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ABSTRACT 

Linear regression is a widely used method for analysis that is well understood 

across a wide variety of disciplines. In order to use linear regression, a number of 

assumptions must be met. These assumptions, specifically normality and 

homoscedasticity of the error distribution can at best be met only approximately with real 

data. Quantile regression requires fewer assumptions, which offers a potential advantage 

over linear regression. In this simulation study, we compare the performance of linear 

(least squares) regression to quantile regression when these assumptions are violated, in 

order to investigate under what conditions quantile regression becomes the more 

advantageous method of analysis. Statistical power and coverage percentage were 

calculated for all simulations, and potential bias was investigated for both quantile 

regression and linear regression. When errors are skewed, there is a threshold at which 

quantile regression surpasses linear regression in statistical power. When 

heteroscedasticity is introduced, linear regression does not accurately describe the 

relationship between predictor and response variables at the tails of the conditional 

distribution. When errors are both skewed and heteroscedastic, quantile regression 

performs drastically better than linear regression. Coverage percentage in linear 

regression not only suffers in this case, but also linear regression yields misleading 

results.   
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CHAPTER 1 

INTRODUCTION

Linear regression is a common and well understood method for modelling and 

predicting the mean of a continuous response variable, conditional on a set of predictor 

variables. However, inference from linear regression requires specific assumptions be 

made about the distribution of the error. Quantile regression has become an increasingly 

popular alternative to linear regression as it can be used to predict any desired percentile 

of a continuous response variable, conditional on a set of predictor variables, without 

making assumptions about the distribution of the error. In this paper, we present a 

simulation experiment to compare the performance of simple linear regression (SLR) to 

simple quantile regression (QR) when the conditional normality and equal variance 

assumptions required for linear regression do not hold. Our goal is to provide 

recommendations for when quantile regression might be preferred over linear regression 

and vice versa.
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CHAPTER 2 

BACKGROUND

2.1 LINEAR REGRESSION  

Linear regression is a common statistical method which is used to gain 

understanding of the relationship between a continuous response variable and a set of 

predictor variables. This model estimates the mean of the response variable, conditional 

on fixed values for the predictor variables. The mean of the outcome, conditional on these 

predictors, is often referred to as the conditional mean. In the case of simple linear 

regression, one predictor variable (generally denoted by 	) is used to model the response 

variable (denoted by 
). For � = 1,2, … . , � independent observations of a given 

independent variable 	� with an outcome variable 
�, the model is defined as 
�|	� =
�� + �� ∗ 	� + ��, where �� and �� are regression parameters, and indicate the mean 

response when 	� = 0, and the change in the mean response associated with a one unit 

increase in the independent variable 	�, respectively (Kleinbaum, 2008). The error term is 

represented by �� and is defined as the difference from the population mean response, 

associated with the corresponding 	� value, for an individual observation.   

In linear regression, the regression parameters can be estimated using the ordinary 

least squares method, which estimates regression parameters based upon minimization of 

the sum of squared residuals. Residuals are defined as the difference between the 

observed response and the predicted response. The ordinary least squares method yields 
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the following parameter estimates for �� and ��, using 	̅ to represent the mean value of 

the predictor variable, 
� to represent the mean value of the response variable, and hats 

above the parameters, ��� and ��� to denote the predicted or estimated values for these 

parameters (Kleinbaum, 2008): 
��� = ∑ (	� − 	̅)(
� − 
�)�� �∑ (	� − 	̅)!�� �  

��� = 
� − ���	̅ 

Inference from linear regression relies upon a number of assumptions. As with 

many statistical models, linear regression models assume that each of the observations 

are independent of one another. It is also assumed that the mean of the response variable 

can be represented by a linear combination of predictor variables. In addition, linear 

regression models assume that the distribution of the random error is normal with mean 

zero and that the variance of the response variable is the same for any value of the 

predictor variable (e.g. �~#($, %!)), commonly referred to as homogenous variance. 

This assumption forms the basis of standard error calculations, as the variance of the 

conditional distribution is estimated as a single parameter estimate, 
∑ (&'(&)* )+',-�(!  (Pagano, 

2000).  If these assumptions hold true, the distribution of 
�|	� can be specified as 

#(�� + �� ∗ 	�, %!)). With the assumption of normality, ordinary least squares methods 

yield the same parameter estimates as maximum likelihood estimation. 

If all of the assumptions are met, linear regression provides a widely accepted and 

easily understood description of the association between two variables. That is, that any 
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one-unit increase in the predictor variable is associated with a corresponding change of 

�� in the mean of the response variable.  

However, none of these assumptions can ever be met exactly with real data. When 

these assumptions are violated, the results and inference from linear regression can be 

impacted. For example, when errors are heteroscedastic, the variance in the response 

variable may be over or underestimated at times, which impacts standard error 

calculations, and thus confidence intervals and statistical power. In addition, with 

heteroscedasticity in errors, the parameters estimated with linear regression might be 

unable to accurately describe the full range of the associations across different percentiles 

of the conditional distribution of the outcome. The point estimates at the mean may over 

or underestimate the true association at the tails of the conditional distribution of the 

response variable. 

2.2 QUANTILE REGRESSION 

Quantile regression is similar to linear regression in that it is used to gain an 

understanding of how a set of predictor variables are related to a continuous response 

variable; however, there are several differences in the calculation, assumptions, and 

interpretation when comparing quantile regression to linear regression. Koenker and 

Basset (1978), introduced quantile regression as a way to model the quantile of a 

response variable, e.g. the median, conditional on a certain value of a set of predictors. As 

the quantile is estimated conditional on the set of predictors, it commonly referred to as 

the conditional quantile. In the field of public health, researchers are often most interested 

in the more extreme values of the conditional distribution rather than the mean, making 

quantile regression an excellent method of analysis in this field. For example, in studies 
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of factors which may impact birthweight, researchers are primarily interested in the lower 

tails of the distribution of birthweight, as low birthweight can have medical and financial 

long-term effects. Abrevaya (2001) used quantile regression to suggest that the effect 

certain factors have upon a child’s birthweight can vary depending on the quantile of 

birthweight. 

For a sample of � = 1, … , � observations of a predictor variable 	� and a response 

variable 
� with conditional probability distribution .&(
) given 	, the conditional 

quantile � is defined as /&|0(�) = ��1�232{
 ∶ .6(
) ≥ �} (Hao & Naiman, 2007).  

Rather than minimizing the sum of the squared residual as in linear regression, estimation 

in quantile regression is done by minimizing a weighted sum of absolute residuals. The 

equation below shows the quantile regression model as specified for the �th quantile,  

/&'|0'(�) = ��(9) + ��(9) ∗ 	� + ��(9) 
Here, ��(9)

 and  ��(9)
 represent the �th quantile of the response variable when 	 = 0 and 

the change in the �th quantile for a one unit increase in the predictor variable, 

respectively. If we assume this linear relationship between the predictor and response 

variables, ��(9)
 and  ��(9)

 can be calculated as solutions to the minimization of the 

weighted sum of absolute residuals, as given by (Koenker & Bassett, 1978)  

min=>,=- ?� ∗ @ A
� − ��(9)� − ��(9)� 	�A
&'B=>(C)DE=-(C)D∗0'

 + (1 − �)

∗ @ A
� − ��(9)� − ��(9)� 	�A&'G=>(C)DE=-(C)D∗0'
H 



6 

 

In this process, fitted values that underpredict an observed value are given a weight of 

1 − �, and those that overpredict are given a weight of �. Through this process of 

applying weights to positive and negative residuals, any quantile of interest can be 

modeled.  

Similar to the linear regression model, quantile regression models assume that 

observations are independent of one another, and that some percentile of the response 

variable can be represented by a linear combination of a set of predictor variables. 

Perhaps the most advantageous aspect of quantile regression is the lack of assumptions 

regarding the distribution of the error. 

While no assumptions about the error are required, estimation of standard errors 

for regression coefficients may be simplified by assuming the errors are identically and 

independently distributed (IID). When the IID assumption is not appropriate, bootstrap 

may be used to provide valid estimates of the standard errors for the regression 

coefficients. 
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CHAPTER 3 

SIMULATION DESIGN

3.1 SCENARIO 1  

The first simulation study compares SLR to QR, at the median only, when the 

normality of the errors assumption is violated, but variances are constant. For each 

scenario, the response variable was generated as 
� = 15 + 0.4	� + �� with the predictor, 

	�, generated from a uniform distribution ranging from 0 to 2.  A number of different 

sample sizes were included (n=20, 30, 50, 100, 200, 300, 500, and 650) in order to 

observe the performance of SLR and QR as sample size increased. To ensure a range of 

non-normal error distributions, data were generated with skewness levels of 0, 0.5, 1, 2, 

2.5, 3, 4, and 6, while maintaining a standard deviation that was the same across all 

scenarios. Skewness was calculated using 
∑ (KL(K̅)M/�L OM , where P̅,  Q, and � represent the 

mean, standard deviation, and population size, respectively, and PR denotes the Sth 

observation from the distribution.  For all skewness levels, both left (negative) and right 

(positive) skewed data were generated.  

