
University of South Carolina University of South Carolina

Scholar Commons Scholar Commons

Theses and Dissertations

2018

Ontology-Guided Pre-Release Inference Disruption Ontology-Guided Pre-Release Inference Disruption

Mark Stephen Daniels
University of South Carolina

Follow this and additional works at: https://scholarcommons.sc.edu/etd

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Daniels, M. S.(2018). Ontology-Guided Pre-Release Inference Disruption. (Doctoral dissertation). Retrieved
from https://scholarcommons.sc.edu/etd/4578

This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in
Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please
contact digres@mailbox.sc.edu.

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/etd
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F4578&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.sc.edu%2Fetd%2F4578&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/4578?utm_source=scholarcommons.sc.edu%2Fetd%2F4578&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digres@mailbox.sc.edu

Ontology-Guided Pre-Release Inference Disruption

by

Mark Stephen Daniels

Bachelor of Science
College of Charleston 1984

Master of Science
Johns Hopkins University 1992

Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in

Computer Science and Engineering

College of Engineering and Computing

University of South Carolina

2018

Accepted by:

Csilla Farkas, Major Professor

John Rose, Committee Member

Gabriel Terejanu, Committee Member

Lannan Luo, Committee Member

Benjamin Schooley, Committee Member

Cheryl L. Addy, Vice Provost and Dean of the Graduate School

c© Copyright by Mark Stephen Daniels, 2018
All Rights Reserved.

ii

Dedication

I am dedicating this work to my wife and best friend Debbie, who has been a

constant source of support and encouragement during the challenges of school and

life. I am truly thankful for having you in my life. Your love is what has kept me

going.

This work is also dedicated to our children, Matthew and Kelly. You will never

know how much help you have provided me on this journey.

I could never have accomplished this without my family’s unwavering love, inspi-

ration, and support.

iii

Acknowledgments

I am forever grateful to my advisor Csilla Farkas, whose guidance and advice have

made this research possible. Taking on a student that works full time and lives 100

miles from campus has to be a challenge. I will never forget Professor Farkas giving

many hours of her time for early morning phone calls and endless trips to campus on

weekends. I am not sure I would have made it to the end with any other advisor.

I am especially grateful to my committee, Professor John Rose, Professor Gabriel

Terejanu, Professor Lannan Lou, and Professor Benjamin Schooley. Your input and

advice helped me become a better scholar.

To Mom and Dad - thanks for helping me achieve so much in my life. Your

love, support, and encouragement have helped me get where I am today. Thanks to

my little sister Bridget, for being there when I need you. Bill, Carol - thanks for

everything you do. Billy and Ellen - thanks for just being there, it really meant a lot.

Thanks to Debbie for graphics, proofreading, coffee, pizza, and patience. Thanks

to Matthew for all the late-night discussions and math tutoring and Kelly for making

me think, laugh, and relax. Thanks to Dan Furlong and Melissa Forinash for your

friendship and encouragement.

A special thanks to all my friends and colleagues at MUSC. Your assistance and

advice was invaluable. Lastly, thanks to Mike Caputo for your support, always asking

how I am doing, and just spending time chatting.

iv

Abstract

We investigate privacy violations occurring when non-confidential patient data is com-

bined with medical domain ontologies to disclose a patient’s protected health infor-

mation (PHI). We propose a framework that detects privacy violations and eliminates

undesired inferences. Our inference channel removal process is based on controlling

the release of the data items that lead to undesired inferences. These data items are

either blocked from release or generalized to eliminate the disclosure of the PHI. We

show that our method is sound and complete. Soundness means the only inference

paths generated logically follow from released data and corresponding domain knowl-

edge. Completeness means we detect all inference channels leading to undesired data

disclosures. Our approach maximizes data availability by minimizing the number of

data items to be generalized or removed.

In Phase 1 of our research, we construct an optimal solution which disrupts all

privacy violations. We have developed a cost model based on the number of data

items that are removed or generalized. We calculate the cost for each solution and

select the solution with the lowest cost as the optimal solution.

Phase 2 of our research introduces heuristic-based improvements into our ap-

proach. We have developed a method to construct a solution, called an inference

disruption cover. We use the entropy of the concepts within domain ontology to

guide selection of the best facts in a disruption cover for generalization.

In Phase 3, we extend our privacy model to incorporate personal privacy pref-

erences and safety. We provide mechanisms to specify a patient’s personal privacy

restrictions as well as a clinician’s safety criteria. We introduce privacy and safety

v

labeling of data items. We develop conflict resolution strategies when privacy and

safety labels are contradictory. Our conflict resolution strategy favors safety over

personal privacy.

Lastly, in Phase 4, we propose a graphical tool to support patients’ understanding

of the privacy settings. Our tool provides brief tutorials about health data types,

regulations, and typical healthcare data sharing. We also allow patients to view their

medical data and data inferred using domain knowledge. This will help the patient

understand the impact of releasing their data through a Health Information Exchange

or for secondary use. Our graphical interface allows patients to request that specific

data items be blocked from being released. An important aspect of our approach is

that it sets the foundation for creation of patient-specific privacy policies.

In summary, the primary contribution of this work is a sound and complete frame-

work capable of efficiently detecting and disrupting healthcare-focused inference vi-

olations. We extend the privacy model to incorporate patient-specific privacy and

safety preferences. Finally, our proof-of-concept prototype implementation supports

privacy preserving data release and real-time policy composition.

vi

Table of Contents

Dedication . iii

Acknowledgments . iv

Abstract . v

List of Tables . x

List of Figures . xii

List of Abbreviations . xvi

Chapter 1 Introduction . 1

1.1 Motivation . 4

1.2 Running Example . 5

1.3 Research Tasks . 8

1.4 Dissertation Outline . 10

Chapter 2 Related Work . 11

2.1 Medical Data Privacy . 11

2.2 Inference Problem . 13

2.3 Medical Ontologies and Inference Engines 14

Chapter 3 Pre-Release Inference Framework 17

vii

3.1 Architecture . 17

3.2 Approach . 18

3.3 Preliminaries . 20

3.4 Pre-Release Inference Disruption . 33

Chapter 4 Exhaustive Disruption 51

4.1 Implementation & Empirical Results 51

4.2 Findings . 56

Chapter 5 Efficient Disruption . 58

5.1 Participating Fact Combination Set Size 59

5.2 Hypergraph Cover . 61

5.3 Cost . 71

5.4 Order of Evaluation . 81

5.5 Efficient Disruption Approach . 91

5.6 Efficient Approach Empirical Results 113

Chapter 6 Privacy & Safety . 120

6.1 Privacy - Patient Preference . 121

6.2 Safety . 122

6.3 Privacy & Safety Approach . 123

6.4 Privacy & Safety Empirical Results 127

Chapter 7 Graphical User Interface 128

7.1 High-Level Design . 129

viii

7.2 Prototype Implementation . 136

7.3 Patient Reference Information . 137

Chapter 8 Conclusions & Future Research 143

Bibliography . 146

ix

List of Tables

Table 1.1 Example pattern templates and associated privacy labels. 6

Table 1.2 Example instance facts with privacy labels. 7

Table 3.1 Sample triples from instance database showing facts for patients
“Bob” and “Mary”. 25

Table 3.2 Patterns, potentially with wildcards, are matched to an RDF
triple allowing for mapping of a privacy label to the triple. 29

Table 3.3 Solution generation (quaternary) example values showing the
count and corresponding solution. 44

Table 3.4 Cost Values for generalization actions. 46

Table 3.5 Cost Alteration Example - Assumes both concepts must be gen-
eralized to disrupt inference. 48

Table 4.1 Prototype execution summary timing collected for 100, 500, 1000,
2500, and 5000 instance databases grouped by violation count. . . 53

Table 5.1 Inference Participation - Figure 5.8 ground facts shown with par-
ticipation count for both violation and non-violation inferences. . 74

Table 5.2 Degree, normalized degree, and entropy values for concepts c7
and c18. 77

Table 5.3 Information Vectors - Table shows the three types of information
vectors. 79

Table 5.4 Initial information vectors for minimal disruption cover (removal)
combination. 87

Table 5.5 Initial information vectors for minimal disruption cover (removal
+ generalization) combination. 87

x

Table 5.6 Prototype execution summary with efficient methods timing col-
lected for 100, 500, 1000, 2500, and 5000 instance database
grouped by violation count. 114

Table 6.1 Patient preference value indicates the level of requirement that
something should not be released. 121

Table 6.2 Safety values indicate the level of requirement that something
must be released. 123

Table 6.3 Information Vectors - table shows data item information vectors. 126

Table 6.4 Information Vectors - table shows data item, alteration, and
combination information vectors. 126

xi

List of Figures

Figure 1.1 Running Example Medical Ontology - includes people, medical
specialties, medications, and diseases. Several instance data
items (facts) are also shown. 6

Figure 3.1 Pre-Release Inference Analyzer (PIA) Architecture 18

Figure 3.2 Single Inference Path - This figure shows a graphical represen-
tation of the inference path for rule a1∧a2∧· · ·∧an → b, where
b is an authorized inference. 26

Figure 3.3 Inference Paths - Multiple intersecting paths. Conclusions are
represented by squares (authorized) and octagons (unautho-
rized) to visually differentiate them. Note that the conclusion
of one path may be a participant in another path. 27

Figure 3.4 Solution States used in generalization. Replacement of the RDF
triple object’s concept is based on position in the ISA hierarchy
of the ontology. Information detail is lost as we generalize up
the hierarchy. 41

Figure 4.1 Prototype Execution. Screen shot of prototype execution. This
run found two privacy violations based on 6 ground facts. 52

Figure 4.2 Solution Cost Distribution 1. Graph for one privacy violation
with three ground facts in its inference path. 54

Figure 4.3 Solution Cost Distribution 2. Graph for two privacy violation
with six ground facts in their inference paths. 55

Figure 4.4 Prototype Execution Timing. Trend lines show execution time
(log) in milliseconds. Individual line corresponds to number of
violations found in data instance. 56

xii

Figure 5.1 Shows all satisfied rules, not just ones generating new data
(2 rules generate “i” and “r”). Octagons indicate violations,
squares are safe inferences. 64

Figure 5.2 Expansion of Figure 5.1 showing rule dependencies and disrup-
tion containers. 65

Figure 5.3 Rules from Figure 5.1(b) represented as hypergraphs. 66

Figure 5.4 Shows Figure 5.3 with like concepts linked. 67

Figure 5.5 Multi-violation connected rules. Connect rules where violation
“i” is dependent on another violation “d”. 68

Figure 5.6 Hypergraphs of connected rules with dependent violations. 68

Figure 5.7 Truth table for u, v. 69

Figure 5.8 All inferences paths. Paths from Figure 5.1 (secondary rules
removed for clarity) enhanced to include inference paths not
contributing to violations (rule head shown in grey). Rule con-
clusions v, w, and y, along with ground facts u and x, do not
participate in any of the violation inference paths. 73

Figure 5.9 Hierarchical Ontology Tree - Concepts at the top of the tree
near the root are more general, while concepts at the bottom,
farther from the root, are more specific, with C4, C5, and C6
having the most specificity. 75

Figure 5.10 Entropy Example - Ontology tree with 18 concepts in the on-
tology, excluding the ontology root. 77

Figure 5.11 Multi-identify nature of concepts when they are potential tar-
gets for generalization or removal. 80

Figure 5.12 Logic graph. This graph is constructed during inference path
evaluation and participant discovery and is used to construct
the logic equation for cover evaluation. 88

Figure 5.13 This graph is constructed during interrogation of the violations
inference paths. Note the numbers which indicate the order of
node visiting during depth-first traversal. 90

Figure 5.14 High-level logic flow of Low-Cost Selection Semi-Exhaustive. . . . 93

xiii

Figure 5.15 Highlevel logic flow of Low-Cost Selection Heuristic. 95

Figure 5.16 High-level logic flow of Low-Cost High-Entropy Traversal. 97

Figure 5.17 Prototype execution timing for execution using efficient meth-
ods. Trend lines show execution time (log) in milliseconds. In-
dividual line corresponds to number of violations found in data
instance. 115

Figure 5.18 Prototype execution timing for 0 violation data sets. Trend
lines show execution time (log) in milliseconds. Individual line
corresponds to number of violations found in data instance. . . . 116

Figure 5.19 Prototype execution timing for 1 violation data sets. Trend
lines show execution time (log) in milliseconds. Individual line
corresponds to number of violations found in data instance. . . . 117

Figure 5.20 Prototype execution timing for 2 violation data sets. Trend
lines show execution time (log) in milliseconds. Individual line
corresponds to number of violations found in data instance. . . . 118

Figure 5.21 Prototype execution timing for 4 violation data sets. Trend
lines show execution time (log) in milliseconds. Individual line
corresponds to number of violations found in data instance. . . . 119

Figure 6.1 Multi-identity nature of concepts when they are potential tar-
gets for generalization or removal. 126

Figure 7.1 Graphical User Interface integration with the PIA framework. . . 129

Figure 7.2 Graphical User Interface. Basic display layout. 130

Figure 7.3 Graphical User Interface. Description of tutorials and reference
material areas with button to access information. 131

Figure 7.4 Graphical User Interface. Initial view of the ontology with no
data loaded or inferred. 133

Figure 7.5 Graphical User Interface. View of educational information. 138

Figure 7.6 Graphical User Interface. Initial view of ontology with no data
loaded or inferred. 139

xiv

Figure 7.7 Graphical User Interface. View of ontology with patient data
loaded and inferred. 140

Figure 7.8 Graphical User Interface. View of places a healthcare facility
may send your data. 141

Figure 7.9 Graphical User Interface. View of ontology with preference se-
lector active for a relation. 142

xv

List of Abbreviations

ACL . Access Control List

API . Application Programming Interface

DAG . Directed Acyclic Graph

EMR . Electronic Medical Record

HIE . Health Information Exchange

GUI .Graphical User Interface

HIPAA . Health Insurance Portability and Accountability Act

FHIR . Fast Healthcare Interoperability Resources

KB . Knowledge Base

LUB . Least-Upper-Bound

MAC .Mandatory Access Control

PFC . Participating Fact Combination

PHI . Protected Health Information

PIA .Pre-Release Inference Analyzer

RBAC .Role-Base Access Control

RDF . Resource Description Framework

TRDBAC . Temporal Reflexive Database Access Control

xvi

Chapter 1

Introduction

Protected Health Information (PHI) is defined as health information collected on or

about a patient’s past, current, and future condition and identifiers that link data

back to the individual patient. PHI is protected by the Privacy Rule of the Federal

Health Insurance Portability and Accountability Act (HIPAA) of 1996 [14]. While a

healthcare entity may act as the custodian of a patient’s data, the data is traditionally

considered to be “owned” by the patient. Without the patient’s consent, access to

his/her health data is restricted to those with a need to know. In addition, data may

be released outside of a health care entity for reasons such as public health, quality

improvement and research studies; in these cases, the data is usually de-identified

and not linked to a specific patient. Federal, state and local law determines what

data can and cannot be accessed or released and for what purposes. The intent of

these laws is to protect a patient’s privacy.

On the black market, a stolen medical identity often sells for multiple times more

than that of a stolen credit card number, making it a prime target for attackers [25].

Large-scale data collection and development of health care ontologies allow malicious

users to automate the inference of medical facts with a high level of confidence.

Current legislation and due diligence in data release protocols is not sufficient to

protect against post-release inference capabilities. Health Information Exchanges

(HIE) are now commonplace and allow the exchange of identified patient data between

disparate entities. While regulated, the HIE data exchange process has the potential

to expose a patient’s private data [10]. With a heightened awareness of threats to

1

their medical data, patients are becoming concerned and need a proactive capability

to set limits on release of their personal information.

There has been significant work on understanding the database inference problem.

Farkas, et al., [12, 4] look at inference channels in statistical and relational databases

as well as inference issues with data mining which incorporate disparate data sets and

metadata. This work assumes that data resides with the data custodian, allowing

controls on data design, access, and query construction to be locally enforced. Jain,

et al., [18, 16, 19] have looked at the use of Resource Description Framework (RDF)

[15] metadata and ontologies to control access to sensitive data sets. Their work also

assumes data containing privacy-breaching inference channels has not be released

outside the organization. Iwaya [17] uses ontologies to assess and alter data sets prior

to release, but the goal of his work is to ensure that the data set is anonymized /

de-identified, which is not always the desired outcome. Lastly, Ellick [6] has worked

on schemes to segment private medical data and many commercial medical software

vendors have developed tools to identify HIPAA-designated patient identifiers as well

as constructed data release masking or obfuscating filters, but none of this work

addresses the post release inference problem.

We present an integrated privacy framework, called the Pre-Release Inference

Analyzer (PIA), which guarantees that an attacker cannot access unauthorized data

from a released data set even if the attacker can access domain knowledge and in-

ference tools. The goal of the framework is to identify privacy violations that can

be inferred by leveraging domain ontologies. Our solution will block inference paths

that lead to disclosure of sensitive data. We propose a data modification approach

based on ontology-guided data generalization.

We propose the PIA framework which is composed of three functional modules:

inference path generation (Reason), evaluation (Detect Violations), and solution de-

termination (Build Solution). Once the “Initial Data” is received, the framework will

2

iterate over all possible inference disruption solutions. The optimal solution is then

selected and applied to the Initial Data. This modified data set is then returned as

an authorized data set. Note that a solution will always be found although the cost

may prohibit the solution from returning a useful data set.

Our current work is focused on the medical / healthcare domain, but we feel

that the approach is applicable to many other domains. We are planning to ex-

tend our model to support patient-specific policies in the future. To the best of our

knowledge, our work is the first that introduces an integrated framework designed to

pre-evaluate data releases by identifying privacy violating inferences introduced by

domain ontology-based reasoning.

Our theoretical results show that our solution is sound and complete. Intuitively,

soundness means that the only inference paths generated logically follow from the

release data set and the corresponding domain knowledge. Completeness means that

we detect all inference channels leading to undesired data disclosures. We also show

that our approach only modifies data items contributing to an inference channel

disruption and preserves data availability by minimizing the number of data items to

be modified.

Our work is the first, to the best of our knowledge that introduces sound, complete,

and minimal algorithms to leverage domain knowledge to suggest database instance

modifications to defeat the privacy violating inference paths. Soundness ensures that

the framework does not introduce any data items that should not exist in the final

data set. Completeness ensures that all data items that should exist in the final data

set are present. Minimality ensures that we maximize data availability by modifying

the minimal data required to reach the goal.

We use the Apache Jena framework for reasoning over our data sets and domain

ontologies, both represented as RDF data sets. The PIA framework identifies all

inference-introduced privacy violations and proposes a solution that defeats the in-

3

ference paths while maximizing data availability. In addition to theoretical results,

empirical results from our prototypes indicate that with integration of solution lim-

iting heuristics, implementation of the approach is practical. We need to further

evaluate using large-scale data sets, but test results to this point are positive.

We develop sound, complete, and minimal algorithms for the identification of vio-

lations as well as the nomination and evaluation of solution sets. More specifically, our

algorithms evaluate all database instance items that contribute to privacy violations.

We evaluate the items as a collection and evaluate their impact to violating paths,

both directly and indirectly, as well as their involvement in non-violating paths. We

develop a cost function that considers each data item individually and collectively to

determine the best modification solution set to return.

1.1 Motivation

Medical data is considered sensitive and private, in fact it may be the most private

piece of information that a person can posses. While there are many reasons to

release a patient’s medical data, including payment, treatment, quality, research,

and syndromic surveillance, current due diligence in release protocols is not sufficient

against post-release inference capabilities. With advances in healthcare ontologies,

data contained in a patient’s record has much more semantic depth. This depth is

beneficial, as it allows healthcare professionals to gain better insight into a patient’s

condition, treatment, and outcome. Data scientists can use predictive models and

reasoning engines to expose “unseen” facts, providing caregivers new information to

assist in the assessment and treatment of a patient. Unfortunately, with the good

comes bad – the rich semantic depth of a patient record also gives a criminal actor

the ability to expose private data that was never intended to be shared. On the

black market, an individual’s medical identity is worth 10− 20 times more than their

credit identity, making healthcare data a prime target for attackers. Private medical

4

data can be used for blackmail, pharmacy purchases, insurance fraud and many

other illegal activities. With expanded data collection and advances in healthcare

ontologies, an actor does not require extensive medical knowledge to infer missing or

intentionally excluded medical facts. Technology advances have given cyber attackers

new weapons to automate the inference of medical facts with a high level of confidence.

Attackers can ‘regenerate’ unreleased sensitive data based on non-sensitive released

data, complex ontologies and reasoning tools. There are United States laws that

protect a patient’s privacy; unfortunately, many cyber attacks are launched from

foreign soil. With a heightened awareness of threats to a their medical data, patients

are becoming concerned and need a proactive capability to set limits on release of

personal information.

1.2 Running Example

In our running example, we address the privacy problem in data from the healthcare

sector. The running example database contains our medical ontology with concepts

and relations about patients, physicians, medications, and diseases. A graphical

illustration of the ontology and ontological instances is shown in Figure 1.1.

For privacy labels, we use privacy values: Public, Low, Medium, and High. The

label values range from Public indicating no privacy to High indicating the highest

privacy level available.

We define a set of patterns which are used for the assignment of privacy labels.

Patterns are generic and expressed as RDF triples. Each pattern may contain a

“wildcard” designator in any part of the triple. Our database and the ontology are

also stored in the RDF triple format allowing for straightforward pattern matching.

A pattern is associated with a single privacy label (see Table 1.1). We map patterns

to instance facts to determine appropriate privacy labels for each fact.

For our running example, we introduce two individuals (see Figure 1.1), a patient

5

MedicationDisease

Person

Physician

Hepatologist

givenFor

given
diagnosedWith

isA isA

treats

O
n
to
lo
g
y

isA

Hepatitis-C

Viral

Disease

Infectious

Disease

Interferon

Immune

Suppressent

isA
isA

isA

isA isA

Antibiotic

isA

Oncologist

isA

isA

treatedBy

F
a
c
ts Leonard

isAisA

treatedBy

diagnosedWith given

treats givenFor

Bob

Patient

Internist

Figure 1.1 Running Example Medical Ontology - includes people, medical
specialties, medications, and diseases. Several instance data items (facts) are also
shown.

Table 1.1 Example pattern templates and associated privacy labels.

Pattern Privacy Label
(∗, ∗, Patient) Not Private (public)
(∗, ∗, Physician) Not Private (public)
(∗, ISA,Hepatologist) Low Privacy
(∗, diagnosedWith, ∗) Low Privacy
(∗, given, Interferon) Medium Privacy
(∗, diagnosedWith,Hepatitis− C) High Privacy

named Bob and a physician named Leonard. Leonard is Bob’s physician of record

(Bob, hasPhysician, Leonard) and Leonard is a hepatologist (Leonard, ISA, Hepatol-

ogist) who treats liver associated diseases such as Hepatitis C (Hepatologist, treats,

Hepatitis-C). Bob also has relationships to the disease Hepatitis-C (Bob, diagnosed-

With, Hepatitis-C) and the medication Interferon (Bob, given, Interferon). Note that

medication Interferon may be used in the treatment of the disease Hepatitis C (Inter-

6

feron, givenFor, Hepatitis-C). Mapping these instance facts to our privacy mapping

patterns gives us the privacy assignments shown in Table 1.2.

Table 1.2 Example instance facts with privacy labels.

Instance Privacy Label
(Bob,ISA,Patient) Not Private (public)
(Leonard,ISA,Physician) Not Private (public)
(Leonard,ISA,Hepatologist) Low Privacy
(Bob,given,Interferon) Medium Privacy
(Bob,diagnosedWith,Hepatitis-C) High Privacy

Example 1.2.1 (Inference Violation). Consider the medical ontology and its in-

stances in Fig 1.1. Assume the following domain ontology rule exists: (Patient, treat-

edBy, Hematologist), (Patient, Given, Interferon)→(Patient, likelyHas, Hepatitis-C).

To protect privacy, we are not releasing that Bob has Hepatitis-C. We are will-

ing to release all other instance data. Once released, an observer noticing that the

patient’s diagnosis is not revealed could reason over the released data and domain

ontologies. Reasoning could infer what disease the patient has based on physician

relationships and the use of specific medications. For Bob, we observe that his physi-

cian is a hematologist, who is a liver specialist and he takes a medication used to

treat Hepatitis-C. Given these facts and rule, it is probable that Bob is being treated

for Hepatitis C, so this new fact may be inferred. The new fact increases our available

information, but also violates our privacy restriction by exposing unauthorized data

that was more private than we intended to release (see Table 1.2).

To eliminate the undesired inference, we investigate the rules and patient data

that contributed to that inference. When analyzing the rule, we determine that

there are two facts, (Bob, given, Interferon) and (Bob, treatedBy, Hepatologist), that

contribute to the inference. The second fact, (Bob, treatedBy, Hepatologist), is itself

inferred from relations (Bob, treatedBy, Leonard) and (Leonard, ISA, Hepatologist).

Taking all four facts into consideration, we could choose to remove the fact (Bob,

7

treatedBy, Hepatologist) from the data set. This appears to break the inference, but

unfortunately this fact would get re-created in a subsequent inference based on facts

(Bob, treatedBy, Leonard) and (Leonard, ISA, Hepatologist). If we choose to remove

the fact (Bob, given, Interferon) instead, the inference would be broken and the

removed fact is not re-created in a subsequent fix point, based on the data available.

1.3 Research Tasks

This dissertation presents our research findings addressing the following areas:

1. Privacy Analysis – Determine if reasoning over domain knowledge and non-

sensitive may generate privacy violations. Develop methods to disrupt unde-

sired inferences by removal or generalization of select data items.

