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Abstract

In spite of great progress achieved on posed facial display and controlled image ac-

quisition, performance of facial action unit (AU) recognition degrades significantly

for spontaneous facial displays. Furthermore, recognizing AUs accompanied with

speech is even more challenging since they are generally activated at a low intensity

with subtle facial appearance/geometrical changes during speech, and more impor-

tantly, often introduce ambiguity in detecting other co-occurring AUs, e.g., producing

non-additive appearance changes. All the current AU recognition systems utilized in-

formation extracted only from visual channel. However, sound is highly correlated

with visual channel in human communications. Thus, we propose to exploit both

audio and visual information for AU recognition.

Specifically, a feature-level fusion method combining both audio and visual fea-

tures is first introduced. Specifically, features are independently extracted from visual

and audio channels. The extracted features are aligned to handle the difference in

time scales and the time shift between the two signals. These temporally aligned

features are integrated via feature-level fusion for AU recognition. Second, a novel

approach that recognizes speech-related AUs exclusively from audio signals based

on the fact that facial activities are highly correlated with voice during speech is

developed. Specifically, dynamic and physiological relationships between AUs and

phonemes are modeled through a continuous time Bayesian network (CTBN); then

AU recognition is performed by probabilistic inference via the CTBN model. Third,

a novel audiovisual fusion framework, which aims to make the best use of visual and

acoustic cues in recognizing speech-related facial AUs is developed. In particular, a
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dynamic Bayesian network (DBN) is employed to explicitly model the semantic and

dynamic physiological relationships between AUs and phonemes as well as measure-

ment uncertainty. AU recognition is then conducted by probabilistic inference via

the DBN model.

To evaluate the proposed approaches, a pilot AU-coded audiovisual database was

collected. Experiments on this dataset have demonstrated that the proposed frame-

works yield significant improvement in recognizing speech-related AUs compared to

the state-of-the-art visual-based methods. Furthermore, more impressive improve-

ment has been achieved for those AUs, whose visual observations are impaired during

speech.
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Introduction
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/m/ in move

AU24 (lip presser)

AU26 (jaw drop)

/ :/ in water

AU18 (lip pucker)

AU25 (lips part)

AU27 (mouth stretch)

(a) (b)

Figure 1.1 Examples of speech-related facial activities, where different AUs are
activated non-additively to pronounce speech. (a) The gap between teeth is
occluded by the pressed lips in a combination of AU24 and AU26 when sounding
/m/ and (b) the space between teeth is partially visible due to the protruded lips in
a combination of AU18, AU25, and AU27 when producing /O:/.

Facial behavior is the most powerful and natural means of expressing the affective

and emotional states of human being [75]. The Facial Action Coding System (FACS)

developed by Ekman and Friesen [22] is a comprehensive and widely used system for

facial behavior analysis, where a set of facial action units (AUs) are defined. Accord-

ing to the FACS [23], each facial AU is anatomically related to the contraction of a

specific set of facial muscles, and combinations of AUs can describe rich and complex

facial behaviors. Besides the applications in human behavior analysis, an automatic

facial AU recognition system has emerging applications in advancing human-computer

interaction (HCI) such as interactive games, computer-based learning, and entertain-

ment. Extensive research efforts have been focused on recognizing facial AUs from

static images or image sequences as discussed in the survey papers [76, 119, 86, 58].

In spite of progress achieved on posed facial display and controlled image ac-

quisition, recognition performance degrades significantly for spontaneous facial dis-

plays [104, 102].

Furthermore, recognizing AUs that are responsible for producing speech is ex-

tremely challenging, since they are generally activated at a low intensity with subtle

facial appearance/geometrical changes during speech and, more importantly, often
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introduce ambiguity in detecting other co-occurring AUs [23], e.g., producing non-

additive appearance changes. For instance, as illustrated in Fig. 1.1(a), recognizing

AU26 (jaw drop) from a combination of AU24 (lip presser) + AU26, when voicing

a /m/, is almost impossible from visual observations. The reason is that the gap

between teeth, which is the major facial appearance clue to recognize AU26 [23], is

small and invisible due to the occlusion by the pressed lips. In another example,

when producing /O:/, as shown in Fig. 1.1(b), AU27 (mouth stretch) would probably

be recognized as AU26 because the lips are protruded due to the activation of AU18

(lip pucker), which makes the opening of mouth smaller than that when only AU27

is activated. The failure in recognition of speech-related AUs is because we extract

information from a single source, i.e., the visual channel, in the current practice. As

a result, all speech-related AUs are represented by a uniform code [23, 104], i.e., AD

50, or totally ignored [102], during speech. However, identifying and differentiating

the speech-related AUs from the others that express emotion and intention is critical

to emotion recognition, especially during emotional speech.

Facial AUs and voice are highly correlated in two ways. First, voice/speech has

strong physiological relationships with some lower-face AUs such as AU24, AU26, and

AU27, because jaw and lower-face muscular movements are the major mechanisms

to produce differing sounds. These relationships are well recognized and have been

exploited in natural human communications. For example, without looking at the

face, people will know that the other person is opening his/her mouth by hearing “ah”.

Following the example of recognizing AU26 from a combination of AU24 and AU26 as

illustrated in Fig. 1.1(a), people can easily guess both AU24 and AU26 are activated

because of a sound /m/, although AU26 is invisible from the visual channel. Second,

both facial AUs and voice/speech convey human emotions in human communications.

Instead of solely improving visual observations of AUs, this work aims to explore and

exploit the relationships between facial activity and voice to recognize speech-related
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AUs. Since the second type of relationships is emotion and context dependent, we

will focus on studying the physiological relationships between AUs and speech, which

are more objective and will generalize better to various contexts.

Instead of solely improving visual observations of AUs, we proposed to explore

and exploit the information from both audio and visual channels for AU recogni-

tion. In particular, a feature-level audiovisual fusion framework, an audio-based AU

recognition system employing a continuous time Bayesian network (CTBN) and an

audiovisual AU recognition approach based on a dynamic Bayesian network are de-

veloped.

1.1 Related Work

As discussed in the survey papers [76, 119, 86, 58], existing approaches for facial AU

recognition directly employed either spatial or temporal features extracted from only

the visual channel, i.e. static images or videos, to capture the visual appearance or

geometry changes caused by a specific AU or AU combinations.

Human-designed Facial Features

General purpose human-crafted features are widely employed for facial activity anal-

ysis. These features include magnitudes of multi-scale and multi-orientation Gabor

wavelets extracted either from the whole face region or at a few fiducial points [99, 7,

125, 124, 107, 101, 100], Haar wavelet features [107] considering the intensity differ-

ence of adjacent regions, and Scale Invariant Feature Transform (SIFT) features [116]

extracted at a set of keypoints that are invariant to uniform scaling and orientation.

Histograms of features extracted from a predefined facial grid have been also em-

ployed such as histograms of Local Binary Patterns (LBPs) [91, 89, 103], Histograms

of Oriented Gradients (HOG) [6], histograms of Local Phase Quantization (LPQ)

features [45], and histograms of Local Gabor Binary Patterns (LGBP) [90, 102].
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In addition, spatiotemporal extensions of the aforementioned 2D features, such as

LBP-TOP [126], LGBP-TOP [4, 3], LPQ-TOP [45], HOG-TOP [18], and dynamic

Haar-like features [111, 112], have been employed to capture the spatiotemporal facial

appearance changes caused by AUs.

Facial Features Learned from Data

In addition to the human-crafted features, features can also be learned in a data-

driven manner by sparse coding or deep learning. As an over-complete representation

learned from given input, sparse coding [74] can capture a wide range of variations

that are not targeted to a specific application and has achieved promising results in

facial expression recognition [118, 114, 52, 57, 128]. By taking advantages of both

sparse coding [74] and Nonnegative Matrix Factorization (NMF) [50], Nonnegative

Sparse Coding (NNSC) [40] has been demonstrated to be effective in facial expression

recognition [9, 127, 117, 56]. To become more adaptable to the real world that

consists of combination of edges [24], deep learning has been employed for facial

expression recognition including deep belief network based approaches [80, 82, 53, 55]

and convolutional neural network (CNN) based approaches [29, 59, 83, 97, 54, 46, 98,

34, 43, 27, 110, 113, 21, 21, 36]. Most of these deep-learning based methods took the

whole face region as input and learned the high-level representations through a set of

processing layers.

All the aforementioned visual-based approaches extracted information solely from

the visual channel, and thus are inevitably challenged by imperfect image/video acqui-

sition due to pose variations, occlusions, and more importantly, by the non-additive

effects as illustrated in Fig. 1.1 in recognizing speech-related AUs.
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1.1.1 Audio-based Facial AU recognition

Most recently, facial activity recognition from the audio channel has been briefly

studied in [51, 84, 62]. Lejan et al. [51] detected three facial activities, i.e. eyebrow

movement, smiling, and head shaking, using acoustic information. Assuming that

these facial activities are not correlated, different groups of low-level acoustic fea-

tures are extracted for each facial activity, respectively. Ringeval et al. [84] utilized

low-level acoustic feature sets, i.e. ComParE and GeMAPS, for predicting facial AUs

for emotion recognition. Our early work [62] employed Mel-Frequency Cepstral Co-

efficients (MFCC) features extracted from the audio channel for speech-related facial

AU recognition. These methods only utilized low-level acoustic features without con-

sidering the semantic and dynamic relationships between facial activity and voice.

As shown in our previous work [62], AU recognition using low-level acoustic features

performed worse than the visual-based approaches for most of the speech-related AUs.

1.1.2 Audiovisual Information Fusion

The proposed framework takes advantage of information fusion of both visual and

audio channels, and thus is also related to audiovisual information fusion, which has

been successfully demonstrated in automatic speech recognition (ASR) [30, 47] and

audiovisual affect/emotion recognition [119]. In the following, we will present a brief

review on audiovisual affect/emotion recognition. There are three typical ways to

perform audiovisual information fusion.

Feature-level fusion directly employs audio and visual features as a joint feature

vector for affect/emotion recognition [105, 119]. Recently, deep learning has been

employed for learning features from both visual and audio input [48, 21]. In our

previous work [62], two feature-level fusion methods were developed for speech-related

facial AU recognition. Specifically, one method combined LBP and MFCC features

selected from AdaBoost independently; and the other one integrated visual features

6



learned by a CNN with MFCC features. However, these feature-level fusion methods

often suffer from differences in time scales, metric levels, and noise levels in the two

modalities [119].

Model-level fusion [93, 123, 31, 14, 88, 122, 68, 18] exploits correlation between

audio and visual channels [119] and is usually performed in a probabilistic manner.

For example, coupled [68], tripled [93] or multistream fused HMMs [123, 122] were

developed by integrating multiple component HMMs, each of which corresponds to

one modality, e.g., audio or visual, respectively. Fragpanagos et al. [31] and Caridakis

et al. [14] used an ANN to perform fusion of different modalities. Sebe et al. [88] em-

ployed Bayesian network to recognize expressions from audio and facial activities.

Chen et al. [18] employed Multiple Kernel Learning (MKL) to find an optimal combi-

nation of the features from two modalities. Most of the existing feature-level fusion or

model-level fusion approaches utilize only the low-level features from each modality,

e.g. prosody [123, 105, 68], MFCC [105, 68, 62] and formants [105]) for audio channel.

Decision-level fusion combines recognition results from two modalities assuming

that audio and visual signals are conditionally independent of each other [121, 120,

119, 27, 110, 113, 21], while there are strong semantic and dynamic relationships

between audio and visual channels.

In contrast to the major stream of visual-based facial AU recognition, we propose

to utilize information extracted from audio channel for improving the performance

for speech-related facial action unit recognition.

1.2 Scope of the Proposed Research

This research aims to improve the performance on facial AU recognition especially

when they are accompanied by speech by developing: 1) a feature-level fusion ap-

proach; 2) an audio-based method, and 3) a decision-level fusion system for audiovi-

sual facial AU recognition.
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First, a feature-level fusion strategy is employed to illustrate the effectiveness of

integrating information extracted from both audio and visual channels for speech-

related facial AU recognition. Specifically, two feature-level fusion methods are pro-

posed, which used local binary patterns (LBPs) and features learned by a deep con-

volutional neural network (CNN), respectively. For both methods, features are inde-

pendently extracted from visual and audio channels. These features are aligned to

handle the difference in time scales and the time shift between the two signals and in-

tegrated into a joint feature vector for AU recognition. Experimental results on a new

audiovisual AU-coded dataset have demonstrated that both fusion methods outper-

form their visual counterparts in recognizing speech-related AUs. The improvement

is more impressive with occlusions on the facial images, which would not affect the

audio channel.

Second, a novel approach that recognizes speech-related AUs exclusively from

audio signals during speech is presented. Specifically, dynamic and physiological

relationships between AUs and phonemes are analyzed, and modeled through a con-

tinuous time Bayesian network (CTBN); then AU recognition is performed by proba-

bilistic inference via the CTBN model given only measurements produced from audio

channel. Experimental results on this database show that the proposed CTBN model

achieves promising recognition performance for 7 speech-related AUs and outperforms

both the state-of-the-art visual-based and audio-based methods especially for those

AUs that are activated at low intensities or “hardly visible” in the visual channel.

The improvement is more impressive on the challenging subset, where the visual-based

approaches suffer significantly.

Third, a novel audiovisual fusion framework, which aims to make the best use

of visual and acoustic cues in recognizing speech-related facial AUs is developed.

In particular, a dynamic Bayesian network (DBN) is employed to explicitly model

the semantic and dynamic physiological relationships between AUs and phonemes as
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AU18

Lip Pucker

AU22

Lip Funneler

AU20

Lip Stretcher

AU25

Lips Part

AU24

Lip Presser

AU26

Jaw Drop

AU27

Mouth Stretch

Figure 1.2 A list of speech related AUs and their interpretations included in the
audiovisual database.

well as measurement uncertainty. AU recognition is then conducted by probabilistic

inference via the DBN model. Experiments on this database have demonstrated that

the proposed framework yields significant improvement in recognizing speech-related

AUs compared to the state-of-the-art visual-based methods especially for those AUs

whose visual observations are impaired during speech, and more importantly also

outperforms audio-based methods as well as feature-level fusion methods by explicitly

modeling and exploiting physiological relationships between AUs and phonemes.

1.3 Audiovisual AU-coded Dataset

To the best of our knowledge, the current publicly available AU-coded databases only

provide information in visual channel. Furthermore, all the speech-related AUs have

been either annotated by a uniform label, i.e., AD 50 [104] or not labeled [102], dur-

ing speech. In order to learn the semantic and dynamic physiological relationships

between AUs and phonemes, as well as to demonstrate the proposed audiovisual AU

recognition framework, we have constructed a pilot AU-coded audiovisual database

consisting of two subsets, i.e. a clean subset, and a challenging subset.Fig. 1.2 illus-

trates example images of the speech-related AUs in the audiovisual database.

There are a total of 13 subjects in the audiovisual database, where 2 subjects

appear in both the clean and challenging subsets. All the videos in this database

were recorded at 59.94 frames per second at a spatial resolution of 1920× 1080 with
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a bit-depth of 8 bits; and the audio signals were recorded at 48kHz with 16 bits. The

statistics, i.e., the numbers of occurrences, of the speech-related AUs in the clean and

challenging subsets are reported in Table. 1.1.

Table 1.1 Statistics of the speech-related AUs in the audiovisual database.

Subsets AU18 AU20 AU22 AU24 AU25 AU26 AU27 Total Frames

Clean 7,014 1,375 4,275 2,105 25,092 18,280 4,444 34,622

Challenging 4,118 1,230 3,396 1,373 17,554 11,830 3,242 23,274

In the clean subset, videos were collected from 9 subjects covering different races,

ages, and genders. It consists of 12 words, including “beige”, “chaps”, “cowboy”,

“Eurasian”, “gooey”, “hue”, “joined”, “more”, “patch”, “queen”, “she”, and “wa-

ters” were selected from English phonetic pangrams (http://www.liquisearch.com/

list_of_pangrams/english_phonetic_pangrams), that consists of all the phonemes

at least once in 53 words. The selected 12 words contain 28 phonemes and the most

representative relationships between AUs and phonemes. Each subject was asked to

speak the selected 12 words individually, each of which will be repeated 5 times. In

addition, all subjects were required to keep a neutral face during data collection to

ensure all the facial activities are only caused by speech.

