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ABSTRACT 
 

Motivation is an important predictor of educational success, as is socioeconomic 

status.  This study used Expectancy Value Theory (EVT) and a person oriented approach 

as the framework to explore how motivation profiles may be related to context, namely 

socioeconomic status (SES), and the roles these profiles have in predicting education 

outcomes.  Five motivation variables: math self-efficacy, reading self-efficacy, control 

expectation, action control, and utility value (instrumentation motivation) were used in 

latent profile analysis to determine four latent motivation profiles from a national sample 

of 10,981 10th grade students using ELS:2002 data.  Family income and education level 

(SES) were considered a context.  Per the EVT model, contexts may relate to the 

development of ability beliefs, expectancy beliefs, and values, the main constructs in this 

theory.  SES predicted membership into motivation profiles to a statistically significant 

degree.  Various statistical analyses converged on the same theme: SES level was related 

to motivation class assignment.  In turn, high and moderate motivation profiles predicted 

favorable educational outcomes when all SES levels were analyzed together, but these 

outcomes were not as clear when the lowest SES level was analyzed independently.  

Implications of these findings is discussed.  
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CHAPTER 1 

INTRODUCTION 
 
“There are three things to remember about education. The first is motivation. The second one is motivation. 

The third one is motivation” (Maehr & Meyer, 1997, p. 372). 

 For decades, the income achievement gap has been widening:  The disparity 

between academic achievement of American K-12 students from low-income and high-

income families continues to grow and children from middle-class and affluent families 

out-perform children from low-income families on most every educational outcome 

measure, including graduation rates and college enrollment (Reardon, 2011, 2013).  

Indeed, socioeconomic status (SES), the social standing of an individual or group 

measured by a combination of income, education, and occupation (APA, 2017), is a key 

factor in educational outcomes.  Meta-analyses have shown that family income and 

educational level has a large effect on academic achievement (Sirin, 2005).  SES has been 

given much attention in recent years as scholars wrestle with the issue of closing the 

ever-widening income-achievement gap, which has now surpassed and is more than twice 

as large as the Black-White achievement gap (Duncan & Murdane, 2011; Reardon, 2011, 

2013).   

 Motivation plays another critical role in education.  It predicts the amount of 

effort students exert in learning, how long they persist in academic tasks, and ultimately 

their levels of achievement (Schunk, 1991).  Students who experience academic success, 

as measured by performance on achievement tests, high grade point averages, and 



 

 2 

graduation from high school are better poised to continue their education through college 

enrollment, which in turn predicts higher annual income (Davis-Kean, 2005).  Some 

studies indicate that key motivation factors such as self-efficacy may be more predictive 

of future educational outcomes than previous achievement or socioeconomic status 

(Zuffiano, Alessandri, Gerbino, Kanacri, DiGuiunta, Milioni, & Caprara, 2013).  In 

addition, research has established that motivation factors do not necessarily work in 

isolation, but rather when combined form different profiles or patterns that create 

favorable or less favorable outcomes (Dweck & Molden, 2005; Senko, Hulleman, & 

Harackiewicz, 2011).  The influence of contextual variables, such as low SES, on 

motivation in students is unclear.  Understanding motivation in students from low SES 

may be especially important given education may be the only path out of poverty.  

1.1 THEORETICAL FRAMEWORK 
 
 The current study uses the lens of Expectancy Value Theory (EVT) and applies a 

person oriented approach (POA) to explore motivation profiles and to examine how they 

predict achievement, graduation from high school, dropout, college enrollment, and 

college graduation.  EVT posits that if a person believes they have the ability to perform 

well in an activity or task, expects to perform the activity well either presently or in the 

future, and finds value in that activity, then that individual is likely to choose to engage in 

that activity (Wigfield & Eccles, 2000). 

 As indicated in the model, there are three primary motivation constructs of 

interest: ability beliefs, expectancy beliefs, and value.  Ability beliefs refer to one’s self-

assessment about their competence at a specific task and how well they believe they 

compare to others at the same task (Wigfield, Tonks, & Eccles, 2004), similar to self-
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efficacy (Bandura, 1997).  Expectancy beliefs refer to one’s belief about how they will 

perform the task in the future based on ability beliefs (Wigfield, Tonks, & Eccles, 2004).  

Value is defined based on factors such as the importance of the activity (attainment 

value), the level of enjoyment (intrinsic value), the significance the activity holds 

currently or in the future (utility value), and the cost – other activities given up in order to 

participate in the activity of choice (Wigfield, 1994; Wigfield & Eccles, 2000; Wigfield, 

Tonks, & Eccles, 2004).  Contextual factors such as biological, psychological, social, 

cultural influences, and environment are also included in the EVT model.  These less 

studied factors in the model are important because they may be significant determinants 

of the more frequently studied primary constructs (Wigfield & Eccles, 2000; Wang & 

Degol, 2013).    

1.2 PERSON ORIENTED APPROACH 
 

 A person-oriented perspective considers the individual as a whole, assumes 

development is based on interactions between individual and environmental factors, and 

is often used in research focused on individual development (Bergman & Magnusson, 

1997).  A person-oriented perspective rests on number of assumptions (Bergman & 

Magnusson, 1997; von Eye & Bogat, 2006).  First, the developmental process is, in part, 

specific to individuals.  In other words, every person’s development is unique.  Second, 

there are many components involved in the developmental process, so interactions are 

complex and complicated.  Despite countless interactions between the numerous 

individual factors and environmental factors, there is a “lawfulness” in the developmental 

process.  This lawfulness results in the emergence of different patterns of factors. While 

theoretically there are infinite potential combinations and patterns/groupings, these 
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patterns tend to be distributed so that some patterns emerge more frequently than others 

(Bergman & Magnusson, 1997; von Eye & Bogat, 2006).  Meaning is derived based on 

how the interactions of factors are interpreted.  To meet the criteria of a person-oriented 

approach (POA), a term used in research studies, it is assumed that the sample is 

comprised of many sub-populations, that external validity of the groupings is 

tested/explored, and that the interpretation of the groupings is done through the lens of 

developmental theory (von Eye & Bogart, 2006).    

 POA not only requires the lens of developmental theory, as discussed above, it 

also requires a commensurate methodological approach (Bergman & Trost, 2006; Sterba 

& Bauer, 2010).  Unlike variable-oriented approaches where the variables themselves are 

the focus of research, in research using a person-oriented perspective, it is the 

constellation of the variables and the patterns that emerge from them that provide a more 

holistic view of the individual (Bergman & Magnusson, 1997) and provide insight to the 

phenomenon under investigation.  Statistical analyses appropriate for POA include 

cluster analysis, latent class analysis/latent transition analysis, and other model-based 

classification methods (Bergman & Magnusson, 1997).  

1.3 GAP IN THE LITERATURE 
 
 Research findings from the extant literature is clear; poverty has deleterious 

effects on the development and academic outcomes of children (Brooks-Gunn & Duncan, 

1997; Conger & Donnellan, 2007; Duncan & Brooks-Gunn, 2000; Evans, 2004; McLoyd, 

1990, 1998; Sirin, 2005).  The literature is less clear about the role that SES plays in 

academic motivation.  There are only a handful of studies that use at-risk populations, 
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such as students from low SES, to explore motivation profiles (Finn and Rock, 1997; 

Irvin, 2012).   

The EVT model of motivation posits that personal, social, and environmental 

contexts, such as economic disadvantage, are involved in the development of important 

measures of academic motivation, such as self-efficacy, outcome expectancies, and 

values (Wigfield & Eccles, 2000).  Research has demonstrated a relationship between 

SES and motivation (Bandura, Barbaranelli, Caprary, & Pastorelli, 2001; Battistich, 

Solomon, Kim, Watson, & Schaps, 1995; Brown, 2009; Malakoff, Underhill, & Ziegler, 

1998; Stipek & Ryan, 1997; Ziegler & Kanzer, 1962), but this research is limited by its 

variable oriented approach.  These studies focus on mean differences or explain how 

much a measure of a motivation factor explain outcomes, but are unable to provide 

information about what other factors may be operating on the individual simultaneously, 

that might also contribute to the outcome. 

 A person-oriented perspective can provide a more holistic view on an individual 

because it considers the interaction of multiple variables that result in patterns.  This 

perspective may be particularly applicable to motivation studies because motivation 

variables have been found to combine and work together, versus operate individually, to 

create favorable or less favorable outcomes (Dweck & Molden, 2005; Senko, Hulleman, 

& Harackiewicz, 2011).  Research using person-oriented approaches, such as cluster 

analysis and latent profile analysis, have demonstrated the usefulness of this methodology 

for finding motivation profiles in high school students and how profiles predict academic 

outcomes (Hayenga & Corpus, 2010; Ratell, Guay, Vallerand, & Senecal, 2007; 

Tuominen-Soini, Salmela-Aro, & Niemivirta, 2011; Viljaranta, Nurmi, Aunola, & 
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Salmela-Aro, 2009;  Wormington, Corpus, & Anderson, 2012).  These studies include 

measures of motivation (sometimes from different theories), as well factors, such as 

previous achievement, poverty risks, and demographic information, which increase our 

understanding of the whole person by providing profiles, which can then be used to 

predict outcomes in high school students.  This information may be especially helpful 

given the high stakes decisions faced by that age group, such as entering the work-place 

or continuing with post-secondary education.   

 To date, there are no known studies that address the intersection where there is a 

gap in research: motivation profiles in a large, nationally representative sample of 10th 

grade students, using EVT motivation constructs, while also considering the role of SES 

as a contextual factor in the formation of these constructs.  As such, this study aims to fill 

the gap in research by addressing the following research questions:  

1. What motivation profiles are evident within a national sample of 10th 

grade students? 