Focus areas:

• Privacy model

• Data inferencing and privacy

• Cost model

Publications:

• M. Daniels and C. Farkas, “Health Data Privacy: A Case of Undesired

Inferences”, Proceedings of the 2018 IEEE Conference on Biomedical and

Health Informatics, pp. 291 - 294

• M. Daniels and C. Farkas, “Undesired Inferences: Ensuring Privacy in

Health Data”, submitted to Information Systems journal, under review

• M. Daniels and C. Farkas, “Medical Privacy in the 21st Century", in

progress, to be submitted to JAMIA - Journal of the American Medical

Informatics Association

8

2. Efficient Disruption – Develop heuristics that increase our methods computa-

tional efficiency while still guaranteeing removal of privacy violations.

Focus areas:

• Exhaustive results analysis

• Heuristic methods

• Enhanced cost model

Publications:

• M. Daniels, J. Rose and C. Farkas, “Protecting Patients’ Data: An Ef-

ficient Method for Health Data Privacy”, submitted to the 13th Interna-

tional Conference on Availability, Reliability and Security (ARES 2018),

under review

3. Privacy & Safety –Extend privacy model to include safety and patient privacy

preferences.

Focus areas:

• Enhanced Privacy model

• Enhanced cost model

Publications:

• Enabling Preferences in the Healthcare Data Privacy Model, to be sub-

mitted

4. Graphical User Interface – Design a graphical user interface to provide tutorials

and privacy information. Also allow patients to view their data and any new

data generated by reasoning over domain knowledge.

Focus areas:

9

• Patient privacy tutorials and information

• Presentation of reasoning on patient data

• Setting of patient preferences

Publications:

• Educating Patients: Understanding and Participating in the Release of

Their Health Data, to be submitted

1.4 Dissertation Outline

The remainder of the dissertation is organized as follows:

Chapter 2 discusses related work.

Chapter 3 describes the architecture and approach of our framework.

Chapter 4 describes our optimal exhaustive approach.

Chapter 5 describes efficient disruption using heuristics.

Chapter 6 extends our privacy model.

Chapter 7 describes our patient-focused user interface tool.

Chapter 8 provides conclusions and future research directions.

10

Chapter 2

Related Work

The primary focus of our work is defeating privacy violating inferences in data that

is approved for release using traditional privacy controls. There has been increased

attention given to the protection of healthcare data over the last few years. As we

increase the volume and detail of data being stored about a patient, the potential for

a privacy breach increases. Advances in ontologies and semantic processing enrich

this data further increasing its value to the clinician and patient as well as the actor

seeking to leverage it for for profit or unethical motives.

2.1 Medical Data Privacy

Research in the area of medical data privacy / protection has focused on restricting

access of specific data items. Traditional methods look at data items as discrete

objects and identify confidentiality levels specific to those objects. These methods

then allow object access only to appropriate users. If objects are classified as a

group (or document), the group classification is typically the highest classification of

all member objects or a classification based on the static aggregate of data objects.

These traditional controls work on an object level and do not address information that

can be inferred either between the objects within the collection or when combined

with domain knowledge or other publicly accessible data collections. If a data item

is classified in advance and viewed in isolation, it can be protected using one of many

traditional data access methods. Pfleeger [22] describes these methods including

directories or containers, Access Control List (ACL), and Role-Based Access Control

11

(RBAC). These methods are widely used and common in the majority of commercial

operating systems, databases, and applications.

Extensions to the traditional controls have been proposed to either deal with

unique data sets or access patterns. Rashid et al. [24], proposed the Temporal

Reflexive Database Access Control (TRDBAC) to address confidentiality with regards

to data with temporal sensitivity. Rashid’s concern was that a data item in isolation

may not be sensitive, but if it has a discoverable temporal relationship to one or more

other data items, it may then be sensitive.

Ellick [6] worked on schemes to segment private medical data and many com-

mercial medical software vendors have developed tools to identify HIPAA-designated

patient identifiers as well as constructed data release masking or obfuscating filters,

but none of this work addresses the post release inference problem.

Most of the techniques used to ensure the data in a release will not disclose

an individual’s identity will also alter its effectiveness in data mining tasks. One

of the most common tasks seen in data mining is the classification problem. To

address classification problems, the data miner will usually build a model based on a

training data set. The model is based on the assumption that the training data set

is ‘realistic’ and carries distribution characteristics similar to the full (unclassified)

data set. Trying to build a model on a data set that consists of perturbed data would

not provide realistic results since data values are removed, generalized, or altered,

all altering the distribution of the attributes. Agrawal [1] describes a mechanism for

applying pre-release processing on the original data set that alters it in a predicted

manner. He claims that the alterations can be made in a way that preserves the

distribution of the data. Once released, the researcher can apply algorithms that will

reconstruct nearly accurate distributions for the altered data, but will not reveal the

original values of the data, therefore preserving privacy.

Afrawal’s pre-release processing of the sensitive attributes creates new values using

12

one of two data modification approaches. The first is alteration based on value-class

membership where attributes are ‘partitioned into a set of disjoint, mutually-exclusive

classes’ – discretization would be an example of this approach. The second approach

is based on value distortion where values are altered based on a random value from a

known distribution. Agrawal’s research is focused on reconstructing attribute distri-

butions for the building of a decision tree classifier model and considers both Uniform

and Gaussian distributions in his results. Once data was released, Agrawal described

three distribution reconstruction algorithms (Global, ByClass, Local), all based on an

iterative approach to estimating the original distribution. Each of the 3 algorithms

applies the reconstruction at differing levels:

• Global applies it to each attribute while looking at the entire training set

• ByClass first splits the training set up by class and then applies the reconstruc-

tion to each class

• The Local approach is similar to ByClass, but performs reconstruction at each

node; this is the point where decisions are made regarding how to construct the

node branch decision (usually based on some information gain strategy).

Using a derived privacy metric, based on how closely a modified attribute can be

estimated, Agrawal was able to show very good performance on decision trees built

using the ByClass and Local methods when compared to decision trees created using

the original data. They were also able to show that as the privacy level of the released

data increased, the accuracy of each of the approaches degraded.

2.2 Inference Problem

There has been significant work on understanding the database inference problem,

but the majority of this work assumes data remains with the data custodian, allowing

controls on design, access, and query construction to be locally enforced. The goal of

13

recent work is to disallow an unauthorized user to see inferred data items that exceed

their access permissions. Various methods have been proposed in the literature to

disrupt or hide the conclusion of an inference channel making it unavailable to an

unauthorized user.

Farkas, et al., [12, 4] look at sensitive data disclosures created by indirect access

to data via unchecked inference channels. They describe the inference problem as

it relates to both statistical data and relational (general) databases. In addition

to single data sources, they also investigate the inference problem as it relates to

data mining where the data instance incorporates numerous disparate data sets and

metadata.

Brodsky, et al., [4] look at data dependent and independent disclosures caused by

unauthorized inferences. They provide a framework that evaluates incoming queries

based on Mandatory Access Control (MAC) and an audit of the historical data pre-

viously provided to the requestor. Brodsky’s approach evaluates possible inferences

based on what the user already has (previous queries) and what they ask for (current

query). The results of these inferences are then evaluated by MAC for appropriate-

ness to release to the requestor based on the user’s authorization level. This scheme

requires the data custodian to maintain control of the data sent and release data to

requestors only through carefully controlled, evaluated, and auditable queries. Brod-

sky does not consider cases where externally released data is combined with ontologies

or other publicly accessible data to generated privacy violating inferences.

2.3 Medical Ontologies and Inference Engines

The use of ontologies to enhance the semantic value of healthcare data is increasing at

a rapid rate. The combination of medical ontologies and inference engines are helping

clinicians better understand patient data as well as generate knowledge to help treat

patients and enhance medicine in general. Early ontologies were focused on enhanc-

14

ing operational efficiency and billing, but their use has expanded into areas touching

all aspects of clinical care. Noor and Cheng [21, 7] are using these technologies to

better understand patient data properties and predict drug-drug interactions, while

Fernández-Breis [13] is helping to determine phenotypes and identify patient cohorts

for vital medical research. While medical ontologies are often focused on specific do-

mains, work like BRIDG [3] is looking across domains and across information system

databases. This work seeks to provide semantic interoperability that significantly

increases the value of data and its ability to generate new knowledge.

A key factor in clinical decision support is a patient’s problem list; the com-

pleteness of the list may determine the quality of the decision support process. De-

varakonda [9] says that if a patient problem list is complete and accurate it will help

clinicians provide better patient care, but the list is often inaccurate, duplicative, and

out of date due to the manual effort required to validate and update information.

Devarakonda proposes an automated method based on the IBM Watson inference

technology. Wright [26] is using semantic processing over patient clinical and billing

data to automate the generation of a more complete problem list.

Healthcare is a data-rich environment and the more enhanced the ontologies and

inference processing get, the better we can leverage data for the good of the pa-

tient and healthcare operations. While ontologies are widely used, there are needs

to extend and enhance their value. Quesada-Martinez [23] claims that many medical

ontologies provide rich domain-based knowledge, but are closer to controlled vocab-

ularies or taxonomies than the ontologies needed for medical semantics. To address

this, Quesada-Martinez proposes a method to enhance ontologies by looking at the

structure of labels across ontologies and analyzing any patterns found. These patterns

are then investigated to determine if they reference existing ontological entities.

The healthcare domain has spawned numerous ontologies in recent times. Many of

these started as proprietary vocabularies and taxonomies and started to see widespread

15

adoption as the need for tighter systems integration and health information exchanges

grew. There are still many issues that impede full adoption and use. One such issue

is ontology translation. Most ontologies were developed using a specific language

(i.e., English, French, etc.) and then translated to other languages. Healthcare in-

formation exchange is now being conducted globally by medical facilities in many

countries speaking many languages. The reliability of these translations remains an

open problem still being studied [8].

With all the sensitive patient data being stored and generated, access control is

paramount. Ontologies can also be used to help with access control. Jain, et al.,

[18, 16, 19] have looked at the use of RDF metadata and ontologies to control access

to sensitive data sets. Their work also assumes data containing privacy-breaching

inference channels have not been released outside the organization. Iwaya [17] uses

ontologies to assess and alter data sets prior to release, but the goal of his work is

to ensure that the data set is anonymized / de-identified, which is not always the

desired outcome.

16

Chapter 3

Pre-Release Inference Framework

3.1 Architecture

We have developed an integrated privacy framework, “Pre-Release Inference Ana-

lyzer” (PIA). PIA ensures that no unauthorized data can be generated from a set of

authorized data, even if the attacker has access to domain knowledge and inference

tools. Our solution disrupts inference paths that lead to disclosure of sensitive data.

The disruption is accomplished by modification of the initial authorized data set.

We propose two data modification techniques: data removal and data generalization.

The research challenge is to minimize the need for data alteration, thus maximizing

data availability. These approaches are discussed in Chapter 4.

To facilitate privacy violation detection, we decorate inferred data with privacy

labels. We evaluate inferred data to determine appropriate privacy labels. Data items

are represented using RDF triples, (subject, predicate, object), there may be differing

privacy criteria for each element of the triple. To resolve the potential privacy to a

single label, we choose to assign privacy labels based on patterns (Definition 3.3.4).

Each pattern will have an assigned privacy label. Patterns may include variables as

the exact instance values in a data set are not known. Once the inference process is

complete and paths examined, all patterns can be reduced to ground patterns (Exam-

ple 3.3.1). In the mapping of patterns to privacy labels, a more specific variation of

a pattern is at least as privacy restrictive, if not more, than a more general variation

of that pattern. For efficiency and without loss of generality, we exclude evaluating

17

data against patterns that are “contained” in other patterns (Definition 3.3.5).

3.2 Approach

Process

Initial

Instance

Authorized

Instance
Reason

Domain

Knowledge

V
io

la
tio

n

No Violations
Detect

Violations

Build

Solution

Privacy

Policy

Figure 3.1 Pre-Release Inference Analyzer (PIA) Architecture

As depicted in Figure 3.1, our logical process can be viewed as having three

primary processes, reasoning, violation detection, and solution construction.

The three parts of the overall process are managed by a controlling function that

forms a processing loop within the overall framework. In aggregate, our approach

can be categorized into Pre-Processing, Assessment, PIA Process, and Post-

Processing as follows:

Pre-Processing

• The initial database is minimized by removing redundant data items. Efficiency

is improved since redundant data items, which would be regenerated through

reasoning, unnecessarily increase the number of solutions that must be evalu-

ated.

Assessment

18

• Derive all data items that can be inferred from the minimized database and

domain knowledge.

• Assign privacy labels to inferred data items. Privacy labels are assigned accord-

ing to patterns. The most restrictive privacy label is assigned to each newly

generated fact.

• Evaluate privacy policy violations. Inferred data item labels are compared with

a privacy threshold provided for the data release. Ground facts that participate

in inference of privacy violations are identified.

• Solutions and associated costs are generated based on alteration (removal and

generalization) of identified facts.

PIA Process Each solution is evaluated as follows:

• Copy initial database altering data items per solution.

• Derive all data items that can be inferred from the altered database and domain

knowledge.

• Assign privacy labels to inferred data items.

• Evaluate privacy policy violations. Inferred data item labels are compared with

privacy threshold provided for this data release

• Solutions are marked valid if no privacy violations found, else marked invalid.

Post-Processing

• Initial database is returned as authorized release if no violations found in initial

assessment.

• Initial database altered by a valid solution with lowest cost is returned as au-

thorized release if violations were found in initial assessment.

19

Our approach to unauthorized inference removal leverages domain knowledge. It

alters inference participating facts to disrupt associated inference paths. We show

that our approach terminates and is sound, complete, and minimal.

• By sound, we mean that every generated (inferred) data item logically follows

from the initial data instance and domain knowledge.

• By complete, we mean that every data item that logically follows from the

initial data instance and domain knowledge is generated.

• By minimal, we mean that there is no other valid solution that costs less (based

on our cost methodology).

Detailed descriptions of modules and their properties are presented in Section

3.4.1.

3.3 Preliminaries

In this section, we introduce the formal definitions and models used by the PIA

framework.

3.3.1 Data Model

We model external data (input and output) in a standard and consistent manner.

The primary source of domain knowledge for our framework is a collection of one

or more ontologies (Definition 3.3.1). Within our framework, we use a consistent

ontology model to represent all referenced ontologies and instance data (database).

We model domain ontology metadata as a RDF Knowledge Base (KB) [15]. This

approach encapsulates ontological concepts, relations and domain information (i.e.

domain rules) in a common model.

20

A ‘domain ontology’ is an ontology whose semantic terms and definitions are

specific to a given area or topic (e.g. legal, geographic, medical). In our work, we are

focusing on data and ontologies in the healthcare / medical domain.

Definition 3.3.1 (Ontology). An ontology O = (C,R,Dom, ν) is a 4-tuple where:

• C = {c1, . . . , cn} represents the set of all concepts in O.

• Rn = {rn1, . . . , rnm} is the set of relations among the ontological concepts.

A mapping function, denoted ρ, maps relations such that ρ : rni → (cl, ck),

i = 1, . . . ,m, (l, k) = 1, . . . , n, cl, ck ∈ C, and rni ∈ Rn. For convenience and

without loss of generality, we represent the relation mapping ρ : rnj → (ci, ck)

as the triple (ci, rnj, ck).

• Dom is a set of the domains of the concepts {c1, . . . , cn} of O, such that Dom

= {dom(c1), . . . , dom(cn)}, where dom(ci) is the domain of ci.

• ν is a mapping from each concept to its domain ν : ci → dom(ci).

The data that an entity desires to release to one or more other entities is referred

to as the ‘release data set’; for simplicity, we will just use the term ‘data set’. We will

use the terms ‘initial data set’ and ‘final data set’ to describe the data being released

prior to processing by our framework (initial) and after processing (final).

Within the constructs of our framework, we refer to data sets as databases. For-

mally, each database is an ontological instance (Definition 3.3.2). Ontological in-

stances are knowledge bases which includes information from referenced ontologies as

well as an instance data set. The knowledge base describes both the instance values

and concepts as well as the relations between them. Inheritance of concept properties

and relations (Definition 3.3.3) is based on the ontological ISA hierarchy.

Definition 3.3.2 (Ontological Instance). An instance of the ontology O is defined

as OI = (I,DB), where:

21

• I = {inst1, . . . , instz} is a set of instance values, such that:

– (insti, ISA, cj) ∈ DB

– insti ∈ ν(cj)

• DB = {db1, . . . , dbx} represent the database of relations between instances and

ontological concepts. Each relation is a triple of either the form (ci, rnj, ck) or

(insti, ISA, ck) or (insti, rnj, instk).

Definition 3.3.3 (Inheritance). Relationships among concepts and instances are in-

herited based on the concept hierarchy of the ontology. ∀ci, cj, rn, oi, oj; if ∃(ci, rn, cj)

and (oi, ISA, ci) and (oj, ISA, cj), where oi is either a concept or an instance, then

(oi, rn, oj) must also exist.

Intuitively, a relation describing a class also describes that class’s family of sub-

classes. Inheritance is transitive for the special relation ‘ISA’ such that, if (a,ISA,b)

and (b,ISA,c) then (a,ISA,c). The special relation ‘ISA’ is also reflexive, (a,ISA,a).

Data items within a database are represented using RDF triples, (subject, pred-

icate, object). While we assign privacy labels to a data item triple, there may be

differing privacy criteria for each element of that triple. To resolve potential privacy

inconsistencies of triple elements to a single label, we assign privacy labels based on

patterns (Definition 3.3.4) to determine a triple’s final privacy label. Each pattern

will have an assigned privacy label. Patterns may include variables as the exact in-

stance values in a data set are not known until processed. Once the reasoning process

is complete and inference paths evaluated, each pattern can be reduced to a ground

pattern (Example 3.3.1).

Definition 3.3.4 (Patterns). A pattern is defined as p = (ci, rn, cj), where c(i,j) are

constants, concept names, or variable names and rn is a relation name or variable

22

name. A ground pattern gp = (ci, rn, cj), is a pattern where c1 and c2 are constants

or concept names and rn is a relation name.

Note: We use the wild-card symbol ‘*’ in any position of a pattern to represent

an unspecified variable name.

Example 3.3.1 (Patterns). Examples of patterns are: (x, isPatientOf, Smith), (x,

takesMedication ,y), (y, isMedicationType, Controlled), where x and y are free vari-

ables.

Examples of ground patterns: (John, isPatientOf, Smith), (John, takesMedica-

tion, Morphine), (Morphine, medicationType, Controlled); where all free variables

have been resolved to constants.

Definition 3.3.5 (Pattern Containment). Let p1 = (c1, rn1, c2) and p2 = (c3, rn2, c4)

be patterns. We say that p2 is contained in p1, denoted as p2 ⊆pc p1, iff the following

hold:

• (c3, ISA, c1), or both c3 and c1 are variables, or c1 is a variable

• (rn2, ISA, rn1), or both rn2 and rn1 are variables, or rn1 is a variable

• (c4, ISA, c2), or both c4 and c2 are variables, or c2 is a variable

In the mapping of patterns to privacy labels, a more specific variation of a pattern

is at least as privacy restrictive, if not more, than a more general variation of that

pattern. For efficiency and without loss of generality, we exclude evaluating data

against patterns that are ‘contained’ in other patterns (Definition 3.3.5).

Example 3.3.2 (Pattern Containment). Let p1 = (Male, Consumes, Fruit), p2 =

(Boy, Eats, Orange). If (Boy, ISA, Male), (Eats, ISA, Consumes) and (Orange, ISA,

Fruit) exists, then p2 ⊆pc p1.

Let p3 = (Male, Consumes, x), p4 = (Boy, Eats, Orange). If (Boy, ISA, Male)

and (Eats, ISA, Consumes) exist and x is a variable, then p4 ⊆pc p3.

23

To determine if a rule is satisfied by a database instance (and therefore generates

a new data item), we must determine if the patterns, and symbols in those patterns,

all map to constants in the database. We address this determination in steps, looking

first at symbols, then patterns, and finally the inference rule.

Definition 3.3.6 (Symbol Mapping). Let S = {s1, . . . , sn} be a set of symbols,

including constants (values, concept names, and relation names) and variables. Let

C be the set of constants (values, concept names, and relation names). γ is a symbol

mapping, γ : S → C, such that the mapping preserves constants (i.e., if s1 is a

constant and γ : s1 → c2 then s1 = c2) and equalities.

Definition 3.3.7 (Pattern Mapping). Let γ be a symbol mapping and (ci, rn, cj)

a pattern. Γ is a pattern mapping using γ, such that Γ (ci, rn, cj) = (γ(ci), γ(rn),

γ(cj)), and Γ preserves constants and equalities.

Example 3.3.3 (Pattern Mapping). Let S = {x,enrolledIn,Mark, y, CSCE-899,

USC} be a set of symbols and C a set of constants, C = {enrolledIn, Mark, CSCE-

899, University, USC}. Given a pattern (Student, enrolledIn, x), we can find a

symbol mapping γ, such that γ(Student) = Student, γ(enrolledIn) = enrolledIn,

γ(x) = CSCE − 899. Using γ, we have a pattern mapping Γ (Student, enrolledIn,

x) = (γ(Student), γ(enrolledIn), γ(x)) = (Student, enrolledIn, CSCE-899).

The mapping of symbols and patterns allows us to determine if the body of an

inference rule (Definition 3.3.8) is satisfied. Satisfaction of a rule (Definition 3.3.9)

will lead to the inference or generation of a data item. If this data is not already

present in the ontological instance (Definition 3.3.2), it will be added.

Definition 3.3.8 (Inference Rule). An inference rule is a Horn Clause expression of

the form ∀x1, . . . , xk(p1∧ · · · ∧ pn)→ q where x1, . . . , xk are all the free variables that

appear in patterns p1, . . . , pn and q is a pattern, such that q does not contain any

variables that do not also appear in p1, . . . , pn.

24

Example 3.3.4. Using the database sample shown in Table 3.1, an example rule

((x, ISA, Patient) ∧ (x, takesMedication, Aspirin) ∧ (x, complainsOf, StomachPain))

→ (x, likelyHas, StomachUlcer) would conclude that ‘John likelyHas StomachUlcer’

as all parts of the premise are satisfied. It would not conclude that ‘Mary likelyHas

StomachUlcer’ since one part of the premise ‘x, complainsOf, StomachPain’ is not

satisfied when x is ‘Mary’.

Table 3.1 Sample triples from instance database showing facts for patients “Bob”
and “Mary”.

Subject Predicate Object
Bob ISA Patient
Mary ISA Patient
Bob complainsOf StomachPain
Bob complainsOf Headaches
Mary complainsOf KneePain
Mary complainsOf Headaches
Bob takesMedicine Aspirin
Mary takesMedicine Insulin
Mary takesMedicine Aspirin

Definition 3.3.9 (Rule Satisfaction). Single Rule: let r = p1 ∧ · · · ∧ pk → q be a

rule and DB a database. We say DB satisfies r if there exists a mapping Γ from

p1, . . . , pk to the DB, i.e., given Γ(p1), . . . ,Γ(pk) ⊆ DB then Γ(q) must also be in the

database. Rule Set: let R = {r1, . . . , rn} be a set of rules and DB a database. We

say DB satisfies R if there is a Γ such that DB satisfies Γ for all ri, i = 1, . . . , n, and

Γ preserves constants and equalities.

Example 3.3.5 (Rule Satisfaction). Let there be a rule, r: (x, ISA, Male) ∧ (x, ISA,

CEO) → (x, earns, $500K) Assume the database DB contains the following facts:

(John, ISA, Male), (Mary, ISA, Female), (John, ISA, CEO), (John, earns, $500K).

We can find mapping γ from the symbols in the body of r to DB as: γ(earns) =

earns, γ($500K) = $500K, γ(Male) = Male, γ(CEO) = CEO, γ(ISA) = ISA. We

25

can find mapping Γ from the body of r to DB as: Γ(x,ISA,Male) = (John,ISA,Male),

Γ(x,ISA,CEO) = (John,ISA,CEO), but then Γ(x,earns,$500K) = (John,earns,$500K)

must be in DB.

a
n

a
2

a
1

b

Figure 3.2 Single Inference Path - This figure shows a graphical representation of
the inference path for rule a1 ∧ a2 ∧ · · · ∧ an → b, where b is an authorized inference.

Conceptually, our framework’s internal data model is based on an undirected

multi-graph. In this model, nodes represent semantic facts. Each node in the graph

is a triple, defined as (subject, predicate, object). Graph edges connect the nodes that

participate in an inference path with the inference conclusion (Figure 3.2). Nodes

may participate in numerous inference paths and conclusions from one path may

contribute to the satisfaction of another path (Figure 3.3). Edges are colored to

indicate specific inference paths. Only one node in any colored path will be designated

as the conclusion. The conclusion will have a privacy label assigned and may be

designated as a privacy violation.

The internal model allows nodes in the rules making up an inference path to

be decorated with attributes as they are discovered and collectively analyzed. This

allows attributes, such as privacy labels, to be easily set and accessed. The model (as

shown in Figure 3.3) allows us to show which nodes participate in which inference

paths as well as distinguish between asserted and inferred concepts. This also allows

26

g

c

b

x z

a

w

k

j

Released Data

Inferred

Authorized

Inferred

Unauthorized

d

s

f

f

f

Figure 3.3 Inference Paths - Multiple intersecting paths. Conclusions are
represented by squares (authorized) and octagons (unauthorized) to visually
differentiate them. Note that the conclusion of one path may be a participant in
another path.

tracking of privacy violating nodes (facts). Through examination of the interaction

between nodes on the various inference paths, we can establish metrics on inference

participation by a given fact. These metrics allow us to nominate candidate concepts

for inclusion in our inference disruption process.

3.3.2 Privacy Model

Our privacy model defines a partial order set of privacy levels and associated labels.

