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ABSTRACT 

 

 Police officers are a unique occupational group due to the fact that they 

have more health problems than many other occupations. These health problems 

could be a result of elevated inflammation markers caused by poor sleep. Sleep 

influences circadian rhythms, which thereby influences the function of the immune 

system. The immune system is responsible for the body’s inflammatory response 

using pro-inflammatory cytokines such as IL-6, CRP, Fibrinogen, and TNF-a. These 

cytokines can become elevated if disruption of the sleep cycle occurs. Elevated 

levels of inflammatory markers are associated with increased risk of cardiovascular 

disease. Police officers also work shifts and have a large amount of occupational 

stress that may contribute to increased levels of pro-inflammatory markers as well. 

This analysis aimed to examine the influence that objective and subjective 

measures of sleep have on inflammatory markers among police officers within the 

Buffalo Cardio-Metabolic Occupational Police Stress (BCOPS) cohort cross-

sectionally. Body mass index (BMI), shift work, and stress measures were 

examined as potential effect modifiers. Subjective measures of sleep were 

obtained by the Pittsburgh Sleep Quality Index (PSQI) and objective measures of 

sleep were obtained through actigraph data. Police officers wore an Actiwatch for 

15 consecutive days, where data was made into different sleep parameters. 
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Sleep latency, quality, duration, efficiency and daytime dysfunction were 

used from the PSQI, and wake after sleep onset, sleep onset latency, sleep 

duration, and efficiency were used from the actigraph measures. The inflammation 

markers were collected from blood samples after a 12 hour fast. Each inflammatory 

marker was measured using different assays at the University of Vermont.  

General linear models were used to compare adjusted means of categorical 

sleep measures and beta coefficients for continuous sleep measures for each 

inflammation marker. Analyses were stratified by normal (18.5-24.9 BMI), 

overweight (25-29.9 BMI), and obese (≥30 BMI), and then by day and 

evening/night shiftwork. Logistic regression was performed on a dichotomous 

version of CRP, using a clinial cut point, and odds ratios were obtained for high-

risk CRP. Statistically significant associations were seen between various sleep 

measures and inflammation markers. It is seen that as sleep worsens, there is an 

elevation in pro-inflammatory markers.  
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CHAPTER 1 

Introduction 

In the health conscious world we live in today, tracking sleep has become 

a new trend among the public (1). Although still largely unstudied, there has been 

increased interest in the role sleep plays in health. Underlying this are the circadian 

rhythms that control sleep and other bodily systems (2). When sleep is disrupted, 

circadian rhythms become misaligned, which in turn affects the other circadian or 

clock-controlled bodily functions. One large system controlled by circadian rhythms 

is the immune system (3).  

The immune system controls the pro- and anti-inflammatory cytokines 

found in the blood. The proliferation of these cytokines occurs under a circadian 

rhythm; during the light phase anti-inflammatory cytokines are released and 

during the dark phase pro-inflammatory cytokines are released (4, 5). If circadian 

misalignment occurs, the balance of the cytokine release becomes uneven, and a 

higher rate of pro-inflammatory cytokine production happens (6). Pro-

inflammatory cytokines also are released during an infection; this is referred to as 

acute inflammation. In acute inflammation, once the injury is healed, the pro-

inflammatory cytokines are broken down. However, if interleukin-6 (IL-6) remains 

persistent after the injury is healed, it will trigger an immune response to release 
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more pro-inflammatory cytokines, creating chronic inflammation (7-10). A 

common form of chronic inflammation is obesity. Obesity is a low-grade chronic 

inflammatory state caused by the release of pro-inflammatory cytokines from 

adipose tissue due to overflow (11).  

Occupational stress also can play a role in the quality and quantity of sleep 

a person receives. Of all occupational stressors, the ones that police officers 

experience are the most detrimental (12). They are subject to environmental 

stimuli that can cause stress like shootings and violence, as well as shift work (13, 

14). Shiftwork can cause circadian misalignment because shift workers tend to 

work during the dark phase and sleep during the light phase (15). When coupling 

stress and shiftwork, police officers are at a higher risk of developing disease, and 

more specifically, chronic diseases (16, 17). 

Although there has been research on the effect of sleep on inflammation 

markers, most previous studies have measured sleep subjectively or performed an 

experiment on non-habitual sleep (4, 18-25). Most of the observational studies 

that have measured sleep subjectively show no association between poor sleep 

and an increase in inflammation markers (19-22). Experimental studies, using 

objective measures of sleep, however, do find associations indicating a difference 

between subjective and objective measures of sleep (4, 22-25). This study 

attempts to bridge this gap by using an objective measure of sleep, actigraphy, 

proven to be similar to the polysomnography (PSG) measure of sleep used in 

experimental studies (26). This study is performed within the Buffalo Cardio-
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Metabolic Occupational Police Stress (BCOPS) study, and involves collection of 

blood samples, objective and subjective measures of sleep, past records of 

shiftwork, a range of psychosocial metrics, and occupational stress measures. This 

will allow for a more objectively-measured investigation of the relationship 

between sleep and inflammation markers.  

The specific aims of this study are to: 

1. Determine if sleep affects levels of inflammatory markers c-reactive 

protein (CRP), interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-

α), and fibrinogen by addressing the following hypotheses:  

a. A poorer sleep profile (shorter sleep duration, lower sleep 

efficiency, longer sleep latency, and higher wake after sleep onset 

[WASO]) is associated with higher levels of inflammation markers 

b. Those with scores indicating poorer sleep on the Pittsburgh Sleep 

Quality Index will have higher levels of inflammation 

2. There will be a difference in the relationship between sleep and 

inflammation by BMI levels after: 

a. Stratification by body mass index (BMI) 

b. Stratification by shiftwork 

c. Stratification by stress 
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CHAPTER 2 

Background 

2.1 Sleep 

Sleep is an essential part of everyone’s lives, but the concept of sleep and 

what is does for the body is sometimes not understood (27). Sleep deprivation or 

poor sleep is now becoming a larger issue because we are beginning to understand 

some of the mechanisms that sleep controls (28).  Studies have shown that it is 

not only the amount of sleep we get, but the quality that puts people at higher 

risk for disease (27, 29, 30).  

Sleep is separated into two stages: non-rapid-eye-movement-sleep 

(NREMS) and rapid-eye-movement sleep (REMS)(2, 31-33). The first stage of sleep 

is further separated into 4 sections, all having distinct functions. Stage 1 is believed 

to be the transition between wakefulness and sleep and is referred to as light 

sleep. Stage 2 shows an increase in higher-frequency brain waves and is where 

greater depth of sleep begins. Stages 3 and 4 are characterized by slow-wave 

sleep and then followed by REMS (31). In humans, sleep is typically a 90-minute 

cycle of NREMS to REMS, which can repeat 5-6 times a night (34). The length of 

each cycle, however, can vary drastically depending on the type of sleep a person 

is getting. 
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Good sleep can be defined as optimal length of each sleep stage with proper 

distribution of sleep stages and low arousal from sleep. Good sleep is comprised 

of approximately 80% NREMS (31). A person receiving good sleep should 

experience no fatigue upon full wakefulness. Sleep also plays a role in memory 

consolidation, the transition of newly learned tasks or materials into memories 

(35). Poor sleep is characterized as deviant sleep patterns in either quantity and/or 

quality. With deviant sleep patterns comes an increased risk of physical and 

psychological problems (19, 36-39). A few of these problems include risk of 

diabetes (36), hypertension (37), coronary heart disease (38), occupational 

functioning, mood disturbance (39), depression, and anxiety (19).  

The regulation of sleep, however, is dependent upon a homeostatic need 

and circadian rhythms (2).  The circadian rhythm is controlled by a natural clock 

within the suprachiasmatic nucleus (SCN) of the brain that runs on a 24-hour cycle 

that tends to follow the 24-hour light-dark cycle of the environment, but can be 

active even in the absence of light-cues.  Circadian clock mechanisms are present 

in many cell types and organs. Cells related to the immune system are an example 

of these types of cells (40, 41). Within the central clock located in the SCN are 

three proteins that have a large impact on the immune function. These proteins 

are circadian locomotor output cycles kaput (CLOCK), brain and muscle aryl 

hydrocarbon receptor nuclear translocator-like 1 (BMAL1), three period regulators 

(PER1, PER2, PER3), and reverse-Erb alpha (REV-ERBα) (3, 42-45). It has been 

shown that BMAL1 acts as a link between the immune system and the central clock 
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in limiting inflammation(3). PER 3 can have varying lengths that have an effect on 

morning preference, cognitive performance, and circulating concentrations on IL-

6 (44). 

2.2 Inflammation 

The immune system can be monitored by measuring the production of 

inflammation biomarkers through measurements of blood cytokines. Cytokines can 

be categorized as pro-inflammatory (type 1) and anti-inflammatory (type 2) (5, 

46, 47). Maximum production of pro-inflammatory cytokines, including type-1, IL-

2, IL-6, IL-12, TNF-α, and interferon (IFN)-gamma, occurs during the dark phase 

or nocturnal sleep. The production of IL-12 and TNF-α are completely dependent 

on sleep, whereas production of anti-inflammatory cytokines are dependent on 

wakefulness (48-51). However, a study on sleep deprivation showed a shift from 

type 1-type 2 cytokine balance to type 1 cytokine production, indicating an 

elevation of pro-inflammatory cytokines (4, 6).  

Inflammation can be beneficial; in its acute phase, it aids in fighting 

infections. However, chronic inflammation leads to tissue damage and disease. 

Acute inflammation is defined by the recruitment of neutrophils and then 

monocytic cells to damaged tissue by the immune response. Chronic inflammation 

is associated with a large presence of macrophages and lymphocytes (7-10). The 

switch from acute to chronic inflammation can be linked through IL-6. IL-6 acts as 

a mediator during acute inflammation, but when IL-6 remains after the infection 

is controlled due to immune stressors, chronic infection occurs (52). If IL-6 persists 
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another immune response is activated, causing mononuclear cell accumulation and 

chronic inflammation proliferation (53). This then creates a cycle of chronic 

inflammation because of the increase in IL-6 re-triggering the immune response.  

2.3 Inflammation and Sleep 

The association between sleep and inflammation has been studied, but 

previous results are conflicting and founded on subjective measures of sleep, 

creating the potential for information bias. In an experimental study assessing 

sleep deprivation and activation of morning levels inflammation markers, 30 

healthy adults spent 4 days in the National Institute of Health General Clinical 

Research Center. The first 3 days they were permitted to sleep between 11 pm 

and 7 am, for baseline information, and on the 4th day sleep was permitted from 

3 am to 7 am, for the sleep deprivation information. Blood samples were taken on 

each day at 8am, 12pm, 4pm, 8pm, and 11pm. The study results showed that 

after partial sleep deprivation, IL-6 and TNF-α showed a significant increase (t107= 

-2.3, P<.05) compared to the baseline sleep duration in the morning. The cytokine 

levels approached baseline ranges as the day progressed (22).  

Vgontzas et al. and Meier-Ewert et al. showed the same inverse association 

with IL-6 and CRP, respectively, in an experimental study design (23, 24). In 

another experimental study by Vgontzas et al., the effect of modest sleep 

deprivation (a loss of 2 hours compared to the normal 8 hours) on levels of 

inflammatory markers was assessed. Once again, this study showed that on the 

days of sleep deprivation, the levels of IL-6 and TNF-α were significantly higher 
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than when individuals received all 8 hours of sleep (4). Another laboratory study 

assigned participants to 12 days of sleeping 8 hours a night or 4 hours a night to 

compare the effect of sleep restriction on inflammatory markers (54). Haack et. 

al. found elevated levels of IL-6 in people sleeping 4 hours a night compared to 8 

hours a night (p<0.05) but no significant increase in CRP (54).   

Patel et al. used individuals from the Cleveland Family Study to look at the 

association between sleep duration and biomarkers of inflammation. The sleep 

measure was based on self-reported habitual sleep time and a separate PSG study. 

For the observational and the experimental study, the inflammatory markers CRP, 

IL-6, TNF-α, IL-1, and IL-10 were collected between 7 am and 8 am after the PSG 

and an overnight fast. The experimental section of this study used an overnight 

PSG to measure sleep duration. The observational study found a positive linear 

relationship between sleep duration and CRP and IL-6. Conversely, the 

experimental study found an inverse association between sleep duration and TNF-

α (25). The different findings suggest that the self-reported sleep data is modeling 

a different relationship than the PSG.  

The findings from the NSDA study, however, contradict the laboratory 

performed studies showing the difference between experimental and real-world 

associations (19). A study on sleep duration, insomnia and markers of systemic 

inflammation was conducted within the Netherlands Study of Depression and 

Anxiety (NSDA). Sleep was measured through a questionnaire completed after an 

interview or at home. Inflammation markers CRP, IL-6, and TNF-α were collected 
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at baseline from fasting blood samples collected between 8am-9am (19). They 

found that longer sleep durations were associated with significantly higher levels 

of CRP (p-value=0.005) and IL-6 (p-value<0.001) compared to short sleep 

duration and when comparing normal sleep to short sleep duration levels of CRP 

(p-value=0.575) and IL-6 (p-value=0.916). This study failed to see a significant 

association between short sleep duration and inflammatory markers (19). These 

results also were found in a study of sleep duration and quality among a Taiwanese 

population and a cross-sectional study performed within the 2007-2008 cycle of 

NHANES (20, 21). 

There also are observational studies that have examined at the association 

between poor sleep quality and inflammation markers. In the Heart and Soul 

Study, a prospective cohort of men and women with established coronary heart 

disease, a cross-sectional analysis was done on self-reported sleep quality and 

biomarkers of systematic inflammation (18).  The self-reported sleep measure was 

from the Pittsburgh Sleep Quality Index (PSQI), and asked participants at baseline 

and 5 years later, “During the past month, how would you rate your sleep?” 

