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ABSTRACT 

 MicroRNAs (miRNAs) are small noncoding single stranded RNAs that are 

considered master regulators of gene expression. They are also an emerging class 

of therapeutic agents with significant potential for the prevention and treatment of 

many diseases, including cancer. Many different forms of cancer are associated 

with loss or reduced accumulation of one or more miRNAs that function as tumor 

suppressors. In animal models, restoration of missing tumor suppressor miRNAs 

prevents the initiation, progression and/or spread of the disease. However, the 

current absence of an efficient method for delivery of therapeutic miRNAs is a 

critical barrier to their use.  The research in this thesis has tested a novel 

chemopreventive strategy for miRNA replacement therapy based on ingestion of 

plant matter that has been bioengineered to produce mammalian tumor 

suppressor miRNAs. The work builds on the Vance lab’s promising pilot study 

showing that oral administration of plant RNA spiked with a cocktail of three tumor-

suppressor miRNAs (miR-34a, -143, and -145), synthesized with the 3’-

methylation characteristic of plant miRNAs, has significant chemopreventive 

activity in the ApcMin/+ mouse, a well-established animal model of colon cancer. 

Based on this work, Arabidopsis thaliana was bioengineered to produce the same 

three tumor suppressor miRNAs used in the earlier study. This required devising 

strategies to engineer miRNAs that are not the standard 21 nt size of most plant 

miRNAs. In a small pilot study using these 
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plant-made tumor suppressor miRNAs, we found that ApcMin/+ mice that were fed 

a diet containing the transgenic Arabidopsis tissue developed significantly fewer 

tumors than mice fed a control diet that was calorically and nutritionally matched, 

but did not contain plant tissue. Although the results using this delivery method 

were promising, the approach was limited experimentally due to the low 

concentration of the miRNAs in lyophilized tissues as well as the feeding 

preferences of the mice. Thus, subsequent work focused on a strategy to deliver 

high levels of plant-made miRNAs by packaging them into plant exosome-like 

vesicles, which are taken up by the mammalian digestive tract after ingestion.  For 

plant exosome-like vesicles to be effective in future studies, techniques for 

enhancing the loading of bioengineered miRNAs were developed. Work reported 

here points to the importance of the identity of the 5’ nucleotide of the engineered 

miRNA for efficient loading into plant exosome-like vesicles for subsequent 

delivery by ingestion. 
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CHAPTER 1 

INTRODUCTION 

1.1 MICRORNAS 

microRNAs (miRNAs) are small noncoding single stranded RNAs that are 

considered master regulators of gene expression (Carthew, Richard W. and 

Sontheimer 2009).  These small noncoding RNAs are a highly conserved part of 

an ancient pathway of gene regulation that exists in nearly all eukaryotic organisms 

(Cai et al. 2009).  They incorporate into a protein complex called the RNA-induced 

silencing complex (RISC), in which the miRNA acts as a guide to target specific 

messenger RNAs (mRNAs) using the base pairing rules (Schanen and Li 2011). 

Once RISC and its attached miRNA are bound to a target mRNA, translation is 

blocked either directly or by mRNA degradation (Fabian et al. 2009).  Because a 

single miRNA can potentially have hundreds of targets, this method of gene 

regulation is both complex and highly versatile (Graves and Zeng 2012).

 

1.2 ROLE OF MIRNA DYSREGULATION IN DISEASE  

 MiRNAs control many cellular processes, ranging from metabolism to 

cellular proliferation and differentiation.  When the normal balance of miRNAs is 

disrupted, it can lead to a wide variety of human diseases, including many forms 

of cancer (Jansson and Lund 2012).  Because miRNAs are both highly specific 
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and effective gene regulators, their potential as therapeutic agents is now widely 

recognized (van Rooij and Kauppinen 2014).  It has been shown in both animal 

models and tissue culture cells that if therapeutic miRNAs can be introduced to 

diseased tissue, many diseases can be inhibited, blocked, or even regressed 

(Bader, Brown, and Winkler 2010).  Although miRNAs are a promising therapeutic 

agent, development of methods to deliver small RNAs is a challenging problem 

that has been the focus of much research (Hellman and Fried 2009).  Current 

strategies involve chemically altering miRNAs or using nanoparticles to increase 

both stability and uptake (Bader et al. 2011).  These delivery techniques are not 

only expensive, they may also introduce toxicity and reduce the effectiveness of 

the miRNAs. 

 

1.3 CROSS KINGDOM GENE REGULATION BETWEEN PLANTS AND ANIMALS 

Recently, the existence of cross kingdom gene regulation between plants 

and animals via ingestion of plant tissues was reported (Zhang et al., 2012).  This 

discovery was made when endogenous plant miRNAs were found in mammals 

and shown to be functional to regulate expression of mammalian genes (Zhang et 

al., 2012).  This ground-breaking publication presented evidence that endogenous 

plant miR168a, an abundant rice miRNA, was absorbed by the mammalian GI 

tract. The only possible source of this plant miRNA was from the animal’s diet. 

miR168a was found in several tissues, including the heart, spleen, lung, kidney, 

stomach, small intestine, and brain, and it was found to target low-density 

lipoprotein receptor adapter protein 1 (LDLRAP1), a protein that influences LDL 



3 

 

uptake in the blood.  Since this discovery, several other labs have found many 

more plant miRNAs regulating genes in mammals, reinforcing the existence of this 

pathway (Pirŕ et al., 2016; Yang et al., 2016; Chin et al., 2016; Yang et al., 2015; 

Pastrello et al., 2016; Zhou et al., 2014). 

 

1.4 PLANTS TO PRODUCE AND DELIVERY TUMOR SUPPRESSOR MIRNAS 

Because plants can be genetically engineered to produce miRNAs of any 

desired sequence, cross kingdom regulation by ingested plant miRNAs raised the 

possibility of using edible plants to produce therapeutic mammalian miRNAs that 

could be delivered via the diet to prevent or treat disease (Hirschi et al., 2015; 

Mlotshwa et al., 2015).  Previous work from our lab tested this idea by feeding a 

daily dose of plant RNA spiked with a cocktail of mammalian tumor suppressor 

miRNAs (miR-34a, miR-143, miR-145) to ApcMin/+ mice, a model for colon cancer. 

This treatment resulted in a highly statistically significant reduction in tumor burden 

in mice receiving the tumor suppressor miRNAs compared to controls (Mlotshwa 

et al. 2015).  The miRNAs used in this study were not made in a plant, but 

synthetically made with a 2′-O-methylation at their 3′ termini, a major characteristic 

of plant miRNAs, and meant to mimic miRNA produced in the plant.  In this 

dissertation, this hypothesis is tested further, by establishing methods of 

bioengineering plants to produce mammalian tumor suppressor miRNAs, assaying 

their chemopreventive activity by feeding them to ApcMin/+ mice, and characterizing 

the loading of miRNAs into plant exosome-like vesicles (EVs) for use as an efficient 

delivery vehicle.
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CHAPTER 2 

DESIGN OF MIRNA CONSTRUCTS AND GENERATION OF 

TRANSGENIC LINES 

2.1 INTRODUCTION 

2.1.1 USING PLANTS AS BIOFACTORIES TO PRODUCE THERAPEUTIC MIRNAS 

The Vance lab pilot study showed that oral administration of plant RNA 

spiked with a cocktail of three mammalian tumor-suppressor miRNAs (miR-34a, 

miR-143, and miR-145), synthesized with the 3’-methylation characteristic of plant 

miRNAs, has significant chemopreventive activity in a mouse model of colon 

cancer (Mlotshwa et al., 2015).  Based on this result, the first step in this 

dissertation project was to use the model plant Arabidopsis thaliana to produce the 

same three tumor suppressor miRNAs used in the earlier pilot study.  Arabidopsis 

was chosen as it is well characterized, easily transformed, and edible (Clough and 

Bent, 1998). In addition, this technology has been patented by the Vance lab.  The 

technology to produce any miRNA in bioengineered plants is well-established, 

simple, rapid and effective (Liang et al., 2012).  The technique uses a natural plant 

miRNA precursor gene as the starting structure and replaces the natural miRNA 

sequence with the desired miRNA sequence, while also replacing the natural, 

partially complementary miRNA* sequence to maintain the original secondary 

stem-loop structure of the precursor. Maintaining this secondary structure ensures 
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proper processing of the miRNA by Dicer like-1 (DCL1), a ribonuclease protein 

which functions in excising the mature miRNAs from the stem-loop (Werner et al., 

2010; Song et al., 2010).  The engineered miRNA genes are then cloned under 

the control of a strong constitutive promoter, the Cauliflower Mosaic Virus 35S 

promoter (CaMV 35S), and stably introduced into plants using standard 

transformation via Agrobacterium tumefaciens.  Such engineered miRNAs are 

essentially indistinguishable from endogenous plant miRNAs regarding both 

biogenesis and function. 