Dominance between labels is defined to indicate which privacy labels are more sensi-

tive or restrictive than others. The model provides a mapping function to determine

the privacy level of a specific data item and provide a label. The privacy levels and

associated labels are based on domain-specific criteria. We are concerned with the

27

privacy of a patient’s medical data and define multiple levels of data privacy. In our

approach, we use patterns as the basis for privacy label assignment. A pattern may

be broad in scope, using very general concepts in its definition or narrow in scope,

using specific concepts that are more granular and impart more detailed knowledge.

A pattern may contain ‘wildcard’ characters to indicate that only part of the pattern

needs to be matched for its application to be applicable. A given data item may

match numerous patterns and patterns from different domains. Through inheritance,

a specific data value would also match more general variations (ancestors) of the same

concept. Additional patterns may be matched if any patterns contained a ‘wildcard’.

Regardless of the number of patterns matched, the privacy label used for the data

item must represent the highest level of privacy found for all matched patterns. Our

partial-order privacy labels are monotonically increasing in value and correlate to

increasing privacy levels. Using an access lattice construct, we are able to evaluate

labels and determine the appropriate privacy level and label even if multiples are

matched. The final level will always be the least upper bound of all labels found

using pattern matching.

Traditionally, an authorized release is a data set that does not contain information

exceeding a specified privacy threshold. This threshold may vary depending on the

intended recipient(s) of the data. Threshold determination is often made based on

the presence or absence of discrete data values known to violate a given privacy level.

Definition 3.3.10 (Privacy Mapping). Let L = ({l1, . . . , ln},≤) denote the set of

privacy labels and the partial order among the labels; and let P = ({p1, . . . , pm},⊆pc)

denote all patterns and the containment among the patterns. The privacy mapping λ,

denoted λ : P → L, assigns a privacy label to each pattern and satisfies the following:

if p2 ⊆pc p1 then λ(p2) ≥ λ(p1).

Intuitively, the privacy label of the more specific pattern must dominate the pri-

vacy pattern of the more general pattern.

28

Table 3.2 Patterns, potentially with wildcards, are matched to an RDF triple
allowing for mapping of a privacy label to the triple.

Pattern Example
(∗, ∗, ∗) (*, *, *)
(ci, ∗, ∗) (Ebola, *, *)
(∗, rj, ∗) (*,infectedWith,*)
(∗, ∗, ck) (*, *, Blood)
(ci, rj, ∗) (Blood,infectedWith,*)
(∗, rj, ck) (*,infectedWith,Ebola)
(ci, ∗, ck) (Blood,*,Ebola)
(ci, rj, ck) (Blood,infectedWith,Ebola)

Definition 3.3.11 (Privacy Label Multiple Inheritance). Let p be a pattern such

that p ⊆pc pi, i = 1, . . . , k. Let λ(p1), . . . , λ(pk) represent the privacy labels of

p1, . . . , pk respectively. The privacy label of p, denoted as λ(p), must satisfy λ(p) ≥

LUB(λ(p1), . . . , λ(pk)).

Intuitively, this requirement aids the assignment of privacy labels to patterns

without privacy labels (i.e., newly generated triples).

Example 3.3.6 (Privacy Labels). Let p, p1, and p2 be patterns such that p ⊆pc p1

and p ⊆pc p2. Let l1 = (TopSecret, {A,B}) and l2 = (Secret, {C}) be the pri-

vacy labels of p1 and p2 respectively. The privacy label of p ≥ LUB(l1, l2) =

(TopSecret, {A,B,C}).

Definition 3.3.12 (Authorized Data Instance). Given a user u with privacy classi-

fication λ(u), we say that data instances I = {i1, . . . , il} are authorized to read for

user u only if λ(u) ≥ λ(ij), j = 1, . . . , l, where λ(ij) is the privacy label of instance

ij.

Note, in this paper we address confidentiality (privacy) of patients’ data. While

our model is similar to the Bell-La Padula model [11] used for Mandatory Access

29

Control (MAC), the write operations are different in medical databases. Our ongoing

work addresses audit and preservation of each write operation of the authorized user.

In order to set a threshold on the highest acceptable privacy label for data within

an authorized data instance, we define a single label to serve as the violation threshold.

No data item in the authorized data instance should have a label greater than that

of the violation threshold.

Definition 3.3.13 (Violation Threshold Label). The violation threshold label, de-

noted v, is the label which must not be dominated by any other label in the database.

Using Definition 3.3.10, we say that if v is a violation threshold label, then @ l;

l ∈ L and l > v.

When viewed in isolation, one may assume an initial data instance is an authorized

data instance. This assumption is reasonable given traditional data access models;

if all distinct data items in the instance are authorized to be read by user u, then

the collection of data items (instance) must also be authorized to be read by user

u. Unfortunately, with the introduction of domain knowledge and reasoning tools,

new information may be generated that is not authorized to read by user u. This

new information must be addressed if we want the released instance to truly be an

authorized data instance.

3.3.3 Inference Processing

In order to eliminate the generation of new privacy violating data items, we disrupt

the inference path leading to their conclusion. An optimal set of disruptions must be

derived to guarantee that the data being released is an authorized data instance. Be-

fore discussing our approach in detail, we must review several aspects of the inference

process and approaches used to measure solution efficiency.

30

Each generated data item comes into existence as the conclusion of some set of

inference rules satisfied over DB, the initial data instance (Definitions 3.3.8 and 3.3.9).

Definition 3.3.14 (Minimal Inference Graph). Aminimal inference graph is a partial

order directed acyclic graph (DAG) of the rules r1, . . . , rn such that the body of rule

rj contains qi, the conclusion of rule ri, that proceeds rj in the DAG, (i,j = 1,. . . ,n).

Example 3.3.7 (Minimal Inference Graph). Let DBorig be a database instance and

r a rule:

• DBorig = {(Joe, hasGender, Male),(Male, Eats, Fruit)}

• r = (x, hasGender, Male) ∧ (Male, Eats, Fruit) → (x, Eats, Fruit)

• Constants in DBorig are denoted C, where C = {Joe, Male, Fruit, hasGender,

Eats}.

• Symbols in r are denoted S, where S = {x, Joe, Male, Fruit, hasGender, Eats}.

• Symbols map as follows: γ(x) = Joe, γ(Male) = Male, γ(Fruit) = Fruit.

γ(hasGender) = hasGender, γ(Eats) = Eats.

• Patterns in r map as follows: Γ(x, hasGender, Male) = (γ(x), γ(hasGender),

γ(Male)) = (Joe, hasGender, Male); Γ(Male, Eats, Fruit) = (γ(Male), γ(Eats),

γ(Fruit)) = (Male, Eats, Fruit); Γ(x, Eats, Fruit) = (γ(x), γ(Eats), γ(Fruit))

= (Joe, Eats, Fruit)

After application of rule r on DBorig, the conclusion of r, (Joe, Eats, Fruit), is added

to the database; DBr is the resulting database:

• DBr = (Joe, hasGender, Male),(Male, Eats, Fruit),(Joe, Eats, Fruit)

Definition 3.3.15 (Rule Containment). Given 2 inference rules with the same con-

clusion:

31

• r1 : p1 ∧ · · · ∧ pk → q (more restrictive)

• r2 : p̄1 ∧ · · · ∧ p̄n → q (more general).

We say that r2 is contained in r1 iff ∀ pattern pi, (i = 1, . . . , k), in the body of rule

r1, ∃ pattern p̄j, (j = 1, . . . , n), in the body of rule r2, such that p̄j ⊆pc pi.

Intuitively, this means that if a database instance satisfies the more specific rule,

is also satisfies the more general rule.

Example 3.3.8 (Rule Containment). Let r1 and r2 be rules such that

• r1 = (Joe, takes, antibiotic) ∧ (antibiotic, treats, infection) → (Joe, has, infec-

tion)

• r2 = (Joe, takes, amoxicillin) ∧ (amoxicillin, treats, BacterialInfection)→ (Joe,

has, infection)

Given (amoxicillin, ISA, antibiotic) and (BacterialInfection, ISA, infection) hold, then

r2 ⊆pc r1.

A fact participates in the inference process if that fact is found in the body of

any rule that is executed during reasoning. Since rule variables are resolved during

reasoning, all facts are grounded upon completion of the reasoning process. A rule

may be executed multiple times, but with different conclusions. Since a conclusion

of one rule may be used to satisfy a variable in the body of another rule, not all facts

found in rule bodies exist in DB.

Definition 3.3.16 (Inference Participant). Let s be a data item found in instance

database DB and r a rule satisfied by DB. We say that s is an inference participant

over r if at least one pattern in r maps to s.

A fact may participate in the inference of numerous conclusions. The degree of

direct participation of a fact is the number of times f is found in bodies of executed

32

rules. Since, as previously stated, a conclusion of one rule may be used to satisfy a

variable in the body of another rule, we define degree of indirect participation to also

include conclusions that a fact indirectly participates in (initial conclusion is used to

infer additional conclusions). Note that removal of a fact from DB would cause any

rule dependent on that fact to not be satisfied and therefore not reach a conclusion.

Likewise, if a rule was dependent on a conclusion which was not generated (due to

removal of a fact), then that rule would also not be satisfied and therefore also not

reach a conclusion.

We define database inference removal to be the process of disrupting an inference

path which concludes in the generation of a privacy violating data item. Our approach

to database inference removal leverages domain knowledge and alters facts on the

inference path to disrupt the generation of privacy violating data items. We show

that our approach terminates and is sound, complete, and minimal.

• By sound, we mean that every generated (inferred) data item logically follows

from the initial data instance and domain knowledge.

• By complete, we mean that every data item that logically follows from the

initial data instance and domain knowledge is generated.

• By minimal, we mean that there is no other valid solution that costs less (based

on our cost methodology).

3.4 Pre-Release Inference Disruption

In this section, we describe the initial approach used in our framework to detect

and disrupt privacy violating inferences. The approach is exhaustive and seeks to

determine an optimal solution. We describe the goal of the approach followed by

selected algorithms. We then provide proof of desired properties along with current

implementation and results.

33

3.4.1 Algorithms

In this section, we present our algorithms to construct an authorized data instance,

DBF , from an initial data instance, DB0, and domain knowledge, O. We assume

availability of a sound RDF reasoner.

Disrupt Violations (Main)

The approach for defeating privacy violating inferences is shown in Algorithm 1. For

convenience, we reference a function “Reason” to call a RDF reasoner. We first

create a minimized database, DBm, to remove all redundant data. Reasoning and

privacy mapping are then performed to allow detection of privacy violations; the set

of identified violations are stored in SV . If violations are found, a solution set is built

and evaluated (Algorithm 4). The selected (optimal) solution, S, is lastly applied to

the initial database yielding an authorized data instance, DBF . Note the selected

solution, S, will be null if no violations are detected. In this case, the initial data

instance will be released with no alterations.

ALGORITHM 1: DisruptViolations
Input: DB0 - initial instance database
Input: O - ontology
Input: v - violation threshold label
Input: λ - privacy mapping function
Output: DBF - authorized instance database

1 DBm = MinimizeDB(DB0, O) // minimized database
2 DBmf = Reason(DBm,O) // fix point database
3 C = set of inferred facts from DBmf // inferred fact list
4 SV = PrivacyMapAndDetect(C, v, λ) // privacy violation list
5 if SV 6= ∅ then
6 S = ExhaustiveDisruption(DB0,DBm,O,v,λ,DBmf ,SV)
7 else
8 S = ∅
9 end

10 DBF = AlterData(DB0, S) // authorized release
11 return DBF

34

Minimize Database

Removing redundant data items early in the disruption process improves algorithm

efficiency. Any solutions based on redundant data items would not prove useful since

altered data items would be regenerated in the reasoner step. To avoid redundant data

items, we reduce the initial data instance to a minimized data instance (Algorithm 2)

before processing. A minimized data instance does not contain any data items that

follow from remaining data items. As can be seen by the steps of Algorithm 2, we

evaluate each fact, f , in DB for redundancy by reasoning over a copy of DB with

f removed (DB − f) and testing for regeneration of f . The output data instance,

DBm, has all redundant data items removed.

ALGORITHM 2: MinimizeDB
Input: DB - instance database
Input: O - ontology
Output: DBm - minimized database

1 DBm = DB
2 forall f ∈ DB do
3 DBw = DBm − f
4 DBwf = Reason(DBw, O)
5 if f ∈ DBwf then
6 DBm = DBm − f
7 end
8 end
9 return DBm

Claim 3.4.1 (Database Minimizing). Algorithm 2 removes all redundant data items

and only redundant data items.

We prove Claim 3.4.1 in two parts. We first address removal of “only” redundant

data items followed by addressing removal of “all” redundant data items.

Proof of Database Minimizing - remove only redundant data. Assume, by

contradiction, that our algorithm removed a data item f , f ∈ DB, that was not re-

dundant. Then f must have been generated in the reasoning step (line 4) of Algorithm

35

2, because it must have appeared in DBwf (condition at line 5). So, if in the final

returned minimized database f is not redundant, it can only occur if another fact,

f1, that contributed to generating f , was removed incorrectly, i.e., f1 was removed

although it was not redundant. Then f1 must have been generated in the reason-

ing step, because it must also have appeared in DBwf . So, if in the final returned

minimized database f1 is not redundant, it can only occur if another fact, f2 that

contributed to generating f1, was removed incorrectly, i.e., f2 was removed although

it was not redundant. But then there must exist an inference path, f1, . . . , fk, over

data item fi ∈ DB (i = 1, . . . , k) for each redundant data item that contributed to

generating f . Since each data item fi ∈ DB (i = 1, . . . , k) was removed from DBm

only if it could be generated from the remaining data instances and we have finite

number of facts in DB, therefore, we eventually reach the empty set. This contradicts

our original assumption.

Proof of Database Minimizing - removes all redundant data. Assume, by

contradiction, that our algorithm did not remove f , a redundant data item. In step

3 of Algorithm 2, we investigate all data items of the original database. So, since f

is redundant, it must be regenerated by the reasoning step (line 4). In this case, by

the condition at line 5, f would be removed from DBm. This contradicts our original

assumption that f is redundant, but was not removed.

Privacy

In this section, we present an algorithm to detect privacy violations. We assume that

all generally released data items are permitted to the users. Here, we investigate

access control violations of all newly inferred facts. We use the privacy mapping

function λ and violation threshold label v, such that an inferred fact will be added

to the privacy violation list if the relation λ(inferred fact) > v holds.

36

ALGORITHM 3: PrivacyMapAndDetect
Input: C - Set of inferred fact in DB
Input: v - Violation threshold label
Input: λ - Privacy Mapping Function
Output: SV - Set of violation facts

1 SV = ∅ // Initialize privacy violation (SV) set to null
2 forall c ∈ C do
3 λ(c) is the privacy label for the triple held in c
4 if ¬(λ(c) ≤ v) // c violates privacy
5 then
6 add c to SV // Add violation to set
7 end
8 end
9 return SV

Exhaustive Disruption

Exhaustive Disruption (Algorithm 4) initially creates a superset of all ground facts

participating in the inference path of an identified privacy violation. Each member

of the superset is evaluated for its ability to eliminate all undesired inferences. For

evaluation, we remove all facts of the potential solution set from the initial database.

We reason over the altered database, and check whether all violations have been

avoided. The final solution is one that avoids all privacy violations and has the

lowest cost.

A valid solution, determined by the absence of detected violations (line 25) is

marked accordingly and its cost noted. While iterating though all solutions, a valid

solution with the lowest cost seen is tracked (lines 12 and 13). Once all solutions are

evaluated, the valid solution with lowest cost is returned as optimal (line 31). Note

that a worst case solution (i.e., all facts in the data instance altered to the ontology

root) is possible.

Definition 3.4.1 (Valid Data Alteration). Given a data item d = (c1, r1, c2) and

ontology O, a valid data alteration of d is d′ = (c3, r2, c4), such that:

37

ALGORITHM 4: ExhaustiveDisruption
Input: DB0 - initial database
Input: DBm - minimal initial database
Input: O - Ontology
Input: v - violation threshold label
Input: λ - privacy mapping function
Input: DBmf - fix point of DBm over O
Input: SV - privacy violating concepts in DBmf

Output: S̄ - selected solution
1 begin
2 SS = SolutionSet(DBm, O,DBmf , SV) // Comment Candidate

Powerset
3 minCost = +∞
4 forall S ∈ SS do
5 DBw = AlterData(DB0, S)
6 DBwf = Reason(DBw,O)
7 C = set of inferred facts from DBwf

8 SV ′ = PrivacyMapAndDetect(C, v, λ)
9 if SV ′ = ∅ then

10 set solution state of S to “valid”
11 if solution cost of S < minCost then
12 minCost = solution cost of S // track minimum cost
13 S̄ = S // track best solution
14 end
15 else
16 set solution state of S to “invalid”
17 end
18 end
19 return S̄

20 end

38

• c3 = c1, c3 is the immediate parent or grandparent concept of c1 in O, or c3 is

the root concept of O; i.e., (c1,ISA,c3) in O.

• r2 = r1, r2 is the immediate parent or grandparent relation of r1 in O; i.e.,

(r1,ISA,r3) in O.

• c4 = c2, c4 is the immediate parent or grandparent concept of c2 in O, or c4 is

the root concept of O; i.e., (c2,ISA,c4) in O.

By “immediate” parent and grandparent, we mean those parent and grandparent

relations that exist after the transitive “ISA” edges are removed from ontology O.

In our initial work, we focus only on the data item alteration of the object com-

ponent of a triple (i.e., c2 in (c1, r, c2)). We also limit our alterations to component

removal and generalization. For our purposes, removal means we replace the com-

ponent with the ontology’s root component – we denote removal of component a as

6a. Generalization means we replace the component with its parent or grandparent

based on ISA relations in the given ontology – we denote generalization of a to its

parent as a′ and generalization to is grandparent as a′′.

Algorithm 5, solution set, returns the power set of all facts that contributed to the

inference that violates the privacy policy. We define a solution set as a set of one or

more solutions. A solution is defined as a 2-tuple comprised of an alteration set and a

solution status. An alteration set is one or more alterations, each a 3-tuple comprised

of original RDF triple, object of altered triple, and alteration cost. Solution status is

a 2-tuple comprised of solution state and solution cost. Values for solution state are

“unknown”, “valid”, and “invalid”. Alteration and solution costs are real numbers.

Example 3.4.1. Let SS be a solution set with one solution S such that S = ((

((Dave, hasDisease, CHF), CV, 0.5), ((Dave, takesMed, Med-3.1-4), Med-3, 0.75)

), (valid, 1.25)). The solution S is interpreted as follows: the first alteration alters

(Dave, hasDisease, CHF) to (Dave, hasDisease, CV) at a cost of 0.5, the second

39

alteration alters (Dave, takesMed, Med-3.1-4) to (Dave, takesMed, Med-3) at a cost

of 0.75. The solution state is “valid” with a total solution cost of 1.25.

To build the solution set SS, Algorithm 5 first evaluates each rule which concludes

a detected privacy violation. The rule evaluation is performed by Algorithm 6 which

evaluates the lineage of the fact by investigating each satisfied fact in the left side

(body) of the rule. If the fact is grounded, it is added to the candidate list. If the

fact is inferred, then Algorithm 6 is called recursively on the rule which generated

the inferred fact. At completion, Algorithm 5 returns a candidate list containing all

candidate facts contributing either directly or indirectly to generation of a detected

privacy violations.

Once the candidate list is built, the solution set is constructed as a quaternary

powerset of candidate list members.

The solution set is built to support an exhaustive approach and considers all

possible alteration options for each candidate. A candidate list of size n will produce

22n − 1 solutions (see Example 3.4.2).

ALGORITHM 5: Solution Set
Input: DBm - minimal initial database
Input: O - Ontology
Input: DBmf - fix point of DBm over O
Input: SV - privacy violating concepts in DBmf

Output: SS - powerset of candidate facts
1 P = ∅ // P - remember paths followed
2 C = ∅ // C - candidate list
3 forall v ∈ SV do
4 r = rule satisfied by O and DBm which generates v
5 GetCandidates(DBm,O,DBmf ,r,P ,C)
6 end
7 SS=QuaternaryPowerset(C)
8 return SS

Example 3.4.2. Let v be a data item identified as a privacy violation. Let r1

be a rule that generated v, r1 : A ∧ B → v. The candidate list would consist of

40

{A,B}. Each element in the candidate list would have valid 3 alteration options

(i.e., for A, options would be A′, A′′, A′′′). The solution set would consist of the

following solutions: {{A→ A′}, {A→ A′′}, {A→ A′′′}, {B → B′}, {B → B′′}, {B →

B′′′}, {A → A′, B → B′}, {A → A′, B → B′′}, {A → A′, B → B′′′}, {A → A′′, B →

B′}, {A → A′′, B → B′′}, {A → A′′, B → B′′′}, {A → A′′′, B → B′}, {A → A′′′, B →

B′′}, {A→ A′′′, B → B′′′}}. See Figure 3.4.

State 0
(s, r, o)

o

c
1

c
2

c
3

c
4

c
root

c
5

State 1
(s, r, c

1
)

State 2
(s, r, c

2
)

State 3
(s, r, c

root
)

In
fo

rm
at

io
n

 C
o

n
te

n
t

Ontology

Instance

IS
A

IS
A

IS
A

IS
A

ISA

ISA
In

cr
ea

se
s

Figure 3.4 Solution States used in generalization. Replacement of the RDF triple
object’s concept is based on position in the ISA hierarchy of the ontology.
Information detail is lost as we generalize up the hierarchy.

Alteration options are defined which perform either full removal or either one or

two levels of generalization. For convenience, we define a mapping function θ defined

41

as θ : (O, c) → ĉ to assist in building generalizations. θ maps an ontology, O, and a

concept, c, to ĉ, the parent of concept c in the ontology hierarchy (i.e., c,ISA,ĉ). If

no parent is defined for c in O, θ maps to the root of the ontology. θ only considers

“immediate” ISA relationships and ignores transitive ISA relationships.

ALGORITHM 6: GetCandidates
Input: DBm - minimal initial database
Input: O - Ontology
Input: DBmf - fix point of DBm over O
Input: r - rule to follow
Input: P - rules processed
Input: C - Candidates
Output: C - Updated Candidates

1 F = facts on left side (body) of rule r
2 forall f ∈ F do
3 if f ∈ DBm then
4 f is ground fact
5 if f /∈ C then
6 add f to C // add to candidate list
7 end
8 else
9 f is inferred fact

10 r′ = rule satisfied by O and DBm which generates f
11 if r′ /∈ P then
12 add r′ to P // remember path
13 GetCandidates(DBm,O,DBmf ,r′,P ,C) // recursive call
14 end
15 end
16 end
17 return C // updated candidate list

Claim 3.4.2 (Candidate List Complete). The candidate list, C, includes all facts

that contribute to a privacy violation.

Proof of Candidate List Complete. Assume, by contradiction, that data item

f contributes to the generation of a privacy violation v, but f /∈ C. Let r be the rule

that generates v. There are two ways which f can contribute to the generation of v,

direct or indirect. If direct, then f is a ground fact which satisfies rule r. In this case,

42

f would be identified as contributing to v in Algorithm 6 lines 2 (component of rule

r) and 3 (ground fact) and added to C (line 9). Since f /∈ C, we know that f does

not directly contribute to v, therefore, f must indirectly contribute to the generation

of v. In this case, f is a ground fact satisfying a rule in v’s inference path. So, f

must satisfy some rule ri such that the head of rule ri is in the body of rule ri+1,

i = 1, . . . , n, and the head of rule rn is in the body of rule r. The inference path is

followed by the recursive calling of Algorithm 6 on line 19. When the recursive call

reaches a rule where f is a ground fact satisfying that rule, f would be identified as

contributing in lines 2 and 3 and added to C (line 9). This is a contradiction to our

assumption that f contributed to the generation of v but v /∈ C.

Claim 3.4.3 (Candidate List Sound). The set of solutions computed by Algorithm 5

contains only data items that contribute to a privacy violation.

Candidate List Sound. Trivially follows.

Inference disruption solutions are built using combinations of data from the can-

didate list, denoted C, built in Algorithm 6. The solution set, SS, is constructed by

Algorithm 7. The solution set is exhaustive and incorporates all alteration options

for each candidate concept. Our approach is to build a modified powerset based on a

quaternary counter. Each bit of the quaternary value represents a concept in C and

the state of the bit represents an alteration option. Note that counting is performed

with bits reversed (i.e., 10, 20, 30, 01, 11, 21, etc.). The solution set will contain

tq − 1 solutions where t is the number of alteration options and q is the number of

concepts in the candidate list. When counting, the quaternary value with all 0’s is

ignored as it creates an empty solution.

Example 3.4.3 (Quaternary Powerset). Let C be a candidate list with two concepts,

a and b. Alteration options for a would be a′, a′′, and 6a. Alteration options for b are

43

constructed similarly. The quaternary counter increments from 00 to 33 as shown in

Table 3.3. Counting produces 15 solutions (24 − 1) which consider all concepts and

alteration options.

Table 3.3 Solution generation (quaternary) example values showing the count and
corresponding solution.

Count Solution Count Solution Count Solution
10 a′ 21 a′′ b′ 32 6a b′′
20 a′′ 31 6a b′ 03 6 b
30 6a 02 b′′ 13 a′ 6 b
01 b′ 12 a′ b′′ 23 a′′ 6 b
11 a′ b′ 22 a′′ b′′ 33 6a 6 b

Claim 3.4.4 (Violation Detection and Removal). All generated data items identified

as privacy violations are removed.