Videos in the challenging subset were collected from 6 subjects covering different

races and genders speaking the same words for 5 times as those in the clean set. As

illustrated in Fig. 1.3, the subjects were free to display any expressions on their face

during speech and were not necessary to show neutral face before and after speaking

the word. In addition, instead of being recorded from the frontal view, videos were
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(c) (d) (e)(a) (b)

Figure 1.3 Example images in the challenging subset collected from different
illuminations, varying view angles, and with occlusions by glasses, caps, or facial
hairs.

collected mostly from the sideviews with free head movements and occlusions by

glasses, caps, and facial hairs, introducing challenges to AU recognition from the

visual channel.

Groundtruth phoneme segments and AU labels were recorded in the database.

Specifically, the utterances were transcribed using the Penn Phonetics Lab Forced

Aligner (p2fa) [115], which takes an audio file along with its corresponding transcript

file as input and produces a Praat [10] TextGrid file containing the phoneme seg-

ments. 7 speech-related AUs, i.e. AU18, AU20, AU22, AU24, AU25, AU26, and

AU27, as shown in Fig. 1.2, were frame-by-frame labeled manually by two certi-

fied FACS coders. Roughly 10% of the data was labeled by both coders indepen-

dently to estimate inter-coder reliability measured by Matthews Correlation Coeffi-

cient (MCC) [78]. As illustrated in Fig. 1.2, the MCC for each AU ranges from 0.69

for AU27 to 0.98 for AU25 and has an average of 0.88 on the clean subset, and ranges

from 0.80 for AU26 to 0.96 for AU25 on the challenging subset, which indicates strong

to very strong inter-coder reliability of AU annotation.
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Table 1.2 Inter-coder reliability measured by MCC for the 7 speech-related facial
AUs on the audiovisual database.

Subsets AU18 AU20 AU22 AU24 AU25 AU26 AU27 Total Frames

Clean 0.945 0.930 0.864 0.944 0.985 0.791 0.695 0.879

Challenging 0.941 0.917 0.930 0.824 0.963 0.799 0.842 0.888

1.4 Structure of the Dissertation

This dissertation is organized as follows. Chapter 2.4 presents a novel feature level

fusion approach utilizing features extracted from audio and visual channels for speech-

related facial AU recognition. Chapter 3.4 introduces a novel audio-based system,

where the physiological and dynamic relationships between facial AUs and audio

are explicitly modeled by a continuous time Bayesian network (CTBN). Facial AU

recognition is performed via probabilistic inference over the CTBN given the speech

recognition results as measurements. Chapter 4.5 describes a comprehensive audio-

visual speech-related facial AU recognition framework, where a dynamic Bayesian

network (DBN) is employed to model the semantic and dynamic relationships be-

tween speech and facial AUs. The predictions can be obtained over the DBN model

given both audio and visual measurements. The conclusion and future research are

discussed in Chapter 5.
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Chapter 2

Audiovisual Facial Action Unit Recognition

using Feature Level Fusion
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Figure 2.1 The flowchart of the proposed feature-level fusion framework for
bimodal facial AU recognition.

2.1 Introduction

All existing approaches on facial AU recognition extract information solely from the

visual channel. In contrast, this paper proposes a novel approach, which exploits the

information from both visual and audio channels, to recognize speech-related AUs.

This work is motivated by the fact that facial AUs and voice are highly correlated in

natural human communications. Specifically, voice/speech has strong physiological

relationships with some lower face AUs such as AU25 (lips part), AU26 (jaw drop),

and AU24 (lip presser) because jaw and lower-face muscle movements together with

the soft palate, tongue and vocal cords produce the voice.

These relationships are well recognized and have been exploited in natural human

communications. For example, without looking at the face, people will know that the

other person is opening his/her mouth when hearing laughter. Following the example

of recognizing AU26 (jaw drop) in the Stop phase of pronouncing the phoneme /b/,

we can infer that AU26 (jaw drop) has been activated when hearing the sound /b/,

even when it is “invisible” in the visual channel.

Specifically, we propose to directly employ information from the visual and the

audio channels by integrating the features extracted from the two channels. Fig-

ure 2.1 illustrates the proposed audiovisual feature-level fusion framework for facial
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AU recognition. Given a video, visual features and acoustic features are extracted

from the images and the audio signal, respectively. To deal with the difference in time

scales as well as the time shift between the two signals, the audio features need to be

aligned with the visual features such that the two types of features are extracted at

the same point in time. Then, the aligned audio and visual features are integrated

and used to train a classifier for each target AU.

This work falls into the category of feature-level audiovisual fusion by employing

features extracted from the two channels. Different from the prior feature-level fusion

approaches, which often suffer from differences in time scale [61], we propose a method

to align the audio and visual features frame-to-frame such that the two types of

features are extracted at the point in time.

In order to demonstrate the effectiveness of using audio information in facial AU

recognition, two different types of visual features are employed, based on which two

feature-level fusion methods are proposed. The first method is based on a kind

of human-crafted visual feature. Then, the audio and visual features are directly

concatenated to form a single feature vector, which is used to train a classifier for each

target AU. The other method employs visual features learned by a deep convolutional

neural network (CNN). Then the audio and visual features are integrated into a CNN

framework.

There are four major contributions in this work.

• To the best of our knowledge, it is the first utilization of both audio and visual

features to recognize the speech-related facial AUs.

• Two feature-level fusion methods are proposed based on human-crafted visual

features and a CNN, respectively.

• To facilitate feature-level fusion, we propose a method to align the audio and

visual features.
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• An AU-coded audiovisual database is constructed to evaluate the proposed

feature-level fusion framework and can be employed as a benchmark database

for AU recognition.

Experimental results on the new audiovisual AU-coded dataset have demonstrated

that the proposed bimodal AU recognition framework achieved promising recognition

performance. Specifically, both fusion methods outperform those only employing vi-

sual information in recognizing speech-related AUs. The improvement is more im-

pressive when the face regions are occluded, which, however, would not affect the

audio channel.

2.2 Methodology

Since speech is anatomically produced by a specific set of jaw and lower facial muscle

movements, there are strong physiological relationships between the lower-face AUs

and speech. Taking the word beige for instance, a combination of AU24 (lip presser)

and AU26 (jaw drop) is first activated to produce the Stop phase of /b/ (Figure 2.2a).

Then, AU25 (lips part) and AU26 are activated together to sound /b/ in its Aspiration

phase and /ei/ (Figure 2.2b). Finally, AU22 (lip funneler) and AU25 are activated for

sounding /Z/ (Figure 2.2c). Inspired by this, we propose to utilize the information

from both visual and audio channels for recognizing speech-related facial AUs. In

addition, signals in different channels are usually sampled at different time scales and

are not synchronized perfectly. In this work, we show how to extract visual and audio

features and how to align the features from each channel to perform the feature level

fusion.

2.2.1 Audio Feature Extraction

In this work, 13-dimensional Mel Frequency Cepstral Coefficients (MFCCs) [20],

which are widely used in speech recognition, are employed as the audio features.
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Figure 2.2 Examples of physiological relationships between speech and AUs. To
pronounce a word “beige”, different combinations of AUs are activated sequentially.

Figure 2.3 Illustration of audio feature extraction, where 13-dimensional MFCC
features are obtained from a temporal window of size l and shift to the next window
by a stride of size.

Specifically, given an input wave file, the size of the temporal window denoted by l,

and a stride denoted by s, a state-of-the-art speech recognition method, i.e., Kaldi

toolkit [77], is employed to obtain MFCC features. As illustrated in Figure 2.3, the

Kaldi toolkit extracts the MFCC features within a temporal window with a size of l

and shifts to the next window by a stride of s.
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Figure 2.4 An illustration of extracting LBP features from a face image. The face
image is divided into a grid, from each of which, LBP histograms are extracted.
Then, LBP features are obtained by concatenating all the LBP histograms from
each cell. Best viewed in color.

2.2.2 Visual Feature Extraction

In this work, two types of visual features are employed, including human-crafted

features and features learned by deep learning.

LBP feature extraction

Among the human-crafted features, LBP features [73] are employed as the visual

feature descriptor because of its good performance in facial expression/AU recogni-

tion [90, 37, 102]. As shown in Figure 2.4, the face region is divided into an N ×N

grid. From each cell, LBP features are extracted as follows:

LBP(p) =
7∑

k=0
φ(vk − vp) · 2k,

where

φ(x) =


1 if x ≥ 0

0 if x < 0

p is a pixel with an intensity of vp, and vk, k = 0, · · · , 7, are the intensities of its

eight neighboring pixels. Since only a subset of the LBPs, i.e. the uniform patterns

containing at most two bitwise transitions from 0 to 1, are crucial for encoding the
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Figure 2.5 The architecture of the V-CNN used to learn the visual features. For
each layer, the neuron number and the map dimension are given by the numbers
before and after “@”, respectively. 1600 neurons are employed in the fully connected
layer.

texture of images, histograms of the 59 uniform patterns are calculated for each cell

of the grid. Then, LBP histograms extracted from all cells are concatenated as LBP

features. Figure 2.4 illustrates the process of extracting LBP features from an image.

Visual features learned by Deep Networks

Recently, CNNs have been demonstrated to be effective on various computer vision

tasks [49, 26], as well as on audiovisual fusion [67, 41, 96]. In this work, a CNN, de-

noted as V-CNN, is developed to learn feature representations from the visual channel.

As shown in Figure 6, the V-CNN consists of three convolutional layers followed by a

fully-connected layer. After the first convolutional layer, there is an average-pooling

layer; and a max-pooling layer is following the second convolutional layer. Follow-

ing each convolutional layer, there is also a batch normalization layer [42], which

normalizes each scalar feature in the training batch to zero mean and unit variance.

The batch normalization has been shown to improve classification performance and

accelerate the training process [42]. A Softmax layer is employed to generate the

predictions and calculate the loss according to the groundtruth labels.

As shown in Figure 2.5, parametric rectified linear units (PReLU) [38] are em-

ployed after the convolutional layers and the fully-connected layer to produce nonlin-
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earity for hidden neurons. As an extension of a rectified linear unit (ReLU) activation

function, PReLU has better fitting capability than the sigmoid function or hyperbolic

tangent function [49] and further boosts the classification performance compared to

the traditional ReLU. The PReLU activation function is defined as [38]:

PReLU(yj) =


yj, if yj > 0

αyj, if yj ≤ 0

where yj is the input of PReLU of the jth layer, and α is a parameter used to

control the slope when the input is negative, which is adaptively learned during the

training process.

The output of the fully-connected layer is employed as the visual features learned

by the CNN. In addition, the output of the V-CNN, i.e., a 2-way softmax, is used

as a binary classifier predicting the probability distribution over 2 different classes,

i.e. the “presence” or “absence” status of a target AU, which is used as a baseline

visual-based method in our experiment.

2.2.3 Audiovisual Feature Alignment

The visual and audio features are usually extracted at different time scales. Further-

more, since the video clips in the audiovisual database are cut from long streaming

videos, there is a random shift between the visual and audio signals, even if they

have the same sampling rates. To perform feature level fusion, the time scale of au-

dio features should be adjusted to that of visual features and more importantly, these

two types of features should be extracted at the same time. Hence, an “alignment”

process is needed and described as follows.

As depicted by Figure 2.6, given a sequence of MFCC features, v = (v0, · · · , vn),

and its corresponding time points, t = (t0, · · · , tn) with n+1 points and n time
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intervals, a cubic spline for each interval [ti, ti+1] is estimated as follows:

Si(t) = ai(t− ti) + bi(t− ti)2 + ci(t− ti)3 + di

where ai, bi, ci, and di are coefficients to be estimated for the spline for the ith

interval. After estimating the splines for all the intervals, the MFCC values at each

time point t′j, where the jth image frame is sampled, can be estimated by interpolation

according to the corresponding cubic spline.

The audio features resulting from interpolation may contain errors due to im-

perfect alignment. Furthermore, information from the neighboring time frames may

contain important information for AU recognition. For example, facial activities are

usually activated slightly earlier than the sound is made. It is especially true for

AU24 (lip presser), which is activated and relaxed before the sound /b/ is emitted.

To address this issue, MFCC features from multiple frames are concatenated as the

feature vector for the current frame.

2.2.4 Audiovisual Feature-Level Fusion

Audiovisual fusion based on LBP features

The extracted LBP features are concatenated with the aligned MFCC features into a

unified feature vector, which is employed as input to train a classifier for each target

AU.

Audiovisual fusion based on CNN

As depicted in Figure 2.7, a CNN, denoted as AV-CNN, is designed to perform the

audiovisual fusion for facial AU recognition. In particular, the visual stream of the

proposed AV-CNN has the same structure as V-CNN. The visual features, i.e. the

output of the fully-connected layer in V-CNN, are combined with the aligned MFCC

features as the input for a softmax layer, the output layer of the AV-CNN. The output
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Figure 2.6 An illustration of aligning MFCCs to image frames. The left image
gives a sequence of data and the right one shows the close up of a portion of the
sequence, where the blue crosses represent the original values of MFCCs at their
respective times; the green vertical dash lines give the time points of image frames;
and the red crosses denote the aligned MFCC features.

of the AV-CNN is the probability of the “presence” or “absence” status of a target

AU.

2.2.5 Implementation Details and Experimental Setup

MFCC feature extraction

In this work, the MFCC features are extracted with window size l = 16.67ms using

a time shift of s = 16.67ms. To include more temporal information, 7 frames, i.e. 3

frames before and after the current frame along with the current one are concatenated

as the final MFCC feature for each frame.

LBP-based audiovisual fusion

For preprocessing purpose, the face regions across different facial images are aligned

to remove the scale and positional variance based on eye positions using a state-of-
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Visual Input: 128x96 Audio Input

Softmax:2

V-CNN MFCC:91

Output

Figure 2.7 Architecture of a CNN used for audiovisual fusion, where the
fully-connected layer in V-CNN is combined with the 91 dimension MFCC feature
as the input to a softmax layer, which is employed to predict the probability of the
“presence” and “absence” status of a target AU.

the-art facial landmark detection method [5] and then cropped to a size of 96 × 64.

Following Han et al. [37], each of the face images is divided into a 7×7 grid, from each

of which, LBP histograms with 59 bins are extracted. All extracted LBP histograms

are then concatenated as LBP features.

To handle the difference in metrics, a normalization process is required to ensure

that the LBP features are within the same range as the MFCC features. Hence, both

features are normalized to the same interval [0, 1]. The normalized MFCC and LBP

features are concatenated into a uniform feature vector, from which an AdaBoost

classifier is employed in a supervised manner to select the most discriminative fea-

tures, i.e., a set of weak classifiers, based on the classification errors and to construct

a strong classifier to perform AU recognition.

CNN-based audiovisual fusion

For preprocessing purposes, the face regions are aligned and cropped to a size of 128×

96. The V-CNN model is trained from a CNN model pretrained on the FERA 2015
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database [102] using stochastic gradient decent with a batch size of 128, momentum of

0.9, and a weight decay parameter of 0.005. A base learning rate of 5e-4 is employed

at the beginning of the training process and decreased by a factor of 0.5 every 500

iterations. The kernel size for average pooling layer and the max pooling layer is with

a stride of 3. Dropout is applied to each fully-connected layer with a probability of

0.5, i.e. zeroing out the output of a neuron with probability of 0.5. The CNN models

are implemented using the Caffe library [44].

2.2.6 Results on Audiovisual Dataset

To demonstrate the effectiveness of utilizing audio information in AU recognition,

we compared the two proposed feature-level fusion methods, i.e., LBP-based fusion

method, denoted as LBP-Fusion, and CNN-based fusion method, denoted as AV-

CNN, with their visual-based counterparts, i.e., the LBP-based method [37] and the

V-CNN, respectively. In addition, we reported the results using the information

extracted from only audio channel denoted as Ada-MFCC and MFCC-CNN based on

AdaBoost and CNN, respectively. For the methods compared, a leave-one-subject-

out training/testing strategy is employed, where the data from 8 subjects is used for

training and the remaining data is used for testing. The experimental results are

computed as the average of 9 runs.