 

2.1.2 MAMMALIAN TUMOR SUPPRESSOR MIRNAS MIR-34A, MIR-143, MIR-

145 AND THEIR ROLE IN CANCER 

The three miRNAs chosen for these experiments are verified tumor 

suppressor miRNAs, which have been shown to be down regulated in several 

cancer types, including colon cancer (Gambari et al., 2016; Kano et al., 2010; 

Clapé et al., 2009).  If these three miRNAs are added back either in vivo or in vitro, 

the disease can be prevented or progression can be inhibited, illustrating the 

importance of these small RNAs in chemoprevention (Pramanik et al., 2011).  The 

miR-34a gene is a transcriptional target of the well-established tumor suppressor 

protein p53, and is consequently down-regulated in many tumor types and paired 

with several p53 downstream effects (Nalls et al., 2011).  miR-143 and miR-145 

are polycistronic, meaning they are expressed together on the same primary 

transcript, and often work synergistically to knock down several shared oncogenic 
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targets (Yan et al., 2014).  Both of these miRNAs have been shown to positively 

regulate their own expression by targeting negative regulators (Wang et al., 2015).  

 

2.2 RESULTS AND DISCUSSION  

2.2.1 DESIGN APPROACHES FOR EXPRESSING MAMMALIAN THERAPEUTIC 

MIRNAS LARGER THAN 21NT IN ARABIDOPSIS THALIANA  

A common approach for expressing miRNAs in plants uses the miR319a 

gene as backbone and replaces the natural miRNA sequence with the desired one. 

However, this approach is designed to work for miRNAs that are 21 nucleotides 

(nt) long, the length of the majority of plant miRNAs.  This presented a problem 

when designing constructs to produce mammalian miRNAs in plants because 

mammalian miRNAs are often longer than 21 nt.  Thus, it was necessary to 

develop strategies to ensure the proper processing of miR-34a and miR-145, 

which are 22 nt and 23 nt long, respectively.  Two different approaches were used 

and both approaches had success in producing an extremely high level of the 

therapeutic miRNAs in Arabidopsis thaliana.  miR-143 is a 21 nt miRNA; therefore, 

no special modifications of the standard technique were needed to engineer this 

miRNA. 

The first design approach for making a miRNA longer than 21 nt involved 

making modifications to the miRNA* region of the primary transcript.  The stem-

loop secondary structure of primary miRNA transcripts in plants plays an important 

role in recognition by DCL1 and proper processing to produce the mature miRNA.  

Several mismatches are often found between the miRNA and miRNA* in the stem 
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loop structure, and maintenance of these mismatches is important in miRNA 

processing.  If the mismatches are altered, either by changing their location in the 

stem loop or by altering them to complementary nucleotide pairs, it may disrupt 

proper miRNA production.  The miR319a gene backbone has 3 mismatches 

between the miRNA and miRNA*, found at nucleotides 1, 8, and 19 of the miRNA.  

A published protocol for plants has shown that modifications can be made to the 

miRNA* of a 21 nt miRNA that will result in production of a 22 nt miRNA rather 

than the original 21 nt one (Song et al., 2010).  The modification consists of 

creating a deletion in the miRNA* sequence at the position of an existing mismatch 

in the miRNA/miRNA* duplex.  Although this modification makes a bulge in the 

secondary structure, it does not adversely affect the processing function of DCL1.  

Applying this approach, designs for generating the longer miR-34a and miR-145 

miRNAs were made.  

Due to the challenges in designing a miRNA over 21 nt long using the 

miR319a gene backbone, a second strategy for generating mammalian miRNAs 

in plants was also tried.  This approach was to simply make a 21 nt version of the 

mammalian miRNA by leaving off nucleotides from the 3’ end of the miRNA.  This 

is a valid approach because it has been reported that nucleotides lost from the 3’ 

end of the miRNA have little to no effect on targeting specificity of the miRNA 

(Grimson et al., 2007).  This is because specificity is primarily determined by the 

miRNA seed sequence, a highly conserved region in mammalian miRNAs located 

from nucleotides 2 – 7 of the 5’ end (Lewis et al., 2005).  This approach was the 
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one ultimately used to produce miR-34a, with one nucleotide being removed from 

the 3’ end, thereby shortening the plant-produced version to 21 nt. 

 

2.2.2 CLONING MIRNA CONSTRUCTS AND GENERATION OF TRANSGENIC 

LINES  

The engineered miR-143 21 nt and miR-34a 21 nt were designed using the 

standard protocol, in which the plant miR319a gene is used as a backbone, with 

the appropriate miR/miR* sequences replacing the original miR319a/miR319a* 

sequences (Figure 2.1). The 23-nt miR-145 and the 22-nt version of miR-34a were 

more complicated because of their length, and several different constructs were 

evaluated in order to improve the chances of obtaining the correct sized miRNAs 

These constructs had deletions made along their miRNA* region, but the only 

construct that produced the correct size miRNA was miR-145 23nt that had 2 

deletions at the 17 nt position of the miRNA (Figure 2.2; data not shown for some 

constructs).  Because the miR391a gene sequence is relatively short (406bp), the 

appropriate complete DNA constructs were synthesized and cloned directly into 

an entry vector (pENTR).  To check for sequence accuracy, each miRNA construct 

was sequenced.  Constructs with the correct sequences were used in a 

recombination reaction to transfer the insert into an expression vector (pSITE-OA), 

and subsequently sequenced again before transformation into Agrobacterium 

tumefaciens, for transfer to plants.  Arabidopsis thaliana was transformed by 

Agrobacterium-mediated transformation using the floral dip method (Martinez-

Trujillo et al., 2004).  Because the inserted DNA carries a specific antibiotic 
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resistance, the primary plant transformants (T1 generation) could then be selected 

by plating seeds from the floral dip procedure onto media with the selective 

antibiotic. Resistant seedlings (primary transformants) were transplanted into soil 

for seed set, and the T2 generation seeds were plated again on selective media.  

Transformants segregating 3:1 for antibiotic resistance were identified as putative 

single insertion lines for further characterization.  Seeds from these plants (T3 

generation) were again selected for antibiotic resistance to identify homozygous 

lines, which were then used to produce bulk seed (T4 generation) for the feeding 

and exosome isolation experiments described in the next two chapters.  RNA was 

isolated from each of these homozygous lines, and expression levels of the 

engineered miRNA was determined by RNA gel blot analysis using radioactive 

probes specific for the small RNA.  Homozygous plant lines expressing the highest 

levels of each engineered miRNA of the correct size were used for the reported 

experiments, and are also available for future studies.   

 

2.2.3 CHARACTERIZATION OF PLANT-MADE MIR-34A, MIR-143 AND MIR-145 

BY NORTHERN ANALYSIS AND NEXT GENERATION SEQUENCING 

The population of miRNA size variants (isomiRs) for each of the tumor 

suppressor miRNAs produced by transgenic plant lines, as well as that for the 

endogenous plant miRNA miR319, was analyzed by next generation sequencing.  

The relative abundance of endogenous plant miR319a small RNAs (64%) were 

the reported 21nt sequence, with 27% a single nucleotide shorter (Figure 2.4A). 

The two plant lines that were engineered to make a 21 nt miRNA (miR-143 and 
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the 21 nt version of miR-34a), like the endogenous miR319, both made high levels 

of the desired 21 nt small RNA (45% and 49%, respectively), with the majority of 

the remainder being a single nucleotide shorter (50% and 32%, respectively); 

Figures 2.4B and C). Northern blot data showed that plants transformed with the 

23 nt miR-145 constructs produced a ~23 nt miRNA at a high level in a stably 

transformed homozygous Arabidopsis thaliana line.  When examined by next 

generation sequencing, the major variant was the desired size of 23 nt (57%), with 

a population of 25 nt miRNA representing 27% of the size distribution (Figure 

2.4D).  None of the miR-34a lines designed to be 22 nt, however, produced a 22 

nt miRNA at high level (Northern analysis; data not shown).  

This work illustrates two approaches to produce exogenous miRNAs in 

plants when the natural size of the miRNA is greater than 21 nt. Based on next 

generation sequencing, it appears that both approaches result in a population of 

small RNA isomiRs of slightly different sizes.  Though all constructs produced a 

population of size isomiRs, this is quite common in nature, as illustrated here by 

the endogenous plant miR319a.  The approach of designing a larger miRNA by 

deleting nucleotides in the miRNA* appears to be successful in some cases (miR-

145), but not in others (miR-34a).  The fall back approach, then, in the event that 

the first approach is not successful, is to simply design a 21 nt version of the 

desired miRNA by leaving off nucleotides from the 3’ end.  
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Figure 2.1: miRNA/miRNA* region of miRNA 
constructs.  Shown are the miRNA/miRNA* sequences 
(capital letters) for each of the miRNA constructs in the 
miR319a backbone (A) endogenous miR319a miR/miR* 
with mismatches at the 1 nt, 8 nt, 19 nt positions used as 
a blueprint for mismatches in 21 nt constructs (B) 
miR319a (C) miR-143 21 nt construct (D) miR-34a 21 nt 
construct 
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Figure 2.2: miRNA/miRNA* region of 23nt miRNA 
constructs.  Shown are the miRNA/miRNA* sequences 
(capital letters) for miR145 23 nt construct in the miR319a 
backbone (A) miR-145 23 nt construct miR/miR* structure 
with mismatches at the 1 nt, 8 nt, 19 nt positions (B) miR-
145 23 nt sequence  
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Figure 2.3: Production of three mouse miRNAs in 
bioengineered plants. Gel blot analysis of RNA 
samples isolated from wild type (WT) Arabidopsis and 
homozygous lines expressing miR-34a, miR-143 or miR-
145. (A) The blot was probed for all three tumor 
suppressor miRNAs. (B) A duplicate WT sample was 
probed for the highly expressed endogenous plant 
miRNA, miR168a. The ethidium bromide (EtBr) stained 
gel is shown as loading control below the 
autoradiograms. 
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Figure 2.4: miRNA isomiR distributions in bioengineered plants. 
Shown are the miRNA isomiR distribution in each independent 
homozygous Arabidopsis line analyzed by next generation sequencing 
(A) endogenous miR319a isomiR distribution (B) miR-34a 21 nt isomiR 
distribution (C) miR-143 isomiR distribution (D) miR-145 23 nt isomiR 
distribution 
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CHAPTER 3 