2. How does SES predict motivation class membership? 

3. Which motivation profiles best predict outcomes for students at the lowest 

SES level? 

1.4 SIGNIFICANCE OF THE STUDY 
 
 This research study aims to contribute to the literature in a number of important 

ways.  First, this study will be the first to explore motivation profiles in a nationally 

representative sample of high school students during a time when motivation is 

vulnerable, yet perhaps most important as students are on the cusp of independence as 

they prepare for very consequential decisions such as pursuing post-secondary education 
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or entering the workforce.  Second, it will explore the role of SES level on the motivation 

class membership. Third, by exploring other contexts (e.g. demographics), this study will 

contribute to the existing literature that demonstrates heterogeneity in motivation profiles 

among those considered at-risk (low-income and minority populations), which is 

important in dispelling deficit model thinking about those from marginalized populations 

(Irvin, 2012).  Lastly, while most motivation studies are cross sectional (Battle & Rotter, 

1963; Brown, 2009; Friedman & Friedman, 1973; Malakoff, Underhill, & Zigler, 1998; 

Steinmayer & Spinath, 2009; Stipek & Ryan, 1997; & Zigler & Kanzer, 1962), this study 

will add to the literature by taking a longitudinal approach and exploring the impact of 

the motivation profiles on important outcomes, namely achievement scores, high school 

graduation, post-secondary education enrollment, and college graduation.
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CHAPTER 2 

LITERATURE REVIEW 
 
 There are numerous theories that attempt to explain what drives students to learn 

and succeed in school.  Attribution theory (Weiner, 1979), Expectancy Value Theory 

(Wigfield & Eccles, 2000), Goal Theory (Ames, 1992; Dweck, 1986; Urdan & Maehr, 

1995), Self-Determination Theory (Ryan & Deci, 2002), and Entity Theory (Dweck, 

Chiu, & Hong, 1995) are to name but a few.  Although there are differences in 

conceptualization, common constructs are often found among them.   This chapter 

provides a more in-depth review of the literature in a number of areas.  First, this chapter 

will use the lens of Expectancy Value Theory (EVT) to explain what motivates students.  

This theory was selected over others because it includes a number of the constructs that 

are identified in the field as being important to academic success.  Additionally, the EVT 

model offers biological, psychological, social, and cultural components, which are less 

studied, yet help explain how different contexts are involved in the formation of these 

primary constructs.  As such, research is presented that looks at the context of economic 

disadvantage and findings as it relates to motivation followed by a review of the literature 

of five motivation constructs as they relate to academic outcomes.  Next, a person-

orientated approach is introduced, followed by research findings about the contributions 

of this type of analysis.  Gaps in research are then presented, which lay the groundwork 

for the rationale for this study.  Finally, the aims of this study are delineated.  
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2.1 EXPECTANCY VALUE THEORY OF MOTIVATION 
 
 Expectancy Value Theory (EVT) posits that if a person believes they have the 

ability to perform well in an activity or task, expects to perform the activity well either 

presently or in the future, and finds value in that activity, then that individual is likely to 

choose to engage in that activity (Wigfield & Eccles, 2000).  The EVT framework might 

be expanded from a specific task and applied more broadly to education in general, for 

example, at the high school level.  It might translate like this: If an individual believes 

they have the ability to perform well in high school, expects to perform well in their 

current and future classes, and finds value (e.g. enjoys learning or feels doing well in high 

school will improve their chances of getting into college or securing a job), then the 

individual will likely engage in behaviors (such as completing homework, participating in 

class) that will result in doing well academically and influence their choices to pursue 

post-secondary education. 

 As indicated in the model, there are three primary motivation constructs of 

interest: ability beliefs, expectancy beliefs, and value.  Ability beliefs refer to one’s self-

assessment about their competence at a specific task and how well they believe they 

compare to others at the same task (Wigfield, Tonks, & Eccles, 2004), analogous to self-

efficacy (Bandura, 1997).  Expectancy beliefs refer to one’s belief about how they will 

perform the task in the future based on ability beliefs (Wigfield, Tonks, & Eccles, 2004).  

Value is defined based on factors such as the importance of the activity (attainment 

value), the level of enjoyment (intrinsic value), the significance the activity holds 

currently or in the future (utility value), and cost – other activities given up in order to 
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participate in the activity of choice (Wigfield, 1994; Wigfield & Eccles, 2000; Wigfield, 

Tonks, & Eccles, 2004).   

 Also included in the EVT model are contextual factors that potentially influence 

these motivation constructs, such as biological, social, and cultural influences (Wigfield 

& Eccles, 2000).  Cultural influences include perceptions about gender roles and 

stereotypes as well as stereotypes about occupations.  Beliefs held by people who 

influence the individual’s life, previous experiences, aptitudes, the person’s self-

conception, physical and mental conditions, memories, and personal goals all likely 

impact ability beliefs, expectancy beliefs, and values (Wigfield & Eccles, 2000; Wang & 

Degol, 2013). 

   EVT has been widely studied in the field of education.  In her seminal work, 

Eccles and colleagues (1983) found gender differences in ability beliefs in mathematics 

and subsequent choice about taking math classes.  These findings have been replicated in 

other studies (Wigfield & Eccles, 2000; Wigfield, Tonks, & Eccles, 2004) which have 

contributed substantially to understanding the science, technology, engineering and 

mathematics (STEM) pipeline.  Consistently, studies have found that ability and 

expectancy beliefs predict achievement (Bandura, 1997; Eccles et al., 1983; Pajares & 

Miller, 1994).  Value, however, is the better predictor of task engagement (Wigfield, 

Tonks, & Klauda, 2009) – the activities in which individuals choose to engage.  Value of 

subject-matter was better at predicting enrollment in math classes (Lutrell, Callen, Allen, 

Wood, Deeds, & Richard, 2010; Meece, Wigfield, & Eccles, 1990), taking more 

advanced courses in science (Simpkins, Davis-Kean, & Eccles, 2006), English classes 

(Durik, Vida, & Eccles, 2006), choice of college majors (Hackett & Betz, 1989), and 
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career choices (Lent, Lopez, & Bieschke, 1991).  These findings have extended to studies 

outside the STEM area.  When EVT constructs were applied to sports, the findings were 

consistent: value in sports-related activities predicted choice in physical activities (Cox & 

Whaley, 2004; Gao, 2008; Guan, Xiange, McBride, & Bruene, 2006). 

 Some studies have explored how some of the less studied contextual factors in the 

EVT model (e.g. biological, social, and cultural factors), operate on values and 

subsequent career choices.  Societal and cultural factors were found to predict that 

women were more likely to pursue occupations that require social interaction (Fredricks 

& Eccles, 2005; Ruble & Martin, 1998; Su, Rounds, & Armstrong, 2009), while men 

were encouraged to pursue careers in the STEM fields (Benbow et al, 2000; Lubinski, 

Webb, Morelock, & Benbow, 2001) and high-paying jobs (Watt, Eccles, & Durick, 

2006).   

 Wang and Degol (2013) reviewed the literature and took a theoretical perspective 

on how ecological factors influenced student motivation related to STEM fields.   

Specifically, they deconstructed how school and classroom factors (e.g., teacher 

expectations, student treatment, stereotypes, teaching practices, etc.) impacted motivation 

to pursue additional education in the STEM fields.  While their interest was in how these 

various factors influenced motivation in STEM, the principles can be extrapolated to 

illustrate how poverty and disadvantage could feasibly operate in ecological contexts that 

might also influence student motivation.   

The literature has clearly established that schools in economically disadvantaged 

neighborhoods that serve students at lower socio-economic levels are qualitatively 

different than more economically advantaged students (Kozol, 2005; Reardon, 2013).  
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Students attending schools in neighborhoods with high concentrations of disadvantage 

are exposed to more violence and have the lowest achievement scores (Burdic-Will, 

Ludwig, Raudensbush, Sampson, Sanboumastu, & Sharkey, 2012).  Students who attend 

schools serving predominantly low SES communities or “poor schools” are more likely 

to be “tracked” in vocational versus college-prep curriculum (Maaz, Trautwein, Ludtke, 

& Baumert, 2008; Oakes, 1990), and are less college ready than their more affluent peers 

(Tierny, 2015).  Additionally, poor schools have classrooms where there are more 

behavior problems (Farkas, 2011), have less qualified and less experienced teachers (Lee, 

Smith, & Croninger, 1997; Isenberg, Max, Gleason, Johnson, Deutsch, & Hansen, 2016), 

and have teachers who hold lower expectations of their students (Rist, 2000; Rosentlutl 

 & Jacobson, 2000).  All of these factors undoubtedly weigh on motivation formation, 

similar to how factors operate on values formation.  Over the course of a child’s 

development, the interactions of contextual factors will result in different outcomes on a 

number of motivation factors, which would in turn, impact academic outcomes. 

2.2 RESEARCH ON SOCIOECONOMIC STATUS AND MOTIVATION 
 
 Poverty is an important contextual factor that impacts child development and 

educational outcomes.  The income-achievement gap of American K-12 students 

continues to grow and children from middle-class and affluent families out-perform 

children from low-income families on most every educational outcome measure 

including graduation rates, college enrollment, and college completion (Reardon, 2011, 

2013).  Indeed, family income is one of the most powerful predictors of intellectual 

functioning and behavioral problems (Duncan, Brooks-Gunn, & Klebanov, 1994; 

McLoyd, 1990, 1998).  Economic deficiencies translate to lower achievement scores, 
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lower graduation rates, and lower rates of enrollment in post-secondary education 

(Duncan & Magnuson, 2011; Farcas, 2011).   

