 

means to predict outbreaks of infections caused by either species as well.  We suggest 

that genome sequencing of many more Vibrio strains and shifting away from the “clinical 

strain bias” in this field may remedy some of these problems
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Table 4.1 Vibrio parahaemolyticus strains used in cytotoxicity assays.  Bold indicates 

strains from a clinical source. T indicates type strain  
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Figure 4.1. Release of lactate dehydrogenase (LDH) from intestinal epithelial cells when 

co-incubated with various Vibrio strains. Black bars represent Vibrio parahaemolyticus 

strains isolated from a clinical source. Dark gray bars represent environmental V. 

parahaemolyticus strains with various combinations of virulence factors. White bars 

represent environmental V. parahaemolyticus strains where no virulence factors were 

detected. The control was epithelial cells co-incubated with the avirulent Vibrio, Vibrio 

pacinii.  
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Figure 4.2. Dose response curve showing the cytotoxic effects of V. parahaemolyticus 

strains when co-incubated with HCT 116 epithelial cells at varying multiplicity of 

infections (MOIs).  The concentration of HCT 116 epithelial cells did not change. 
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Table 4.2. Vibrio vulnificus strains used in cytotoxicity assays.  Bold indicates strains 

from a clinical source. T indicates type strain  
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Figure 4.3. Release of lactate dehydrogenase (LDH) from intestinal epithelial cells when 

co-incubated with various Vibrio strains. Black bars represent Vibrio vulnificus strains 

isolated from a clinical source.  Dark gray bars represent environmental vcgC variant V. 

vulnificus strains.  Light gray bars represent environmental vcgE variant V. vulnificus 

strains. The control was epithelial cells co-incubated with the avirulent Vibrio, Vibrio 

pacinii.   
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Figure 4.4. Dose response curve showing the cytotoxic effects of V. vulnificus strains 

when co-incubated with HCT 116 epithelial cells at varying multiplicity of infections 

(MOIs).  The concentration of HCT 116 epithelial cells did not change.
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Figure 4.5. Percent coverage assay of HCT 116 epithelial cell adherent monolayer co-incubated with V. vulnificus environmental 

strain Aug WR-2 BW 2.  Percent coverage was calculated using Vidana software.  At 2 h the adherent layer was completely 

dysregulated and the epithelial cells were in suspension 
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Table 4.3.  The percentage of dead cells after 2 h coverage assay (Figure 4.5) with Vibrio 

vulnificus.  The negative controls were done using a trypsinization protocol to break up 

the adherent monolayer and get cells in suspension 
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ABSTRACT 

Vibrio parahaemolyticus is a gastrointestinal pathogen that is abundant in coastal 

marine environments.  Elevated numbers of V. parahaemolyticus have been correlated 

with marine microalgae blooms, particularly blooms of diatoms and dinoflagellates, but 

the nature of the relationship between V. parahaemolyticus and microalgae is unknown.  

We performed in vitro assays using 27 environmental V. parahaemolyticus strains and 

various phototrophs; a diatom, a dinoflagellate, unarmored and armored forms of a 

coccolithophore, and two species of cyanobacteria.  The V. parahaemolyticus strains we 

employed contained different combinations of virulence-correlated genes, the hemolysin 

genes tdh and trh, the Type III Secretion System 2 (T3SS2) marker gene vscC2, and the 

Type VI Secretion System (T6SS) marker gene vipA1.  We determined that all V. 

parahaemolyticus strains, even strains in which no virulence factor genes were detected, 

were able to cause decreases in diatom, dinoflagellate, and unarmored coccolithophore 

biomass in vitro.  No correlation between content of any virulence gene and damage to 

microalgae was apparent.  This may explain the recent correlations between V. 

parahaemolyticus and microalgae blooms. 

INTRODUCTION 

 Vibrio parahaemolyticus, a common organism in coastal environments, is a 

significant and sometimes pandemic human pathogen.  This organism and other vibrios 

are responsible for an estimated 80,000 cases of seafood-associated gastroenteritis per 

year in the United States (CDC, 2018).  Most cases of V. parahaemolyticus-induced 

gastroenteritis are self-limiting and relatively mild, but infections can be deadly in 

immunocompromised individuals.  The common mode of transmission of this bacterium 
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to the human host is ingestion of raw or undercooked shellfish, primarily oysters.  