Secondary sleep variables also were included. Inflammation markers were 

collected at baseline and at the 5-year follow up after a 12-hour fast. The 

inflammation markers collected were CRP, IL-6, and fibrinogen. After analysis 

there was no evidence that self-reported sleep quality was associated with cross-

sectional or 5-year difference in levels of IL-6, CRP, and fibrinogen. Prather et al. 

did find that women reporting poorer sleep quality showed a significant increase 
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in IL-6 (p=0.003) , CRP (p=0.02), and fibrinogen (p=0.02) after a 5-year increase 

(18). This study suggests that gender has an effect on the association between 

sleep and inflammation markers.  

Another cross-sectional study performed within the 2005-2006 US National 

Health and Nutrition Examination Survey (NHANES) cycle looked at the association 

between self-reported sleep quality, using two questions from the Sleep Disorders 

Questionnaire, and mediators of cardio-metabolic health, one being CRP (28). The 

findings concluded that, although above clinical reference range, there is a J-

shaped relationship between sleep quality and CRP levels. On this J-shaped curve, 

there is a steep increase in CRP from fair to very poor sleep quality, with the 

association between very poor sleep quality and CRP being statistically significant 

(28).  

 A study examining the link between sleep, exaggerated inflammatory 

response and adverse health outcomes focused on gender-specific responses. In 

women, poor sleep quality was associated with higher CRP levels but there were 

no relationships of note between PSQI scores and IL-6 or TNF-a (55).  A cohort 

made of western Australian men also looked at the association between 

inflammation and poor sleep. They found a significant association between 

difficulty falling asleep and higher levels of CRP(56). 

This relationship has been examined extensively in individuals with 

obstructive sleep apnea (OSA). After comparing 15 studies, it is seen that on 

average CRP levels are higher in individuals with OSA than in controls and that this 
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difference increased significantly when individuals were obese (57). These studies 

show that poor sleep can affect inflammation. 

All of these previous cross-sectional studies have used self-reported sleep 

measures, and four of them demonstrated a positive linear association between 

sleep and inflammation markers. One study showed an inverse relationship when 

stratified by gender for all inflammation markers, and the other showed an inverse 

relationship for just CRP. However, all of the experimental studies showed an 

inverse relationship between sleep duration/quality and levels of inflammation 

markers. The next step in this field of research is to combine the experimental 

research findings using PSG with an observational study. This can be done by 

performing a cross-sectional analysis using objective measures of sleep. 

 2.4 Potential Effect Modifiers, Sleep, and Inflammation  

Obesity is one of the most burdensome diseases in the world, and is a result 

of excessive energy intake (58). Obesity is characterized not only by high BMI, but 

is also an inflammatory state (58, 59). Obesity has an impact on immune function 

just like malnutrition, because it is a form of malnutrition caused by excess dietary 

intake (59). The link between immune function and obesity is the adipose tissue 

where fat is stored. When obesity persists, the pro-inflammatory cytokines 

localized within the adipose tissue are pushed into systemic circulation creating a 

state of low-grade chronic inflammation (11, 60).  
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As sleep duration and sleep quality have been decreasing over the past 

decades, obesity has been increasing (27, 61). When studying obesity, body mass 

index (BMI, kg/m2) is the standard measurement used, because it incorporates 

height and weight into the relationship. Overweight is defined as 25 kg/m2 ≥ BMI 

£ 30 kg/m2, and obesity is defined as a BMI ≥ 30 kg/m2 (62). The link between 

short sleep duration and obesity has been observed and shows positive 

associations for children and adults. The nature of the relationship, however, 

remains a mystery (63). Some indicate a linear inverse association, showing that 

as sleep duration decreases, BMI increases. Other studies indicate more of a U-

shaped association, showing that short and long sleep duration are associated with 

high BMIs (64). The U-shaped associations signal that the relationship does differ 

by age category but it is still present (63).  

Occupational stress is a major element of physical and mental health. Law 

enforcement and more specifically police officers experience some of the highest 

levels of stress related to work (13, 14). Stress is the strain placed on an individual 

by environmental stimuli (65). A normal day of work for a police officer can entail 

duties such as crime scene violence, involvement in shootings, seeing and handling 

dead bodies, injury on the job, and negative news coverage. Police officers are 

exposed to these environmental stimuli which can contribute to greater stress than 

other occupational stress stimuli. Therefore, police officers are at a higher risk for 

developing diseases that are associated with stress (17).  
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Hypothalamic-pituitary-adrenal axis (HPA) and the autonomic nervous 

system show the highest response to stress. These systems are therefore used to 

look at the impact stress has on the body (66). Events that occur on the job can 

cause a wide range of diseases. Acute Post-Traumatic Stress Disorder (PTSD) is 

caused by occupational stress. PTSD in police officers can become long-term 

because of the cycle of stimuli re-occurring. Long-term effects can lead to an 

increase in behavioral dysfunction (17, 67, 68). Psychological stress also can be 

shown to play a role in the development of heart disease, like atherosclerosis and 

coronary heart disease (69-71).  

The development of a disease due to stress can in part be explained by 

cortisol secretion. Constant challenges to the HPA axis can create abnormal cortisol 

secretion patterns. These patterns could change so that cortisol is not being 

secreted upon awakening or is failing to return to normative values after several 

hours. Another way to explain the development of risk factors for cardiovascular 

disease, type II diabetes, and stroke can be low variability in pathological HPA axis 

(72-74).  

In addition to occupational stress caused by events, police officers also are 

exposed to shift work, another occupational stressor. Shift work is when an 

individual’s work schedule will change regularly in terms of number of shifts 

worked and time of day those shifts start (75). This type of work is common among 

police officers and plays a significant role in their health (76, 77). When timing of 

sleep and wakefulness are switched, circadian misalignment occurs (15). 
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Individuals working the night shift or switching between night and day shifts 

experience circadian stress resulting in sleep deprivation and stress reaction (78). 

Distribution of circadian timing of food intake shows weight gain among shift 

workers. Excess weight gain can lead to obesity and an increase in pro-

inflammatory cytokines (15, 79).  Circadian misalignment causes dysregulation of 

the immune system, meaning an increased risk of chronic disease is also 

associated with shiftwork (16, 80-83).  

Shiftwork and other occupational stressors that police officers experience 

affect quality and quantity of sleep. Sleep disorders experienced by police officers 

include obstructive sleep apnea, insomnia, restless legs syndrome, and narcolepsy. 

Among shift workers, excessive wake-time sleepiness, insomnia, and wake-time 

drowsiness are found (84). 

Previous studies have examined the association between sleep and 

inflammation but show a lack in information. Observational studies used only a 

subjective measure of sleep and were inconsistent with respect to poor sleep’s 

effect on inflammation levels. There is not a lot of associations that hold true across 

the different types of studies. This could be due to the different cohorts used or 

differences in measures of sleep. Experimental studies show similar results across 

each study indicating that subjective measures of sleep may not be capturing 

actual sleep quality. Therefore, this study will employ both objective measures of 

sleep and inflammation and subjective measures.  
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CHAPTER 3 

Methods 

  The study population consisted of officers within The Buffalo Cardio-

Metabolic Occupational Police Stress (BCOPS) study (n=464). BCOPS is a 

retrospective cohort starting in 1998-1999, looking back to 1994, and a prospective 

cohort starting in 1998-1999. Data for this cross-sectional analysis was from visit 

3, which occurred between 2004-2009 (most clinic visits occurred between 2004-

2005) and derived from a single examination (17). Visit 1 and visit 2 were pilot 

studies with only selected officers. 

 The BCOPS study provided a cohort to examine biological processes 

associated with police work and its influence on health outcomes.  The protocol 

includes characterization of basic demographics, anthropometric information, a 

blood draw, questionnaire data, stress biomarkers, psychosocial factors, shiftwork 

from electronic payroll records from 1994 to the date of the officer’s examination, 

sleep, markers of adverse health outcomes (17, 77). All officers provided written 

informed consent prior to examination. The BCOPS study received Institutional 

Review Board approval from The State University of New York at Buffalo and the 

National Institute for Occupational Safety and Health (17, 77).
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3.1 Sleep 

The primary exposures for this cross-sectional analysis were sleep quality 

and quantity. For the objective measures of sleep quality and quantity, actigraphy 

was used. Actigraphy correlates with PSG, but allows for continuous recording of 

data, eliminating the need of overnight stays in the laboratory (26). However, 

actigraphy cannot be used to detect specific sleep disorders. The Actiwatch used 

was the Octagonal Motionlogger Sleep Watch #26.100 with an Octagonal 

Motionlogger Computer Interface with ACT #25.111PS and ACTION analysis 

software 21.123 (85).  

Actigraph assessment spanned a 15-day cycle of: four days on shift, four 

days off-duty, four days back on shift, and three days off-duty. Officers were 

instructed to only remove watches when they were going to be exposed to water. 

Determination of sleep-wake cycle for each participant was processed through a 

variety of sleep scoring algorithms to show if a person was awake or asleep at any 

given moment. Sleep parameters were then developed based on this sleep score. 

We used four of the sleep parameters available: sleep duration, sleep efficiency, 

sleep onset latency (SOL), and wake after sleep onset (WASO). Napping 

information was not available for this analysis. Sleep duration is defined as the 

number of hours spent asleep. Sleep efficiency is described as the hours spent 

asleep divided by hours in bed; this gives the ratio of time actually sleeping versus 

time just lying in bed. SOL is the interval of time between the participant starting 

to try to fall asleep and the participant actually falling asleep. WASO is the total 
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time of periods of wakefulness that occur after the participant actually falls asleep 

(86).  

 Subjective measures of sleep were analyzed as a secondary exposure. The 

Pittsburgh Sleep Quality Index (PSQI) was used to assess self-reported sleep 

quality. It has been shown that the PSQI has high homogeneity, reliability, and 

validity (87-89). This self-administered questionnaire contains 11 questions that 

can measure sleep quality and disturbances over the past month. Among the 11 

questions, there are multiple parts that address habitual bed time, time spent 

falling asleep, habitual waking time, habitual hours slept per night, various forms 

of sleep disturbances, sleep quality, use of sleep medication, day time sleepiness, 

lack of enthusiasm, sharing room or bed, and symptoms of sleep disordered 

breathing. Responses range from 0-3 with a different meaning per question and 

adjustment for reverse coding. The codes were created to give scores for the 

following components: sleep quality, sleep latency, hours of actual sleep, sleep 

efficiency, sleep problems, sleep medication, and daytime dysfunction. When 

added together, these create a global quality sleep score.  

Sleep quality ranges from very good to very bad with 0 denoting very good. 

This measure refers to participants’ opnions of how well they are sleeping. Sleep 

duration has the following response range: ³7 hours is 0, 6-7 hours is 1, 5-6 hours 

is 2, and £ 5 hours is 3. Sleep efficiency in the PSQI is defined the same as it was 

for the actigraph measures (89). The responses are categorized as ³ 85% as 0, 

75-84% as 1, 65-74% as 2, and £ 65% as 3. Sleep latency is the time spent falling 
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asleep and was calculated by combining different questions. Time increases from 

level 0 to 3 for sleep latency. Daytime dysfunction is a composite of how often 

participants have trouble staying awake while performing activities and how much 

of a problem they have had with keeping up enough enthusiasm to get things 

done. Sleep problems and sleep medication were not used in the analysis because 

they had a distribution of responses that made it impossible to examine them as 

exposures, more than one group had less than 10% of the population within them. 

Sleep quality was distributed uniformly, but sleep latency, sleep duration, and day 

time dysfunction did not have more than 10% of the population in at least one of 

the four levels. For all components, we combined levels 2 and 3 together except 

for sleep quality which did not need to be recoded. Global sleep was given as a 

contious variable. 

3.2 Outcomes 

 The primary outcomes were inflammation markers found in the blood. A 

staff phlebotomist obtained blood from an officer, in the morning, who had fasted 

for 12 hours. The blood was then centrifuged to separate and remove serum and 

was frozen. To allow for quality control checks and future measurements, an 

adequate amount of blood must be collected. Samples were stored at -80 C with 

only an identifying number at the UB biological specimen bank. The biological 

specimen bank was created as part of the baseline activates of the Western New 

York Health Study at the Center for Health Research in the Department of Social 

and Preventive Medicine. Samples were banked in 0.25 ml and directly used for 
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analytical determinates to avoid exposure to thawing and re-freezing cycles. 

Quality control for lab analytes included 5% blind replicate assay.  

 The inflammation markers analyzed were CRP (produced in the liver in 

response to inflammation); fibrinogen (protein used in blood clot formation); IL-6 

(regulates the immune system which have pro- and anti- inflammatory 

components); and TNF- α (signaling protein involved in systemic inflammation) 

(23, 90, 91).  The assays for the four inflammation markers were performed by 

laboratory personnel from the University of Vermont. High-sensitivity CRP was 

measured on serum, heparin-, or EDTA- anticoagulated plasma using BNII 

nephelometer from Dade Behring utilizing a particle-enhanced 

immunonephelometric assay. Fibrinogen was measured by using the BNII 

nephelometer (92). IL-6 was measured by an ultra-sensitive ELISA technique (93). 

TNF-α was measured using the Human Serum Adipokine Panel B LINCOplex Kit 

(94).  

3.3 Covariates  

Basic demographic information, including sex, age, race/ethnicity were 

viewed as potential covariates. Body mass index (BMI) was calculated from 

measurements taken by staff who were trained and certified specifically for 

anthropometric measurements. Height and weight were measured with shoes 

removed. Height was recorded to the nearest half of a centimeter. Weight was 

recorded by rounding up to the nearest quarter of a pound. Behavioral factors, 
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including physical activity, smoking status, and drinks per week were also reviewed 

as potential covariates. 

Shift work was developed as an objective measure through payroll records. 

Day-to-day accounts of shift work and overtime were compiled for each officer 

over from beginning of their police career or 1994, whichever came last, to the 

date of the exam. Shifts were categorized as day shift, start time between 0400 

and 1100 hours; afternoon shift, start time between 1200 and 1900 hours; and 

midnight shift, start time of 2000 and 0300 hours. Officers also were classified into 

one of those three shifts based on which shift had the largest percentage of hours 

worked.  

