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ABSTRACT

Modern baseband signaling that facilitates the passing of information over high speed
interconnects such as copper twin-ax cable and printed circuit boards supports single
line data rates of 100 Gbps. Next generation bandwidth requirements of electrical
links are approaching frequencies up to 50 GHz. Yet, signal integrity engineers that
analyze these interconnects rely on models with underlying assumptions and limited
extensions beyond those proposed in the 19th century to describe per unit length
characteristics of Resistance, Inductance, Conductance, and Capacitance (RLGC)
for transatlantic telegraph cable. An excluded phenomenon is the time retarded
behavior of electromagnetic fields.

The aim of this research is to quantify the impact of time retarded electromag-
netic fields on the frequency dependent phase as described by the RLGC(p) model and
applied to transmission line geometries encountered in printed circuit boards. Four
areas of focus are pursued in this study. Applications of time retarded electromag-
netic fields are examined with emphasis on velocity mismatch of the surface charge
density above and below the signal conductor of a microstrip transmission line, and
the loss mechanism of Cherenkov Radiation is newly applied to these electromagnetic
waveguides. Simulation experiments are performed to validate that the analytical
solutions to Jefimenko‘s equations are comprehended in a full wave EM solver. De-
sign of a test apparatus for quantifying the time retardation impact to coupling of
transmission lines on a Fused Silica substrate is presented. Finally, measurement
attempts of this apparatus are discussed along with the challenges of metallization of

thru glass vias and glass surfaces. Future research is proposed for Cherenkov Radi-

vi



ation on microstrip transmission lines along with suggested experiments to perhaps

visualize time retarded electromagnetic fields.
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PREFACE

The motivation for much of this research is to continue the work presented in Dr.
Peng Ye‘s doctoral dissertation, Applying the Retarded Solutions of Electromagnetic
Fields to Transmission Line RLGC Modeling. The development of the RLGC(p)
model and original discussion of frequency dependent phase is credited to Dr. Ye.

The convention used in this text for vector representation is to denote vector
quantities with an arrow over the top of the symbol for the quantity. For example,
electric field intensity E.

Symbols for electric and magnetic field quantities are color coordinated in this
text. Red font is used for related electric field quantities of electric surface charge
density >, electric field intensity E , electric flux density 5, scalar electric potential,
and V. Blue font is used for related magnetic field quantities of current density J_;
magnetic field intensity H, magnetic flux density B, and vector magnetic potential
A. By using colored symbols, Maxwell‘s equations are revealed even more beautifully

symmetric.
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CHAPTER 1

INTRODUCTION

Printed circuit boards are defacto platforms in the electronics industry to mechani-
cally support and electrically connect high frequency signaling devices. The electrical
connections between transmitting devices and receiving devices are transmission lines
which consists of conductive traces etched from copper sheets laminated together with
dielectric substrates. Printed circuit transmission lines represent a majority of the
signal degradation of an interconnect used for high frequency signaling; therefore, ac-
curate modeling of transmission lines is an important part of signal integrity analysis.

There exists several techniques to model uniform transmission lines. A classical
technique is the RLGC model and its augmentations. This model was originally in-
troduced in the 19th century and contains many simplifying assumptions. The most
notable exclusion for the purposes of this research is the effects of time retarded
electromagnetic fields. A derivative of the RLGC was recently introduced to incorpo-
rate time retarded electromagnetic field effects. This model is named the RLGC(p)
model [1].

Practicing signal integrity engineers are currently discovering the challenges of
broadband signaling at data rates up to 56 Gbps (26 GHz). Traditionally, 2D nu-
merical codes are chosen over analytical solutions [2] because of flexibility in solving
transmission lines on printed circuit boards. However, these simulators often neglect
time retarded field effects. Miniaturization of the transmission line geometry along
with the signaling frequency increase has allowed the assumptions inherent in the clas-

sical RLGC model and 2D numerical simulators to remain less obvious. But, as data



rates and interconnect characterization approaches 100 GHz including the impact of

time retardation on the performance of transmission lines becomes pertinent.

1.1 HISTORICAL PERSPECTIVE FOR THE CLASSICAL TRANSMISSION LINE

MoDEL

The origins of describing signal propagation on a transmission line can be traced back
to the transatlantic telegraph cable and the theoretical contributions by William
Thomson and Oliver Heaviside [3].Failures to recover telegraph signals during the
first attempts at transatlantic communication can, indeed, be referred to as the first
signal integrity problem. It is important to recall challenges that were being faced
and, more important, to understand the assumptions made during the development
of the original transmission line theory - particularly - to keep in mind that Maxwell’s
equations were not yet published or refined.

The rapid deployment of submarine cable would have been a significant feat of
engineering in the modern era let alone in the mid 19th century. There was a span
of only seven years between the first cables laid in 1851 across the English Channel
(at a length of 40km and a depth of 30 fathoms) to the first successful transatlantic
attempt reaching from Valentia, Ireland to Trinity Bay, Newfoundland (at a length
4074 km at depths ranging from 1700 to 2400 fathoms) [4].

Typical construction of submarine cable consisted of 6 copper wire conductors
impregnated in an insulation of Gutta-Percha. Purity of the available copper yielded
a conductivity of 85% that of pure copper. Gutta-percha is a vegetable gum thermo-
plastic and has the same chemical formulation as rubber (CyHyg); however, it is rigid
and does not react in water. This made it ideal for submarine applications [4]. The
relative permittivity of Gutta-percha is e, =~ 3.1. The armouring of the cable was
done with 12 to 18 strands of heavy iron wire. Figure 1.1 is a photo of cable sections

from 1858 to 1866.



Figure 1.1: Cable Sections (Photo credit Atlantic-Cable.com)

First successful transatlantic telegraph communication was on August 17", 1858.
Approximately 700 messages were achieved before cable failure, and the entire cable
was abandoned only after three months [4]. An insufficient understanding of signal
propagation led to the belief that a large voltage should be applied to the cable to
overcome the long distance that the signal must travel; however, these large voltages
resulted in catastrophic cable faults from insulator breakdown.

Professor William Thomson (later Lord Kelvin) put forth a theory of transmission
line signal propagation in October 1854 to which George Stokes provided the general
solution in November 1854 [5],[3]. For this theory, Professor Thomson simplified

the geometry to that shown in Figure 1.2 which is similar to a co-axial cable. He

\b
\
\

Figure 1.2: Hlustration of Simplified Submarine Cable

was familiar with the thermal conduction theory of Joseph Fourier [5] and modeled



the voltage change versus position on the cable as a diffusion equation. Applying
Kirchhoff’s current law and Ohm’s law to a infinitesimal length of cable, it is possible

to show that the voltage v for a position x along the cable as

0% ov
a2~ KC%

(1.1)

For Equation 1.1, a resistance per unit length K of the wire is defined along with an

"electrostatical capacity" per unit length as

_ 2me
~In(b/a)

where the radius of the inner conductor is denoted as a and the radius of the outer
conductor is denoted as b.