2.2.7 Experimental results

Comparison of LBP, Ada-MFCC, and LBP-Fusion: Quantitative experimental results

based on the LBP features and the MFCC features are reported in Table 2.1 in terms

of false alarm rate (FAR), true positive rate (TPR), and F1 score. The F1 score is

defined as F1 = 2TP
2TP + FP + FN

, where TP is the number of positive samples that

are recognized correctly, FP is the number of negative samples that are recognized as

positive, and FN is the number of positive samples that are recognized as negative.
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Table 2.1 Performance comparison of LBP, Ada-MFCC, and LBP-Fusion in terms
of F1 score, TPR, and FAR.

AUs LBP Ada-MFCC LBP-Fusion
F1 FAR TPR F1 FAR TPR F1 FAR TPR

AU18 0.641 0.149 0.746 0.558 0.166 0.635 0.679 0.125 0.768
AU20 0.181 0.178 0.661 0.15 0.203 0.641 0.221 0.15 0.7
AU22 0.442 0.186 0.657 0.445 0.168 0.651 0.493 0.166 0.703
AU24 0.348 0.187 0.746 0.201 0.271 0.592 0.375 0.163 0.755
AU25 0.855 0.119 0.784 0.783 0.144 0.681 0.886 0.089 0.825
AU26 0.582 0.273 0.516 0.568 0.201 0.476 0.624 0.239 0.556
AU27 0.329 0.249 0.526 0.419 0.211 0.654 0.455 0.186 0.669
AVG 0.482 0.191 0.662 0.448 0.195 0.619 0.533 0.16 0.711

As shown in Table 1, the proposed LBP-Fusion method achieves promising recognition

performance for the 7 speech-related AUs and outperforms both the visual-based

method, LBP, and the audio-based method, Ada-MFCC, in terms of the F1 score,

FAR, and the TPR for all target AUs.

Compared to LBP and Ada-MFCC, which employs information only from the

visual or the audio channel, the overall AU recognition performance is improved from

0.482 (LBP) and 0.448 (Ada-MFCC) to 0.533 (LBP-Fusion) in terms of the average F1

score, which demonstrates the effectiveness of using information from both the audio

and visual channels. Compared to the LBP method, the performance improvement is

more obvious for AU27 (mouth stretch) when using audio information: the F1 score

is improved from 0.329 (LBP) to 0.419 (Ada-MFCC) and is further improved to 0.455

(LBP-Fusion) by integrating both audio and visual information. This is because the

visual observation of AU27 is not reliable during speech due to the occlusion caused by

lip movements, whereas the information from the audio channel plays an important

role in detecting AU27.

Comparison of AV-CNN, MFCC-CNN, and V-CNN: Table 2 gives the experi-

mental results using features learned by CNNs. The proposed AV-CNN outperforms

both the V-CNN and the MFCC-CNN in terms of the average F1 score, average FAR,
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Table 2.2 Performance comparison of V-CNN, MFCC-CNN, and AV-CNN in
terms of F1 score, TPR, and FAR.

AUs V-CNN MFCC-CNN AV-CNN
F1 FAR TPR F1 FAR TPR F1 FAR TPR

AU18 0.517 0.09 0.581 0.582 0.117 0.506 0.74 0.061 0.735
AU20 0.162 0.033 0.19 0.125 0.036 0.201 0.267 0.034 0.201
AU22 0.364 0.081 0.391 0.514 0.072 0.481 0.534 0.066 0.513
AU24 0.397 0.037 0.379 0.111 0.058 0.201 0.319 0.038 0.341
AU25 0.944 0.113 0.961 0.829 0.435 0.828 0.943 0.115 0.962
AU26 0.692 0.309 0.787 0.625 0.385 0.63 0.712 0.274 0.792
AU27 0.221 0.106 0.264 0.467 0.078 0.472 0.477 0.077 0.466
AVG 0.471 0.11 0.507 0.465 0.169 0.474 0.57 0.095 0.573

and the average TPR. In addition, compared to V-CNN, the performance on AU27

gains a dramatic improvement using AV-CNN, i.e. from 0.221 by V-CNN to 0.447

by AV-CNN in terms of the average F1 score.

Comparison between LBP-Fusion and AV-CNN: As shown in Table 2.1 and Ta-

ble 2.2, AV-CNN (0.570) outperforms LBP-Fusion (0.533) in terms of F1 score, be-

cause the feature representations learned by CNN can better capture the discrimina-

tive information in data than the hand-crafted features.

Experimental results on the data with occlusions The visual-based facial AU recog-

nition is made more challenging with head movements and occlusions of the face re-

gion, e.g. moustache and beards, since the extracted features include the noise due

to the misalignment of face regions and occlusions. However, the audio channel will

not be affected by the aforementioned challenges in the visual channel. Hence, the

information extracted from the audio signal is more robust to head movements and

occlusions for facial AU recognition. To better demonstrate the effectiveness of the

proposed audiovisual fusion methods, we randomly add occlusions to face images, as

illustrated in Figure 10. Specifically, black blocks are randomly added to the mouth

region of each image to synthesize occlusions.

From the images with occlusions, we retrained the visual-based LBP method de-
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Figure 2.8 Example images of adding 15 by 15 pixel black blocks randomly to the
mouth region in face images to synthesize occlusions.

noted as LBP-Occlusion and V-CNN-based method denoted as V-CNN-Occlusion as

well as the fusion methods denoted as LBP-Fusion-Occlusion and AV-CNN-Occlusion,

respectively. The quantitative experimental results on the images with occlusions are

reported in Table 2.3 and Table 2.4 for LBP and CNN-based methods, respectively.

2.3 Experiments

Not surprisingly, the performance of the visual-based methods, especially the V-CNN-

Occlusion, drops significantly when the images contain occlusions. In contrast, the

performance of the proposed fusion methods, i.e., LBP-Fusion-Occlusion (0.516) and

AV-CNN-Occlusion (0.506), are less affected by the occlusions, since the information

from audio channel is more reliable when the images contain occlusions. Particularly,

by employing audio information, the recognition performance on the occluded data is

improved dramatically from 0.365 (V-CNN-Occlusion) to 0.506 (AV-CNN-Occlusion)

in terms of the average F1 score.

In addition, the performance of V-CNN-Occlusion decreases more significantly

than that of LBP-Occlusion. In the CNN, the decision is made by a fully-connected

layer, where each output node is connected to every single node in the previous

layer, and thus, will be affected by occlusions in any position. In contrast, the LBP

features are less correlated, and thus, the recognition performance will not be affected

significantly by the failure of one or several LBP features extracted in the occluded
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Table 2.3 Performance comparison between LBP and LBP-Fusion on the data
with occlusions in terms of F1 score, TPR, and FAR.

AUs LBP-Occlusion LBP-Fusion-Occlusion
F1 FAR TPR F1 FAR TPR

AU18 0.63 0.157 0.744 0.672 0.133 0.771
AU20 0.207 0.163 0.701 0.254 0.133 0.714
AU22 0.423 0.201 0.643 0.477 0.179 0.694
AU24 0.305 0.183 0.656 0.329 0.175 0.709
AU25 0.805 0.151 0.72 0.853 0.109 0.778
AU26 0.514 0.288 0.442 0.577 0.255 0.509
AU27 0.34 0.244 0.544 0.452 0.189 0.67
AVG 0.461 0.198 0.636 0.516 0.167 0.692

Table 2.4 Performance comparison between V-CNN and AV-CNN on the data
with occlusions in terms of F1 score, TPR, and FAR.

AUs V-CNN-Occlusion AV-CNN-Occlusion
F1 FAR TPR F1 FAR TPR

AU18 0.465 0.093 0.579 0.674 0.082 0.638
AU20 0.091 0.036 0.085 0.197 0.035 0.177
AU22 0.196 0.097 0.338 0.423 0.081 0.402
AU24 0.107 0.054 0.101 0.153 0.051 0.161
AU25 0.876 0.174 0.911 0.913 0.153 0.942
AU26 0.666 0.303 0.753 0.722 0.274 0.808
AU27 0.161 0.11 0.221 0.458 0.085 0.39
AVG 0.365 0.124 0.427 0.506 0.109 0.503

region.

2.4 Conclusion

Recognizing speech-related AUs is challenging due to the subtle facial appearance/

geometrical changes and occlusions introduced by frequent lip movements. Motivated

by the fact that facial activities are highly correlated with voice, in this section,

a novel feature-level fusion framework employing information from both the audio

channel and the visual channel is proposed. Specifically, two feature-level fusion

methods were developed based on LBP features and features learned by a CNN. To
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handle the differences in time scale and metrics, the audio and visual features are

aligned frame-to-frame and normalized into the same range. Experimental results on

a new audiovisual AU-coded dataset have demonstrated that both LBP-based and

CNN-based feature-level fusion methods outperform the methods only using visual

features, especially for those AUs whose visual observations are “invisible” during

speech. The improvement is more impressive when evaluated on the image data

containing occlusions.
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Chapter 3

Listen to Your Face: Inferring Facial Action

Units from Audio Channel
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3.1 Motivation

Facial AU recognition from static images or videos has received an increasing in-

terest during the past decades as elaborated in the survey papers [76, 119, 86]. In

spite of progress on posed facial displays and controlled image acquisition, recog-

nition performance degrades significantly for spontaneous facial displays with free

head movements, occlusions, and various illumination conditions [103]. More im-

portantly, it is extremely challenging when recognizing AUs involved in speech pro-

duction, since these AUs are usually activated at low intensities with subtle facial

appearance/geometrical changes and often introduce ambiguity in detecting other

co-occurring AUs [23], i.e., non-additive effects of AUs in a combination. For exam-

ple, pronouncing a phoneme /p/ has two consecutive phases, i.e., Stop and Aspiration

phases. As shown in Fig. 3.1(b), the lips are apart and the oral cavity between the

teeth is visible in the Aspiration phase, based on which AU25 (lips part) and AU26

(jaw drop) can be detected from the image. Whereas, during the Stop phase as shown

in Fig. 3.1(a), the lips are pressed together due to the activation of AU24 (lip presser).

Since the oral cavity is occluded by the lips, AU26 is difficult to be detected from

the visual channel. In another example, the oral cavity is partially occluded by the

lips when producing /O:/ in Fig. 3.1(d) due to the activation of AU18 (lip pucker).

Hence, even the mandible is pulled down significantly, it is difficult to detect AU27

(mouth stretch) from Fig. 3.1(d).

These facial activities actually can be “heard”, i.e., inferred from the information

extracted from the audio channel. Facial AUs and voice are highly correlated in two

ways. First, voice/speech has strong physiological relationships with some lower-face

AUs such as AU24, AU26, and AU27, because jaw and lower-face muscular movements

are the major mechanisms to produce differing sounds. In addition, eyebrow move-

ments and fundamental frequency of voice have been found to be correlated during

speech [15]. As demonstrated by the McGurk effect [60], there is a strong correlation
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/

AU24 (lip presser)

AU26 (jaw drop)
/

AU24 (lip presser)

AU26 (jaw drop)
/

AU24 (lip presser)

AU26 (jaw drop)

/m/ (more)

Figure 3.1 Example images of speech-related facial behaviors, where different AUs are
activated to pronounce sounds. Note non-additive effects of AUs co-occurring in a
combinations in (a) and (d).

between visual and audio information for speech perception. Second, both facial AUs

and voice/speech convey human emotions in human communications. Since the

second type of relationships is emotion and context dependent, we will

focus on studying the physiological relationships between lower-face AUs

and speech, which are more objective and will generalize better to various

contexts.

In audiovisual automatic speech recognition (ASR), a viseme has been defined to

represent facial muscle movements that can visually distinguish the sound [94, 12, 8].

Since some phonemes have similar facial appearance when produced, the mapping

from phoneme to viseme is usually derived by statistical clustering [33, 85, 65, 109],

but without a universal agreement. Furthermore, the mapping is not always one-

to-one because the number of visemes is usually less than the number of phonemes.

For example, Neti et al. [65] clustered 44 phonemes into 13 visemes. However, one

viseme may be produced by different AU or AU combinations or by a sequence of AU

or AU combinations. For example, /p/ and /m/ are in the same cluster of bilabial

consonants [65]. /p/ is produced by AU24 (lip presser) + AU26 (jaw drop) (Fig. 3.1a)
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Figure 3.2 The flowchart of the proposed audio-based AU recognition system: (a) an
offline training process for CTBN model learning and (b) an online AU recognition
process via probabilistic inference.

followed by AU25 (lips part) + AU26 (jaw drop) (Fig. 3.1b); while /m/ is produced

by AU24 (lip presser) + AU26 (jaw drop) as shown in Fig. 3.1c. Based on these

observations, we proposed to directly study the relationships between facial AUs and

phonemes rather than utilizing visemes as intermediate descriptors.

Specifically, a phoneme, which is the smallest phonetic unit of speech, is pro-

nounced by activating a combination of AUs as illustrated in Fig. 3.1. Due to the

variation in individual subjects, such relationships are stochastic. Furthermore, dif-

ferent combinations of AUs are responsible for sounding a phoneme at different phases

as depicted in Fig. 3.1(a) and (b). Therefore, the dynamic dependencies between AUs

and phonemes also undergo a temporal evolution rather than stationary.

Inspired by these, we proposed a novel approach to recognize speech-related AUs

from speech by modeling and exploiting the dynamic and physiological relation-
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ships between AUs and phonemes through a Continuous Time Bayesian Network

(CTBN) [70]. CTBNs are probabilistic graphical models proposed by Nodelman [70]

to explicitly model the temporal evolutions over continuous time. CTBNs have been

found in different applications, including users’ presence and activities modeling [69],

robot monitoring [66], sensor networks modeling [39], object tracking [79], host level

network intrusion detection [108], dynamic system reliability modeling [11], social net-

work dynamics learning [28], cardiogenic heart failure diagnosis and prediction [32],

and gene network reconstruction [2].

Dynamic Bayesian networks (DBNs) are widely used dynamic models for mod-

eling the dynamic relationships among random variables, and have been employed

for modeling relationships among facial AUs in the visual channel [101, 100]. How-

ever, the dynamic events need to be discretized into discrete time points and thus,

the relationships between them are modeled discontinuously. In addition, an align-

ment strategy should be employed to handle the difference in time scales and the

time shift between the two signals. In contrast, considering AUs and phonemes as

continuous dynamic events, the CTBN model can explicitly characterize the rela-

tionships between AUs and phonemes, and more importantly, model the temporal

evolution of the relationships as a stochastic process over continuous time. Fig. 3.2

illustrates the proposed audio-based AU recognition system. During the training pro-

cess (Fig. 3.2(a)), ground truth labels of AUs and phonemes are employed to learn

the relationships between AUs and phonemes in a CTBN model. Furthermore, this

model should also account for the uncertainty in speech recognition. For online AU

recognition, as shown in Fig. 3.2(b), measurements of phonemes are obtained by au-

tomatic speech recognition and employed as evidence by the CTBN model; then AU

recognition is performed by probabilistic inference over the CTBN model.

This work has three major contributions.

• The dynamic and physiological relationships between AUs and phonemes are
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theoretically and probabilistically modeled using a CTBN model.

• Instead of using low-level acoustic features, accurate phoneme measurements

are employed benefiting from advanced speech recognition techniques.

• A pilot AU-coded audiovisual database is constructed to evaluate the proposed

audio-based AU recognition framework and can be employed as a benchmark

database for AU recognition.