 Research has examined motivation variables as they relate to race/ethnic 

differences to better understand lower levels of achievement, higher dropout rates, and 

lower rates of college enrollment in African American and Hispanic populations 

compared to the White population.  Motivation variables (self-efficacy, attainment value, 

utility value, intrinsic value) differentially predicted persistence in STEM coursework in 

high school students depending on race/ethnicity (Andersen & Ward, 2013).  

Achievement goals, on the other hand predicted achievement in Hispanic students 

entering high school (Wilkins & Kuperminc, 2009), math achievement in African 

American students transitioning to high school (Gutman, 2006), and reading achievement 

in African American and White students (Gutman, 2006; Guthrie, Coddington, & 

Wigfield, 2009).  Another motivation factor, self-efficacy, operated differently on 

Hispanic students than it did with a heterogeneous population (Stevens, Olivarez, & 

Hammon, 2006), and Eccles, Wong, and Peck (2006) found that when at risk for racial 

discrimination, students’ academic performance (i.e. GPA) in addition to overall 

motivation declined in some, but improved motivation for others, especially those with a 

strong ethnic identity.  None of these studies parsed out income or SES specifically, so 

the interplay of race/ethnicity and socioeconomic status and how these contextual 

variables operate on motivations remains murky.   

 Pioneering educational research in the 1960s and 70s began to look at how 

economic status, a broad contextual factor, affected children’s motivation.  Ziegler and 

Kanzer (1962) found that praise feedback (“good”) was more effective in increasing 
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performance for low SES elementary aged children, while correction feedback 

(“correct”) was more effective with middle SES children. Additionally, students from 

middle-SES received statistically significant more reinforcement than low-SES students 

(Friedman & Friedman, 1973). Battle and Rotter (1963) found that “lower class” African 

American students made more external attributions than middle-class African American 

or White students, and “middle-class” children made more internal attributions than did 

“lower class” students.  Additionally, African American students from the “lower class” 

with high IQs rated higher on external control than middle class Caucasian children with 

lower IQs (Battle & Rotter, 1963). Today these studies would be heavily scrutinized for 

their small sample sizes and pejorative language that could be interpreted as evidence of 

institutional racism, but their findings speak to how classroom, economic, and societal 

factors could be internalized by children and thus impact motivation.  

 Research spanning decades has continued to reveal similar findings.  Malakoff, 

Underhill, and Ziegler (1998) found mastery motivation, level of challenge, and 

persistence significantly higher in middle SES children than children from low SES, with 

low SES children enrolled in Head Start having higher levels of motivation than their 

peers who were not enrolled in preschool.  Brown (2009) also found that younger 

children, those with more risks for poverty, those who had more attention problems, and 

those children who held emergent entity beliefs about intelligence were less likely to 

persist on a challenging academic task.  Finally, Battistich and colleagues (1995) used 

hierarchical linear modeling to explore more complex relationships between contextual 

variables at the student level and school level. They found that poverty negatively related 
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to most all student outcomes including academic motivation (preference for challenging 

tasks, intrinsic motivation), achievement, and social functioning.  

 These findings were consistent with the burgeoning literature of the 1990’s 

connecting economic disadvantage to less favorable outcomes related to development 

(Brody, Stoneman, & Flor, 1995; Brody, Stoneman, Flor, McCrary, Hastings, & Conyers, 

1994; Conger, Conger, Elder, Lorenz, Simons, & Whiteback, 1992; and McLloyd,1990), 

intellectual abilities (Duncan, Brooks-Gunn, & Kebanov, 1994), physical health, 

cognitive development, academic achievement, and internalizing and externalizing 

problems (Brooks-Gunn & Duncan, 1997; McLloyd, 1998).   

 There are studies, however, that refute these findings and suggest that motivation 

is robust even in the face of adversity. Stipek and Ryan (1997) found that preschool and 

kindergarten children from higher SES had statically higher scores on academic related 

measures (e.g., basic reading and math skills) than their less affluent peers, but when it 

came to measures of motivation, such as perceptions about competencies, attitude toward 

school and willingness to take on learning challenges, there were almost no differences 

between children from different economic levels.  Interestingly, the researchers found 

that children from higher SES were more likely to feel anxious about their performance 

and were more dependent on teachers than their less economically advantaged peers 

(Stipeck & Ryan, 1997). And while poverty tended to have negative consequences on 

many academic outcomes, Battistch and colleagues (1995) also found that having a high 

sense of community related to their school ameliorated these effects, especially for those 

from the poorest schools (Battistch et al., 1995).  Although causal relationships cannot be 

determined from this study, the findings suggest that poverty negatively impacts 
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motivation, but there is hope that such effects can be offset by other contextual variables, 

such as caring teachers and feeling part of a caring community, which may bolster 

motivation.   

 All of the aforementioned studies about motivation differences focused on 

children.  Only one study was found that addressed the operation of contextual variables 

on motivation in adolescence.  Bandura, Barbaranelli, Caprary, and Pastorelli (2001) 

tested a model to determine the socio-cognitive influences that govern children’s 

occupational self-efficacy that goes into making career choices. Path analyses found that 

SES had no direct effect on children’s self-efficacy, academic aspirations and 

achievement, occupational efficacy, or occupational choices, but rather an indirect effect 

through parent’s parental perceived academic efficacy and educational aspirations.  

Parents from upper income brackets had stronger beliefs in their ability to further their 

children’s academic development and held higher aspirations for their children’s 

educational and occupational aspirations.  This in turn influenced their children’s efficacy 

for academics, social situations, and self-regulation (Bandura et al., 2001).   This study 

was conducted in Italy when students were at the end of middle school, a pivotal time in 

their educational process when they must choose one of seventeen different educational 

tracks to pursue, ranging from vocational to professional.  While the educational system 

in Italy is quite different from that in the United States, this study highlights the 

importance of understanding the motivation mindset of students at key junctures of 

students’ lives.     

 Indeed, in the United States, high school may be the most important period of 

time to explore student motivation.  Developmentally, adolescence marks a time when 
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academic motivation decreases (Eccles & Midgley, 1989; Eccles & Roeser, 2009).  This 

decline in motivation may be reflected in the number of students who do not graduate 

from high school.  According to Chapmans, Laird, Ifill, Kewal-Ramani (2011), 

approximately 3.4 percent of 10th through 12th grade high school students dropped out of 

high school during the 2008-2009 academic year, down from 6.1 percent in the 1972.  

Lack of academic and learning engagement, which correlates with motivation 

(Goodenow & Grady, 1993) and student achievement are primary factors in students’ 

decision to drop out of school (Rumberger, 2001).   Socioeconomic status, in addition to 

being predictive of intellectual development and behavioral problems (Duncan, Brooks-

Gunn & Klebanov, 1994; McLoyd, 1990, 1998), is also one of the most powerful 

predictors of achievement and dropout (Pong & Ju, 2000; Rumberger, 2001).  In 2009, 

students from low-income families had a dropout rate of approximately five times greater 

than high-income families, 7.4 % compared to 1.4 % (Chapmans et al., 2011).  Quite 

ironically, adolescence is also the time when youth are faced with weighty decisions that 

have far-reaching consequence on their futures, such as whether to pursue post-secondary 

education or enter the work-force, thus increasing the need to better understand the role 

of motivation in this population.  Understanding academic motivation and factors that 

encourage students to succeed academically is critical, particularly for students coming 

from disadvantage as academic success may be one of the only viable path out of 

poverty. 

 To summarize, early research, many of which looked at young children, found 

differences between motivation measures in student from different socioeconomic levels 

using simple mean testing (Battle & Rotter, 1963; Friedman & Friedman, 1973; 
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Malakoff, Underhill, & Zigler, 1998; Ziegler & Kanzer, 1962).  While Brown’s (2009) 

study also suggested that SES may negatively relate to motivation (persistence), the 

statically significant 23% variance that explained perseverance issues in low SES 

children included many risk predictors, behavior scores, and did not parse out SES, thus 

making the picture a little less clear.   Findings from a studies by Battistich et al. (1995), 

Stipek and Ryan (1997), and Bandura and colleagues (2001) confound these finding and 

call into question if, or to what degree, SES operates directly or indirectly on motivation.  

The next section addresses research on five motivation constructs: math self-efficacy, 

English self-efficacy, expectancy beliefs, instrumentation, and action control especially 

as they relate to high school students, keeping contextual factors such as socio-economic 

status in mind.    

2.3 RESEARCH ON MOTIVATION CONSTRUCTS 
 
 Research on the role of self-efficacy on educational outcomes.  Self-efficacy is 

an individual’s belief in their ability to perform a specific task, which in turn affects 

behavioral choices, effort, and persistence (Bandura, 1977; Zimmerman, 2000).  Beliefs 

about one’s abilities to perform tasks can result in avoidance of tasks, weak commitment, 

and negative affect (such as anxiety and self-doubt), or high level of engagement, 

interest, commitment to a goal, and persistence (Bandura, 1993).  Self-efficacy is built 

through four sources: 1) enactive mastery, or recognition of previous success; 2) 

vicarious experiences, observing a person with relatable characteristics succeed at a task; 

3) verbal persuasion and encouragement; and 4) increased awareness and management of 

affective states (Bandura, 1977, 1993; Margolis & McCabe, 2006).  Self-efficacy holds a 

particularly important role in academic motivation because it positively relates to so 
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many academic outcomes, namely achievement, skills, previous experiences, goal-

setting, information processing, application of learning strategies in the classroom context 

where students may have less choice about what they want to learn (Pajares & Schunk, 

2001; Schunk, 1991), and because it has been shown to predict students’ choices in 

activities, amount of effort, and persistence (Zimmerman, 2000).   Moreover, domain 

specific self-assessments, beliefs about abilities in specific subjects, were found to be 

even stronger in predicting grades than intelligence (Steinmayr & Spinath, 2009).  