Proof of Violation Removal. Assume there is a generated data item s that is

a privacy violation, but s is present in the authorized data instance. For s to be

present in the authorized data instance, it must either have existed in the initial data

set or been added by the reasoning process. It is assumed that all data items in the

initial data set are authorized, therefore s was added by the reasoning process. The

authorized data instance is created in Algorithm 1 Step 10 by altering data items

based on the selected solution. The data items needed to interrupt the inference of s

must therefore not be in the selected solution. The selected solution is taken from the

set of all solutions in Algorithm 4 Step 11. This selection is based on the solution flag

being set to true. The solution containing s must have its flag set to true. But the

solution flag is only set to true if no violations are found for the solution. Therefore

s was not a violation. This is a contradiction.

44

ALGORITHM 7: Quaternary Powerset
Input: C - Candidates
Output: SS - Solution Set

1 t = 4 // do quaternary counting
2 q = |C| // candidate list size
3 b[0 . . . q − 1] = 0 // initialize bit mask
4 p=4q // number of solutions
5 for i = 0 to p do
6 add 1 to b[0] // add base 4
7 for j = 0 to t do
8 if b[j] < t then
9 exit inner loop // no carry digit

10 else
11 b[j] = 0
12 add one to b[j+1] // carry digit
13 end
14 end
15 new solution set
16 solutionCost = 0
17 for k = 0 to q do
18 if b[k] > 0 then include fact k
19 new alteration
20 alterationCost = 0
21 alteration source RDF tripple = C[k]
22 case b[k] do
23 case 1 : do
24 altered target object = θ(O,C[k])
25 add 0.5 to alterationCost
26 end
27 case 2 : do
28 altered target object = θ(O, θ(O,C[k]))
29 add 0.75 to alterationCost
30 end
31 case 3 : do
32 altered target object = root concept from ontology O
33 add 1.0 to alterationCost
34 end
35 end
36 add alteration to solution set
37 add alterationCost to solutionCost
38 end
39 end
40 add solution to SS
41 end
42 return SS

45

ALGORITHM 8: AlterData
Input: DB - instance database
Input: S - solution set
Output: DBF - updated instance database

1 DBF = DB // create copy of DB
2 forall ∈ S do
3 process all alterations in the solution
4 a′ = alteration RDF triple
5 DBF = DBF − a′ // remove original RDF Triple from DBF

6 update object of triple a′ to alteration object
7 DBF = DBF

⋃
a′ // insert altered RDF Triple into DBF

8 end
9 return DBF // return altered DB

Table 3.4 Cost Values for generalization actions.

Action Cost
remove c +1.0
add root (6 c) - removal -0.0
add 1 level generalized (c′) -0.5
add 2 levels generalized (c′′) -0.25

Solution Cost

To select a minimal participating fact combination (PFC) which provides unautho-

rized inference disruption, Algorithm 4 uses an exhaustive approach and evaluates

all alteration options for every PFC. The selected minimal alteration combination is

based on the cost of PFCs which are successful in disrupting all unauthorized infer-

ences. Our cost model is implemented in two parts: 1.) determine individual concept

alteration costs, and 2.) determine total PFC alteration cost.

Definition 3.4.2 (Concept Alteration Cost). Concept Alteration Cost, denoted as

Costf , is defined as follows. Let f = (c1, p1, c2) be a concept that participates in a

violation inference and therefore a candidate to defeat the violation inference. We

say that the concept alteration cost is a value from 0.5 to 1.0 that indicates the cost

of altering f . We use the values in table 3.4 to indicate the cost based on the specific

46

alteration being performed on f (One level of alteration = 0.5, two levels of alteration

= 0.75, removal = 1.0).

The value of Costf is calculated in Algorithm 7 by theCASE statement enclosing

lines 22 through 35. Within this group of statements, the appropriate value from

Table 3.4 is added to variable “alterationCost” depending on the specific alteration

being performed. This variable holds the value of Costf for the current data item

(f) being processed.

Definition 3.4.3 (Combination Alteration Cost). Concept Alteration Cost, denoted

as CostS, is defined as follows. Let S = {f1, . . . , fn} be a set of concepts that are

altered to disrupt a group of violation inferences and Costfi
(i = 1, . . . , n) the Concept

Alteration Cost for fi. The Combination Alteration Cost for S is

CostS =
n∑

i=1
Costfi

.

Intuitively, we say that the combination alteration cost for a set of concepts is the

sum of the concept alteration costs for all concepts in the set.

The value of CostS is calculated in Algorithm 7 by statement 37 which is part

of the loop over all data items in the PFC. This statement accumulates the Costf

values in the variable “solutionCost” for all data items in the PFC. At termination of

the loop, this variable holds the value of CostS for the set of data items processed.

In our model, the total cost of a PFC alteration is based on the number of facts

in the combination and the cost of specific alterations performed on those facts (level

of generalization or removal). Example 3.4.4 shows the PFC alteration cost of a two

fact combination. This example assumes both concepts must be altered to disrupt

the violations. The fact alteration cost values in this example range from 1.0 (both

concepts are generalized 1 level) to 2.0 (both concepts are removed).

Example 3.4.4 (Alteration Cost). Let a and b be concepts in PFC s. The ontology

root for a and b are denoted 6a and 6 b respectfully. First and second level generalization

47

of a and b are denoted a′ a′′, b′ and b′′ respectfully. Assume that both a and b must

be altered to disrupt an identified violation. Using the values in Table 3.4 and the

definitions for Costf and CostS, the cost for each combination of alterations for s is

shown in Table 3.5.

The most costly combination 6a, 6 b removes both concepts (replaces with root con-

cept). The least costly solution a′, b′ replaces both concepts with their first level

generalizations.

Table 3.5 Cost Alteration Example - Assumes both concepts must be generalized
to disrupt inference.

Replace a, b with: CostS = Costf (a) + Costf (b)
6a, 6 b 2.0
6a, b′ 1.5
6a, b′′ 1.75
a′, 6 b 1.5
a′, b′ 1.0
a′, b′′ 1.25
a′′, 6 b 1.75
a′′, b′ 1.25
a′′, b′′ 1.5

Once all costs are calculated, each PFC is evaluated to determine if it successfully

disrupts all the identified unauthorized inferences. As PFCs are being evaluated by

Algorithm 4, the two If statements at steps 25 and 11 allow us to track the lowest

cost solution that was successful in disrupting all unauthorized inferences.

3.4.2 Properties & Proofs

Theorem 3.4.1 (Disrupt Violations). Algorithm 1 computes an authorized data in-

stance, denoted DBs for user u with privacy clearance λ(u) from an initial data

instance, denoted DBi. The algorithm terminates and DBs is sound, complete, and

minimal.

48

Proof. First, Algorithm 1 must terminate since the input data set is finite and all

solution candidates are based on members of the initial data set’s powerset. Since

the initial data set is finite, the powerset is also finite. Therefore, there is a finite

number of solutions that could be evaluated, leading to termination. We still need to

show that the computed data set DBf is

1. sound,

2. complete, and

3. minimal.

Proof of soundness. Assume that s is a data item that does not logically follow

from DBi and domain knowledge, but s ∈ DBs. If s ∈ DBi, it must logically follow

since it is already present in DBi. If s /∈ DBi, then s must be generated by the

inference process. However, in the inference process every new data item generated

must come from a rule of the form p1 ∧ · · · ∧ pk → q and all components of the rule

body must either be in DBi or there must be an inference path that generates from

DBi. Recursively, we can show that there must be an inference path that generates

each component of the rule body not in DBi. If every component in the body of the

rule generating s can be generated from DBi, then s naturally follows from DBi and

domain knowledge. This contradicts our initial statement that s does not follow from

DBi and domain knowledge.

Proof of completeness. Assume that s is a data item that logically follows from

DBi and domain knowledge, but s /∈ DBs. If s /∈ DBs, the following must hold:

s /∈ DBi and no inference path exists that concludes with s. However, if s logically

follows fromDBi and domain knowledge, then either s ∈ DBi or the inference process

generates a path that concludes with s. If s ∈ DBi, then it naturally follows that

49

s ∈ DBs. If s /∈ DBi, but an inference path exists that concludes in s, then it follows

that s ∈ DBs. In either case, s ∈ DBs. This contradicts our initial statement that

s /∈ DBs.

Proof of Minimality. Assume there is a valid solution q that is not selected as

the final solution, but has the lowest cost. Algorithm 4 determines the final solution.

Since q is a valid solution, it returns no violations and is identified as valid in Step 25.

The solution cost for q is then compared to the lowest cost of all solutions processed

to that point in Step 11. Since, as stated, q has the lowest cost, no other lower cost

solution will be identified by Step 11. Therefore, at the end of the evaluation loop, q

will be selected as the final solution. But this contradicts our initial statement that

q has lowest cost and is not selected.

50

Chapter 4

Exhaustive Disruption

4.1 Implementation & Empirical Results

We developed a prototype implementation of our inference disruption framework

written in the Java programming language. The prototype uses the Apache Jena

semantic framework [2] for RDF parsing and reasoning. The implementation logic

closely follows the algorithms described in section 3.4.1. As described in section 3.3.1,

external data is structured using the RDF standard [15].

The execution steps of a sample prototype execution are shown in Fig. 4.1.

In this execution, the initial database consisted of 3780 data items. The inference

process generated an additional 3944 data items, giving a total of 7724 triples in the

database. There are two data items in the database identified as privacy violations.

We found six ground triples that participate in the violation inference paths and a

total of 46−1 or 4095 solution sets were constructed and evaluated. Of the successful

solutions, we found that solution number 4 had the lowest cost (100) and would be

recommended as optimal to disrupt the identified violations.

To evaluate computational efficiency, we developed a series of test database input

files as described in Table 4.1. We arranged these files into three groups based on the

number of privacy violations known to exist (0, 1, 2, or 4). Within each group, we

provide five files based on patient counts in the file (100, 500, 1000, 2500, and 5000).

The total number of facts, including asserted and inferred, for each file is shown in

the table. In our test scenarios, each violation was supported by tree ground facts

51

Figure 4.1 Prototype Execution. Screen shot of prototype execution. This run
found two privacy violations based on 6 ground facts.

(participants) satisfying multiple rules. As described in the discussion of Algorithm

5, the number of solution sets is (4p − 1) where p is the number of ground triples in

the inference paths of all violation data items. As shown in Table 4.1, our test data

has solution set sizes of: 40 − 1 = 0, 43 − 1 = 63, and 46 − 1 = 4095. In each test

execution, the expected violations were identified and proper privacy labels applied.

A valid solution with minimal cost was found and reported for each test execution.

52

Table 4.1 Prototype execution summary timing collected for 100, 500, 1000, 2500,
and 5000 instance databases grouped by violation count.

Pa
tie

nt
s

A
ss
er
te
d

In
fe
rr
ed

Fa
ct
s

V
io
la
tio

ns

Pa
rt
ic
ip
an

ts

So
lu
tio

ns

Lo
ad

T
im

e

R
ea
so
n
T
im

e

D
isc

ov
er

T
im

e

Ev
al
ua

te
T
im

e

To
ta
lT

im
e

100 369 376 745 0 0 0 149 36 26 0 745
500 1741 1806 3547 0 0 0 246 31 74 0 926
1000 3456 3592 7048 0 0 0 307 35 98 0 1019
2500 8596 8947 17543 0 0 0 481 28 218 0 1387
5000 17168 17875 35043 0 0 0 781 27 459 0 1952
100 403 414 817 1 3 63 155 31 29 930 1744
500 1904 1983 3887 1 3 63 281 47 86 2190 3193
1000 3779 3941 7720 1 3 63 341 29 113 3506 4617
2500 9400 9811 19211 1 3 63 471 28 203 8334 9707
5000 18777 19606 38383 1 3 63 746 48 528 16103 18189
100 404 417 821 2 6 4095 173 44 28 21403 22593
500 1905 1986 3891 2 6 4095 267 30 57 80630 81837
1000 3780 3944 7724 2 6 4095 319 30 88 163234 164497
2500 9401 9814 19215 2 6 4095 493 26 209 443200 444847
5000 18778 19609 38387 2 6 4095 747 28 393 927606 929728
100 403 414 817 4 10 1048575 158 36 20 3657618 3691252
500 1904 1983 3887 4 10 1048575 238 35 70 18322095 18357303
1000 3779 3941 7720 4 10 1048575 264 37 110 33965367 33996151
2500 9400 9811 19211 4 10 1048575 446 37 236 74842091 74869826
5000 18777 19606 38383 4 10 1048575 721 36 479 148937788 148965619

As discussed in Section 9, cost is determined by removal and addition of infor-

mation. For the file group with zero violations, the cost is obviously 0. For the one

violation file group, the cost for all solutions ranged from 0.5 to 3.0, with the optimal

cost of a successful solution being 0.5. For the two violation file group, the cost for all

solutions ranged from 0.5 to 6.0, with the optimal cost of a successful solution being

1.0. A histogram of the one and two violation costs is shown in Figures 4.2 and 4.3

respectively.

Execution times were captured during each test execution and are shown in Table

4.1. The timing values are reported in milliseconds and labeled as follows:

• Load - The time to load the external ontology and instance (RDF) files and

53

 0

 2

 4

 6

 8

 10

 12

 50 100 150 200 250 300

D
is

tr
ib

u
ti
o

n

Cost

Cost Distribution of Valid Combinations - 1 Solution

1 Security Violation

3 Violation Ground Triples

63 Valid Solutions

Figure 4.2 Solution Cost Distribution 1. Graph for one privacy violation with
three ground facts in its inference path.

build the internal Jena data model.

• Reason - The time to execute the Jena RDF rule reasoner over the internal data

model.

• Discover - The time for Jena to identify and return all generated data items

along with their inference paths, associated rules, and ground triples.

• Evaluate - The cumulative time to evaluate each potential solution. This time

includes iterative executions of the reason and discover logic.

• Total - This is the total time from execution start to finish.

We observe that data load time increases with external data file size, which is

expected. Execution time for the Jena RDF rule reasoner is similar for all executions

regardless of model size or solution set size. We notice the discover time increases as

54

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 100 200 300 400 500 600

D
is

tr
ib

u
ti
o

n

Cost

Cost Distribution of Valid Combinations - 2 Solutions

2 Security Violation

6 Violation Ground Triples

3969 Valid Solutions

Figure 4.3 Solution Cost Distribution 2. Graph for two privacy violation with six
ground facts in their inference paths.

the data model size increases. There are two primary tasks which contribute to the

evaluate time; these tasks are reason and discover, each are executed once for each

solution in the solution set. As can be seen in the Table 4.1, increasing the violation

count from zero to one to two also increases the solution set size from 0 to 63 to 4095

respectively. This increase in solution set size causes the total run time for to increase

from 2 seconds to 18 seconds to approximately 15 minutes. While the reason time is

fairly constant, the discovery time does increase with data model size, this increase

however appears to have linear growth. The solution set size, on the other hand, has

a large impact on total execution time since it grows exponentially with each new

triple found in a violation inference path.

The trends for total execution time can be seen in the graph found in Figure 4.4.

In this graph, the X axis shows the size of the data instance (number of patients) for

each test file. The Y axis shows log2 of the total execution time for a given test file.

55

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

100 500 1000 2500 5000

T
o

ta
l
E

x
e

c
u

ti
o

n
 T

im
e

 (
lo

g
)

in
 M

ill
is

e
c
o

n
d

s

Instance Database Size

Prototype Execution Times

0 Violation(s)
1 Violation(s)
2 Violation(s)
4 Violation(s)

Figure 4.4 Prototype Execution Timing. Trend lines show execution time (log) in
milliseconds. Individual line corresponds to number of violations found in data
instance.

Testing of our initial prototype implementation used a limited representation of

medical data and domain knowledge. Obviously, based on our findings, it is not

feasible to run this process on a database containing a large number of facts with

violations, but we have shown that we can use domain knowledge to identify and

modify data items to disrupt violation inferences. We are currently extending our

model to include heuristics to increase efficiency while still providing low cost inference

disruption.

4.2 Findings

In our exhaustive approach, the solution set is based on every combination of data

items satisfying any rule in the path of a violating inference. The solution set can

grow to a computationally prohibitive size if there are many violations or a large

56

number of data items in the inference rule bodies (n data items will produce a set

size of 22n − 1). During solution evaluation, we reason over and assess each of these

22n − 1 solutions. As can be seen in Table 4.1, database size does increase a single

solution’s execution time, but solution set size has a larger impact since it determines

how many solution evaluations must be performed. In the next section, we investigate

heuristics that can help reduce complexity and allow us to find a sufficient solution

in a feasible time.

57

Chapter 5

Efficient Disruption

In this section, we investigate heuristics that our methods can use to reduce overall

computational complexity and allow us to find a sufficient solution in reasonable time.

We investigate attributes and characteristics of both generated data and the infer-

ence paths that infer them. We look at the interaction between inference paths, both

those generating violation data items and those generating authorized data items. We

seek to discover information that can be leveraged to increase efficiency in our pro-

cess. We will incorporate discovered information into our algorithms as appropriate

to improve overall process performance.

To improve executional efficiency, we will address three areas that have the poten-

tial to reduce total execution time: reduction of PFC set size, optimal PFC evaluation

order, and early recognition of a satisfactory solution. We expect improvements based

on the following:

• mimimized PFC set size decreases the number of potential solutions that have

to be evaluated

• use of additional meta-data to pre-compute a better informed solution cost

before PFC evaluation supports heuristic-based decisions

• optimized order of PFC evaluation and the solution selection criteria allowing

evaluation of the most likely effective solutions first and quickly recognize a

satisfactory solution early in the process.

58

We feel these enhancements will eliminate the need for a full exhaustive evaluation

of all potential solutions.

Initial meta-data to be investigated include:

• Number of authorized inferences a data item participates in

• Number of unauthorized inferences a data item participates in

• Entropy of a data item.

The following sections will discuss reduction in solutions set size, hypergraph

disruption covers, an enhanced cost function, order of PFC evaluation, and early

solution selection.

5.1 Participating Fact Combination Set Size

To reduce the number of combinations constructed, we first look at eliminating com-

binations that are not capable of being successful. While we cannot guarantee a

given combination will be effective in defeating violation generation, we can verify

that certain combinations are not capable of defeating generation of those violations.

Early elimination of ineffective combinations will decrease overall processing time

compared to the full exhaustive approach. As described in section 3.4, we address

violation avoidance by disrupting violation inference paths. The inference path for

a given violation is a partially ordered set of one or more satisfied rules; these rules

conclude with the generation of a violating data item. Each rule in the path is sat-

isfied by existence of specific data items; if those data items are removed or altered,

the rule may not be satisfied and the violation may not be generated. While removal

or alteration of an arbitrary data item does not guarantee path disruption, if at least

one data item on the path is not removed or altered, the violation will continue to be

generated.

59

Definition 5.1.1 (Inference Disruptor). Let r : p1∧· · ·∧pk → q be an inference rule

and Γ a mapping from r to a database DB as defined in Definition 3.3.9. We say

that pi (i = 1, . . . , k) is an inference disruptor for r if:

• pi is a ground fact, and

• there is no inference rule r̄ such that p̄1 ∧ · · · ∧ p̄j → pi.

That is, if Γ(pi) is removed from the database DB, r would not be satisfied by DB

and therefore q would not be generated by r.

Definition 5.1.2 (Inference Disruption Cover). Given a database DB and infer-

ence rules r1, . . . , rn that generated undesired inferences. We say that the set P =

{p1, . . . , pl} is a inference disruption cover for DB if:

• For each ri(i = 1, . . . , n) there is a pj ∈ P such that pj is an inference disruptor.

• There is no P ′ such that P ′ ⊂ P and for each ri(i = 1, . . . , n) there is a pj ∈ P ′

such that pj is an inference disruptor for ri.

Definition 5.1.3 (Minimal Inference Disruption Cover). Let P be an inference dis-

ruption cover for DB and CostP the combination alteration cost of all alterations

in P (Definition 3.4.3). We say that P is a minimal inference disruption cover for

DB if no P ′ exists such that P ′ is also an inference disruption cover for DB and

CostP ′ < CostP .

Example 5.1.1 (Inference Disruption Cover). Let there be a set of rules that generate

data items as follows:

• r1: a ∧ b ∧ c→ x

• r2: b ∧ d ∧ e→ y

• r3: c ∧ e ∧ f → z

60

An inference disruptor for r1 would be any member of the set {a,b,c}; for r2

any member of the set {b,d,e}; and for r3 any member of the set {c,e,f}. Assuming

alteration cost of 1 for each fact, the minimal inference disruption cover of the rule

set {r1, r2, r3} are {a,e},{b,e}.{c,b}, {c,d}, or {c,e}. This minimal cover requires

two elements, thus the minimal cost is 2.

5.2 Hypergraph Cover

In this section, we discuss a method for building a minimal inference disruption cover.

We build a minimal spanning tree over a connected set of hypergraphs. We treat the

collection of data items in each violation inference path as a hypergraph. We form

a minimal spanning tree of these hypergraphs based on common data items. The

minimal spanning tree will provide us with a minimal disruption cover.

Since different satisfied rules with the same conclusion may not be based on the

same set of ground facts, for our hypergraph cover approach to be complete, we

must consider all contributing ground facts from all satisfied rules. We must disrupt

all rules with that conclusion to be effective. Therefore, we must consider “same

conclusion” rules as linked during evaluation. If an inference disruptor is selected

from one of a set of linked rules, then an inference disruptor must be selected from

all of the linked rules.

Example 5.2.1 (Inference Disruption). Given the set of satisfied rules {r1 : a∧ b→

c, r2 : d ∧ e → f, r3 : c ∧ f → g}, the list of participating ground facts for g

is {a, b, d, e}. We can disrupt g, by altering any of the participating ground facts

since all must exist to satisfy rules r1, r2, and r3. If we add an additional rule,

r4 : h ∧ i → c, to the set of satisfied rules, the list of participating ground facts for

g becmes {a, b, d, e, h, i}. With the addition of rule r4, alteration of participating

ground facts e or f will still disrupt generation of g by removing f , but alteration

of any one fact in the set {a, b, h, i} will not disrupt the generation of g since while

61

it may prevent one rule from generating c, there is a second rule that can generate

c with the remaining facts. To disrupt the generation of c we must disrupt both r1

and r4 with at least one fact from each of the two sets: {a, b} and {h, i}.

Hypergraph Construction

To illustrate the hypergraph construction, we step through a sample construction.

Let there be a set of generated data items {d, g, i, m, p, r} of which three are privacy

violations {g, p, r}. Assume the rules that generate these data items, r1, . . . , r6, are

as follows:

• r1 : a ∧ b ∧ c→ d

• r2 : d ∧ e ∧ f → g

• r3.1 : a ∧ e ∧ h→ i

• r3.2 : u ∧ v → i

• r4 : j ∧ k ∧ l→ m

• r5 : i ∧ n ∧m ∧ o→ p

• r6.1 : e ∧ f ∧ q → r

• r6.2 : s ∧ f ∧ t→ r

Note that r3.1 and r3.2 both generate i and r6.1 and r6.2 both generate r.

Before discussing hypergraph cover construction, we introduce the concept of

a disruption container. A disruption container is a grouping of hypergraphs that

generate the same conclusion (multiple rules with the same head). Since we must

disrupt all hypergraphs associated with a conclusion to truly disrupt the conclusion,

we must ensure that the hypergraphs are disrupted as a set. We use the disruption

container to enforce the disruption of all hypergraphs within a same conclusion set.

62

Example 5.2.2 (Disruption Container). Let there be three privacy violations g, p,

and r as shown in Figure 5.3. Looking at violation p, we have shown that it can

be disrupted by altering any one fact in the set {j, k, l, n, o}. But the hypergraph

for p includes a disruption container. This container holds two hypergraphs that

concluded the fact i (see Figure 5.2). If we alter any single fact found in the container

({u, v, a, e, h}), we would disrupt one rule generating i, but not the other. This

would allow the violation p to still be generated. We need to alter a member of

both contained hypergraphs {u,v} and {a,e,h} to completely disrupt i and avoid the

generation of p.

To construct the hypergraph set, we transform the fired rules as follows:

1. Create a directed acyclic graph (DAG) for each rule, such that edges point

from the data items in the body to the data item of the head (see Figure 5.1).

Generated violation data items are shown in an octagon, non-violation data

items are in a square.

2. Connect rules, such that there is an edge from the head of a rule ri to the head

of a rule rj iff ri’s conclusion is in the body of rj. Figure 5.2 shows resolution of

rule dependencies on generated data items and graphically links the components

of inference paths together. Note that rules that form the same conclusion are

grouped in a disruption container. In these cases, we consider the container to

be a potential inference disruptor so both rules (AND) must be disrupted for

the container to be a valid disruptor.

3. Create hypergraphs from each DAG by creating a hyperedge with same name

as the head of the DAG and vertices corresponding to every data item in the

DAG that is not the head of a sub-DAG (i.e., does not have an edge pointing

to it). Figure 5.3 shows each of the individual graphs as a hypergraph with

generated data items removed from the hypergraph and violation hyperedges

63

named based on the associated privacy violation. Note that hypergraphs in a

disruption container remain distinct from each other.

4. Connect hypergraphs by connecting their common vertices. Figure 5.4 shows

violation hypergraphs linked with a dashed line connecting their vertices (com-

mon ground facts).

a

b

c

d

d

e

f

g

a

e

h

i

j

k

l

m

i

n

m
p

e

f

q

r

o
r1 r2 r3.1 r4 r5 r6.1

s

f

t

r

r6.2

u

v

i

r3.2

Figure 5.1 Shows all satisfied rules, not just ones generating new data (2 rules
generate “i” and “r”). Octagons indicate violations, squares are safe inferences.

Dependent Cover

In this section, we look at violations that do not need to be disrupted and therefore

are not included in our hypergraph cover. If we have the case where one violation is

dependent upon another (see Figure 5.5), we need only address the violation being

depended on. In Figure 5.5, if we disrupt violation i then violation d will still be

generated, but if we disrupt d then i will not be generated since it depends on the

existence of d. We can see from the hypergraph in Figure 5.6 that d ⊆ i.