With the exception of a skewness of 0, which utilized a normal distribution, the 

distribution from which these errors were selected were derived using gamma 

distributions with parameters that would yield the desired skewness while maintaining a 

consistent standard deviation.  The probability distribution function of a Gamma 

distribution is defined as 1(3) = T �U(V)=WX 3V(�Y(Z/=, where Γ(\) = ] 3V(�Y(Z^3_� , and 
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\ and � represent the shape and scale parameters, respectively. The rate of a gamma 

distribution is the inverse of the scale parameter (Wackerly et. al. 2008).  Once the 

appropriate error terms were found, the distributions were centered at their respective 

mean values. This ensured that, for all scenarios simulated, errors were pulled from 

distributions with means approximately zero and similar standard deviations of 

approximately 2.5. For simulations with negative skewness, the error distributions were 

identical, but 
� was generated by subtracting the error term (i.e 
� = 15 + 0.4	� − ��). 

The final error distributions are presented in Table 3.1. Histograms of these error 

distributions prior to centering are presented in Figures 3.1-3.7, along with a normal 

curve with identical means and standard deviations for comparison.  

Simulations were designed to compare these two analytic methods based on 

measures related to ��, since inference for both SLR and QR are typically focused on ��, 

rather than the intercept ��. For each simulation scenario, 1,000 data sets were generated 

and the following measures calculated;  

1) The average point estimate, defined as 
����� ∑ �̀������� �  

2) The average percent bias, defined asa ����� ∑ =-)� (=-=-����� � b ∗ 100, which 

represents the average percent difference between the estimated �̀� and the 

true value ��. 
3) The 95% Confidence Interval was calculated for each estimate, defined as 

��c� ± e(�.�f�,�(!) ∗ ghij(��c)�  where e(�.�f�,�(!) is the e value for the desired 

confidence level. 
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4) The average interval length was calculated as the average of the difference 

between the upper confidence limit (UCL) and the lower confidence limit 

(LCL), 
����� ∑ (klm� − mlm�)����� � . 

5) Coverage Percentage was calculated as the percent of simulations for which 

the true value of the slope coefficient �� falls within the 95% confidence 

interval, 
����� ∑ n(mlm� < �� < klm�)����� � . We also created a confidence 

interval for the expected coverage percentage of 95%, defined as 0.95 ±
P�.�f� ∗ g >.qr-s>.qr���� . This calculation resulted in an interval of (93.649, 96.351). 

6) Power was calculated as the percent of simulations which were able to detect 

an association between the predictor and response variable. This was 

calculated as the percentage of simulations which had a significant slope 

estimate (� − hit3Y < 0.05), 
����� ∑ n(� − hit3Y < 0.05)����� � . 

7) The average percent magnitude of the difference between the predicted slope 

coefficient and the true slope, the mean absolute bias percent, was calculated 

as a ����� ∑ u=-)� (=-u=-����� � b ∗ 100. 

Tables 3.2-3.9 present the results of the above calculations in cases where the 

error is positively skewed, and Tables 3.10-3.16 present results for negatively skewed 

errors. For all simulations, standard errors for quantile regression were generated via 

bootstrap with 200 replicates.  

In order to verify that the tests have the proper type I error level, the same 

simulations were run, with n=20, 200, and 650 and 
� = 15 + 0 ∗ 	� + �� (no association 
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between the predictor and the response). The significance level was obstained the same 

way that power was defined previously, and is presented in Table 3.17 by type of 

regression method used.  

3.2 SCENARIO 2 

The second simulation study compares the performance of linear regression to 

quantile regression at various percentiles of the response variable (10th, 25th, 50th, 75th, 

90th), while violating the assumption of homoscedastic errors. Similar to the previous 

scenario, 1,000 data sets were generated at each sample size from n=20, 50, 100, 200, 

300, 500, and 650. The generated response variable was defined as 
� = 15 + 0.4	� +
�� ∗ v(	�) with 	�  generated from a Uniform distribution ranging from 1 to 6, �� 
generated from a Normal distribution with mean 0 and standard deviation 2.3, and v(	�) 

representing a function of 	�. Multiplying the random error term by v(	�) yields a 

response variable that is heteroscedastic for the range of 	. The specific function, v(	�), 

was chosen so that the error was a linear function of 	 and the slope relating the predictor 

to the 90th percentile of the outcome was approximately 1.5, 2, and 3 times that of the 

slope at the median. The final equations showing the error distributions used for this 

scenario are shown in Table 3.18.  

This simulation scenario utilized the same methods of comparison between linear 

regression and quantile regression as was used in the previous simulation scenario, 

specifically coverage percentage and statistical power. Calculating the coverage 

percentage for different percentiles of quantile regression, however, required small 

alterations to the calculations. As the distribution of the error is known, the confidence 

intervals and coverage percentage for the quantile regression analyses were calculated 
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using the theoretical distribution to determine the true slope at a given percentile.  As the 

violation of the homoscedasticity of errors suggests that the impact of the predictor upon 

the response variable may vary across percentiles, examining the difference between the 

known association at the mean and the estimated association at the quantiles is of interest.   

The standard errors for the quantile regression analyses were again calculated 

using the bootstrap method with 200 iterations. The SLR results were compared to QR 

results at the 10th, 25th, 50th, 75th, and 90th percentiles. Tables 3.19-3.21 present the results 

of the comparisons between parameter estimates, and Tables 3.22-3.24 show the 

coverage percentages for each of our experiments. 

The same simulations with 
� = 15 + 0 ∗ 	� + �� ∗ v(	�) (no association between 

the predictor and the response) for the same sample sizes, n=20, 50, 100, 200, 300, 500, 

650 were conducted. This allowed for the verification that the SLR analyses maintained 

the proper type I error level. The magnitude of the estimates, as well as the statistical 

power in SLR versus quantile regression at the percentiles of interest were calculated, and 

these results are presented in Tables 3.25-3.27 

3.3 SCENARIO 3 

The final simulation scenario was designed to represent a biological example 

where the assumptions of both normality and homoscedasticity of errors would be 

unrealistic. This scenario allows a comparison of difference in conclusions and 

interpretation of results between these two analytic techniques. For this purpose, we 

chose to examine C-reactive protein (CRP), a non-negative marker of inflammation with 

a highly skewed distribution.  Previous research using the Third National Health and 
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Nutrition Examination Survey (NHANES III), has shown mean CRP levels of 

approximately 4.3 mg/L and median levels of about 2.1 mg/L in men of all races without 

coronary heart disease aged 30-74 (Wong et. al., 2001). Similarly, a study of men without 

heart disease, hypertension, diabetes, cancer, asthma, or bronchitis aged 49-97 showed a 

similar baseline mean and median CRP levels of 3.8 mg/L and 2.3 mg/L, respectively 

(Bind, et. al. 2016).   

As a marker of inflammation within the body, CRP has been found to increase as 

an acute response to vigorous physical activity. Weight, et. al (1991) compared baseline 

CRP levels from male and female competitive distance runners prior to beginning a 

marathon to levels immediately, 24 hours, 48 hours, and 6 days post completion. CRP 

levels in this sample peaked at 24 hours, decreased from this peak at 48 hours, and 

returned to baseline levels by the 6th day. Among male triathlon competitors, a similar 

pattern of results was found, with a peak in CRP levels at 24 hours after cessation of 

exercise, and returning to baseline after 48 hours (Taylor, et. al. 1987). Despite this acute 

response, several studies have been performed to understand the relationship between 

regular physical activity and baseline CRP level, and have largely found that those with a 

sedentary lifestyle have higher baseline CRP levels as compared with those who are more 

regularly physically active. Abramson et. al. (2002) found that, of adult men and women 

over 40, as frequency of physical activity within the past month increased, the odds of 

having elevated CRP levels decreased. Similarly, a case-control study found that baseline 

CRP levels in long-distance runners was significantly lower than CRP levels among an 

untrained control group (Tomaszewski, et. al 2003).  
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For the purposes of this experiment, it is assumed that the relationship between 

the predictor (physical activity level) and the outcome (CRP level) differs across the 

conditional distribution of CRP, and therefore by percentile, at least in part due to the 

time of measurement. For example, those within the 10th percentile of CRP level could 

have been measured more than 48 hours after physical activity, while those within the 

90th percentile could have been measured within the peak period of about 24 hours post 

exercise. This assumption yields a scenario in which both the homoscedasticity and 

normality of errors assumptions are violated.  