 The following stress measures were used in the analysis: Spielberger Police 

Stress Survey (SPSS), Perceived Stress Scale (PSS-14), and Impact of Events-

Revised (IES-R). The SPSS consist of 60 items used to report self-reported stress 

rating and frequency of occurrence. Each item describes an event or condition and 

is given a stress rating of 0 to 100 and check boxes for the frequency that has 

occurred within the past month and year. Total stress score is calculated by 

multiplying the subjective stress rating by the frequency and then adding together 

all 60 items (95).  

The PSS-14 is a measure of global stress levels. It is a 14-item self-reported 

inventory used to measure the degree to which situations, during the past month, 

are appraised as stressful on a 5-point scale. The summary score was calculated 

by reverse coding the scores for the seven positive items and then adding together 
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the resulting scores for the 14 items. The PSS-14 is internally consistent and 

recommended when assessing non-specific stress in relation to disease outcomes 

or behavioral disorders (96, 97).  

The IES-R is widely used and noted for providing continuous measures of 

PTSD symptoms. It consists of 22 items describing the subjective impact of a 

traumatic event. These are related to three subscales: Intrusion, Avoidance, and 

Hyperarousal. Each item has a 5-point response measuring how much participants 

were bothered by these “difficulties” in the past 7 days. Subscales are obtained by 

calculating the mean of the appropriate items. The overall IES-R is obtained by 

summing all 22 items (98).  

Depressive symptoms are measured using the Center for Epidemiological 

Studies Depression scale (CESD). This is a 20-item questionnaire with a 4-point 

scale for each response (99). The scale represents how often each symptom 

occurred over the past 7 days with the highest score being most of the time. The 

test is scored by reverse coding appropriate items and then adding together all 

scores. This scale has been shown to correlate with other measures of depression 

and shows similar psychometric properties across different populations (100).  

3.4 Statistical Analysis 

All analyses were performed using SAS® version 9.4 (Cary, North Carolina, 

USA). The exposure variables were: sleep duration (numeric), sleep efficiency 

(numeric), sleep latency (numeric), wake-after-sleep onset (numeric), and PSQI 
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scores (numeric and categorical). The outcome variables were: IL-6 (continuous), 

TNF-α (numeric), fibrinogen (numeric), and CRP (numeric and categorical). Effect 

Modifiers were: stress measures (numeric), BMI (categorical), and shift work 

(categorical). Gender, age, race, ethnicity, education, rank, years of service, work 

status, smoking status, drinks per week, physical activity score, metabolic 

syndrome, systolic and diastolic blood pressure, HDL, triglyceride, glucose, insulin, 

adipose, HBA1C, and leptin were analyzed as potential confounders.  

All outcomes and exposures were assessed to verify no more than 10% of 

people in the sample were missing these values. Subjectively measured sleep-

related analyses had a total 457 officers available for analysis and 149 individuals 

did not have actigraph data. Correlations were performed on the descriptive 

variables, outcomes, sleep parameters, and stress measures. BMI and waist 

circumference were highly correlated (0.87), so only BMI was examined as an 

effect modifier because of the well-known cut points. None of the stress measures 

showed strong correlations to each other. Hence, all were examined as potential 

effect modifiers. Correlations for the actigraph measures indicated that time in bed 

and sleep duration were highly correlated (0.85). We decided to use just sleep 

duration. Wake after sleep onset and sleep efficiency also were highly correlated 

(0.92). Both were used in the analysis because WASO measures time they woke 

up during the night and sleep efficiency is the ratio of time spent asleep and time 

spent in bed. Sleep duration and sleep efficiency were moderately correlated 
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(0.75) and the rest of the measures had low correlations. Neither the inflammation 

markers nor the PSQI measures were highly correlated with each other.  

 A descriptive table was created using means and standard deviations with 

test of significance based on t-tests for the continuous variables. For categorical 

variables, frequencies and percentages were determined and chi-square tests were 

used for significance. PSQI global has a cut point of 5 and was used to classify 

participants as either having good sleep (PSQI global <5) or bad sleep (PSQI global 

≥5) (89). Characteristics were compared between individuals with good sleep and 

bad sleep. After creating the descriptive table, we compared the descriptive 

statistics of objective sleep measures to subjective sleep measures since the 

number of observations for objective measures was 149 less than for subjective 

measures of sleep. The same procedures were used for this comparison defined 

for the descriptive table. The difference in shiftwork among the actigraph 

individuals was also assessed by looking at the distribution between day and 

evening/night shift workers. 

Variable selection was performed for various outcomes and exposures of 

interest.  Possible covariates were added into separate models (e.g., CRP= sleep 

duration + gender) and any potential covariate with a p value of <0.20 were added 

to a full model. After the full model was produced, a backward confounder 

reduction process to remove covariates one at a time was applied. This was 

performed starting with variables that had p-values >0.05. Once removed, if the 

beta coefficient for the sleep measure changed more than 10%, the covariate was 
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retained in the model. Any statistically significant covariates remained in the model 

as well.  

When the final model was made for each immune marker and sleep 

parameter, the assumptions of linear regression were assessed using the model’s 

residuals. For CRP and IL-6, a cut point of 10 was assigned because CRP mg/L and 

IL-6 pg/mL levels above 10 are indicative of acute infections. IL-6 then had six 

more observations coded as missing with the following IL-6 levels: 7.32, 7.33, 

8.45, 7.49, 6.55, and 7.04 because these values had high studentized residuals 

leading to non-normal model residuals. After applying these limitations to CRP and 

IL-6, the residual graphs showed no violation of the assumptions of linear 

regression. This held true for TNF-a and fibrinogen.  

General linear models were used to conduct the main analysis. GLM allows 

for calculation of least squares means and 95% confidence intervals for each 

inflammation markers according to the sleep measure used. Linear regression was 

performed on all sleep measures (sleep duration, sleep efficiency, sleep latency, 

WASO, and the PSQI) by each inflammation marker (CRP, IL-6, TNF-α, and 

fibrinogen) using the final model created during variable selection. Table 3.1 shows 

the exposures and their data format (i.e., numeric vs. categorical). Sleep duration 

was categorized into three groups ( ³ 7 hours, 7-6 hours, and £ 6 hours) for the 

actigraph data because just as not enough sleep is bad so is too much sleep. The 

middle level of sleep duration for the PSQI components was also used as the 

referent as well.  
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It was decided a priori that the analysis would be stratified by shiftwork. 

Adjusted means and 95% confidence intervals for each outcome were obtained 

for the categorical measures of sleep and beta coefficients with standard errors 

for the continuous measures by shiftwork category. A similar approach was used 

for the BMI categories. Interactions between the sleep parameters and stress 

measures were then assessed to see if stress acts as an effect modifier in the 

relationship between sleep and inflammation markers. The interactions between 

the exposures and CESD and PSS were examined. Given the limited number of 

significant interactions, this information is not tabulated. However, the significant 

interactions are described in the results in greater detail.  

 Logistic regression was used for analysis of CRP when it was dichotomized 

at its standard of 3.0 mg/L (101). Logistic regression was performed for each sleep 

measure with greater than 3.0 mg/L being the outcome of interest for CRP. Using 

our logistic model, we obtained the odds ratios and 95% confidence interval for 

the high-risk levels of CRP.  
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Table 3.1 Types of Sleep Parameters Used 

 
 Objective Subjective Categorical Numeric 
Sleep Efficiency Yes   Yes 
Sleep Duration Yes   Yes 
Sleep onset Latency Yes   Yes 
Wake After Sleep Onset  Yes   Yes 
PSQI Sleep Quality  Yes Yes  
PSQI Sleep Latency  Yes Yes  
PSQI Daytime Dysfunction  Yes  Yes  
PSQI Sleep Duration  Yes Yes  
PSQI Global  Yes Yes Yes 
Abbreviations: PSQI=Pittsburgh Sleep Qualty Index  
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CHAPTER 4 

Results 

 There was a total of 464 officers in BCOPS during the 2004-2005 data 

collection time point. However, 7 had missing data for either for all exposures or 

for all outcomes. The final sample size was 457 with 233 people in the good sleep 

category and 224 in the bad sleep category as defined by the PSQI. Table 4.1 

shows the general characteristics of the participants by good and bad sleep 

according to the PSQI. Overall the population was primarily white, middle-aged 

men ranked as police officers. The population also was primarily overweight with 

a mean BMI of 29.28 ± 4.75 kg/m2. There was a statistically significant difference 

between good and bad sleepers for systolic blood pressure (mean= 120.13 vs 

122.61 mmHG, respectively, p-value=0.03) and drinks per week (mean= 4.68 vs 

6.45, respectively p-value=<0.01), with bad sleep having higher mean values. No 

other statistically significant differences were seen. 

 The objective measures of sleep were missing 149 observations due to 

missing data. Table 4.2 compares the differences in the general characteristics 

between those with and without objective measures of sleep. Small statistically 

significant differences were observed for smoking status where without objective 

meaures there was a larger present of never smokers compares to those with 
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objective meaures (67% vs. 54%, respectively, p-value=0.04) and systolic blood 

pressure (mean= 120.40 vs 123.41 mmHG, respectively, p-value=0.02). Table 4.3 

shows that the distribution of observations between good and bad sleep were 

almost identical with 233 individuals in the good sleep category and 224 in the bad 

sleep. Sleep duration distribution shows that more officers were sleeping ³ 6 hours 

on average. This table also shows that more than 50% of officers were have a 

poor sleep quality. The population had an average 6.42 global PSQI score, 

categorized as bad sleep. A descriptive analysis on the objective measures of sleep, 

presented in Table 4.4, found the average sleep duration was 6.2 ± 1.4 hours with 

average sleep efficiency being 84.8 ± 10.1%. Wake after sleep onset had an 

average of 54.2 ± 46.6 minutes. The average minutes of sleep onset latency for 

all observations in objective sleep measures was 3.6 ± 3.3. After looking at the 

distribution of actigraph measures by their shift type there was no significant 

difference between day and evening/night workers (Table 4.5). 

 The models that were used for the rest of the analysis are as follows. For 

all inflammation markers and all PSQI components, models were adjusted for age, 

systolic blood pressure, and total drinks per week.For all actigraphy metrics, 

models were adjusted for metabolic syndrome and age. Additionally models with 

actigraph sleep duration as the exposure were adjusted for systolic blood pressure, 

total physical activity score, and rank. For models meauresing TNF-a, race and 

gender were adjusted for as well. For models measuring CRP, additional 

adjustments for rank were made. 
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 The results from the linear regression of the inflammation markers with 

the subjective exposure are in Table 4.6. PSQI global, as a numeric exposure, was 

significantly associated with fibrinogen (beta=-2.15, p-value=0.04). The mean of 

CRP among those in the highest level of daytime dysfunction (worst category) was 

significantly higher compared to the best level (mean=1.94 vs. 2.63 mg/L, 

respectively, p-value=0.04). These were the only statistically significant 

associations found between inflammation markers and subjective measures of 

sleep. 

 The linear regression with the objective measures of sleep as the exposure 

are found in Table 4.7. Sleep efficiency was significantly associated with CRP 

(beta=-0.03, p-value=0.02). Sleep onset latency (beta=0.07, p-value=0.05) and 

wake after sleep onset (beta=0.01, p-value=<0.01) also were significantly 

associated with CRP. No other associations were statistically significant.  

 The interactions between the stress and depression measures (i.e., PSS and 

CESD) and sleep paramters were examined. It was found that the association 

between CRP and sleep onset latency was modified by CESD (p-value=0.01). The 

association between TNF-a and PSQI sleep duration also was modified by the PSS 

(p-value=0.03). When IL-6 was the outcome, interactions were found between 

the CESD and PSQI daytime dysfunction component (p-value=0.02). There was 

an interaction for wake after sleep onset and CESD when modeling fibrinogen (p-

value=0.01). CESD and PSS were categorized with cut points (CESD³16, PSS³25) 

indicating high risk (99, 102) to create stratified tables. The relationship between 
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CRP and sleep onset latency was statistically significant for people with a high 

CESD score (beta=0.75, p-value=<0.01), but it was not among those with a low 

CESD score (beta=0.07, p-value=0.06). The relationship between fibrinogen and 

wake after sleep onset was statistically significant for people with a high CESD 

score (beta=1.01, p-value=0.01) but it was not among those with a low CESD 

score (beta=1.06, p-vlaue=0.44). TNF-a was statistical significantly associated 

with the middle sleep duration category (5-6 hour) for people with a high PSS 

score compared to the referent category, (³ 7 hours, means=5.95 vs. 4.71 pg/mL, 

respectively, p-value=0.02), but not among people with a low PSS score 

(means=5.01 vs. 5.43 pg/mL, respectively, p-vlaue=0.08). After categorization, 

there was no statistically significant association found between IL-6 and PSQI 

daytime dysfunction for CESD.  

Among obese officers, the highest level of sleep latency (worst category) 

was found to be significantly associated with fibrinogen (mean=306.49 vs. 336.26 

mg/dL, respectively, p-value=0.03) compared to the best category of sleep 

latency. Again, in those who are obese, the highest level of daytime dysfunction 

(worst category) was significantly associated with fibrinogen (means=339.11 vs. 

305.23 mg/dL, respectively, p-value=0.05) compared to the best category of 

daytime dysfunction. There were numerous significant interactions which can be 

found in Table 4.8. Table 4.9 presents results for stratification by BMI for objective 

measures of sleep. It was found that sleep onset latency was statistically 

significantly associated with IL-6 for people with an obese BMI (beta=-0.05, p-
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value=0.01). These relationships were not found for normal weight and 

overweight. No other statistically significant associations for the interaction with 

BMI for all other outcomes were found.  