Virtually all K-12 curricula focus on math and literacy skills.  Studying self-efficacy in 

these domains is important because proficiency in both of these areas predicts socio-

economic status in adulthood (Ritchie & Bates, 2013).  Indeed, low literacy predicts 

incarceration, which is most likely to plague individuals of low socioeconomic status 

(Christle & Yell, 2008). 

 Following the introduction of the self-efficacy construct in 1977, there was a 

spate of research which culminated in a meta-analysis of 39 articles that examined the 

effects of self-efficacy on performance and persistence in school (Multon, Brown, & 

Lent, 1991). The study concluded that self-efficacy was not just a robust predictor of 

academic performance and persistence, but it demonstrated that self-efficacy in 

combination with other variables could have a synergetic effect on outcomes (Mutlon et 

al., 1991).  This meta-analysis made an early contribution to the literature by highlighting 

the positive effect of this important motivation construct on academic success.  

Additionally, it set the table for future studies to explore the role of self-efficacy as a 

moderator and mediator.  However, one of its limitations was there was no attention 
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given to any relationship between self-efficacy and socio-economic status, or other 

demographic information. 

 On-going research has consistently found that self-efficacy is not only an 

important predictor for achievement, but it also predicts university enrollment and choice 

of college major (Betz & Hackett, 1983; Hackett, 1985).  More recently, Parker, Marsh, 

Ciarrochi, Marshall, & Abduljabbar (2014) found that while both self-efficacy and self-

concept predicted achievement in subject matter (math, science, and reading), self-

efficacy was a stronger predictor of tertiary entrance rank (criteria for admission into 

college in Australia) over self-concept, and when covariates were entered, self-efficacy 

explained more than 50% (R2 = .57) of the variance for university enrollment (Parker et 

al., 2014).  

 Research in math self-efficacy.  As previously stated, domain-specific self-

efficacy is important to educational outcomes.  Self-efficacy in math not only predicts 

performance, but also choice to take more math courses in high school (Steinmayr & 

Spinath, 2009).  Math level at 10th grade and the subsequent choice in the sequence of 

higher level math classes set an educational trajectory that not only affects graduation, 

but whether a student enrolls in college, and college graduation (Schneider, Swanson, & 

Riegle-Crumb, 1998). Betz & Hackett (1983) investigated the relationship between math 

self-efficacy and the selection of science-based college majors and found self-efficacy 

explained 36% of the variance in choice of science based college majors (Betz & 

Hackett, 1983).  Early research by Pajares & Miller (1994) used path analysis and found 

self-efficacy in solving math problems had a significantly stronger effect on math 

performance than math self-concept.  This study used college students, but years later 
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similar findings were replicated in a study in Australian high school students through 

more complex analyses, such as structural equation modeling (Pietsch, Walker, & 

Chapman, 2003) and hierarchical regression and relative weights analysis (Steinmayr & 

Spinath, 2009).  Hackett (1985) found that, in addition to gender, other variables such as 

socio-economic factors and socio-cultural influences may also impact self-efficacy in 

math. Math self-efficacy was shown to be robust regardless of socio-economic status. 

The study by Pietsch and colleagues (2003) used a sample of 416 students, all from low 

socio-economic status, and most (80%) of whom were not native English speakers. By 

contrast, Steinbayr’s & Spinath’s (2009) sample was comprised of primarily White, 

German high school students in a college-track school (Gymnasium).   

 Research on English self-efficacy.  Proficiency in English includes skills in 

speaking, writing, listening, and reading, and are categorized into five levels: 

distinguished, superior, advanced, intermediate, and novice (American Council on the 

Teaching of Foreign Languages, 2012).  Reading and writing skills are typically 

measured at each grade through standardized test scores as well as grades.  Writing skills 

are particularly important in the workplace, not just to for purposes of clear 

communication, but to convey professionalism, credibility, and are consideration factors 

for job advancement (Career Addict, 2016). 

 Shell, Murphy, and Bruning (1989) found that self-efficacy in reading skills and 

writing skills independently accounted for performance on a reading test and an essay.  In 

addition, there was a statistically significant Canonical correlation for the combined self-

efficacy and expectancy beliefs on performance, which supported their hypothesis that 

reading and writing skills are highly related to each other (Shell et al., 1989).  Pajares & 
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Johnson (1996) found that self-efficacy in writing was also the strongest predictor of 

performance in native English speaking high school students.  A particularly important 

finding in this study was that Hispanic students had statistically lower scores on self-

efficacy, aptitude, and performance, and higher apprehension than their non-Hispanic 

peers, even though these students were considered native English speakers (Pajares & 

Johnson, 1996).  This finding seems especially poignant given the rising population of 

Hispanic and other English language learners in today’s classrooms.      

 In summary, the findings about self-efficacy, whether in math or literacy skills, 

support that self-efficacy belief was one of the strongest predictors of academic 

outcomes.  Without exception, all of these studies used some form of regression analysis 

which showed that when combined with other motivation factors, such as self-concept, 

more variance was explained, and there seemed to be a synergetic effect between self-

efficacy and other variables, a notion that was suggested by Multon, Brown, & Lent 

(1991) in their meta-analysis.  Other methods, other than variable-oriented approaches, 

were not utilized in any of the aforementioned studies, but might add light to how 

motivation factors work together.   

 Research on expectancy beliefs on educational outcomes.  Outcome 

expectancy is defined as “the person’s estimate that a given behavior will lead to certain 

outcomes” (Bandura, 1977, p. 193).  In other words, it is the belief that a behavior (or set 

of behaviors) will impact a certain outcome.  For example, the belief that doing well in 

school will lead to a good paying job.  This construct has nuanced differences with 

efficacy beliefs.  While expectancy beliefs are about behaviors that lead to an outcome 

(i.e. doing well in school), self-efficacy is about a person’s belief about their ability to 
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enact the behaviors (e.g. effort and persistence) that impact outcome expectancies 

(Bandura, 1977).   

 The nuanced difference between efficacy beliefs and expectancy beliefs has been 

somewhat controversial.  Some studies have parsed out the effect of each construct on 

performance (Maddux, Sherer, & Rogers, 1982; Shell et al., 1989), but factor analyses 

found that self-efficacy and outcome expectancy beliefs loaded on the same factor and 

were indistinguishable (Eccles et al., 1993; Eccles and Wigfield, 1995), thus confounding 

the role that outcome expectancy plays in academic achievement.  

 None-the-less, the relationship between expectancy beliefs and academic 

achievement has been studied with sufficient intensity to merit two meta-analyses.  

Findley and Cooper’s (1983) meta-analysis used 75 studies published in the 1970’s and 

concluded control expectancies had a positive effect on academic achievement, especially 

in elementary and high school students when compared to other grade levels, suggesting 

that expectancy beliefs may operate differently depending on the population.  Kalechstein 

& Norwicki (1997) sought to replicate findings from Findley and Cooper’s (1983) study 

but added a component of Rotter’s social learning theory using articles published 

between 1983 and 1994.  Their hypothesis that generalized control expectancies was a 

better predictor than domain-specific expectancy beliefs was not supported, but Findley 

and Cooper’s (1983) findings were replicated; expectancy beliefs operated differently 

depending on education level.  Additionally, they recommended further exploration of 

moderating variables, such as race and SES, to deepen our understanding of the 

relationship between control-expectancy and academic achievement beyond the typically 

studied Euro-American participants.  
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 Indeed, findings from a study by Shell, Colvin, & Bruning (1995) suggested that 

outcome expectancy beliefs may play an important role in motivation, and eventually 

achievement outcomes, especially for students who perform on the lower end of the 

achievement spectrum. Interestingly, self-efficacy beliefs, outcome expectancy beliefs, 

and causal attributions were quite different depending on level of achievement.  Students 

who had high reading and writing achievement scores had high-self efficacy, believed 

their success was due to intelligence and effort (internal causal attributions), as opposed 

to luck (external attribution), yet scored low on measures of outcome expectancies, 

indicating they did not believe that their behavior would result in a particular outcome, 

which contradicted previous research findings.  Conversely, students who scored low on 

the reading and writing achievement test, had low self-efficacy for reading and writing, 

tended to make external attributions, yet had high beliefs about outcome expectancies, 

suggesting that they believed certain behaviors were important for high achievement, but 

did not feel they had they ability to enact these behaviors.  For lower achieving students, 

outcome expectancies were more important, and therefore an important factor in 

motivation demanding both emphasis as well as instructional strategies to help students 

enact achievement (Shell et al, 1995).  The robustness of the outcome expectancy belief 

construct as a stand-alone measure is not clear, yet may offer an added dimension to 

understanding motivation and outcomes.  

 Research on action control.  Action control is a less well-defined construct. 

Kuhl (1984) conceived of “action control” in relation to predicting human behavior, 

which questioned how people attempted to perform an intended action in spite of 

competing external and internal forces that could result in alternative actions, and thus 
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different outcomes.  Skinner, Chapman, & Baltes (1988) conceptualized “perceived 

control in an action” as how people viewed what is responsible for outcomes, the role 

they played in events leading to outcomes, and the resources people used to reach their 

goals.  Literature in the area of high school engagement has also contributed to our 

understanding how both individual student characteristics and school-related variables 

result in either successful completion or dropout (Jimerson, Campos, & Greif, 2003).  