Bind et. al. (2016) conducted a study which enrolled 1,112 men aged 49-100 with 

no heart disease, hypertension, diabetes, cancer, recurrent asthma, or bronchitis. In this 

study, the mean, 5th percentile, median, and 95th percentile of baseline CRP levels were 

measured, yielding results of 3.8, 0.4, 2.3, and 24.5 mg/L, respectively. For this 

simulation scenario, the error was generated so that the error term was a linear function of 

the predictor such that the outcome variable of CRP would follow this general pattern 

with heteroscedasticity over the range of 	. In order to mimic this scenario, 	� was 

generated from a random uniform distribution ranging from -2 to 2, with 
� = 1 + 0.5 ∗
	� + �� ∗ v(	�). In this scenario, the error term was generated by multiplying v(	�) =
a1 + 5 ∗ 	� 11w b by a random gamma distribution with shape parameter of 0.15 and scale 

parameter of 18. As the goal is to create different variance in the outcome that was a 

function of the predictor, histograms of this error distribution are included at a range of 

values of the predictor in Figure 3.8-3.10. The 
� variable was then centered to ensure a 

mean value of 0. In this experiment, 1000 data sets were generated with a sample size of 

50.  
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To compare the results from linear regression to quantile regression, identical 

methods as were discussed previously, with appropriate modifications to the calculations 

at the 10th, 25th, 50th, 75th, and 90th percentiles. The results from this simulation 

experiment are presented in Table 3.28. 
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Table 3.1: Simulation Scenario 1 Error Distributions by Skewness 

Skewness Calculated 

Skewness 

Error Distribution Std. 

Deviation 

0 0.0007 Normal(mean=0, sd=2.5) 2.5092 

0.5 0.5052 Gamma(shape=16, rate=1.6) 2.4916 

1 1.0184 Gamma(shape=4, rate=0.8) 2.4947 

2 2.0322 Gamma(shape=1, rate=0.4) 2.5066 

2.5 2.5212 Gamma(shape=0.65, rate=0.32) 2.5260 

3 3.0289 Gamma(shape=0.45, rate=0.27) 2.4920 

4 4.0417 Gamma(shape=0.26, rate=0.2) 2.5694 

6 5.9522 Gamma(shape=0.12, rate=0.14) 2.5310 
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Table 3.2: Estimates for Mean(SLR) and Median(QR) when Linear Regression Assumptions Hold (�~#(0, Q^ = 2.5)) 

Sample Size 20 50 100 200 300 500 650 

Method SLR QR SLR QR SLR QR SLR QR SLR QR SLR QR SLR QR 

Avg. estimate 0.4059 0.4571 0.4173 0.4381 0.4110 0.4016 0.3957 0.3814 0.3934 0.4052 0.3940 0.3863 0.4009 0.3903 

Bias Percentage 1.4859 14.2713 4.3238 9.5273 2.7426 0.3993 -1.0739 -4.6417 -1.6530 1.3027 -1.5099 -3.4346 0.2211 -2.4317 

Coverage Percent 96.0 96.9 94.3 96.0 94.8 96.2 94.3 94.0 94.9 94.8 95.5 93.3 94.4 95.2 

Avg. Interval Length 4.2340 6.1550 2.4922 3.4547 1.7274 2.2896 1.2155 1.5995 0.9875 1.2808 0.7623 0.9753 0.6684 0.8571 

Power 0.058 0.040 0.101 0.061 0.161 0.097 0.268 0.152 0.333 0.242 0.526 0.354 0.654 0.440 

Mean Absolute Bias (%) 197.15 258.41 127.17 157.41 90.91 107.77 64.35 76.61 48.25 61.90 39.45 50.26 33.97 43.09 

 

 

Table 3.3: Estimates for Mean(SLR) and Median(QR) with Error Distribution Skewed to 0.5 

Sample Size 20 50 100 200 300 500 650 

Method SLR QR SLR QR SLR QR SLR QR SLR QR SLR QR SLR QR 

Avg. estimate 0.3538 0.3871 0.3936 0.3878 0.3914 0.4234 0.4032 0.4096 0.3921 0.3939 0.4029 0.3977 0.4018 0.4052 

Bias Percentage -11.556 -3.2341 -1.5952 -3.0484 -2.1387 5.8375 0.8077 2.4009 -1.9644 -1.5127 0.7325 -0.5821 0.4426 1.2878 

Coverage Percent 94.0 97.1 96.2 96.5 94.4 94.5 94.2 95.4 95.2 93.8 95.3 94.5 95.6 93.5 

Avg. Interval Length 4.1997 6.1471 2.4683 3.3368 1.7235 2.2620 1.2085 1.5555 0.9860 1.2680 0.7619 0.9658 0.6684 0.8458 

Power 0.079 0.033 0.083 0.067 0.146 0.104 0.282 0.175 0.349 0.249 0.560 0.357 0.660 0.476 

Mean Absolute Bias (%) 205.86 257.47 118.86 151.96 87.36 110.36 63.24 73.13 50.73 63.58 38.74 46.81 33.62 43.02 
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Table 3.4: Estimates for Mean(SLR) and Median(QR) with Error Distribution Skewed to 1 

Sample Size 20 50 100 200 300 500 650 

Method SLR QR SLR QR SLR QR SLR QR SLR QR SLR QR SLR QR 

Avg. estimate 0.4365 0.3977 0.4269 0.4131 0.4173 0.4267 0.4135 0.4037 0.4012 0.4163 0.4075 0.4046 0.4041 0.4084 

Bias Percentage 9.1359 -0.5632 6.7339 3.2782 4.3200 6.6829 3.3739 0.9280 0.3060 4.0744 1.8780 1.1573 1.0221 2.1108 

Coverage Percent 94.7 97.7 95.3 95.9 96.1 96.0 96.3 94.8 95.3 95.8 95.6 94.0 94.4 94.8 

Avg. Interval Length 4.1416 5.9296 2.4736 3.1961 1.7178 2.1929 1.2101 1.5024 0.9833 1.2312 0.7616 0.9309 0.6682 0.8191 

Power 0.089 0.025 0.104 0.086 0.146 0.118 0.270 0.188 0.350 0.273 0.577 0.402 0.657 0.504 

Mean Absolute Bias (%) 197.06 241.97 130.70 146.67 83.06 101.41 59.60 72.11 48.68 60.95 39.36 45.48 34.25 42.18 

 

 

Table 3.5: Estimates for Mean(SLR) and Median(QR) with Error Distribution Skewed to 2 

Sample Size 20 50 100 200 300 500 650 

Method SLR QR SLR QR SLR QR SLR QR SLR QR SLR QR SLR QR 

Avg. estimate 0.4003 0.3649 0.4134 0.4065 0.3849 0.3736 0.4059 0.3905 0.4104 0.4026 0.3907 0.3859 0.4087 0.4076 

Bias Percentage 0.0848 -8.7812 3.3599 1.6354 -3.7650 -6.6023 1.4850 -2.3779 2.6058 0.6590 -2.3214 -3.5281 2.1760 1.8934 

Coverage Percent 96.3 98.2 95.9 96.2 95.0 95.6 94.8 94.6 93.9 94.6 95.0 95.1 95.9 93.2 

Avg. Interval Length 4.0660 5.0126 2.4759 2.6852 1.7236 1.8302 1.2060 1.2687 0.9813 1.0136 0.7616 0.7821 0.6671 0.6762 

Power 0.069 0.033 0.101 0.098 0.131 0.116 0.291 0.237 0.362 0.366 0.527 0.502 0.681 0.644 

Mean Absolute Bias (%) 188.47 197.87 120.67 123.06 86.06 83.51 62.12 61.61 50.45 50.72 39.82 39.11 31.83 34.05 
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Table 3.6: Estimates for Mean(SLR) and Median(QR) with Error Distribution Skewed to 2.5 

Sample Size 20 50 100 200 300 500 650 

Method SLR QR SLR QR SLR QR SLR QR SLR QR SLR QR SLR QR 

Avg. estimate 0.4292 0.3954 0.3983 0.3962 0.4143 0.4063 0.3750 0.4111 0.4071 0.4072 0.3948 0.4045 0.3903 0.3965 

Bias Percentage 7.3116 -1.1625 -0.4127 -0.9516 3.5691 1.5704 -6.2379 2.7766 1.7796 1.7918 -1.2896 1.1286 -2.4200 -0.8854 

Coverage Percent 96.6 98.7 95.3 95.6 94.7 95.4 94.4 95.1 96.3 95.6 95.4 93.9 95.8 96.1 

Avg. Interval Length 4.0328 4.5423 2.4708 2.3583 1.7239 1.5901 1.2140 1.1022 0.9921 0.8907 0.7699 0.6807 0.6720 0.5995 

Power 0.071 0.026 0.109 0.092 0.168 0.177 0.241 0.318 0.389 0.440 0.524 0.635 0.617 0.733 

Mean Absolute Bias (%) 191.98 168.81 125.05 106.29 88.03 73.18 61.79 54.06 51.25 41.79 37.16 34.84 34.37 28.15 

 

 

Table 3.7: Estimates for Mean(SLR) and Median(QR) with Error Distribution Skewed to 3 

Sample Size 20 50 100 200 300 500 650 

Method SLR QR SLR QR SLR QR SLR QR SLR QR SLR QR SLR QR 

Avg. estimate 0.3544 0.4040 0.3979 0.3933 0.4096 0.4022 0.4005 0.4040 0.3943 0.4049 0.4064 0.4046 0.3994 0.4034 