Claim 5.2.1 (Dependent Disruption). Disruption of an inference subset will also

disrupt the inference superset which contains it.

64

ANDAND

AND

AND

a

b

c

d

e

f

g
a

e

h

i

j

k

l

m

n
p

e

f

q

r

o

r1

r3.1 r6.2

r2

r4

r5

s

f

t

r

u

v

i

r3.2
r6.1

Figure 5.2 Expansion of Figure 5.1 showing rule dependencies and disruption
containers.

Proof of Dependent Disruption. Let inference data item i be dependent on in-

ference data item d as shown in Figure 5.5. Assume by contradiction, that data item

d is disrupted and no longer generated, but data item i is still generated. Since the

generation of data item i is based on the inference rule (d ∧ h ∧ g → i) , then d, h,

and g must all exist to satisfy the rule body and cause the rule head to generate i.

But, we have said that the rule generating d was disrupted and d was not generated

and therefore does not exist. Without the existence of d, the inference rule body

65

a b c

e f

g
j k l n o

p

e

f

q

r

ea h

u v

s t

Figure 5.3 Rules from Figure 5.1(b) represented as hypergraphs.

would not be satisfied and i would not be generated. This is a contradiction to our

assumption that d was disrupted but i was still generated.

If there are two violation hypergraphs, A and B, and A ⊆ B, then we do not need

to disrupt the path for B directly because we are disrupting it indirectly by disrupting

the path for A. Given Claim 5.2.1, we can remove any superset hypergraphs from

the hypergraph set prior to determining disruption covers. Removal of these superset

hypergraphs may reduce the number of participating ground facts that need to be

considered in PFC construction, reducing the final PFC size and avoiding redundant

and unnecessary evaluations.

Hypergraph Cover Approach

For our hypergraph cover approach, we treat ground facts and disruption containers

within hypergraphs as items that are logically connected with the OR operator. In

other words, only one item (ground fact or disruption container) needs be altered to

disrupt the hypergraph. We treat the contents of a disruption container as a group

66

a
b

c

e
f

j k l n o

e
f

q

g

p
r

ea
h

u v

s

t

g,p,r

Figure 5.4 Shows Figure 5.3 with like concepts linked.

of hypergraphs that are logically connected with the AND operator. In other words,

all hypergraphs within a disruption container must be disrupted for the container to

be disrupted.

After building the hypergraphs as described earlier, we use their construction to

build a series of disruption sentences which form disruption sentence covers.

Definition 5.2.1 (Disruption Sentence). Given a rule r : p1 ∧ · · · ∧ pn, a disruption

sentence of r, denoted as DSr, is an OR of all pi(i = 1, . . . , n), i.e., p1 ∨ · · · ∨ pn.

Example 5.2.3. Let r be a rule, r : u ∧ v and DSr = u ∨ v. Disrupting either of

67

a

b

c

d

e

f

g

h i

Figure 5.5 Multi-violation connected rules. Connect rules where violation “i” is
dependent on another violation “d”.

d

a b c

e f h

i

Figure 5.6 Hypergraphs of connected rules with dependent violations.

the items in the rule body, u or v, will cause r to not be satisfied. Therefore, to be

a cover, either u and v must be represented by a “1” when variables are resolved in

the disruption sentence (See Figure 5.2).

68

u

v
0

0

1

1

F T

TT

Figure 5.7 Truth table for u, v.

Corollary 5.2.1 (Disruption Sentence Cover). Given a rule r and its disruption

sentence, any truth arrangement such that DSr is TRUE will generate a disruption

cover.

Proof of Corollary 5.2.1. Let r be a rule, r : a ∧ b → c, DSr the disruption

sentence for r, DSr = a ∨ b, and C a set of facts.

Assume that DSr resolves to TRUE, but C is not a cover for r. Since DSr

resolves to TRUE for C, either a or b must be in C. If either a or b are in C, then

removing C would leave r unsatisfied. However, if r is unsatisfied, then it would not

generate c and would be a cover. This contradicts our original statement that P was

not a cover.

Now assume that DSr resolves to FALSE, but C is a cover for r. Since DSr

resolves to FALSE for C, neither a nor b can be in C. If neither a nor b are in C,

then removing C would leave r satisfied. However, if r is satisfied, then it would

generate c and would not be a cover. This contradicts our original statement that P

was a cover.

The disruption sentences corresponding to the inference violations in Figure 5.1

are as follows:

• Logic string for g = (a ∨ b ∨ c ∨ e ∨ f)

69

• Logic string for p = (((u ∨ v) ∧ (a ∨ e ∨ h)) ∨ n ∨ j ∨ k ∨ l ∨ o)

• Logic string for r = ((e ∨ f ∨ q) ∧ (f ∨ s ∨ t))

Since all three violations need to be disrupted, we connect disruption sentences

with the AND operator, giving a full disruption sentence of DS(g,p,r) as ((a ∨ b ∨ c ∨

e∨ f)∧ (((u∨ v)∧ (a∨ e∨h))∨n∨ j ∨ k∨ l∨ o)∧ ((e∨ f ∨ q)∧ (f ∨ s∨ t))). This full

disruption sentence can then be used to determine if a combination of participating

ground facts forms a complete inference disruption cover. We first construct a cover

logic statement corresponding to the ground facts and logic operators found in the

full disruption sentence.

To then determine if a combination of participating facts is a cover, we set the

corresponding variables in the cover logic statement to “1”. We set all other variables

in the cover logic statement to “0”. A bitwise evaluation of the cover logic statement

is then performed. If the evaluation resolves to “1” then the combination provides a

Inference Disruption Cover, otherwise it does not.

Example 5.2.4 (Inference Disruption Cover). Let L be the logic string from Figure

5.4, L= ((a∨b∨c∨e∨f)∧(((u∨v)∧(a∨e∨h))∨n∨j∨k∨l∨o)∧((e∨f∨q)∧(f∨s∨t))) and

G be the set off all participating ground facts participating in violations g, p, and

r, G = {a, b, c, e, f, h, j, k.l, n, q, s, t, u, v}. The following are example participating

ground fact combinations followed by the cover logic string with combination variables

set to “1” and their bitwise evaluation.

Combination {a, e, f} : ((1∨0∨0∨1∨1)∧(((0∨0)∧(1∨1∨0))∨0∨0∨0∨0∨0)∧

((1∨1∨0)∧ (1∨0∨0))) = ((1)∧ (((0)∧ (1))∨0)∧ ((1)∧ (1))) = ((1)∧ ((1)∧0)∧ (1))

= (1 ∧ 0 ∧ 1) = 0.

Combination {f, k} : ((0∨0∨0∨0∨1)∧ (((0∨0)∧ (0∨0∨0))∨0∨1∨0∨0∨0)∧

((0∨ 1∨ 0)∧ (1∨ 0∨ 0))) ((1)∧ (((0)∧ (0))∨ 1)∧ ((1)∧ (1))) = ((1)∧ ((0)∨ 1)∧ (1))

= ((1) ∧ (1) ∧ (1)) = 1.

70

The combination {a, e, f} does not provide a cover since it does not disrupt any

of the ground facts in violation g and only disrupts one of the two hypergraphs in

the disruption container found in g. The combination {f, k} does provide a cover for

g, p, and r.

5.3 Cost

Our investigation into a better costing model continues our emphasis on developing

a semi-greedy approach. We defined two cost calculations in Chapter 3, the Concept

Alteration Cost (Definition 3.4.2) and the Combination Alteration Cost (Definition

3.4.3). These cost calculations assign a cost to each data item in a participating fact

combination. The discrete item cost, Costf , is based on the alterations applied to

a data item: one level of generalization, two levels of generalization, or removal (see

Table 3.4). The aggregate cost, CostS, is then calculated for a combination by adding

the components of the Costf for each data item in the combination. In the exhaustive

approach, each data item is assessed locally and any global impact is ignored. There

is also no consideration given to one data item having more informational value than

another (i.e., its impact on safe inferences, where it is found in the domain knowledge

ontology tree, or entropy loss if modified), neither within a combination or across

combinations.

In this section, we discuss refinement to our initial cost model and calculations.

These refinements will allow our costing model to provide a better gauge on the

impact each participating fact combination will have on data availability. To support

the enhanced cost function, we collect meta-data on all data items that participate

(directly or indirectly) in a privacy violating inference. The meta-data collected is as

follows:

• the alteration cost for a data item

71

• the number of safe (non-violation) inference paths that the data item partici-

pates in

• the depth of the data item’s concept in the domain knowledge ontology hierarchy

• the entropy of the data item in the domain knowledge ontology.

During participant fact identification and combination construction, meta-data

will be collected and stored. The process will also store meta-data aggregate values

for alterations (source and target data items) and combinations of alterations. We

address organization and storage of the meta-data in the next sections, but first we

discuss the four categories of meta-data.

Alteration Cost

We use the same approach to calculate alteration cost for the efficient approach as we

did in the exhaustive approach (see Section 9 – Definitions 3.4.2 and 3.4.3). Values

used in the calculations are based on Table 3.4.

Inference Participation

We say that a data item participates in the inference of a generated data item if it

satisfies any rule in an inference path which concludes in that generated data item.

While we want to disrupt non-safe (violation) inferences, we would like to avoid

disrupting safe inferences. To encourage preservation of safe inferences, we increase

the cost of a combination if it disrupts safe inferences. We recursively look at all

rules that were satisfied during the reasoning process and any rules supporting those

rules (recursively). From this rule information, we determine the number of safe

(non-violation) inferences that a data item participates in. Because it is desirable to

disrupt violation inferences, we do not increase cost of a combination because of safe

72

inferences that are dependent on violation inferences. This is further illustrated in

the following example.

Example 5.3.1 (Inference Participation). Figure 5.8 shows an example of nine rules

satisfied by reasoning over some data and domain knowledge. These rules are com-

prised of six safe (non-violation) inferences, (d, i,m, v, w, y), and three violation infer-

ences, (g, p, r). The rules are satisfied by 14 ground facts, (a,b,c,e,f ,h,j,k,l,n,o,q,u,x).

Since the safe inference y is dependent on the violating inference p (which we plan to

disrupt), it is not counted as a safe inference for any of the ground facts in its path.

The violation and non-violation inference participation counts can be seen in Table

5.3.1. Note that not all safe inferences are connected to violation inference paths.

In our example, inferences u, v, and y (colored grey in Figure 5.8) are safe and not

connected to any violation inferences. Since ground facts u and x are only found in

the inference paths of v, w, and y and not in any violation inference paths, they are

not candidates for inference disruption and we need not collect meta-data on them.

a

b

c

d

e

f

g

a

e

h

i

j

k

l

m

n
p

e

f

q

ro

u

f v

e

o

w

x

y

Figure 5.8 All inferences paths. Paths from Figure 5.1 (secondary rules removed
for clarity) enhanced to include inference paths not contributing to violations (rule
head shown in grey). Rule conclusions v, w, and y, along with ground facts u and x,
do not participate in any of the violation inference paths.

73

Table 5.1 Inference Participation - Figure 5.8 ground facts shown with
participation count for both violation and non-violation inferences.

Ground Fact Violation Count Non-Violation Count
a 2 {g,p} 2 {d,i}
b 1 {g} 1 {d}
c 1 {g} 1 {d}
e 3 {g,p,r} 2 {i,w,}
f 1 {g} 2 {v,w}
h 1 {p} 1 {i}
j 1 {p} 1 {m}
k 1 {p} 1 {m}
l 1 {p} 1 {m}
n 1 {p} 0 {}
o 1 {p} 1 {w}
q 1 {r} 0 {}
u 0 {} 2 {v,w}
x 0 {} 0 {}

Since we do not want to increase cost more than once if two ground facts in the

same cover disrupt the same safe inference, we must maintain inference participation

as a list of disrupted safe inferences instead of a discrete count value. Therefore, the

inference participation count for a data item is determined by the cardinality of its

disrupted safe inference list. The inference participation count for an alteration is the

cardinality of the disrupted safe inference list for its unaltered data item. The count

for a combination is the cardinality of the union of the disrupted safe inference list

for unaltered data items in each alteration.

Depth

By depth, we mean a measure of distance between a data item concept and the root of

its associated domain knowledge ontology. When the ontology is viewed as a tree, the

depth is the number of ISA relationships between the concept describing a data item

and the root node of the ontology. Depth gives a very broad indication of specificity;

concepts with a low depth value are close to the root and very general (the root node

74

as a depth of 0 and maximum generality) while concepts with a larger depth value

are farther from the root with numerous concepts along the path (each increasing in

specificity); see Figure 5.9.

Process

C
0

C
1

C
2

C
3

C
4

C
5

C
6

Root

G
e
n
e
ra
l

S
p
e
c
ifi
c

Figure 5.9 Hierarchical Ontology Tree - Concepts at the top of the tree near the
root are more general, while concepts at the bottom, farther from the root, are more
specific, with C4, C5, and C6 having the most specificity.

Entropy

Entropy is a measure of uncertainty about a distinct piece of information. We apply

the idea of entropy to our data items as an additional measure of data availability.

We base our approach to entropy measurement on the work of Calmet and Daemi [5].

Calmet and Daemi proposes a a measure of entropy distance based on the Kullback-

Leibler distance (relative entropy). They define the degree of a concept within an

ontology as the number of sub-concepts under that concept in the ontology. The

degree value is then normalized over the size of the ontology (number of unique

concepts excluding the root) giving a value between 0 and 1.

75

The purpose of determining the degree measurement is to show levels of ambiguity.

A low degree value (near 0) indicates a concept with little or no sub-concepts; there

is minimal ambiguity in the use of this concept in a fact. A high degree value (near 1)

indicates that a large number of sub-concepts in the ontology fall under this concept

(it is near or at the root of the ontology); there is a high level of ambiguity since

a fact using this concept may actually be better identified with one of many of its

many sub-concepts.

Using an alphabet Ω consisting of a concept in the ontology, and degree mea-

surement described above as the mass probability distribution, Calmet and Daemi

calculate the entropy of concept N , denoted H(N) as:

H(N) = −
∑
Ω

deg(N)
2 log2(deg(N)

2),

resolving to the sum of probability of N and the probability of ¬N :

H(N) = −deg(N)
2 log2(deg(N)

2)− (1− deg(N)
2)log2(1− deg(N)

2).

This calculation assumes the following: 0 log2 0 = 0. Using these calculations, a

concept with degree = 0 (no sub-components) would have an entropy or ambiguity

value of 0 (no ambiguity) while a concept with degree = 1 (all concepts in ontol-

ogy are sub-components) would have an entropy or ambiguity value of 1 (maximum

ambiguity).

In our enhanced cost model, we use Calmet and Daemi’s approach to determine

the amount of ambiguity introduced by altering a data item to a concept closer to

the ontology tree root. We provide algorithms later in this section.

Example 5.3.2 (Entropy). Let there be an ontology with concepts (root, c1, . . . , c18)

as shown in Figure 5.10. There are 18 unique concepts in the ontology if the root

is excluded. Let there be two facts, fa, and fb that participate in the paths of

some unauthorized inference. Also let fa, and fb connect to concepts c7 and c18

76

respectively. The degree of alteration options (none, one level generalization, two

level generalization, removal) for fa, and fb are shown in Table 5.2.

C
1

Root

C
2

C
3

C
12 C

13
C
14

C
16

C
15

C
18

C
17

C
6

C
5

C
4

C
11

C
10

C
7

C
9C

8C
7

C’
7

C’’
7

C
7

C
18

C
18

C
18

C
18

Figure 5.10 Entropy Example - Ontology tree with 18 concepts in the ontology,
excluding the ontology root.

Table 5.2 Degree, normalized degree, and entropy values for concepts c7 and c18.
Concept Degree Normalized Entropy Concept Degree Normalized Entropy

Degree Degree
c7 0 0.0 0.0 c18 0 0.0 0.0

c′
7 = c3 5 0.2778 0.5814 c′

18 = c6 2 0.1111 0.3095
c′′

7 = c1 10 0.5556 0.8524 c′′
18 = c2 6 0.3333 0.6500

6 c7 = root 18 1.0 1.0 6 c18 = root 18 1.0 1.0

Note that in Example 5.3.2, the degree increases as we apply alterations bringing

the concept closer to the ontology root. In comparing c′7 and c′18, we see that c′18

has a lower degree than c′7 (2 versus 5) and therefore a lower entropy value (0.3095

versus 0.5814). Intuitively, this indicates that there is less ambiguity introduced by

generalizing one level from c18 to c′18 than by generalizing one level from c7 to c′7.

Information Vector

To maintain meta-data in support of the enhanced cost function, we introduce the

concept of a meta-data information vector. The generic form of this vector is used to

77

track the meta-data related to a data item modification at three levels:

1. meta-data is tracked at the individual data item level

2. meta-data is tracked in aggregate for unaltered and altered data items (data

item alteration)

3. meta-data is tracked in aggregate for the set of alterations (alteration combi-

nation)

While we use the same vector construct to track the three levels of meta-data,

the content is different depending on which data level the vector is associated with.

If a vector is associated with a data item, its data is specific to that item (Definition

5.3.1), if associated with an alteration, its data is the aggregate of two data items

(Definition 5.3.2), and if associated with a participating fact combination, its data is

an aggregate of its alterations (Definition 5.3.3).

Definition 5.3.1 (Data Item Information Vector). Let f be a data item. We say

the data item information vector for f , Vf =< a1, . . . , a4 >, is a set of attributes,

such that a1 is the alteration cost associated with f , a2 is the list of distinct unsafe

inferences that f participates in, a3 is the ontology hierarchy depth of f , and a4 is

the entropy (uncertainty) of f .

Definition 5.3.2 (Alteration Information Vector). Let m be a data item alteration,

with source concept c1 and target concept c2. We say the alteration information

vector for m, Vm =< a1, . . . , a4 >, is a set of attributes, such that a1 is the sum of

alteration cost associated with data items in a, a2 is a 2-tuple where the first element

is a distinct list of safe inferences for c1 and the second element a similar list for c2,

a3 is the average ontology hierarchy depths for c1 and c2, and a4 is the difference

between the entropy for c1 and c2, (c2 − c1).

78

Definition 5.3.3 (Combination Information Vector). Let c be a set of alterations

forming a PFC. We say the combination information vector for c, Vc =< a1, . . . , a4 >,

is a set of attributes, such that a1 is the sum of alteration cost associated for all

alterations in c, a2 is a 2-tuple where each element is a union of the corresponding

element for all alterations in c, a3 is the average ontology hierarchy depth for all

alterations in c, and a4 is the sum of the entropy values for all alterations in c.

Example 5.3.3 (Data Vector). Let there be an Ontology tree as shown in Figure 5.10

with entropy values shown in Table 5.2. Let there be a participating fact combination

C with 2 facts linked to ontology concepts C6 and C7 with alterations A1 and A2

such that A2 generalizes C6 one level to C2 and A1 generalizes C7 two levels to C1.

Let the safe inference list for C1, C2, C6, and C7 be {b, d, e}, {b, c, d}, {a, b}, and

{a, b, c} respectfully. The information vectors for the data items, alterations, and

combination are shown in Table 5.3.

Table 5.3 Information Vectors - Table shows the three types of information vectors.

Information Vector Alteration Safe Inferences Depth Entropy
Data Item C7 1.0 {a,b,c} 4 0
Data Item C1 -0.25 {b,d,e} 2 0.8524

Alteration A1: C7 → C1(C ′′7) 0.75 ({a,b,c},{b,d,e}) 3 0.8524
Data Item C6 1.0 {a,b} 3 0.3095
Data Item C2 -0.5 {b,c,d} 2 0.6500

Alteration A2: C6 → C2(C ′6) 0.5 ({a,b},{b,c,d}) 2.5 0.3405
Combination C1 = {A1,A2} 1.25 ({a,b,c},{b,c,d,e}) 2.75 1.1929

Meta-data values are pre-collected on all ground fact data items which are part

of a complete minimal inference cover. These data item meta-data values are cached

in a table for reference when building various information vectors. In some cases

data items meta data may not be available in the table since the data item being

generalized to was not in the initial data item set. In this case, the meta-data is

collected, used, and added to the table for future reference. As seen in Figure 5.11, a

79

concept in the ontology hierarchy tree can have multiple identities since in addition to

its initial name, it can also be reference as the first level generalization of its children

and the second level generalization of its grandchildren.

C
1

C
2

C
6

C
5 C

8

C
7

C
4

C
3

C
7

C’
7

C
0

C
8

C
4

C
2

C
0

C
6

C
5

C
1

C’
8

C’’
7
C’’
8

C
3 C’

6
C’
5

C’
4

C’
3

C’’
5
C’’
6

C
2

C
7

C
8

C
4

C
3

C
5
C
6

C
1

C
0

Figure 5.11 Multi-identify nature of concepts when they are potential targets for
generalization or removal.

Example 5.3.4 (Multi-Identity). Given Figure 5.11, we can see that node C2 in the

ontology hierarchy tree can be referenced as C2, C ′3, C ′4, C ′′5 , C ′′6 , C ′′7 , or C ′′8 . Likewise,

C0 can also be referenced as the removal of any node in the tree. Note that while not

shown in the figure, C0 is also the first level generalization of both C1 and C2 and

the second level generalization of both C3 and C3.

Dominance

Unlike the exhaustive approach, where discrete cost values could be compared to de-

termine PFC cost dominance, the PFC cost is now based on an information vector.

The data item information and alteration vectors are building blocks for the combina-

tion information vector. It is the combination information vector that represents the

cost of a PFC so a method is needed to compare two combination information vectors

and determine which dominates (has the higher cost). We accomplish comparison by

80

interrogating like meta-data in the two vectors and comparing their alteration impact

values, ImpactS (Definition 5.3.4).

Definition 5.3.4 (Alteration Impact Value). The alteration impact value, denoted

ImpactS, is the alteration cost CostS enhanced by the number of safe inferences

impacted. Let S be a PFC and U the number of safe inferences disrupted by S. We

calculate the alteration impact value of S as follows: ImpactS = CostS+(CostS∗U).

Using this definition of ImpactS increases data availability by avoiding combina-

tions that will disrupt safe (non-violation) inferences when possible. If two combi-

nations have similar alteration cost, the use of ImpactS will allow our methods to

chose the combination with lesser data availability impact.

5.4 Order of Evaluation

In Sections 5.1 and 5.2, we introduced a method to reduce the number of PFCs that

need to be evaluated by eliminating combinations that do not provide a disruption

cover. In Section 5.3, we enhanced meta-data collection and the cost calculation to

provide a better measure of data availability and level of data uncertainty. These

enhancements allow us to now investigate methods to further minimize combination

evaluation and arrive at an acceptable solution sooner.

Our overarching goal is to not just identify a valid solution, but to identify a valid

solution with low cost. By low cost, we mean the solution satisfies the property of

minimality (see Section 3.2). In our exhaustive approach, minimality was optimal

and achieved by searching all valid solutions for one with the lowest cost. To find an

optimal solution, all PFCs had to be evaluated prior to minimal solution selection

since all valid combinations had to be considered. However, there were inefficien-

cies inherent in the exhaustive approach – combinations that had no chance of being

successful were unnecessarily evaluated; this inefficiency was addressed using covers

81

(Section 5.2). Solution covers eliminate many combinations from being evaluated,

but the exhaustive approach still evaluates all cover combinations. In this section,

we will investigate three approaches which strive to reach a solution using less evalu-

ations: low-cost selection semi-exhaustive, low-cost selection heuristic, and low-cost

high entropy traversal. The low-cost selection semi-exhaustive approach maintains

optimal minimality but may still require more combination evaluations then neces-

sary. The low-cost selection heuristic and low-cost high entropy traversal approaches

reduces evaluations further, but relax optimal minimality and instead strives for a

“reasonably” low cost solution.

5.4.1 Low-Cost Selection Semi-Exhaustive

The idea behind the low-cost selection semi-exhaustive approach is to consider all

PFCs as in the exhaustive approach, but to evaluate them in impact cost order, from

lowest cost to highest cost. Once a successful combinations is found, we designate

that combination as our solution and require no additional evaluations.

We start by using the ImpactS calculation (Definition 5.3.4) to arrange all cover

combinations in Cost Order (Definition 5.4.1) – from lowest cost to highest cost.

Definition 5.4.1 (Cost Order). Let V C = {S1, . . . , Sn} be the set of all identi-

fied PFCs based on minimal disruption covers. We say that V C is in cost order if

∀i, j(i, j = 1, . . . , n), (i < j), (ImpactSi
≤ ImpactSj

). In other words, the impact

cost of Si is less than or equal to the impact cost of Sj.

Intuitively, the Impact value for all cover combinations in V C is non-decreasing

order from combination S1 to combination Sn.

Starting with the lowest cost combination, we evaluate each combination using our

reasoner and domain knowledge. If the combination removes all violations, we then

deem it successful and stop. If the combination does not remove all violations, we step

to the next lowest cost combination and evaluate it. We continue this process until we

82

find a combination that is deemed successful. Based on Claim 5.4.1, we can terminate

as soon as the first successful combination has been identified, without needing to

evaluate any additional combinations. By evaluating combinations in cost order, we

eliminate the exhaustive approach inefficiency of evaluating all combinations prior

to selecting the one with minimal cost. However, while the sequential approach

can terminate early, avoiding the need to evaluate all combinations, it may still

have to evaluate a large number before finding one that is successful. Note that

if multiple combinations have equal cost, their order of evaluation is irrelevant, since

any successful combination with that cost is minimal.

Claim 5.4.1 (Early Termination). If combinations are evaluated in Cost Order

(Defnintion 5.4.1), once a successful combination has been identified, evaluations can

stop. Minimality is guaranteed as no other combination can exist which have a lower

cost.