FEEDING EXPERIMENT: DIETARY DELIVERY OF MAMMALIAN 

TUMOR SUPPRESSOR MIRNAS 

 

3.1 INTRODUCTION 

3.1.1 RESTORATION OF TUMOR SUPPRESSOR MIRNAS VIA INGESTION OF 

BIOENGINEERED ARABIDOPSIS  

In the published Vance lab pilot experiment, ApcMin/+ mice were gavaged 

with total plant RNA spiked with three validated tumor suppressor miRNAs (miR-

34a, miR-143, and miR-145) synthesized to have the methylation characteristic of 

miRNAs produced in plants (Mlotshwa et al., 2015).  The experimental approach 

was to use a preventive regimen, with treatment starting before the mice 

developed polyps.  After five weeks of daily gavage, the tumor burden in the 

miRNA-treated mice was significantly reduced compared to mice that didn’t 

receive the miRNAs.  Based on these results, a feeding experiment was proposed 

which would replicate the design of the pilot experiment, but use miRNAs actually 

produced in transgenic plants rather than synthetic ones, and also deliver the 

miRNAs by incorporating the transgenic plant material into the ApcMin/+ mouse diet. 
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3.1.2 RATIONALE FOR CHOICE OF DISEASE AND MOUSE MODEL 

Colorectal cancer (CRC) is the third leading cause of cancer death in both 

men and women.  Approximately 140,000 people in the US will be diagnosed with 

the disease in 2018 and over 50,000 will die from it (Siegel et al., 2018).  Even 

though new screening techniques and advances in surgical treatment have 

reduced the mortality rate of CRC, there is almost a 50% chance of reoccurrence 

of the disease post-surgery, and greater than one third of the people who develop 

the disease will die from it.  Mortality rates have declined over the last decade due 

to several factors, like decreased smoking, maintaining a healthy weight, reduced 

red meat consumption, regular colorectal screenings and improved treatments 

(Fedewa et al., 2015). Though preventative screenings can greatly reduce the risk 

of ever developing CRC, many people avoid the procedure due to its invasiveness 

and cost (Zauber, 2015).  Another disturbing trend is the rise of CRC cases seen 

in adults <50 years old, where both CRC incidences and mortality rates have been 

reported to increase (Bhandari et al., 2017).  These statistics illustrate the need for 

new preventive strategies, and delivery of tumor suppressor miRNAs via the diet, 

if successful, could have a big impact.  The ApcMin/+ mouse is an in vivo model for 

CRC (Corpet and Pierre, 2003), which has a heterozygous truncation of the Apc 

gene.  Because similar mutations in the Apc gene occur in about 80% of cases of 

CRC in humans, the ApcMin/+ mouse is an excellent in vivo model for human CRC 

(Haggar and Boushey, 2009).  The mice develop numerous tumors in the intestine 

and are commonly used to test chemopreventive therapies for CRC because the 
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effect of therapies can easily be assayed by determining the effect on number of 

tumors (Perkins et al., 2002). 

 

3.1.3 THE RATIONALE FOR CHOICE TUMOR SUPPRESSOR MIR-34A, MIR-143, 

AND MIR-145 

The experimental approach for the earlier pilot study was to use three 

different validated tumor suppressor miRNAs to optimize the chances of a 

successful intervention.  Based on the success of the pilot, the same combination 

of tumor suppressors was chosen for the feeding experiment.  Two of the three 

miRNAs, miR-143 and miR-145, are co-expressed on the same primary transcript, 

and often work synergistically to knock down several shared oncogenic targets 

(Akao et al., 2010).  They are downregulated early in CRC development (Weng et 

al., 2015), and restoration of their levels inhibits growth of CRC cells in culture.  In 

contrast, overexpression of the two miRNAs reduces the development of tumors 

in ApcMin/+ mice (Takaoka et al., 2012).  The fact that these two miRNAs are 

naturally co-expressed and act synergistically justifies administering the two 

together for our experimental approach.  

The third miRNA, miR-34a, has broad activity as a tumor suppressor in 

many tumor types (Nalls et al., 2011).  It has been found to regulate targets in 

important cell cycle pathways, such as CDK6 in the p53 pathway and Notch 1 in 

the Wnt signaling pathway (Saito et al., 2015).  In contrast to miR-143 and miR-

145, it is down regulated a later stage of CRC progression, and may play a role in 

cells acquiring the ability to spreads and invade other organs (Jin et al., 2015). 
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Restoration of miR-34 levels has been shown to induce cell apoptosis, cell cycle 

arrest, and p53 transcription in vivo, making it a strong candidate for 

chemopreventive approaches (Saito et al., 2015).  

 

3.2 RESULTS AND DISCUSSION  

3.2.1 DEVELOPING METHODS FOR DIETARY DELIVERY OF MAMMALIAN 

TUMOR SUPPRESSOR MIRNAS PRODUCED IN BIOENGINEERED ARABIDOPSIS 

THALIANA 

Two major challenges had to be overcome before it was possible to do the 

feeding experiment.  First, a method was needed to allow miRNAs from plant 

material to remain functional for long periods of time without degrading, as RNA is 

relatively unstable and prone to breakdown (Garneau et al., 2007).  Second, a way 

was needed to incorporate the miRNAs into the mouse diet without using too great 

a mass of plant tissue.  Initially, using juice instead of plant tissue was tested.  To 

test juicing, bioengineered Arabidopsis was processed using a commercially 

available juicer that separated the solid plant material from the liquid.  However, a 

large portion of the bioengineered miRNA was lost with the solid material, and the 

remaining miRNA was unstably in juice, degrading within 24 hours at 5oC (Figure 

3.2).   

An alternative approach to reduce the mass of plant material for 

incorporation into mouse chow, while also stabilizing the miRNA, was 

lyophilization.  The method chosen was lyophilization.  To test this approach, fresh 

Arabidopsis leaves expressing bioengineered miR-34a 21 nt were frozen in liquid 
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nitrogen, ground briefly with a mortar and pestle, and lyophilized until sublimation 

was complete.  This method not only stabilized the miRNAs for up to 4 weeks while 

stored at room temperature, it reduced the total weight of the plant material by 10-

fold (Figure 3.3).  Thus, one gram of lyophilized plant material contained the same 

amount of miRNA as ten grams of fresh tissue.  

Feeding the lyophilized plant tissue to mice meant it had to be incorporated 

into mouse chow, an intense procedure that involves heating.  The stability of 

miRNAs during incorporation into mouse chow was tested by mixing lyophilized 

plant tissue with commercial standard AIN-76A mouse synthetic diet (a mixture 

that is similar to purified components that would be added to the plant material to 

make a balanced diet), adding water, compacting the mixture, and heating it for 8 

hours at 46oC.  Lyophilization was able to stabilize the miRNAs during the 

simulated chow incorporation process (Figure 3.4).  Because miRNA levels were 

unaffected by lyophilization, total plant mass was reduced 10-fold, and degradation 

was not seen during the simulated diet incorporation process, this was the method 

selected for dietary delivery of plant-produced miRNAs.  

 

3.2.2 DESIGN OF HEALTHY MOUSE TEST DIETS 

Lyophilized plant material was analyzed by a commercial company to 

determine the levels of macronutrients and micronutrients in preparation for having 

custom mouse diets made by a commercial supplier (Table 3.1).  Based on the 

results from the nutritional analysis of lyophilized Arabidopsis, two healthy mouse 

diets were designed, one diet incorporating 10% Arabidopsis, and a diet that was 
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matched calorically and nutritionally, but did not contain plant tissue (purified diet). 

This was achieved my mixing together a set of purified ingredients (Table 3.2), 

taking the input of the Arabidopsis into consideration, and ensuring the nutritional 

and caloric components of the two diets were matched (Table 3.3).  A bacon flavor 

additive was used to increase palatability.  The Arabidopsis diet contained 3.33 g 

of each of the lyophilized homozygous lines bioengineered to express one of the 

mammalian tumor suppressor miRNAs (miR-34a 21 nt, miR-143 and miR-145 23 

nt), totaling 10 g per 100 g of chow.  miRNAs are stable for two weeks room 

temperature after incorporation into mouse chow, and the purified diet contained 

no miRNAs (Figure 3.6). 