Lastly, analyses were stratified by shiftwork, with results present  in Table 

4.10. Daytime dysfunction for the middle category (level 2) was significantly 

associated with CRP among people working dayshifts (mean=1.98 vs. 3.23 mg/L, 

respectively, p-value=0.03) compared to the best category of daytime dysfunction. 

Sleep duration also was found to be significantly associated with IL-6 for day shift 

workers in the ³ 7 hours category (means=2.43 vs. 1.81 pg/mL, respectively, p-

value=0.03) compared to the middle sleep duration level (6-7 hours). For the worst 

sleep duration category (£ 5), there also was a significant association with IL-6 for 

day shift workers (means= 2.37 vs. 1.81 pg/mL, respectively, p-value=0.04) 

compared to the middle sleep duration level (6-7 hours). 

 The stratification by shiftwork for the objective measures showed 

statistically significant associations for CRP and fibrinogen, presented in Table 

4.11. Sleep duration was found to be significantly associated with CRP for day shift 

workers in the ³ 7 hours category (means=3.19 vs. 2.34 mg/L, respectively, p-

value=0.02) compared to the middle sleep duration level (6-7 hours). Sleep onset 

latency (beta=0.20, p-value=0.04) was significantly associated with CRP for day 

shift workers while the evening/night shift showed no statically significant 

associations for CRp. Wake after sleep onset (beta=0.006, p-value=0.01) was 

significantly associated with CRP for evening/night shift workers. This association 
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was not observed among day shift workers. Sleep duration was found to be 

significantly associated with fibrinogen for eveing/night shift workers in the ³ 7 

hours category (means=377.89 vs. 351.27 pg/mL, respectively, p-value=0.04) 

compared to the middle sleep duration level (6-7 hours). 

 CRP has a recognized cut point of ³ 3.0mg/L (101). The results of logistic 

regression with CRP as a categorical outcome with all of the exposures can be 

found in Table 4.12. It was found that the odds ratio for a one-unit increase in 

sleep efficiency was 0.97 (0.95, 0.99) for a CRP ³ 3.0. Logistic regression was 

repeated for a 5 and a 10 unit increase for the continuous actigraph measures. 

The 5 unit increases results showed the odds for sleep efficiency was 0.86 (0.76, 

0.97), sleep onset latency was 1.47 (1.00, 2.17), and wake after sleep onset was 

1.06 (1.02, 1.10) for high-risk CRP. The 10 unit increased the odds for sleep 

efficiency was 0.74 (0.58, 0.95), sleep onset latency was 2.17 (1.00, 4.71), and 

wake after sleep onset was 1.12 (1.03, 1.21) for high-risk CRP. 
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Table 4.1 Characteristics of BCOPS Population by PSQI Global 

Parameter Total  Good Sleep Bad Sleep p-value 
 (n=457) (n=233) (n=224)  
Gender (n,%)     
    Male 343 (75) 180 (39) 163 (36) 0.27 
    Female 114 (25) 53 (12) 61 (13)  
Race (n,%)     
    White 354 (79) 178 (40) 176 (39) 0.56 
    Other 95 (21) 51 (11) 44 (10)  
Education (n,%)     
    <College 60 (13) 36 (8) 24 (5)  
    Some College 154 (33) 81 (17) 73 (16) 0.28 
    Associates Degree 95 (20) 42 (9) 53 (11)  
    Bachelors or Grad 155 (33) 81 (17) 74 (16)  
Rank (n,%)     
    Police Officer 302 (65) 155 (33) 147 (32)  
    Sergeant. Lieutenant, or Captain 75 (16) 37 (8) 38 (8) 0.87 
    Detective  43 (9) 23 (5) 20 (4)  
    Other 44 (9) 25 (5.39) 19 (4.09)  
Metabolic Syndrome (n,%)     
    Yes 126 (28) 66 (15) 60 (13) 0.55 
    No 321 (72) 158 (35) 163 (36)  
Smoking Status (n, %)     
    Current 73 (16) 35 (8) 38 (8)  
    Former 116 (26) 58 (13) 58 (13) 0.87 
    Never 263 (58) 135 (30) 128 (28)  

Age (years, mean ± SD) 
42.23 ± 
8.60 42.32 ± 8.99 42.13 ± 8.18 0.81 

Systolic Blood Pressure (mmHG, mean 
± SD) 

121.35 ± 
12.48 

120.13 ± 
12.13 

122.61 ± 
12.74 0.03 

Physical Activity Score (score, mean ± 
SD) 

21.11 ± 
17.97 

19.62 ± 
16.23 

22.65 ± 
19.53 0.08 

Drinks Per Week (number, mean ± 
SD) 5.55 ± 9.53 4.68 ± 8.70 6.45 ± 10.25 <0.01 
BMI (kg/m2, mean ± SD) 29.28 ±  

4.75 
29.24 ± 4.39 29.32 ± 5.11 0.86 

Column percentages may not equal 100% due to rounding. Stratum numbers may not equal column total 
due to missing data. All categorical variable p-values based on chi-squared test and all continues p-values 
are based on t-tests or Wilcoxon rank sums test. Abbreviations: BCOPS=The Buffalo Cardio-Metabolic 
Occupational Police Stress, PSQI=Pittsburgh Sleep Quality Index, BMI=Body Mass Index. Cut points: 
good sleep<5 PSQI Global, bad sleep>=5 PSQI Global. 
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Table 4.2 Comparison of BCOPS Population Characteristics by Subjective and 
Objective Sleep  
 

Parameter 
Subjective 
Measures of Sleep 

Objective 
Measures of Sleep p-value 

 (n=149) (n=308)  
Gender (n,%)    
    Male 120 (81) 223 (72) 0.06 
    Female 29 (19) 85 (28)  
Race (n,%)    
    White 108 (74) 246 (81) 0.08 
    Other 38 (26) 57 (19)  
Education (n,%)    
    <College 15 (11) 38 (12)  
    Some College 52 (36) 101 (33)  
    Associates Degree 31 (22) 61 (20) 0.74 
    Bachelors or Grad 45 (32) 108 (35)  
Rank (n,%)    
    Police Officer 87 (61) 209 (68)  
    Sergeant. Lieutenant, or Captain 27 (19) 41 (13) 0.11 
    Detective  13 (9) 30 (10)  
    Other 16 (11) 28 (9)  
Metabolic Syndrome (n,%)    
    Yes 39 (28) 87 (28) 0.87 
    No 102 (72) 219 (72)  
Smoking Status (n,%)    
    Current 18 (12) 55 (18)  
    Former 31 (21) 85 (28) 0.04 
    Never 98 (67) 165 (54)  
Age (years, mean SD) 42.44 ± 8.33 42.12 ±  8.34 0.71 
Systolic Blood Pressure (mmHG, mean ± 
SD) 123.41 ± 13.13 120.40 ± 12.07 0.02 
Physical Activity Score (score, mean ± SD) 21.94 ± 16.82 20.73 ± 18.50 0.49 
Drinks Per Week (number, mean ± SD) 6.91 ± 12.42 4.89 ± 7.71 0.66 
BMI (kg/m2, mean ± SD) 29.54 ± 4.87 29.15 ± 4.70 0.42 
Column percentages may not equal 100% due to rounding. Stratum numbers may not equal column total 
due to missing data. All categorical variable p-values based on chi-squared test and all continues p-values 
are based on t-tests or Wilcoxon rank sums test. Abbreviations: BCOPS=The Buffalo Cardio-Metabolic 
Occupational Police Stress, BMI=Body Mass Index. 
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Table 4.3 Distribution of PSQI Components  

Subjective Sleep Measures Total  
 (n=457) 
Global PSQI (n,%)  
    Good Sleep  224 (49) 
    Bad sleep 233 (51) 
Sleep Quality (n,%)  

0 47 (11) 
1 228 (51) 
2 139 (31) 
3 30 (7) 

Sleep Latency (n,%)  
0 142 (32) 
1 159 (36) 
2 84 (19) 
3 57 (13) 

Sleep Duration (n,%)  
0 162 (37) 
1 141 (32) 
2 100 (22) 
3 37 (8) 

Daytime Dysfunction (n,%)  
0 159 (36) 
1 215 (48) 
2 59 (13) 
3 13 (3) 

Column percentages may not equal 100% due to 
rounding. Stratum numbers may not equal column total 
due to missing data. Abbreviations: PSQI=Pittsburgh 
Sleep Quality Index. Cut points: good sleep<5 PSQI 
Global, bad sleep>=5 PSQI Global. 
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Table 4.4 Distribution of Actigraph Measures of Sleep  

Objective Sleep Measures Total 
 (n=308) 
Sleep Duration (hours, mean ± SD) 6.25 ± 1.38 
Sleep Efficiency (%, mean ± SD) 84.85 ± 10.06 
Sleep onset latency (minutes, mean ± SD) 3.57 ± 3.25 
Wake After Sleep Onset (minutes, mean ± SD) 54.19 ± 46.65 

 

Table 4.5 Distribution of Actigraph Measures of Sleep by Shiftwork 

Objective Sleep Measures Day Shift Evening/Night Shift 
 (n=124) (n=165) 
Sleep Duration (hours, mean ± SD) 6.36 ± 1.47 6.18 ± 1.26 
Sleep Efficiency (%, mean ± SD) 85.06 ± 10.40 84.86 ± 9.92 
Sleep onset latency (minutes, mean ± SD) 4.01 ± 3.40 3.35 ± 3.23 
Wake After Sleep Onset (minutes, mean ± SD) 53.74 ± 60.22 53.83 ± 34.74 
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Table 4.6. Adjusted Mean Inflammation Markers by PSQI Components 

 CRP mg/L p-value TNF-a pg/L p-value 
PSQI Global        
    Good Sleep (n=216) 2.40 (2.11, 2.69)  ref 5.13 (4.88, 5.38) ref 
    Bad sleep (n=212) 2.32 (2.03, 2.61) 0.70 5.30 (5.05, 5.55) 0.34 

PSQI Global Continuous -0.001 (0.03) 0.97 -0.01 (0.03) 0.71 
Sleep Quality        

0 (n=41) 2.46 (1.80, 3.11)  ref 5.03 (4.47, 5.59) ref 
1 (n=218) 2.46 (2.17, 2.75) 0.99 5.30 (5.06, 5.55) 0.38 
2 (n=128) 2.22 (1.84, 2.59) 0.53 5.18 (4.87, 5.50) 0.64 
3 (n=30) 2.36 (1.58, 3.14) 0.85 5.01 (4.33, 5.70) 0.97 

Sleep Latency        
0 (n=132) 2.25 (1.88, 2.62)  ref 5.03 (4.72, 5.35) ref 
1 (n=148) 2.50 (2.14, 2.84) 0.35 5.34 (5.03, 5.64) 0.17 
2 (n=134) 2.38 (2.01, 2.84) 0.64 5.28 (4.97, 5.60) 0.27 

Sleep Duration        
0 (n=134) 2.51 (2.16, 2.86) 0.41 5.32 (5.02, 5.62) 0.57 
1 (n=149) 2.29 (1.92, 2.66) ref 5.20 (4.88, 5.51) ref 
2 (n=129) 2.38 (2.01, 2.75) 0.75 5.15 (4.83, 5.47) 0.83 

Day time dysfunction        
0 (n=144) 2.63 (2.28, 2.99)  ref 5.25 (4.95, 5.56) ref 
1 (n=220) 2.33 (2.04, 2.61) 0.18 5.20 (4.96, 5.72) 0.79 
2 (n=54) 1.94 (1.36, 2.52) 0.04 5.22 (4.72, 5.72) 0.91 

Values represent least-square means and 95% confidence intervals via general linear models. Continuous 
variables values represent beta coefficient and standard error via general linear models. Abbreviations: 
PSQI=Pittsburgh Sleep Quality Index. Cut points: good sleep<5 PSQI Global, bad sleep>=5 PSQI 
Global. Adjustments: All models adjusted for age, systolic blood pressure, and total drinks per week. 
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Table 4.6. (Continued) Adjusted Mean Inflammation Markers by PSQI 
Components 

 

 IL-6 pg/mL p-value Fibrinogen mg/dL p-value 
PSQI Global      
    Good Sleep (n=220) 1.86 (1.72, 2.01) ref 318.37 (309.20, 327.53) ref 
    Bad sleep (n=211) 1.96 (1.81, 2.11) 0.36 307.92 (298.63, 317.22) 0.12 
PSQI Global Continuous  0.01 (0.02) 0.59 -2.15 (1.03) 0.04 
Sleep Quality      

0 (n=42) 2.00 (1.67, 2.33) ref 323.32 (302.85, 343.80) ref 
1 (n=217) 1.94 (1.80, 2.09) 0.76 316.83 (307.65, 326.01) 0.57 
2 (n=133) 1.88 (1.69, 2.07) 0.53 306.20 (294.59, 317.81) 0.15 
3 (n=28) 1.76 (1.34, 2.17) 0.37 305.89 (280.67, 331.12) 0.29 

Sleep Latency      
0 (n=134) 1.85 (1.66, 2.04) ref 320.30 (308.68, 331.91) ref 
1 (n=151) 1.87 (1.69, 2.05) 0.87 312.40 (301.17, 323.63) 0.34 
2 (n=132) 2.03 (1.84, 2.22) 0.19 308.65 (297.05, 320.25) 0.17 

Sleep Duration      
0 (n=133) 1.93 (1.75, 2.11) 0.49 319.23 (308.03, 330.42) 0.21 
1 (n=151) 1.84 (1.65, 2.03) ref 308.80 (297.17, 320.44) ref 
2 (n=131) 1.99 (1.80, 2.18) 0.27 312.62 (300.66, 324.58) 0.65 

Daytime Dysfunction      
0 (n=145) 2.00 (1.82, 2.18) ref 318.32 (307.09, 329.54) ref 
1 (n=220) 1.89 (1.75, 2.04) 0.34 311.52 (302.41, 320.64) 0.36 
2 (n=56) 1.79 (1.50, 2.08) 0.22 311.08 (292.58, 329.49) 0.51 

Values represent least-square means and 95% confidence intervals via general linear models. Continuous 
variables values represent beta coefficient and standard error via general linear models. Abbreviations: 
PSQI=Pittsburgh Sleep Quality Index. Cut points: good sleep<5 PSQI Global, bad sleep>=5 PSQI 
Global. Adjustments: All models adjusted for age, systolic blood pressure, and total drinks per week. 
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Table 4.7. Adjusted Inflammation Markers by Actigraph Measures of Sleep   

 CRP mg/L p-value TNF-a pg/mL p-value 
Sleep Duration      
³ 7 hours (n=109) 2.71 (1.8, 3.63) 0.98 5.16 (4.37, 5.94) 0.58 
7-6 hours (n=94) 2.54 (1.64, 3.43) ref 5.25 (4.40, 6.09) ref 
£ 6 hours (n=94) 2.72 (1.82, 3.62) 0.53 5.01 (4.19, 5.83) 0.73 

Sleep Efficiency  -0.03 (0.01) 0.02 0.002 (0.01) 0.87 
SOL  0.07 (0.03) 0.05 0.03 (0.03) 0.37 
WASO  0.006 (0.002) <0.01 -0.0004 (0.002) 0.87 
Values represent beta coefficients and standard errors via general linear models. Categorical values 
represent least-square means and 95% confidence intervals via general linear models. Abbreviations: 
SOL= Sleep onset latency, WASO=Wake after sleep onset. Adjustments: All models were adjusted for 
metabolic syndrome and age. Sleep Duration models additional adjusted for systolic blood pressure, total 
physical activity score, and rank. Models with TNF-a additional adjusted for race and gender. Models with 
CRP additional adjusted for rank. 