Bias Percentage -11.4108 1.0042 -0.5259 -1.6827 2.4072 0.5405 0.1174 1.0123 -1.4323 1.2187 1.6068 1.1447 -0.1491 0.8558 

Coverage Percent 95.2 98.9 94.8 96.6 96.3 95.1 94.8 94.8 94.7 95.1 95.3 94.4 95.2 95.0 

Avg. Interval Length 3.9478 4.0306 2.4235 1.9351 1.6950 1.2919 1.1994 0.8787 0.9755 0.7066 0.7551 0.5451 0.6637 0.4731 

Power 0.073 0.038 0.121 0.119 0.154 0.252 0.266 0.455 0.362 0.620 0.556 0.816 0.679 0.913 

Mean Absolute Bias (%) 187.21 142.42 120.53 86.44 81.77 61.50 61.37 42.84 50.83 35.07 37.89 27.01 32.60 23.15 
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Table 3.8: Estimates for Mean(SLR) and Median(QR) with Error Distribution Skewed to 4 

Sample Size 20 50 100 200 300 500 650 

Method SLR QR SLR QR SLR QR SLR QR SLR QR SLR QR SLR QR 

Avg. estimate 0.4026 0.4065 0.3713 0.3960 0.3617 0.3945 0.3901 0.3980 0.4005 0.3952 0.4033 0.3962 0.3941 0.3972 

Bias Percentage 0.6377 1.6234 -7.1776 -1.0011 -9.5814 -1.3684 -2.4630 -0.5077 0.1149 -1.2113 0.8364 -0.9422 -1.4867 -0.7038 

Coverage Percent 96.0 99.4 94.7 98.8 95.5 97.5 95.4 95.3 94.6 95.2 94.4 95.6 95.1 94.8 

Avg. Interval Length 3.9209 3.0002 2.4542 1.2411 1.7166 0.7532 1.2331 0.5023 0.9927 0.4054 0.7717 0.3104 0.6799 0.2705 

Power 0.105 0.074 0.122 0.309 0.145 0.573 0.261 0.848 0.379 0.952 0.528 0.995 0.619 1.000 

Mean Absolute Bias (%) 188.17 83.86 122.40 49.28 86.96 33.81 63.61 24.00 51.43 19.31 39.53 15.06 35.41 13.59 

 

 

Table 3.9: Estimates for Mean(SLR) and Median(QR) with Error Distribution Skewed to 6 

Sample Size 20 50 100 200 300 500 650 

Method SLR QR SLR QR SLR QR SLR QR SLR QR SLR QR SLR QR 

Avg. estimate 0.3869 0.4003 0.3877 0.4006 0.4006 0.3982 0.4240 0.4003 0.3981 0.3998 0.4111 0.4000 0.4053 0.3997 

Bias Percentage -3.2726 0.0736 -3.0810 0.1492 0.1605 -0.4441 5.9917 0.0655 -0.4806 -0.0579 2.7680 -0.0023 1.3167 -0.0697 

Coverage Percent 96.6 100.0 96.5 99.8 95.5 99.5 96.6 99.3 95.3 98.9 93.6 98.0 95.5 94.9 

Avg. Interval Length 3.5649 1.7384 2.2696 0.3463 1.6392 0.1426 1.1736 0.0747 0.9620 0.0544 0.7460 0.0389 0.6605 0.0336 

Power 0.155 0.338 0.155 0.930 0.208 0.998 0.347 1.000 0.404 1.000 0.592 1.000 0.682 1.000 

Mean Absolute Bias (%) 174.46 18.53 115.56 7.05 85.12 4.38 59.70 2.79 48.87 2.30 39.30 1.77 32.01 1.61 
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Table 3.10: Estimates for Mean(SLR) and Median(QR) with Error Distribution Skewed to -0.5 

Sample Size 20 50 100 200 300 500 650 

Method SLR QR SLR QR SLR QR SLR QR SLR QR SLR QR SLR QR 

Avg. estimate 0.4462 0.4129 0.4064 0.4122 0.4086 0.3767 0.3968 0.3904 0.4079 0.4061 0.3971 0.4023 0.3982 0.3948 

Bias Percentage 11.5564 3.2341 1.5952 3.0484 2.1387 -5.8375 -0.8077 -2.4009 1.9644 1.5127 -0.7325 0.5821 -0.4426 -1.2878 

Coverage Percent 94.0 97.1 96.2 96.5 94.4 94.6 94.2 95.9 95.2 93.7 95.3 94.5 95.6 93.7 

Avg. Interval Length 4.1997 6.1470 2.4683 3.3368 1.7235 2.2620 1.2085 1.5555 0.9860 1.2680 0.7619 0.9658 0.6684 0.8457 

Power 0.076 0.033 0.097 0.073 0.143 0.119 0.267 0.175 0.379 0.243 0.519 0.377 0.655 0.474 

Mean Absolute Bias (%) 205.86 257.47 118.86 151.96 87.36 110.36 63.24 73.13 50.73 63.58 38.74 46.81 33.62 43.02 

 

 

Table 3.11: Estimates for Mean(SLR) and Median(QR) with Error Distribution Skewed to -1 

Sample Size 20 50 100 200 300 500 650 

Method SLR QR SLR QR SLR QR SLR QR SLR QR SLR QR SLR QR 

Avg. estimate 0.3635 0.4023 0.3731 0.3869 0.3827 0.3733 0.3865 0.3963 0.3988 0.3837 0.3925 0.3954 0.3959 0.3916 

Bias Percentage -9.1359 0.5632 -6.7339 -3.2782 -4.320 -6.6829 -3.3739 -0.9280 -0.3060 -4.0744 -1.8780 -1.1573 -1.0221 -2.1108 

Coverage Percent 94.7 97.5 95.3 95.8 96.1 96.0 96.3 94.8 95.3 95.8 95.6 94.6 94.4 94.4 

Avg. Interval Length 4.1416 5.9296 2.4736 3.1961 1.7178 2.1929 1.2101 1.5024 0.9833 1.2312 0.7616 0.9309 0.6682 0.8191 

Power 0.067 0.039 0.108 0.073 0.133 0.099 0.253 0.180 0.348 0.237 0.515 0.386 0.639 0.479 

Mean Absolute Bias (%) 194.06 241.97 130.70 146.67 83.06 101.41 59.60 72.11 48.68 60.95 39.36 45.48 34.25 42.18 
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Table 3.12: Estimates for Mean(SLR) and Median(QR) with Error Distribution Skewed to -2 

Sample Size 20 50 100 200 300 500 650 

Method SLR QR SLR QR SLR QR SLR QR SLR QR SLR QR SLR QR 

Avg. estimate 0.3997 0.4351 0.3866 0.3935 0.4151 0.4264 0.3941 0.4095 0.3896 0.3974 0.4093 0.4141 0.3913 0.3924 

Bias Percentage -0.0848 8.7812 -3.3599 -1.6354 3.7650 6.6023 -1.4850 2.3779 -2.6058 -0.6590 2.3214 3.5281 -2.1760 -1.8934 

Coverage Percent 96.3 97.9 95.9 96.4 95.0 95.2 94.8 95.2 93.9 94.5 95.0 94.9 95.9 93.3 

Avg. Interval Length 4.0660 5.0126 2.4759 2.6852 1.7236 1.8301 1.2060 1.2687 0.9813 1.0136 0.7616 0.7821 0.6671 0.6762 

Power 0.058 0.036 0.080 0.093 0.166 0.149 0.248 0.251 0.345 0.350 0.566 0.562 0.645 0.620 

Mean Absolute Bias (%) 188.47 197.87 120.67 123.06 86.06 83.51 62.12 61.61 50.45 50.72 39.82 39.11 31.83 34.05 

 

 

Table 3.13: Estimates for Mean(SLR) and Median(QR) with Error Distribution Skewed to -2.5 

Sample Size 20 50 100 200 300 500 650 

Method SLR QR SLR QR SLR QR SLR QR SLR QR SLR QR SLR QR 

Avg. estimate 0.3708 0.4046 0.4017 0.4038 0.3857 0.3937 0.4250 0.3889 0.3929 0.3928 0.4052 0.3955 0.4097 0.4035 

Bias Percentage -7.3116 1.1625 0.4127 0.9516 -3.5691 -1.5704 6.2379 -2.7766 -1.7796 -1.7918 1.2896 -1.1286 2.4200 0.8854 

Coverage Percent 96.6 98.9 95.3 95.5 94.7 95.6 94.4 95.5 96.3 95.3 95.4 94.3 95.8 95.7 

Avg. Interval Length 4.0328 4.5423 2.4708 2.3582 1.7239 1.5901 1.2140 1.1022 0.9921 0.8907 0.7699 0.6807 0.6720 0.5995 

Power 0.062 0.025 0.120 0.120 0.148 0.154 0.281 0.289 0.357 0.423 0.556 0.607 0.663 0.758 