 

3.2.3 DIET CONTAINING BIOENGINEERED ARABIDOPSIS HAD SIGNIFICANT 

CHEMOPREVENTATIVE ACTIVITY IN APCMIN/+ MICE 

 The feeding experiment used two groups of six male ApcMin/+ mice fed either 

the transgenic plant diet bioengineered to produce three tumor suppressor 

miRNAs or the control nutritionally and calorically matched purified diet without 

miRNAs.  Mice from the two groups were weaned onto their respective diets in a 

preventative regimen (starting at three weeks of age), and weights of the mice 

were taken weekly, which showed that the mice in the two groups gained weight 

at the same rate (Figure 3.7A).  The weight of the food consumed per group was 

recorded as well, showing mice on the two different diets consumed approximately 

the same amount of food (Figure 3.7B).  Mice were sacrificed after six weeks on 

the diet (at nine weeks of age), and the number of tumors in the small and large 
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intestine counted after methylene blue staining.  Mice that consumed the diet 

containing Arabidopsis bioengineered to express mammalian tumor suppressor 

miRNAs had significantly fewer tumors (p=.0454) than mice fed the matched 

purified diet (Figure 3.7).  Mice fed the transgenic plant diet had an average of 21 

tumors (SD 4.179), while the mice on the purified diet had an average of 32.83 

tumors (SD 4.74).  Thus, ingestion of plant tissues engineered to produce tumor 

suppressor miRNAs had a statistically significant chemopreventive impact. 

 

3.2.4 APCMIN/+ MICE FED THE MIR DIET HAD ELEVATED LEVELS OF MIR-34A, 

MIR-143, AND MIR-145 COMPARED TO THE CONTROL GROUP  

Next generation sequencing was used to determine if the reduced tumor 

burden observed in the mouse group receiving the transgenic plant diet, also 

showed an increase in the level of the dietary miRNAs in intestinal tissues.  RNA 

was isolated from a 2cm proximal section scraping of the small intestine to 

measure levels of the administered miRNAs using next generation sequencing. 

The two groups had their RNA samples pooled and prepared using equal amounts 

of RNA from the individual members of the group: the transgenic plant diet group 

(containing miRNAs) and the control purified diet group (without miRNAs). Next 

generation sequencing was performed on the two pooled group samples, and the 

number of reads of known miRNAs, as normalized to reads per million, was 

determined.  The group receiving the transgenic plant diet had higher levels of all 

three administered miRNAs than those from the group receiving the control purified 

diet; however, the levels of miRNAs that were not administered via the transgenic 
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plant diet did not differ between the two groups (Figure 3.8A).  This result raised 

the possibility that the increased level of the engineered miRNAs detected in the 

plant-fed mice might reflect dietary uptake of the miRNAs.  However, the possibility 

that uptake of plant-produced miRNA directly accounts for the observed increase 

in sequence reads is unlikely because of the strong bias against detection of the 

methylated plant-produced miRNAs in a background of mammalian miRNAs, 

which do not have inhibiting 2’-O-methylation at the 3’ end (Raabe et al., 2014).  In 

addition, the increases in miR-143 and miR-145 were substantial, arguing against 

attributing them to dietary uptake.  Another possibility is that the dietary miRNAs 

were taken up by the intestinal cells, and, although they could not be directly 

detected due the methylation bias, were active in the mouse tissue.  One 

consequence of their activity is that a positive feedback loop for miR-143/miR-145 

would be triggered and result in up-regulation of the expression of the endogenous 

gene encoding the two miRNAs (Pagliuca et al., 2013; Takaoka et al., 2012).   This 

scenario would explain the observed increase in the administered miRNAs as well 

as the reduced levels of their known direct target mRNAs reported below.  

 

3.2.5 APCMIN/+ MICE FED THE MIR DIET HAD DECREASED LEVELS OF 

TARGETS OF MIR-34A, MIR-143, AND MIR-145 COMPARED TO THE CONTROL 

GROUP 

 An increase in the levels of the administered tumor suppressor miRNAs 

would be predicted to result in a decrease in at least some of the direct targets of 

those miRNAs.  To determine if known targets were reduced, the same pooled 
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RNA group samples used to measure levels of miRNAs, were analyzed by RNA 

seq to determine mRNA levels.  Several well-established targets of miR-34A, miR-

143, and miR-145 were found at reduced levels in the transgenic plant diet group 

compared to those in the control synthetic diet group (Figure 3.9), including eight 

known miR-143 targets (Figure 3.9A), five known miR-145 targets (Figure 3.9B), 

and six known miR-34a targets (Figure 3.9C) (Davis-Dusenbery et al., 2011; Kent 

et al., 2014; Zhang et al., 2009; Qian et al., 2013; Xu et al., 2017; Chen et al., 2009; 

Cui et al., 2014; Manuscript and Dysfunction, 2015; Chou et al., 2016).  These data 

are consistent with the increased levels of the administered miRNAs observed in 

the plant diet group compared to the control purified diet group, suggesting that 

the detected miRNAs represent an active population. It should be noted that these 

3 miRNAs have many targets, miR-34a has over 700 confirmed targets alone, the 

targets examined were randomly selected based on the literature (Slabáková et 

al., 2017). 

Overall, these results show that mice fed a diet containing bioengineered 

Arabidopsis expressing mammalian tumor suppressor miRNAs had a statistically 

significant reduction in tumor burden compared to those fed a nutritionally and 

calorically matched synthetic diet. In addition, when pooled RNA samples from the 

two groups were analyzed by next generation sequencing, the levels of the three 

administered miRNAs was increased in the plant-fed group compared to the 

control group, suggesting uptake of dietary miRNAs.  Furthermore, the increased 

levels in the three administered miRNAs was accompanied by decreases in 

numerous known direct targets of the miRNAs.  These results look promising for 
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the use of plants as biofactories to produce and deliver dietary miRNAs.  However, 

limitations in the experimental approach prevent drawing firm conclusions at this 

time.  First, the RNA sequencing data used pooled samples, so the statistical 

significance of the results cannot be determined.  Second, the chemopreventive 

impact of the diet cannot definitively be attributed to the bioengineered miRNAs 

produced by the plant.  To unravel the role of the plant itself from the bioengineered 

miRNAs would require including an additional control group receiving the same 

level of non-transgenic plant tissue.  Whereas the decreased tumor burden in the 

plant-fed group cannot be directly attributed to the tumor suppressor miRNAs 

produced by the plant, the increased levels of the bioengineered miRNAs in mouse 

intestinal samples of the plant-fed group and the accompanying decrease in levels 

of their direct targets, suggest that the observed chemopreventive effect may be 

mediated by the dietary miRNAs.  Future studies should use larger sample size, 

analyze individuals rather than pooled samples, and include a control group fed 

non-transgenic plant material to tease out the roles of the plant versus the 

bioengineered miRNAs.   

This experiment also raised the point that there may be a limit to the amount 

of lyophilized plant tissue that can be incorporated into a diet before the food 

becomes unpalatable.  Therefore, methods aimed at increasing the concentration 

of miRNAs in the sample, while simultaneously decreasing overall plant mass, are 

needed.  One such method may lie in a proposed delivery mechanism for plant-

made miRNAs: plant exosome-like vesicles (EVs). Plant EVs, and the mechanisms 

that controls loading of miRNAs into them, are discussed in the next chapter. 
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Figure 3.1: Images of leaves, juice, and lyophilized Arabidopsis.  
Three different tissue preparations for Arabidopsis thaliana. (A) Fresh 
Arabidopsis leaves(B) Arabidopsis just after juicing and before a low 
speed centrifuge spin (C) Arabidopsis shortly before lyophilization is 
complete.  
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Figure 3.2: miR-143 stability in juice. Gel blot analysis of 
RNA samples isolated from Arabidopsis homozygous line 
expressing miR-143 and WT. Time course shows stability of 
miR-143 after juicing and storage at 5oC compared to fresh 
WT Arabidopsis and Arabidopsis expressing miR-143.  The 
ethidium bromide (EtBr) stained gel is shown as loading 
control below the autoradiograms. 
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Figure 3.3: miR-143 and miR-34a stability in lyophilized plant 
tissue. Gel blot analysis of RNA samples isolated from fresh and 
lyophilized Arabidopsis bioengineered to express miR-143 and 
miR-34a (A) miR-143 expression level in fresh Arabidopsis and 
immediately after lyophilization. (B) Time course shows stability of 
miR34a after lyophilization and storage at room temperature 
compared to fresh Arabidopsis.  The ethidium bromide (EtBr) 
stained gel is shown as loading control below the autoradiograms. 
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Figure 3.4: Stability of endogenous plant miR-159a during 

mouse chow incorporation. Gel blot analysis of RNA samples 

isolated from lyophilized Arabidopsis stored at -80oC.  Lyophilized 

plant tissue was subjected to mixture with a raw AIN-76A diet, adding 

water, and pressure by crushing in a mortar and pestle, and tested at 

46oC and room temperature condition. (Lane1) RNA isolated from 

lyophilized leaves (Lane2) RNA isolated from lyophilized leaves 

mixed with an AIN 76a diet mixture, water, and left at room 

temperature for 8 hours  (Lane3) RNA isolated from lyophilized 

leaves mixed with an AIN 76a diet mixture, water, and heated at 46oC 

for 8 hours (Lane4)  RNA isolated from lyophilized leaves mixed with 

an AIN 76a diet mixture. The ethidium bromide (EtBr) stained gel is 

shown as loading control below the autoradiograms.   
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Figure 3.5: miRNAs are stable in mouse chow incorporated in 

10% Arabidopsis diet. RNA was isolated from mouse chow 

containing 10% Arabidopsis after being sent out overnight on dry ice 

to be incorporated into chow, then sent back overnight on dry ice and 

stored at -80oC. (Lane 1) miR diet taken out of -80oC storage and a 

RNA isolation was performed. (Lane 2) miR diet was stored at room 

temperature for 2 weeks and another RNA isolation was performed. 