Equation 1.1 predicts the inter-symbol interference caused by the diffusing of the
different frequency components contained within a single telegraph key stroke. It was
not until 20 years later, in 1876, that Oliver Heaviside introduced an inductance per
unit length S and derived the complete telegrapher‘s equation. Equation 1.2 allows
for describing signal propagation as a wave. It also was the key to solving the inter-
symbol interference plaguing transatlantic communication by introducing intentional

faults (inductance) at particular positions along the line.

0% ov 0%
= KOS 480 (12)

It is remarkable the usefulness and longevity of the telegrapher’s equations given
that they were derived by Oliver Heaviside assuming time independent fields and
before he was familiar with James Clark Maxwell’s theory of electromagnetism; the
theory which he would make so much contribution over the next several years [3].
Even so, assumptions need to be made to assign physical meaning to the per unit
length parameters introduced by William Thomson and Oliver Heaviside almost 150
years ago. Section 1.1 will review these assumptions and provide a derivation of the

Classical RLGC Transmission Line model.



1.2 THE CLASSICAL TRANSMISSION LINE MODEL AND ASSUMPTIONS

It is often the case that the application of a particular modeled behavior is far removed
from the theory and assumptions made during the development of said model. Such
underlying assumptions, often made out of necessity, simplify the complexity of the
solution, but errors in analysis are introduced as these assumptions are violated even
incrementally. The subject of electrical analysis of transmission lines was once an
entire course in undergraduate electrical engineering, but given a crowed curriculum
the topic is only briefly covered, if at all [6]. This can only lead to potential misuse
of analytical solutions or numerical tools designed to solve transmission line models.

Similar to Section 1, the Classical RLGC Transmission Line model seeks to repre-
sent the total characteristic parameters of resistance (R), inductance (L), conductance
(G), and capacitance (C') of a transmission line of length [ along the z axis by the
infinite sum of distributed, infinitesimal lengths Az of uniform cross-sections. These
infinitesimal lengths are referred to as per unit length parameters where the unit is
typically meters m. These parameters are defined in Table 1.1.

Table 1.1: Definition of per unit length RLGC Parameters

Parameter Definition Unit
Resist it length (R,u)  lim -~ 0/
esistance per unit leng .l Aggo A m
Induct it length (L ) li i H/
nductance per unit leng Pl Airgo N m

Conductance per unit length (G,...) lim S/m

Az—0 Az

C
Capacitance per unit length (Cy.,..) Alirno N F/m
zZ— z

For the Classic RLGC Transmission Line model, physical geometry of the trans-

mission line is used to calculate the distributed resistance, inductance, conductance,



and capacitance per unit length parameters. However, the physical meaning of these
parameters is only valid for the static [ time independent or direct current (dc) | case
[6] where the Transverse Electric and Magnetic (TEM) mode is dominant. This is
the fundamental assumption for the Classical RLGC Transmission Line model and
requires that the lines be perfectly conducting (0 = o0). To satisfy the boundary
conditions on perfect electrical conductors (PEC), the behavior of the electric and
magnetic fields surrounding the transmission lines are orthogonal to each other and
have field components only in the plane perpendicular to propagation, the induced
current is flowing along the line (in the z - direction), and the fields are uniquely
defined [7]. An incremental modification to the fundamental assumption is made
by including an additional resistance per unit length to account for the lines being
imperfect conductors. This implicitly violates the assumptions of TEM mode and
uniquely defined fields. If the resistance is kept small, the effect is ignored, and the

solution is referred to as quasi-TEM [6]. Other assumptions include [8]:

o the cross-section of the lines are uniform along the line and small compared to

the electrical wavelength A
o the length of the line is long compared to the wavelength A
o the surrounding medium is homogeneous

« an external source causes a cosinusoidal [e.g. cos(wt) or Re(e™7*")] electric \

magnetic field in time on one of the conductors

Detailed derivation and exploration of the Classic RLGC Transmission line model
including multiple conductors is the subject of many texts [9],[6],[10],[2]. The fol-
lowing derivation is similar to the treatment by Huray [8]. Figure 1.3 represents the
voltage v(z,t) and current i(z,t) for an infinitesimal length Az as function of the

propagation distance z and as a function of characteristic parameters R, .., Ly,



1(z,t i(z 4+ Azt
L’)RpulAZ Lp.u.l.Az ( + )
- +
v(z:t) Gt A2 = CpurDz v(z+ Az,t)
:

Az

Figure 1.3: Schematic Representation of Infinitesimal Length RLGC Parameters

Gpui., and Cp,i. Applying Kirchoff's voltage law then rearranging the equation
obtains,

Ji(z,1)

v(z 4+ Az,t) =v(z,t) — Ryu1Azi(z,t) — Ly Az T

v(z+ Az t) —v(z,t) 0i(z,t)

AZ = — p_u_l_i(z,t) — Lp.u.l. 875 (13)
Taking the limit as Az — 0,
0v(z,t) , di(z,1t)
az == —Rp.u.l_l(z, t) — Lp'u'l'T (14)
Then applying Kirchoft’s current law in Figure at the node N obtains,
ov(z,t
i(z 4+ Az, t) =i(z,t) — GpurAzv(z + Az, t,t) — Cpur Az U(azt’ )
i(z+ Az, t) —i(z,t) 0v(z,t)
As = —GpAu.l‘AZ'U(Z + AZ, t, t) — Cp.u.l. at (15)
Taking the limit as Az — 0,
0i(z,1) Jv(z,t)
Oz = _Gp.u.l.'v’(fza t) - Cp.u.l.T (16)

Equations 1.4 and 1.6 are known as the transmission line equations. Assuming har-
monic inputs,
v(z,t) = Re[V/(z)e’] (1.7)

i(z,t) = Re[I(z)e’] (1.8)



the transmission line equations become two coupled, first-order, linear ordinary dif-

ferential equations for phasor voltage V' (z) and phasor current I(z),

dflg” = Ry 1(2) — jwlyur 1(2) (L9)
diliz) - _Gplu.l.v(z) - ]WOPUIV(Z> (110)

These equations are uncoupled by taking a second spatial derivative and plugging

back into Equations 1.9 and 1.10 to yield,

de = 72‘/(2:) = (Rp.u.l. + jWLp.u.l) (Gp.u.l. + ]wcpul>v(z) (111)
d*I(z . .
d2<2 ) = 72[(2) = (Rp.u.l. + jWLp.u.l.> (Gp.u.l. + ]wcpul)l<z) (112)

where 7 is the propagation constant,

Y=o+ ]B = \/(Rpul + jWLp.u.l.) (Gp.u.l. + jwop.u.l.) (113)
Referring back to Figure 1.3, 7 is also equal to /Z, .1 Yy.u1 Where
Zp.u.l. = Rp.u.l. + jWLp.u.l. and }/pul = G’p.u.l. + jwop.u.l. (]-]-4)

The solutions to Equations 1.11 and 1.12 are in form of the sum of propagating

waves in the positive z-direction and negative z-direction,

V(z)=Vrie 4V e* (1.15)