Elevated densities of V. parahaemolyticus most often occur during the warm months and 

at warm locations (DePaola et al., 1990; Gamble and Lovell, 2011) but many recent large 

vibriosis outbreaks have occurred at locations not considered typical for this organism 

(McLaughlin et al., 2005; Paranjype et al., 2012). 

V. parahaemolyticus not only persists, but can increase in population size very 

rapidly in coastal marine environments (Gamble and Lovell, 2011; West, 2012; DePaola 

et al., 2003).  The abundance of V. parahaemolyticus as free-living cells in water is 

typically low (< 2,000 cells per liter) (West, 2012), but this organism can be very 

abundant in surficial sediment and in infaunal burrows (Gamble and Lovell, 2011; West, 

2012; Gartmon et al., in preparation).  V. parahaemolyticus also occurs at higher levels in 

shellfish (DePaola et al., 1990; 2003; Klein and Lovell, 2017), and in association with 

algal blooms (Turner et al., 2009; Rehnstam-Holm et al., 2010; Seong and Jeong, 2011; 

Turner et al., 2014; Main et al., 2015).  Potential for a V. parahaemolyticus outbreak has 

often been predicted on the basis of local temperature, salinity, turbidity, and chlorophyll 

a concentrations (Carburlotto et al., 2010; Johnson et al., 2010).  In addition, some 

correlations between V. parahaemolyticus densities and certain algal taxa, specifically 

diatoms and dinoflagellates (Turner et al., 2009; Eiler et al., 2006; Asplund et al., 2011) 

have been reported and elevated levels of V. parahaemolyticus can occur during 

dinoflagellate and diatom blooms (Rehnstam-Holm et al., 2010; Seong and Jeong, 2011).  

It is not yet known why V. parahaemolyticus co-occurs with marine microalgae in the 

water column or what kind of symbiosis is occuring between V. parahaemolyticus and 

microalgae. 
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We examined the ability of V. parahaemolyticus to decrease phototroph biomass.  

In vivo chlorophyll a served as a measure of phototroph biomass.  Direct microscopic cell 

counts were also performed to confirm in vivo chlorophyll a data.  Six phototrophs, 

including three species of microalgae and two species of cyanobacteria were incubated 

with several strains of V. parahaemolyticus.  The phototrophs employed are abundant in 

marine environments and present a variety of cell wall surface structures and properties, 

providing insight into associations between susceptibility of the microalgae to V. 

parahaemolyticus.     

MATERIALS AND METHODS 

V. parahaemolyticus strain isolation and characterization 

V. parahaemolyticus strains were isolated from the pristine North Inlet estuary 

near Georgetown, SC, USA (33°20’N, 79°12’W) in August and September 2011 as 

described previously (Gutierrez West et al., 2013).  The North Inlet-Winyah Bay 

National Estuarine Research Reserve protects the third largest watershed on the east coast 

of the United States; and North Inlet is a bar built oligotrophic salt marsh where human 

impact is negligible (Dame et al., 2000; Buzzelli et al., 2004).   Samples were diluted and 

plated directly onto Thiosulfate Citrate Bile Salts Sucrose agar (TCBS) (BD, NJ).  The 

presumptive identification of all V. parahaemolyticus strains used in this study was 

confirmed by recA sequence analysis (Gutierrez West et al., 2013) using the PCR primers 

and protocols of Thompson et al. (2005). 

Virulence gene PCR screening 

Two virulence-related hemolysin genes, tdh and trh, have been correlated with 

pathogenesis in V. parahaemolyticus, and these hemolysin genes are frequently used as 



 

86 

molecular markers for strain virulence (Gutierrez West et al., 2013; DePaola and 

Kaysner, 2004).  Additional virulence factors, specifically secretion systems, have been 

discovered with recent sequencing of V. parahaemolyticus genomes (Makino et al., 2003; 

Park et al., 2004; Okada et al., 2009).  The Type III Secretion System (T3SS2) has also 

been implicated in V. parahaemolyticus virulence (Makino et al., 2003) and the outer 

membrane protein gene, vscC2 is a useful marker for this structure (Noriea et al., 2010; 

Klein et al., 2014).   

The Type VI Secretion System (T6SS) has also been detected in some V. 

parahaemolyticus isolates (Salomon et al., 2013).  This secretion system has not been 

implicated in pathogenicity of V. parahaemolyticus to humans, but T6SS producing V. 

parahaemolyticus strains have been shown to cause damage to other prokaryotes in vitro 

when incubated on a surface (Salomon et al., 2013).  Its impacts on eukaryotic 

microalgae are presently unknown. 