The ethidium bromide (EtBr) stained gel is shown as loading control 

below the autoradiograms 

miR-145 

1                 2 
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Figure 3.6: Average weight of ApcMin/+ mice and average 

weight of diets consumed. The weight of mice and the chow 

they consumed was recorded weekly. (A) Weights of 3-week-old 

mice were taken initially before being weaned onto their 

perspective diets. Weights were recorded weekly, with mice 

being sacrificed immediately after the week 6 weighing. (B) The 

amount of diet each test group consumed was recorded weekly. 

Mice were fed in a collective manner, so total weight of food 

eaten was divided by the total number of mice per cage then 

divided by 7 days a week. 
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Figure 3.8: Fold change of miRNAs in mice fed miR and 

purified diets.  Next generation sequencing of miRNAs and 

miRNA targets was performed on pooled RNA samples from mice 

fed miR and purified diets.  Fold change was calculated from 

reads normalized to read per million.  Fold change of miR-143, 

miR-145, and miR-34a in mice fed the miR and purified diets, 

miR-192 and let-7b that are highly expressed control miRNAs  
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Figure 3.9: Fold change of miRNA targets in mice fed miR 

and purified diets.  Next generation sequencing of miRNAs 

and miRNA targets was performed on pooled RNA samples 

from mice fed miR and purified diets.  Fold change was 

calculated using a normalized down and pseudo method. (A) 

Fold change of miR-34a targets (B) Fold change of miR-143 

targets (C) Fold change of miR-145 targets 
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Table 3.1: nutritional and caloric values of lyophilized Arabidopsis  

Fatty Acids Calculated as Triglycerides Vitamin C (by HPLC) Cholesterol

Saturated Fatty Acids 0.0846 g/10g Vitamin C 48.9 mg/10g Cholesterol 0.093 mg/g

Unsaturated Fatty Acids 0.0854 g/10g Elements by ICP ES Carbohydrates

Monounsaturated Fatty Acids 0.0154 g/10g Aluminum 1.76 mg/10g Total Carbohydrates 2.85 g/10g

Polyunsaturated Fatty Acids 0.0700 g/10g Barium 0.390 mg/10g Total Dietary Fiber

Trans Fatty Acids 0.0646 g/10g Boron 0.497 mg/10g Total Dietary Fiber 2.10 g/10g

Omega 3 Fatty Acids 0.0484 g/10g Calcium 328 mg/10g Sugar Profile  

Omega 6 Fatty Acids  0.0247 g/10g Chromium <39.7 mcg/10g Fructose 0.02 g/10g

Omega 9 Fatty Acids 0.0071 g/10g Copper 0.0916 mg/10g  Glucose 0.04 g/10g

Total Fatty Acids 0.245 g/10g Iron   2.43 mg/10g Sucrose <0.01 g/10g

4:0 Butyric <0.0007 g/10g Magnesium 99.2 mg/10g Lactose <0.01 g/10g

6:0 Caproic <0.0007 g/10g Manganese 1.34 mg/10g Maltose <0.01 g/10g

8:0 Caprylic <0.0007 g/10g Molybdenum <39.7 mcg/10g Galactose <0.01 g/10g

10:0 Capric <0.0007 g/10g Phosphorus 86.0 mg/10g Total Sugar 0.06 g/10g

12:0 Lauric <0.0007 g/10g Potassium 463 mg/10g Protein (N x 6.25) Dumas Method

14:0 Myristic <0.0007 g/10g Sodium 8.14 mg/10g Protein 4.54 g/10g

14:1 Myristoleic <0.0007 g/10g Strontium 1.07 mg/10g Nitrogen 0.727 g/10g

15:0 Pentadecanoic <0.0007 g/10g Zinc 0.771 mg/10g Choline 

15:1 Pentadecenoic <0.0007 g/10g Amino Acids   Choline 4.7 mg/10g

16:0 Palmitic 0.0782 g/10g Aspartic Acid 273 mg/10g Calories

16:1 Palmitoleic <0.0007 g/10g Threonine 121 mg/10g Calories 31.8 Cal/10g

17:0 Heptadecanoic <0.0007 g/10g Serine 123 mg/10g Calories from Fat

17:1 Heptadecenoic <0.0007 g/10g Glutamic Acid 356 mg/10g Calories 2.21 Cal/10g

18:0 Stearic 0.0053 g/10g Proline      126 mg/10g Fat by Acid Hydrolysis

9c 18:1 Oleic 0.0071 g/10g Glycine 145 mg/10g Fat 0.58 g/10g

18:2 Linoleic 0.0247 g/10g Alanine 152 mg/10g Vitamin D by LCMS

20:0 Arachidic 0.0009 g/10g Valine 157 mg/10g Total Vitamin D3 <0.400 IU/10g

18:3 Gamma Linolenic <0.0007 g/10g Isoleucine 122 mg/10g Vitamin E (Natural)

20:1 Eicosenoic <0.0007 g/10g Leucine 230 mg/10g Vitamin E 1.27 IU/10g

18:3 Linolenic 0.0484 g/10g Tyrosine 101 mg/10g Vitamin K1

18:4 Octadecatetraenoic <0.0007 g/10g Phenylalanine 155 mg/10g Vitamin K1 480 mcg/10g

20:2 Eicosadienoic <0.0007 g/10g Lysine 166 mg/10g Thiamin by Fluorometric Method

22:0 Behenic 0.0014 g/10g Histidine 54.6 mg/10g Thiamin 0.008 mg/10g

22:1 Erucic <0.0007 g/10g Arginine 142 mg/10g Riboflavin by Microbiological  Method

20:3 Eicosatrienoic <0.0007 g/10g Cystine 19.2 mg/10g Riboflavin 0.302 mg/10g

20:4 Arachidonic <0.0007 g/10g Methionine 40.1 mg/10g Niacin by Microbiological  Method

20:5 Eicosapentaenoic <0.0007 g/10g Ash Niacin 1.02 mg/10g

24:0 Lignoceric 0.0030 g/10g Ash 1.94 g/10g Pyridoxine

22:5 Docosapentaenoic <0.0007 g/10g Moisture Pyridoxine 0.149 mg/10g

22:6 Docosahexaenoic <0.0007 g/10g Moisture 0.427 g/10g Folic Acid by Microbiological  Method

Total 18:1 trans 0.0100 g/10g Iodine by ICP-MS Folic Acid 89.5 mcg/10g

Total 18:1 cis 0.0161 g/10g Iodine 3.51 mcg/10g Vitamin B12 by Microbiological  Method

Total 18:2 trans 0.0185 g/10g Selenium * Vitamin B12 0.017 mcg/10g

Total 18:3 trans 0.0389 g/10g Selenium 0.832 mcg/10g Biotin by Microbiological  Method

Pantothenic Acid by Microbiological  Method Carotenes Biotin 1.68 mcg/10g

Pantothenic Acid 0.129 mg/10g Beta Carotene 4.47 mg/10g
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Table 3.2: Nutritional components added to miR and 

purified diets.  
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Nutrient miR Purified Nutrient miR Purified 