I(z)=1Ife "+ 1 e” (1.16)

If Equations 1.15 and 1.16 are put back into Equations 1.9 and 1.10 the resulting

ratio of voltage to current obtains the characteristic impedance, Zj:

. V+ - (Rp.u.l. +jw-[/p.u.l.) . (Rp.u.l. + jWLp.u.l.)
Zy = T+ - S "\ (Cor +55Cyr) (1.17)




1.3 LITERATURE REVIEW AND STATE OF THE ART

An assumption of the Classical RLGC model of particular interest for this research
is that the cross-sectional geometry be small compared to the wavelength A. Small
is generally thought to be between A\/8 and A/10 [11],[12] with some evidence that
wavelengths as small as A/40 introduce non-TEM modes [6]. Extending the validity
of the Classical RLGC model has been an active research subject [13],[14] particu-
larly for electromagnetic compatibility (EMC) where large distances between wires
introduce radiation effects even for single gigahertz frequency ranges. Such analyti-
cal models as the so-called full wave transmission line theory (FWTLT) [15] as well
as the modified enhanced per unit length parameters [16] introduce complex valued
Cpui. and Ly, to account for radiation effects up to frequencies of several gigahertz.
These models have been extended to multi-conductors with reasonable measurement
to model correlation up to 3 GHz [11]. However, such proposed extensions are focused
on frequency ranges that are considered low frequency for modern PCB design.

Another approach that is gaining popularity in the EMC field is the partial element
equivalent circuit (PEEC) numerical method. This method models arbitrary three-
dimensional interconnect structures by introducing circuit elements of controlled cur-
rent and voltage sources to account for the electromagnetic behaviors of skin depth,
dielectric losses, layered media, and time retardation between center to center con-
ductors. A retardation factor is included by calculation of partial inductance and
potential sources which is referred to as "lumped retardation". This retardation is
frequency independent.[17]

Practicing signal integrity engineers designing at current data rates up to 56 Gbps
(26 GHz) typically choose 2D numerical codes over analytical solutions [2]. Numerical
codes provide flexibility in solving transmission lines on printed circuit boards. To
overcome limitations of the Classical RLGC model, these codes have been modified

to produce a tabular w-element models which are frequency dependent RLGC based



on dielectric dispersion in the medium [18]. Extra phase and power loss for copper

surface roughness are also added to the tabular w-elements [19],[8].

1.4 GOALS OF THIS RESEARCH

This research aims to extend the work done during the development of the RLGC(p)
model and visualization of time retarded electromagnetic fields [1]. As a result of
experimentation with a 3D Full Wave Electromagnetic Simulator: ANSYS HFSS,
Chapter 4 validates that similar results to analytical computations can be achieved
and lays the ground work for analyzing multiple conductor transmission lines. Both
extracted numerical data as well as field visualizations are compared between calcu-
lation methods.

Chapter 5 steps through the design and development of a test apparatus to quan-
tify the impact of time retarded electromagnetic fields on a geometry similar to high
frequency PCB transmission lines. Chapter 6 contains the measurement results of
this test apparatus up to 67 GHz.

Chapter 3 explores applications of time retarded fields in a microstrip transmission
line and contains speculations of loss mechanisms newly applied to transmission line
analysis. Chapter 7 discusses potential future work to better visualize time retarded

fields as well as ways to observe the loss mechanisms introduced in Chapter 3.
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CHAPTER 2
TIME RETARDED MAXWELL’S EQUATIONS AND THE

RLGC(p) MODEL

One of the most significant contributions to Natural Philosophy (the precursor to
modern Physics) in the mid-19"" century is the theory unifying the experimental
investigations of Gauss, Faraday, and Ampere as well as the introduction of the
displacement current by Scottish Mathematical Physicist James Clerk Maxwell in his
1873 Treatise on Electricity and Magnetism. This theory was subsequently codified
into its current form and evangelized after Maxwell‘s early death at the age of 48
by such prominent 19*" century scientists as Fitzgerald, Lodge, Hertz, and Heaviside
[20]. The resulting Maxwell‘s equations have been the object of intense study and
are the governing equations of Classical Electromagnetism. These equations exist in

—

various forms all with the key aspect of relating Electric field intensity (£), Magnetic
field intensity (H), Electric charge density (p, ), and Electric current density (J) at
a particular space-time, (7, ) [21]. The asymmetric forms of Maxwell‘s equations
are given in Table 2.1.

In homogeneous media and time varying fields [7], the Electric flux density (5) and

Magnetic flux density (E) are related by the constitutive quantities of permittivity

(¢) and permeability (u) as shown in equations:

E=¢eD

H=uB
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Table 2.1: Asymmetric Form of Maxwell’s Equations

Differential Form Integral Form Name

VxE= _GB/at §Ié E-dl = — // aB/at -dS Faraday’s Law
c s

6><ﬁ:f+aD/@t %ﬁ-dle—i—/ aD/at~d§ Ampere’s Law
S

V-D= Py D-dS = Q Gauss’ Law for
S Electric Charge

V-B=0 # B-dS=0 Gauss’ Law for
S

Magnetic Charge

2.1 JEFIMENKO‘S EQUATIONS

Electromagnetic fields propagate at a finite velocity; and thus, electromagnetic fields
exhibit time retarded behavior. This behavior is, simply that, a time delay must
elapse before a change in an electromagnetic condition at a point in space can yield
an effect at another observation point. While this may be intuitive given the principle
of causality which states that all present phenomena must be proceeded by past events
[22], it has far reaching consequences for the classical theory of electromagnetic fields.
Time retardation manifests in phenomena such as electromagnetic waves generated
by oscillating electric charges and currents, electromagnetic fields of moving charge
distributions, mechanical relations between time-dependent or moving charges and
currents, dynamics of atomic systems, visual appearance of moving bodies, and even
relativistic electrodynamics [23].

A simple illustration in Figure 2.1 compares the electrodynamic behavior with a
simplified, subset condition: the electrostatic behavior. In Figure 2.1a, the electrody-
namic source field intensities are described as £(z',¢') and H(Z',¢') where the primed

position Z’ and primed time ¢’ denote the source point. The observation point is dis-
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tinguished from the source point with the use of un-prime time and position:E (Z,1)
and H(Z,t). The time delay can be described as t — ¢/ = |# — #'|/v with v being

the propagation velocity in the medium. For the simplified condition of electrostatics

. . v
’ Q
. ’

. Obsgrvation . Obsgrvation
E(Z,t) E(Z,t)
H(Z,t) H(zZ,t)
@ o
Source Source
E(@' 1) E(&,t)
H(Z',t) H(Z',t)
(a) Electrodynamic (b) Electrostatic

Figure 2.1: Hlustrating Time Retardation

in Figure 2.1b, sources do not change with time; therefore, E(f’,t’) = E(f', t) and
H(Z',t") = H(Z',t) . Both the source and observation share the same time com-
ponent so mathematically the propagation velocity is infinite, effects appear instan-
taneous, and time retardation is irrelevant [24]. Conversely for the electrodynamic
condition, the time components ¢ and ¢’ are treated differently, the derivatives are
more complex, and most notably ¢’ is correlated to t, x, and 7’

It can be argued that Maxwell’s Equations in Table 2.1 do not represent causative
relationships; therefore, E is not created by a time varying B or vice versa. Rather
E and H are simultaneously created by the time varying charges and currents [22].
This is contrary to what is traditionally taught in Electrical Engineering texts.