The audiovisual AU-coded database consists of a “clean” subset with frontal and

neutral faces and a challenging subset collected under unconstrained conditions with

large head movements, occlusions from facial hair and accessories, and illumination

changes. Experimental results on this database show that the proposed audio-based

AU recognition framework achieves significant improvement in recognizing 7 speech-

related AUs as compared to the state-of-the-art visual-based methods. The improve-

ment is more impressive for those AUs that are activated at low intensities or “hardly

visible” in the visual channel. More importantly, dramatic improvement has been

achieved on the challenging subset: the average F1 score of the 7 speech-related AUs

is almost doubled compared to those of the visual-based approaches. Furthermore,

the proposed CTBN model also outperforms the baseline audio-based methods by a

large margin owing to explicitly modeling the dynamic interactions between phonemes

and AUs.

3.2 Methodology

3.2.1 Phoneme-AU Relationship Analysis

A phoneme is defined as the smallest phonetic unit in a language. In this work,

a set of phonemes defined by Carnegie Mellon University Pronouncing Dictionary

(CMUdict) [106] is employed, which is a machine-friendly pronunciation dictionary

designed for speech recognition, where 39 phonemes are used for describing North
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(a) G(gooey)

AU25+26

(b) UW(gooey)

AU18+25+26

(c) IY(gooey)

AU25+26

Figure 3.3 Examples of physiological relationships between phonemes and AUs. To
pronounce a word gooey , different combinations of AUs are activated sequentially. (a)
AU25 (lip part) and AU26 (jaw drop) are responsible for producing G (gooey); (b) AU18
(lip pucker), AU25, and AU26 are activated to pronounce UW (gooey); and (c) AU25 and
AU26 are activated to sound IY (gooey).

American English words. The 39 phonemes defined by CMUdict, along with sample

words in parenthesis, are as follows: AA (odd), AE (at), AH (hut), AO (awful),

AW (cow), AY (hide), B (be), CH (cheese), D (dee), DH (thee), EH (Ed), ER

(hurt), EY (ate), F (f ee), G (green), HH (he), IH (it), IY (eat), JH (gee), K

(key), L (lee), M (me), N (knee), NG (ping), OW (oat), OY (toy), P (pee), R

(read), S (sea), SH (she), T (tea), TH (theta), UH (hood), UW (two), V (vee),

W (we), Y (yield), Z (zee), ZH (seizure) [106].

Since each phoneme is anatomically related to a specific set of jaw and lower

facial muscular movements, there are strong physiological relationships between the

speech-related AUs and phonemes. Taking the word gooey for instance, a combination

of AU25 (lip part) and AU26 (jaw drop) is first activated to produce G (gooey)

(Fig. 3.3a). Then, AU18 (lip pucker), AU25, and AU26 are activated together to

sound UW (gooey) (Fig. 3.3b). Finally, AU25 and AU26 are responsible for producing

IY (gooey) (Fig. 3.3c).

Furthermore, these relationships also undergo a temporal evolution rather than

stationary. There are two types of temporal dependencies between AUs and phonemes.

First, a phoneme is produced by a combination of AUs as shown in Fig. 3.3. The
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Stop phase Aspiration phase

AU24
AU25
AU26

Time

Acoustic 

Signal
Silence

Figure 3.4 Illustration of the dynamic relationships between AUs and phonemes while
producing P. Specifically, AU24 (lip presser) and AU26 (jaw drop) are activated in the
first phase, i.e., the Stop phase, while AU25 (lips part) and AU26 are activated in the
second phase, i.e., the Aspiration phase. The activated AUs are denoted by green bars
with a diagonal line pattern; while the inactivated AUs are denoted by grey bars. Best
viewed in color.

probabilities of the AUs being activated increase prior to voicing the phoneme and

reach an apex when the sound is fully emitted, and then decrease while preparing to

voice the next phoneme.

Second, different combinations of AUs are responsible for producing a single

phoneme at different phases. For example, as illustrated in Fig. 3.4, the phoneme

P in the word chaps has two consecutive phases, i.e., Stop and Aspiration phases.

During the Stop phase, AU24 (lip presser) is activated as lips are pressed together

to hold the breath without making sound [13], when the upper and lower teeth are

apart indicating the presence of AU26 (jaw drop). In the Aspiration phase, the lips

are apart by activating AU25 and releasing AU24 to release the breath with an au-

dible explosive sound [13]. Thus, AU24 and AU26 are activated before the sound is

heard, and AU24 is released as soon as the sound is made when AU25 is activated.

Note that these dynamic and physiological relationships are stochastic and vary

among individual subjects and different words. For example, according to phonet-

ics [13], AU20 is responsible for producing the phoneme AE; and AU22 is responsible

for producing the phonemes CH (chaps), ZH (Eurasian), and SH (she). However,
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some subjects are not activating those facial AUs while producing the corresponding

phonemes. For example, in our audiovisual database, there are 8 out of 13 subjects

did not activate AU20 when sounding the phoneme AE as in chaps; and two sub-

jects did not activate AU22 when sounding the phoneme CH as in patch. Moreover,

one subject activated AU22 for producing G as in gooey, H as in hue, and K as in

queen, where AU22 is not responsible for producing those phonemes according to

phonetics [13].

In addition, speech recognition is not perfect. For speech recognition, uncertainties

are not only introduced by mis-classification of phonemes, but also by the temporal

shift of the recognized phoneme segments compared to the groundtruth phoneme

segments. Moreover, the AUs are usually activated slightly before the phoneme is

produced [35]. Therefore, we employ a probabilistic framework, a CTBN [70] in

particular, to explicitly model the dynamic relationships between phonemes and AUs

over continuous time.

3.2.2 Modeling Phoneme-AU Relationships by a CTBN

AU

Phone

OP

Figure 3.5 A CTBN model for audio-based AU recognition.

A CTBN is a directed, possibly cyclic, graphical model [70], which consists of an

initial distribution specified as a Bayesian network and a set of random variables. As

shown in Fig. 3.5, a CTBN model is employed to capture the dynamic and physiolog-
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ical relationships between AUs and phonemes as well as the measurement uncertainty

in speech recognition. There are two types of nodes in the model: the unshaded nodes

represent hidden nodes, whose states should be inferred through the model; whereas

the shaded node denotes the measurement node, whose states can be observed and

used as evidence for inference.

Specifically, the phoneme node denoted by “Phone” has 29 states representing

28 phonemes in the audiovisual dataset and one silence state, and is employed to

model the dynamics of phonemes: durations of phonemes and transitions between

phonemes. A measurement node denoted as “Op” with 29 states is used to represent

the phoneme measurement obtained by speech recognition. The directed link between

“Phone” and “Op” represents the measurement uncertainty in speech recognition,

e.g., misdetection and temporal misalignment.

Based on the study in [101], there are semantic and dynamic relationships among

AUs. In this work, AUs often occur in combinations to produce sounds. However, the

CTBN model has an assumption that no two variables change at exactly the same

time, which, unfortunately, is not held in this application, where two or even more

different AUs can change simultaneously. For example, AU25 is activated at the same

time when AU24 is released as illustrated in Fig 3.

Instead of using 7 separate nodes for 7 speech-related AUs, respectively, a single

“AU” node is employed to model the joint distributions of all speech related AUs.

Since each AU can be at one of “absence” or “presence” status, “AU” has 27 = 128

states, each of which is corresponding to one combination of 7 AUs. For example, the

state 0 of the “AU” node represented by a binary number “0000000”, means no AU

is activated, while the state 1 with a binary number “0000001”, means only AU27

is present. This way, the relationships between all AUs are naturally modeled with-

out learning the CTBN structure. The directed links between “AU” and “Phone”

capture the dynamic and physiological relationships between them.
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3.2.3 Model Parameterization

In a CTBN, each node, e.g., “Phone” and “AU” in this work, evolves as a Markov

process, whose dynamics is described by a set of transition intensity matrices, called

conditional intensity matrices (CIMs) denoted by Q, in which the transition intensity

values are determined by the instantiations of parent node(s).

Model Parameterization for “Phone”

The directed link from “AU” to “Phone” represents the relationships that AUs

are activated prior to pronounce a phoneme and thus, the dynamic of “Phone” is

based on the instantiations of “AU”. Given the kth state of “AU” denoted as ak,

k = 0, · · · , 127, the CIM for “Phone”, a 29× 29 matrix denoted as QPhone|AU=ak
, is

defined as follows:

QPhone|AU=ak
=



−qph|ak
0 q

ph|ak
0,1 . . . q

ph|ak
0,28

q
ph|ak
1,0 −qph|ak

1 . . . q
ph|ak
1,28

... ... . . . ...

q
ph|ak
28,0 q

ph|ak
28,1 . . . −qph|ak

28


(3.1)

where qph|ak
i denotes the conditional intensity value when “Phone” remains at its ith

state denoted by phi, i = 0, · · · , 28, given AU = ak; qph|ak
i,j (j = 0, · · · , 28 and j 6= i)

denotes the conditional intensity value when “Phone” transitions from its ith state

to its jth state, given AU = ak; and qph|ak
i = ∑

j 6=i
q
ph|ak
i,j .

Based on Eq. 3.1, the dynamics of “Phone” may change following the state of

“AU”. For example, if “AU” is at its a0 state, the dynamics of “Phone” will be

controlled by its CIM QPhone|AU=a0 ; while the intensity matrix QPhone|AU=a1 will be

employed after “AU” transitions to its a1 state.

Given the initial states of “Phone” and “AU” at time t = 0 (Phone = phi and

AU = ak), the probability of Phone remaining at its initial state phi is specified by
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the probability density function as [70]:

f(t) = q
ph|ak
i e−q

ph|ak
i t, t ≥ 0 (3.2)

Then, the expected time of transition of “Phone”, i.e., leaving from the ith state to

any of the other states, can be computed as 1
q

ph|ak
i

. When transition occurs, “Phone”

transitions from its ith state to its jth state with probability denoted by θi,j|ak
=

q
ph|ak
i,j

q
ph|ak
i

[70].

Model Parameterization for “AU” and “Op”

The state of “AU” may also change according to the state of “Phone”. Following the

previous example of producing a phoneme P, the probability of AU24 (lip presser)

should decrease rapidly if the sound is emitted in the Aspiration phase. Such rela-

tionships can be captured by a directed link from “Phone” to “AU”. Then, the CIM

of “AU” given the ith state of “Phone” is denoted by QAU|Phone=phi
and can be de-

fined similarly as Eq. 3.1. Likewise, the CIM of “Op” given the ith state of “Phone”

(QOp|Phone=phi
) captures the measurement uncertainty of speech recognition and is

defined similarly as Eq. 3.1.

3.2.4 Parameter Estimation

The model parameters of a CTBN include the initial distribution Pr0 specified by a

Bayesian network, the structure of CTBN, and the CIMs. The initial distribution Pr0

can be estimated given the groundtruth AU and phoneme labels of the first frames

of all sequences. It becomes less important in the context of CTBN inference and

learning when we assume the model is irreducible, especially when the time range

becomes significantly large [108]. Thus, as the CTBN model structure is given as

shown in Fig. 3.5, the model parameters we should learn are the expected time of

transitions, i.e., 1
q

ph|ak
i

, and the transition probabilities, i.e., θi,j|ak
. In this work, the

groundtruth AU labels and the phoneme labels are manually annotated, and thus
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the training data D is complete, i.e., for each time point along each trajectory, the

instantiation of all variables is known. Then, we can estimate the parameters of a

CTBN efficiently using Maximum Likelihood estimation (MLE) [71]. In particular,

the likelihood function can be factorized as the product of a set of local likelihood

functions as below:

L(q,θ : D) =
∏
X∈X

L
X

(qX|V
X
,θX|V

X
: D)

=
∏
X∈X

L
X

(qX|V
X

: D)L
X

(θX|V
X

: D) (3.3)

where X consists of all random variables in the CTBN, i.e., “AU”, “Phone”, and

“Op” in this work; X ∈ X is a random variable with M states and has a set of parent

nodes denoted by V
X
. qX|V

X
is a set of parameters characterizing the expected time

of transition from the current state of X to any of the other states given its parent

nodes V
X
, i.e., the diagonal elements of QX|V

X
; and θX|V

X
represents the transition

probabilities of X given its parent nodes V
X
, i.e., the off-diagonal elements of QX|V

X
.

Given an instantiation of the parent nodes, i.e., V
X

= v
X
, the sufficient statistics

are T [xi|vX
] representing the total length of time that X stays at the state xi and

N [xi, xj|vX
] representing the number of transitions of X from the state xi to the state

xj. With the sufficient statistics, L
X

(qX|V
X

: D) and L
X

(θX|V
X

: D) in Eq. 3.3 can

be calculated as follows [71],

L
X

(qX|V
X

: D)

=
∏
v

X

∏
i∈M

(qX|vX
i )

N [xi|v
X

]
exp

(
−qX|vX

i T [xi|vX
]
)

(3.4)

where qX|vX
i is the ith diagonal element in the CIM of X given an instantiation of

its parent nodes (QX|v
X
, referring to Eq. 3.1); and N [xi|vX

] = ∑
j∈M,j 6=i

N [xi, xj|vX
]

represents the total number of transitions leaving from the state xi.

L
X

(θX|V
X

: D) =
∏
v

X

∏
i∈M

∏
j∈M,j 6=i

(θi,j|v
X

)N [xi,xj |vX
] (3.5)
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where θi,j|v
X

= q
X|v

X
i,j

q
X|v

X
i

represents the transition probability from the ith state of X to

the jth state, given an instantiation of its parent nodes v
X
.

By substituting Eq. 3.4 and Eq. 3.5 into Eq. 3.3, the log-likelihood for X can be

obtained as below

`
X

(qX|V
X
,θX|V

X
: D) = `

X
(qX|V

X
: D) + `

X
(θX|V

X
: D)

=
∑
v

X

∑
i∈M

N [xi|vX
]ln(qX|vX

i )− qX|vX
i T [xi|vX

]

+
∑
v

X

∑
i∈M

∑
j∈M,j 6=i

N [xi, xj|vX
]lnθi,j|v

X
(3.6)

By maximizing Eq. 3.6, the model parameters can be estimated as follows [72]:

q̂
X|v

X
i = N [xi|vX

]
T [xi|vX

] (3.7)

θ̂i,j|v
X

= N [xi, xj|vX
]

N [xi|vX
] (3.8)

3.2.5 Phoneme Measurements Acquisition

In this work, a state-of-the-art speech recognition approach, i.e., Kaldi toolkit [77], is

employed to obtain the phoneme measurements. In particular, 13-dimensional MFCC

features [20] are first extracted, based on which, Kaldi is used to produce word-level

speech recognition results, which are further aligned into phoneme-level segments.

These phoneme-level segments are then fed into the CTBN model as the evidence.

Note that, the evidence is given as a continuous event and the gaps between two

successive phonemes are considered as silence.

3.2.6 AU Recognition via CTBN Inference

Given the fully observed evidence, i.e., phoneme measurements denoted by Ep, and

a prior distribution, Pr0, over the variables at time t0, AU recognition is performed

by estimating the posterior probability Pr(AU|Ep) via the CTBN model. Exact

inference can be performed by flattening all CIMs into a single intensity matrix Q
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using amalgamation, which will be treated as a homogeneous Markov process [70],

where the intensity values in Q stay the same over time. However, exact inference

is infeasible for this work as the state space grows exponentially large as the number

of variables increases. In this work, we employ auxiliary Gibbs sampling [81], which

takes a Markov Chain Monte Carlo (MCMC) approach to estimate the distribution

given evidence, implemented in the CTBN reasoning and learning engine (CTBN-

rle) [92] to perform CTBN inference.

Since the state of the “AU” node corresponds to the joint states of 7 speech-related

AUs, the inference results would be the joint probability of those AUs. Then, the

posterior probability of a target AU given the evidence can be obtained by marginal-

izing out all the other AUs. Optimal states of the target AUs can be estimated by

maximizing the posterior probability.

3.3 Experiments

To demonstrate the effectiveness of the proposed approach, the proposed method

was compared with four state-of-the-art visual-based methods, five state-of-the-art

audio-based methods, and two baseline methods based on probabilistic modeling 1.

3.3.1 Baseline Methods for Comparison

To demonstrate the effectiveness of the proposed audio-based AU recognition frame-

work, we compared the proposed method, denoted as CTBN, with four state-of-the-

art visual-based methods, five state-of-the-art audio-based methods, and two base-

line audio-based methods using probabilistic modeling on the AU-coded audiovisual

database.