Alanine 4.6 4.6 gm/kg Leucine 14.6 14.6 gm/kg

Arginine 6.4 6.4 gm/kg Lysine 13.0 13.0 gm/kg

Aspartic Acid 11.2 11.2 gm/kg Magnesium 1.0 1.0 gm/kg

Beta Carotene 44.7 44.7 gm/kg Manganese 58.5 58.5 mg/kg

Biotin 0.2 0.2 mg/kg Methionine 7.5 7.5 gm/kg

Boron (Br) 5.0 5.0 gm/kg Monounsaturated 12.7 13.0 gm/kg

C10:0 Capric 0.0 0.0 gm/kg Niacin 40.0 40.0 mg/kg

C14:0 Myristic 0.1 0.1 gm/kg Pantothenic Acid 15.9 14.7 mg/kg

C16:0 Palmitic 6.4 5.9 gm/kg Ash 3.2 3.4 gm/kg

C16:1 Palmitoleic 0.2 0.2 gm/kg Carbohydrate 66.3 64.3 gm/kg

C18:0 Stearic 1.7 1.9 gm/kg Fat 5.1 5.1 gm/kg

C18:1 Oleic 12.2 12.6 gm/kg Fiber 4.8 4.8 gm/kg

C18:2 Linoleic 22.3 25.3 gm/kg Phenylalanine 7.8 7.8 gm/kg

C18:3 Linolenic 1.3 1.2 gm/kg Phosphorus 2.8 2.8 gm/kg

C20:0 0.0 0.0 gm/kg Polysaccharides 116 133 gm/kg

C20:1 0.1 0.1 gm/kg Polyunsaturated 23.3 26.0 gm/kg

C22:0 0.0 0.0 gm/kg Potassium 5.4 5.5 gm/kg

C24:0 0.0 0.0 gm/kg Protein 18.1 18.1 gm/kg

Calcium 5.2 5.2 gm/kg Proline 18.0 18.0 gm/kg

CCarbohydrate 2.65 2.57 gm/kg Pyridoxine 7.3 7.3 mg/kg

CFat 0.46 0.46 gm/kg Riboflavin 9.0 9.0 mg/kg

Chloride 1.6 1.6 mg/kg Saturated 8.5 8.2 gm/kg

Cholesterol 1.0 0.1 gm/kg Selenium 0.2 0.2 mg/kg

Choline 822 822 mg/kg Serine 10.0 10.0 gm/kg

Chromium 2.0 2.0 gm/kg Sodium 1101 1019 mg/kg

Copper 6.9 6.0 mg/kg Sulfur 337 337 mg/kg

CProtein 0.72 0.72 gm/kg Thiamin 6.1 6.0 mg/kg

CTotal 3.83 3.75 gm/kg Threonine 7.7 7.7 gm/kg

Cystine 0.5 0.5 gm/kg Tryptophan 2.0 2.0 gm/kg

Disaccharides 518 510 gm/kg Tyrosine 10.0 10.0 gm/kg

Folic Acid 2.9 2.0 mg/kg Valine 11.4 11.4 gm/kg

Fructose 0.2 0.0 gm/kg Vitamin A 5021 5142 IU/kg

Glucose 0.4 0.0 gm/kg Vitamin B12 10.0 10.0 mcg/kg

Glutamic Acid 35.6 35.6 gm/kg Vitamin C 489 489 gm/kg

Glycine 4.3 4.3 gm/kg Vitamin D3 1000 1000 IU/kg

Histidine 4.8 4.8 gm/kg Vitamin E 121 110 IU/kg

Iodine 0.2 0.2 mg/kg Vitamin K1 4.8 4.8 mg/kg

Iron 37.0 37.0 mg/kg Vitamin K3 1.0 1.0 mg/kg

Isoleucine 9.6 9.6 gm/kg Zinc 38.1 37.0 mg/kg

Diet Diet

Table 3.3: Final nutritional content of miR and purified diets 
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CHAPTER 4 

PLANT EXOSOME-LIKE VESICLES: A POTENTIAL DELIVERY 

VEHICLE FOR MIRNAS 

4.1 INTRODUCTION 

4.1.1 ORAL DELIVERY OF MAMMALIAN TUMOR SUPPRESSOR MIRNAS FROM 

PLANTS IS AN EFFECTIVE CHEMOPREVENTATIVE STRATEGY FOR CRC 

In the previous chapter, we established that incorporating lyophilized 

Arabidopsis thaliana bioengineered to express mammalian tumor suppressor 

miRNAs into a healthy mouse diet is an effective chemopreventive strategy for 

treating CRC.  The tumor burden was nearly two-fold lower in the treated mice 

compared to those fed a control purified diet (n=6, p=0.045).  The dosage of tumor 

suppressor miRNAs provided in this feeding experiment was approximately 680 

ng/day.  Though the dosage is far less than the 23 ug/day of synthesized miRNA 

mice received in our published pilot study, it is consistent with published results 

showing miRNA in plants via a natural plant diet is delivered nearly 1000 X more 

efficiently then gavaged synthetic miRNAs (Zhou et al., 2014).  As exciting as these 

results may be, finding alternative ways to administer plant made tumor suppressor 

miRNAs should be pursued.  One reason is it may be impractical to treat humans 

by comprising 10% of their total daily diet with transgenic lyophilized plant tissue.  

Another issue is palatability, especially with even higher concentrations of 
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lyophilized plant material.  Thus, our lab sought out a method to increase the 

amount of plant made mammalian tumor suppressor miRNAs delivered orally while 

reducing the amount of plant material. 

 

4.1.2 POTENTIAL UPTAKE MECHANISM OF FUNCTIONAL EXOGENOUS PLANT 

MIRNAS IN MAMMALS 

Since the discovery of a cross-kingdom gene regulation pathway between 

plants and animals, several labs have sought out a possible mechanism that could 

explain the uptake of these plant miRNAs (Witwer and Hirschi, 2014).  One 

proposed mechanism is that plants package miRNAs into exosome-like vesicles 

(EVs) that are taken up by the mammalian GI tract after ingestion (Zhang et al., 

2016). Plant EVs are much like animal exosomes: they are small lipid vesicles 

(~100nm) that carry and protect cargo, such as proteins and miRNAs, and deliver 

them throughout the organism (Record, 2013).  Plant EVs have been shown to 

survive the extreme conditions of the mammalian digestive tract, protecting and 

delivering their contents to intestinal stem cells and macrophages (Wang et al., 

2014).  Interestingly, it has been reported that plant EVs can also be delivered to 

tissues via intravenous, intraperitoneal, and intranasal injections, demonstrating 

they are highly versatile as a delivery vehicle (Wang et al., 2013).  There is also 

evidence that plant EV membranes act as natural anti-inflammatory agents, in 

contrast to the toxicity associated with many synthetic delivery methods (Mu et al., 

2016). 
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4.2 RESULTS AND DISCUSSION 

4.2.1 EVS FROM TRANSGENIC PLANTS CONTAIN TUMOR SUPPRESSOR 

MIRNAS 

To determine if EVs could be used to deliver plant-made mammalian tumor 

suppressor miRNAs, we first examined whether our bioengineered miRNAs were 

loaded into plant EVs.  To isolate EVs from plants we followed a well-established 

exosome isolation procedure (Zhuang et al., 2015).  Fresh tissue from each 

bioengineered plant line was processed using a commercial juicer, a process that 

separates out a large portion of plant solids, such as cell walls.  The resultant plant 

juice was then subjected to a series of low-speed centrifuge spins, collecting the 

supernatant after each spin.  The supernatant collected from the last low speed 

centrifuge spin was pelleted by ultracentrifugation.  RNA was isolated from the 

pellet, which contained the plant EV fraction, and analyzed by RNA gel blot to 

determine the level of each bioengineered miRNA.  Both miR-143 and miR-34a 

were found at levels comparable to that of an endogenous plant miRNA, miR159a 

(Figure 4.1).  These data demonstrate that plant produced mammalian tumor 

suppressor miRNAs can be packaged into EVs, thereby providing a potential 

delivery method for plant-made miRNAs that are packaged in those EVs.  

However, miR-145 was found at much lower levels in the EV fraction, pointing to 
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the importance of defining the criteria that control the packaging of miRNAs into 

these vesicles.  

 

4.2.2 FURTHER PURIFICATION OF CRUDE EV PREP 

Though the crude EV preparations contain a high amount of miR-143 and 

miR-34a, it was desirable to purify the EVs if it could be done without the need for 

time-consuming and/or expensive additional steps.  The pellet formed after 

ultracentrifugation consists of two visibly different layers: a top layer of a clear waxy 

substance, and a bottom dark green layer that contained a large amount of plant 

debris.  It was discovered that the two layers could easily separate with gentle 

pipetting using phosphate buffered saline (PBS), causing the top layer to literally 

float to the top of the PBS.  This floating layer was analyzed by transmission 

electron microscope (TEM) to verify that the preparation contained EV-like vesicles 

(Figure 4.2).  RNA was isolated from both layers and RNA gel blot analysis was 

used to show that the upper floating layer contained a higher concentration of miR-

143 and miR-34a than the green bottom layer (Figure 4.3).  The bottom layer also 

contained a higher amount of total RNA on average (~200μg) than the top 

layer(~60μg).  This quick and cost-effective method of EV enrichment will be useful 

in future studies where large quantities of EVs are needed in feeding experiments.  

 

4.2.3 LYOPHILIZATION OF EVS STABILIZED MIRNAS  

Lyophilization of whole plant tissues was used to stabilize and deliver plant-

made mammalian tumor suppressor miRNAs in the previous feeding experiment, 
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but it was unknown if the miRNAs in the plant EV fraction would be stabilized by 

lyophilization.  However, lyophilization has often been used to stabilize 

nanovesicles preparations for long periods of time (Greening et al., 2015).  To test 

the stability of miRNAs packaged into plant EVs, the EV fraction was isolated from 

Arabidopsis thaliana bioengineered to express miR-143.  RNA was isolated from 

a portion of the EV fraction immediately after isolated, and the remaining portion 

of the EV fraction was lyophilized overnight.  After lyophilization, the EV 

preparation was incubated at room temperature, and RNA isolation performed 

every two days over the course of six days.  We found that miRNAs were stable 

for at least six days in EVs stored at room temperature after lyophilization (Figure 

4.4), raising the possibility that the EV fraction of the lyophilized plant material from 

the feeding experiment may have been the acting delivery mechanism in the 

feeding experiment. 

 

4.2.4 ALTERNATIVE CONSTRUCT DESIGNS OF MIR-145 TO IMPROVE 

PACKAGING EFFICIENCY INTO EVS 

Our results show that bioengineered miR-143 and miR-34a are packaged 

into plant exosomes in transgenic plants, but that miR-145 is present in the EV 

fraction at much lower levels. The majority of plant miRNAs are 21 nt long and start 

with a 5’U, a characteristic found in both miR-34a and miR-143 (Lee et al., 2015; 

Laubinger et al., 2008; Bologna et al., 2013).  In contrast, miR-145 has neither of 

these highly conserved traits, as it is 23 nt in length and starts with a 5’G (Figure 

4.5A).  In plants, small RNAs that are 24 nt long are associated with transcriptional 
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silencing and are expected to stay in the nucleus (Melnyk et al., 2011).  The 5’ 

nucleotide of miRNAs also plays a role in a small RNA’s destiny as either a 

transcriptional or translational silencing small RNA (Chen, 2016).  Therefore, 

several constructs were designed to determine if the either the 5’ nucleotide or the 

size of the miRNA plays a role in loading into plant EVs. 

To determine if the loading of miR-145 into EVs is determined by the 5’ 

nucleotide, a construct was designed replacing the 5’G with a 5’U (Figure 4.5B). 