Causal relations must contain retarded (previous time) quantities. These relations
are a requirement to fully capture the dynamic effects of electromagnetic waves gen-
erated by oscillating electric charges and currents. Expressions for electromagnetic
fields in terms of evident time retarded source quantities are referred to as Jefimenko’s
equations because of the author of the book where they first appeared [25].

The derivation of Jefimenko’s equations can be pursued by several methods. A

13



common approach is to obtain the Liénard-Wiechert Retarded Potentials assuming

the Lorenz gauge and calculate the electromagnetic field from the relations:
E=-Vv-04/y (2.1)

and

B=VxA (2.2)
where A is the magnetic vector potential and V is the electric scalar potential [26][27][7].
Another approach makes use of a Fourier transform in the temporal coordinate so
to avoid complex and error prone manipulations with retarded quantities [28]. Yet
another approach is to calculate directly from Maxwell's Equations with the use of
the Retarded Green'‘s function [25],[21],[29]. The following derivation will employ the
Retarded Green‘s Function method [30].

The Asymmetric Maxwell‘’s Equations in a vacuum are given by

. . 0B

E=—-"— 2.3
V x T (2.3)
. - OFE
V x B = ,U()J + MO&OE (24)
V.-E="Lr (2.5)

€0

V-B=0 (2.6)

Taking the curl of Faraday’s Law and the time derivative of Ampere’s Law yields

- 1 0%\ = 1 10J
2
S8 = vy, - 2 9.
(V c? 8t2>E 50< Voy c? Ot ) (2.7)

Similarly, taking the curl of Ampere’s Law and the time derivative of Faraday’s Law
yields

<ﬁ%-1y>§:—mﬁxf (2.8)
Solutions to Equations 2.7 and 2.8 are obtained from the Retarded Green‘s function

Gre(Z,t; 7', t") which satisfies the inhomogeneous differential equation

2
(W - 13)%(:& 1) = —Amb (T — F)o(t — ) (2.9)
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The solution to Equation 2.9 is

I D)
B
8t~ (i~ Rfe))

= (2.10)

where R = || = |#—2"|. Using Equation 2.10, the solution to Equation 2.7 is written

(2.11)
1 V'p, ] 1 [oJ
- _ d3 =/ V iret e 212
4reg /// * { R R |0t | (2.12)
Here careful attention is needed because of the notation [...]., which indicates

that the quantities inside the brackets are evaluated at the source position #’ and the

retarded time ¢’ = t — |# — Z'|/c. Expanding [V'p, ],., as

=/ o/ apv
)=V b= T [ %2] 213

and substituting into Equation 2.12 the relation becomes
/// 3~/V/ Py e
dmegR
+///d35/47r€7:c]?, laaptv Let
_///dgf,zmzcm B}’L (2.14)

After integrating by parts and discarding surface terms because the charge distribu-

tion is localized, Jefimenko‘s Equation for the electric field intensity is given by

1 s [ 7 7 [op, 1 [6]
T, 2 - == 1
4reg ///d . {R2 Py Lo+ cR [ ot ]m 2R [815 ]m} (2.15)

Two important observations in Equation 2.15 are that it reduces to the static

E(Z,t) =

case for time independent fields, and the first term on the right hand side becomes

Coulomb‘s Law. Coulomb‘s law is incomplete because it does not comprehend the
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discoveries of the 19th century concerning the finite speed of light. To pursue this fur-
ther, relations can be used [21] to transform Equation 2.15 to the Feynman expression

for the electric field of a single point source

_ q T R] ., 0|7 1 02[r],.,
E: J— Loaret | 7 U dret 1
R dE R o B

Feynman provides insight into time retardation in his explanation [31] of Equation

2.16. This explanation is quoted here to preserve the eloquent description of the
beauty of nature and the power of mathematics. Several notations have been changed

from the original text to match the form in Equation 2.16. These are denoted inside

{)

Take the first term, { 47350}' That, of course, is Coulomb‘s law, which
we already know: ¢ is the charge that is producing the field; {[F] ,} is
the unit vector in the direction from the point P where E is measured,
{R} is the distance from P to q. But, Coulomb‘s law is wrong. (...) It
is not correct that the first term is Coulomb‘s law, not only because it is
not possible to know where the charge is now; and at what distance it is
now, but also because the only thing that can affect the field at a given
place and time is the behavior of the charges in the past. (...) So to allow

for this time delay, we {use[R],_,}, meaning how far away it was when

ret
the information now arriving at P left q. Just for a moment suppose that
the charge carried a light, and that the light could only come to P at
the speed c. Then when we look at ¢, we would not see where it is now,
of course, but where it was at some earlier time. What appears in our
formula is the apparent direction { [r'],.,} - the direction it used to be -
the so-called retarded direction - and at the retarded distance { [R],.,}.

That would be easy enough to understand, too, but it is also wrong. The

whole thing is much more complicated. There are several more terms.
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The next term is as though nature were trying to allow for the fact that
the effect is retarded, if we might put it very crudely. It suggests that
we should calculate the delayed Coulomb field and add a correction to it,
which is its rate of change times the time delay that we use. Nature seems
to be attempting to guess what the field at the present time is going to be,
by taking the rate of change and multiplying by the time that is delayed.
But we are not yet through. There is a third term - the second derivative,
with respect to t, of the unit vector in the direction of the charge. Now
the formula is finished, and that is all there is to the electric field from an

arbitrarily moving charge.

For completeness in reviewing Jefimenko’s equations, a derivation of Biot-Savart
law for the magnetic field intensity follows. Again, the Retarded Green‘s Function in

Equation 2.10 is employed to solve Equation 2.8 which gives

Bt = Aﬁ%///d%’ 5 % J, (2.17)

and using the relation

S S 7 [oJ
= - — 2.1
[v X J]ret v X [J]ret + c X [at ‘|7_6t ( 8)
then Equation 2.17 takes the form
S 1 fdT s, - 1,7 JoJ
B(:C,t) = c/ R V X [J]ret — g /dx ﬁ X [at‘|ret (219)

Integrating by parts obtains

B =10 [ eeer (V)
LT T [27
C///dx 7 X tht (2.20)
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After discarding the first term on the right-hand side of Equation 2.20 because the

current distribution is localized in space, the relation V/(1/R) = —7/R2? is used to

-t ol 4] e

Equations 2.15 and 2.21 are Jefimenko’s Equations for the Electric Field and Mag-

obtain

netic Field in a vacuum, respectively. Taking the Fourier transform and substituting
¢ = v where v = ¢/ /p€ is the propagation velocity in a medium yields the solutions

in the frequency domain as given in Equations 2.22 and 2.23.