 V. parahaemolyticus strains were grown overnight at 37ºC in Saline Luria-Bertani 

Broth  (SLB; per L 27 g NaCl, 10g Tryptone, 5 g Yeast Extract) and boiled extracts (15 

min at 95-100⁰C) were prepared.  All PCR reactions were completed within three days of 

DNA extraction and used 1 μl of boiled DNA extract per reaction.  Strains were screened 

for the T6SS marker gene vipA1 using the PCR primers and protocols of Salomon et al. 

(2013).  PCR products were resolved on a 1.5% agarose gel and sequenced using an ABI 

Prism 3730 DNA analyzer to confirm gene identity.  Sequences were analyzed using the 

Kimura 2 parameter model with Mega version 7 (Tamura et al., 2015).  Sequence data 

obtained from this work were submitted to the NCBI GenBank and assigned the 

accession numbers KX171447- KX171449. 
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Cultivation of microalgae and cyanobacteria  

Phototroph cultures were obtained from the Bigelow National Center for Marine 

Algae and Microbiota (Bigelow Center, East Boothbay, ME).  Two species of 

cyanobacteria were used, Prochlorococcus marinus (CCMP 1986) and Synechococcus 

bacillaris (CCMP 1333).  Three species of eukaryotic microalgae were used in this 

project, the diatom Thallasiosira pseudonana (CCMP 1335), the dinoflagellate 

Prorocentrum minimum (CCMP 695), and two strains of the coccolithophore, Emiliania 

huxleyi (CCMP 371 and CCMP 373).  T. pseudonana and P. minimum are common in 

North Inlet and E. huxleyi CCMP 371 is a coccolith-producing (armored) form that 

causes extensive blooms.  E. huxleyi CCMP 373 is an unarmored mutant phenotype.  The 

phototrophs chosen had a variety of cell wall surface structures (Paasche, 2001; Armbrust 

et al., 2004; Heil et al., 2005; Javaheri et al., 2015) and each required its own growth 

medium (Appendix A). Microalgae and cyanobacteria were grown at 23°C with an 11 h 

light, 13 h dark cycle. 

In vitro experiments 

V. parahaemolyticus strains were grown in SLB at 37°C with shaking.  At 5 h, 

cultures were in exponential growth phase and yielded approximately 2 x 107 cells mL-1.  

Cultures were centrifuged (600 x g), the supernatants discarded, and cell pellets 

resuspended in 33 ppt phosphate buffered saline (PBS) (400 mM NaCl, 1.75 mM NaPO4, 

pH 7.4).  Phototroph cultures were grown for 5-10 days, reaching approximately 2.0 x 

105 cells mL-1, then harvested by centrifugation (1075 x g) for 10 min, and the 

supernatants removed.  Cells were resuspended in PBS.  Bacterial strains and phototroph 

cultures were combined in 96 well microplates with a multiplicity of infection (MOI) of 
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approximately 100:1.  In vivo chlorophyll a fluorescence was used as an indicator of 

phototroph condition, and was measured immediately after co-inoculation (Tinitial) using a 

SpectraMax Gemini EM microplate reader (Molecular Devices, Sunnyvale, CA).  

Microplates were then incubated with light for 24 h at 25°C.  After incubation, 

chlorophyll a fluorescence was measured (Tfinal).  The percent difference between final 

and initial time points was determined by the formula: ((Tfinal – Tinitial) / Tinitial)) x 100.  

After incubation, aliquots were observed under a Nikon Eclipse TS100 microscope to 

determine the effect of V. parahaemolyticus strains on microalgae.  Microalgal cell 

counts were performed using a hemocytometer after the 24 h co-incubation. 

Each V. parahaemolyticus strain was tested in 12 wells per 96 well plate.  For true 

replication, each 96 well plate was repeated three times.  Controls included replicates of 

phototrophs in appropriate media and replicates of phototrophs in PBS (with no V. 

parahaemolyticus added), against which experimental replicates were compared.  Vibrio 

pacinii, an avirulent Vibrio (Gomez-Gil et al., 2003), was used as a non-V. 

parahaemolyticus, heterotrophic bacterial control.  Changes in in vivo chlorophyll a 

fluorescence were compared to the control using One Way ANOVA.  Multiple 

comparisons were made versus the control group using the Holm-Sidak method 

(SigmaPlot, 2016).  The significance level used was 0.05.   