Although there is variability in definition and how this construct is measured, these all 

converge on one common aspect of the definition: action control requires personal 

agency that translates into time, effort and persistence in academic tasks, all of which 

contribute to academic outcomes.  The review of the literature for this construct will be 

based on research that uses measures of effort, time, and persistence to define action 

control.  

 Research supports that action control plays an important role in educational 

outcomes at all grade levels. Effort was found to be the best strategy for attaining good 

grades and the easiest to enact, followed by beliefs about ability, the influence of 

powerful others, with luck being unimportant to contributing to grades (Skinner, 

Wellborn, & Connell, 1990). Stewart (2007) found a positive correlation between school 

commitment (as measured by effort, value, and satisfaction) and students’ positive 

feelings about the school (school attachment) in 10th grade African American students.  

In a follow up study, Stewart (2008) found that school commitment was the best 

predictor of GPA, but contextual factors, such as school poverty, proportion of non-

White students, urbanicity, and social problems were not related to GPA.   
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 Other research findings suggested that contextual factors may effect beliefs about 

action control.  The belief in the power of effort may be dependent on country of origin 

as Americans believed effort was most important to school performance, compared to the 

other countries, while German students felt ability was most important (Little, Oettingen, 

Stetsenko, & Baltes, 1995).  Ethnicity was also found to be a factor in beliefs about one’s 

agency and effort as white students had significantly higher agency beliefs, control 

expectancy beliefs, performance approach goals than their non-white peers, which could 

have implications related to stereotype threat (Lopez, 1999).  Additional studies are 

needed to explore how other factors, such as poverty, neighborhood, family constellation, 

or societal factors affect students’ beliefs about their abilities to impact their own 

achievement in school.  

 Research on instrumentation motivation.  The terms instrumentation 

motivation and integrative motivation are terms rooted in second language learning 

(Gardner & Lambert, 1972).  Instrumentation motivation is defined as the desire to learn 

because it will have a positive utilitarian outcome, such as employment or job 

advancement, while integrative motivation is the desire to learn in order to better 

assimilate into a desired group (Gardner & Lambert, 1972).  These definitions have 

significant over-lap with extrinsic motivation, engaging in an activity because it will lead 

to a desired outcome, and intrinsic motivation, engaging in an activity for its own sake, as 

defined by Pintrich and Schunk (2002). These concepts are reflected in a number of 

motivation theories.  For example, Self-Determination Theory (Ryan & Deci, 2002) used 

the terms intrinsic and extrinsic motivation, and Expectancy Value Theory (Wigfiled & 
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Eccles, 2000) as reflected in the terms “intrinsic value,” the enjoyment of the activity for 

its own sake, and “utility value,” the usefulness of the task currently or in the future.   

 These concepts are not mutually exclusive.  Individuals may hold both types of 

motivations simultaneously.  Individuals who measure high on instrumentation 

motivation/utility value may be driven to attain more practical outcomes, such as a status, 

material gain, or income potential, while individuals who score high on measures of 

intrinsic motivation/value may be motivated to meet an internal need for personal 

satisfaction, or driven by the desire to learn or participate in the activity for the love of it.  

 Instrumentation motivation contributes to academic outcomes. The terms 

instrumentation motivation and utility value are synonymous and are used 

interchangeably. Research has found that both intrinsic and utility motivation predicted 

grades and intentions to pursue coursework (Bong, 2001), as well in intensions to persist 

in (or drop out of) high school (Hardré & Reeve, 2003). While intrinsic motivation was 

the better predictor of intension to pursue graduate education, utility value was also a 

statistically significant contributor (Battle & Wigfield, 2003).  These studies, however, 

used either predominantly White (Hardre & Reeve, 2003), or all female students seeking 

considering post-graduate education (Battle & Wigfield, 2003) from an elite institution 

(Bong, 2001) and may suggest that instrumentation motivation and intrinsic motivations 

may operate differently depending on race/ethnicity and gender.   

 Duffy and Sedlacek (2007) found that men espoused utility values (e.g. 

anticipated earnings, career advancement) to a statistically significant degree more than 

women, who tended to favor social values.  Students who came from middle socio-

economic status and were White were more likely to endorse intrinsic values, while 
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students from lower and higher socio-economic levels, African American and Asian were 

more likely to endorse extrinsic values (Duffy & Sedlacek, 2007).  This finding may 

speak to the notion that external factors, such as higher paying jobs, may be a motivating 

factors to get out of poverty. 

 Motivation to learn certain subjects may be necessary, and may have inherent 

benefits regardless of the student’s interest or internal motivations.   For example, 

learning English is necessary for practical reasons for immigrant students to navigate 

school, make friends, even act as translators for their parents, and gain employment to 

help the family financially.  The academic success of these students may also be the 

foundation for economic stability and prosperity for generations to come.  For these 

reasons, instrumentation motivation (utility value) may be especially important for 

English language learners.  

 The reasons to learn a second language are often very practical: to address needs 

like understanding others to get basic needs met, understanding concepts in school, 

making friends, travel, or necessary for one’s career (Belmechri & Hummel, 1998), all of 

which are considered instrumentation motivation.   Csizer and Dornyei (2005) took a 

very different approach to explore motivation to learn a second language by using cluster 

analysis and explored how five motivation variables combined to form four distinct 

motivation profiles. The most motivated students group scored highest on all the variables 

and had the highest scores in the area of instrumentation motivation.  The study did not 

explore how the different profiles predicted educational outcomes, such as course grade, 

rather, it explored the combined effects and interferences of the different profiles related 

to other selves and learning more than one language simultaneously (Csizer & Dornyei, 
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2005).  The value of this study would have been increased by exploring how class 

membership predicted more distal outcomes, such as graduation, college enrollment, or 

employment. 

 While Csizer’s and Dornyei’s (2005) study did not explore educational outcomes 

per se, the value in this study was in its methodology as it used a person oriented 

perspective to explore how constellation of variables worked together versus using a 

variable oriented approach seen in studies that test mean differences or use correlational 

or regression analyses.  In more recent years, a person oriented approach has been 

gaining favor in research, and has been useful in predicting educational outcomes.   

2.4 PERSON ORIENTED APPROACH 
 
 An integrative theory of human development posits that interaction between an 

individual’s biology, psychology and behaviors with the environment shape a person’s 

life (Ford & Lerner, 1992) and has allowed researchers to apply such concepts to studies 

of motivation.  Integrative theory allows for the notion that individuals simultaneously 

hold more than one type of motivation, and that these motivations can operate together 

and result in different outcomes.  This concept is central to the person-oriented 

perspective.   

  A person-oriented perspective is often used in research interested in individual 

development that considers the person as a whole, and assumes development is based on 

interactions between individual and environmental factors (Bergman & Magnusson, 

1997). Because the person-oriented perspective posits that individual development is a 

process that occurs over time, a snapshot of the whole person at the specific time and 
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space along the developmental continuum is taken at the time variables are measured 

(Bergman & Magnusson, 1997). 

 There are a number of theoretical underpinnings on which a person-oriented 

perspective is based (Bergman & Magnusson, 1997; von Eye & Bogat, 2006).  First, the 

developmental process is, in part, specific to an individual.  In other words, every 

person’s development is unique.  Second, there are many components involved in the 

developmental process, so interactions are complex and complicated.  Despite these 

complexities, there is a “lawfulness” about how development unfolds that allows for both 

consistencies in individual development, while also allowing for individual differences.  

This lawfulness results in the emergence of different patterns of factors. While 

theoretically there are infinite potential combinations and patterns/groupings, these 

patterns tend to be distributed so that some patterns emerge more frequently than others 

(Bergman & Magnusson, 1997; von Eye & Bogat, 2006).  Meaning about each pattern is 

derived based on how the interactions of factors are interpreted.  To meet the criteria of a 

person-oriented approach (POA), a term used in research studies, it is assumed that the 

population includes subpopulations, that external validity of the groupings is 

tested/explored, and that the interpretation of the groupings is done through the lens of 

developmental theory (von Eye & Bogart, 2006).    

 POA not only requires the lens of developmental theory, as discussed above, it 

also requires a commensurate methodological approach (Bergman & Trost, 2006; Sterba 

& Bauer, 2010).  Unlike variable-oriented approaches where the variables themselves are 

the focus of research, in research using a person-oriented perspective, the point of interest 

is the constellation of the variables and the patterns that emerge from them that provide a 
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more holistic view of the individual (Bergman & Magnusson, 1997) and provide insight 

to the phenomenon under investigation.  Statistical analyses appropriate for POA include 

cluster analysis, latent class analysis, latent transition analysis, and other model-based 

classification methods (Bergman & Magnusson, 1997).  

 Research using person oriented approach.  One of the powerful ways POA is 

used in research is to demonstrate how constellations of variables manifest in different 

classes/profiles, which can then be used to predict outcomes.  For example, Viljaranta, 

Nurmi, Aunola, and Salmela-Aro (2009) used POA to show how class membership 

predicted vocational paths in European students, where students are faced with important 

decisions and must choose different educational paths (e.g. vocational, college, etc.) after 

they complete their “compulsory” education in middle school and upon entering high 

school.  Other studies have used class membership to predict achievement and 

adaptability in students from disadvantage (Conley, 2012), grade point average 

(Wormington, Corpus, & Anderson, 2012), dropout (Ratelle, Guay, Vallerand, & 

Senecal, 2007), and test how profiles change over the course of an academic year to 

produce different student outcomes (Hayenga & Corpus, 2010).   