Mean Absolute Bias (%) 191.98 168.81 125.05 106.29 88.03 73.18 61.79 54.06 51.25 41.79 37.15 34.84 34.37 28.15 
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Table 3.14: Estimates for Mean(SLR) and Median(QR) with Error Distribution Skewed to -3 

Sample Size 20 50 100 200 300 500 650 

Method SLR QR SLR QR SLR QR SLR QR SLR QR SLR QR SLR QR 

Avg. estimate 0.4456 0.3960 0.4021 0.4067 0.3904 0.3978 0.3995 0.3960 0.4057 0.3951 0.3936 0.3954 0.4006 0.3966 

Bias Percentage 11.411 -1.0042 0.5259 1.6827 -2.4072 -0.5405 -0.1174 -1.0123 1.4323 -1.2187 -1.6068 -1.1447 0.1491 -0.8558 

Coverage Percent 95.2 98.9 94.8 96.8 96.3 95.3 94.8 94.7 94.7 95.0 95.3 94.4 95.2 94.9 

Avg. Interval Length 3.9478 4.0306 2.4235 1.9351 1.6950 1.2919 1.1994 0.8786 0.9755 0.7066 0.7551 0.5451 0.6637 0.4731 

Power 0.076 0.045 0.117 0.145 0.167 0.257 0.271 0.430 0.383 0.577 0.558 0.810 0.668 0.902 

Mean Absolute Bias (%) 187.21 142.42 120.53 86.44 81.77 61.50 61.37 42.84 50.83 35.07 37.89 27.01 32.60 23.15 

 

 

Table 3.15: Estimates for Mean(SLR) and Median(QR) with Error Distribution Skewed to -4 

Sample Size 20 50 100 200 300 500 650 

Method SLR QR SLR QR SLR QR SLR QR SLR QR SLR QR SLR QR 

Avg. estimate 0.3975 0.3935 0.4287 0.4040 0.4383 0.4055 0.4099 0.4020 0.3995 0.4048 0.3967 0.4038 0.4059 0.4028 

Bias Percentage -0.6377 -1.6234 7.1776 1.0011 9.5814 1.3684 2.4630 0.5077 -0.1149 1.2113 -0.8364 0.9422 1.4867 0.7038 

Coverage Percent 96.0 99.3 94.7 98.8 95.5 97.5 95.4 96.3 94.6 95.1 94.4 94.9 95.1 95.0 

Avg. Interval Length 3.9209 3.0002 2.4542 1.2411 1.7166 0.7532 1.2331 0.5023 0.9927 0.4054 0.7717 0.3104 0.6799 0.2705 

Power 0.080 0.062 0.129 0.316 0.187 0.619 0.271 0.869 0.378 0.956 0.553 0.995 0.646 0.998 

Mean Absolute Bias (%) 188.17 83.86 122.40 49.28 86.96 33.81 63.61 24.00 51.43 19.31 39.53 15.06 35.41 13.59 
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Table 3.16: Estimates for Mean(SLR) and Median(QR) with Error Distribution Skewed to -6 

Sample Size 20 50 100 200 300 500 650 

Method SLR QR SLR QR SLR QR SLR QR SLR QR SLR QR SLR QR 

Avg. estimate 0.4131 0.3997 0.4123 0.3994 0.3994 0.4018 0.3760 0.3997 0.4019 0.4002 0.3889 0.4000 0.3947 0.4003 

Bias Percentage 3.2726 -0.0736 3.0810 -0.1492 -0.1605 0.4441 -5.9917 -0.0655 0.4806 0.0579 -2.7680 0.0023 -1.3167 0.0697 

Coverage Percent 96.6 100 96.5 99.8 95.5 99.7 96.6 99.4 95.3 98.8 93.6 98.2 95.5 94.8 

Avg. Interval Length 3.5649 1.7382 2.2696 0.3463 1.6392 0.1426 1.1736 0.0747 0.9620 0.0542 0.7460 0.0389 0.6605 0.0336 

Power 0.143 0.330 0.171 0.926 0.216 0.998 0.273 1.000 0.380 1.000 0.535 1.000 0.658 1.000 

Mean Absolute Bias (%) 174.46 18.53 115.56 7.05 86.12 4.38 59.70 2.79 48.87 2.30 39.30 1.77 32.01 1.61 
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Table 3.17: Type I Error Rate for SLR and Median QR with Slope Coefficient of 0 

Skewness of 

Error 

Sample 

Size 

Type I Error Rate of 

SLR 

Type I Error Rate of 

QR 

0 

20 0.040 0.035 

200 0.057 0.058 

650 0.056 0.048 

0.5 

20 0.060 0.029 

200 0.058 0.045 

650 0.044 0.064 

1 

20 0.053 0.022 

200 0.037 0.052 

650 0.056 0.054 

2 

20 0.037 0.019 

200 0.052 0.055 

650 0.041 0.070 

2.5 

20 0.034 0.009 

200 0.056 0.047 

650 0.042 0.043 

3 

20 0.048 0.012 

200 0.052 0.053 

650 0.048 0.051 

4 

20 0.040 0.007 

200 0.046 0.041 

650 0.049 0.054 

6 

20 0.034 0.000 

200 0.034 0.007 

650 0.045 0.047 

 

Table 3.18: Simulation Scenario 2 Error Distributions 

��(��): ��(��)
 Error Distribution  

1 #xj2it(0,2.3) 

1.5 z1 + a 	14b{ ∗ #xj2it(0,2.3) 

2 z1 + a	7b{ ∗ #xj2it(0,2.3) 

3 }1 + 3 ∗ 	11 ~ ∗ #xj2it(0,2.3) 
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Table 3.19: Comparison of SLR(Mean) and QR(�th percentile) Estimates in Cases Where Slope Estimate is Not Consistent Across 

Distribution of the Outcome Due to Heterogeneity in Error Variance, with Mean Effect 0.4 and Ratio of ��(��)
 and ��(��)

 of 1.5 

 QR (10th) 

True Slope: 0.1896 

QR (25th) 

True Slope: 0.2892 

QR (50th) 

True Slope: 0.4000 

QR (75th) 

True Slope: 0.5108 

QR (90th) 

True Slope: 0.6105 

Mean 

Sample 

Size 

Avg. 

Estimate 

Change 

from 

Mean 

(%) 

Avg. 

Estimate 

Change 

from 

Mean 

(%) 

Avg. 

Estimate 

Change 

from 

Mean 

(%) 

Avg. 

Estimate 

Change 

from 

Mean 

(%) 

Avg. 

Estimate 

Change 

from 

Mean 

(%) 

Avg. 

Estimate 

20 0.1615 -59.63 0.2787 -30.33 0.4251 6.28 0.4897 22.43 0.5911 47.78 0.4004 

50 0.1828 -54.30 0.2844 -28.90 0.4180 4.50 0.5196 29.90 0.5976 49.40 0.4062 

100 0.1696 -57.60 0.2875 -28.13 0.4009 0.23 0.5172 29.30 0.6235 55.88 0.4054 

200 0.1838 -54.05 0.2820 -29.50 0.3908 -2.30 0.5006 25.15 0.6131 53.28 0.3975 

300 0.1872 -53.20 0.2861 -28.48 0.4018 0.45 0.5147 28.68 0.6187 54.68 0.3968 

500 0.1896 -52.60 0.2843 -28.93 0.3931 -1.73 0.5021 25.53 0.6034 50.85 0.3970 

650 0.1859 -53.53 0.2869 -28.28 0.3956 -1.10 0.5048 26.20 0.6070 51.75 0.4002 

 

Table 3.20: Comparison of SLR(Mean) and QR(�th percentile) Estimates in Cases Where Slope Estimate is Not Consistent Across 

Distribution of the Outcome Due to Heterogeneity in Error Variance, with Mean Effect 0.4 and Ratio of ��(��)
 and ��(��)

 of 2 

 QR (10th) 

True Slope: -0.0211 

QR (25th) 

True Slope: 0.1784 

QR (50th) 

True Slope: 0.4000 

QR (75th) 

True Slope: 0.6216 

QR (90th) 

True Slope: 0.8211 

Mean 

Sample 

Size 

Avg. 

Estimate 

Change 

from 

Mean 

(%) 

Avg. 

Estimate 

Change 

from 

Mean 

(%) 

Avg. 

Estimate 

Change 

from 

Mean 

(%) 

Avg. 

Estimate 

Change 

from 

Mean 

(%) 

Avg. 

Estimate 

Change 

from 

Mean 

(%) 

Avg. 