All 29 V. parahaemolyticus strains were tested against the eukaryotic algae.  A 

subset of these strains, some having the antibacterial mechanism T6SS (vipA1-positive) 

and some lacking it, was also tested against the cyanobacteria.  We also used the T6SS-

bearing POR1 strain, a derivative of the V. parahaemolyticus RIMD 2210633 reference 
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strain, and two POR1 derivatives.  The POR1 derivatives were the T6SS-knockout strain, 

POR1∆hcp1, and the T6SS de-repressed strain, POR1∆hns.   

Dose response 

 To determine the effect of V. parahaemolyticus dosage on the in vitro 

experiments, bacterial cultures were serially diluted (107 to 102) in PBS.  These dilutions 

were incubated with unarmored E. huxleyi, the concentration of which was not altered. 

RESULTS 

Eukaryotic microalgae in vitro experiments 

 Twenty-nine V. parahaemolyticus strains, 27 of which were environmental strains 

isolated from North Inlet estuary, were incubated with microalgae.  These environmental 

strains were previously confirmed to be V. parahaemolyticus via recA sequence analysis 

(Gutierrez West et al., 2013; Thompson et al., 2005).  The two non-environmental strains 

were clinical isolates, the trh-bearing V. parahaemolyticus type strain ATCC 17802T and 

the tdh-bearing reference strain ATCC 33846.  Nineteen of the V. parahaemolyticus 

strains contained varying combinations of the virulence-related genes tdh, trh, vscC2, and 

vipA1; no virulence factor genes were detected in ten of our strains (Table 5.1). 

 Chlorophyll a is a strong indicator of phototroph health and biomass and was used 

to quantitatively measure the condition of each alga when exposed to V. 

parahaemolyticus.  The unarmored coccolithophore E. huxleyi was most susceptible to V. 

parahaemolyticus, with chlorophyll a decreasing by 71.5-96.3% (Figure 5.1A) after 

incubation.  Variability among replicates was extremely low.  No correlations could be 

made between content of virulence gene(s) and unarmored E. huxleyi biomass loss.  

Instead, consistently strong decreases in chlorophyll a fluorescence were observed in the 
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presence of all V. parahaemolyticus strains (One Way ANOVA, all p values <0.001). The 

avirulent Vibrio control, V. pacinii, did not cause any decreases in chlorophyll a in 

unarmored E. huxleyi or any other microalga.  

 All V. parahaemolyticus strains tested caused a significant loss in the diatom T. 

pseudonana and the dinoflagellate P. minimum biomass (Figure 5.1 B and C).  The 

decreases in chlorophyll a from these species were not as extreme as those of unarmored 

E. huxleyi, amounting to 15-50% (T. pseudonana: 15.3 to 48.0%; P. minimum 14.7 to 

53.3%).  Compared to controls, all V. parahaemolyticus strains tested caused significant 

chlorophyll a decreases in both algae (One Way ANOVA, all p values <0.001), 

regardless of virulence gene content.   

The armored E. huxleyi showed highest variability when incubated with V. 

parahaemolyticus (Figure 5.2).  Three different results were observed when the armored 

E. huxleyi was exposed to V. parahaemolyticus strains. (a) Some strains had no effect (13 

strains, One Way ANOVA, p values 0.09-0.88, no growth stimulation).  (b) Some 

produced significant inhibition of armored E. huxleyi growth (8 strains, One Way 

ANOVA, p values <0.001 to 0.009).  When exposed to these strains, the armored E. 

huxleyi grew (i.e.: the chlorophyll a fluorescence (biomass) increased) but this growth 

was significantly less than the control with no V. parahaemolyticus. (c) Significant losses 

in E. huxleyi biomass, as seen by decreases in chlorophyll a fluorescence (8 strains, One 

Way ANOVA, all p values <0.001).  Once again, we found no correlation between 

content of virulence factor gene(s) and decreases in chlorophyll a fluorescence.  For 

example, strain TBS 8-11-3 caused significant armored E. huxleyi biomass loss, yet no 

virulence factor genes were detected in this strain. 
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Direct microscopic cell counts on all microalgae were also performed to confirm 

in vivo chlorophyll a data (Figure 5.3).  As expected, chlorophyll a decreases were 

accompanied by strong decreases in microscopically visible cells.  In vivo chlorophyll a 

fluorescence provides a rapid, strong indirect measure of phototrophic biomass when 

working with relatively concentrated cultures (Butterwick et al., 1982; Kalaji et al., 

2014). 