To determine if the loading of miR-145 into EVs is determined by length, a 21nt 

miR-145 construct was designed by removing two nucleotides from the 3’ end 

(Figure 4.5C).  An additional construct was made that was designed to change 

both of these features:  the 5’ nucleotide was changed from G to U and two 

nucleotides were removed from the 3’ end.  This construct would be used to 

determine if a combination of these two factors was needed to influence loading 

into EVs (Figure 4.5D).  Cloning of miRNA constructs and generation of transgenic 

Arabidopsis thaliana lines was carried out as previously described in section 2.2.2.  

Changing the 5’ nucleotide and/or removing two nucleotides from the 3’ end of 

miR-145 should have no impact on miRNA functionality, as the seed region (a 

highly conserved region on miRNAs needed for target recognition in mammals), is 

located at nucleotides 2-7 from the 5’ end of miRNA sequence (Mullany et al., 

2016). 
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4.2.5 THE 5’ POSITION DETERMINES LOADING OF MIR-145 INTO EVS.  

To determine if the modified versions of miR-145 were packaged into the 

plant EV fraction, EV preparations were prepared for each of transgenic lines 

expressing those constructs as previously described in section 4.2.2.  Using RNA 

gel blot analysis, the expression levels of each miR-145 version in the EV fraction 

was determined as compared to the overall level of expression in fresh leaves of 

the plant (Figure 4.6).  The transgenic plant lines all expressed high levels of the 

miR-145 version they were engineered to produce in the whole plant tissues.   

However, loading into the plant exosome fraction was greatly enhanced in each of 

the modified miR-145 versions with a 5’U instead of the natural 5’G.  In contrast, 

loading of the miR-145 versions was unaffected by size.  Overall, these results 

point to a key role of the 5’ nucleotide in exosome loading, and are an important 

first step in defining the characteristics that regulate loading of miRNAs into plant 

exosomes.
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 Figure 4.1: Levels of miRNAs loaded into EVs.  
EVs were isolated from a mixture of equal amounts 
of our three transgenic plant lines. 10 µg of RNA 
isolated from the exosomes was loaded into each 
of four lanes of a small RNA gel. The resulting blot 
was cut to separate the four lanes, and each was 
hybridized separately for miR-34a, mir-143, miR-
145, or the endogenous plant miR159a. The 
ethidium bromide (EtBr) stained gel is shown as 
loading control below the autoradiograms. 

miR-34a miR-143 miR-145 miR159a 
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Figure 4.2: Image of EVs.  A transmission electron microscope (TEM) 
was used to capture an image of plant EVs after exosome preparation.  
After EVs were pelleted by ultracentrifugation and resuspended in 
PBS they were imaged using a TEM.  Black arrows indicate EV 
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Figure 4.3: miR-143 localization in floating and non-
floating EV prep.   EVs were isolated from a transgenic 
plant lines expressing miR-143. PBS was used to 
separate the floating layer from the non-floating layer, 
these layers were compared to a whole unseparated EV 
pellet. 10 µg of RNA isolated from each EV fraction were 
loaded into a small RNA gel. The ethidium bromide 
(EtBr) stained gel is shown as loading control below the 
autoradiograms. 

Whole 
pellet 

miR-143 

Top 
layer 

Bottom 
layer 
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Figure 4.4: Stability of miR-143 in EVs after 
lyophilization.  EVs were isolated from a 
transgenic plant lines expressing miR-143 and 
resuspended in PBS, with RNA isolated 
immediately after EV prep.  The EV prep was then 
lyophilized and left at room temperature for 6 days, 
with RNA being isolated at 2, 4, and 6 days.  10 µg 
of RNA isolated from each EV lyophilization and 
were loaded into a small RNA gel. The ethidium 
bromide (EtBr) stained gel is shown as loading 
control below the autoradiograms. 
 

miR-143 

 Days    0         2        4           6                     
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Figure 4.5: Alternative size and starting nucleotide 
constructs of miR-145.  Constructs changing the size of miR-
145 and the 5’ nucleotide were designed to determine if they 
were factors in EV loading. Nucleotides highlighted in yellow 
have been replace with a U.  Areas highlighted in red are where 
nucleotides were removed to generate a 21 nt construct (A) 
miR-145 23 nt 5’G (B) miR-145 23 nt 5’U (C) miR-145 5’G 21 
nt (D) miR-145 21 nt 5’U 
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Figure 4.6: levels of miR-145 constructs loaded into 
EVs.  EVs were isolated from four transgenic lines plant 
lines. 10 µg of RNA was isolated from fresh Arabidopsis 
tissue and EV preps, then loaded into each of 8 lanes of 
a small RNA gel. (A) Levels of miR-145 23 nt with a 5’G 
and a 5’U are compared in both fresh Arabidopsis and 
EVs. (B) Levels of miR-145 21 nt with a 5’G and a 5’U 
are compared in both fresh Arabidopsis and EVs.   The 
ethidium bromide (EtBr) stained gel is shown as loading 
control below the autoradiograms. 

Leaves EVs 

miR-145 

 23 nt  

5’G 5’U 5’G 5’U 
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CHAPTER 5 

MATERIALS AND METHODS 

Tumor suppressor miRNA constructs 

 The tumor suppressor miRNAs inserts were generated using the following 

gene blocks purchased from Integrated DNA Technologies. 

 

miR-34a 21 nt 

cacccaaacacacgctcggacgcatattacacatgttcatacacttaatactcgctgttttgaattgatgttttagga

atatatatgtagCACCCAGCTAAGAGACTGCCTtcacaggtcgtgatatgattcaattagcttccgac

tcattcatccaaataccgagtcgccaaaattcaaactagactcgttaaatgaatgaatgatgcggtagacaaatt

ggatcattgattctctttgaTGGCAGTGTCTTAGCTGGTTGctctcttttgtattccaattttcttgattaat

ctttcctgcacaaaaacatgcttgatccactaagtgacatatatgctgccttcgtatatatagttctggtaaaattaac

attttgggtttatctttatttaaggcatcgccatg 

 

miR-143 

cacccaaacacacgctcggacgcatattacacatgttcatacacttaatactcgctgttttgaattgatgttttagga

atatatatgtagaGAACTACAGTGCTACATCTCTtcacaggtcgtgatatgattcaattagcttccga

ctcattcatccaaataccgagtcgccaaaattcaaactagactcgttaaatgaatgaatgatgcggtagacaaat

tggatcattgattctctttgaTGAGATGAAGCACTGTAGCTCtctctcttttgtattccaattttcttgattaa

tctttcctgcacaaaaacatgcttgatccactaagtgacatatatgctgccttcgtatatatagttctggtaaaattaa

cattttgggtttatctttatttaaggcatcgccatg
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miR-145 23 nt 5’G 

cacccaaacacacgctcggacgcatattacacatgttcatacacttaatactcgctgttttgaattgatgttttagga

atatatatgtagaAGGGTCCTGGGAATACTGGAGtcacaggtcgtgatatgattcaattagcttccg

actcattcatccaaataccgagtcgccaaaattcaaactagactcgttaaatgaatgaatgatgcggtagacaa

attggatcattgattctctttgaGTCCAGTTTTCCCAGGAATCCCTtctctcttttgtattccaattttcttg

attaatctttcctgcacaaaaacatgcttgatccactaagtgacatatatgctgccttcgtatatatagttctggtaaa

attaacattttgggtttatctttatttaaggcatcgccatg 

 

miR-145 23 nt 5’U 

cacccaaacacacgctcggacgcatattacacatgttcatacacttaatactcgctgttttgaattgatgttttagga

atatatatgtagaAGGGTCCTGGGAATACTGGAUtcacaggtcgtgatatgattcaattagcttccg

actcattcatccaaataccgagtcgccaaaattcaaactagactcgttaaatgaatgaatgatgcggtagacaa

attggatcattgattctctttgaUTCCAGTTTTCCCAGGAATCCCTtctctcttttgtattccaattttcttg

attaatctttcctgcacaaaaacatgcttgatccactaagtgacatatatgctgccttcgtatatatagttctggtaaa

attaacattttgggtttatctttatttaaggcatcgccatg 

 

miR-145 21 nt 5’G 

cacccaaacacacgctcggacgcatattacacatgttcatacacttaatactcgctgttttgaattgatgttttagga

atatatatgtagGGCTTCCTGGGAATACTGGAGtcacaggtcgtgatatattcaattagcttccgact

cattcatccaaataccgagtcgccaaaattcaaactagactcgttaaatgaatgaatgatgcggtagacaaattg

gatcattgattctctttgaGTCCAGTTTTCCCAGGAATCCctctcttttgtattccaattttcttgattaatctt

tcctgcacaaaaacatgcttgatccactaagtgacatatatgctgccttcgtatatatagttctggtaaaattaacatt

ttgggtttatctttatttaaggcatcgccatg 
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miR-145 21 nt 5’U 

cacccaaacacacgctcggacgcatattacacatgttcatacacttaatactcgctgttttgaattgatgttttagga

atatatatgtagGGCTTCCTGGGAATACTGGATtcacaggtcgtgatatattcaattagcttccgact

cattcatccaaataccgagtcgccaaaattcaaactagactcgttaaatgaatgaatgatgcggtagacaaattg

gatcattgattctctttgaTTCCAGTTTTCCCAGGAATCCctctcttttgtattccaattttcttgattaatctt

tcctgcacaaaaacatgcttgatccactaagtgacatatatgctgccttcgtatatatagttctggtaaaattaacatt

ttgggtttatctttatttaaggcatcgccatg 

 

Gene block product was inserted into the pENTR vector using the Invitrogen 

pENTR Directional Cloning Kit (K2400).  These entry vectors were recombined 

with pSITE-0A destination vector using Gateway LR Clonase Enzyme Mix 

(Invitrogen, 11791). 