Proof of Early Termination. Assume, by contradiction, that a successful com-

bination S is identified as minimal, but another successful combination S ′ exists and

has a lower cost. Let V C = {S1, . . . , Sn} be the set of all combinations in cost

order (Definition 5.4.1). Since S is a successful combination, it would be some Sk

(1 ≤ k ≤ n) in V C. Solutions in SV are evaluated in cost order, from S1 to Sn, and

the first successful combination is selected as minimal. Since we know that S ′ is also

a successful combination, but with a lower cost, it must occur before S in V C (cost

order). However, if S ′ occurs before S then it would be evaluated before S and if

S ′ is a successful combination, it would have been selected as minimal. But S was

selected as minimal. This is a contradiction to our assumption that S ′ exists and has

a lower cost than the selected minimal .

There is no way to predict how many unsuccessful combinations will be evaluated

before a successful one is found, but the hope is that a solution is found before reaching

83

the midpoint of the combination list. If successful, this approach would reduce the

number of evaluations by more than 50% over the exhaustive approach.

5.4.2 Low-Cost Selection Heuristic

In this approach, we use heuristics to further reduce the number of evaluations re-

quired to get to a satisfactory low cost (but not necessarily minimal) solution.

Similar to the low-cost selection semi-exhaustive approach, we start by using

ImpactS cost (Definition 5.3.4) to arrange cover combinations in Cost Order, except

in this case we only include full removal combinations. By full removal combinations,

we mean those combination covers that only remove concepts and do not perform

any generalizations. Once in cost order, we can easily determine the lowest cost

of all removal combinations by examining the first combination in the list. The

cost of this first combination becomes our baseline minimum cost. We could select

this combination as our solution and terminate, but to find a “reasonably” low cost

solution, we use heuristics to evaluate a sample of low cost removal combinations

with selected generalizations added. The intuition behind low-cost selection heuristic

approach is that a successful low cost generalization combination is likely based on

a low cost removal combination and by evaluating combination elements based on

entropy, we can balance combination success with minimizing alteration cost and

maximizing data availability. For this approach, we currently only consider one-

level generalizations. There is no reason this approach could not be extended to

consider additional levels of generalization in the future. Note that it not necessary to

evaluate removal combinations since they are based on minimal inference disruption

covers which, by Definition 5.1.3, will disrupt violations by leaving sufficient rules

unsatisfied.

Our method will investigate the lowest cost five removal combinations. In each

case, we know that the removal combination will be successful since it is a minimal

84

disruption cover. We also know that generalizing any concept in a removal com-

bination (instead of removing it) will reduce alteration cost. However, the change

from removal to generalization may also cause the combination to not be successful

in disrupting all violations. Therefore, our goal is to carefully pick which concepts in

the removal combination will reduce cost and are most likely to preserve successful

violation disruption.

To assist in selecting concepts that have a higher chance of preserving violation

disruption, we look at concept entropy and the disruption options. Our goal is to

make alterations that leave rules needed by violation inferences unsatisfied. We know

that removal of concepts in these rules will make the rules unsatisfied. However,

for generalization we want to pick concepts that also leave the rules unsatisfied.

Generalizations that are very similar to the original concept are likely to cause fired

rules to remain satisfied; so, we select concepts to generalize by looking at how unlike

they are from the original concept. We use uncertainty as an indicator of “likeness”

between concepts and their generalizations. The more uncertainty that is introduced

by a generalization, the more likely it is dissimilar to the original concept and will

leave a rule unsatisfied (and disrupt inference violations). We are using a threshold of

0.5 uncertainty preserved (uncertainty of removal (1.0) - uncertainty of generalization)

to indicate high dissimilarity and a good choice for generalization.

We first designate the lowest cost removal combination as the current solution and

its cost as the current baseline cost. Next, for each of the lowest cost five removal

combinations in cost order (low to high), we perform the following steps:

• for each participating fact in the removal combination:

– compare the uncertainty introduced by removal with the uncertainty in-

troduced by generalizing one level

– if one level of generalization retains 50% of uncertainty introduced by

85

removal, switch alteration method to generalization

• re-calculate cost of combination

• if updated cost of combination is less than the current baseline cost

– apply updated combination alterations to initial database

– reason over database and domain knowledge

– if no violations generated, updated cost is new baseline and updated com-

bination is new current solution

When these steps are complete, we will have evaluated up to five variations on

the lowest cost removal covers. If any of these variations are successful, we will

have captured its cost and marked it as a “reasonably” low cost solution. Since we

do not need to reason over the removal combinations, we will at most reason over

five combinations in this method, making it a much more computationally feasible

approach.

Example 5.4.1 (Heuristic Order). Let there be an Ontology tree as shown in Figure

5.10 with entropy values shown in Table 5.2. Let there be a minimal disruption

cover (removal) combination B with 2 facts linked to ontology concepts C7 and C18.

Let B have alterations A1 and A2 such that A1 removes C7 and A2 removes C18.

Let the safe inference list for C6, and C18 be {b, d, e} and {a, b, c} respectfully. The

information vectors for the data items, alterations, and combination are shown in

Table 5.4.2.

Assume B is the lowest cost combination of the five lowest cost removal combi-

nations. Following the steps described above, the initial baseline Impact cost of B

would be 2 + (2 ∗ 5) = 12.0 (alteration cost + alteration cost * number of safe infer-

ences). When looking at the first alteration, the uncertainty gain is 1.0. Generalizing

C7 one level (C ′7 or C3) would yield an uncertainty gain is 0.5814, which is above our

86

threshold of 0.5 (50% reduction), so C7 is a good choice for generalization instead

of removal. Generalizing C18 one level (C ′18 or C6) would yield an uncertainty gain

is 0.3095, which is below our threshold and not a good choice to switch to general-

ization. The updated information vector for B, denoted B′ is shown in 5.4.2. The

Impact cost for the updated combination would be be 1.5 + (1.5 ∗ 5) = 9.0. Assum-

ing B′ removes the violations when applied to the database and reasoned over with

domain knowledge, it would be preferable to B since its Impact cost is lower (9.0

versus 12.0); its uncertainty gain is also lower (1.5814 versus 2.0). The remaining

four low cost combinations would be treated likewise and if any were successful with

an Impact cost lower than 9.0, they would be chosen above B′.

Table 5.4 Initial information vectors for minimal disruption cover (removal)
combination.

Information Vector Alteration Safe Inferences Depth Entropy
Data Item C7 1.0 {a,b,c} 4 0

Data Item CROOT -0.0 1 1
Alteration A1: C7 → CROOT 1.0 {a,b,c} 2.5 1.0

Data Item C18 1.0 {b,d,e} 4 0
Data Item CROOT -0.0 1 1

Alteration A2: C18 → CROOT 1.0 {b,d,e} 2.5 1.0
Combination B = {A1,A2} 2.0 {a,b,c,d,e} 2.5 2.0

Table 5.5 Initial information vectors for minimal disruption cover (removal +
generalization) combination.

Information Vector Alteration Safe Inferences Depth Entropy
Data Item C7 1.0 {a,b,c} 4 0.0
Data Item C3 -0.5 3 0.5814

Alteration A1: C7 → C3 0.5 {a,b,c} 3.5 0.5814
Data Item C18 1.0 {b,d,e} 4 0.0

Data Item CROOT -0.0 1 1.0
Alteration A2: C18 → CROOT 1.0 {b,d,e} 2.5 1.0
Combination B′ = {A1,A2} 1.5 {a,b,c,d,e} 3.0 1.5814

87

5.4.3 Low-Cost High-Entropy Traversal

The last area we investigated is based on heuristic construction of a solution versus

selection from a large set of potential solutions. This approach does not require that

combinations be built in advance.

|

C

^

^

^

|

|

|

F

|

G H J

K M N

A B

E

(((A | B) ^ (C | F | D)) ^ (E | ((F | G) ^ (H | J) | K)) ^ (J | M | N))

D

|

Figure 5.12 Logic graph. This graph is constructed during inference path
evaluation and participant discovery and is used to construct the logic equation for
cover evaluation.

Before describing this approach, we need to discuss an addition to our data model

(Section 3.3.1). A new data structure is added to support the generation of cover logic

strings and low-cost high-entropy traversal method. This additional structure is a

rooted tree graph (Figure 5.12), which is used to store inference paths and their logical

operator connections. The graph has three types of vertices: the collector vertex

which is indicated by a diamond, the inference vertex which is indicted by a circle,

and the fact vertex which is indicated by a square. We will use this inference graph as

a guide to build the cover determination logic statement. In building the statement,

the collector vertex simulates a logical “AND” of its children, the inference vertex

88

simulates a logical “OR” of its children, and fact vertices are ground facts / branch

leaves and have no children. We will discuss construction of the rooted tree graph

and logic statement when we review the revised Solution Set and GetCandidates

algorithms in the next section.

We can now describe the low-cost high-entropy traversal method. We use the

violation inference rule representation that is inherent in our rooted tree graph to

guide construction of a minimal inference disruption cover with low cost and high

entropy. By performing a depth-first traversal of the tree graph, we can select the

best node to add into the alteration combination by examining the cost and entropy

of nodes below it.

The idea behind this approach is that, while doing a depth-first traversal of the tree

graph, we build a cover by selecting a node that fulfills the AND and OR requirements

at each logic operator branch. At each OR operator we will select one child item to

satisfy the operation. At each AND operator, we must select all items to satisfy the

operation. Since all nodes are visited using a depth-first traversal, the question of

which items to select for each logic operator is based on nodes already visited. We

use a combination of cost and entropy to select the “best” item for an operator. The

OR operators will pass “up” the selected node and its meta-data, whereas the AND

operator will pass up a set of items and an aggregation of their meta-data. At each

step the options for selection may include: directly connected facts, facts propagated

up the tree by OR operators, or collections of facts assembled and propagated up the

tree by AND operators. By traversing the tree in this way, we can construct a list of

facts that will provide a minimal disruption cover. This list can be confirmed to be

a minimal disruption cover by evaluation using the minimal cover logic statement as

previously discussed.

If we only consider removal cost of fact nodes while traversing, we could easily

pick the lowest cost node to satisfy a branch. This low cost traversal gives us a cover

89

|

C

^

^

^

|

|

|

F

|

G H J

K M N

A B

E

(((A | B) ^ (C | F | D)) ^ (E | ((F | G) ^ (H | J) | K)) ^ (J | M | N))

D

|1 2

3

4 5

6

7 8

9

Figure 5.13 This graph is constructed during interrogation of the violations
inference paths. Note the numbers which indicate the order of node visiting during
depth-first traversal.

with the same (lowest) cost as found when ordering removal covers in the previous

section. However, if we looked, not just at removal cost, but factored in a fact node’s

entropy value, our result would be a high-entropy low-cost disruption cover. This

cover would contain facts that, for each OR branch in the graph, are the ones most

likely to preserve disruption if generalized. If we selectively switch the highest entropy

facts in this cover from removal to generalization, our cost should go down and our

probability of preserving disruption should be higher than just selecting the lowest

cost removal cover.

Example 5.4.2 (Tree Graph Traversal). Let the tree graph in Figure 5.13 be a

representation of the rules and participating facts for a set violations. We assume

for this example that all facts in the graph tree have the same impact value. The

low-cost high-entropy traversal would process as follows:

1. The node (A or B) with higher entropy is selected

90

2. The node (C or D or F) with higher entropy is selected

3. The results of steps 1 and 2 are combined

4. The node (F or G) with higher entropy is selected

5. The node (H or J) with higher entropy is selected

6. The results of steps 5 and 6 are combined

7. The node (E or K) or result of step 6 with higher entropy is selected

8. The node (J or M or N) with higher entropy is selected

9. The result of steps 3 or 7 or 8 are combined

Details of these approaches are discussed in the following section.

5.5 Efficient Disruption Approach

In this section, we will discuss details and algorithms for the methods needed to

support our efficient approach. Some algorithms in this section are revisions to those

found in Subsection 3.4.1 and some are new.

We have presented numerous revisions to our approach for defeating inference

violations. In the following sections, we provide additional detail with focus on im-

proving computational feasibility. These modifications align with topics presented

earlier in this chapter: reduction of combination set size (Section 5.1), improved cost

evaluation (Section 5.3) and the heuristic approach to quickly selecting a solution

(Section 5.4), with the goal being development of more computationally efficient pro-

cesses. Before presenting relevant algorithm changes, we will describe the high level

logic flow for each of the three approaches described earlier in this chapter.

91

First, we describe the flow of Low-Cost Selection Semi-Exhaustive (Section 5.4.1).

The basic logic flow for this approach is similar to that of the exhaustive approach

and shown in Figure 5.14.

Steps are numbered to allow reference to steps in this figure when specific algo-

rithms are discussed. Steps in this flow are as follows:

1. This step is the same as in the exhaustive approach.

2. This step is the same as in the exhaustive approach.

3. This step is the same as in the exhaustive approach.

3a. This step is the same as in the exhaustive approach.

4. This step generates all removal covers. These covers are sorted in cost order,

low to high.

5. In this step, we iterate over all covers, from lowest cost to highest.

5a. In this step, we apply the combination alterations to the original database.

5b. In this step, we reason over the altered database and domain knowledge.

5c. In this step, we check to see if any violations are still present. If no

violations are found, we declare the current combination as the solution

and exit the loop.

6. This step is the same as in the exhaustive approach.

Second, we describe the flow of Low-Cost Selection Heuristic (Section 5.4.2). The

basic logic flow for this approach is similar to that of the exhaustive approach and

shown in Figure 5.15.

The basic logic flow for our efficient approach is similar to that of the exhaustive

approach. Steps are numbered to allow reference to steps in this figure when specific

algorithms are discussed. Steps in this flow are as follows:

92

Start

Stop

Generate Cover

Combinations

Sorted by Cost

Process

Each

Combination

in Cost Order

Reason With

Altered DB

Return Selection

as Solution

Apply

Combination

Alterations to DB

Load Data,

Minimize DB

Reason over

Database and

Domain

Knowledge

Violations

Found
Stop

No

Yes

1

2

3

4

5

6

5a

5c

If No Violations

Found, Select

Combination and

Exit Loop

5b

Database

Is Safe

3a

Figure 5.14 High-level logic flow of Low-Cost Selection Semi-Exhaustive.

1. This step is the same as in the exhaustive approach.

2. This step is the same as in the exhaustive approach.

3. This step is the same as in the exhaustive approach.

93

3a. This step is the same as in the exhaustive approach.

4. This step now only generates full removal covers instead of the full superset of

facts using removal and generalization. These covers are also now sorted in cost

order.

5. The baseline solution is set to the lowest-cost full-removal cover. This will be

our default solution if a lower cost solution is not found.

6. In this step, we iterate over the (up to five) lowest cost removal covers.

6a. In this step, we iterate over all alterations in the cover being processed.

6a1. In this step, we look at the levels of uncertainty (entropy) between a

removal and a generalization. If we maintain 50% of the uncertainty

introduced by removal, we say generalization has a high chance of

maintaining disruption.

6a2. In this step, we switch the alteration from removal to generalization

if the uncertainty threshold has been met.

6b. In this step, we apply the combination alterations to the original database.

6c. In this step, we reason over the altered database and domain knowledge

and check to see if any violations are still present. If no violations are

found, set the altered combination as the new baseline.

7. This step is the same as in the exhaustive approach.

Third, we describe the flow of Low-Cost High-Entropy Traversal (Section 5.4.3).

The basic logic flow for this approach is similar to that of the exhaustive approach

and shown in Figure 5.16.

Steps are numbered to allow reference to steps in this figure when specific algo-

rithms are discussed. Steps in this flow are as follows:

94

Start

Stop

Generate

Removal Cover

Combinations

Sorted by Cost

Process

Sample of

Low Cost

Combinations

Determine

Entropy of

Remove vs

Generalize

Adjust

Combination if

Generalize Has

 Lower Cost

Set Baseline To

Lowest Cost

Removal

Combination

Apply

Combination

Alterations to DB

Return Baseline

as Solution

Process

Each

Alteration in

Combination

Load Data,

Minimize DB

Reason over

Database and

Domain

Knowledge

Violations

Found
Stop

No

Yes

1

2

3

4

5

6

7

6a

6c

6a1

6a2

Reason With

Altered DB - If No

Violations, Set to

New Baseline

6b

Database

Is Safe

3a

Figure 5.15 Highlevel logic flow of Low-Cost Selection Heuristic.

1. This step is the same as in the exhaustive approach.

2. This step is the same as in the exhaustive approach.

3. This step is the same as in the exhaustive approach.

3a. This step is the same as in the exhaustive approach.

4. This step generates the minimal cover logic statement and graph tree, but does

95

not generate any participating fact combinations.

5. In this step, we do a depth-first traversal of the graph tree to create a cover.

5a. In this step, if an OR operator is encountered, we select the best child

node to propagate up.

5b. In this step, if an AND operator is encountered, we select all child nodes

to propagate up.

6. This step looks at high entropy concepts included in the cover. We start with

all high entropy concepts and remove the lowest valued one until a solution is

reached.

6a. In this step, we generalize all concepts in the current entropy list.

6b. In this step, we test (reason over altered database) and select as solution

if no violations found.

7. This step is the same as in the exhaustive approach.

We now present our “efficient” modification to the exhaustive approach algorithms

and introduce several new algorithms. Algorithm changes for Low-Cost Selection

Semi-Exhaustive are trivial and only consist of processing the combinations in cost

order. We will first present algorithms to support Low-Cost Selection Heuristic,

followed by algorithms to support Low-Cost High-Entropy Traversal.

5.5.1 Low-Cost Selection Heuristic

This discussion will follow the basic flow of Figure 5.15.

The initial algorithm in our framework, Algorithm 1 (DisruptViolations), has a

minor modification. This algorithm implements steps 1-3 and 7 in each of the process

flows.. In Algorithm 1, line 6 is changed to call Algorithm 9 (EfficientDisruption)

instead of Algorithm 4 (ExhaustiveDisruption).

96

Start

Stop

Generate Minimal

Cover

Logic Statement

Depth-First

Traversal of

Logic Tree
If AND, select all

child nodes

Return Low Cost

Configuration as

Solution

If OR, select best

child node

Load Data,

Minimize DB

Reason over

Database and

Domain

Knowledge

Violations

Found
Stop

No

Yes

1

2

3

4

5

6

5a

Attempt to

Generalize

5b

Database

Is Safe

3a

Test Generalization

for Violation

Removal

If High Entropy,

Switch to Generalize

6a

6b

Figure 5.16 High-level logic flow of Low-Cost High-Entropy Traversal.

Next, we address Algorithm 4 (Exhaustive Disruption). This algorithms controls

the primary logic used to find an efficient solution to the violation inference problem.

This algorithm implements steps 4-6 in Figure 5.15.

The revised method, Algorithm 9 (Efficient Disruption) implements the heuristic

97

approach described in Section 5.4. Revisions to this algorithm include:

• ContributeToInferenceSet is called to determine the number of inferences each

concept participates in

• EfficientCombinations is called instead of SolutionSet which now returns only

full removal covers

• the set of combinations in SS is sorted in cost order, lowest to highest

• baseline combination (S) and cost (Scost) are established

• up to the first five combinations (cost order) are examined

• in each alteration, removals are changed to generalizations if at least 50% of

removal entropy is retained by generalization

• updated combinations are evaluated if their cost is less than the baseline cost

• if evaluated and violations are removed, updated combination becomes the new

baseline

In general, Algorithm 9 will evaluate generalization options for at most the five

lowest cost removal combinations. It will return either the lowest cost full removal

cover or a generalized version of another low cost removal cover, whichever has lower

cost.

The first step in the EfficientDisruption method is to generate a set of full removal

inference disruption covers. This is analogous to creating the full set of removal and

generalization alteration combinations in the exhaustive approach, but there are two

major differences in theEfficientDisruption method. First, only covers are included

in the returned combination set; if a combination does not impact every violation

inference path at least once, it is not considered a cover. Second, only full removal

covers are returned. At this point in the process, we focus on full removals and

98

ALGORITHM 9: EfficientDisruption
Input: DB0 - initial database
Input: DBm - minimal initial database
Input: O - Ontology
Input: v - violation threshold label
Input: λ - privacy mapping function
Input: DBmf - fix point of DBm over O
Input: SV - privacy violating concepts in DBmf

Output: S - selected solution
1 begin
2 ContributeToInferenceSet(DBm,O,DBmf ,SV)
3 SS = EfficientCombinations(DBm,O,DBmf ,SV)
4 sort SS based on combination cost, lowest to hightest
5 sampleSize = min(5,|SS|)
6 S = SS[1]
7 Scost = cost of S
8 for i← 1 to sampleSize do
9 combination = SS[i]

10 forall alteration ∈ combination do
11 o = unaltered RDF triple in alteration
12 r = removal RDF triple in alteration
13 g = 1 level generalization of o
14 threshold = (entropy(O,r)−entropy(O,o))

2
15 if (entropy(O, g)− entropy(O, o)) > threshold then
16 update alteration replacing r with g
17 update cost of combination to reflect cost of g
18 end
19 end
20 if updated combination cost < Scost then
21 DBw = AlterData(DB0,combination)
22 DBwf = Reason(DBw,O)
23 C = set of inferred facts from DBwf

24 SV ′ = PrivacyMapAndDetect(C, v, λ)
25 if SV ′ = ∅ then
26 S = alteration
27 Scost = cost of alteration
28 end
29 end
30 end
31 return S

32 end

99

are not including any generalization alterations in the combinations. Algorithm 10

(EfficientCombinations) is a revision of the exhaustive approach SolutionSet method

and implements details in step 4 in Figure 5.15.

Revisions to this algorithm include:

• addition of call to the AddViolationToGraph method to add violation nodes to

the inference graph

• included passing of inference graph (and graph root) to the GetCandidates

method so rule body nodes can be added to the inference graph

• addition of call to the ConstructLogicString to build the cover determination

logic string

• included passing of logic string to the Powerset method to allow for inference

disruption cover testing

The GetCandidates method supports the EfficientCombinations method by re-

cursively interrogating the inference path of a violation’s inference path, finding all

ground facts on that path. Algorithm 11 is a revision of the GetCandidates method.

Revisions to this algorithm include:

• included inference graph (and graph root) as inputs

• addition of call to the AddFactToGraph method to add fact nodes to the infer-

ence graph; these are leaf nodes

• addition of call to the AddInfereceToGraph method to add inference nodes to

the inference graph; this call will add “OR” nodes to simulate a rule body and

“AND” nodes if multiple rules are satisfied and generate the same conclusion

• included passing of inference graph (and graph root) to the recursive GetCan-

didates method so rule body nodes can be added to the inference graph

100

ALGORITHM 10: EfficientCombinations
Input: DBm - minimal initial database
Input: O - Ontology
Input: DBmf - fix point of DBm over O
Input: SV - privacy violating concepts in DBmf

Output: SS - powerset of candidate facts
1 P = ∅ // P - remember paths followed
2 C = ∅ // C - candidate list
3 S = “”
4 G = new graph
5 root = create node in G with values: fact NULL, type “AND”
6 forall v ∈ SV do
7 R = all rules satisfied by O and DBm which generates v
8 c = |R|
9 forall r ∈ R do

10 n = AddViolationToGraph (G,root,r,v,c)
11 GetCandidates(DBm,O,DBmf ,r,P ,C,G,n)
12 end
13 end
14 S = ConstructLogicString(G, root, S)
15 CS=Powerset(C,S)
16 return CS

The inference graph data model is constructed in Algorithms 10 and 11 by calls

to the new methods AddViolationToGraph (Algorithm 12), AddInferenceToGraph

(Algorithm 13), and AddFactToGraph (Algorithm 14). Each of these algorithms

adds new paths to the graph such that edges and nodes enable the formation of the

cover evaluations logic string.

Algorithm 12 (new) adds a violation inference to the inference graph. Violations

are always added as children of the root node. Violation inferences are typically

added as an “OR” node, meaning that disruption of any of their children will disrupt

the violation. If there are multiple satisfied rules that can generate the violation

data item (indicated by the rule set cardinality parameter c), then violation inference

“OR” nodes are preceded by an “AND” node. Inclusion of the “AND” node means

that all inference rules generating the violation data item must be disrupted for the

101

ALGORITHM 11: GetCandidates (Efficient)
Input: DBm - minimal initial database
Input: O - Ontology
Input: DBmf - fix point of DBm over O
Input: r - rule to follow
Input: P - rules processed
Input: C - Candidates
Input: G - graph
Input: root - root of subgraph in G
Output: C - Updated Candidates

1 F = facts on left side (body) of rule r
2 forall f ∈ F do
3 if f ∈ DBm then
4 f is ground fact
5 n = AddFactToGraph (G,root,r,f ,0)
6 if f /∈ C then
7 h = entropy(O,f)
8 add h to f
9 add f to C // add to candidate list

10 end
11 else
12 f is inferred fact
13 R′ = all rules satisfied by O and DBm which generates f
14 c = |R′|
15 forall r′ ∈ R′ do
16 n = AddInferenceToGraph (G,root,r′,f ,c)
17 if r′ /∈ P then
18 add r′ to P // remember path
19 GetCandidates(DBm,O,DBmf ,r′,P ,C,G,n)

// recursive
20 end
21 end
22 end
23 end
24 return C // updated candidate list

102

violation inference to be disrupted. The “AND” node is implementing the disruption

container described earlier in our hypergraph approach (see Example 5.2.2).