 

Table 4.7. (Continued) Adjusted Inflammation Markers by Actigraph Measures of 
Sleep   

 
 IL-6 pg/mL p-value Fibrinogen mg/dL  p-value 
Sleep Duration      
³ 7 hours (n=108) 2.33 (1.7, 2.98) 0.92 362.06 (322.5, 401.62) 0.13 
7-6 hours (n=92) 2.17 (1.51, 2.83) ref 349.88 (309.16, 390.6) ref 
£ 6 hours (n=94) 2.32 (1.68, 2.97) 0.31 348 (308.16, 387.83) 0.21 

Sleep Efficiency  -0.004 (0.006) 0.51 -0.50 (0.38) 0.19 
SOL  -0.03 (0.02) 0.11 1.68 (1.14) 0.14 
WASO  0.0004 (0.001) 0.75 0.11 (0.08) 0.18 
Values represent beta coefficients and standard errors via general linear models. Categorical values 
represent least-square means and 95% confidence intervals via general linear models. Abbreviations: 
SOL= Sleep onset latency, WASO=Wake after sleep onset. Adjustments: All models were adjusted for 
metabolic syndrome and age. Sleep Duration models additional adjusted for systolic blood pressure, total 
physical activity score, and rank. Models with TNF-a additional adjusted for race and gender. Models with 
CRP additional adjusted for rank. 
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Table 4.8. Adjusted Mean Inflammation Markers by PSQI Components 
Stratified by BMI Status 
 
 

 CRP mg/L p-value TNF-a pg/mL p-value 
Normal Weight (18.5-24.9 BMI) 

PSQI Global      
Good Sleep (n=35) 1.86 (1.15, 2.57) ref 4.53 (3.92, 5.15) ref 
Bad sleep (n=48) 1.71 (1.11, 2.31) 0.75 4.54 (4.00, 5.07) 0.99 

PSQI Global Continuous  -0.07 (0.06) 0.25 -0.0003 (0.06) 0.99 
Sleep Quality      

0 (n=13) 2.61 (1.46, 3.75) ref 5.89 (4.90, 6.87) ref 
1 (n=28) 1.77 (0.97, 2.56) 0.24 4.02 (3.34, 4.70) <0.01 
2 (n=32) 1.52 (0.77, 2.26) 0.12 4.57 (3.93, 5.21) 0.03 
3 (n=8) 1.75 (0.29, 3.20) 0.36 4.74 (3.48, 5.99) 0.16 

Sleep Latency      
0 (n=21) 1.73 (0.83, 2.64) ref 4.58 (3.80, 5.36) ref 
1 (n=34) 1.77 (1.04, 2.50) 0.96 4.73 (4.08, 5.38) 0.77 
2 (n=26) 1.91 (1.10, 2.72) 0.77 4.50 (3.79, 5.20) 0.88 

Sleep Duration      
0 (n=23) 2.34 (1.56, 3.12) 0.07 4.76 (4.07, 5.45) 0.55 
1 (n=29) 1.25 (0.37, 2.13) ref 4.45 (3.68, 5.21) ref 
2 (n=28) 1.68 (0.91, 2.46) 0.46 4.58 (3.88, 5.28) 0.80 

Daytime Dysfunction     
0 (n=24) 2.41 (1.54, 3.28) ref 4.78 (4.01, 5.55) ref 
1 (n=42) 1.64 (1.01, 2.28) 0.16 4.26 (3.70, 4.82) 0.28 
2 (n=15) 1.32 (0.27, 2.38) 0.12 5.29 (4.35, 6.22) 0.41 

Overweight (25.0-29.9 BMI) 
PSQI Global      

Good Sleep (n=98) 2.10 (1.68, 2.52) ref 4.98 (4.62, 5.34)  
Bad sleep (n=80) 2.05 (1.58, 2.51) 0.86 5.16 (4.77, 5.56) 0.5 

PSQI Global Continuous  0.02 (0.05) 0.64 0.05 (0.04) 0.25 
Sleep Quality      

0 (n=17) 1.66 (0.66, 2.66) ref 3.64 (2.82, 4.45) ref 
1 (n=96) 2.14 (1.71, 2.56) 0.39 5.29 (4.92, 5.65) <0.01 
2 (n=49) 1.98 (1.39, 2.57) 0.59 5.23 (4.74, 5.72) <0.01 
3 (n=12) 2.42 (1.17, 3.66) 0.35 4.90 (3.84, 5.97) 0.06 

Sleep Latency      
0 (n=65) 2.13 (1.62, 2.65) ref 4.82 (4.38, 5.27) ref 
1 (n=55) 2.02 (1.46, 2.58) 0.77 4.95 (4.47, 5.44) 0.7 
2 (n=52) 2.01 (1.43, 2.58) 0.74 5.50 (5.01, 5.99) 0.05 

Sleep Duration      
0 (n=54) 2.13 (1.63, 2.64) 0.34 5.10 (4.67, 5.54) 0.63 
1 (n=68) 1.77 (1.21, 2.33) ref 4.94 (4.45, 5.43) ref 
2 (n=50) 2.34 (1.76, 2.93) 0.16 5.14 (4.63, 5.65) 0.58 

Daytime Dysfunction     
0 (n=65) 2.34 (1.84, 2.85) ref 5.03 (4.60, 5.46) ref 
1 (n=91) 1.93 (1.50, 2.36) 0.22 5.06 (4.68, 5.43) 0.94 
2 (n=18) 1.64 (0.67, 2.61) 0.21 5.23 (4.37, 6.09) 0.69 

Obese (≥30 BMI) 
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PSQI Global      
Good Sleep (n=83) 2.95 (2.50, 3.41) ref 5.96 (5.57, 6.35) ref 
Bad sleep (n=84) 2.97 (2.51, 3.43) 0.96 5.44 (5.04, 5.83) 0.06 

PSQI Global Continuous  0.02 (0.06) 0.74 -0.07 (0.05) 0.13 
Sleep Quality      

0 (n=11) 3.43 (2.19, 4.67) ref 6.23 (5.20, 7.25) ref 
1 (n=94) 3.01 (2.57, 3.44) 0.53 5.69 (5.32, 6.06) 0.33 
2 (n=47) 2.92 (2.32, 3.52) 0.47 5.50 (5.01, 5.99) 0.21 
3 (n=10) 2.92 (1.60, 4.23) 0.58 5.42 (4.28, 6.55) 0.29 

Sleep Latency      
0 (n=46) 2.61 (1.99, 3.22) ref 5.48 (4.97, 5.99) ref 
1 (n=59) 3.34 (2.80, 3.89) 0.08 6.00 (5.53, 6.46) 0.14 
2 (n=56) 2.98 (2.42, 3.53) 0.38 5.46 (4.98, 5.95) 0.96 

Sleep Duration      
0 (n=57) 3.04 (2.46, 3.61) 0.64 5.88 (5.38, 6.38) 0.66 
1 (n=52) 3.22 (2.67, 3.78) ref 5.72 (5.25, 6.20) ref 
2 (n=51) 2.84 (2.26, 3.42) 0.35 5.47 (4.97, 5.97) 0.46 

Daytime Dysfunction     
0 (n=55) 3.11 (2.55, 3.67) ref 5.72 (5.24, 6.20) ref 
1 (n=87) 3.08 (2.63, 3.52) 0.93 5.80 (5.41, 6.18) 0.81 
2 (n=21) 2.56 (1.65, 3.47) 0.32 5.08 (4.31, 5.84) 0.16 

Values represent least-square means and 95% confidence intervals via general linear models. Continuous 
variables values represent beta coefficient and standard error via general linear models. Abbreviations: 
PSQI=Pittsburgh Sleep Quality Index. Cut points: good sleep<5 PSQI Global, bad sleep>=5 PSQI 
Global. Adjustments: All models adjusted for age, systolic blood pressure, and total drinks per week 
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Table 4.8. (Continued) Adjusted Mean Inflammation Markers by PSQI 
Components Stratified by BMI Status 
 

 IL-6 pg/mL p-value Fibrinogen mg/dL p-value 
Normal Weight (18.5-24.9 BMI) 

PSQI Global      
Good Sleep (n=36) 1.49 (1.13, 1.86) ref 303.12 (279.90, 326.35) ref 
Bad sleep (n=45) 1.84 (1.52, 2.16) 0.16 290.98 (270.87, 311.09) 0.43 

PSQI Global 
Continuous  0.01 (0.04) 0.71 -2.10 (2.08) 0.32 

Sleep Quality      
0 (n=13) 1.83 (1.23, 2.42) ref 316.90 (279.18, 1354.62) ref 
1 (n=27) 1.71 (1.28, 2.13) 0.74 285.63 (259.55, 311.71) 0.18 
2 (n=31) 1.80 (1.41, 2.20) 0.94 300.23 (275.74, 324.73) 0.46 
3 (n=8) 1.22 (0.46, 1.98) 0.22 291.90 (244.08, 339.71) 0.42 

Sleep Latency      
0 (n=21) 1.49 (1.02, 1.96) ref 312.96 (283.78, 342.14) ref 
1 (n=33) 1.41 (1.02, 1.79) 0.79 279.72 (255.34, 304.10) 0.08 
2 (n=25) 2.27 (1.84, 2.69) 0.02 303.15 (276.64, 329.65) 0.62 

Sleep Duration      
0 (n=24) 1.64 (1.22, 2.05) 0.74 308.37 (282.41, 334.33) 0.18 
1 (n=28) 1.74 (1.29, 2.19) ref 282.34 (253.64, 311.05) ref 
2 (n=26) 1.77 (1.35, 2.19) 0.92 295.25 (268.87, 321.63) 0.51 

Daytime Dysfunction     
0 (n=23) 2.04 (1.58, 2.51) ref 327.49 (298.93, 356.05) ref 
1 (n=41) 1.66 (1.33, 2.00) 0.19 284.78 (263.90, 305.65) 0.02 
2 (n=15) 1.37 (0.82, 1.92) 0.07 284.36 (249.68, 319.04) 0.06 

Overweight (25.0-29.9 BMI) 
PSQI Global      

Good Sleep (n=98) 1.80 (1.59, 2.02) ref 318.83 (305.7, 332.49) ref 
Bad sleep (n=81) 1.97 (1.73, 2.21) 0.31 307.07 (292.02, 322.12) 0.26 

PSQI Global 
Continuous  0.01 (0.03) 0.71 -3.21 (1.64) 0.05 

Sleep Quality      
0 (n=17) 2.11 (1.59, 2.63) ref 318.85 (287.75, 349.95) ref 
1 (n=95) 1.86 (1.63, 2.08) 0.38 320.81 (306.91, 334.71) 0.91 
2 (n=52) 1.88 (1.59, 2.18) 0.45 303.04 (284.29, 321.82) 0.39 
3 (n=12) 1.75 (1.10, 2.40) 0.39 292.18 (251.36, 332.99) 0.13 

Sleep Latency      
0 (n=65) 1.64 (1.22, 2.05) ref 310.02 (293.34, 326.69) ref 
1 (n=56) 1.74 (1.29, 2.19) 0.44 314.26 (296.07, 332.45) 0.74 
2 (n=53) 1.77 (1.35, 2.19) 0.40 314.45 (296.19, 332.71) 0.73 

Sleep Duration      
0 (n=52) 1.92 (1.66, 2.18) 0.57 322.81 (306.38, 339.24) 0.13 
1 (n=71) 1.80 (1.50, 2.10) ref 303.99 (285.67, 322.30) ref 
2 (n=51) 1.94 (1.64, 2.25) 0.52 310.28 (290.97, 329.60) 0.64 

Daytime Dysfunction     
0 (n=66) 1.96 (1.70, 2.22) ref 326.69 (310.55, 342.84) ref 
1 (n=92) 1.88 (1.66, 2.11) 0.67 306.71 (292.63, 320.78) 0.07 
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2 (n=18) 1.59 (1.09, 2.10) 0.13 297.44 (265.70, 329.18) 0.11 
Obese (≥30 BMI) 

PSQI Global      
Good Sleep (n=86) 2.07 (1.84, 2.30) ref 323.35 (308.71, 337.99) ref 
Bad sleep (n=85) 2.02 (1.79, 2.26) 0.77 318.18 (303.47, 332.90) 0.62 