  Pastor, Barron, Miller, and Davis (2007) demonstrated the benefits of POA over 

variable oriented analysis in a study comparing various approaches: multiple regression, 

with two person-oriented analyses, cluster analyses, and latent profile analysis to 

demonstrate the superiority of one approach in particular, latent profile analysis. This 

study was important on two levels.  First, it was consistent with findings from other 

articles cited by showing how latent variables emerged into different profiles from a 

mixed population, and that these profiles predicted outcomes that were consistent with 
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theory.  Second, Pastor and colleagues demonstrated how latent profile analysis (LPA) 

allowed for more rigorous criteria to determine final cluster solutions, showed 

membership as a proportion, and verified clusters by using another sample. 

 Another benefit to a person oriented approach is that the profiles that emerge can 

illustrate the similarities and differences between groups, and perhaps more importantly, 

how there are similarities in populations that appear to be divergent, such as at risk 

populations, underscore the humanity in the variables that transcends the variables 

themselves (Irvin, 2012).  There are only a few studies that use a person oriented 

approach that actually use samples that are completely comprised of a population of the 

same income, or otherwise considered at risk (Finn & Rock, 1997; Irvin, 2012).   

There are a number of gaps in the research.  No known studies examine 

motivation profiles in a large, nationally representative sample of 10th grade students, 

using EVT motivation constructs, while also considering the role of SES as a contextual 

factor in the formation of these constructs.   

2.5 RESEARCH QUESTIONS 
 

As such, this study aims to fill the void in research by addressing the following 

research questions:  

1. What motivation profiles are evident within a national sample of 10th 

grade students? 

2. How does SES predict motivation class membership? 

3. Which motivation profiles best predict outcomes for students at the lowest 

SES level?
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CHAPTER 3 

METHOD 
 
3.1 DATA 
  
 For the current study, the Education Longitudinal Study (ELS) of 2002 data were 

used (ELS:2002).  The overarching aim of the ELS longitudinal study was to collect data 

about educational access, persistence, and educational trajectories from a national sample 

of students beginning in their sophomore year (10th grade) of high school and follow 

them at two year intervals through high school (12th grade), then into post-secondary 

education, and/or the workplace (Ingels et al., 2014).  Follow-up data were collected in 

2004 (F1) when most students were in their senior year of high school (12th grade), 2006 

(F2) two years after high school graduation when many were in college/postsecondary 

education, and 2012 (F3) eight years following high school graduation, after many 

individuals had completed postsecondary education and were currently in the workforce   

(Ingels, Pratt, Alexander, Jewell, Lauff, Mattox, & Wilson, 2014). 

3.2 PARTICIPANTS 
 

In 2002, 17,591 10th grade (sophomore) students were selected from lists of 

sophomore high school students provided by 752 of 1,221 eligible public, private, and 

parochial schools across the nation that accepted the invitation to participate in the study.  

(See sample design section for more details.)  Participating students completed surveys 

about their high school activities and experiences, beliefs and opinions about themselves, 
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plans for the future, money and work, family, and non-English language use. Additional 

information collected included scores from math and reading achievement tests, surveys 

from parents, teachers, principals, and librarians, as well as school transcripts and an 

observation checklist of school facilities.  The information collected addressed issues 

related to growth in math, the drop-out process, the role of family background in 

educational success, and educational opportunities in subgroups (e.g. English Language 

Learners (ELL), students with disabilities, geographic location (urbanicity), SES, and 

racial/ethnic groups (Ingles, Pratt, Rogers, Siegel, & Stutts, 2004, 2005; Ingels et al., 

2014).  The sample on which the analysis for this study is based is 10,981.  (See missing 

data for explanation about the reduced sample size.)  This large sample is ideal for studies 

using POA specifically because the population is heterogeneous, a basic assumption on 

which POA analyses are based (Muthén & Muthén, 2000; von Eye & Bogart, 2006).  

ELS:2002 used a stratified, two-stage random sample design, considered a 

complex design (i.e. not simple random sampling).  In the first stage (strata) of sample 

collection, types of schools (e.g. private, public, and parochial.) were selected to mirror 

proportions of those types of schools across the nation.  Of the initial 1,221 eligible 

schools approached to participate in the study, 752 participated.  In the second stage 

(strata) approximately 26 students from each of the selected schools were selected to 

participate, oversampling Asian and Hispanic students in order to ensure adequate 

representation.  In order to determine the rates at which Asian and Hispanic students 

should be oversampled, counts were obtained from the Common Core of Data and the 

Private School Survey (Ingles et al., 2004).   
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3.3 VARIABLES 
 
 Control variables.  In this study, the information on the control (also referred to 

as covariate or background) variables were collected during the base year (2002) and then 

cross-referenced with information from the first follow-up at which time any missing 

information was added, imputed, or cases were dropped.  (For more information, see how 

missing data were handled in the section below.)  The updated variables from the first 

follow-up year were used in the study because they include the updated information that 

was missing in the base year, and were the most complete and accurate.  The variables 

are coded “F1” to reflect updated information which was collected in the base year.  

Control/covariate variables were used to determine how demographic and other 

information specific to the participant related to the motivation profiles.  All control 

variables are complete.  The terms control and covariate variables are used 

interchangeably going forward.  

 Sex.  The variable used for sex is F1SEX.  This composite variable updated any 

missing information collected during the base-year to provide complete information on 

participants’ sex.  The sample consists of 5,145 males and 5,836 females (N = 10,981).  

 Race/Ethnicity.  The variable used for race/ethnicity is F1RACE. This variable 

updated the BYRACE variable collected during the base year in 2002 and included 

imputed data for missing information.  It is a composite of seven dichotomous variables: 

White, non-Hispanic (n = 7,25); more than one race, non-Hispanic (n = 491); Hispanic, 

race specified (n = 793); Hispanic, no race specified (n = 691); Black or African 

American, non-Hispanic (n = 1,230); Asian, Hawaii/Pac. Islander, non-Hispanic (n = 

434), and American Indian/Alaska Native, non-Hispanic (n = 87), (N = 10,981). 
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 Achievement Scores. Measures of students’ 10th grade achievement in math 

(BYTXMIRR) and reading (BYTXRIRR) were collected in 2002 (Ingels et al., 2004).  

Content areas for math included arithmetic, algebra, geometry, data/probability, and 

advanced topics, and literary material, natural, and social sciences for reading.  Students 

first took routing tests: 15 questions on math, and 14 questions on reading.  Students were 

then assigned to groups of low, middle or high difficulty level, depending on correct 

answers, on which testing items for the second stage were based. The second stage of 

testing consisted of multiple choice and open-ended questions based on the pre-

determined difficulty level, and was designed to maximize accuracy of the achievement 

scores.  Scores were based on item-response theory (IRT) that accounts for items 

answered correctly, incorrectly, items guessed and omissions, and allows cross 

comparison of different levels of test difficulty.  These variables are the estimated 

number of questions answered correctly had all 85 math questions and 51 reading 

questions been responded to by participating students.  The IRT method is advantageous 

over using raw scores because it uses a pattern of correct answers and compensates for 

guessing hard items correctly (Ingels et al., 2004). 

 School urbanacity (BYURBAN).  School urbanicity (geographic location of the 

school: urban, suburban, or rural) is based on Common Core of Data (CCD 1999-2000), 

Private School Survey (PSS 1999-2000), and data from student files (ELS:2002 Sampling 

Data).  Urban schools were defined as schools in a large or mid-sized central city, 

suburban schools were either on the fringe of a large city, or in a large town, and rural 

schools were inside or outside a metropolitan statistical area (Ingles et al., 2004). The 
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students in the sample are as follows: urban = 2,960; suburban = 5,815; and rural = 2,206 

(N=10,981). 

 Socioeconomic status (SES).  The SES variable (F1SES2QU) is a composite score 

based on family income, mother’s education, father’s education, mother’s occupation, 

father’s occupation broken down by quartile.  Most of this information was collected 

during the base year from the parent questionnaire, but missing details were added after 

the first follow-up (thus coded F1).  The information was imputed using sequential hot 

deck imputation, with sampling weights, if it was missing.  The SES variable is based on 

the more recent occupational prestige ratings from the Duncan Occupational Prestige 

Scores updated in 1989 and therefore more current than the F1SES1QU variable on 

which the rating was based on 1969 version the Duncan Occupational Prestige Score.  

The breakdown of socioeconomic status by quartiles is as follows: lowest quartile, n = 

2,435; second quartile, n = 2,709; third quartile, n = 2,883; highest quartile, n = 2,950; 

survey (total N = 10,977). These quartiles are based on weighted distribution (Ingels, 

Pratt, Wilson, Burns, Currivan, Rogers, & Hubbard-Bednasz, 2007). 

 Motivation variables. All the motivation variables are composite scores from 

sub-questions (a. through v.) on item number 89 of the base year student questionnaire.  

Participants responded using the following four-point scale: 1 = almost never, 2 = 

sometimes, 3 = often, 4 = almost always.  Higher scores reflect higher motivation.  The 

variables were created by the ELS:2002 through principal factor analysis.  Only 

respondents who answered all items were assigned composite scores.  Motivation scores 

were standardized as Z scores with a mean of 0, and a standard deviation of 1 (Ingels et 

al., 2005).   
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 Control expectation (BYCONEXP).  This variable captured student’s expectations 

for success in academic learning in the base year.  Four items were used to measure this 

construct: “When I sit myself down to learn something really hard, I can learn it”; “If I 

decide not to get any bad grades, I can really do it”; “If I decide not to get any problems 

wrong, I can really do it”; and “If I want to learn something well, I can.”  Internal 

consistency reliability (α) was 0.84.   