 

Generation of transgenic Arabidopsis thaliana lines 

All Arabidopsis plants used to establish transgenic lines were grown at 23˚C 

in long day conditions.  All Arabidopsis plants were of the Columbia (Col-0) 

ecotype.   Agrobacterium tumefaciens strain GV3101 was transformed with pSITE 

destination vector containing tumor suppressor miRNA constructs and grown 

overnight at 28oC in 30 mL of LB medium with antibiotics rifampicin, carbenicillin, 

and kanamycin at concentrations of 50, 100, and 50 g/mL, respectively. The 

overnight culture was added to 300 mL of fresh medium with the same antibiotics 

and grown to the stationary phase (OD600 -2.0). Cells were harvested by 

centrifuging at 5500g for 20 min. The pellet was resuspended in infiltration medium 
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(5% sucrose, 0.05% Silwett L-77) to obtain the desired density (OD600 of 0.8 or 

>2.0). Plants were inoculated  by submersing inflorescences in the bacteria 

suspension (Clough and Bent, 1998). Saran wrap was then used to provide a high 

humidity environment and plants were placed in darkness for 10 h. Seeds were 

collected when all siliques were dry then disinfected with 95% ethanol for 10 min 

and 0.1% Tween 20 detergent for 15 min and rinsed twice with 100% ethanol.  

Once dried they were placed in LB with kanamycin (50 g/mL), with 300-400 seeds 

per Petri dish. Seeds were incubated for approximately 10 d, until plants reached 

the 4-leaf stage, to ensure kanamycin resistance. Transformants were 

transplanted into heavily moistened potting soil where plants and grown under long 

day conditions until seeds set.  Seeds were collected, disinfected, and placed on 

selective LB KAN media again.  Transformants from lines expressing resistance 

at a ¾ ratio were transplanted into heavily moistened potting soil where plants and 

grown under long day conditions until seeds set.  Seeds were collected, 

disinfected, and placed on selective LB Kan media again.  Lines expressing 100% 

Kan resistance where RNA isolation was performed from whole population, using 

TRIzol reagent (Life Technologies) as specified in the protocol,  to check 

expression level by RNA gel blot analysis previously described(Mlotshwa et al., 

2005).   

 

total plant RNA 

Total plant RNA was isolated from flash frozen Arabidopsis thaliana, using 

TRIzol reagent (Life Technologies) according to the manufacturer’s instructions. 
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Total plant RNA contains all high and low molecular weight RNA species present 

in the plant. Therefore, it contains all endogenous plant RNAs, including, for 

example, mRNAs, tRNAs and rRNA, as well as the entire set of endogenous plant 

miRNAs. In general, there is no homology between plant and animal miRNAs, 

although one bioinformatics study indicated that plants and animals share 

members of the miR854 family (Millar and Waterhouse, 2005; Arteaga-Vazquez et 

al., 2006; Jones-Rhoades et al., 2006) 

 

 RNA isolation from mouse tissue 

 Flash frozen intestinal sections for RNA isolation were stored at -70oC. The 

frozen tissues were disrupted with a hand-held polytron at maximum speed in the 

presence of 10 ml of TRIzol reagent (Life Technologies) per gram of tissue, and 

total RNA was isolated according to manufacturer instructions. 

 

RNA gel blots 

RNAs (10μg) were resolved on denaturing polyacrylamide gels (20% PAA, 

19:1 acrylamide/bis, 7 M urea) in 0.5 × TBE as described (Mlotshwa et al., 2005). 

The membranes were probed with specific oligodeoxynucleotides (ODNs) 

complementary to the annotated mouse miRNAs miR-34a 

ACAACCAGCTAAGACACTGCCA, miR-143 GAGCTACAGTGCTTCATCTCA, 

miR-145 AGGGATTCCTGGGAAAACTGGAC, miR159a 

UUUGGAUUGAAGGGAGCUCUA, miR168a UCGCUUGGUGCAGGUCGGGAA 

(miRBase). The ODNs were labeled with [γ32P] ATP (5000 Ci/mmol, Hartmann 
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Analytics) Specific miRNA probes were prepared by end-labeling antisense 

oligonucleotides with T4 polynucleotide kinase (New England Biolabs). Pre-

hybridizations and hybridizations were carried out under the same conditions at 

42°C using Ambion ULTRAhyb oligo hybridization solution. After hybridization, the 

membranes were washed three times in a low-stringency buffer solution (2 × SSC 

and 0.1% SDS) for 20 minutes. 

 

miRNA next generation sequencing  

 Libraries were generated using NEBNext Ultra II RNA Library Prep Kit for 

Illumina (New England Biolabs), and libraries were generated according to 

manufacturer instructions.  Libraries were sent over night on ice to University of 

Alabama Birmingham, The Heflin Center Genomics Core. Quality control was 

performed on a HighSensitivity DNA chip on the BioAnalzyer followed by 75bp 

sequence reads single end read performed on the NextSeq500. Sequencing 

generated between 15 million and 25 million reads.  Sequencing analysis was 

performed on CLC Genomics Workbench (Qiagen), libraries were analyzed 

according to manufacturer instructions. High quality reads were annotated to 

miRbase then normalized to reads per million.   

 

mRNA next generation sequencing  

Libraries and sequencing was performed on pooled miR and purified diet samples 

were generated University of Alabama Birmingham, The Heflin Center Genomics 

Core.  They generated the library by subjecting samples to two rounds of polyA 
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selection followed using the Agilent SureSelect Direction RNA-Seq kit using the 

manufacturer’s protocol.  Quality control was performed on a HighSensitivity DNA 

chip on the BioAnalzyer followed by 75bp sequence reads single end read 

performed on the NextSeq500. Sequencing generated between 15 million and 25 

million reads.  Sequencing analysis was performed on CLC Genomics Workbench 

(Qiagen), libraries were analyzed according to manufacturer instructions. High 

quality reads were annotated then normalized down to the sample with the lowest 

number of reads.    

 

mouse Strains 

C57BL/6J-ApcMin/J mice (ApcMin/+) were purchased from Jackson 

Laboratories (Bar Harbor, ME, USA) but were bred and maintained at the Mouse 

Core Facility of the Center for Colon Cancer Research at the University of South 

Carolina (USC), Columbia, SC. All aspects of the animal experiments were 

conducted in accordance with the guidelines and approval of the USC Institutional 

Animal Care and Use Committee. The ApcMin/+ mouse model of colon cancer is a 

genetic model of the disease. These mice are relatively healthy and long lived, in 

contrast to orthotopic models of colon cancer, which quickly succumb to the 

disease. ApcMin/+ mice do not start to get sick until about 18 weeks of age, at which 

point they become anemic. They develop muscle wasting at about 20 weeks of 

age and typically die when about six months old. Our treatment regimen (see 

below) ended long before ApcMin/+ mice show any signs of illness. 
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Experimental diet protocol 

 Four-week-old male ApcMin/+ mice were divided into 2 treatment groups of 

six mice each. The treatment groups corresponded to a diet with either 1) 10% 

Arabidopsis thaliana lines bioengineered to express miR-34a, miR-143, and miR-

145 2) purified diet matched nutritionally and calorically. Treatment diets above 

began when the mice were four weeks old and continued daily for six weeks. This 

time frame is a standard preventive regimen for experiments using ApcMin/+ mice. 

No weight loss was observed in any of the mice during the entire 42 days of 

treatment. Because one of the best signs of toxicity of therapeutic treatments has 

been loss of weight within 3-5 days of treatment, the absence of weight loss in our 

animals indicates that our treatments had no obvious toxicity. In addition, the 

animals did not develop anemia during the experiment, as indicated by normal (as 

opposed to pale) coloration of extremities, further arguing against toxic side 

effects. Mice were humanely sacrificed by cervical dislocation after administration 

of anesthesia using isoflurane by inhalation. The small and large intestines were 

removed, flushed with phosphate buffered saline, and sliced longitudinally. The 

small intestine was divided into four equal segments with the colon treated as the 

fifth segment. Sections for RNA isolation were flash frozen on dry ice, and 

segments for determination of tumor burden were fixed in 10% formalin and 

stained with 0.002% methylene blue. Tumors were counted under a dissecting 

microscope by a single highly experienced investigator, who was blinded to the 

treatments. 
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Plant exosome isolation  

 Plant juice was collected using the omega brand vert low speed juicing 

system. Juice collected was subjected to several low speed spins at 5oC.  Spins 

were as follows, 10 minutes at 1,000g, the supernatant was collected and spun for 

20 minutes at 3,000g, and finally the supernatant was collected and spun for 40 

minutes at 10,000g.  The supernatant collected from low speed spins is subjected 

to an ultracentrifuge spin at 15oC, at 150,000g for 90 minutes.  Supernatant is 

discarded, and the pellet is resuspended with PBS. To separate the top layer of 

the pellet from the bottom layer PBS was lightly pipetted over the top of the pellet.  

Exosomes collected and resuspend in PBS is stored at -80oC (Wang et al., 2013). 
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