Estimate 

20 -0.0386 -109.65 0.1695 -57.63 0.4282 7.05 0.5898 47.45 0.7801 95.03 0.3986 

50 -0.0226 -105.65 0.1748 -56.30 0.4216 5.40 0.6317 57.93 0.8011 100.28 0.4061 

100 -0.0418 -110.45 0.1778 -55.55 0.4008 0.20 0.6292 57.30 0.8328 108.20 0.4067 

200 -0.0260 -106.50 0.1693 -57.68 0.3881 -2.98 0.6081 52.03 0.8217 105.43 0.3965 

300 -0.0234 -105.85 0.1744 -56.40 0.4018 0.45 0.6259 56.48 0.8294 107.35 0.3961 

500 -0.0205 -105.13 0.1727 -56.83 0.3916 -2.10 0.6112 52.80 0.8119 102.98 0.3962 

650 -0.0250 -106.25 0.1762 -55.95 0.3949 -1.28 0.6145 53.63 0.8169 104.23 0.4000 
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Table 3.21: Comparison of SLR(Mean) and QR(�th percentile) Estimates in Cases Where Slope Estimate is Not Consistent Across 

Distribution of the Outcome Due to Heterogeneity in Error Variance, with Mean Effect 0.4 and Ratio of ��(��)
 and ��(��)

 of 3 

 QR (10th) 

True Slope: -0.4039 

QR (25th) 

True Slope: -0.0231 

QR (50th) 

True Slope: 0.4000 

QR (75th) 

True Slope: 0.8231 

QR (90th) 

True Slope: 1.2039 

Mean 

Sample 

Size 

Avg. 

Estimate 

Change 

from 

Mean 

(%) 

Avg. 

Estimate 

Change 

from 

Mean 

(%) 

Avg. 

Estimate 

Change 

from 

Mean 

(%) 

Avg. 

Estimate 

Change 

from 

Mean 

(%) 

Avg. 

Estimate 

Change 

from 

Mean 

(%) 

Avg. 

Estimate 

20 -0.4019 -200.48 -0.0283 -107.08 0.4340 8.50 0.7722 93.05 1.1222 180.55 0.3953 

50 -0.3952 -198.80 -0.0236 -105.90 0.4277 6.93 0.8348 108.70 1.1706 192.65 0.4057 

100 -0.4266 -206.65 -0.0221 -105.53 0.4003 0.08 0.8321 108.03 1.2120 203.00 0.4091 

200 -0.4075 -201.88 -0.0356 -108.90 0.3838 -4.05 0.8041 101.03 1.2002 200.05 0.3948 

300 -0.4055 -201.38 -0.0287 -107.18 0.4014 0.35 0.8280 107.00 1.2124 203.10 0.3947 

500 -0.4020 -200.50 -0.0303 -107.58 0.3891 -2.73 0.8097 102.43 1.1912 197.80 0.3948 

650 -0.4084 -202.10 -0.0249 -106.23 0.3935 -1.63 0.8144 103.60 1.1988 199.70 0.3997 

 

Table 3.22: Comparison of SLR(Mean) and QR(�th percentile) Coverage Percentage in Cases Where Slope Estimate is Not 

Consistent Across Distribution of the Outcome Due to Heterogeneity in Error Variance, with Mean Effect 0.4 and Ratio of ��(��)
 and ��(��)

 of 1.5 

Sample Size QR (10th) QR (25th) QR (50th) QR (75th) QR (90th) Mean 

20 94.9 96.5 96.1 97.1 94.0 95.7 

50 95.2 95.7 95.9 95.2 94.2 94.4 

100 96.2 95.3 95.7 95.6 94.6 94.4 

200 95.5 96.2 94.7 94.4 94.1 94.3 

300 93.9 95.4 95.3 95.5 95.4 95.1 

500 95.0 93.6 93.4 94.2 94.2 95.8 

650 93.8 95.8 94.9 94.2 94.7 94.6 
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Table 3.23: Comparison of SLR(Mean) and QR(�th percentile) Coverage Percentage in Cases Where Slope Estimate is Not 

Consistent Across Distribution of the Outcome Due to Heterogeneity in Error Variance, with Mean Effect 0.4 and Ratio of ��(��)
 and ��(��)

 of 2 

Sample Size QR (10th) QR (25th) QR (50th) QR (75th) QR (90th) Mean 

20 94.7 96.5 96.0 94.2 93.8 96.1 

50 95.5 95.9 96.2 95.6 94.0 94.6 

100 96.4 95.0 95.7 95.0 95.0 94.5 

200 95.4 96.1 94.9 93.9 94.2 94.4 

300 93.8 95.6 95.5 95.2 95.8 95.0 

500 95.4 93.5 93.2 94.8 94.0 95.7 

650 94.7 95.9 94.9 94.2 94.8 94.2 

 

Table 3.24: Comparison of SLR(Mean) and QR(�th percentile) Coverage Percentage in Cases Where Slope Estimate is Not 

Consistent Across Distribution of the Outcome Due to Heterogeneity in Error Variance, with Mean Effect 0.4 and Ratio of ��(��)
 and ��(��)

 of 3 

Sample Size QR (10th) QR (25th) QR (50th) QR (75th) QR (90th) Mean 

20 94.3 96.2 95.3 96.4 93.9 95.8 

50 95.5 96.0 96.2 95.7 93.5 94.7 

100 96.5 95.2 95.7 94.9 94.5 94.3 

200 95.1 96.2 95.0 93.5 94.4 94.0 

300 93.2 95.7 95.2 95.2 95.7 94.9 

500 95.5 94.3 93.3 94.2 94.2 95.6 

650 94.8 96.1 95.0 94.1 95.2 93.9 
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Table 3.25: Comparison of SLR(Mean) and QR(�th percentile) Estimates of Power in Cases Where Slope Estimate is Not Consistent 

Across Distribution of the Outcome Due to Heterogeneity in Error Variance, with Mean Effect 0 and Ratio of ��(��)
 and ��(��)

 of 1.5 

 QR (10th) 

True Slope: -0.2105 

QR (25th) 

True Slope: -0.1108 

QR (50th) 

True Slope: 0.0000 

QR (75th) 

True Slope: 0.1108 

QR (90th) 

True Slope: 0.2105 

Mean 

Sample 

Size 

Avg. 

Estimate 

Power Avg. 

Estimate 

Power Avg. 

Estimate 

Power Avg. 

Estimate 

Power Avg. 

Estimate 

Power Avg. 

Estimate 

Power1 

20 -0.2385 0.053 -0.1213 0.038 0.0251 0.041 0.0897 0.035 0.1911 0.068 0.0004 0.043 

50 -0.2172 0.069 -0.1156 0.042 0.0180 0.035 0.1196 0.065 0.1976 0.078 0.0062 0.056 

100 -0.2034 0.087 -0.1125 0.073 0.0009 0.040 0.1172 0.075 0.2235 0.088 0.0054 0.056 

200 -0.2162 0.131 -0.1180 0.083 -0.0092 0.053 0.1006 0.083 0.2131 0.144 -0.0025 0.057 

300 -0.2128 0.201 -0.1139 0.120 0.0018 0.042 0.1147 0.115 0.2187 0.180 -0.0032 0.049 

500 -0.2104 0.283 -0.1157 0.155 -0.0069 0.063 0.1021 0.133 0.2034 0.258 -0.0030 0.042 

650 -0.2141 0.341 -0.1131 0.162 -0.0044 0.050 0.1048 0.173 0.2070 0.319 0.0002 0.054 
1 Power for SLR when the mean effect is truly 0 is equivalent to the type I error rate. 

Table 3.26: Comparison of SLR(Mean) and QR(�th percentile) Estimates of Power in Cases Where Slope Estimate is Not Consistent 

Across Distribution of the Outcome Due to Heterogeneity in Error Variance, with Mean Effect 0 and Ratio of ��(��)
 and ��(��)

 of 2 

 QR (10th) 

True Slope: -0.4211 

QR (25th) 

True Slope: -0.2216 

QR (50th) 

True Slope: 0.0000 

QR (75th) 

True Slope: 0.2216 

QR (90th) 

True Slope: 0.4211 

Mean 

Sample 

Size 

Avg. 

Estimate 

Power Avg. 

Estimate 

Power Avg. 

Estimate 

Power Avg. 

Estimate 

Power Avg. 

Estimate 

Power Avg. 

Estimate 

Power1 

20 -0.4386 0.070 -0.2305 0.040 0.0282 0.044 0.1898 0.041 0.3801 0.077 -0.0014 0.039 

50 -0.4226 0.098 -0.2252 0.051 0.0216 0.036 0.2317 0.084 0.4011 0.119 0.0060 0.054 

100 -0.4418 0.181 -0.2222 0.093 0.0008 0.042 0.2292 0.105 0.4328 0.152 0.0067 0.055 

200 -0.4260 0.302 -0.2307 0.159 -0.0119 0.052 0.2081 0.155 0.4217 0.293 -0.0035 0.056 

300 -0.4234 0.429 -0.2256 0.228 0.0018 0.044 0.2259 0.214 0.4294 0.409 -0.0039 0.050 

500 -0.4205 0.608 -0.2273 0.340 -0.0084 0.063 0.2112 0.310 0.4119 0.589 -0.0038 0.043 

650 -0.4250 0.727 -0.2238 0.384 -0.0051 0.050 0.2145 0.365 0.4169 0.697 -0.0000 0.058 
1 Power for SLR when the mean effect is truly 0 is equivalent to the type I error rate. 
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Table 3.27: Comparison of SLR(Mean) and QR(�th percentile) Estimates of Power in Cases Where Slope Estimate is Not Consistent 

Across Distribution of the Outcome Due to Heterogeneity in Error Variance, with Mean Effect 0 and Ratio of ��(��)
 and ��(��)

 of 3 

 QR (10th) 

True Slope: -0.8039 

QR (25th) 

True Slope: -0.4231 

QR (50th) 

True Slope: 0.0000 

QR (75th) 

True Slope: 0.4231 

QR (90th) 

True Slope: 0.8039 

Mean 

Sample 

Size 

Avg. 