 Action control (BYACTCTL).  Action control was student’s self-rated effort and 

persistence in the base year measured by the following four items: “When I study, I make 

sure that I remember the most important things”; “When studying, I try to work as hard 

as possible”; “When studying, I keep working even if the material is difficult”; and 

“When studying, I try to do my best to acquire the knowledge and skills taught.”  Internal 

consistency reliability (α) was 0.89.   

 Instrumentation motivation (also known as utility interest scale) (BYINSTMO).  

Instrumentation motivation/utility interest measured student’s extrinsic motivation to 

perform well in order to attain goals such as future job opportunities or financial security.  

This construct was assessed via the following three items: “I study to get a good job”; “I 

study to increase my job opportunities”; and “I study to ensure that my future will be 

financially secure.”  Internal consistency reliability (α) was 0.85.   

 English self-efficacy (BYENGLSE).  English self-efficacy was student’s belief 

about his/her abilities in English and was based on the following four items: “I am certain 

I can understand the most difficult material presented in English texts”; “I’m confident I 

can understand the most complex material presented by my English teacher”; “I’m 
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confident I can do an excellent job on my English assignments”; and “I’m confident I can 

do an excellent job on my English tests.”  Internal consistency reliability (α) was 0.93.   

 Math self-efficacy (BYMATHSE).  This variable reflects student’s self-beliefs 

about their abilities in math.  It was based on the following five items: “I am confident 

that I can do an excellent job on my math test”; “I’m certain I can understand the most 

difficult material presented in math texts”; “I’m confident I can understand the most 

complex material presented by my math teacher”; “I’m confident I can do an excellent 

job on my math assignments”; and “I’m certain I can master skills being taught in my 

math class.”  Internal consistency reliability (α) was 0.93.   

 Distal outcome variables (also called auxiliary variables).  This study sought to 

understand the relationship between the motivation profiles derived when participating 

students were in 10th grade, and more distal outcomes: math achievement in 12th grade 

(collected in 2004), graduation from high school (collected in 2004), postsecondary 

enrollment immediately following high school graduation (collected in 2006 via 

interview), and postsecondary completion (collected in 2012). 

 Achievement in 12th grade (F1TXM1IR).  This variable measured achievement in 

math in 12th grade, collected in 2004 at the first follow-up.  The test’s level of difficulty 

for each participant was determined based on the routing test given in 10th grade.  The 

items and scoring was similar to the base year measure.  The value was based on item-

response theory (IRT) and is the estimated number correct had all 85 items been 

answered.  It is not an integer of the number of items answered correctly, but rather a sum 

of the probabilities of correct responses if all 85 items were administered and answered 
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(Ingels et al., 2005).  Math achievement is the only measure collected at 12th grade as 

reading achievement was not collected at the first follow-up. 

 Graduation from high school (F2F1HSST).  This variable measured if participants 

graduated from high school by the summer of 2004 per the transcript and confirmed 

during an interview conducted at the second follow-up in 2006.  The variable F2F1HSST 

was coded to include subcategories such as early graduation (in fall 2003), certificate of 

attendance, GED, unknown status, as well as graduate and no graduate statuses.  This 

researcher renamed the variable (HSGRAD) after collapsing the data in preparation for 

logistic regression analysis.  All students who were coded graduate, including students 

who graduated in fall of 2003, and students who earned GEDs were re-coded as 1 = Yes.  

Students who did not graduate, earned certificates of attendance, or whose status could 

not be determined were re-coded 0 = No. 

 Post-secondary enrollment (F2PS0409).  This variable indicated “enrolled in 

postsecondary institution in September 2004.”  Information was attained from 

participants during follow-up interviews conducted in 2006.  This variable was chosen to 

reflect post-secondary enrollment because it corresponds with the time period when most 

students begin their post-secondary education – the fall following graduation.  It does not 

indicate how long the student persisted in post-secondary education, or if they graduated.  

It was a dichotomous variable coded 1 = Yes (enrolled), 0 = No (not enrolled).  The 

remainder of missing data were due to nonresponse or legitimate skip on item.   

 Postsecondary completion (F3PSCRED).  This variable indicated whether the 

respondent earned a credential from their last/currently attended post-secondary 

institution. This information was self-reported and collected in the third follow-up 
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questionnaire in 2012.  It is a dichotomous variable.  Postsecondary completion was 

coded 1 = Yes, 0 = No. 

Missing data. There was no missing information on covariate variables on 

participants as a result of two procedures used for ELS:2002 data (NCES, 2017).  First, 

information missing at the time of initial collection at base year (2002) was collected at 

the first follow up (2004).  Second, any information that was not collected at the first 

follow up was imputed using one of three imputation procedures for missing data: logical 

imputation, weighted sequential hot deck procedure, and multiple imputation (Ingels et 

al., 2005).  Logical imputation was used for sex and race and determined based on other 

information provided in the student questionnaire (e.g. sex based on name).  Weighted 

sequential hot deck imputation (Cox, 1980) was used for categorical data for nonresponse 

items.  This method defines imputation classes using cross-classification of covariates to 

replace missing values for categorical variables.  Multiple imputation was used for 

continuous variables (e.g. 10th grade math and reading achievement, and 12th grade math 

achievement) (Ingels et al., 2005).  Non-respondents from base year (2002) who did not 

respond to the questionnaire at the first follow up (2004) were removed from the sample 

thus providing a complete data set for background variables (NCES, 2017). 

 Latent profile analysis is based on complete responses to question items.  

“Missing data theory does not apply to exogenous observed variables” (Linda K. Muthén, 

July 17, 2012) and data was therefore not imputed.  Approximately 35% of the 

participants did not respond to any of the 22 items on the student questionnaire that asked 

about motivation, the exogenous observed variables.   As a result, these cases could not 

be included in analysis and resulted in an error message reading, “Number of cases with 
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missing on all variables [number of missing cases].”  The sample size was thus reduced 

substantially from 16,197 to 10, 981.  

3.4 SAMPLE DESIGN 
 
 As previously stated, ELS:2002 used a complex sample design.  When a sample is 

not a simple random sample, design effects have to be accounted for.  “The design effect 

is the ratio of the actual variance of the statistic to the variance that would have been 

obtained had the sample been a simple random sample” (Ingles et al., 2014, p. 91).  

To account for over-sampling certain student samples (stratification), and the 

effects of sampling these students from within a set number of schools (clustering), 

variance estimations are made through adjustments via Taylor series variance estimation 

and require the application of specific variables (STRATID, for student level), and 

primary sampling units (PSUs, for clustering) to off-set the chance of Type-I error, 

rejecting the null hypothesis when there is actually no effect (Carlson, Johnson, & Cohen, 

1993; Ingles et al., 2014).  

Weight. Unlike random sampling where participants have an equal probability of 

being selected to participate, in complex sample design students are selected, and 

sometimes oversampled to ensure adequate measures.  This creates an unequal 

probability of selection, which must be compensated for if the results are to be 

generalizable.  Weights are therefore applied.  The weights adjust for this unequal 

probability of being selected as well for non-response bias, which can have an effect on 

significance testing and lead to Type 1 errors.  School weights and student weights are 

calculated based on probability of selection.  These weights are either used for analysis, 
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or are used as the basis to determine other weights, such as panel weights. (Ingles et al, 

2004). 

Panel weights are used in analyses that span across rounds of data collection in 

longitudinal studies.  Because the motivation variables of interest were collected at the 

base year (2002) and used for analysis with dependent variables collected in the third 

follow-up (2012), the panel weight variable F3BYPNWT was selected.  Not only does 

the panel weight account for bias as a result of over-sampling certain populations, it also 

helps account for non-response adjustments (NCES, 2017).   

3.5 ANALYTIC APPROACH 
 
 The analysis used for this study was general mixture modeling.  Mixture models 

are based on the premise that the sampled population is comprised of subpopulations, a 

mix of distributions that represent subpopulations, also referred to as classes, clusters, or 

profiles, all of which have their own set of parameters (Pastor, Barron, Miller, & Davis, 

2007).  Under the framework of structural equation modeling, general mixture modeling 

incorporates a number of models such that it allows for latent class analysis using both 

categorical and continuous variables (latent profile analysis) with longitudinal data, thus 

enabling the exploration of effects on more distal outcome variables (Muthén & Muthén, 

2000). 

 To address the research questions, “What motivational profiles are evident within 

a national sample of 10th grade students?” “How does SES predict class membership?” 

and “Which motivation profiles best predict outcomes for students at the lowest SES 

level?” latent profiles analysis were first performed.   
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 Latent profile analysis.  Latent profile analysis, considered a person-oriented 

approach (Bergman & Magnusson, 1997), posits that distinct, but previously unknown 

subgroups of individuals within a population can be determined based on “latent” or 

hidden constructs measured indirectly through observed variables, such as ratings on 

survey items.  This reduces large groups into smaller classes or profiles (Collins & Lanza, 

2010; DiStefano, 2012; DiStefano & Kamphaus, 2006; Oberski, 2016).  Latent profile 

analysis (LPA) is considered more rigorous and therefore preferred over cluster analysis.  

Cluster analysis, another person-oriented approach, determines group membership based 

on centroids to minimize differences between members within the group, while 

maximizing differences between groups.  LPA, on the other hand, uses posterior 

probabilities to determine profile membership.   For LPA, the criteria used to determine 

the optimal number of classes is more rigorous, thus making it preferred over other 

methods (DiStefano, 2012; DiStefano & Kamphaus, 2006; Pastor et al., 2007).   