Dose response 

 We conducted dose response experiments (Figure 5.4) challenging unarmored E. 

huxleyi with three of our environmental V. parahaemolyticus strains at levels of 107 to 

102 cells mL-1.  We found that even at low V. parahaemolyticus concentrations, this 

pathogen was able to reduce the biomass of unarmored E. huxleyi.  As expected, the 

degree chlorophyll a loss decreased with reduced V. parahaemolyticus concentrations.  

For example, V. parahaemolyticus strain TBW 9-11-1 caused an 83.1% decrease in 

unarmored E. huxleyi chlorophyll a fluorescence at 107 cells mL-1, while at 102 cells mL-1 

a 55.2% decrease in chlorophyll a fluorescence was observed.   

vipA1 in environmental V. parahaemolyticus strains 

 Six of our 27 (22%) environmental V. parahaemolyticus strains carried the T6SS 

marker gene vipA1.  vipA1 was also detected in the clinical reference strains ATCC 

17802T and ATCC 33846.  The T6SS is only expressed when V. parahaemolyticus is also 

expressing lateral flagella on a surface (Salomon et al., 2013); however we did not find 

the T6SS marker gene vipA1 exclusively in strains isolated from surfaces.  Three 

environmental strains that contained vipA1 were isolated from sediment (JS 8-11-5, JS 8-
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11-6, 5-10-J5-4); the other three were isolated from water (JPW 8-11-1, JPW 8-11-9, 

JBW 9-11-5).  Sequence data recovered from these amplicons confirmed amplification of 

the vipA1 gene. 

Cyanobacteria in vitro experiments 

Cyanobacteria were exposed to a subset of our environmental V. 

parahaemolyticus strains; some that contained the antibacterial mechanism T6SS and 

some that did not.  We found that regardless of content of vipA1, all of the V. 

parahaemolyticus strains tested stimulated cyanobacterial growth (Figure 5.5).  No 

decrease of biomass was observed in either species of cyanobacteria, rather there was a 

significant increase in chlorophyll a fluorescence during co-incubation with V. 

parahaemolyticus (One Way ANOVA, all p values <0.001).  There was no significant 

difference in cyanobacterial stimulation between strains that contained T6SS and strains 

that did not (Student’s t-test, p values 0.214 and 0.252).  The de-repressed strain 

POR1∆hns, which constitutively expresses T6SS, also caused cyanobacterial stimulation.  

The cyanobacteria were the only phototrophs that were consistently stimulated by the 

presence of V. parahaemolyticus. 

DISCUSSION 

V. parahaemolyticus is able to cause varying degrees of marine microalgae 

biomass loss in vitro.  The unarmored E. huxleyi, which was the most susceptible to V. 

parahaemolyticus, is rarely observed in the environment, yet grows well under laboratory 

conditions.  It has been hypothesized that unarmored E. huxleyi rarely survives in the 

environment due high susceptibility to predation (Paasche, 2001).  Our data support this, 
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as our environmental V. parahaemolyticus strains caused the greatest loss in unarmored 

E. huxleyi biomass.  As microscopic observations demonstrate, intact unarmored E. 

huxleyi cells were not readily observed after incubations with V. parahaemolyticus.  

Conversely, the armored version of E. huxleyi was not very susceptible to V. 

parahaemolyticus; only eight of our V. parahaemolyticus strains reduced armored E. 

huxleyi biomass.  We hypothesized that cell wall surface structures and properties may 

play a role in susceptibility of microalgae to V. parahaemolyticus.  Our data confirm this; 

the unarmored E. huxleyi was consistently and severely susceptible to all V. 

parahaemolyticus strains, while only a few strains had a negative effect on the armored 

version.  The CaCO3 coccoliths must protect the armored E. huxleyi cell and make this 

phenotype of E. huxleyi less susceptible to V. parahaemolyticus. 

The dinoflagellate and diatom were also susceptible to V. parahaemolyticus.  The 

intensity of biomass loss caused by V. parahaemolyticus was similar for both of these 

algae, which have rigid cell wall structures.  Cellulose thecal plates protect P. minimum 

and a silica frustule covers T. pseudonana (Heil et al., 2005; Javaheri et al., 2015).  