Estimate 

Power Avg. 

Estimate 

Power Avg. 

Estimate 

Power Avg. 

Estimate 

Power Avg. 

Estimate 

Power Avg. 

Estimate 

Power1 

20 -0.8019 0.101 -0.4283 0.052 0.0340 0.046 0.3722 0.051 0.7222 0.097 -0.0047 0.042 

50 -0.7952 0.169 -0.4236 0.076 0.0277 0.038 0.4348 0.110 0.7706 0.176 0.0057 0.053 

100 -0.8266 0.332 -0.4220 0.156 0.0003 0.043 0.4321 0.180 0.8120 0.304 0.0091 0.057 

200 -0.8075 0.518 -0.4356 0.292 -0.0162 0.051 0.4041 0.258 0.8002 0.519 -0.0052 0.060 

300 -0.8055 0.693 -0.4287 0.404 0.0014 0.045 0.4280 0.391 0.8124 0.724 -0.0053 0.051 

500 -0.8020 0.899 -0.4303 0.597 -0.0109 0.059 0.4097 0.563 0.7912 0.889 -0.0052 0.044 

650 -0.8084 0.958 -0.4249 0.719 -0.0065 0.050 0.4144 0.693 0.7988 0.959 -0.0003 0.061 
1 Power for SLR when the mean effect is truly 0 is equivalent to the type I error rate. 

 

Table 3.28: Estimates for SLR and QR(�th percentile) with Skewed Errors and Heteroscedasticity 

Sample Size  50 

Method SLR QR (10th) QR (25th) QR (50th) QR (75th) QR (90th) 

True Slope 0.5000 0.5000 0.5005 0.5510 1.3253 4.1393 

Avg. estimate 1.6943 0.5001 0.5020 0.5742 1.3562 4.0309 

Bias Percentage 238.8618 0.0137 0.2946 4.2063 2.3322 -2.6170 

Coverage Percent 80.2 100 100 97.4 94.7 93.1 

Avg. Interval Length 3.5085 0.0096 0.0757 0.7779 4.5100 14.4338 

Power 0.522 1.000 0.999 0.848 0.178 0.188 

Mean Absolute Bias (%) 244.70 0.02 0.58 15.27 51.16 56.13 
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Figure 3.1: Scenario 1: Histogram of Error with Skewness 0.5 compared with Normal 

Curve 

 

 

 

 

 

Figure 3.2: Scenario 1: Histogram of Error with Skewness 1 compared with Normal Curve
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Figure 3.3: Scenario 1: Histogram of Error with Skewness 2 compared with Normal Curve 

 

 

 

 

 

Figure 3.4: Scenario 1: Histogram of Error with Skewness 2.5 Compared with Normal 

Curve
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Figure 3.5: Scenario 1: Histogram of Error with Skewness 3 Compared with Normal 

Curve 

 

 

 

 

Figure 3.6: Scenario 1: Histogram of Error with Skewness 4 Compared with Normal 

Curve
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Figure 3.7: Scenario 1:  Histogram of Error with Skewness 6 Compared with Normal 

Curve 

 

 

 

 

 

Figure 3.8: Scenario 3: Histogram of Error with Skewness and Heteroscedasticity at x=-2
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Figure 3.9: Scenario 3:  Histogram of Error with Skewness and Heteroscedasticity at x=0 

 

 

 

 

Figure 3.10: Scenario 3:  Histogram of Error with Skewness and Heteroscedasticity at 

x=2 
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CHAPTER 4 

RESULTS

4.1 SCENARIO 1 

 The results of the simulation are presented in Tables 3.2-3.16. The results in 

which the error distribution was negatively skewed presented very similar results to those 

from the positively skewed simulations. As such, the primary focus will be on the 

positively skewed results.  

The coverage percentage represents the percentage of simulations for which the 

true slope was within the confidence interval for the estimated slope. Regardless of the 

level of skewness seen in the error distribution, the coverage percentage for the SLR 

models remain strong, suggesting that violations from the assumptions of normality of 

error do not result in any noticeable shifts in the coverage percentage. Figure 4.1 displays 

each of the SLR simulations’ coverage percentage by skewness and sample size along 

with the calculated confidence interval of (93.649, 96.351) for the expected coverage 

percentage of 95%. The vast majority of the simulations fall within this 95% confidence 

limit, suggesting in most cases there is no evidence that violations of the normality 

assumption of random errors results in a change in coverage probability in SLR. Figure 

4.2 represents the same graph of the coverage percentage and confidence bound for the 

QR models, also by skewness of the error distribution and sample size. For the majority 

of cases, the coverage percentage falls either within the calculated 95% confidence 

interval or above the upper confidence bound. In cases where the coverage is above the 
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upper confidence bound, this suggests that the confidence intervals for the parameter 

estimates, ��c� , are more conservative and thus more likely to include the true slope value 

��. 

In the case where the assumptions of linear regression hold, the SLR model was 

consistently more powerful than the QR model. Up to a skewness in the error term of 

about 2, linear regression is a more statistically powerful method of analysis than quantile 

regression. Once the skewness of the error surpasses this threshold, quantile regression 

has higher power to detect effects than linear regression. Prior to this threshold, the 

difference in power between SLR and QR is relatively small in smaller sample sizes, 

while there is a marked increase in difference of power level in small samples sizes after 

skewness exceeds the threshold. Figure 4.3 displays a comparison between statistical 

power of SLR versus QR for selected sample sizes. Similar patterns were observed 

among the excluded sample sizes, which were omitted to avoid clutter. It should be noted 

that, for a small sample size (e.g. n=20, 50), the statistical power of quantile regression 

remains lower than that of linear regression until the error distributions have a skewness 

greater than 3. This is likely due to the fact that, with a small sample size, each small 

sample is less likely to contain extreme error values selected from the larger population. 

Without these extreme values, the distribution of the error terms is impacted less by the 

non-normality of the error terms and linear regression remains a more powerful method 

of analysis.  

Similar to the statistical power, the mean absolute bias percent of the models 

when the normality assumption is met is consistently smaller in the SLR model as 

compared with QR. As skewness of the error distribution increases, this difference 
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decreases until ultimately the QR models have a smaller mean absolute bias percentage. 

The difference initially becomes apparent among the larger sample sizes (n=100 and 

greater) when the skewness of the error is approximately 2. When the skewness of the 

error increases to 2.5 and greater, the difference becomes larger and more consistent for 

all sample sizes. Figure 4.4 shows a graphical representation of the difference in mean 

absolute bias percent between linear and quantile regression, by skewness and sample 

size. 

Figure 4.5 displays the type I error rate for both SLR and QR at the median as a 

function of sample size and skewness of the error term when the slope coefficient is 0. 

With a Type I error rate of 5%, we would expect the simulations to report an association 

in 5% of the simulations, even though no association is present. This chart also includes a 

95% confidence interval for this Type I error rate of 5% of (0.0365, 0.635). The linear 

regression simulations fall within this confidence interval as expected. The majority of 

the quantile regression simulations also fall within this interval, with the exception of the 

simulations run with a sample size of 20. For this sample size, the type I error rate was 

consistently below the confidence interval, suggesting that the type I error rate is actually 

less than the assumed 5%.  

4.2 SCENARIO 2 

This simulation experiment compares the linear regression estimate to the quantile 

regression estimates at various percentiles of interest, shown in Tables 3.19-3.21, as we 

increase the amount of variability seen in the distribution of the outcome as a factor of the 

predictor.  
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When the homoscedasticity of errors assumption is violated, the coverage 

percentage of the linear regression models remains strong regardless of the level of 

heteroscedasticity introduced to the model. Figure 4.6 shows the coverage percentage as a 

function of the sample size and heteroscedasticity factor for the linear regression models, 

while Figures 4.7 and 4.8 show the coverage percentage of the 10th and 90th percentiles, 

respectively. Coverage percentages in the quantile regression models not included as 

figures presented very similar results as the 10th and 90th percentile models. 

The primary interest in this case is the difference between the estimates of the 

association between predictor and outcome. The homoscedasticity assumption of SLR 

implies that slope of the association between the predictor and the outcome remains the 

same at all percentiles of the conditional distribution of the outcome. That is, that the 

relationship between the predictor and the outcome at the mean of the conditional 

distribution is the same as that of any other percentile. Because the homoscedasticity 

assumption is violated in this scenario, the estimates of the slope at different percentiles 

of the outcome will be different from that of the slope at the mean. As soon as 

heteroscedasticity is introduced in our simulation experiments, the estimate from linear 

regression over or underestimates the association between the slope and response 

variables at our chosen percentiles of interest.  