1The two baseline methods using probabilistic modeling are developed in this work
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Baseline Visual-based Methods

Ada-LBP: The first visual-based baseline method, denoted as Ada-LBP [37, 62],

employs histogram of LBP features, which have been shown to be effective in facial

AU recognition. Specifically, face regions across different facial images are aligned to

remove the scale and positional variance based on a face and eye detector and then

cropped to 96 × 64 for preprocessing purposes 2. Then, the cropped face region is

divided with a 7 × 7 grid, from each subregion of which, LBP histograms with 59

bins are extracted. AdaBoost is employed to select the most discriminative features,

which are used to construct a strong classifier for each AU.

Ada-LPQ: The second visual-based baseline method, denoted as Ada-LPQ [45],

employs histogram of LPQ features. Specifically, the face region is divided into 7× 7

grid, from each of which, LPQ histograms with 256 bins are extracted. Similar to the

Ada-LBP, AdaBoost is employed for feature selection and classifier construction for

each AU.

SVM-LGBP: The third visual-based baseline method, denoted as SVM-LGBP,

employed histogram of LGBP features [90, 102, 61]. Particularly, the face region is

convolved with 18 Gabor filters, i.e. three wavelengths λ = {3, 6.3, 13.23} and six

orientations θ = {0, π6 ,
π
3 ,

π
2 ,

2π
3 ,

5π
6 }, with a phase offset ψ = 0, a standard deviation

of the Gaussian envelope σ = 5π
36 , and a spatial aspect ratio γ = 1, which results

in 18 Gabor magnitude response maps. Each of the response maps is divided into

a 7 × 7 grid, from each of which, LBP histograms with 59 bins are extracted and

concatenated as LGBP features. For each AU, AdaBoost is employed to select 400

LGBP features, which are employed to train an SVM classifier.

IB-CNN-LIP: The fourth visual-based baseline method, denoted as IB-CNN-

LIP, employed a deep learning based model, i.e. Incremental Boosting Convolutional

2All the visual-based baseline methods employed the same preprocessing strategy. Except the
IB-CNN-LIP, which employed a 96× 96 face region, all methods used a 96× 64 face region.
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Neural Network (IB-CNN) [36] for facial AU recognition. Since only the lower-part of

the face is responsible for producing the speech-related AUs, the aligned and cropped

lip region along with the landmarks on lips are employed in a two-stream IB-CNN to

learn both appearance and geometry information for each target AU.

Baseline Audio-based Methods

SVM-GeMAPS and SVM-ComParE: The first and second audio-based base-

lines employ low-level audio features, i.e. 18-dimensional GeMAPS features and

130-dimensional ComParE features, extracted from the audio channel using openS-

MILE [25], denoted as SVM-GeMAPS and SVM-ComParE, respectively. In addition,

a z−score normalization is performed for each subject to compensate the inter-subject

variations. An SVM is trained for each target AU using LIBSVM toolbox [17].

LSTM-GeMAPS and LSTM-ComParE: The third and fourth audio-based

baselines employ the same GeMAPS and ComParE features described above. For

each target AU, a Long-Short Term Memory (LSTM) network is employed to learn

the temporal dependencies. The LSTM network, implemented using TensorFlow

library [1], consists of 3 hidden layers with 156, 256, and 156 hidden units, respectively.

Ada-MFCC: The last audio-based baseline method, denoted as Ada-MFCC, em-

ploys low-level audio features, i.e., 13-dimensional MFCC features, extracted from the

audio channel. In addition, 7 frames of the MFCC features, i.e. 3 frames before and

after the current frame along with the current one, are concatenated as the final

MFCC features employed as the input to train an AdaBoost classifier for each AU.

Because of the different sampling rate used in visual and audio channels, a cubic

spline interpolation method is employed to synchronize the acoustic features with the

image frames [62] for all audio-based methods.
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Figure 3.6 A DBN model learned from the clean subset for modeling the semantic and
dynamic relationships between AUs and phonemes. The directed links in the same time
slice represent the semantic relationships among the nodes; the self-loop at each node
represents its temporal evolution; and the directed links across two time slices represent
the dynamic dependency between the two nodes. The shaded node is the measurement
node and employed as evidence for inference; and the unshaded nodes are hidden nodes,
whose states can be estimated by inferring over the trained DBN model.

SIL SILCH AE P SContinuous Phoneme-level Segments

Image Frames

Aligned Phoneme Sequence

Figure 3.7 An illustration of discretizing continuous phoneme segments into
frame-by-frame phoneme measurements for the word “chaps”. The first row gives the
phoneme-level segments obtained by Kaldi [77]. The second row shows a sequence of
image frames, to which the phonemes will be aligned. The last row depicts the aligned
sequence of phoneme measurements. Best viewed in color.
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Baseline Probabilistic-model-based Methods

DBN: The first baseline probabilistic-model-based method, denoted as DBN, em-

ploys a Dynamic Bayesian Network (DBN) to model the semantic and dynamic re-

lationships between phonemes and AUs. Specifically, the DBN structure as shown

in Fig. 3.6 as well as the DBN parameters are learned using the Bayes Net Tool-

box [64] from the clean subset. In order to synchronize phoneme measurements with

the image frames, the continuous phoneme segments obtained by speech recognition

are discretized according to the sampling rate of the image frames, as illustrated in

Fig. 3.7. Then, AU recognition is performed by DBN inference given the discretized

phoneme measurements.

CTBN-F: The last baseline method, denoted as CTBN-F, which is short for

CTBN-Factorized, employs a factorized CTBN to explicitly model the dynamic and

physiological relationships between phonemes and each AU as well as the dynamic

relationships among AUs. As shown in Fig. 3.8, each AU is represented by an indi-

vidual node with 2 states, i.e. “absence” and “presence”, in contrast to a combined

node in Fig. 3.5. The directed link between “Phone” and each AU node represents

the dynamic and physiological relationships between phonemes and the AU. Those

between AU nodes capture the dynamic interactions among AUs and are learned from

the data using CTBN-rle [92]. The model parameters, i.e., the CIMs, are estimated

as described in Section 3.2.4 from the training data.

Both DBN (Fig. 3.6) and CTBN-F (Fig. 3.8) capture dynamic relationships

between AUs and phonemes. However, the dynamic dependencies from AUs to

phonemes are not learned and modeled in a DBN. This is because the penalty for

adding a link from an AU node to the phoneme node is much higher than that from

the phoneme node to AU nodes for the 29-state phoneme node. In addition, since

loops are allowed in a CTBN model, there is a loop between AU24 and AU25 in

CTBN-F indicating the strong dynamic relationships between those two AUs.

48



AU20 AU22 AU25AU24 AU26 AU27

OP

AU18

Phone

Figure 3.8 The structure of a CTBN-F model trained on the clean subset for modeling
the dynamic physiological relationships between AUs and phonemes.

Note that the Ada-MFCC, DBN, and CTBN-F methods are proposed in this work

for recognizing speech-related AUs using only audio information.

3.3.2 Experimental Results and Data Analysis on the Clean Subset

We first evaluate the proposed CTBN model on the clean subset. For all methods

compared, a leave-one-subject-out training/testing strategy is employed, where the

data from 8 subjects is used for training and the remaining data is used for testing.

Quantitative experimental results on the clean subset are reported in Fig. 3.9 in

terms of F1 score, true positive rate, and false positive rate. As shown in Fig. 3.9,

the proposed CTBN model outperformed all the baseline methods significantly in

terms of the average F1 score (0.653).

Compared with Ada-LBP, Ada-LPQ, and SVM-LGBP, which employ ap-

pearance information from the visual channel, the overall AU recognition performance

is improved from 0.416 (Ada-LBP), 0.448 (Ada-LPQ), and 0.386 (SVM-LGBP) to

0.653 by the proposed CTBN model in terms of the average F1 score. As shown

in Fig. 3.9, CTBN outperforms Ada-LBP, Ada-LPQ, and SVM-LGBP for all target

AUs, which demonstrates the effectiveness of using information extracted from the
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(a)
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Figure 3.9 Performance comparison on the clean subset in terms of (a) F1 score,
(b) true positive rate, and (c) false positive rate for the 7 speech-related AUs.

audio channel. The improvement is more impressive for AU27 (mouth stretch), i.e.,

0.755 by CTBN versus 0.273 by Ada-LBP, 0.279 by Ada-LPQ, and 0.296 by SVM-

LGBP, since the visual observation of AU27 is not reliable during speech due to the

occlusion caused by lip movements as illustrated in Fig. 3.1.

Compared with IB-CNN-LIP, which employs both appearance and geometry
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information from the visual channel, the overall AU recognition performance is im-

proved from 0.465 (IB-CNN-LIP) to 0.653 by the proposed CTBN in terms of the

average F1 score. Not surprisingly, the IB-CNN-LIP outperforms the other visual-

based approaches that employ only appearance features. In addition, it also performs

better than the proposed CTBN on AU25 (lips part) because both the appearance

and geometry clues from the visual channel are strong for AU25. In contrast, dras-

tic improvement is achieved for AU26 (jaw drop), from 0.367 by IB-CNN-LIP to

0.748 by CTBN, because the appearance information for AU26 is invisible due to

the occlusion as depicted in Fig. 3.1 and the geometrical change is subtle during

speech.

Compared with SVM-GeMAPS and SVM-ComParE, which employ low-

level acoustic features for facial AU recognition, the overall AU recognition perfor-

mance in terms of F1 score is improved from 0.251 (SVM-GeMAPS) and 0.342

(SVM-ComParE) to 0.653 using the proposed CTBN. GeMAPS and ComParE have

been designed to model short-term paralinguistic [25], i.e. non-lexical, states for

emotion recognition, and thus are not favorable to capture the relationships between

speech and facial appearance changes. In addition, both SVM-GeMAPS and SVM-

ComParE do not perform well on AU20 and AU24 because they have the lowest

numbers of occurrence in our dataset as shown in Table 1.1 in Chapter 1.

Compared with LSTM-GeMAPS and LSTM-ComParE, which employ

low-level acoustic features and LSTM that models dynamics in the audio chan-

nel, the overall AU recognition performance in terms of F1 score is improved from

0.427 (LSTM-GeMAPS) and 0.498 (LSTM-ComParE) to 0.653 using the proposed

CTBN. The performance improvement is owing to explicit modeling relationships be-

tween phonemes and AUs as well as relationships among AUs.

Compared with Ada-MFCC, which employs low-level acoustic features ex-

tracted in a sequence (7 frames), the proposed CTBN improves the overall AU recog-
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nition performance by 0.217 in terms of the average F1 score. Furthermore, the

CTBN outperforms the Ada-MFCC for all AUs notably by employing more accu-

rate and reliable higher level audio information, i.e., the phonemes, thanks to the

advanced speech recognition techniques, and more importantly, by exploiting the

dynamic physiological relationships between AUs and phonemes.

Compared with DBN, the proposed CTBN improves the overall AU recogni-

tion performance by 0.138, in terms of the average F1 score. Particularly, the F1

scores of CTBN are better than or at least comparable to those of DBN for all AUs,

as shown in Fig. 3.9. The primary reason for the performance improvement is that

the dynamic dependencies modeled in DBN are stationary; whereas the relationships

between AUs and phonemes actually undergo a temporal evolution as modeled in

the CTBN. For example, the F1 score of AU24 (lip presser) is dramatically improved

from 0.158 by DBN to 0.603 by CTBN, because AU24 is activated before the sound

is produced and released once the sound is heard, which can be better modeled in

CTBN. Note that DBN fails to recognize AU20 (lip stretcher). Although AU20 is

required to produce AE in chaps according to Phonetics [13], some subjects did not

activate AU20 as observed in our audiovisual dataset and thus, the semantic relation-

ship between Phone and AU20 is rather weak. However, no dynamic link is learned

between Phone and AU20 in DBN. In contrast, dynamic relationships between AUs

and phonemes modeled by CTBN are more crucial for inferring AU20. As a result,

the F1 score of AU20 is improved from 0 by DBN to 0.314 by CTBN. We found that

DBN performs slightly better on AU18 (lip pucker) and AU22 (lip funneler) than

CTBN. This is because AU18 and AU22 have the strongest static relationships with

phonemes: when pronouncing UW in two and CH in cheese, they are activated for

most of subjects.

Compared with CTBN-F, the proposed CTBN further improves the overall

AU recognition performance by 0.057, in terms of the average F1 score. By employing
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Figure 3.10 An example of the system outputs by CTBN inference using CTBN and
CTBN-F, respectively. The top row shows key frames from an image sequence where a
word “beige” is produced, where AU22, AU24, AU25, and AU26 are involved. The
bottom two figures depict the probabilities of AUs changing over time by CTBN and
CTBN-F, respectively. The shaded phoneme sequence is used as evidence of the CTBN
models and the unshaded one is the ground truth phoneme labels. The vertical green line
denotes the time point when AU24 is released, while the vertical garnet line denotes the
time point when AU25 is activated. The two lines are overlapped with each other in the
CTBN output. Best viewed in color.
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one single node to model the joint distribution over the 7 target AUs, comprehensive

relationships between AUs and phonemes, i.e., AUs occur in combinations to produce

sounds, can be well characterized as discussed in Section 3.2.2.

In addition, Fig. 3.10 gives an example of the system outputs of the CTBN and

CTBN-F, i.e., the probabilities of AUs given the phoneme measurements (the shaded

phoneme sequence), by the CTBN inference over continuous time. For both CTBN

and CTBN-F, the probabilities of AUs change corresponding to the transitions of

phonemes, when sounding a word “beige”. For example, the probability of AU24

increases and reaches its apex before the phoneme B is produced. AU26 can be

recognized even though the gap between upper and lower teeth is invisible in visual

channel because the presence of AU24. When the sound B is emitted, the probability

of AU24 drops rapidly, while the probability of AU25 increases. The vertical green

line denotes the time point when AU24 is released, while the vertical garnet line

denotes the time point when AU25 is activated. Ideally, they should overlap with

each other due to the transition from the “Closure” phase to the “Release” phase of

sounding B, as the result of the CTBN (the top plot). Whereas, a noticeable gap

between the two lines can be observed in the result of the CTBN-F (the bottom

plot) because that no two AUs are allowed to change states at the same time in the

factorized CTBN.

Moreover, we analyzed the relationships learned by CTBN. Table 3.1 depicts a

part of the CIM associated with the “AU” node given the state of “Phone” as

B, where the first row and column give the states of “AU” with the corresponding

AU/AU combinations. For example, if “AU” is at its 10th state, i.e., AU24 and AU26

are activated, the corresponding conditional intensity value in the CIM is −16.72. As

described in Section 3.2.3, the “AU” node is expected to transit in 1
16.72s. Upon

transition, it has a higher chance to transit to its 6th state (AU25+AU26) with a

probability of 9.12
16.72 . However, if the lip movement is not fast, i.e., AU25 is not acti-
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Figure 3.11 A DBN model learned from the challenging subset for modeling the
semantic and dynamic relationships between AUs and phonemes.

vated when AU24 is released, it may transit to its 2nd state (AU26) with a probability

of 6.59
16.72 . Then, the “AU” node will leave this state quickly in 1

40.47s and transit to its

6th state with a high probability of 32.37
40.47 .

Compared with other AUs, the performance of CTBN on AU20 and AU22 is

relatively low. This is mainly because of the high inter-subject variations for these

two AUs as discussed in Section 3.2.1.

3.3.3 Experimental Results on the Challenging Subset of the Audiovisual

Database

Experiments were conducted on the challenging subset to demonstrate the effective-

ness of the proposed audio-based facial AU recognition under real world conditions,

where facial activities are accompanied by free head movements, illumination changes,

and often with occlusions of the face regions caused by facial hairs, caps, or glasses.

The proposed CTBN model, the state-of-the-art audio-based and visual-based

methods, and the baseline methods were trained and tested on the challenging subset
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Table 3.1 A part of the CIM associated with the “AU” node given the state of
“Phone” as B, where the first row and column give the states of “AU” node with the
corresponding AU/AU combinations in the parenthesis.