. R -
pe— ///al?’*’{R2 —|—j—>p eTIwRIv _ g RJe_]“R/”} (2.22)
S — o Ho 3 =/ 1 WR = 7‘0JR/U —

B(m’w)_h///d${m<l+jv>[Je J Xr}} (2.23)

E(Z,w) =

2.2 RLGC(p) MODEL

In Section 1.1, the classic RLGC transmission line model is discussed along with
the associated per unit length parameters (R, Lpui, Gpui Cpuir) as well as the
transmission line per unit length impedance Z,,,; and per unit length admittance
Y, wi.- In this section, the logic for the proposed [1],[24] RLGC(p) transmission line
model is summarized.

The RLGC(p) model introduces frequency dependent phase ¢(w) terms as a mech-
anism for incorporating the time retardation of the fields near a transmission line while
retaining the RLGC' form of the classic transmission line model. Table 2.2 contains
both the Classic RLGC model and the RLGC(p) model.

A key feature of the RLGC(p) model is the addition of w|L, . - Az|sing(w) and

|Cpui.-Az| cosp(w) terms in the resistance (R) and conductance (G) parameters which
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Table 2.2: Classic RLGC Model and the RLGC(p) Model

Parameter Classic RLGC Model RLGC(p) Model
Resistance (R) Ry - Az Ryt - Az —w|Lyy - Az| sing(w)
Inductance (L) Lpwi - Az |Lpi. - Az| coso(w)

Conductance (G) Gpuil - Az Gput - Az + w|Cpay - Az sing(w)
Capacitance (C) Cput. - Az |Cpoui. - Az| cosp(w)

are the real portions of Z and Y. These terms are the same but opposite in polarity.
As a consequence, one is the energy source and the other is the energy consumer
rendering this model as energy neutral. This is important not only to conserve energy
but to describe the time retardation phenomena where, for an instance in position,
energy from the previous segment appears in the present segment [24].

Defining inductance and capacitance parameters in the RLGC(p) model uses the
classic definitions of self-inductance and self-capacitance at a per unit length or in-
finitely small area Az. Self-Inductance is the ratio of the total magnetic flux sur-
rounding a segment to the current on that segment. This reduces to a line integral
for a infinitely small area Az at point O. The magnetic flux is calculated normal to

the path, gy_total. Figure 2.2 illustrates the path of the line integral in Equation 2.24.

/

By—iotal
, 0 ‘_Er—total‘
/ Integration Path
¢

h

Figure 2.2: lustration of Integration Path Chosen for Inductance and Capacitance
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1 = -
Lp.u.l. = _,/ By—total -dx (224)
@) path

Jefimenko’s Equation 2.21 is used to solve for éy_total and can be shown [1] to

yield

0opLa —jkR  _—jkRim —jkR  ,—jkRim

! | € e 9 L[ € € 9
LP-"-Z-:M/G/L (o=a)e {( R® R >+‘7k< R R )}dz’dx,
(2.25)

where a is the radius of the wire, h is the height above the ground, L; and L, are
the starting and ending location of the transmission line, and k = w/v. Additionally,
R is the distance from the observation point to an integral segment, and R, is the
distance from the observation point to the mirror image. An image technique is used
to assure that fields on the PEC are orthogonal to the reference plane.
Self-capacitance is the ratio of charge density () to the voltage V' where V' is the
path integral of electric intensity E between two points. For the RLGC(p), this path

is selected to be the same as defined in Equation 2.24. Mathematically we have

do
f Ew—total -dT

path

Coul. = (2.26)

For Ew,total, Jefimenko’s Equation 2.15 is used and can be shown [1] to yield

Equation 2.27 for the path shown in Figure

Are

oo Lo N p—jkz! e=ikR ¢ IKRimg [ emikR eIk Rimg ! ot
fa le (x_a:)e J R3 R3 +]k RZ R2 dZ dl’

(2.27)

C(p.u.l. =

It is notable that the path integration for L, ,; and C, ;. relies on path independence
by only computing one path integral. This is a valid approach for time invariant fields;
however, for the time varying fields that produce time retarded behavior this may not
hold true. Computations for additional integration paths require the field calculations
in Equations 2.25 and 2.27 to be reformulated. Another approach is to replace the

various integrations by a fitting technique.
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There is a common factor in Equations 2.25 and 2.27 which can be assumed to

take the form of a complex solution. The resulting equation is

» 00 pLs I A e [ eIkR  o=ikRimg
’P’em()://L (@=ahe™ {< PR >+jk< PR >}dzldx/
(2.28)

By assuming the form in Equation 2.28, C,, ;. and L, become

Lyt = ﬁ|P|ej¢<w> = | Lpur |6 = |Lyui|cosd(w) + j|Lpus|sing(w)  (2.29)

de bl : .
Copui. = W = |Cpuile jow) = |Cpui|cosp(w) — F|Cpau|sing(w) (2.30)

Recalling from Section 1.1 that Z,, ;. = Ry +Jjwlpu and Y, 40 = Gyt +jwCpai,

the Z,, and Y}, become

Zput. = Rpui — W|Lpyi|sing(w) + jw| Ly |coso(w) (2.31)

Ypur = Gpui + w|Cpuslsing(w) — jw|Cp i |cosp(w) (2.32)

Taking a similar definition as the Classical RLGC model, the Resistance per unit
length R, ,; and Conductance per unit length G, ; are defined as the real portion

of Z,,.1. and Y, ., respectively. Therefore,

Ryui =real(Zyur) = Rpwi — w|Lpur|sing(w) (2.33)

Gpui. =real(Ypui) = Gpui + w|Cpui|sing(w) (2.34)

Summarizing the RLGC(p) per unit length parameters as

Resistance Parameter = R, ;. — w|Ly..1.| sing(w) (2.35)
Inductance Parameter = |Ly, ;.| cosp(w) (2.36)
Conductance Parameter = G4 + w|Cp | sing(w) (2.37)
Capacitance Parameter = |C),,,1. | cosp(w) (2.38)
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For lossy mediums and low frequencies, the time retardation terms will be neg-
ligible and the real portion of the R,,; and G, parameters will overwhelm the
imaginary portions of these parameters. For this special case, the RLGC(p) reduces
to the classic RLGC model. However, for high frequencies and low losses where time
retardation is significant, the RLGC(p) model can be used to correctly capture the

time retarded behavior.
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CHAPTER 3

APPLICATIONS IN TRANSMISSION LINES

This chapter introduces speculative concepts of time retarded electromagnetic fields
as they propagate in a transmission line waveguide. The transmission line waveguide
of interest is a common type used in printed circuit boards (PCB) consisting of a
finite width, rectangular shaped signal conductor also referred to as a trace, that
is supported by a dielectric medium and above a reference plane conductor. With
the signal conductors printed on the external layers of a PCB, the region above the
signal conductor is air. This type of transmission line is referred to as a microstrip;

Figure 3.1 contains an illustration of this configuration.