ALGORITHM 12: AddViolationToGraph
Input: G - graph
Input: root - root of subgraph in G
Input: r - rule
Input: f - fact
Input: c - count of satisfied rules
Output: b - node for rule r, fact f in G

1 if c > 1 then
2 a = node ∈ G with values: fact f , type “AND”
3 if a = NULL then
4 a = create node in G with values: fact f , type “AND”
5 create edge from root to a in G
6 end
7 b = create node in G with values: rule r, fact f , type “OR“
8 create edge from a to b in G
9 else

10 b = create node in G with values: rule r, fact f , type “OR“
11 create edge from root to b in G
12 end
13 return b

Algorithm 13 (new) adds a non-violation inference to the inference graph. Viola-

tions are always added as children to a sub-tree root which can exist in any branch

of the inference tree. These inferences are also typically added as an “OR” node, but

may also be preceded by “AND” nodes if multiple satisfied rules that can generate

the inference data item.

Algorithm 14 (new) adds a ground fact to the inference graph. Facts are always

added as children to a sub-tree root which can exist in any branch of the inference

tree. These nodes are added directly to the parent - there is no need for “OR” or

“AND” nodes.

Algorithm 15 (new) constructs the cover determination logic string. The algorithm

recursively traverses the inference graph. At each node visited, it either creates a

103

ALGORITHM 13: AddInferenceToGraph
Input: G - graph
Input: root - root of subgraph in G
Input: r - rule
Input: f - fact
Input: c - count of satisfied rules
Output: n - node for rule r, fact f in G

1 if c > 1 then
2 a = node ∈ G with values: fact f , type “AND”
3 if a = NULL then
4 a = create node in G with values: fact f , type “AND”
5 end
6 create edge in G from root to a
7 b = node ∈ G with values: rule r, fact f , type “OR”
8 if b is null then
9 b = create node in G with values: rule r, fact f , type “OR“

10 end
11 e = edge ∈ G from a to b
12 if e is NULL then
13 create edge in G from a to b
14 end
15 else
16 b = node ∈ G with values: rule r, fact f , type “OR”
17 if b is NULL then
18 b = create node in G with values: rule r, fact f , type “OR“
19 end
20 create edge in G from root to b
21 end
22 return b

ALGORITHM 14: AddFactToGraph
Input: G - graph
Input: root - root of subgraph in G
Input: f - fact

1 b = node ∈ G with values: fact f , type “FACT”
2 if b is NULL then
3 b = create node in G with values: fact f , type “FACT“
4 end
5 e = edge ∈ G from root to b
6 if e is NULL then
7 create edge in G from root to b
8 end

104

binary “AND” expression, a binary “OR” expression or inserts a ground fact label.

To maintain appropriate precedence, expressions are contained within parentheses.

The logic statement for the inference graph in Figure 5.12 can be seen at the bottom

of that figure.

ALGORITHM 15: ConstructLogicString
Input: G - Graph
Input: root - root of subgraph in G
Input: currString - Logic String
Output: S - Logic String

1 S = currString
2 a = node at root
3 case type value for a do
4 case “AND” do
5 S = S + “(”
6 C = list of children for a
7 forall c ∈ C do
8 S = ConstructLogicString(G,c,S)
9 S = S + “ ∧ ”

10 end
11 S = S + “ 1)”
12 end
13 case “OR” do
14 S = S + “(”
15 C = list of children for a
16 forall c ∈ C do
17 S = ConstructLogicString(G,c,S)
18 S = S + “ | ”
19 end
20 S = S + “ 0)”
21 end
22 case “FACT” do
23 S = S + “fact value for a”
24 end
25 end
26 return S

Algorithm 16 (new) determines if a given participant fact combination is a cover

for the identified inference violations. For this method, a cover is defined as the facts

in list C that positionally correspond to bits set to 1 in the binary string in variable

105

b, the binary representation of the combination. The value of the cover participating

facts are set to “1” in the logic string, all others are set to “0”. A bitwise evaluation

is then performed on the logic string which returns a boolean result. If the result is

“TRUE” the combination is a cover, if “FALSE”, it is not.

ALGORITHM 16: TestForCover
Input: S - Logic String
Input: C - Participating Fact List
Input: b - binary representation of combination to test
Output: cover - boolean

1 q = |C|
2 for k = 0 to q do
3 set all instances of C[k] in S to b[k]
4 end
5 cover = bitwise evaluation of logic string S
6 return cover

Algorithm 17 is a revision of the Powerset method (previously called Quaternary-

Powerset). The primary modification to this algorithm is to only construct removal

combinations that are covers. We are not constructing combinations that contain

generalizations. Revisions to this algorithm include:

• change from quaternary (base 4) counting to binary (base 2) counting; we only

have two states, do nothing or remove

• test each removal combination to determine if it provides a cover; ignore if it

does not

• only build removal combinations based on verified covers; remove code for build-

ing generalization combinations

Algorithm 18 (new) is a generic bit adder. The adder uses the value of t as its

base number system adding 1 to the binary representation of an integer stored in

the elements of the array b[]. This algorithm is used by Algorithm 17 to build

combinations.

106

ALGORITHM 17: Powerset (Efficient)
Input: C - Candidates
Input: S - Logic String
Output: CS - Combination Set

1 t = 2 // do binary counting
2 q = |C| // candidate list size
3 b[0 . . . q − 1] = 0 // initialize bit mask
4 p=tq // number of combinations
5 for i = 0 to p do
6 b[] = BitAdder(b[],t)
7 cover = TestForCover(S,C,b)
8 if cover then
9 new combination with combinationCost = 0

10 for k = 0 to q do
11 if b[k] > 0 then include fact k
12 new alteration with alterationCost = 0
13 alteration source data item = C[k]
14 altered target data item = root concept from ontology O
15 add 1.0 to alterationCost add alteration to combination
16 add alterationCost to combinationCost
17 end
18 end
19 end
20 add combination to CS
21 end
22 return CS

ALGORITHM 18: BitAdder
Input: b[] - Candidate Bit Indicators
Input: t - Adder Base
Output: b[] - Candidate Bit Indicators + 1

1 add 1 to b[0] // add base t
2 for j = 0 to t do
3 if b[j] < t then
4 exit inner loop // no carry digit
5 else
6 b[j] = 0
7 add one to b[j+1] // carry digit
8 end
9 end

107

The remaining algorithms support enhancements to our cost calculations. These

algorithms collect meta-data about concepts, alterations, and combinations. The

data is stored and aggregated in information vectors as described in Section 5.3. This

meta-data includes alteration cost, inference participation count, and entropy value.

Algorithm 19 determines the number of inferences a concept participates in.

Counts are tracked separately for participation in safe violations and violation in-

ference. This method generates the counts by following the inference path for each

satisfied inference rule in the database. For each rule generating an inference, Al-

gorithm 20 is called to recursively traverse the rule’s inference path. During this

traversal, counts are incremented as ground facts in rule bodies on the inference

paths are discovered. The algorithms differentiate between counting authorized and

unauthorized inferences by declaring a traversal as safe (FALSE) or unsafe/violation

(TRUE) in call to the ContributionToInferenceConcept method.

ALGORITHM 19: ContributionToInferenceSet
Input: DB - minimal initial database
Input: O - Ontology
Input: DBmf - fix point of DBm over O
Input: SV - security violation list

1 begin
2 R = rules over O inferring conclusions in DBmf

3 forall r ∈ R do
4 c = conclusion of r
5 if c ∈ SV then
6 ContributionToInferenceConcept (DBm, TRUE, r, R)
7 else
8 ContributionToInferenceConcept (DBm, FALSE, r, R)
9 end

10 end
11 end

The last meta-data element needed for our information vector is the concept’s

uncertainty or entropy value. The entropy calculation is based on the work of Calmet

and Daemi [5]; they calculate a concept’s entropy based on uncertainty that the

108

ALGORITHM 20: ContributionToInferenceConcept
Input: DBm - minimal initial database
Input: v - violation indicator for c
Input: r - rule to process
Input: R - set of rules

1 begin
2 C = concepts in body of rule r
3 forall c ∈ C do
4 if c ∈ DB then
5 if v is True then
6 Increment c.ViolationParticipationCount
7 else
8 Increment c.ParticipationCount
9 end

10 else
11 r′ = rule in R that concludes c
12 ContributionToInferenceConcept (DBm, v, r, R)
13 end
14 end
15 end

concept is or is not actually one of its sub-concepts. In our approach, entropy is

calculated by Algorithm 21 (ConceptEntropy). This algorithm first determines the

degree of a concept (the number of sub-concepts under it in the ontology hierarchy

tree) using Algorithm 22. The concept degree, along with the cardinality of the

ontology, is then used by Algorithm 21 to calculate h, the entropy of concept c.

ALGORITHM 21: ConceptEntropy
Input: O - ontology
Input: c - concept (constant string)
Output: h - concept entropy of c

1 begin
2 M = ∅
3 g = |O|
4 d = ConceptDegree(O, c,M)
5 d̂ = (d

g
)

6 h = −(d̂
2)log(d̂

2)− (1− d̂
2)log(1− d̂

2)
7 return h

8 end

109

Algorithm 22 interrogates the ontology tree using localized traversal to determine

a given concept’s degree. We define degree as the number of children under a concept

in the ontology’s ‘ISA’ hierarchy tree.

ALGORITHM 22: ConceptDegree
Input: c - concept
Input: O - ontology
Input: M - working list
Output: d - degree

1 begin
2 A = facts ∈ O matching (∗,‘ISA’, c)
3 d = 1
4 forall a ∈ A do
5 ĉ = subject component of fact in a
6 if a /∈M then
7 add a to M
8 d = d + ConceptDegree (ĉ,O,M)
9 end

10 end
11 return d

12 end

5.5.2 Low-Cost High-Entropy Traversal

This discussion will follow the basic flow of Figure 5.16.

We first make a few trivial modifications to existing algorithms. In Algorithm 10,

we remove the call to the Powerset method (Algorithm 17). We also alter Algorithms

10 and 15 to pass back the rooted tree graph G instead of the combination list SS.

Next, we modify Algorithm 9 to used the above modified algorithms along with

Algorithm 24 (which will be discussed next). We present the modified version of

Algorithm 9 as Algorithm 23.

Lastly, we present Algorithm 24, which builds the low-cost high-entropy inference

disruption cover discussed in Section 5.4.3. The algorithm is recursive starting with

the root node of the tree graph and performing a depth-first traversal of all nodes.

110

ALGORITHM 23: EfficientDisruptionTraversal
Input: DB0 - initial database
Input: DBm - minimal initial database
Input: O - Ontology
Input: v - violation threshold label
Input: λ - privacy mapping function
Input: DBmf - fix point of DBm over O
Input: SV - privacy violating concepts in DBmf

Output: S - selected solution
1 begin
2 e = 0.5 // entropyThreshold
3 z = 5 // sampleSize
4 ContributeToInferenceSet(DBm,O,DBmf ,SV)
5 G = EfficientCombinations(DBm,O,DBmf ,SV) // modified
6 (S,E) = TraverseForCover(G)
7 P = highest entropy z concepts in S with entropy > e
8 found = false
9 while (P != ∅) AND (found = false) do

10 M = combination based on remove (P − S) and generalize S
11 DBw = AlterData(DB0,M)
12 DBwf = Reason(DBw,O)
13 C = set of inferred facts from DBwf

14 SV ′ = PrivacyMapAndDetect(C, v, λ)
15 if SV ′ = ∅ then
16 found = true
17 else
18 Remove lowest entropy concept from P
19 end
20 end
21 if found then
22 S = P // at least 1 generalization
23 end
24 return S

25 end

111

ALGORITHM 24: TraverseForCover
Input: n - node
Output: S - cover list
Output: E - cost of S

1 begin
2 if n is an AND node then
3 S = ""
4 E = 0
5 forall c, child of n do
6 (s,e) = TraverseForCover(c)
7 S = S + s
8 E = E + e
9 end

10 end
11 if n is an OR node then
12 S = ""
13 E = max integer
14 forall c, child of n do
15 (s,e) = TraverseForCover(c)
16 if e < E then
17 S = s
18 E = e
19 end
20 end
21 end
22 if n is an FACT node then
23 S = fact
24 E = cost, combination of entropy and safe inference disruption
25 end
26 return S,E

27 end

112

When visiting each node of the tree, the appropriate action will be taken depending

on if the node type is “AND”, “OR”, or “FACT”. Collections of selected facts and

aggregated cost information are passed back to the recursive calls for construction of

the final low-cost high-entropy cover. This algorithm will always return a minimal

removal disruption cover with the highest entropy facts found. The cover returned

is also the most likely cover to have facts generalized and still provide disruption. In

this context, minimal is based on potential to be generalized and preserve violation

disruption (higher entropy).

5.6 Efficient Approach Empirical Results

We initially enhanced our prototype implementation to include the low-cost selection

methods introduced in this chapter. Given that the low-cost selection semi-exhaustive

approach (Section 5.4.1) still showed potential for requiring a large number of evalua-

tions, we only tested and reported results on the low-cost selection heuristic approach

(Section 5.4.2). To evaluate the impact of the low-cost selection methods on com-

putational efficiency, we tested the updated prototype using the same tests and data

sets that were used for evaluation of our exhaustive model. The results of our execu-

tions are shown in Table 5.6. This table takes the exhaustive results from Chapter 4

and adds data from our efficient executions. Since, for this evaluation, we are only

concerned with overall system performance, we remove the Load, Reason, Discover,

and Evaluate timing columns. Columns to show the number of disruption covers

found and the total execution time for the efficient model were added. Rows are still

arranged into three groups based on the number of privacy violations known to exist

(0, 1, 2, or 4). Within each group, we provide five files based on patient counts in the

file (100, 500, 1000, 2500, and 5000). In each test execution, the expected violations

were identified and proper privacy labels applied. A valid solution with minimal cost

was found and reported for each test execution.

113

Table 5.6 Prototype execution summary with efficient methods timing collected
for 100, 500, 1000, 2500, and 5000 instance database grouped by violation count.

Pa
tie

nt
s

A
ss
er
te
d

In
fe
rr
ed

Fa
ct
s

V
io
la
tio

ns

Pa
rt
ic
ip
an

ts

Ex
ha

us
tiv

e
So

lu
tio

ns

In
fe
re
nc

e
C
ov
er
s

Ex
ha

us
tiv

e
T
im

e
(m

s)

Effi
ci
en
t
T
im

e
(m

s)

Pe
rf
or
m
an

ce
In
cr
ea
se

100 369 376 745 0 0 0 0 745 550 26%
500 1741 1806 3547 0 0 0 0 926 744 20%
1000 3456 3592 7048 0 0 0 0 1019 961 6%
2500 8596 8947 17543 0 0 0 0 1387 1380 1%
5000 17168 17875 35043 0 0 0 0 1952 2026 -4%
100 403 414 817 1 3 63 7 1744 3011 -73%
500 1904 1983 3887 1 3 63 7 3193 3389 -6%
1000 3779 3941 7720 1 3 63 7 4617 3717 19%
2500 9400 9811 19211 1 3 63 7 9707 4836 50%
5000 18777 19606 38383 1 3 63 7 18189 6311 65%
100 404 417 821 2 6 4095 49 22593 3875 83%
500 1905 1986 3891 2 6 4095 49 81837 4431 95%
1000 3780 3944 7724 2 6 4095 49 164497 5197 97%
2500 9401 9814 19215 2 6 4095 49 444847 6051 99%
5000 18778 19609 38387 2 6 4095 49 929728 8697 99%
100 403 414 817 4 10 1048575 637 3691252 7708 >100%
500 1904 1983 3887 4 10 1048575 637 18357303 7564 >100%
1000 3779 3941 7720 4 10 1048575 637 33996151 8423 >100%
2500 9400 9811 19211 4 10 1048575 637 74869826 8741 >100%
5000 18777 19606 38383 4 10 1048575 637 148965619 10485 >100%

As seen in the Table 5.6, execution time was reduced dramatically by using the

low-cost selection heuristic methods from this chapter. In our exhaustive approach,

the number of fact modifying combinations needing to be tested was based on the

list of participating facts modified three ways (removal, one level of generation, two

levels of generation). This equated to (4p − 1) fact modifying combinations, where

t is the size of the participating facts size. With our modifications, we initially only

look at removal inference covers which do not need to be tested. We then only need

test a small set of the lowest cost covers to see if generalization will decrease their

cost.

114

As can be seen in Figure 5.17, timing for all test runs using the modified prototype

barely exceeds 10 seconds (10000 ms). When compared to the timing graph for the

exhaustive approach (Figure 4.4), the total execution times of the efficient method

prototype decreased by several orders of magnitude over the prototype using the

exhaustive approach. This is attributable to the drastic drop in the number of times

the reasoner had to be executed for the testing of alteration combinations.

 100

 1000

 10000

 100000

100 500 1000 2500 5000

T
o

ta
l
E

x
e

c
u

ti
o

n
 T

im
e

 (
lo

g
)

in
 M

ill
is

e
c
o

n
d

s

Instance Database Size

Prototype Execution Times

0 Violation(s)
1 Violation(s)
2 Violation(s)
4 Violation(s)

Figure 5.17 Prototype execution timing for execution using efficient methods.
Trend lines show execution time (log) in milliseconds. Individual line corresponds to
number of violations found in data instance.

Comparing specific violation data set tests for each prototype, we can see that

efficiencies are gained as the participating fact count (driven by violation count)

increases. For the group of data sets with no violations, the execution times are very

similar (Figure 5.18). A small amount of overhead was added when interrogating

inference paths to support generation of covers, this overhead quickly diminishes as

the data sets size increases.

When a single violation is introduced, the performance improvements start to

115

 100

 1000

 10000

100 500 1000 2500 5000

T
o

ta
l
E

x
e

c
u

ti
o

n
 T

im
e

 (
lo

g
)

in
 M

ill
is

e
c
o

n
d

s

Instance Database Size

Prototype Execution Times

Exhaustive - 0 Violations
Efficient - 0 Violations

Figure 5.18 Prototype execution timing for 0 violation data sets. Trend lines show
execution time (log) in milliseconds. Individual line corresponds to number of
violations found in data instance.

become apparent (Figure 5.19). For this group of data sets, the exhaustive approach

had to evaluate 63 combinations. The efficient approach identified seven covers and

reached a 65% performance increase on the 5000 fact dataset.

The data sets containing two violations show a much larger increase in perfor-

mance (Figure 5.20). For this group of data sets, the exhaustive approach had to

evaluate 4095 combinations. The efficient approach identified 49 covers and reached

a 99% performance increase on the 5000 fact dataset.

Lastly, the data sets containing four violations are shown in Figure 5.20. For

the 5000 fact data set, the exhaustive approach had to evaluate 1,048,575 alteration

combinations and required approximately 40 hours to complete. The efficient ap-

proach identified 637 covers and completed in approximately 10 seconds. While we

have relaxed our minimality property by not testing every possible combination of

generalizations across all alteration combinations, we are now able to quickly find a

116

 1000

 10000

 100000

100 500 1000 2500 5000

T
o

ta
l
E

x
e

c
u

ti
o

n
 T

im
e

 (
lo

g
)

in
 M

ill
is

e
c
o

n
d

s

Instance Database Size

Prototype Execution Times

Exhaustive - 1 Violation
Efficient - 1 Violation

Figure 5.19 Prototype execution timing for 1 violation data sets. Trend lines show
execution time (log) in milliseconds. Individual line corresponds to number of
violations found in data instance.

solution in a feasible time that has practical cost.

117

 1000

 10000

 100000

 1e+06

100 500 1000 2500 5000

T
o

ta
l
E

x
e

c
u

ti
o

n
 T

im
e

 (
lo

g
)

in
 M

ill
is

e
c
o

n
d

s

Instance Database Size

Prototype Execution Times

Exhaustive - 2 Violations
Efficient - 2 Violations

Figure 5.20 Prototype execution timing for 2 violation data sets. Trend lines show
execution time (log) in milliseconds. Individual line corresponds to number of
violations found in data instance.

118

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

100 500 1000 2500 5000

T
o

ta
l
E

x
e

c
u

ti
o

n
 T

im
e

 (
lo

g
)

in
 M

ill
is

e
c
o

n
d

s

Instance Database Size

Prototype Execution Times

Exhaustive - 4 Violations
Efficient - 4 Violations

Figure 5.21 Prototype execution timing for 4 violation data sets. Trend lines show
execution time (log) in milliseconds. Individual line corresponds to number of
violations found in data instance.

119

Chapter 6

Privacy & Safety

In our initial work, we considered privacy violations to be generated data items that

exceed the authorization level of the intended recipient. The privacy labels used to

determine a violation are based on the common regulatory privacy rules and protocols

found in healthcare (i.e., HIPAA). In this section, we investigate other domains that

may influence the privacy authorization and the release of data.

We consider the following:

• Personal Concerns - Patients may have personal reasons for not wanting par-

ticular data items to be released. A patient’s concerns may apply to both data

in the initial data set (intended release) as well as data inferred using domain

knowledge (unintended release), but we only address the unintended release of

information in this work.

• Safety Concerns - Clinicians, or other subject matter experts, may feel that

the suppression (generalization or removal) of certain data items create safety

concerns for the patient. Released data may be used to treat a patient, evaluate

their condition, recommend a treatment or medication, or determine if they pose

a population health risk. Reducing data availability could negatively impact an

assessment in each of these areas. In these cases, violations with related safety

concerns may need to be left intact even though they generate a violation. Since

the violation will persist, the privacy label of the data set should be elevated to

the appropriate level to coincide with the permitted violations.

120

We will develop methods to incorporate personal and safety concerns in our vio-

lation evaluation and data release process. The new labels introduced by this work

will be captured and stored with existing meta-data and considered when calculating

alteration cost (see Section 5.3). There may be cases where the Safety or Privacy

label of a data item either requires or prohibits the modification of a data item; in

other cases, the label may influence a solution containing that data item by increasing

or decreasing its cost. Data to support these scenarios will all be captured in the cost

vector discussed in Section 5.3.

6.1 Privacy - Patient Preference

In our heuristic approach to disrupting violation inferences, we either remove a data

item or generalize it. We try to minimize the number of data items that are altered,

but there may be cases where removal or generalization of a specific data item is

desired. We envision several use cases where a patient requests that certain data

items not be released without modification. To accommodate these use cases, we

would provide the ability for a patient to provide a preference indicator for any data

item they are concerned about being released without modification. We propose the

patient be presented with a sliding scale of values (0, . . . , 3) to represent the degree

of patient preference to be considered in the inference disruption process (Table 6.1).

Table 6.1 Patient preference value indicates the level of requirement that
something should not be released.

Safety Degree Meaning
0 Fine With Releasing
1 Prefer To Not Be Released
2 Should Not Be Released
3 Must Not Be Released

The patient preference value would be added to the data item information vector

(Definition 5.3.1) for each fact in the patient’s data. Any data items that do not

121

have patient preference values specified would default to 0. The value in the data

item information vectors would be aggregated in the combination information vector

(Definition 5.3.3) for each combination cover. When placing the combinations in cost

order, (Definition 5.4.1) we alter the calculation of ImpactS (Definition 5.3.4) to sub-

tract the aggregate patient preference value from the impact value. This subtraction

will cause combinations containing data items that the patient has indicated concern

over to be given a lower cost, making them more likely to be part of the the chosen

solution. There is no guarantee that a patient’s preference request will be honored,

but since it reduces cost, its selection will be more seen as more desirable by the

framework.

6.2 Safety

In the patient preference section, we strive to ensure a data item is altered if possible,

but there may also be cases where a data custodian wants to ensure that a data item

be released unaltered (or minimally altered). We envision use cases where certain data

items need to be released “as-is” with no modification (removal or generalization).

These cases could include data requirements in policies, protocols, or regulations.

There could also be clinical safety reasons where altering the data may not be in the

best medical interest of the patient. Cases may also exist where release of specific

data is needed by first responders or clinicians for emergency medicine situations. We

refer to these scenarios collectively as safety use cases. To accommodate the safety

use cases, we propose an additional sliding scale of values (0, . . . , 3) to represent the

degree of patient safety to be considered in the inference disruption process (Table

6.2)..

The safety value would be added to the data item information vector (Definition

5.3.1) for each fact in the patient’s data. Any data items that do not have safety pref-

erence values specified would default to 0. During the collection of violation inference

122

Table 6.2 Safety values indicate the level of requirement that something must be
released.

Safety Degree Meaning
0 Fine With Not Releasing
1 Prefer To Be Released
2 Should Be Released
3 Must Be Released

path participating facts (Algorithm 11), line 6 would be altered to ignore any facts

that have a safety value of 5. This ensures that data items which the custodian has

indicated “must be released” are not considered for removal or generalization. Facts

found on violation inference paths with safety values less than 3 are added to the

participating fact. Their inclusion is not guaranteed, but prioritized as follows. The

safety values in data item information vectors would be aggregated in the combina-

tion information vector (Definition 5.3.3) for each combination cover as with patient

preference. When placing the combinations in cost order, (Definition 5.4.1) we alter

the calculation of ImpactS calculation (Definition 5.3.4) to add the aggregate safety

value to the impact value. This addition will cause combinations containing data

items that the custodians have indicated concern over altered release to be given a

higher cost, making them more likely to not be the chosen solution. There is no

guarantee that a safety request (less than 3) will be honored, but since it increases

cost, its selection will be more seen as less desirable by the framework.

6.3 Privacy & Safety Approach

Information Vector

In this section, we provide modification to the information vector described in 5.3. To

support safety and patient preference, we introduce new meta-data in the information

vector. This information will be used to refine the combination cost calculations. We

still maintain the generic form of this vector for modification at three levels:

123

1. meta-data is tracked at the individual data item level

2. meta-data is tracked in aggregate for unaltered and altered data items (data

item alteration)

3. meta-data is tracked in aggregate for the set of alterations (alteration combi-

nation)

We re-define Definitions 5.3.1, 5.3.2, and 5.3.3 to accommodate the safety and

privacy concepts as follows:

Definition 6.3.1 (Enhanced Data Item Information Vector). Let f be a data item.