0 · · · 2(AU26) · · · 6(AU25+AU26) · · · 10(AU24+AU26) · · ·
0 −10.07 · · · 0 · · · 0 · · · 0 · · ·
... ... ... ... ... ... ... ... ...
2 0 · · · −40.47 · · · 32.37 · · · 8.09 · · ·
... ... ... ... ... ... ... ... ...
6 1.23 · · · 0 · · · −1.23 · · · 0 · · ·
... ... ... ... ... ... ... ... ...

10 0 · · · 6.59 · · · 9.12 · · · −16.72 · · ·
... ... ... ... ... ... ... ... ...

using a leave-one-subject-out strategy. Since there are only 6 subjects in the chal-

lenging subset, we employed the data in the clean subset except those of the two

subjects, who also appear in the challenging subset, as additional training data to

ensure a subject-independent context. Specifically, the data of 5 subjects from the

challenging subset along with the data of 7 subjects from the clean subset is used

as the training data, and the remaining one subject from the challenging subset is

employed as the testing data.

The structures of the DBN and CTBN-F trained on the challenging data are

shown in Fig. 3.11 and Fig. 3.12, respectively. Comparing Fig. 3.6 and Fig. 3.11, we

can see that the dynamic relationships from phonemes to AUs become more impor-

tant on the challenging subset in the DBN model, i.e. more temporal links are learned

from the phoneme node of the t − 1th slice to AU nodes of the tth slice in Fig. 3.11.

This is because the labeling uncertainty of AUs is alleviated in the challenging sub-

set, especially for non-frontal faces, since lip movement is often asymmetrical during

speech [15].
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Figure 3.12 A CTBN-F model trained on the challenging subset for modeling the
dynamic physiological relationships between AUs and phonemes.

Experimental Results and Discussion

Quantitative experimental results are reported in Fig. 3.13 in terms of F1 score,

true positive rate, and false positive rate. As shown in Fig. 3.13, the proposed CTBN

achieved the best recognition performance among all the methods compared, in terms

of the average F1 score (0.682).

Note that the performance of the visual-based methods degrades significantly on

the challenging subset even with more training data. As shown in Table 3.2, the

average F1 score of Ada-LBP decreases from 0.416 (clean) to 0.372 (challenging);

that of Ada-LPQ decreases from 0.448 (clean) to 0.362 (challenging); that of SVM-

LGBP decreases from 0.386 (clean) to 0.339 (challenging); and that of IB-CNN-

LIP drops from 0.465 to 0.382 due to large face pose variations and occlusions on

the face regions. In contrast, the information extracted from the audio channel is

robust to head movements and occlusions for facial AU recognition. As a result, the

performance of the audio-based methods on the challenging subset is comparable or

even slightly better than that on the clean subset because of employing additional

training data, as reported in Table 3.2.
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Figure 3.13 Performance comparison on the challenging subset in terms of (a) F1
score, (b) true positive rate, and (c) false positive rate for the 7 speech-related AUs.

3.3.4 Analysis on Phoneme Measurement

The proposed audiovisual fusion framework benefits from the remarkable achieve-

ments in speech recognition. In our experiments, the speech recognition perfor-

mance of the Kaldi Toolkit [77] is 2.8% (15/540) on the clean subset and 2.8%

(10/360) on the challenging subset in terms of the word-level error rate (WER,
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Table 3.2 Performance comparison on the two subsets in terms of the average F1 score.

Approaches Clean Challenging
Ada-LBP [62] 0.416 0.372
Ada-LPQ [45] 0.448 0.362

SVM-LGBP [61] 0.386 0.339
IB-CNN-LIP [36] 0.465 0.382
SVM-GeMAPS [84] 0.251 0.251
SVM-ComParE [84] 0.342 0.358
LSTM-GeMAPS [84] 0.427 0.442
LSTM-ComParE [84] 0.498 0.490

Ada-MFCC [62] 0.436 0.445
DBN 0.515 0.534

CTBN-F 0.596 0.589
CTBN 0.653 0.682

[insert+delete+substitute]/[number of words]). Moreover, the phoneme recognition

rates measured in phoneme error rates (phonemes that have been mis-classified / num-

ber of phonemes) are 100/1350 (7%) and 142/2025 (7%) for the clean and challenging

subsets, respectively. To evaluate the effect of phoneme measurement on fusion, we

have conducted an experiment using the ground-truth phoneme segments as the evi-

dence for the CTBN model, denoted as CTBN-perfect. As shown in Fig. 3.15, CTBN

using phoneme measurements from speech recognition yields comparable performance

with CTBN-perfect using ground-truth phoneme segments.

3.4 Conclusion

It is challenging to recognize speech-related AUs due to the subtle facial appearance

and geometrical changes as well as occlusions introduced by frequent lip movements.

In this work, we proposed a novel audio-based AU recognition framework by exploit-

ing information from the audio channel, i.e., phonemes in particular, because facial

activities are highly correlated with voice. Specifically, a CTBN model is employed

to model the dynamic and physiological relationships between phonemes and AUs,
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Figure 3.14 An example of the system outputs by CTBN inference on the challenging
subset. The top row shows key frames from an image sequence where a word “beige” is
produced and AU22, AU24, AU25, and AU26 are involved. The bottom figure depicts the
probabilities of AUs changing over time. The shaded phoneme sequence is used as
evidence of the CTBN and the unshaded one is the ground truth phoneme labels.. Best
viewed in color.

as well as the temporal evolution of these relationships. Given the phoneme mea-

surements, AU recognition is then performed by probabilistic inference through the

CTBN model.

Experimental results on a new audiovisual AU-coded dataset have demonstrated

that the CTBN model achieved significant improvement over the state-of-the-art

visual-based AU recognition methods. The improvement is more impressive for those

AUs, whose visual observations are impaired during speech. More importantly, the

experimental results on the challenging subset have demonstrated the effectiveness

of utilizing audio information for recognizing speech-related AUs under real world
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(a) (b)

Figure 3.15 Performance comparison between CTBN and CTBN-perfect in terms
of F1 score on (a) the clean subset and (b) the challenging subset.

conditions, where the visual observations are not reliable. Furthermore, the proposed

CTBN model also outperformed the other baseline methods employing audio signals,

thanks to explicitly modeling the dynamic interactions between phonemes and AUs

in the context of human communication.
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Chapter 4

Improving Speech Related Facial Action Unit

Recognition by Audiovisual Information Fusion
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/m/ in move

AU24 (lip presser)

AU26 (jaw drop)

/ :/ in water

AU18 (lip pucker)

AU25 (lips part)

AU27 (mouth stretch)

(a) (b)

Figure 4.1 Examples of speech-related facial activities, where different AUs are
activated non-additively to produce sound. (a) The gap between teeth is occluded
by the pressed lips in a combination of AU24 and AU26 when sounding /m/ and (b)
the space between teeth is partially occluded due to the protruded lips in a
combination of AU18, AU25, and AU27 when producing /O:/.

4.1 Motivation

Extensive research efforts have been focused on recognizing facial AUs from static

images or image sequences as discussed in the survey papers [76, 119, 86, 58]. Al-

though great progress has been achieved on posed or deliberate facial displays, fa-

cial AU recognition suffers significantly for spontaneous facial behavior [104, 102].

Furthermore, it is extremely challenging to recognize AUs that are responsible for

producing speech. During speech, these AUs are generally activated at a low intensity

with subtle changes in facial appearance and facial geometry and more importantly,

often produce non-additive appearance changes, which introduces challenges for de-

tecting co-occurring AUs [23]. For instance, as illustrated in Fig. 4.1(a), recognizing

AU26 (jaw drop) from a combination of AU24 (lip presser) and AU26 is almost impos-

sible from visual observations when voicing /m/. The reason is that the gap between

teeth, which is the major facial appearance clue to recognize AU26 [23], is invisible

due to the occlusion by the pressed lips. In another example, when producing /O:/, as

shown in Fig. 4.1(b), AU27 (mouth stretch) would probably be recognized as AU26

because the gap between teeth is partially occluded by protruding lips, i.e., AU18 (lip

pucker), and thus, looks much smaller than that when only AU27 is activated. The
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Figure 4.2 The flowchart of the proposed audiovisual AU recognition system.

failure in recognition of speech-related AUs is because information is extracted from

a single source, i.e., the visual channel. As a result, all speech-related AUs are either

represented by a uniform code [23, 104], i.e., AD 50, or totally ignored [102], during

speech. However, it is critical to identify and differentiate the AUs that are respon-

sible for producing voice from those for expressing emotion and intention, especially

during emotional speech.

Instead of solely improving visual observations of AUs, this work aims to explore

and exploit the relationships between facial activity and voice to recognize speech-

related AUs. Specifically, there are two types of correlations between facial AUs

and phonemes. First, some lower-face facial AUs and voice can be physiologically

correlated since jaw and lower-face facial muscles are highly involved in speech pro-

duction. These relationships are well recognized and have been exploited in natural

human communications. For example, without looking at the face, people will know
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that the other person is opening mouth as hearing “ah”. Following the example of

recognizing AU26 from a combination of AU24 and AU26 as illustrated in Fig. 4.1(a),

people can easily guess both AU24 and AU26 are activated because of a sound /m/,

although AU26 is invisible from the visual channel. Second, facial AUs and speech

can be emotionally correlated, since both facial AUs and voice/speech convey hu-

man emotions in human communications. In this work, we will focus on studying

and exploiting the physiological relationships between facial AUs and speech, since

these relationships are emotion and context independent, and can generalize better

to various contexts.

Since speech can be represented by a sequence of phonemes, each of which is

defined as the smallest sound unit in a language, the relationships between AUs and

phonemes will be investigated and explicitly modeled in this work. Specifically, a

phoneme is usually produced by combinations of AUs; and, more importantly, dif-

ferent combinations of AUs are activated sequentially to produce different phases for

the same phoneme. For example, /b/ is produced in two consecutive stages, i.e., clo-

sure and release, where AU24 + AU26 and AU25 (lips part) + AU26 are activated,

sequentially. Because the physiological relationships between AUs and phonemes are

dynamic and stochastic, varying in subjects and languages, we propose to systemati-

cally and probabilistically model these relationships by a dynamic Bayesian network

(DBN).

Fig. 4.2 depicts the flowchart of the proposed audiovisual AU recognition system.

During training (Fig. 4.2(a)), a DBN model is learned from the ground truth labels

of AUs and phonemes to capture the physiological relationships between AUs and

phonemes as well as modeling measurement uncertainty of AUs and phonemes. For

online AU recognition (Fig. 4.2(b)), AU measurements obtained by visual-based AU

recognition and phoneme measurements obtained by speech recognition are employed

as evidence for the DBN model. Then, AU recognition is performed by audiovisual
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information fusion via DBN inference.

In summary, our work has two major contributions.

• A novel audiovisual AU recognition framework is proposed to make the best

use of visual and acoustic cues, as humans do naturally.

• Semantic and dynamic physiological relationships between AUs and phonemes

as well as measurement uncertainty of AUs and phonemes are systematically

modeled and explicitly exploited by a DBN model to improve AU recognition.

Experimental results on a pilot audiovisual AU-coded database [63] demonstrate

that the proposed framework yields significant improvement for speech-related AU

recognition compared with the state-of-the-art visual-based methods, especially for

those AUs, whose visual observations are severely impaired during speech. Moreover,

the proposed method also outperforms the audio-based methods and the feature-level

fusion methods, owing to explicitly utilizing the semantic and dynamic physiological

relationships between facial AUs and phonemes.

4.2 Methodology

4.2.1 Modeling Semantic Physiological Relationships between Phonemes

and AUs

A phoneme is defined as the smallest sound unit in a language. In this work, a

phoneme set defined by the CMU pronouncing dictionary (CMUdict) [106] is em-

ployed, which is developed for speech recognition and describes North American En-

glish words using 39 phonemes 1. Since each phoneme is anatomically related to a

1According to the CMUdict, the phoneme set and example words, given in the parenthesis, are
listed as follows: AA (odd), AE (at), AH (hut), AO (awful), AW (cow), AY (hide), B (be), CH
(cheese), D (dee), DH (thee), EH (Ed), ER (hurt), EY (ate), F (f ee), G (green), HH (he), IH
(it), IY (eat), JH (gee), K (key), L (lee), M (me), N (knee), NG (ping), OW (oat), OY (toy),
P (pee), R (read), S (sea), SH (she), T (tea), TH (theta), UH (hood), UW (two), V (vee), W
(we), Y (yield), Z (zee), ZH (seizure) [106].
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B (beige)

AU24+26

EY (beige)

AU25+26

ZH (beige)

AU22+25

(a) (b) (c)

Figure 4.3 Examples of the semantic physiological relationships between phonemes
and AUs. To produce a word beige, different combinations of AUs are activated
successively.

specific set of jaw and lower-face muscular movements, different combinations of AUs

are activated to produce different phonemes. Taking the word beige for example, a

combination of AU24 and AU26 is first activated to produce the Closure phase of

phoneme B (Fig. 4.3a), and then a combination of AU25 and AU26 is activated in

the Release phase of B and move on to sound EY (Fig. 4.3b). Finally, AU26 is

released and AU22 and AU25 are responsible for sounding ZH (Fig. 4.3c). These

physiological relationships are “semantic” because they are context-dependent. For

example, the physiological relationships learned and modeled in this work depend on

North America English phonetics, where legal words are constructed by producing

phonemes sequentially based on certain phonetics rules.

These semantic physiological relationships are stochastic and vary among subjects.

For example, AU20 (lip stretcher) is responsible for producing AE in at based on

Phonetics [13]; while some subjects do not activate AU20 in practice as found in our

audiovisual AU-coded database. In addition, due to the noise in both visual and

audio channels, the measurements of AUs and phonemes are not perfect. Instead

of employing direct mappings from phonemes to AUs, we propose to use a Bayesian

network (BN) to model these semantic relationships probabilistically.

Specifically, each target AU is associated with a node having two discrete states
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Figure 4.4 A BN models semantic physiological relationships between AUs and
phonemes as well as the relationships among AUs.

{0, 1} representing its absence or presence status. Phonemes are defined as unique

acoustic events and are mutually exclusive at the same time. During speech, a set

of phonemes are produced sequentially to speak a meaningful word; and the same

phoneme would not repeat itself in two consecutive sound events. Thus, we employ

a single node Phone with 29 discrete states representing 28 phonemes, which are

involved in producing the words in our audiovisual database, plus one silence state

denoted as SIL. Then, the node Phone can be in one of its 29 states at a certain time

to ensure the mutually exclusive relationships among the phonemes.

Learning Semantic Physiological Relationships

Given a complete training set including the groundtruth labels of AUs and phonemes,

a K2 algorithm [19], implemented in the Bayes Net Toolbox (BNT) [64], is employed

to learn the semantic physiological relationships between Phone and the AU nodes.

For a node Xi, the K2 algorithm finds the set of parents, denoted as Par(Xi) by

maximizing the following function [19]:

f(Xi, Par(Xi)) =
Mi∏
j=1

(Ki − 1)!
(Nij +Ki − 1)!

Ki∏
k=1

Nijk! (4.1)

68



Stop phase Release phase

AU24

Time
AU25

Time
AU26
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Figure 4.5 Illustration of the dynamic relationships between AUs and the phoneme
while producing B, where on-axis and off-axis colored lines represent absence and
presence of the corresponding AUs, respectively. Best viewed in color.

where Ki is the number of all possible states that Xi may take; Mi is the number of

all possible configurations of the parents of Xi; Nijk denotes the number of instances

when Xi is in its kth state and its parents take the jth configuration; and Nij =
Ki∑
k=1

Nijk.

A BN model learned by the K2 algorithm is shown in Fig. 4.4, where the nodes

represent random variables (Phone and AUs) and the directed links between them

represent the conditional dependency. Particularly, the links between Phone and

the AU nodes capture their semantic physiological relationships. In addition, since

AUs are activated in combinations to produce a meaningful sound, the relationships

among AUs are also captured in the BN model by the directed links among them.