Considering the 10th percentile, even at our lowest level of dependence of 

variance upon the predictor, using the estimates from SLR to explain the association 

between the outcome and predictor in this percentile overestimates the true association by 

around 50%. As the strength of the dependence of variance upon the predictor gets 
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progressively stronger, this overestimation increases to 100% and 200%. At this 

percentile, the association between the predictor and response variables is truly an inverse 

relationship in our experiment, while the SLR estimate assumes that the relationship is 

positive. In the 90th percentile, similar patterns are seen in the magnitude of the

differences in estimates, but the true relationship between predictor and response within 

the 90th percentile is underestimated by the SLR estimates. The underestimation climbs 

from approximately 50% to about 200%. Even within the 25th and 75th percentiles, the 

association is over and underpredicted, respectively, by the linear regression results.  

Figure 4.9 displays the type I error rate for linear regression and shows that the 

type I error rate in our experiment remains within the 95% confidence interval for the 

expected rate of 5% regardless of the strength of the variance’s dependence on the 

predictor. However, while the linear regression results indicate that there is no association 

between the predictor and outcome variables, these results are unable to accurately 

describe the true relationship for the conditional distribution of the outcome. That is, that 

there is a negative association within the lower percentiles and a positive association in 

the upper percentiles. Tables 3.25-3.27 display the estimates of the association and the 

statistical power of the quantile regression models at percentiles of interest when the 

slope at the mean is set to 0. Quantile regression is able to better capture the relationship 

at the upper and lower percentiles, as the statistical power is much higher than that of the 

corresponding linear regression models. 

4.3 SCENARIO 3 

The results from this simulation experiment are presented in Table 3.28. With the 

introduction of skewness and heteroscedasticity simultaneously existing within the error 
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term, inference and interpretation of the linear regression model are adversely affected. 

The linear regression estimates of the �� coefficient drastically overestimate the 

association for the majority of the percentiles of the conditional distributions, and

drastically underestimate this relationship within the 90th percentile. On the other hand, 

the results from the quantile regression were able to more accurately estimate the 

relationship between the predictor variable and CRP. Considering all of the percentiles 

simultaneously gives a more complete picture of the relationship between the predictor 

and response variables. Coverage percentage of the SLR model dropped outside of what 

is expected with a type I error rate of 5%, suggesting that inferences made from linear 

regression in cases where both of these assumptions are violated might not be valid.  The 

coverage remained steady in the quantile regression model, suggesting inference from 

quantile regression is valid across quantiles. 
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Figure 4.1: Coverage Percentage by Skewness and Sample size for SLR (Slope =0.4)
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Figure 4.2: Coverage Percentage by Skewness and Sample Size for Median QR 

(Slope=0.4) 
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Figure 4.3: Power Comparison between SLR and Median QR(Slope=0.4) by Sample Size 

and Skewness of Error 
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Figure 4.4: Comparison of Mean Absolute Bias(%) Between SLR and Median QR by 

Sample Size and Skewness of Error 
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Figure 4.5: Type I Error Rate of SLR and Median QR by Sample Size and Skewness of 

Error 
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Figure 4.6: SLR Coverage Percentage (Slope=0.4) by Sample Size and Level of 

Heteroscedasticity 
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Figure 4.7: 10th Percentile QR Coverage Percentage (Slope=0.4) by Sample Size and 

Level of Heteroscedasticity 
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Figure 4.8: 90th Percentile QR Coverage Percentage (Slope=0.4) by Sample Size and 

Level of Heteroscedasticity 
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Figure 4.9: Type I Error Rate of SLR by Sample Size and Level of Heteroscedasticity 
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CHAPTER 5 

CONCLUSIONS

Oftentimes, the research question itself can define whether quantile regression is 

desired over linear regression, as public health research is often more concerned with 

specific percentiles of the conditional distribution of an outcome variable rather than 

simply the mean. In cases where different methods of analysis could be used, it is 

therefore important to understand the consequences of performing statistical analyses 

when the assumptions are not met. Linear regression is a commonly used and easily 

understood method of analysis and, when the assumptions are met, it is able to provide a 

full description of the relationship between a predictor and outcome. When the 

assumptions of linear regression hold, specifically normality and homoscedasticity of the 

error distribution, the results provide an unbiased estimate of the relationship between the 

predictor and the outcome variable. In these cases, the slope representing the relationship 

between the predictor and outcome would be the same for any percentile. However, these 

assumptions are often not met in real-world scenarios, in which case inferences and the 

accuracy of the results can suffer. Research questions in the field of public health often 

involve variables that can be highly skewed or display variances that change as a function 

of the predictor. Quantile regression can provide an alternative to linear regression in 

times when the linear regression assumptions are not met. However, the possible penalty 

for relaxing the assumptions is a loss in power as compared to linear regression when 

these assumptions are met.  
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Our study suggests that, when the normality assumption is violated, specifically 

when the errors are skewed, there is a threshold at which quantile regression offers an 

improvement in statistical power over linear regression.  After the skewness of the error 

distribution exceeds about 2, quantile regression not only becomes a more powerful 

method of analysis, but also it is able to more closely estimate the relationship between 

the predictor and the median of the outcome, as evidenced by the lower mean absolute 

bias percentage. When the sample size is small (e.g. less than 100), the loss of power 

when using quantile regression over linear regression is relatively small prior to this 

threshold (a difference in statistical power of 0.018 when skewness of error is 1 and 

sample size is 50), while there is a large potential gain in power when the skewness in 

high (a difference in statistical power of 0.187 when skewness of error is 4 and sample 

size is 50). However, our study suggests that when the sample size is even smaller (n=20) 

the skewness must be even greater before quantile regression surpasses linear regression 

in statistical power. This is likely due to the fact that such a small sample size leads to a 

lower likelihood of randomly selecting an extreme value. Regardless of sample size, our 

results suggest that, when the error distribution is not skewed, or even at very low levels 

of skewness, linear regression offers an improvement in statistical power. However, this 

improvement is smaller in magnitude than the improvement in power that quantile 

regression offers over linear regression if the error distribution is highly skewed.  

The homogeneity of variance assumption of linear regression implies that the 

slope representing the relationship between the predictor and the outcome is 

approximately the same for any conditional percentile of the outcome. When this 

assumption is violated, however, there is a large difference between the estimates of the 
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slope for specific percentiles. In some cases, the direction of the association can change at 

different percentiles (e.g. a positive association within the 90th percentile, but a negative 

association within the 10th percentile), a phenomenon that linear regression is unable to 

detect. The field of public health is frequently more concerned with the extremes of the 

conditional distribution rather than the typical value, as the extremes are often where 

health concerns are most common or most pronounced. This simulation experiment 

suggests that using linear regression models in cases with heteroscedasticity can lead to 

large under or overestimations of the true association within these tails of the conditional 

distribution, perhaps even missing opposite effects at different tails of the distribution. 

This, in turn, could potentially lead to misleading conclusions and ineffective public 

health policies.  

When both of these assumptions are violated, linear regression results can be 

heavily impacted, leading to misleading results. In this experiment using deviation from 

the mean CRP as the outcome, linear regression greatly overestimated the relationship 

between predictor and response for the majority of the conditional distributions, yet 

drastically underestimated the relationship within the 90th percentile. This suggests that, 

for data with both skewness and heteroscedasticity, linear regression is not an appropriate 

method of analysis as estimates are misleading and inference may not be valid. When 

considering multiple quantiles simultaneously, quantile regression was able to more 

accurately describe the relationship between the predictor and specific quantiles of the 

outcome while maintaining proper coverage percentage.   

In conclusion, regression diagnostics such as residual plots and Q-Q plots can be 

used in combination with linear regression models to determine in practice whether the 
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normality or equal variance of errors assumptions have been violated. Our simulation 

study suggests that if the data are not skewed or even only slightly skewed (i.e. a 

skewness of less than about 2), linear regression has higher power than quantile 

regression. However, as skewness increases above that threshold, QR is a more 

advantageous method than SLR. When the assumption of homogeneity of variance in the 

error was violated in this study, the estimates from linear regression were unable to 

accurately describe the association at various percentiles. Linear regression estimates 

often over or underestimated the true effect within the extremes of the conditional 

distribution of the outcome. In cases where both the assumptions of normality and 

homoscedasticity of error are violated, however, the results from linear regression can not 

only incorrectly estimate the association between predictor and outcome variables at 

specific percentiles of the conditional distribution, but also the coverage percentage falls 

short, suggesting that inferences might not be valid. While transformations are a possible 

option to handle the violations of these assumptions, for data where there is larger 

deviation from these assumptions or multiple violations, quantile regression performs 

noticeably better than standard linear regression and offers the benefit of providing easily 

interpretable results.  
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