Figure 3.1: Idealized Microstrip Transmission Line

The air region supports the propagation of electromagnetic waves above the sig-
nal conductor and hence the surface charge density at the top boundary between the
air and the signal conductor is roughly twice the velocity of the typical dielectric
medium below the signal conductor. The faster surface charge density propagating

in the air region will be referred to as a precursor to the slower surface charge density
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propagating below the signal conductor in the dielectric region. In a lossless model,
such a surface charge density on the top of the signal conductor and its accompany-
ing electromagnetic wave above the trace should arrive at the receiving end of the
transmission line in approximately half of the time before the surface charge density
on the bottom side of the signal conductor. Such a precursor signal has not (to our
knowledge) been previously observed. It is speculated that the above model is either
highly lossy or incorrect in some other aspect.

In this Chapter, it is speculated that these precursors are of short, transient
duration due to a loss mechanism newly applied in the context of transmission line:
Cherenkov radiation. This loss mechanism is traditionally associated with isolated
charged particles moving faster than the speed of light allowed in a medium. The
surface charge density on the top of the signal conductor (the air side) can be thought
of as a distribution of isolated charged particles whose complementary electromagnetic
waves propagate in air at nearly the speed of light in a vacuum. The electromagnetic
waves must connect to the below reference plane with a refraction discontinuity as
they pass through the air-dielectric interface. The portion of the electric field lines
inside the dielectric are restricted to propagate at approximately half the speed of
light in a vacuum; therefore, they should exhibit Cherenkov type behavior in this
region.

The Cherenkov shock wave front will be a violent and significant change in elec-
tric potential for a time equal to the width of the surface charge density pulse at
those neutral atoms and molecules in the dielectric as the sequence of mach cone
shock fronts move past them. The step function response of the dielectric medium
to such potential changes was shown in Section 5.7 of Huray, The Foundations of
Signal Integrity [8] and led to a wake of “Ringing dipoles” behind the potential shock
wave as shown in Figure 5.34 of that text. Note that the frequency of oscillation of

the“Ringing dipoles” is completely determined by the characteristics of atoms and
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molecules in the dielectric material. Thus, if the dielectric material were water, the
same visible blue glow associated with Cherenkov radiation in a spent reactor fuel
pool would result. In another material, the frequency of the “Ringing dipoles” would
be at some other frequency, perhaps not in the visible spectrum. Nonetheless, this
potentially new loss mechanism for transmission lines is in addition to well explored
loss mechanisms from surface roughness and dispersive dielectric mediums. Also, it
should be emphasized that this would apply only to the surface charge density on top
of the signal conductor since that is the origin of the fast electromagnetic waves that
are produced in the dielectric material. How these fast Electric field lines determine,
a priori, that they should refract at the air-dielectric interface or even how they know
to become orthogonal to the reference plane is probably determined by quantum me-
chanical rules at extremely high velocities. One can even imagine that the electric
field lines are like micro lightning bolts that initially search for a continuous path

from the top of the signal conductor to the reference plane.

3.1 ASSUMPTIONS

It is necessary to carefully state all fundamental assumptions that are made as con-
cepts of time retarded fields in microstrip transmission lines are developed. The intent
of the following subsections is to explicitly state the foundation for the exploration

contained in the remainder the chapter.

3.1.1 TRANSMISSION LINE GEOMETRY BOUNDARIES AND MEDIUM CHARACTERISTICS

A homogenous dielectric is considered and is a necessary assumption for any analytic
analysis employing static or transverse electromagnetic (TEM) fields such as the
Classic RLGC model. However, the dielectric medium supporting PCB transmissions
lines is far from homogeneous. It is an amalgam of epoxy resin impregnated with glass

fabric and often includes voids, water, impurities, and other intentional inorganic
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fillers [8]. These features of “real world” PCB dielectric mediums are neglected in the
simulation of multi-layer PCB because of the difficulties quantifying and including
these features in numerical simulators. Some exceptions are the macro scale effects of
the glass fabric as a periodic medium [32],[33],[34] or the impact of skew on differential
signaling [35],[36] which are analyzed and mitigated separate from transmission line
simulation.

To ensure models of transmission lines exhibit causal behavior especially when
creating Classic RLGC models, the dielectric medium is given a complex permittivity
that is frequency dependent [18]; a common model for PCB dielectrics is the so called
Djordjevic-Sarkar or Wide Band Debye model [37]. This frequency dependence results
in signals that disperse or broaden as they propagate along the transmission line wave
guide. The physical mechanisms for this frequency dependence of the permittivity are
the various types of charges in the medium that move from equilibrium to produce
electric dipole moments. Some examples of these dipole moments are permanent
electric polar moments, induced electric dipoles, conduction electrons, and plasma
elections [8]. To concentrate only on the exploration of time retardation as it applies
to microstrip transmission lines, complex and frequency dependent permittivity will
be ignored in this chapter.

Another approximation in this chapter is to treat the transmission line conducting
surfaces as smooth with perfect model boundaries; again, this allows the isolation of
the time retardation behavior of the fields. In actual manufactured microstrip trans-
mission lines, edges are not rectangular, but more trapezoidal due to the acid etching
and plating processes. Additionally, the surfaces of the conductors are intentionally
roughened to promote adhesion and decrease the risk of delamination. Indeed, stan-
dards exists for "pull tests" to ensure the adhesion of external transmission lines are
adequate [38]. Increasing the roughness is done by adding nodules or distributions

of different sized, stacked spheres resembling snowballs [19]. This roughened surface
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leads to a fractional power loss and a retarded current density that depends on the
size and location of the conducting spheres. At the end of the transmission line,
a pulse is dispersed as a result of surface roughness [8]. Other effects that are not
included are: (1) the temperature of the dielectric molecules which will produce a
Boltzmann distribution of excited states in the molecules prior to a electromagnetic
shock wave and (2) the fact that the excitation of the propagating wave is not of
the “lumped port” type used in most numerical simulations, but a non TEM? type
in which electric field intensity lines “lean” in the propagation direction from top to
bottom (e.g. in Figure 3.10, page 41 as opposed to Figure 3.4, page 33) due to the

finite propagation speed of the charge source from the transmitting device.

3.1.2 VALIDITY OF MAXWELL‘S EQUATIONS

In Chapter 2, the asymmetric forms of Maxwell‘s Equations were assumed when de-
riving time retarded Electric field intensity (), and Magnetic field intensity (H).
These forms can be found as summarized previously in Table 2.1. An alternative ap-
proach would be to assume the symmetric form of Maxwell‘s Equations which requires
including terms for Magnetic charge density and Magnetic current density. This is
mathematically convenient when solving the inhomogeneous wave equations with
boundary conditions chosen such as to separate transverse electromagnetic (TEM),
transversion electric (TE), or transverse magnetic (TM) solutions [9]. However, the
physics community assumes Magnetic charge density and magnetic current density
do not exist; moreover, the approximation to include these terms and the resulting
vector techniques are poor when considering fields in the near field [8]. For the pur-
pose of this chapter, it is assumed that the asymmetric forms of Maxwell‘'s Equations
are valid at every point in time and are applicable at every location inside conductors,

inside a medium, and in free space.