PSQI Global 
Continuous  0.002 (0.02) 0.93 -1.00 (1.74) 0.57 

Sleep Quality      
0 (n=12) 2.01 (1.39, 2.63) ref 336.30 (397.18, 375.42) ref 
1 (n=95) 2.09 (1.87, 2.32) 0.80 321.69 (307.61, 335.76) 0.49 
2 (n=50) 1.92 (1.62, 2.22) 0.79 312.80 (294.16, 331.44) 0.29 
3 (n=8) 2.34 (1.57, 3.10) 0.52 333.81 (290.57, 377.05) 0.93 

Sleep Latency      
0 (n=48) 2.10 (1.79, 2.41) ref 336.26 (317.12, 355.40) ref 
1 (n=62) 2.06 (1.78, 2.33) 0.84 327.19 (309.87, 344.51) 0.49 
2 (n=54) 2.01 (1.72, 2.31) 0.68 306.49 (288.48, 324.50) 0.03 

Sleep Duration      
0 (n=57) 2.10 (1.80, 2.40) 0.40 319.31 (300.5, 338.13) 0.75 
1 (n=52) 1.92 (1.63, 2.21) ref 323.55 (305.78, 341.33) ref 
2 (n=54) 2.15 (1.85, 2.45) 0.26 324.04 (305.44, 342.63) 0.97 

Daytime Dysfunction     
0 (n=56) 2.05 (1.76, 2.34) ref 305.23 (287.35, 323.12) ref 
1 (n=87) 2.01 (1.78, 2.24) 0.83 328.78 (314.58, 342.98) 0.04 
2 (n=23) 2.22 (1.77, 2.67) 0.54 339.11 (310.57, 367.67) 0.05 

Values represent least-square means and 95% confidence intervals via general linear models. Continuous 
variables values represent beta coefficient and standard error via general linear models. Abbreviations: 
PSQI=Pittsburgh Sleep Quality Index. Cut points: good sleep<5 PSQI Global, bad sleep>=5 PSQI 
Global. Adjustments: All models adjusted for age, systolic blood pressure, and total drinks per week 
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Table 4.9 Adjusted Inflammatory Markers by Actigraph Measures of Sleep 
Stratified by BMI Status 

 

 CRP mg/L p-value TNF-a pg/mL p-value 
Normal Weight (18.5-24.9 BMI) 

Sleep Duration      
³ 7 hours (n=17) 2.28 (1.06, 3.51) 0.34 4.64 (3.49, 5.79) 0.90 
7-6 hours (n=27) 1.74 (0.63, 2.84) ref 4.71 (3.64, 5.78) ref 
£ 6 hours (n=18) 2.32 (1.12, 3.52) 0.31 4.88 (3.71, 6.05) 0.76 

Sleep Efficiency -0.03 (0.02) 0.15 0.02 (0.02) 0.37 
SOL  0.10 (0.08) 0.24 0.008 (0.07) 0.91 
WASO 0.01 (0.008) 0.10 -0.01 (0.007) 0.10 

Overweight (25.0-29.9 BMI) 
Sleep Duration      
³ 7 hours (n=37) 2.29 (1.26, 3.32) 0.61 4.72 (3.75, 5.69) 0.23 
7-6 hours (n=41) 2.51 (1.54, 3.48) ref 5.23 (4.26, 6.2) ref 
£ 6 hours (n=45) 2.55 (1.57, 3.54) 0.91 4.76 (3.83, 5.69) 0.24 

Sleep Efficiency  0.02 (0.02) 0.46 0.02 (0.03) 0.38 
SOL  0.07 (0.08) 0.39 0.14 (0.08) 0.08 
WASO -0.002 (0.007) 0.74 -0.008 (0.007) 0.29 

Obese (≥30 BMI) 
Sleep Duration      
³ 7 hours (n=55) 3.34 (2.35, 4.33) 0.98 5.47 (4.63, 6.3) 0.88 
7-6 hours (n=26) 3.33 (2.23, 4.43) ref 5.40 (4.38, 6.42) ref 
£ 6 hours (n=31) 3.19 (2.12, 4.26) 0.78 5.15 (4.16, 6.13) 0.60 

Sleep Efficiency  -0.02 (0.02) 0.34 0.002 (0.02) 0.92 
SOL  0.01 (0.05) 0.77 -0.02 (0.04) 0.67 
WASO 0.004 (0.003) 0.12 0.00003 (0.003) 0.99 
Values represent beta coefficients and standard errors via general linear models. Abbreviations: SOL= 
Sleep onset latency, WASO=Wake after sleep onset. Adjustments: All models were adjusted for 
metabolic syndrome and age. Sleep Duration models additional adjusted for systolic blood pressure, total 
physical activity score, and rank. Models with TNF-a additional adjusted for race and gender. Models with 
CRP additional adjusted for rank 
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Table 4.9 (Continued) Adjusted Inflammatory Markers by Actigraph Measures of 
Sleep Stratified by BMI Status 

 

 IL-6  pg/mL p-value Fibrinogen mg/dL  p-value 
Normal Weight (18.5-24.9 BMI) 

Sleep Duration      
³ 7 hours (n=16) 2.02 (1.21, 2.83) 0.58 327.44 (278.0, 376.88) 0.80 
7-6 hours (n=25) 1.83 (1.05, 2.61) ref 322.15 (274.58, 369.73) ref 
£ 6 hours (n=18) 2.36, 1.56, 3.17) 0.11 348.77 (299.98, 398.15) 0.19 
Sleep Efficiency -0.007 (0.02) 0.67 -0.22 (0.85) 0.80 
SOL  -0.005 (0.06) 0.92 3.65 (2.84) 0.20 
WASO 0.002 (0.006) 0.74 0.22 (0.29) 0.46 

Overweight (25.0-29.9 BMI) 
Sleep Duration      
³ 7 hours (n=36) 2.45 (1.72, 3.17) 0.50 367.23 (323.95, 412.51) 0.40 
7-6 hours (n=41) 2.28 (1.58, 2.97) ref 355.37 (312.43, 398.32) ref 
£ 6 hours (n=44) 2.23 (1.54, 2.92) 0.85 346.28 (304.22, 388.34) 0.53 
Sleep Efficiency  -0.01 (0.01) 0.41 0.05 (0.87) 0.96 
SOL  -0.008 (0.05) 0.87 4.70 (2.64) 0.08 
WASO 0.003 (0.004) 0.44 0.03 (0.24) 0.91 

Obese (≥30 BMI) 
Sleep Duration      
³ 7 hours (n=56) 2.34 (1.68, 3.01) 0.77 364.7 (323.97, 405.42) 0.52 
7-6 hours (n=26) 2.27 (1.51, 3.02) ref 354.86 (308.76, 400.97) ref 
£ 6 hours (n=32) 2.37 (1.64, 3.1) 0.72 340.96 (296.2, 385.72) 0.41 
Sleep Efficiency  0.003 (0.008) 0.70 -0.67 (0.5) 0.19 
SOL  -0.05 (0.02) 0.01 -0.10 (1.41) 0.95 
WASO -0.0006 (0.001) 0.67 0.09 (0.09) 0.33 
Values represent beta coefficients and standard errors via general linear models. Abbreviations: SOL= 
Sleep onset latency, WASO=Wake after sleep onset. Adjustments: All models were adjusted for 
metabolic syndrome and age. Sleep Duration models additional adjusted for systolic blood pressure, total 
physical activity score, and rank. Models with TNF-a additional adjusted for race and gender. Models with 
CRP additional adjusted for rank 
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Table 4.10. Adjusted Mean Inflammation Markers by PSQI Components Stratified 
by Shiftwork Status  

 

 CRP mg/L p-value TNF-a pg/mL p-value 
Day 

PSQI Global      
Good Sleep (n=104) 2.59 (1.90, 3.28) ref 5.45 (4.85, 6.04) ref 

Bad sleep (n=74) 2.31 (1.72, 2.89) 0.52 5.23 (4.72, 5.73) 0.59 
PSQI Global Continuous  -0.07 (0.07) 0.35 -0.003 (0.06) 0.95 
Sleep Quality      

0 (n=22) 3.06 (0.95, 5.16) ref 4.66 (2.98, 6.34) ref 
1 (n=87) 2.37 (1.74, 3.00) 0.54 5.38 (4.82, 5.94) 0.42 
2 (n=46) 2.50 (1.79, 3.21) 0.62 5.35 (4.76, 5.94) 0.45 
3 (n=14) 1.68 (-0.05, 3.40) 0.32 5.20 (3.66, 6.74) 0.64 

Sleep Latency      
0 (n=61) 2.46 (1.53, 3.38) ref 5.46 (4.71, 6.21) ref 
1 (n=61) 2.63 (1.87, 3.38) 0.78 5.04 (4.37, 5.70) 0.41 
2 (n=48) 2.15 (1.45, 2.84) 0.60 5.37 (4.77, 5.98) 0.86 

Sleep Duration      
0 (n=53) 2.71 (1.84, 3.58) 0.60 5.18 (4.43, 5.92) 0.93 
1 (n=69) 2.41 (1.68, 3.13) ref 5.22 (4.59, 5.85) ref 
2 (n=47) 2.17 (1.41, 2.92) 0.66 5.51 (4.85, 6.16) 0.53 

Daytime Dysfunction     
0 (n=70) 3.23 (2.45, 4.00) ref 5.49 (4.8, 6.17) ref 
1 (n=78) 1.98 (1.36, 2.60) 0.01 5.12 (4.58, 5.65) 0.40 
2 (n=22) 2.15 (1.12, 3.18) 0.10 5.63 (4.71, 6.55) 0.81 

Evening/Night 
PSQI Global      

Good Sleep (n=98) 2.45 (2.11, 2.78) ref 5.32 (5.03, 5.61) ref 
Bad sleep (n=131) 2.39 (2.04, 2.73) 0.81 5.10 (5.03, 5.61) 0.30 

PSQI Global Continuous  0.01 (0.04) 0.73 -0.02 (0.03) 0.56 
Sleep Quality      

0 (n=18) 2.45 (1.75, 3.15) ref 5.06 (4.45, 5.67) ref 
1 (n=118) 2.56 (2.22, 2.89) 0.79 5.33 (5.03, 5.62) 0.45 
2 (n=78) 2.19 (1.74, 3.64) 0.54 5.13 (4.74, 5.52) 0.86 
3 (n=14) 2.57 (1.66, 3.47) 0.85 4.89 (4.09, 5.69) 0.73 

Sleep Latency      
0 (n=64) 2.23 (1.81, 2.65) ref 4.94 (4.58, 5.31) ref 
1 (n=80) 2.53 (2.12, 2.94) 0.32 5.43 (5.07, 5.78) 0.06 
2 (n=81) 2.56 (2.12, 2.99) 0.29 5.28 (4.9, 5.67) 0.21 

Sleep Duration      
0 (n=76) 2.59 (2.19, 2.93) 0.41 5.38 (5.03, 5.73) 0.60 
1 (n=71) 2.34 (1.90, 2.77) ref 5.24 (4.59, 5.63) ref 
2 (n=78) 2.41 (1.96, 2.84) 0.83 5.01 (4.62, 5.39) 0.39 

Daytime Dysfunction     
0 (n=64) 2.54 (2.12, 2.95) ref 5.19 (4.83, 5.55) ref 
1 (n=134) 2.49 (2.16, 2.82) 0.86 5.25 (4.96, 5.54) 0.79 
2 (n=30) 1.93 (1.21, 2.65) 0.15 5.11 (4.47, 5.75) 0.84 
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Values represent least-square means and 95% confidence intervals via general linear models. Continuous 
variables values represent beta coefficient and standard error via general linear models. Abbreviations: 
PSQI=Pittsburgh Sleep Quality Index. Cut points: good sleep<5 PSQI Global, bad sleep>=5 PSQI 
Global. Adjustments: All models adjusted for age, systolic blood pressure, and total drinks per week 
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Table 4.10 (Continued) Adjusted Mean Inflammation Markers by PSQI 
Components Stratified by Shiftwork Status 

 

 IL-6  pg/mL p-value Fibrinogen mg/dL p-value 
Day  

PSQI Global      
Good Sleep (n=102) 1.99 (1.66, 2.33) ref 321.79 (299.62, 343.96) ref 

Bad sleep (n=74) 2.33 (2.03, 2.62) 0.14 314.09 (295.64, 332.55) 0.60 
PSQI Global Continuous  0.001 (0.04) 0.97 -3.08 (2.49) 0.22 
Sleep Quality      

0 (n=22) 2.88 (1.93, 3.82) ref 323.69 (262.33, 385.05) ref 
1 (n=85) 1.95 (1.63, 2.27) 0.07 320.1 (299.43, 340.78) 0.91 
2 (n=47) 2.31 (1.97, 2.66) 0.27 311.74 (290.1, 333.38) 0.72 
3 (n=13) 2.49 (1.63, 3.36) 0.56 323.79 (267.56, 380.03) 0.99 

Sleep Latency      
0 (n=58) 2.39 (1.94, 2.83) ref 330.38 (302.13, 358.63) ref 
1 (n=63) 2.08 (1.70, 2.46) 0.30 318.02 (293.56, 342.49) 0.51 
2 (n=47) 1.96 (1.73, 2.19) 0.42 310.86 (288.65, 333.07) 0.28 

Sleep Duration      
0 (n=51) 2.43 (2.01, 2.85) 0.03 332.33 (304.48, 360.18) 0.16 
1 (n=69) 1.81 (1.45, 2.18) ref 306.75 (283.55, 329.95) ref 
2 (n=47) 2.37 (1.99, 2.74) 0.04 317.24 (293.32, 341.16) 0.53 

Daytime Dysfunction     
0 (n=68) 2.35 (1.96, 2.75) ref 324.98 (299.7, 350.27) ref 
1 (n=78) 2.15 (1.85, 2.46) 0.43 312.45 (292.66, 332.23) 0.44 
2 (n=22) 1.96 (1.44, 2.48) 0.24 315.82 (281.98, 349.65) 0.67 