Although these microalgae are covered by cell walls composed of differing materials, 

they were similarly susceptible to V. parahaemolyticus.  Correlations between elevated V. 

parahaemolyticus densities and dinoflagellate and diatom blooms have been reported 

(Turner et al., 2009; Eiler et al., 2006; Asplund et al., 2011).  Release of DOC from 

microalgae due to excretion may contribute to the association between V. 

parahaemolyticus and algal blooms, but direct predation on algae by V. parahaemolyticus 

presents an interesting additional aspect to this association.  
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We found no correlation between content of tdh, trh, or vscC2 and microalgae 

biomass loss.  The hemolysin genes tdh and trh have long been used as molecular 

markers of V. parahaemolyticus virulence.  However, our results are consistent with 

recent reports (Park et al., 2004; Lynch et al., 2005; Jones et al., 2012) that destruction of 

eukaryotic cells does not exclusively rely on these hemolysin genes.  Content of the T3SS 

marker gene vscC2 was also not correlated with algal loss.  Ten of the V. 

parahaemolyticus strains used contained no virulence factors, yet were able to cause 

decreases in algae chlorophyll a fluorescence.  Our data suggest that another 

mechanism(s) by which V. parahaemolyticus damages these eukaryotes must exist.  

Further studies on the mechanism V. parahaemolyticus uses to cause damage to marine 

microalgae are needed. 

Cyanobacteria were tested against a subset of our V. parahaemolyticus strains, 

some that contained the antibacterial mechanism T6SS, and some that did not.  In 

addition, we used a T6SS knockout mutant and a T6SS de-repressed strain.  All strains of 

V. parahaemolyticus caused cyanobacterial growth stimulation.  We found no evidence 

that V. parahaemolyticus can decrease cyanobacteria biomass.  It has been observed that 

cyanobacteria grow better in non-axenic laboratory cultures and our finding of 

cyanobacterial stimulation when incubated with V. parahaemolyticus is consistent with 

this observation.  Perhaps V. parahaemolyticus and other heterotrophic bacteria consume 

or neutralize some inhibitory byproducts of cyanobacterial growth.  In vitro, the presence 

of V. parahaemolyticus results in cyanobacterial stimulation and microalgae biomass 

loss.  In the environment, V. parahaemolyticus may affect phototrophic population 

dynamics.  Further experimentation is needed to determine if V. parahaemolyticus can 
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induce changes in marine phototroph populations, perhaps by selective predation upon 

phototrophs having more susceptible cell wall structures.  

All of the in vitro experiments performed used a high dose of V. 

parahaemolyticus to assure observation of damage if such occurred.  We also determined 

what would happen when the unarmored E. huxleyi was incubated with varying 

concentrations of V. parahaemolyticus, including concentrations that more accurately 

mimic V. parahaemolyticus densities observed in the environment.  As shown by our 

dose response curves, the unarmored E. huxleyi was susceptible to V. parahaemolyticus 

at low concentrations.  These low concentrations (103 or 102 cells mL-1) are similar to V. 

parahaemolyticus concentrations found in surficial sediment and shellfish (DePaola et al., 

2003; Gamble and Lovell, 2011; West, 2012; Klein and Lovell, 2017).  V. 

parahaemolyticus at low, “environmental” doses can still damage unarmored E. huxleyi, 

meaning that this interaction is certainly possible in particular environments. 

In salt marshes along the US east coast, there are high concentrations of marine 

microalgae and other phototrophs in surficial sediment.  In North Inlet estuary, where our 

V. parahaemolyticus strains were isolated, chlorophyll a readings in the sediment can 

reach as high as 101.5 mg chlorophyll a m-2 (Pinckney and Zingmark, 1993; Pinckney et 

al., 1994).  V. parahaemolyticus concentrations in surficial sediment, particularly around 

fiddler crab burrows, can reach levels as high as 105 cells mL-1 (Gamble and Lovell, 

2011; West, 2012; Gartmon et al., in preparation).  Clearly, phototrophs and V. 

parahaemolyticus occur, and even bloom, in the same environments.  We propose that it 

is no coincidence V. parahaemolyticus populations co-occur with marine microalgae as 
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marine microalgae provide a nutrient-rich resource that V. parahaemolyticus can utilize 

in these environments.  
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Table 5.1 Distribution of virulence-related genes in Vibrio parahaemolyticus strains used 

in algal co-incubations 
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Figure 5.1. A-C. Changes in algal chlorophyll a fluorescence during 24 h incubation with 

Vibrio parahaemolyticus strains. Dark bars indicate V. parahaemolyticus strains 

containing at least one virulence factor gene, white bars indicate strains that had no 

virulence factor gene, and the light gray bars are the algal and Vibrio pacinii controls. 