We say the data item information vector for f , Vf =< a1, . . . , a6 >, is a set of

attributes, such that a1 is the alteration cost associated with f , a2 is the list of

distinct unsafe inferences that f participates in, a3 is the ontology hierarchy depth

of f , and a4 is the entropy (uncertainty) of f . a5 is the safety level setting of f . a6

is the patient preference level setting of f .

Definition 6.3.2 (Enhanced Alteration Information Vector). Let m be a data item

alteration, with source concept c1 and target concept c2. We say the alteration

information vector for m, Vm =< a1, . . . , a6 >, is a set of attributes, such that a1 is

the sum of alteration cost associated with data items in a, a2 is a 2-tuple where the

first element is a distinct list of safe inferences for c1 and the second element a similar

list for c2, a3 is the average ontology hierarchy depths for c1 and c2, and a4 is the

difference between the entropy for c1 and c2, (c2 − c1). a5 is the safety level setting

of c1. a6 is the patient preference level setting of c1.

Definition 6.3.3 (Enhanced Combination Information Vector). Let c be a set of

alterations forming a PFC. We say the combination information vector for c, Vc =<

a1, . . . , a6 >, is a set of attributes, such that a1 is the sum of alteration cost asso-

ciated for all alterations in c, a2 is a 2-tuple where each element is a union of the

124

corresponding element for all alterations in c, a3 is the average ontology hierarchy

depth for all alterations in c, and a4 is the sum of the entropy values for all alterations

in c. a5 is the safety level setting of f . a6 is the patient preference level setting of f .

a5 is the sum of the safety level setting for all alterations in c. a6 is the sum of the

patient preference level setting for all alterations in c.

Alteration Impact

To accommodate patient preference and safety requests, we enhance the calculation

of ImpactS the alteration impact of a PFC.

Definition 6.3.4 (Enhanced Alteration Impact Value). The alteration impact value,

denoted ImpactS, is the alteration cost CostS enhanced by the number of safe

inferences impacted, patient preference, and safety values. Let S be a PFC, U the

number of safe inferences disrupted by S, P the patient preference value, and V the

safety value. We calculate the alteration impact value of S as follows: ImpactS =

CostS + (CostS ∗ U)− P + V .

Exclusion from Cover

To ensure that data items indicated by the data custodian as “must be released”

(safety value of 3), we modifiy Algorithm 11, line 6 from “If f /∈ C” to “if f /∈ C

and f safetyValue 6= 3”. This change will ensure that data items marked with a safety

value of 3 are not included in the participant list and not a fact in disruption covers.

Example 6.3.1 (Privacy:Patient Preference & Safety). Let there be an Ontology

tree as shown in Figure 5.10 with entropy values shown in Table 5.2. Let Figure

6.1 show a rule that was satisfied by C4, C6, C7 and generated the privacy violation

V1. Let C4, C6, C7 have patient preference and safety values as shown in Table 6.3.

When constructing the list of violation participating facts, only C4 and C7 would be

included; fact C6 would not be included on the list since its safety value is set to 3.

125

Lastly, let there be a participating fact combination C, as shown in Table 6.3, with

two facts linked to ontology concepts C6 and C7 with alterations A1 and A2 such

that A2 generalizes C6 one level to C2 and A1 generalizes C7 two levels to C1. The

ImpactS value for C1 would be ImpactC1 = 1.25 + (1.25 ∗ 5)− 2 + 1, which is 6.5.

The value of ImpactC1 would then be used to determine where C1 fell in Cost Order

(Definition 5.4.1).

C
4

C
6 V

1

C
7

Figure 6.1 Multi-identity nature of concepts when they are potential targets for
generalization or removal.

Table 6.3 Information Vectors - table shows data item information vectors.
Information Vector Safe Inferences Depth Entropy Patient Preference Safety

Data Item C7 {a,b,c} 4 0 0 1
Data Item C4 {b,d,e} 2 0.4138 3 3
Data Item C6 {a,b} 3 0.3095 2 0

Table 6.4 Information Vectors - table shows data item, alteration, and
combination information vectors.

Information Vector Alteration Safe Inferences Depth Entropy Privacy Safety
Data Item C7 1.0 {a,b,c} 4 0 0 1
Data Item C1 -0.25 {b,d,e} 2 0.8524

Alteration A1: C7 → C1(C ′′
7) 0.75 ({a,b,c},{b,d,e}) 3 0.8524 0 1

Data Item C6 1.0 {a,b} 3 0.3095 2 0
Data Item C2 -0.5 {b,c,d} 2 0.6500

Alteration A2: C6 → C2(C ′
6) 0.5 ({a,b},{b,c,d}) 2.5 0.3405 2 0

Combination C1 = {A1,A2} 1.25 ({a,b,c},{b,c,d,e}) 2.75 1.1929 2 1

126

6.4 Privacy & Safety Empirical Results

We ran experiments using the new cost function presented in this chapter. Our

empirical results, with respect to privacy, safety and security, support our claim

that these requirements can be seamlessly integrated into the PIA framework. The

additional cost calculations described in this chapter did not impact the system’s

performance.

127

Chapter 7

Graphical User Interface

Up to this point, our privacy evaluation and modification process has been static.

Rules are established in advance based on what data custodians or patients “think”

they are willing to release. There is no feedback during the process or a way for

custodians or patients to see “what if” scenarios in relation to what data might be

generated and released.

People trust systems and presume that their information is safe. They assume that

data they do not want released, will not be. In most cases, people understand neither

what data was collected on them nor what release of that data would imply; much

less what could be inferred from this data when reasoned over along with domain

knowledge.

We will investigate the design and development of a user-friendly graphical user

interface (GUI) prototype that would allow a data custodian or patient to under-

stand in advance the privacy aspects of healthcare data being released and what

can be inferred from that data. The GUI prototype leverages services from our PIA

framework (see Figure 7.1). This prototype would reason over a patient’s data and

show items, both existing and generated, along with identified privacy levels. Since

patient records are becoming voluminous, we would only show data identified as vi-

olations, but allow for “drill down” to access other data items. The intent would not

be casual browsing of patient records, but rather identification of data items that are

potential violations (privacy, personal, or safety).

Information and examples would be available to explain in laymen’s terms how

128

Process
Initial

Instance

Authorized

Instance
Reason

Domain

Knowledge

V
io

la
tio

n

No Violations
Detect

Violations

Build

Solution

Privacy

Policy

GUI DiscoverGUI Load

GUI Preferences

Figure 7.1 Graphical User Interface integration with the PIA framework.

an attacker might leverage data items to their advantage.

Lastly, the GUI prototype would allow the user to set personal preferences for

release of their data. These preferences would be included in the extended privacy

model (Chapter 6).

7.1 High-Level Design

The user interface of our GUI prototype is constrained to one window with launching

of external viewers for additional information content (PDF, web pages, videos). The

interface consists of a tool bar along the left edge of the window and a primary viewing

area (see Figure 7.2).

Buttons on the tool bar provide functions that trigger various actions: review in-

formation / tutorials, load patient data, discover new information, provide program

information, review / set patient preferences, and exit application. The primary

129

To
o

lb
a
r

w
it
h

 F
u

n
c
ti
o

n
 B

u
tt

o
n

s

Primary Display Area

Header Information

Figure 7.2 Graphical User Interface. Basic display layout.

viewing area provides a panel that is context-aware and displays the selected infor-

mation. The initial implementation has functions to display various types of reference

information, allow viewing of a dynamic ontology tree (tree is enhanced with data

loaded and inferred from reasoning), patient preference management, and a list of

common reasons for data release. Additional functions may be easily added as well

as additional information content.

The high-level functions associated with each the buttons on the toolbar are as

follows:

• “Privacy and Knowledge Information ” - When this button is selected, the user

is presented high level description of the four categories of information provided

130

Load

Discover

About

Exit

Other

Other

Medical Data Domain Knowledge

 More Info

 More Info

 More Info

 More Info

Topic

Description and overview of topic area

Topic

Description and overview of topic area

Topic

Description and overview of topic area

Topic

Description and overview of topic area

Figure 7.3 Graphical User Interface. Description of tutorials and reference
material areas with button to access information.

(see Figure 7.3). The four information categories are: “Data Privacy Reg-

ulations”, “Consent Information”, “Healthcare Institution Information”, and

“Healthcare Domain Knowledge”. Each category has a narrative description

along with a button to “Learn More”. Clicking the “Learn More” button will

launch a category-specific window with buttons to access additional content.

Currently each of the categories has three content buttons. These buttons may

be programmed to display content from PDF files, web pages, or videos. They

may also bring up a application generated display in the main viewing area.

Most content is currently displayed by launching content-specific native view-

131

ers for the content type.

• “Places your Data is Sent” - When this button is selected, the user is presented

with a table giving information on typical types of data sets released from a

healthcare facility, the reason that data is released, who within the healthcare

facility is responsible for the release, and what agency / entity it is released to.

There is also an explanation of accountability of disclosure and what it means

to the patient.

• “Load Patient Data” - When this button is selected, an ontology diagram is

displayed (see Figure 7.4). There is initially no patient data incorporated in

the diagram and no inferred data is shown. The user is presented a load file

dialog. Once a file is selected, patient data is loaded and the ontology diagram

updated to show patient data incorporated as additional facts (vertices with

edges to show relationships to ontology concepts). The ontology diagram is an

active graph – clicking on a node or vertex will instantiate a popup window

that gives a brief explanation of the data item.

• “Discover Information” - When this button is selected, the ontology diagram is

updated to incorporate any generated data coming from the inference process

along with appropriate relationships to patient data and ontology concepts. If

the patient data has not been loaded, the user is prompted to load patient

data before running discover information. Any data items identified as privacy

violations will be colored red and all participation facts will be colored yel-

low. Additional nodes and vertices on the ontology graph are activated to give

explanations if selected.

• “Patient Privacy Preferences” - When this button is selected, the ontology di-

agram with patient data incorporated will be shown. If patient has not been

loaded, user is prompted to load patient data before running discover. Any

132

Load

Discover

About

Exit

Other

Other

Medical Data Domain Knowledge

Figure 7.4 Graphical User Interface. Initial view of the ontology with no data
loaded or inferred.

facts that have had their preference previously set will be shown. Previous

preferences are ready from a file at the time of patient data load. User will have

the option to set or change preferences and save information.

• “About” – When this button is selected, an informational window is displayed

that provides application information.

• “Exit” - Selecting the exit button will exit the application.

The GUI prototype is a stand-alone application, but leverages services from the

PIA framework (see Figure 7.1). Since both applications are developed in Java, the

133

GUI interface is able to access all PIA public methods by including the framework

prototype package when being compiled. As shown in the diagram, PIA services are

leveraged at several points in the GUI workflow. When ontologies and patient data

are loaded, GUI utilizes the PIA functions that support instance database and domain

knowledge loading. When we discover new information in the GUI, we utilize the PIA

functions that manage privacy policy, reason over patient data and domain knowledge

and detect security violations. Lastly, PIA and GUI share the same patient preference

files. These files are also used by PIA to determine cost, which drives construction of

minimal disruption covers. The GUI also uses PIA output to make patient preference

suggestions.

Once GUI prototype application has been started, use cases are as follows:

• View Information - PDF file, Webpage, Video or application generated content

– Select "Privacy and Knowledge Information" button on toolbar

– Main viewing area updated to show content topics

– Press “More Information” button in Main Viewing Area corresponding to

desired content

– A window with content options will be presented. Select the desired con-

tent.

– External viewer will be launched or main viewing area content changed

– Video will start playing or static content will be displayed

– Close external viewer (if launched) when finished

• Review places data may be sent

– Select “Places Your Data is Sent” button tab on toolbar

– Main viewing area is updated to show table of common places patient data

is sent

134

• Load Patient Data

– Select “Load Patient Information” button tab on toolbar

– Press Load Data button in toolbar

– Select Patient data file

– Ontology is automatically updated to show patient data

• Discovered Data

– Load Patient Data (above)

– Select “Discover Information” button tab on toolbar

– Ontology is shown and automatically updated to show generated data and

violations

• Patient Privacy Preferences

– Load Patient Data (above)

– Select “Patient Privacy Preferences” button tab on toolbar

– Main viewing area is updated to ontology with patient data incorporated

– Suggested preference setting colored green

– Current preferences colored yellow

– Select relationship (graph edge) to update preference on patient data (not

the ontology)

– Select save to store preferences

• Prototype Application

– Press the “About the Application” button on the toolbar

– Information about the application will be displayed in a popup window

135

• Exit the application

– Press the “Exit” button on the toolbar

– Confirm exit

7.2 Prototype Implementation

The GUI prototype implementation is an extension of the Java project used for the

PIA efficient framework prototype from Chapter 5. Separate Java packages were

created to hold components of the prototype. We approached the GUI design using

a Model View Controller (MVC) architecture, each being a separate Java package in

the project.

• The model package manages all data. Data structures are built to hold patient,

ontology and reference information. This package also managed the interface

with the efficient framework for data loading, model rendering, and inference

discovery / path interrogation.

• The view package manages all graphical aspects of the prototype. The proto-

type’s primary window is divided up into a row of buttons and an information

frame. Buttons are used to load and discover information as well as provide

version information and exit the prototype. Panels in the main display area are

used to display reference information as well as provide a view of the ontology

graph and impact of the ontology and inference process. All graph vertices and

edges are active and provide information when selected.

• The controller manages provides a generic interface between the model and view

packages. This allows each package to communicate with the other without

having to understand its methods.

136

We use the Java Swing libraries to construct the visual components of the prototype.

The Java package mxGraph (JGraphX) [20] is used to manage and render the ontol-

ogy graph. Vertices and edges are managed as objects so they can be expanded as

data is loaded and reasoning is performed.

Selected screen shots from execution of the GUI prototype are show as follows:

• Figure 7.5 shows the initial screen displayed at startup. This screen is linked

to the Privacy and Knowledge Information button on the toolbar

• Figure 7.6 shows a loaded ontology. All vertices and edges are active and provide

additional information if clicked.

• Figure 7.7 shows the loaded ontology once data has been loaded and reasoning

performed.

• Figure 7.9 shows a table of sample destinations that patient data may be sent

to.

• Figure 7.9 shows the loaded ontology with patient data. Patient preferences are

indicated and patients can update the preference values.

7.3 Patient Reference Information

Part of the objective of the GUI prototype is to provide patients with information

on various privacy aspects of their healthcare data. We envision this data describing

three topic ares: US National and State privacy regulations, various types of patient

consent, and local healthcare facility privacy policy and associated research rules.

We have included samples of information from these three areas in the GUI proto-

type. When possible, we are using hyperlinks to pull in active content. This reduces

maintenance, provides the most up-to-date information, and makes sure we do not

misinterpret an agency’s official stand on patient privacy. When active content is not

137

Figure 7.5 Graphical User Interface. View of educational information.

available, we construct sample content based on information from discussions with

healthcare data analysts responsible for release of information and accountability of

disclosure activities. Non-active content is shown only as a sample of what could be

presented and is the author’s best-effort collection of data from several sources. This

information is not intended to be authoritative or complete and may not reflect the

letter of the law, regulation, or policy. All data sources should be edited for content

and appropriate reading levels before being released to the general public. The fol-

lowing information is representative of relevant content and is “linked to” in the GUI

prototype:

• US National Healthcare Data Privacy

– Easy-to-read fact sheet entitled “Your health information privacy rights”

138

Figure 7.6 Graphical User Interface. Initial view of ontology with no data loaded
or inferred.

– An infographic entitled “Your Health Information, Your Rights”

– Video on “Individual’s Rights under HIPAA to Access their Health Infor-

mation”

• Patient Consent

– Web content on “Meaningful Consent”

– Health Information Exchange - “Opt In Opt Out” Video

– Web content on “Informed Consent for Human Research"

• Healthcare Facility -

– example notice of privacy practices overview

– example notice of privacy practices agreement

139

Figure 7.7 Graphical User Interface. View of ontology with patient data loaded
and inferred.

– IRB policies and procedures

• Healthcare Domain Knowledge

– Information on domain knowledge and reasoning. Examples given to help

understand the semantic reasoning process.

– Information on the inference problems and how this process can generate

undesired inferences. Examples of the type of information that can be

generated and ways that information can be used against them.

– Presentation of a sample ontology graph that can be explored by drilling

down on vertices and edges.

140

Figure 7.8 Graphical User Interface. View of places a healthcare facility may send
your data.

141

Figure 7.9 Graphical User Interface. View of ontology with preference selector
active for a relation.

142

Chapter 8

Conclusions & Future Research

Conclusions

In this dissertation, we investigate privacy violations occurring when non-confidential

patient data is combined with medical domain ontologies to disclose a patient’s pro-

tected health information (PHI). We have shown that reasoning over non-sensitive

patient data and domain knowledge can generate a threat to patient privacy. We

have developed a formal framework to detect and eliminate privacy threats. We have

also implemented our privacy protection methods.

Our optimal solution uses an exhaustive method and evaluates the cost of every

possible solution that eliminates undesired inferences. We propose ontology-guided

data item alteration for inference removal. We have proven that it is possible to detect

and block all undesired inferences that resulted from combining non-sensitive data

with domain knowledge. We also showed that our approach provided maximal data

availability. Our theoretical contributions include: 1.) development of a Pre-Release

Inference Analyzer framework, 2.) inference removal methods based on optimal and

heuristic-based approaches, and 3.) graphical user interface to support patient-centric

privacy. We propose a cost measurement based on the number of data items that

must be altered to eliminate undesired inferences, the number of non-violating infer-

ences that are impacted by the alterations, patient preferences, and medical safety

characteristics.

We have built a proof-of-concept prototype of our models. Our empirical results

show that privacy protection against undesired inferences can be achieved. Our op-

143

timal cost solution, i.e., exhaustive approach, was not computationally efficient and

did not scale. We developed heuristics to improve the performance efficiency of our

approach while still providing a cost-effective solution. We proposed methods using

heuristics to reduce potential candidate solutions and quickly determined a feasible

solution. Our empirical results using heuristics reduced the computational complexity

by several orders of magnitude. We also enhanced our privacy model to incorporate

safety and patient privacy preferences. The performance characteristics of our pro-

totype implementation were not impacted by the extended cost function. Lastly, we

developed a graphical tool to support patients’ understanding of the privacy settings.

The tool provides tutorials as well as the ability for a patient to view their data along

with data generated by the inference process.

Future Research

Future research areas include the following:

• Investigate the practical aspects of integrating the PIA framework with com-

mercial healthcare applications. Medical databases, such as Epic, Cerner, and

Meditech, thoroughly restrict data-flows among trust domains. However, re-

cent announcements, such as the Apple’s inclusion of a patient Heath Record

module on their iPhone, indicates that this strictly controlled environment will

change.

• Investigate integration options between the GUI prototype and commercial

Electronic Medical Record (EMR) systems. Specifically, investigate options for

use of the HL7 Fast Healthcare Interoperability Resources (FHIR) standard.

FHIR is quickly becoming available on must EMR platforms.

• Investigate incorporation of publicly available data in domain knowledge rea-

soning. Patients are, sometimes unknowingly, allowing personal devices, sensors

144

and applications to collect and store data relevant to their health. If accessible,

this data could be leveraged to broaden the unintended inference threat.

• Investigate options for integration of the PIA framework and the GUI proto-

type with larger multi-ontology domain knowledge bases. Use existing data to

calculate entropy of data items and concepts.

145

Bibliography
[1] Rakesh Agrawal and Ramakrishnan Srikant, Privacy-preserving data mining,

SIGMOD Rec. 29 (2000), no. 2, 439–450.

[2] Apache, Apache jena, 2017.

[3] Lauren B Becnel, Smita Hastak, Wendy Ver Hoef, Robert P Milius, MaryAnn
Slack, Diane Wold, Michael L Glickman, Boris Brodsky, Charles Jaffe, Rebecca
Kush, et al., Bridg: a domain information model for translational and clinical
protocol-driven research, Journal of the American Medical Informatics Associa-
tion.

[4] A. Brodsky, C. Farkas, and S. Jajodia, Secure databases: constraints, infer-
ence channels, and monitoring disclosures, IEEE Transactions on Knowledge
and Data Engineering 12 (2000), no. 6, 900–919.

[5] Jacques Calmet and Anusch Daemi, From entropy to ontology, CYBERNET-
ICS AND SYSTEMS 2004 - AT2AI-4: FROM AGENT THEORY TO AGENT
IMPLEMENTATION, 2004, p. 2004.

[6] Ellick M. Chan, Peifung E. Lam, and John C. Mitchell, Understanding the chal-
lenges with medical data segmentation for privacy, Presented as part of the 2013
USENIX Workshop on Health Information Technologies (Washington, D.C.),
USENIX, 2013.

[7] Feixiong Cheng and Zhongming Zhao, Machine learning-based prediction of
drug–drug interactions by integrating drug phenotypic, therapeutic, chemical, and
genomic properties, Journal of the American Medical Informatics Association 21
(2014), no. e2, e278–e286.

[8] Juliana Medeiros Destro, Julio Cesar dos Reis, Ariadne Maria Brito, Rizzoni
Carvalho, and Ivan Luiz Marques Ricarte, Influence of semantic similarity mea-
sures on ontology cross-language mappings, Proceedings of the Symposium on
Applied Computing (New York, NY, USA), SAC ’17, ACM, 2017, pp. 323–329.

146

[9] Murthy V. Devarakonda, Neil Mehta, Ching-Huei Tsou, Jennifer J. Liang,
Amy S. Nowacki, and John Eric Jelovsek, Automated problem list generation
and physicians perspective from a pilot study, International Journal of Medical
Informatics 105 (2017), 121 – 129.

[10] D. Edberg, L. OMara, and J. Wendel, Finding value while planning a statewide
health information exchange, 2014 47th Hawaii International Conference on Sys-
tem Sciences, Jan 2014, pp. 2778–2787.

[11] D Elliott Bell and Leonard J. La Padula, Secure computer system: Unified ex-
position and multics interpretation, Tech. Report MTR-2997, The MITRE Cor-
poration, Bedford, MA, 03 1976.

[12] Csilla Farkas and Sushil Jajodia, The inference problem: A survey, SIGKDD
Explor. Newsl. 4 (2002), no. 2, 6–11.

[13] Jesualdo Tomás Fernández-Breis, José Alberto Maldonado, Mar Marcos, María
del Carmen Legaz-García, David Moner, Joaquín Torres-Sospedra, Angel
Esteban-Gil, Begoña Martínez-Salvador, and Montserrat Robles, Leveraging
electronic healthcare record standards and semantic web technologies for the iden-
tification of patient cohorts, Journal of the American Medical Informatics Asso-
ciation 20 (2013), no. e2, e288–e296.

[14] Office for Civil Rights (OCR), Summary of the hipaa privacy rule, U.S. Depart-
ment of Health and Human Services, July 2013.

[15] Fabien Gandon and Guus Schreiber, RDF 1.1 XML syntax, W3C recommen-
dation, W3C, February 2014, http://www.w3.org/TR/2014/REC-rdf-syntax-
grammar-20140225/.

[16] Vaibhav Gowadia and Csilla Farkas, Rdf metadata for xml access control, Pro-
ceedings of the 2003 ACM Workshop on XML Security (New York, NY, USA),
XMLSEC ’03, ACM, 2003, pp. 39–48.

[17] Leonardo H. Iwaya, Fausto Giunchiglia, Leonardo A. Martucci, Alethia Hume,
Simone Fischer-Hübner, and Ronald Chenu-Abente, Ontology-based obfuscation
and anonymisation for privacy, pp. 343–358, Springer International Publishing,
Cham, 2016.

[18] Amit Jain and Csilla Farkas, Secure resource description framework: An access
control model, Proceedings of the Eleventh ACM Symposium on Access Control

147

Models and Technologies (New York, NY, USA), SACMAT ’06, ACM, 2006,
pp. 121–129.

[19] Amit Jain and Csilla Farkas, Ontology-based authorization model for xml data
in distributed systems, ch. 3, pp. 57–82, IGI Global, Hershey, PA, USA, 2010.

[20] JGraph Ltd, mxgraph, 2018.

[21] Adeeb Noor, Abdullah Assiri, Serkan Ayvaz, Connor Clark, and Michel Du-
montier, Drug-drug interaction discovery and demystification using semantic web
technologies, Journal of the American Medical Informatics Association 24 (2017),
no. 3, 556–564.

[22] Charles P. Pfleeger and Shari Lawrence Pfleeger, Security in computing, 4 ed.,
Prentice Hall, 2007.

[23] Manuel Quesada-Martínez, Jesualdo Tomás Fernández-Breis, and Robert
Stevens, Extraction and analysis of the structure of labels in biomedical ontolo-
gies, Proceedings of the 2Nd International Workshop on Managing Interoper-
ability and compleXity in Health Systems (New York, NY, USA), MIXHS ’12,
ACM, 2012, pp. 7–16.

[24] Z. Rashid, A. Basit, and Z. Anwar, Trdbac: Temporal reflective database access
control, 2010 6th International Conference on Emerging Technologies (ICET),
Oct 2010, pp. 337–342.

[25] Adam Wright, Skye Aaron, and David W. Bates, The big phish: Cyberattacks
against u.s. healthcare systems, Journal of General Internal Medicine 31 (2016),
no. 10, 1115–1118.

[26] Adam Wright, Justine Pang, Joshua C Feblowitz, Francine L Maloney, Allison R
Wilcox, Harley Z Ramelson, Louise I Schneider, and David W Bates, A method
and knowledge base for automated inference of patient problems from structured
data in an electronic medical record, Journal of the American Medical Informatics
Association 18 (2011), no. 6, 859–867.

148

	Ontology-Guided Pre-Release Inference Disruption
	Recommended Citation

	tmp.1541449350.pdf.jnJ1E