4.2.2 Modeling Semantic and Dynamic Relationships using A Dynamic

Bayesian Network

By studying Phonetics [13], we know that there are strong physiological relationships

between AUs and phonemes. More importantly, these relationships also undergo

a temporal evolution. In particular, there are two kinds of dynamic relationships
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between AUs and phonemes.

On the one hand, as the facial muscular movements are activated before a sound

is generated [35, 95, 16], the probabilities of the AUs being activated increase and

reach an apex as the phoneme is fully made, and then decrease while preparing to

produce the next phoneme. On the other hand, different combinations of AUs are ac-

tivated in different phases for sounding a single phoneme. For example, as illustrated

in Fig. 4.5, the phoneme B in be has two sequential phases. In the first phase, i.e.

the Closure phase, the lips are pressed together as activating AU24; the upper and

the lower front teeth are usually parted as activating AU26; and “the breath is held

and compressed” [13] without emitting sound, i.e., the Phone node is in its silence

state SIL. As a result, the lip movements (AU24 and AU26) occur earlier than the

sound can be heard. In the second phase, i.e. the Release phase, the lips part by acti-

vating AU25 and the compressed breath is released suddenly as releasing AU24 [13].

Therefore, the physiological relationships between Phone and AUs change over time.

In addition, since the duration of the Closure phase varies across different subjects

and different words, these dynamic relationships are stochastic. Such semantic and

dynamic relationships can be well captured by extending the BN (Fig. 4.4) to a DBN,

which not only models the temporal evolution of AUs and phonemes but also models

the temporal dependencies among them.

Learning Dynamic Physiological Relationships

Given a complete set of training data sequences D = {D1, . . . , DS}, the dynamic

dependencies among AUs and phonemes, i.e., the transition model of a DBN, can be

learned by maximizing the following score function

Score(Btr) = log p(D|Btr) + log p(Btr) (4.2)

where Btr is a candidate structure of the transition model, and the two terms are the

log likelihood and the log prior of Btr, respectively. For a large data set, the first
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term can be approximated using Bayesian information criterion (BIC) [87] as:

log p(D|Btr) ≈ log p(D|θ̂Btr , Btr)−
q

2logS (4.3)

where θBtr is a set of model parameters; θ̂Btr is the maximum likelihood estimation

of θBtr ; q is the number of parameters in Btr; and S is the number of data samples

in D. In Eq. 4.3, the first term gives the log maximum likelihood of Btr and the

second term penalizes the model complexity. In this way, we can learn a DBN model

as shown in Fig. 4.6a.

Specifically, there are two types of dynamic links: self-loops and directed links

across two time slices, i.e., from the (t − 1)th time slice to the tth time slice. The

self-loop at each AU node represents the temporal evolution of each AU; while the

self-loop at the Phone node denotes the dynamic dependency between two phonemes.

For instance, a consonant is followed by a vowel at the most of time, and hence the

probability of a consonant followed by a vowel is much higher than that of a consonant

followed by another consonant. The directed links across two time slices characterize

the dynamic dependency between two variables, e.g., the dynamic physiological re-

lationships between phonemes and AUs as well as the dynamic relationships among

AUs.

Incorporating domain knowledge in the DBN Structure: As shown in Fig. 4.6,

the dynamic dependency between AUs in the (t − 1)th time slice and Phone in the

tth time slice, however, are not learned from data. This is because the penalty, i.e.

the second term in Eq. 4.3, for adding a link from an AU node to Phone is much

higher than that from Phone to AU for the 29-state Phone node. Therefore, we refine

the learned DBN model by combining the expert knowledge, i.e., the facial muscular

movements are activated before sounding a phoneme [35, 95, 16]. Specifically, the

dynamic links from AUs to Phone across two successive time slices are manually

added as depicted by the red dashed links in Fig 4.6b.
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Figure 4.6 A DBN model for audiovisual AU recognition: (a) the DBN structure
learned from data, and (b) the DBN structure by integrating expert knowledge into
the learned structure. Shaded nodes are the measurement nodes for the
corresponding AU nodes and the phoneme node Phone, respectively. The links
between the unshaded nodes and the shaded nodes characterize the measurement
uncertainty.

As shown in Fig. 4.6b, a comprehensive DBN model is constructed. There are

two types of nodes in the DBN model: measurement nodes and hidden nodes. The

measurement nodes, denoted by the shaded nodes, represent the measurements of

AUs denoted by Ov and the measurement of the phoneme denoted by Op, whose

states can be obtained by visual-based AU recognition and speech recognition, re-

spectively. The hidden nodes are denoted by the unshaded nodes, whose states need

to be estimated via probabilistic inference. This DBN model is capable of modeling

various interactions in the scenario of audio-visual AU recognition including the se-

mantic and dynamic physiological relationships between AUs and phonemes, semantic

and dynamic relationships among AUs, the dynamic relationships between different

phonemes, the temporal evolution of AUs, as well as measurement uncertainty.
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4.2.3 Learning Model Parameters

Given the model structure as shown in Fig. 4.6b, the DBN parameters, specified

as a set of conditional probabilistic tables (CPTs) associated with each node, can be

learned from a set of training dataD = {D1, D2, ...., DS}. The DBN can be considered

as an expanded BN consisting of two time slices of static BNs connected by dynamic

links. Hence, in addition to learning the CPTs within the same time slice as that

does for a static BN, the transition probabilities associated with the dynamic links

are also learned. Since the training data is complete in this work, the parameters of

the DBN can be estimated using Maximum Likelihood estimation (MLE).

4.2.4 Audiovisual AU Recognition via DBN Inference

Given all available observations from both visual and audio channels until the tth

time slice, i.e., O1:t
v and O1:t

p , AU recognition can be performed through probabilistic

inference via the DBN model. Specifically, the posterior probability of the target

AUs given all the observations, i.e., p(AUt|O1:t
v ,O1:t

p ), where AUt represents all tar-

get AUs at the tth time slice, can be factorized and computed by DBN inference.

In this work, a forward-backward inference algorithm implemented in the BNT is

employed [64]. Then, predictions of the target AUs can be made by maximizing the

posterior probability:

AUt∗ = argmax
AUt

p(AUt|O1:t
v ,O1:t

p ) (4.4)

4.3 Measurements Acquisition

To perform the probabilistic inference using the DBN model, the measurements of

AUs and the phoneme at each time slice are required. However, signals in different

channels are usually sampled at different time scales. For example, the images are

sampled at 60 frame per second (fps) and audio tracks are continuous in our audio-
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Continuous Phoneme-level Segments
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Figure 4.7 Aligning continuous phoneme segments with image frames for the word
gooey. The top row gives the phoneme-level segments obtained by Kaldi toolkit [77].
The bottom row depicts the discretized sequence of phoneme measurements, where
the same color indicates the same phoneme in the continuous phoneme-level
segments. The vertical lines in-between represent a sequence of image frames, to
which the phonemes will be aligned. Best viewed in color.

visual database. Here, we show how to get AU measurements and phoneme mea-

surements and how to align the measurements from two channels frame by frame.

4.3.1 Extracting AU Measurements

To illustrate the proposed method can be build upon any advanced visual-based facial

AU recognition method and achieve improvement on speech-related AU recognition,

two different state-of-the-art visual based AU recognition methods are employed to

extract AU measurements.

Extracting AU Measurements using LBP

In this work, a state-of-the-art visual-based AU recognition method is adopted [102] to

obtain AU measurements. For preprocessing purpose, the face regions across different

facial images are aligned to remove scale and positional variance [5] and then cropped

to 96×64, which are further divided into 7×7 grid. From each grid, LBP histograms

with 59 bins are extracted and then, concatenated into a single vector, which is

denoted as LBP feature. For each target AU, an AdaBoost classifier is employed

to select the most discriminative features from the LBP feature pool and construct

a strong classifier to perform facial AU recognition for each target AU. The binary
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classification results obtained from AdaBoost classifiers will be fed into the DBN

model as the AU measurements.

Extracting AU Measurements using LPQ

The second state-of-the-art visual-based AU recognition method adopted to obtain

AU measurements in this work is LPQ [45]. After the same preprocessing operations

as described in Section. 4.3.1, the facial images are divided into 7 × 7 grid. From

each grid, LPQ histograms with 256 bins are extracted and then, concatenated into a

single vector, which is denoted as LPQ feature. AdaBoost classifier is utilized to select

the most discriminative features and construct a strong classifier, which is employed

to produce binary classification results as the measurements for the DBN model for

each target AU.

4.3.2 Extracting Phoneme Measurements

In this work, a state-of-the-art speech recognition method, i.e., Kaldi toolkit [77],

is employed to obtain the phoneme measurements. Specifically, 13-dimensional Mel

Frequency Cepstral Coefficients (MFCCs) [20] features are extracted and employed

in Kaldi to get word-level speech recognition results, which are further divided into

phoneme-level segments as shown in Fig. 4.7. In order to obtain a phoneme measure-

ment for each time slice, which should be also synchronized with the AU measure-

ments, the continuous phoneme segments are discretized according to the sampling

rate of the image frames, i.e., 60 fps in our experiment. As illustrated in Fig. 4.7,

the first row shows the continuous phoneme-level segments for the word chaps; the

second row shows a sequence of image frames to be aligned to; and the last row

shows the frame-by-frame phoneme measurements, which are synchronized with the

image frames and will be fed into the DBN model as the measurements for Phone for

audiovisual AU recognition.
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4.4 Experiments

4.4.1 Methods in Comparison

Experiments have been conducted on the new audiovisual AU-coded dataset to illus-

trate the effectiveness of the proposed framework, as shown in Fig. 4.6, in improving

the recognition performance for speech-related AUs. In this work, we built the pro-

posed approach upon two state-of-the-art visual-based methods, i.e. LBP-based and

LPQ-based methods, denoted as DBN-LBP-AV+E and DBN-LPQ-AV+E2, respec-

tively. Each method is first compared with the state-of-the-art visual-based methods

utilizing the same features. Furthermore, they are compared with three baseline au-

diovisual fusion methods to demonstrate the effectiveness of explicitly modeling and

employing the semantic and dynamic physiological relationships between AUs and

phonemes in audiovisual fusion. The LBP-based baseline methods are described as

follows.

Ada-LBP-V employs a state-of-the-art visual-based AU recognition approach [102]

using LBP features, as described in Section 4.3.

DBN-LBP-V employs a state-of-the-art DBN-based model [101] to model the re-

lationships among AUs and used as a dynamic visual-based baseline. The structure

of DBN-LBP-V is obtained by eliminating the “Phone” node and its measurement

node from the DBN-LBP-AV+E structure depicted by Fig. 4.6.

Ada-LBP-AV developed in our early work [62], employs a feature-level fusion scheme

that extracts features from both visual and audio channels, i.e. histograms of LBP

features and MFCC features. Specifically, given an input wave file, MFCCs are

extracted using window size l = 16.67ms with a frame-shift s = 16.67ms by Kaldi

toolkit [77]. To include more temporal information, 7 frames, i.e. 3 frames before

and after the current frame along with the current one, are concatenated as the

2The suffix -V indicates the visual-based approach; the suffix -AV means the audiovisual fusion
method; and the suffix +E indicates the integration of expert knowledge in the DBN model.
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final MFCC feature for each frame. The extracted LBP and MFCC features are

integrated into a single feature vector and employed as the input for AdaBoost to

make predictions for the target AU.

BN-LBP-AV employs a static BN model with a structure illustrated in Fig. 4.4 plus

measurement nodes for all AUs and the Phone node. The BN-LBP-AV only con-

siders the semantic relationships between AUs and phonemes as well as the semantic

relationships among AUs, while the dynamics of AUs and phonemes are ignored.

DBN-LBP-AV employs the learned DBN structure denoted by the solid links in

Fig. 4.6, which does not model the dynamic dependencies between AUs in the (t−1)th

time slice and phonemes in the tth time slice.

The LPQ-based baseline methods are defined in the same way, whose model struc-

tures are the same as those of the LBP-based equivalents. For all methods evaluated,

a leave-one-subject-out training/testing strategy is employed, where the data from

one subject is used for testing and the remaining data is used for training.

4.4.2 Experimental Results and Data Analysis on the Clean Subset

We first evaluate the proposed DBN-LBP-AV+E and DBN-LPQ-AV+E on the clean

subset.

Experimental Results of LBP-based methods

Quantitative experimental results of LBP-based methods are reported in Fig. 4.8

in terms of F1 score, false positive rate (FPR), and true positive rate (TPR) for

the 7 speech-related AUs3. As shown in Fig. 4.8, all the audiovisual fusion meth-

ods outperform the static visual-based method, i.e., Ada-LBP-V. Specifically, the

overall recognition performance is improved from 0.416 using the Ada-LBP-V to

0.463 (Ada-LBP-AV ), 0.658 (BN-LBP-AV ), 0.666 (DBN-Learned), and 0.696 by

3The results are obtained on all the predictions using a default threshold, i.e. 0 for AdaBoost-
based methods, and 0.5 for graphical model-based methods.
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Figure 4.8 Performance comparison of AU recognition on the clean subset in terms of
(a) F1 score, (b) true positive rate, and (c) false positive rate.

the proposed DBN-LBP-AV+E, in terms of the F1 score, which demonstrates that

information from the audio channel indeed helps the recognition of speech-related

AUs.
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Figure 4.9 ROC curves for 7 speech-related AUs on the clean subset using LBP
features. Best viewed in color.

All the fusion methods, except the feature level fusion method, i.e. Ada-LBP-

AV, perform better than the dynamic visual-based method, i.e. DBN-LBP-V. The

performance of Ada-LBP-AV is inferior to that of DBN-LBP-V because subjects in

the clean subset were asked to produce the words and display the lip movements

clearly, and thus the relationships between AUs, explicitly modeled by DBN-LBP-

V, are strong. Furthermore, as shown in Fig. 4.8, the proposed DBN-LBP-AV+E

framework outperforms all methods compared in terms of the F1 score (0.696), the

FPR (0.071), and the TPR (0.732). In the following, we will compare the proposed

DBN-LBP-AV+E with each baseline method side by side.

Comparison of Ada-LBP-V, DBN-LBP-V, and DBN-LBP-AV+E The

proposed DBN-LBP-AV+E model significantly outperforms the state-of-the-art vi-

sual based method Ada-LBP-V and DBN-LBP-V on all target AUs. Notably, DBN-

LBP-AV+E drastically improves the recognition performance of AU26 (jaw drop)

and AU27 (mouth stretch). For example, the F1 score of AU27 increases from 0.273

(Ada-LBP-V ) and 0.328 (DBN-LBP-V ) to 0.720 (DBN-LBP-AV+E). The perfor-
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mance improvement is primarily because of the integration of audio information in

recognition of these AUs. As shown in Fig. 4.1, the visual cues for recognizing AU26

and AU27 are severely impaired by occlusions introduced by the presence of other

AUs during speech. However, the information from the audio channel is not affected

and thus, more reliable.

Comparison between Ada-LBP-AV and DBN-LBP-AV+E As shown in

Fig. 4.8, DBN-LBP-AV+E outperforms Ada-LBP-AV, a feature-level fusion method,

for all target AUs. Specifically, the F1 score is improved from 0.463 (Ada-Fusion)

to 0.696 (DBN-LBP-AV+E). The performance improvement mainly comes from

two aspects. First, the proposed DBN-LBP-AV+E benefits from the remarkable

achievements in speech recognition: the speech recognition performance of the Kaldi

Toolkit [77] in terms of the word-level and phoneme-level error rates are 2.8% and

7%, respectively, on the clean subset in our experiments. Hence, it makes more sense

to employ accurate phoneme measurements than to use low-level acoustic features

directly. Second, it is more effective to explicitly model and exploit the semantic and

dynamic physiological relationships between AUs and phonemes than to employ the

audiovisual features directly. For example, the TPR of AU26 increases from 0.635

(Ada-LBP-AV ) to 0.730 (DBN-LBP-AV+E) with a drastic decrease in the FPR from

0.338 (Ada-LBP-AV ) to 0.136 (DBN-LBP-AV+E) by employing the physiological

relationships between the phonemes and AUs as shown in Fig. 4.1.