Algae include (A) the unarmored coccolithophore Emiliania huxleyi, (B) the diatom 

Thalassiosira pseudonana, and (C) the dinoflagellate Prorocentrum minimum
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Figure 5.2.  Changes in the armored coccolithophore E. huxleyi chlorophyll a 

fluorescence during 24 h incubation with Vibrio parahaemolyticus strains. Dark bars 

indicate V. parahaemolyticus strains containing at least one virulence factor gene, white 

bars indicate strains that had no virulence factor gene, and the light gray bars are the algal 

and Vibrio pacinii controls.  During incubation with the armored E. huxleyi, V. 

parahaemolyticus strains either (a) had no effect on E. huxleyi, (b) significantly inhibited 

E. huxleyi growth or (c) significantly damaged E. huxleyi. 
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Figure 5.3.  A-D. Microalgal cell densities after a 24 h incubation with Vibrio parahaemolyticus strains.  Algae include (A) the 

unarmored coccolithophore Emiliania huxleyi, (B) the armored coccolithophore Emiliania huxleyi (C) the diatom Thalassiosira 

pseudonana, and (D) the dinoflagellate Prorocentrum minimum
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Figure 5.4. Dose response curve of unarmored coccolithophore Emiliania huxleyi 

chlorophyll a fluorescence during 24 h incubation with Vibrio parahaemolyticus strains 

at varying concentrations. 
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Figure 5.5. Changes in cyanobacterial chlorophyll a fluorescence during 24 h incubation 

with Vibrio parahaemolyticus strains.  White bars indicate the cyanobacteria 

Prochlorococcus marinus was used and dark bars indicate the cyanobacteria 

Synechococcus bacillaris was used.  A different subset of V. parahaemolyticus strains 

were used, some containing the antibacterial Type 6 Secretion System (T6SS) mechanism 

and some that did not.  T6SS is de-repressed in POR1∆hns.
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CONCLUDING REMARKS 

Further studies are needed to accurately predict outbreaks of V. parahaemolyticus 

and to determine the virulence mechanism(s) of this organism.  The interaction of V. 

parahaemolyticus with marine microalgae and detection of “hot” oysters provide some 

insight into where elevated numbers (blooms) of V. parahaemolyticus occur in estuarine 

environments.  However, more work needs to be done into the mechanism of these 

interactions.  It is still not known how a seemingly healthy oyster harbors significantly 

more V. parahaemolyticus than surrounding oysters exposed to the same environmental 

parameters.  Determining what causes the anomalous “hot” oyster may offer a solution to 

avoid harvesting and serving these contaminated oysters to unsuspecting customers.  

However, since “hot” oysters occur so infrequently (1%), V. parahaemolyticus 

gastroenteritis remains a sporadic illness that is somewhat difficult to predict. 

 

“A clear-cut, easily defined mechanism of V. parahaemolyticus pathogenesis has 

not emerged despite decades of intensive study (Lovell, 2017).” 

 

Unlike Vibrio cholerae, which has two highly studied and well-defined virulence 

factors (CTX and TCP), the virulence mechanism of V. parahaemolyticus appears to be 

less obvious.  The results of the cytotoxicity work indicate that tdh, trh, and T3SS2 are 

not the only virulence factors responsible for V. parahaemolyticus pathogenesis.  Perhaps 
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the correct V. parahaemolyticus virulence mechanism(s) have not yet been identified.  