For the derivation of Jefimenko's equations, also known as time retarded Electric
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field intensity (£) and time retarded Magnetic field intensity (H) in Chapter 2, the
approach is chosen to calculate directly from Maxwell’s Equations with the use of the
Retarded Green‘s function. The more common approach is to obtain the Liénard-
Wiechert Retarded Potentials provided in Equations 3.1 and 3.2 and then calculate
the electromagnetic field from the relations E=-VV-— &éf/ ot and B =V x A where

A is the magnetic vector potential and V' is the electric scalar potential.

m///d?’*’p” — f/c) (3.1)
A(R,1) 47T///d3*’ —fi/e) (3.2)

Liénard-Wiechert Retarded Potentials are solutions to the inhomogeneous wave equa-
tions for A and V by using the Fourier transform of Green‘s Function to obtain the
Retarded Green'‘s function [8]. These inhomogeneous wave equations are written be-
low in Equations 3.3 and 3.4. They are second order partial differential equations
(PDEs) for V and A which were uncoupled by assuming an additional restriction of

the Lorenz Gauge V - A — 8V/at = 0.

, 52 .
2 s — _ v
(V u58t2>\/ . (3.3)

If another gauge or restriction is assumed e.g. the Coulomb Gauge, different scalar
electric potential and magnetic vector potential are obtained [§].
3.1.3 E AND H FIELD INTENSITY-CHARGE COEXISTENCE

Time dependent Electric field intensity E and Magnetic field intensity H coexist
and radiate from sources as they propagate as waves in space. Thus, a volume

of electric charge densities p, can be thought of as producing E. Moving charges
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then constitute a current density J that induces H. However, it can be shown 8]
that to satisfy boundary conditions at a conducting surface, it is required that an
electric surface charge density >, distribution exist to support electric and magnetic
fields. Since conduction electrons do not travel at velocities comparable with those
of electromagnetic fields in a medium, it is argued [7] that surface charge densities
rather than conduction electrons satisfy conductor/insulator boundary conditions. A
field-charge density is therefore assumed to exist at these boundaries so that it is
equivalent for fields to induce charges or charges to induce fields[8]. Physicists often

call these charge densities Surface Plasmons.

3.1.4 TRANSVERSE WAVE OF CHARGES ON THE CONDUCTOR SURFACE

A medium such as the dielectric region of a microstrip transmission line supports a
propagation velocity v, = c¢//ji€ in the direction £ for the electromagnetic fields.
The induced surface charge density needed to satisfy Gauss‘s law at the conducting
boundary is ¥, = 5Ey. A linear current density J is formed from this surface charge
density as it propagates at the velocity of the medium [8]. This current density is
J =, 5,5,

Assuming a permittivity similar to traditional PCB of ¢, = 4, the propagation
velocity is approximately v, = ¢/2 = 1.5 x 10® m/s which is two orders of magnitude
greater than the Fermi velocity of conduction electrons in copper: 1.57 x 10°m/s. As
explained by Pippard [39], the propagating surface charge density is not a longitudinal
movement of conduction electrons, but rather a transverse displacement of the "free"
electron cloud from their ion cores of only a fraction of a nuclear dimension is needed
to produce the required surface charge density > [8].

Figure 3.2 illustrates this transverse displacement of conduction electrons for a
cosinusoidally varying surface charge wave in sync with the electromagnetic field

intensity. Magnetic field intensity lines are shown as blue arrows in and out of the
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Figure 3.2: Transverse Displacement of Conduction Electron to Support Surface
Charge Density

3.2 StATIC FIELD ANALYSIS FOR A MICROSTRIP TRANSMISSION LINE

For understanding conceptual behavior of fields, static field analysis can be applied
to transmission line waveguides and microstrip transmission lines in particular by
enforcing several approximations. The first is to assume perfect electric conductors
which have boundary conditions that require the electric field intensities to be nor-
mal to the conducting surfaces and the magnetic field intensity to be tangent to the
conducting surfaces [6]. Another simplification often employed is to treat the two
separate regions of air and dielectric as one effective region [10]. The resulting prop-

agation mode is referred to as quasi-TEM to denote the use of approximations. Such
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a propagation mode is assumed when deriving the Telegrapher's equations and the
Classic RLGC model as in Section 1.1.

For the TEM? mode of propagation, no electric field component exists in the
direction of propagation 2. Additionally, a voltage can be uniquely defined (i.e.
path independent) between the signal conductor and a reference plane since there is
an evenly distributed scalar potential and a conservative electric field intensity [6].
Equation 3.5 defines this unique voltage along the path dl between P’ and P where
P’ is located on the signal conductor and point P is located on the reference plane.

P -
V(z,t) = —/ By -dl (3.5)
P

Similarly, a unique current can be defined by integrating the Magnetic field in-
tensity around a closed path encompassing the signal trace. Without a component of
the electric field in the propagation direction, no displacement current oD /375 exists
and the current is equivalent to the static condition of Ampere‘s law. Equation 3.6

contains the mathematical description of Ampere‘s law in the static condition.

I(z,t) = y{cﬁz cdl (3.6)

Figure 3.3 depicts the end view of a microstrip transmission line with field lines
drawn to illustrate the Electric and Magnetic field intensities for the TEM* mode of
propagation. Fringing fields have been ignored in this graphic under the assumption
that a shapshot of the Electric field intensity is seen at the signal end of a microstrip
transmission line, and that it will gradually fringe out over time as the surface charge
density propagates toward the receiver end of the microstrip transmission line. Note
(as explained at the end of Section 3.1.1) that this assumption is likely not rigor-
ously valid since a signal charge created by an integrated circuit will likely appear
on the signal conductor and then take some time to reach the reference plane. Nev-
ertheless, this “lumped” port excitation is one of the two ways traditionally used to

excite a numerical simulator (the other being a wave port configuration which will
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better match the electromagnetic field distributions as a signal propagates from one
conductor to another). It is noted that the boundary value problems of a microstrip
with two distinct regions as well as the fringing fields due to the finite conductor
width is difficult to solve analytically and is usually left to numerical simulators [8].
Simple illustrations of the field lines are thus a tool to aid in the understanding of

propagating electromagnetic field behavior.