Comparison between BN-LBP-AV and DBN-LBP-AV+E Both AUs and

phonemes are dynamic events and their dynamics are crucial in natural communi-

cations. By modeling both the semantic and dynamic relationships between AUs

and phonemes, the recognition performance of using DBN-LBP-AV+E is better than

that of using BN-LBP-AV for all target AUs in terms of all metrics. For example,

there are strong dynamic relationships between phonemes and AU24 (lip presser),

e.g., AU24 is activated in the Stop phase of B in be before the sound is emitted,
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Figure 4.10 An example of the system outputs by DBN inference using
DBN-LBP-AV+E and DBN-LBP-AV, respectively. A word chaps is produced and AU20,
AU22, AU24, AU25, and AU27 have been activated. The top row shows key frames from
the image sequence, as well as the AU combinations for producing the corresponding
phonemes. The two bottom figures depict the probabilities of AUs estimated by
DBN-LBP-AV+E and DBN-LBP-AV, respectively. The unshaded phoneme sequence is
the ground truth and the shaded one represents the evidence utilized by DBN models.
The dashed and solid vertical lines denote the ground truth and the predicted time point,
where AU22 is activated, respectively. The dashed vertical line is closer to the solid
vertical line in DBN-LBP-AV+E. Best viewed in color.
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as depicted in Fig. 4.5. As shown in Fig. 4.8, the recognition performance of AU24

gains a significant improvement using DBN-LBP-AV+E : the F1 score increases from

0.394 (BN-LBP-AV ) to 0.560 (DBN-LBP-AV+E).

Comparison between DBN-LBP-AV and DBN-LBP-AV+E Since AUs

are the major mechanism to produce the voice, they are activated before the sound

is produced [35]. As shown in Fig. 4.8, the DBN-LBP-AV+E outperforms the DBN-

LBP-AV for all target AUs in terms of F1 score, which demonstrates the effectiveness

of integrating this expert knowledge into the learned DBN model.

In addition to the three metrics, an ROC analysis is conducted for each AU to

further demonstrate the performance of the proposed framework. As show in Fig. 4.9,

each ROC curve is obtained by plotting the TPR against FPR at different thresholds

over the predicted scores. The performance of the proposed DBN-LBP-AV+E model

is better or at least comparable with that of the baseline methods on all the target

AUs except for AU20. As shown in Fig. 4.9, the performance of the fusion-based

methods is inferior to that of the dynamic visual-based method, i.e., DBN-LBP-V,

because the relationships between AU20 and the phonemes are weak due to large

variations among subjects. For example, although AU20 is responsible to producing

the phoneme AE in chaps according to Phonetics [13], some subjects did not activate

AU20 during speech.

Furthermore, Fig. 4.10 gives an example of the system outputs, i.e., the estimated

probabilities of AUs, by DBN-LBP-AV+E and DBN-LBP-AV, respectively. As shown

in Fig. 4.10, when sounding a word chaps, the probabilities of AUs increase when they

are preparing to sound a phoneme and decrease rapidly after the sound is emitted.

As the facial movements are activated before the sound is generated, the probability

of AU22 increases and reaches above 0.5, i.e. the activation threshold, before the

phoneme CH is made. The solid vertical yellow line represents the onset time point

of AU22 labeled manually, while the dashed line shows the estimated activation time
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Table 4.1 Performance comparison on the two subsets in terms of the F1 score.

Subsets Ada-LBP-V Ada-LBP-AV DBN-LBP-V BN-LBP-AV DBN-LBP-AV DBN-LBP-AV+E

Clean 0.416 0.463 0.551 0.658 0.666 0.696

Challenging 0.372 0.448 0.368 0.608 0.548 0.622

Subsets Ada-LPQ-V Ada-LPQ-AV DBN-LPQ-V BN-LPQ-AV DBN-LPQ-AV DBN-LPQ-AV+E

Clean 0.448 0.482 0.536 0.651 0.651 0.679

Challenging 0.362 0.430 0.370 0.619 0.579 0.651

of AU22. The closer those two lines are, the better the prediction is. By integrating

the expert knowledge, DBN-LBP-AV+E can better predict the activation of an AU

given the measurements. In another example, AU27 was not detected by DBN-

LBP-AV shown in the bottom plot, because the visual-based classifier fails to detect

AU27. However, the dynamic relationships between AUs and phonemes utilized by

DBN-LBP-AV+E can help to predict AU27 despite the poor visual measurements.

Experimental Results of LPQ-based methods

The quantitative experimental results using LPQ features are reported in Table 4.1 in

terms of the F1 score. Not surprisingly, the proposed DBN-LPQ-AV+E outperforms

all the compared methods in terms of F1 score (0.679).

The performance improvement on both the LBP-based method and the LPQ-based

method demonstrates that the proposed method can be built upon any advanced visual-

based AU recognition method, and consistently improve the performance for speech-

related AUs recognition.
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4.4.3 Experimental Results and Data Analysis on the Challenging Subset

Experiments were conducted on the challenging subset to further demonstrate the

advantage of integrating audio information with visual cues for speech-related AU

recognition in the wild, where the AU recognition system is challenged by large head

movements and occlusions introduced by facial hair and accessaries.

The proposed DBN-LBP-AV+E and DBN-LPQ-AV+E models and the baseline

methods were trained and tested on the challenging subset using a leave-one-subject-

out strategy. Since the challenging subset contains only 6 subjects, the data in

the clean subset was employed as additional training data, except those of the two

subjects who also appear in the challenging subset to ensure a subject-independent

context. In particular, the data of 5 subjects from the challenging subset along with

the data of 7 subjects from the clean subset is used for training, while the remaining

one subject from the challenging subset is employed for testing. The structures of the

DBN-LBP-AV and DBN-LBP-AV+E trained on the challenging subset are shown in

Fig. 4.11.

Experimental Results and Discussion

Quantitative experimental results on the challenging subset are reported in Fig. 4.12

for LBP-based methods, in terms of F1 score, TPR, and FPR for the 7 speech-related

AUs. From Fig. 4.12, we can find that all the audiovisual fusion methods outperform

the methods employing only visual information (Ada-LBP-V and DBN-LBP-V )4.

Specifically, as the head movements and occlusions are introduced in the challenging

subset, the visual observations of AUs become unreliable, which is reflected by the

drastic drop in performance of the visual-based methods, i.e. 0.372 (Ada-LBP-V )

and 0.368 (DBN-LBP-V ) in terms of the F1 score. In contrast, the information

4The speech recognition performance of the Kaldi Toolkit [77] in terms of the word-level and
phoneme-level error rates are 2.8% and 7.4%, respectively, on the challenging subset in our experi-
ments.
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Figure 4.11 A DBN model learned from the challenging data for audiovisual AU
recognition: the solid links representing the learned DBN structure and the red dashed
links denoting the expert knowledge integrated into the learned structure.

extracted from the audio channel is less affected. Thus, the performance is improved

from 0.372 (Ada-LBP-V ) to 0.448 (Ada-LBP-AV ), 0.608 (BN-LBP-AV ), 0.548

(DBN-LBP-AV ), and 0.622 by the proposed DBN-LBP-AV+E in terms of F1 score.

Experimental results for LBP-based and LPQ-based methods on both subsets

are reported in Table 4.1, in terms of the F1 score. On the challenging subset,

both DBN-LBP-V and DBN-LPQ-V have performance comparable to Ada-LBP-V

and Ada-LPQ-V, respectively, since the visual observations become unreliable un-

der challenging settings. Moreover, the dynamic dependencies between AUs and

phonemes become more important. More temporal links between phonemes and AUs

are learned from the challenging subset (Fig. 4.11) than those learned from the clean

subset (Fig. 4.6). In addition, by incorporating the expert knowledge, the proposed

DBN-LBP-AV+E and DBN-LPQ-AV+E improve the performance by 0.074 and

0.072 compared with the DBN-LBP-AV and DBN-LPQ-AV, respectively, in terms

of F1 score.

A paired t-test has been conducted to demonstrate that the performance improve-
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Figure 4.12 Performance comparison of AU recognition on the challenging subset in
terms of (a) F1 score, (b) true positive rate, and (c) false positive rate.

ment is statistically significant. The null hypothesis is that the performances of the

baseline visual-based method or the feature-level fusion method and the proposed

method are “no difference”. The p-values of the proposed method against the base-
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Table 4.2 Performance comparison on the two subsets in terms of the F1 score.

Approaches Clean Challenging

Visual-based SVM-LGBP [102] 0.386 0.339
IB-CNN-LIP [36] 0.465 0.382

Audio-based

SVM-GeMAPS [84] 0.251 0.251
LSTM-GeMAPS [84] 0.427 0.442
SVM-ComParE [84] 0.342 0.358
LSTM-ComParE [84] 0.498 0.490

Ada-MFCC [62] 0.436 0.445
DBN-A [63] 0.515 0.534
CTBN-A [63] 0.653 0.682

Audiovisual Fusion DBN-LBP-AV+E 0.696 0.622
DBN-LPQ-AV+E 0.679 0.651

line visual-based methods or the feature-level fusion methods are all less than 0.001

on both clean and challenging subsets for LBP/LPQ-based methods. Therefore, the

performance improvement of the proposed method is statistically significant over the

visual-based methods, more importantly, the feature-level fusion method.

4.4.4 Comparison with More State-of-the-art Visual-based and

Audio-based Methods

To further demonstrate the effectiveness of the proposed framework, two more state-

of-the-art visual-based methods and five state-of-the-art audio-based methods are

implemented and evaluated on the AU-coded audiovisual database using a leave-one-

subject-out cross-validation strategy.

Visual-based methods

LGBP-SVM: One of the visual-based methods employs a kind of human-crafted

feature, i.e. LGBP features [90, 102]. Specifically, 400 LGBP features are selected by

AdaBoost and employed to train an SVM classifier for each target AU.
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IB-CNN-LIP: The other visual-based method is based on a deep learning model,

i.e. incremental boosting convolutional neural network (IB-CNN) [36]. Since only

the lower-part of the face is responsible for producing the speech-related AUs, a

two-stream IB-CNN is developed to learn both appearance and shape information,

particularly, from the lip region along with the landmarks on the lips.

Audio-based methods

SVM-GeMAPS and LSTM-GeMAPS: The first two audio-based methods em-

ploy a kind of low-level acoustic feature set, i.e. GeMAPS [84], on top of which, SVMs

and Long-Short Term Memory (LSTM) networks are employed to produce the predic-

tions for target AUs, denoted as SVM-GeMAPS and LSTM-GeMAPS, respectively.

Specifically, 18-dimensional GeMAPS features are extracted given the audio signals

using openSMILE [25]. An SVM is trained for each target AU using LIBSVM toolkit

for SVM-GeMAPS and an LSTM network implemented in TensorFlow library [1]

is trained to learn the temporal dependencies over time for LSTM-GeMAPS. The

employed LSTM network consists of 3 hidden layers with 156, 256, and 156 hidden

units, respectively.

SVM-GeMAPS and LSTM-ComParE: The third and the fourth audio-based

methods are based on another kind of low-level acoustic feature set, i.e. Com-

ParE [84]. Similar to SVM-GeMAPS and LSTM-GeMAPS, an SVM and an LSTM

network are trained for each target AU on top of the extracted 130-dimensional Com-

ParE features, respectively.

Ada-MFCC: The fifth audio-based method is based on MFCC features. In partic-

ular, 13-dimensional MFCC features are extracted from audio signals, and a cubic

spline interpolation approach [62] is employed to align the extracted features with

image frames. Moreover, 3 frames before and after the current frame along with the

current one, which makes it 7 frames in total are concatenated as the MFCC feature
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vector for the current image frame. The final MFCC features are employed as the

input to train an AdaBoost classifier for each AU.

DBN-A and CTBN-A: The last two audio-based methods are from our previous

work [63], which recognize speech-related AUs using phoneme segments by modeling

the relationships between facial AUs and phonemes with a DBN model and a CTBN

model, respectively.

Experimental results and discussion

Experimental results of all methods in comparison can be found in Table 4.2, in

terms of F1 score. LGBP and IB-CNN-LIP recognize AUs based on only visual clues,

where the appearance changes for speech-related AUs are subtle, and sometimes “in-

visible” in the visual channel. SVM-GeMAPS, LSTM-GeMAPS, SVM-ComParE,

LSTM-ComParE and Ada-MFCC employ only low-level acoustic features without

considering the physiological relationships between AUs and phonemes. As illus-

trated in Table 4.2, the proposed DBN-LBP-AV+E and DBN-LPQ-AV+E, as well

as DBN-A and CTBN-A developed in our previous work [63], outperform all the

other methods consistently by a large margin, in terms of the F1 score. The improve-

ment mainly comes from explicitly modeling the semantic and dynamic relationships

between phonemes and AUs.

By utilizing both acoustic and visual information, the proposed methods, i.e.

DBN-LBP-AV+E (0.696) and DBN-LPQ-AV+E (0.679) outperform the DBN-A

(0.515) and CTBN-A (0.653) employing only audio information on the clean sub-

set, thanks to the usage of the decent visual measurements obtained from the “clean”

images. The proposed methods also outperform the audio-based DBN-A on the chal-

lenging subset. However, CTBN-A achieved better performance than the proposed

audiovisual fusion approaches on the challenging subset, which is primarily due to

two reasons. First, since most of challenges are intentionally introduced into the
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visual channel in the challenging subset, the visual measurements are much less re-

liable than those on the clean subset as shown in Table 3.2. Second, since CTBNs

directly model the dynamic relationships along continuous time without predefining

any granularities as in DBNs, the relationships between facial AUs and phonemes are

better captured by CTBNs. However, CTBNs cannot handle noisy measurements

well and thus, are not suitable for audiovisual fusion, especially with noisy visual

measurements. Thus, in our work, DBNs are employed for the audiovisual fusion for

speech-related facial AU recognition.

4.5 Conclusion

Facial activity is not the only channel for human communication, where voice also

plays an important role. This paper presents a novel audiovisual fusion framework

for recognizing speech-related AUs by exploiting information from both visual and

audio channels. Specifically, a DBN model is employed to capture the comprehensive

relationships for audiovisual AU recognition including the semantic and dynamic re-

lationships among AUs, the temporal development of AUs, the dynamic dependencies

among phonemes, and more importantly, the semantic and dynamic physiological re-

lationships between phonemes and AUs. Experimental results on a pilot audiovisual

AU-coded dataset have demonstrated that the proposed DBN framework significantly

outperforms the state-of-the-art visual-based methods as well as audio-based meth-

ods by integrating audio and visual information in facial activity analysis. More

importantly, the DBN model also beats the feature-level fusion by comprehensively

modeling and exploiting the relationships in a context of audiovisual fusion.

In the future, we plan to enrich the pilot audiovisual database with more chal-

lenging data including emotional speech, and then extend the current framework to

recognizing a larger set of AUs including upper-face AUs by modeling and exploiting

more complicated relationships in natural human communications.
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Chapter 5

Conclusion
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5.0.1 Summary of Contribution

In summary, three approaches exploiting the fact that facial activities are highly

correlated with voice are proposed to utilize the audio information along with the

visual features for speech-related facial AU analysis: 1) a feature-level fusion method

for speech-related facial AU recognition based on both audio features, i.e. MFCC, and

visual features, i.e. LBP, is presented; 2) an audio-based approach that recognizes

speech-related facial AUs during speech using information exclusively from the audio

channel is introduced; and 3) an audiovisual fusion framework is developed, which

aims to make the best use of visual and acoustic cues in recognizing speech-related

facial AUs.

5.0.2 Future Research

In the future, we plan to extend the audiovisual database to include continuous

and emotional speech, which is more challenging for speech recognition. In addition,

more challenges will be introduced to the audio channel, such as higher environmental

noise and different microphone locations. The framework learned from the enriched

database is expected to capture more comprehensive relationships in natural human

communication. Under the contexts of emotion, more AUs especially the upper-face

AUs can be modeled. In addition, it is expected to be more robust to imperfect

phoneme measurements by modeling the relationships in the words.
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