We suggest that more V. parahaemolyticus genomes need to be sequenced to determine if 

there are previously unrecognized virulence factors within the genome.  One of the most 

interesting results of the PAI work is that >70% of a PAI can be compromised of 

undefined genes that encode hypothetical proteins.  Perhaps one of these undefined genes 

encodes the true V. parahaemolyticus virulence mechanism.  Or perhaps V. 

parahaemolyticus pathogenesis is more complicated that just having one or two virulence 

factor genes.  Perhaps it is a complicated multistep infection model that utilizes numerous 

virulence factors working in synergy.  With more high-quality genomic sequencing, our 

understanding of V. parahaemolyticus virulence will only grow.
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Surface structure of microalgae and cyanobacteria 

Two species of cyanobacteria were used in this study, Prochlorococcus marinus 

(CCMP 1986) and Synechococcus bacillaris (CCMP 1333).  As is typical of gram 

negative prokaryotes, P. marinus and S. bacillaris have cell walls composed of 

peptidoglycan surrounded by an outer membrane and a glycocalyx of polysaccharides 

and polypeptides.  Three species of eukaryotic microalgae were used, the diatom 

Thallasiosira pseudonana (CCMP 1335), the dinoflagellate Prorocentrum minimum 

(CCMP 695), and two strains of the coccolithophore, Emiliania huxleyi (CCMP 371 and 

CCMP 373).  E. huxleyi CCMP 371 is a coccolith-producing (armored) form that often 

causes extensive blooms.  E. huxleyi CCMP 373 is an unarmored mutant phenotype.   

The bloom producing armored form can have as many as thirty CaCO3 coccoliths 

forming multiple layers to protect the cell interior.  The unarmored E. huxleyi lacks 

coccoliths and these strains are rarely isolated from the environment.  Unarmored cells 

are thought to arise from armored cells via mutation; reversion back to the coccolith-

forming morphology has not been reported (Paasche, 2001). 

The centric diatom T. pseudonana is a model organism and was the first diatom 

chosen for genome sequencing (Armbrust et al., 2004).  As is the case for all diatoms, the 

cell wall, or frustule of T. pseudonana, is composed of amorphous hydrated silica in a 

species-specific three-dimensional structure (Javaheri et al., 2005).  The “petri dish” 

shape of centric diatoms is due to two unequal silicate halves (valves) that are connected 

by a series of girdles.  Additionally, to prevent silica dissolution, the frustule is covered 

by an organic casing made up of glycoproteins (Javaheri et al., 2005).  The dinoflagellate 
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P. minimum is associated with harmful algal blooms (HABs) (Heil et al., 2005).  P. 

minimum cells are protected by overlapping thecal plates composed of cellulose. 

Cultivation of microalgae and cyanobacteria  

Phototroph cultures were obtained from the Bigelow National Center for Marine 

Algae and Microbiota (Bigelow Center, East Boothbay, Maine).  Each algal species 

required its own growth medium.  Unarmored E. huxleyi, the dinoflagellate P. minimum 

and the cyanobacteria S. bacillaris was grown in F/2-Si (8.82 x 10-4 M NaNO3, 3.62 x 10-

5 M NaH2PO4∙H2O) supplemented F/2 trace metals (1.17 x 10-5 M Na2EDTA∙2H2O, 1.17 

x 10-5 M FeCl3∙6H2O, 7.65 x 10-8 M ZnSO4∙7H2O, 4.2 x 10-8 M CoCl2∙6H2O, 9.1 x 10-7 M 

MnCl2∙4H2O, 2.6 x 10-8 M Na2MoO4∙2H2O, 3.93 x 10-8 M CuSO4∙5H2O) and with F/2 

vitamins (2.96 x 10-7 M thiamine∙HCl, 2.05 x 10-9 M biotin, 3.69 x 10-10 M 

cyanocobalamin).  Armored E. huxleyi was grown in F/50, which is a 1/25 dilution of 

F/2-Si.  T. pseudonana was grown in F/2+Si (add 1.06 x 10-4 M Na2SiO3∙9H2O to F/2-Si 

recipe).  The cyanobacterium P. marinus was grown in Pro99 medium (5 x 10-5 M 

NaH2PO4∙H2O, 8 x 10-4 M NH4Cl) supplemented with pro99 trace metals (1.17 x 10-6 M 

Na2EDTA∙2H2O, 1.17 x 10-6 M FeCl3∙6H2O, 8 x 10-9 M ZnSO4∙7H2O, 5 x 10-9 M 

CoCl2∙6H2O, 9 x 10-8 M MnCl2∙4H2O, 3 x 10-9 M Na2MoO4∙2H2O, 1 x 10-8 M Na2SeO3, 1 

x 10-8 M NiSO4∙6H2O).  All media recipes can be found on the Bigelow Center website 

(https://ncma.bigelow.org/algal-recipes).  Microalgae and cyanobacteria were grown at 

23°C with an 11 h light, 13 h dark cycle. 
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