Evening/Night 
PSQI Global      

Good Sleep (n=103) 1.83 (1.66, 2.00) ref 316.72 (306.06, 327.38) ref 
Bad sleep (n=130) 1.81 (1.63, 1.98) 0.85 306.52 (295.33, 317.71) 0.19 

PSQI Global Continuous  0.004 (0.02) 0.84 -2.01 (1.18) 0.09 
Sleep Quality      

0 (n=19) 1.84 (1.49, 2.20) ref 323.94 (301.64, 346.24) ref 
1 (n=118) 1.93 (1.76, 2.10) 0.66 314.73 (303.83, 325.63) 0.47 
2 (n=82) 1.70 (1.48, 1.93) 0.51 305.26 (290.9, 319.62) 0.17 
3 (n=13) 1.50 (1.03, 1.98) 0.26 298.79 (269.44, 328.14) 0.18 

Sleep Latency      
0 (n=68) 1.72 (1.51, 1.93) ref 316.54 (303.15, 329.92) ref 
1 (n=81) 1.83 (1.61, 2.02) 0.50 310.66 (297.48, 323.85) 0.54 
2 (n=80) 1.96 (1.73, 2.19) 0.13 309.29 (295.08, 323.49) 0.47 

Sleep Duration      
0 (n=76) 1.84 (1.64, 2.04) 0.87 318.07 (305.23, 330.90) 0.41 
1 (n=73) 1.81 (1.59, 0.03) ref 310.10 (296.06, 324.13) ref 
2 (n=80) 1.85 (1.62, 2.07) 0.83 307.90 (293.66, 322.14) 0.83 

Daytime Dysfunction     
0 (n=67) 1.86 (1.65, 2.07) ref 315.72 (302.33, 329.1) ref 
1 (n=134) 1.82 (1.66, 1.99) 0.79 311.53 (300.85, 322.2) 0.63 
2 (n=31) 1.75 (1.39, 2.11) 0.61 308.1 (284.6, 331.59) 0.58 



 
49 
 

Values represent least-square means and 95% confidence intervals via general linear models. Continuous 
variables values represent beta coefficient and standard error via general linear models. Abbreviations: 
PSQI=Pittsburgh Sleep Quality Index. Cut points: good sleep<5 PSQI Global, bad sleep>=5 PSQI 
Global. Adjustments: All models adjusted for age, systolic blood pressure, and total drinks per week 
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Table 4.11 Adjusted Inflammatory Markers by Actigraph Measures of Sleep 
Stratified by Shiftwork Status 

 

 CRP mg/L p-value TNF-a pg/mL p-value 
Day 

Sleep Duration      
³ 7 hours (n=39) 2.46 (1.44, 3.49) 0.13 5.01 (4.14, 5.88) 0.35 
7-6 hours (n=40) 3.10 (2.08, 4.120 ref 5.41 (4.44, 6.39) ref 
£ 6 hours (n=39) 2.78 (1.83, 3.85) 0.46 4.73 (3.76, 5.70) 0.10 
Sleep Efficiency -0.06 (0.03) 0.04 -0.009 (0.03) 0.73 
SOL 0.20 (0.10) 0.04 0.12 (0.08) 0.16 
WASO 0.02 (0.009) 0.08 0.00002 (0.008) 0.99 

Evening/ Night  
Sleep Duration      
³ 7 hours (n=63) 3.19 (2.19, 4.18) 0.02 5.38 (4.44, 6.32) 0.71 
7-6 hours (n=48) 2.34 (1.36, 3.32) ref 5.24 (4.25, 6.23) ref 
£ 6 hours (n=39) 2.83 (1.81, 3.85) 0.21 5.38 (4.43, 6.33) 0.72 
Sleep Efficiency  -0.02 (0.01) 0.05 0.002 (0.01) 0.88 
SOL  0.04 (0.04) 0.26 0.02 (0.04) 0.68 
WASO 0.006 (0.003) 0.01 -0.0003 (0.003) 0.89 
Values represent beta coefficients and standard errors via general linear models. Abbreviations: SOL= 
Sleep onset latency, WASO=Wake after sleep onset. Adjustments: All models were adjusted for 
metabolic syndrome and age. Sleep Duration models additional adjusted for systolic blood pressure, total 
physical activity score, and rank. Models with TNF-a additional adjusted for race and gender. Models with 
CRP additional adjusted for rank 
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Table 4.11 (Continued) Adjusted Inflammatory Markers by Actigraph Measures of 
Sleep Stratified by Shiftwork Status 

 

 IL-6 pg/mL p-value Fibrinogen mg/dL  p-value 
Day 

Sleep Duration      
³ 7 hours (n=39) 2.16 (1.49, 2.84) 0.75 357.43 (315.84, 399.02) 0.56 
7-6 hours (n=39) 2.24 (1.51, 2.97) ref 366.34 (321.93, 410.75) ref 
£ 6 hours (n=38) 2.26 (1.57, 2.94) 0.95 351.45 (309.22, 393.69) 0.32 

Sleep Efficiency -0.02 (0.02) 0.22 -0.58 (0.92) 0.53 
SOL -0.01 (0.05) 0.84 -0.13 (3.11) 0.97 
WASO 0.006 (0.005) 0.25 0.14 (0.27) 0.61 

Evening/ Night  
Sleep Duration      
³ 7 hours (n=62) 2.78 (2.06, 3.50) 0.16 377.89 (334.15, 421.62) 0.04 
7-6 hours (n=47) 2.48 (1.76, 3.20) ref 351.27 (307.04, 395.51) ref 
£ 6 hours (n=88) 2.75 (2.03, 3.47) 0.21 355.80 (311.51, 400.09) 0.74 

Sleep Efficiency  -0.00008 (0.007) 0.99 -0.53 (0.43) 0.22 
SOL  -0.03 (0.02) 0.15 2.07 (1.27) 0.10 
WASO -0.00002 (0.001) 0.99 0.11 (0.09) 0.23 
Values represent beta coefficients and standard errors via general linear models. Abbreviations: SOL= 
Sleep onset latency, WASO=Wake after sleep onset. Adjustments: All models were adjusted for 
metabolic syndrome and age. Sleep Duration models additional adjusted for systolic blood pressure, total 
physical activity score, and rank. Models with TNF-a additional adjusted for race and gender. Models with 
CRP additional adjusted for rank 
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Table 4.12. Crude and Adjusted Odds Ratio of CRP by PSQI and Actigraph 
Measures of Sleep 

 

 
Present 
(n,%) 

Absent 
(n,%) 

Crude 
(Odds Ratio, 95% 

CI)  

Adjusted 
(Odds Ratio, 95% 

CI) 
Actigraph Sleep Measures     
   Sleep Duration      

³ 7 hours 42 (43) 72 (34) 0.82 (0.46, 1.45) 1.22 (0.64, 2.32) 
7-6 hours 25 (25) 73 (35) Referent Referent 
£ 6 hours 31 (32) 65 (31) 0.59 (0.33, 1.06) 1.17 (0.60, 2.28) 

   Sleep Efficiency   0.97 (0.94,0.99) 0.97 (0.95, 0.99) 
   SOL    1.11 (1.03, 1.20) 1.08 (1.00, 1.17) 
   WASO   1.01 (1.00, 1.02) 1.01 (1.00, 1.02) 
PSQI Sleep Measures     
   PSQI Global       

Good Sleep 74 (51) 159 (51) Referent Referent 
Bad sleep 70 (49) 154 (49) 0.98 (0.67, 1.45) 0.91 (0.60, 1.36) 

   PSQI Global Continuous    1.00 (0.94, 1.07) 0.99 (0.93, 1.05) 
   Sleep Quality      

0 15 (11) 32 (11) Referent Referent 
1 73 (52) 155 (51) 1.01 (0.51, 1.97) 0.92 (0.46, 1.84) 
2 43 (31) 96 (32) 0.96 (0.47, 1.95) 0.84 (0.41, 1.76) 
3 9 (6) 21 (7) 0.91 (0.34, 2.47) 0.74 (0.27, 2.07) 

   Sleep Latency      
0 47 (34) 95 (31) Referent Referent 
1 47 (34) 112 (37) 0.85 (0.52, 1.38) 0.86 (0.52, 1.42) 
2 45 (32) 96 (32) 0.95 (0.58, 1.56) 0.85 (0.51, 1.41) 

   Sleep Duration      
0 53 (38) 109 (36) 1.15 (0.70, 1.87) 1.30 (0.79, 2.15) 
1 42 (30) 99 (23) Referent  Referent  
2 46 (33) 91 (30) 1.19 (0.72, 1.98) 1.16 (0.69, 1.94) 

   Day time dysfunction     
0 58 (41) 101 (33) Referent Referent 
1 67 (47) 161 (53) 0.73 (0.47, 1.12) 0.68 (0.44, 1.06) 
2 17 (12) 42 (14) 0.71 (0.37, 1.35) 0.76 (0.39, 1.48) 

Column percentages may not equal 100% due to rounding. Stratum numbers may not equal column total 
due to missing data. Odds ratios obtained through simple logistic regression.  Abbreviations: 
PSQI=Pittsburgh Sleep Quality Index. Cut points: good sleep<5 PSQI Global, bad sleep>=5 PSQI 
Global. Adjustments for Subjective: All models adjusted for age, systolic blood pressure, and total 
drinks per week. Adjustments for Objective: All models were adjusted for metabolic syndrome and 
age. Sleep Duration models additional adjusted for systolic blood pressure, total physical activity score, 
and rank. Models with TNF-a additional adjusted for race and gender. Models with CRP additional 
adjusted for rank. 
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CHAPTER 5 

Discussion 

We found that CRP levels were significantly higher in individuals with the 

most daytime dysfunction compared to those with the least dysfunction. We also 

found that as the global PSQI scores increased, fibrinogen levels significantly 

decreased. After stratifying by BMI, sleep quality levels 1 and 2 (the middle levels 

of sleep quality) were statistically significantly associated with TNF-a in normal-

weight and overweight individuals compared to sleep level 0 (the best level of 

sleep quality). Normal-weight individuals with mid-level daytime dysfunction (level 

1) and obese individuals with any daytime dysfunction (levels 1 and 2) had 

significantly higher fibrinogen levels compared to individuals with the least daytime 

dysfunction (level 0). As global PSQI score increased, fibrinogen levels decreased 

in overweight individuals. Overweight individuals with the worst sleep latency 

(level 2) had significantly higher levels of TNF-a compared to those with the least 

sleep latency (level 0). In addition, obese individuals with the worst sleep latency 

also had the highest levels of fibrinogen. After stratification by BMI, actigraph 

measures showed significant associations in the obese category only. As sleep-

onset latency increased, IL-6 levels significantly decreased in obese individuals.
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After stratifying by shift work, we found that day shift workers with mid-

level daytime dysfunction (level 1) had significantly increased CRP levels compared 

to those with the least daytime dysfunction (level 0). For day shift workers, a sleep 

duration of 5-6 hours was significantly associated with higher IL-6 levels compared 

to a sleep duration of >7 hours. There was no significant association between 

inflammation markers and PSQI components for evening/night shift workers. Some 

significant associations between CRP and objective measures of sleep were seen 

when analyses were stratified by shiftwork. As sleep duration increased, CRP levels 

significantly decreased in day shift workers. In addition, as sleep-onset latency 

increased in day shift workers, CRP also significantly increased. For evening/night 

shift workers, as wake after sleep onset increased, CRP also significantly increased. 

After categorizing CRP into high and low risk clinical cut point, we found that every 

one-unit increase in sleep efficiency led to an odds ratio of 0.97 (0.95, 0.99) for a 

CRP >3.0.  

Both the Heart and Soul Study and a cross-sectional study using 2005-2006 

National Health and Nutrition Examination Survey (NHANES) data investigated the 

associations between sleep quality using subjective measures of sleep and 

inflammation (18, 28). These studies found no association between sleep quality 

and IL-6, CRP, or fibrinogen. The study using NHANES data did, however, find a 

significant association for all three inflammatory markers using the PSQI when 

looking at women over a 5-year period (28). This study found a J-shaped 

relationship between sleep quality, assessed using the Sleep Disorders 
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Questionnaire, and CRP (28). Two additional gender-restricted studies also 

examined sleep quality and inflammatory markers, with some similarities to our 

study: these studies each showed increased levels of CRP in individuals with poor 

sleep or low sleep quality (55, 56), which is consistent with our finding that as 

sleep efficiency increased, CRP levels decreased. 

However, some of our findings contrasted with those of previous research 

studies on inflammation markers and sleep. The 2000 and 2006 Social 

Environment and Biomarkers of Aging Study performed in Taiwan by Dowd et al. 

showed no association between inflammation markers and overall sleep quality 

but did find that longer sleep durations (>8 hours) were associated with higher 

levels of CRP, IL-6, and fibrinogen (20). The sleep measures used by Dowd et al. 

were collected using a modified PSQI, making them comparable to our study’s use 

of subjective markers. Although Dowd et al. found no association between sleep 

quality and inflammation, we did find a statistically significant association between 

sleep quality and fibrinogen when we stratified our analyses by BMI. In their 

analysis, Dowd et al. controlled for waist circumference, which is generally highly 

correlated with BMI. Dowd et al. found that sleep quality differed depending on 

the individual’s waist circumference, although they may have masked the effect of 

sleep quality by not stratifying their analyses (20). It is possible that waist 

circumference lies on the causal pathway between sleep and inflammation, and it 

would therefore would be inappropriate to adjust for waist circumference. Our 

findings regarding PSQI measurements were consistent with those of Dowd and 
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colleagues. We found statistically significant associations between sleep duration, 

as a PSQI component, and IL-6, but only among day shift workers after stratifying 

by shiftwork status. Using actograph sleep measures after stratifying by shiftwork, 

the day shift group showed a significant negative association between sleep 

duration and CRP levels in the current study. This, is in contrast to what was found 

by Dowd et al. in their Taiwanese population (20).  