Air Region € gir

Surface Charge DistriBttz‘zp,}...\.

s

Dielectric Medium €2

Figure 3.3: End View of a Microstrip with Field Lines Illustrated for Transverse
Electromagnetic Magnetic (TEM) Propagation with Fringing Fields Ignored

3.3 PULSE PROPAGATION ALONG A MICROSTRIP TRANSMISSION LINE

Visualization of a voltage pulse as it propagates along a transmission line is also
of interest for high speed interconnect design. A common simulation technique for
interconnect channel evaluation is to convolve the pulse response, also referred to
as the single bit response (SBR), with a bit pattern to determine the resulting eye
diagram or other channel performance metrics [40]. Therefore, understanding the
behavior of a pulse interacting with a single transmission line lends insight to the
expected outcome of simulated responses. In the following sections, several instances
of a pulse propagating as it is guided along a microstrip transmission line will be
explored. For the initial set of visualizations, the field lines are drawn as depicted
in the TEM? mode, i.e. from a “lumped” port excitation, of Figure 3.3. Here,

the transmission line is viewed from the side or yz plane as the pulse moves along
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Figure 3.4: Pulse Propagation Assuming Static Electric Field Lines

the transmission line in the z-direction. Consecutive frames in Figure 3.4 represent
snapshots of increasing time ¢ as the pulse propagates at a velocity v, = ¢/,/g,. The
pulse has a finite width denoted Az, and the signal conductor and reference conductor
are separated by the distance d,. For these illustrations, the surface charge density
Y, is confined to the region with relative permittivity, €, = 4. When viewed in this

configuration, the pulse is likened to a moving parallel plate capacitor.
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3.3.1 RELATIVISTICALLY MOVING PARALLEL PLATE CAPACITOR

In his book Electromagnetic Retardation and Theory of Relativity, Jefimenko suggests
an equivalence between relativistic field transformations and time retarded electro-
magnetic fields. The Lorentz transformations are derived from both time retarded
Electric field intensity and time retarded Magnetic field intensity for several charge
distributions. He emphatically states that:“[...]we hardly have any choice but to con-
clude that the relativistically correct visual shape of a moving body is its retarded
shape” [23].

Jefimenko evaluates a moving parallel plate capacitor by use of the Lorentz op-
erator v which transforms field quantities between stationary and moving reference
frames. In this analysis, the capacitor plates are assumed to be thin and the separa-
tion between the plates is small. These assumptions preclude an electrically significant
distance between the plates; therefore, time retardation between plates is ignored. Je-
fimenko concludes that the electromagnetic fields of a stationary capacitor are the
same as those in a moving capacitor [23]. He did not consider a moving parallel plate
capacitor with significant distance between the plates. This solution is assumed to

be too difficult for analytical analysis.

3.3.2 CHARGE DILATION FROM RETARDATION

In his book Causality, Electromagnetic Induction, and Gravitation, Jefimenko relates
electromagnetic equations for fields in a vacuum with gravitation field equations. This
includes isolated charge, surface charge density, and volume charge density with their
gravitational counterparts of mass, surface mass density, and volume mass density
[22]. Just as an object moving at relativistic speeds appears to increase in mass to
a stationary observer [31], charge and current density moving at relativistic speeds
dilate according to the Lorentz-Einstein transformations [23]. As discussed in the

previous section, either relativistic field transformations or time retarded electromag-
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netic field equations yield the same descriptions of field quantities.

Jefimenko examines the Electric and Magnetic field intensities resulting from a
uniformly moving charge distribution. He concludes that the projected length, shape,
and thickness of the front and back of the charge distribution are not the same as
the stationary charge distribution. The effective length of the charge distribution is
greater than the stationary length. Further, only the leading and trailing ends of
the charge distribution contribute to the electromagnetic fields at future projected
positions [23]. Superposition of electric fields at previous positions create contour
curves that lengthen in the direction perpendicular to motion as velocity increases
[22]. The resulting field lines bend away from the source charge and are represented

as elliptic in subsequent sections.

3.4 TIME RETARDED FIELDS IN A MICROSTRIP TRANSMISSION LINE

Continuing the discussion of a pulse propagating along a microstrip transmission line,
the surface charge density is assumed to be present on both the top and bottom of an
infinitesimally thin signal conductor. The influence of the reference plane is ignored
for the following visualizations. This is represented by a reference conductor that is
less transparent in color compared to the signal conductor. Surface charge density
that propagates on the top of the conductor is surrounded by air which has a relative
permittivity near unity (&, ~ 1) and supports a propagation velocity v, near the speed
of light, c¢. Surface charge density that propagates on the bottom of the conductor is
surrounded by a medium with a relative permittivity of four (¢, = 4) and supports a

propagation velocity one-half the speed of light v, = ¢/2.

3.4.1 CHARGE DENSITY ON BoTTOM OF THE CONDUCTOR

In this section, surface charge density is assumed only on the bottom of the signal

conductor and confined to the medium below. The separation between the conductors
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is enough to ignore the influence of the reference plane. Electromagnetic fields are
in regions both above and below the signal conductor and are propagating at the
same velocity as the surface charge density in the medium below the signal conductor
v, = ¢/2. Consecutive frames in Figure 3.5 represent snapshots of increasing time ¢

as the pulse propagates at a velocity v, = ¢/,/&;.
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Figure 3.5: Pulse Propagation Assuming only Surface Charge Density on the Bottom
of the Conductor

When a reference plane is present below the signal conductor, electromagnetic
waves must connect to the reference conductor and surface charges are induced on
the lower conductor. Boundary conditions near the conductor require that the elec-
tric field lines to be perpendicular to the surface. When the separation between

conductors, dy, is small enough for time retarded electromagnetic fields to be signifi-
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cant there must exist a transition region between electric field lines from the surface
charge density on the signal conductor and electric field lines from the surface charge
density on the reference conductor. Figure 3.6 illustrates this as superimposed ellipti-
cal Electric field lines from the signal conductor and normal Electric field lines on the
reference conductor. Given there is a time delay associated with the induced surface
charge density on the reference conductor, the superposition of delayed Electric field
lines may be more appropriate. This would facilitate a reflected but lagging electric

field in the wake of the pulse.
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Figure 3.6: Influence of a Reference Plane to the Field Lines

3.4.2 CHARGE DENSITY ON ToP OF THE CONDUCTOR

In this section, surface charge density is assumed only on the top of the signal conduc-
tor. Electromagnetic fields are in both regions above and below the signal conductor.
The Electric fields lines associated surface charge density are propagating at the same
velocity supported by the air region above the signal conductor (v, = ¢). However, in
the region below the signal conductor, the velocity of propagation is roughly one-half
that supported above the conductor. It is speculated that the surface charge density
propagates faster than what is supported by the medium, and this meets the criteria
for Cherenkov radiation.

Cherenkov radiation is a characteristic light emitted when a charged particle trav-
els faster than the phase velocity in a medium (often blue light if the medium is wa-

ter) [21],[41]. It is the reason that underwater nuclear reactors give off a blue glow and
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was first observed by Pavel Cherenkov in 1934 when a bottle of water was exposed
to emitted charged particles in radioactive decay [42]. On a macroscopic level, the
charged particle is often described as emitting the radiation; however, the reason for
the emission is that nearby medium atoms or molecules experience a shock wave of
electromagnetic potentials due to the fast moving charged particles [41]. This radia-
tion that results is thus fluorescence or relaxa<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>