An ancillary study to the Netherlands Study of Depression and Anxiety 

showed similar results to those of the Dowd et al. study mentioned above. In this 

ancillary study, significantly higher levels of CRP and IL-6 were found in individuals 

with longer sleep durations (19). Prather et al. used subjective sleep measures to 

obtain individuals’ sleep exposure and controlled for BMI. The study population 

comprised individuals diagnosed with depression or anxiety. In this analysis, 

depression (CESD) and anxiety (PSS) affected the association between 

inflammation markers and sleep. Although our analysis did not have a high enough 

sample size to justify stratifying by these measures, the Prather et al. study did, 

which may partially explain our contradictory results with regard to CRP (19). 

A study using both subjective and objective measures of sleep found 

positive associations between sleep duration and CRP, as well as sleep duration 

and IL-6 (25). Using an objective measure of sleep, Patel et al. showed that sleep 

duration and TNF-a were inversely related. However, the analysis using actigraph 

data showed no significant relationship between TNF-a and sleep measures. This 

analysis did find that compared to the lowest level of sleep quality, PSQI-assessed 



 
57 
 

sleep quality at every level but the highest was significantly associated with TNF-

a in normal-weight and overweight individuals. The discrepancy in sleep duration 

results between our study and Patel et al. could be due to the differing study 

populations used. Patel et al. used individuals enrolled in the Cleveland Family 

Clinic, a longitudinal cohort designed to study the genetics of obstructive sleep 

apnea (OSA) (25). Although police officers and individuals with sleep apnea do 

have comparable traits in sleep habits, there are key factors that burden police 

officers that are different from those factors at play in the Patel et al. study (25). 

However, the results of our logistic regression analysis are consistent with what 

was found by Patel et al. in patients with OSA, indicating that poor sleep is 

associated with higher levels of CRP (57). These results show that there are effect 

modifiers for the relationship between sleep and inflammation markers.  

When comparing our results to these previous studies, there are two major 

aspects that differ. First, we used both subjective measures of sleep from the PSQI 

and objective measures of sleep from actigraphy. Most sleep studies use a self-

reported questionnaire, such as the PSQI. Relying on self-reported information can 

cause misclassification of exposure because the participant must recall sleeping 

patterns from the last month or longer. Objective measures of sleep are reliant on 

the accuracy of the measurement tool used, for example, the actiwatch. 

Participants do not need to try to remember how long it took them to fall asleep 

once they got into bed because the actiwatch can monitor heart rate and 

electronically record when sleep begins. Objective measurements are the more 
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reliable option but can be unrealistic and expensive in large cohort studies or 

nested studies (103).   

A key difference between this study and previous studies of sleep and 

inflammation is our use of police officers as the study population. Police officers 

have a different lifestyle compared to people in other occupations. Police officers 

are exposed to a higher level of occupational stress and varying work shifts, both 

of which are strong contributors to sleep disruption. Occupational stress occurs 

when the stimuli an individual is exposed to in his or her work environment cause 

psychological changes. The more an individual is exposed to this stimulus, the 

more likely it is that psychological stress will cause physiological changes (17). The 

physiological changes brought about by stress can cause individuals to lose sleep 

or experience poor sleep. This effect may be exacerbated by poor stress 

management frequently found among police officers (13). Shiftwork also has a 

role in police officers’ sleep patterns. The purpose of shiftwork is to provide 

services 24 hours a day; this is important in professions that need continuous 

coverage (e.g., healthcare and law enforcement). Shift workers may consistently 

work one of the three 8-hour shifts that makes up the 24 hours in a day (day shift, 

evening shift, or night shift), or they may be on a rotating shift schedule in which 

their shift is not fixed, longer than 8 hours, and/or rotates between day and 

evening/night shifts. Working at night, while an individual’s circadian clock is in 

sleep mode, can cause disrupted circadian rhythms, which are associated with 

many health risks (80). The differences between police officers and the populations 
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examined in previous studies are vast and should be considered when we compare 

the results of our study to those of others. 

There is a strong link between the immune system and the quality of sleep 

an individual receives. This is because the immune system is regulated by a 

circadian cycle that modifies the function of the immune system over the course 

of the day (104). Cytokines, or inflammation markers, are at their highest levels in 

the blood at night and their lowest levels in the morning (104). The immune system 

causes inflammation by releasing pro-inflammatory cytokines when an infection or 

injury occurs (104). Inflammation can then be turned off by the immune system 

once the infection or injury has been repaired (104). Inflammation can persist past 

the time of injury or infection for a number of reasons. It has been observed that 

poor sleep can cause an increase in pro-inflammatory cytokines (104). If sleep 

does not occur at the length or level needed, the body will try to offset this 

disruption by increasing sleep-wake regulation cytokines. Because cytokines such 

as TNF-a and IL-6 are pro-inflammatory and are involved in sleep-wake regulation, 

it makes biological sense that a person’s sleep duration shortens or sleep quality 

lessens when these cytokines becomes elevated (105). 

The other inflammatory markers analyzed were CRP and fibrinogen. C-

reactive protein is an indicator for cardiovascular disease (CVD), as those at risk 

for CVD present higher levels of CRP (91). Because CRP is regulated independently 

from circadian rhythms, it is easy to see how sleep affects this inflammation marker 
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directly (104). Increased CRP can indicate long-term effects of sleep on 

inflammation, whereas fibrinogen can measure short-term acute effects (106).  

Body mass index has shown to have an inverse association with sleep 

duration (107). This association has been researched extensively because of the 

rising obesity epidemic (107). There is some dispute as to whether sleep is the 

cause or a consequence of obesity. Studies involving children have shown a strong 

relationship between sleep duration and weight gain, whereas studies involving 

adults showed poor sleep as both a cause and consequence of weight gain (107).  

The link between body fat and inflammation is better understood. The 

inflammatory response caused by obesity is very different from the normal 

inflammatory response during injury or infection (108). The trigger for this 

response occurs in adipose tissue and is due to an excess consumption of food. 

When excess macronutrients are consumed over a long period of time, metabolic 

signals engage with inflammatory pathways to introduce low levels of 

inflammatory cytokines. The adipose tissue then becomes altered to favor high 

levels of pro-inflammatory cytokines. Once this change occurs, the metabolic rate 

decreases, and the inflammatory state in adipose tissue becomes persistent (108).  

When stratified by BMI, our findings are consistent with hypotheses 

presented in previous studies. When using BMI as an effect modifier, we found 

significant results related to sleep latency rather than sleep duration, as had been 

found in previous studies (107). Here, decreases in sleep quality and poor sleep 

overall were associated with increases of inflammatory markers in normal and 
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overweight individuals but not in the obese population. Most of the associations 

between sleep measures and inflammatory markers were found in the overweight 

group. The sample sizes for the overweight (n=187) and obese (n=180) groups 

were almost equal, so the reason for the increased associations with inflammatory 

markers seen in the overweight group could be due to processes occurring at a 

cellular level in obese individuals. Adipose tissue is associated with inflammation, 

and obese individuals have larger amounts of adipose tissue than overweight or 

normal-weight individuals. The presence of this large amount of adipose tissue 

may mask the effect of poor sleep (109). 

Another factor influencing sleep and inflammatory markers is shift work. 

Shift work is associated with a host of chronic diseases, as well as disrupted sleep 

and increased fatigue (75). This disruption in sleep is caused by displaced work 

hours that can change frequently for individuals employed in shiftwork jobs. 

Environmental light can cause phase changes in the body’s circadian rhythm, 

where evening light causes a delay and morning light causes an advancement 

(110). When an individual transitions from a normal sleep-wake schedule to 

working an evening/night shift, he or she must adapt to a different sleep-wake 

schedule. Therefore, individuals working evening/night shifts or switching between 

day and evening/night shifts will suffer from circadian disruption, and their sleep 

quality and duration will suffer (110). Because of this circadian disruption, we 

expect people working evening/night shifts to have higher levels of daytime 

dysfunction and lower sleep quality. 
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Shiftwork is associated with increased risk of cardiovascular disease (111). 

Just as sleep is affected by shiftwork, inflammation also is affected by shiftwork 

(112). Studies indicate that evening/night and alternating shiftwork cause an 

increase in inflammatory markers that are not seen in people working normal day 

shifts (82). A study performed using BCOPS data examined the association 

between shiftwork and immune cells and demonstrated that night shifts are 

associated with elevated levels of leukocytes (80). This association between 

shiftwork and immune cells suggests that there might be an elevation of 

inflammatory markers in night shift workers (43). 

Here we found results for the PSQI measures that were contradictory to 

those in previous studies. We found that compared to the lowest level of daytime 

dysfunction, a moderate level of daytime dysfunction was significantly associated 

with CRP in day shift workers. We also found that a sleep duration of 6-7 hours 

was significantly associated with IL-6 levels in day shift workers but not in night 

shift workers compared to sleep duration of >7 hours. As sleep duration increased 

among day shift workers, CRP levels decreased, and as sleep-onset latency 

increased, CRP levels increased. We found that among evening/night shift workers, 

wake after sleep onset was positively associated with CRP. The association 

between sleep duration and CRP for day shift workers might indicate that these 

individuals tend to sleep longer, leading to more opportunity to observe the effect 

of sleep on inflammation. This could also signify that the time participants are 

sleeping during the night might have more of a restorative effect.  
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Stress also affects sleep and inflammation. Stress is present in all individuals 

and can cause problems with sleep such as difficulties falling asleep and large 

WASO intervals (113). Difficulty falling asleep is caused by increased arousal with 

delayed sleep onset (113). Individuals in high-stress situations experience shorter 

duration of sleep compared to those in low-stress situations (113). We would 

expect police officers, in general, to have elevated levels of stress. Stress is a risk 

factor for depression, and inflammatory markers are one mechanism by which 

depression occurs (114). According to the social signal transduction theory of 

depression, stress causes an upregulation of the immune system, and pro-

inflammatory cytokines specifically. An increase in pro-inflammatory cytokines has 

a role in behavior and can cause changes that include depressive symptoms (114). 

Using this theory, we would expect police officers to have elevated levels of 

inflammatory markers and worse sleep as scores on stress measures and 

depression tests increase. 

We investigated stress as an effect modifier but only found three significant 

associations. Sleep-onset latency was statistically associated with CRP in people 

with a high CESD score but not for individuals with a low CESD score. Wake after 

sleep onset latency was statistically associated with fibrinogen, but not among 

individuals with a low CESD score. A sleep duration of 6-7 hours was statistically 

associated with TNF-a in individuals with a high PSS score but not those with a 

low PSS score. These findings reinforce the theory of stress and inflammatory 

markers, but not for all levels of CESD score. It is possible that we did not see 
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associations at all levels of CESD score because all police officers are exposed to 

high levels of occupational stress, so there was no reference group that had no 

exposure to stress.  

A major strength of this study was the use of both subjective and objective 

measures of sleep. This allowed for a measure of sleep that was not subject to 

recall bias, making it more reliable. Using both measures also allowed us to 

understand participants’ perception of their sleep (PSQI), in conjunction with their 

actual objective sleep characteristics (actigraph). Another strength was the use of 

electronic payroll records for classification of shiftwork because it allowed for 

calculation of total hours worked per shift and placed people in their most-worked 

category. Using four different inflammatory markers allowed us to observe the 

impact of sleep on two inflammatory markers that are sleep regulators and two 

that are not sleep regulators. We were also able to examine differences in 

associations with CRP and fibrinogen between long-term and short-term shiftwork. 

Previous studies have looked at all four of these markers in relation to sleep but 

have seldom investigated all four together.  

Along with the strengths, there were limitations in this study. The BCOPS 

population is not generalizable to other occupational groups because of the stress 

and shiftwork present in these occupations (17, 84). Blood was only drawn once, 

in the morning, meaning we had to assume that inflammatory markers collected 

at a single timepoint were characteristic of chronically elevated levels. In addition, 

inflammatory markers are at their lowest in the morning, which could have 
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prevented us from capturing chronic elevation of some inflammatory markers and 

may be responsible for the lack of associations found (104). There also is the 

possibility of a healthy worker effect within the police population. The healthy 

worker effect describes the phenomenon that employed individuals are usually 

healthier than the general population (115). In this case, there are primary 

components to the healthy worker effect. First, individuals must undergo a medical 

examination to become employed as police officers. Those too sick to pass the 

examination could not be hired as police officers and therefore could not be part 

of our study population. Second, the environment in which police officers work can 

cause people to leave because of disease or health complaints (115). It could be 

that the police officers that work the night shift do so because they have increased 

coping skills, and people that did not have these skills quit or switched to the day 

shift. Night shift workers could be healthier in this regard, drawing our results 

towards the null. This could have influenced the association between sleep and 

inflammation by shiftwork categories (115).  
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CHAPTER 6 

Conclusion 

Significant associations were found between different inflammation markers 

and sleep exposures. This study’s findings indicate that sleep can affect police 

officers’ health and potentially lead to an increased risk of disease. Future 

longitudinal research should be done on this association, which would allow 

researchers to examine changes in inflammation over time. This type of study 

could help capture chronic inflammation and explain its temporality. A more 

diverse population should be used because police officers experience high levels 

of occupational stress and are not generalizable to the overall population. With a 

large diverse population, the findings would have a larger clinical impact. The 

actigraphy data also could be measured more frequently and for longer periods of 

time.   

The findings from this study support evidence that can be translated into 

public health practice. If sleep is found to be associated with inflammation in a 

longitudinal study, especially among high-stress occupations, education and 

intervention programs could be designed to target high-risk populations, such as 

police officers. For example, police officers could be made aware of the risk of poor 

sleep among shift workers, and officers could be urged to follow sleep duration 
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guidelines and not try to follow the sleep-wake schedule mandated by their 

assigned shifts on their days off. Regular tracking of blood inflammation levels 

among police officers may help identify individuals in need of additional assistance 

in improving their sleep patterns to reduce risk of future disease. 
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