 Determining optimal number of classes.  Mplus software, version 8 (Muthén & 

Muthén, 1998 - 2017) was used to perform latent profile analysis.  To determine the 

optimal number of classes the specification for analysis was TYPE=MIXTURE, using 

only the main variables of interest in the model, the 5 motivation variables.  The 

estimator used was ESTIMATOR=MLR, maximum likelihood parameter estimates with 

standard errors, which is robust to non-normality (Muthén & Muthén, 1998-2017).  To 

obtain the highest parameter estimates and avoid local likelihood maxima, STARTS were 

increased up to the highest possible number, 10,000 (in most cases), with a convergence 

criterion value of 0.000001, and SITERATIONS = 500 iterations.  In all cases, the best 

log likelihood values were replicated. 
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 It should be noted that attempts to take sample design into account through 

analysis TYPE= COMPLEX MIXTURE and CLUSTER=PSU options, were made.  

However, the application of these options both significantly impacted the model fit 

indices (indicating a two-class model was optimal) and could not be used consistently for 

all analyses (i.e. distal outcomes), so TYPE=MIXTURE was used.  As such, these 

analyses are considered “exploratory,” and results may not be generalizable. 

 The relative model fit indices used were Akaike information criteria (AIC), 

Bayesian information criteria (BIC), adjusted Bayesian information criteria (aBIC), the 

Vuong-Lo-Mendell-Rubin test (VLMR), and the Lo-Mendell-Rubin test (LMR).  The 

Bootstrap LR difference test (BLRT) could not be used as this information was 

suppressed when weights were applied.   

To determine the model with the optimal number of classes, sequential analyses 

were performed increasing the number of classes in the model by one, starting with a 

two-class model.  The fit indices of the model with the smaller number of classes were 

compared to those of the model with one additional class.  Better fitting models had 

smaller AIC and BIC values, while maintaining statistically significant VLMR and LMR 

values (Geiser, 2010; Lanza, Tan, & Bray 2013).  The model with the optimal number of 

classes was the model with one less class than the model where the VLMR and LMR 

values became significant.  Entropy values, indicating the quality of the classification of 

the model, were also considered with values close to one indicating high accuracy in 

classification (Collins & Lanza, 2010; DiStefano, 2012, DiStefano & Kamphaus, 2006; 

Pastor et al., 2007).  In the end, the values of the fit indices were not the sole 

determinants of the best model.  The model with the optimal number of classes not only 
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had the fewest number of classes (parsimony), but also took theory and logic into 

consideration (Collins & Lanza, 2010; DiStefano, 2012, DiStefano & Kamphaus, 2006; 

Pastor et al., 2007; Quirk, Nylund-Gibson, & Furlong, 2012).     

Members were assigned to classes based on their highest posterior probability 

(Geiser, 2010).  Posterior probability is the likelihood a class member belongs to the class 

based on their response pattern to survey items, with values closer to one indicating high 

probability of accurate assignment.  Posterior probabilities allow procedures to estimate 

model parameters (e.g. means, variances, covariances for each k class) using maximum 

likelihood criteria to determine how well the data fit the final model (Collins & Lanza, 

2010; DiStefano, 2012; DiStefano & Kamphaus, 2006; Geiser, 2010; Pastor, Barron, 

Miller, & Davis, 2007; Vermunt & Magidson, 2002).  Posterior probability values were 

saved for each case and averaged to provide class probabilities for each class, with values 

closer to one indicating high homogeneity of that class, an indication of being highly 

distinct other classes (Lanza & Collins 2010).  Class assignments were also saved for 

each case and used in the anayses.   

 Auxiliary variables.  Auxiliary variables can be covariates and/or distal 

outcomes depending on how they are specified in the model to either predict group 

member, or to predict distal outcomes (Asparouhov & Muthén, 2014). 

The “three-step approach” is gaining popularity for studies using auxiliary 

variables in mixture model studies that predict group membership, and/or when group 

membership is used to predict distal outcomes (Asparouhov & Muthén, 2014).  This 

method is preferred because it allows latent class variables to be examined independently 

of the auxiliary variables, such that the addition of auxiliary variables into the model do 
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not potentially change class membership itself (Asparouhov & Muthén, 2014; Nylund-

Gibson, Grimm, Quirk, & Furlong, 2014; Vermunt, 2010).  In the three-step approach, 

the first step performs latent class analysis/latent profile analysis using only the variables 

of interest.  The second step is the creation of the classes based on the posterior 

probabilities.  In the third step, the class becomes a nominal variable, taking into account 

the measurement error because class member is not 100%, which are recorded as logit 

values.  The auxiliary variable is included into the model during the third step and the 

multinomial regression is used to predict outcomes.  In cases where the outcome variable 

is class membership, the R3STEP option is specified under AUXILIARY and the 

covariates are used as the predictor variables.  In cases where class membership is used to 

predict distal outcomes, an additional step must be taken.  Specifically, the logits 

produced in step two, must be entered in the model specifications (by hand), which must 

be done in a separate/additional analysis specifying DU3STEP (if the outcome is 

categorical) or BCH (if the outcome is continuous) in the AUXILIARY command.  In 

both cases (if auxiliary variables are used as predictor variable for class membership, or if 

class membership is used to predict distal outcomes), equality mean testing is used to 

determine statistically significant differences between group that predict the classes 

(Asparouhov & Muthén, 2007, 2010, 2014; Nylund-Gibson et al., 2014).  For this study, 

however, use of the three-step approach was not possible because the software was 

unable to accommodate the panel weight and the logit weights required in the 3rd step 

simultaneously (Muthén & Muthén, 1998-2017).  As such, the multiple pseudo-class 

draws method was used to analyze the distal outcomes in this study (Wang, Brown, & 

Bandeen-Roche, 2005).   
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Pseudoclass draws.  The multiple pseudoclass draws approach was used in this 

study for predicting distal outcomes.  The “PC” approach pre-dates the more recent three-

step approach (Clark & Muthén, 2009), but has been widely used in studies related to 

mental health (Lanza, Tan, & Bray, 2013), and education (Ing & Nylund-Gibson, 2013; 

Nylund-Gibson, Grimm, Quirk, & Fulong, 2014).  Although there are some biases in the 

estimates and standard errors related to this method, (Clark & Muthén, 2009; Muthén & 

Muthén, 1998-2017), pseudoclass draws has been found to produce good results when 

entropy is high (Clark & Muthén, 2009; Lanza, Tan, & Bray, 2013).   

For this study, after class membership was determined via posterior probabilities, 

covariates (math achievement in 10th grade, sex, race, urbanicity, SES) were added to the 

model (as AUXILIARY = R3STEP) to determine how covariates predicted class 

membership, producing output to be interpreted as multinomial regression (Nylund-

Gibson & Masyn, 2011).  The output for the multinomial regressions were reported as 

logits, which were converted to odds ratios for ease of interpretation (Clark & Muthén, 

2009; Quirk, Nylund-Gibson, & Furlong, 2013).  Next, the class assignments were used 

as predictor variables to predict distal outcomes (math achievement in 12th grade, high 

school graduation, enrollment in post-secondary education immediately following 

graduation, and post-secondary education completion) by specifying AUXILIARY = (E) 

to use pseudoclass draws.   Because classification is based on probabilities and there is an 

element of uncertainty (i.e. probability of membership is not 100%), this step takes (20) 

random samples from the data, akin to imputation, but for the missing latent classes 

(Clark & Muthén, 2009) before predicting distal outcomes, thus the origin of the name 

for the pseudoclass draws.  Equality of means testing was used to determine if class 
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membership predicted outcomes via an omnibus test (Chi-Square for categorical outcome 

variables, or ANOVA for continuous outcome variables), with pairwise testing between 

motivation profiles (Clark & Muthén, 2009; Quirk, Nylund-Gibson, & Furlong, 2013). 

In addition to equity of means testing, regression analyses were performed in 

order to provide a more complete understanding of the distal outcomes.  Hierarchical 

multiple regression was completed to determine how motivation class predicted math 

achievement in 12th grade.  Analyses examined outcomes based on the aggregate data (all 

SES levels together) and then looked at outcomes for just the lowest SES level.  For the 

aggregate data, control variables were added in the first step, motivation classes in the 

second step, and interactions between motivation level and SES level in the third.  For 

analysis of the lowest SES level, control variables were added in the first step, and 

motivation profiles were added in the second step.  These same steps were used for 

hierarchical logistic regression analyses conducted to determine how motivation class 

predicted high school graduation, enrollment in postsecondary education immediately 

following high school graduation, and postsecondary education completion, all of which 

are dichotomous variables.  These analyses were performed in SPSS, version 8.
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CHAPTER 4 

RESULTS 
 
4.1 LATENT PROFILE ANALYSIS 
 
 Measurement model.  The five motivation variables were composite scores 

based on sub-questions (a-v) of item 89 on the base year student questionnaire.  The 

variables were created through principal factor analysis and standardized with a mean of 

zero (0) and a standard deviation of one (1) (Ingles et al., 2005).  Composite scores were 

created by ELS:2002 after a factor analysis was undertaken.  Coefficients of reliability 

values ranged from 0.84 to 0.93. 

 Structural model.  Latent profile analysis using Mplus version 8 was conducted 

using maximum likelihood and based on the five motivation variables of interest: math 

self-efficacy (BYMATHSE), English self-efficacy (BYENGLSE), control expectation 

(BYCONEXP), action control (BYACTCTL), and instrumentation motivation 

(BYINSTMO).  The best fitting model was determined using relative fit indices and 

entropy values after numerous models were run, keeping parsimony in mind.   

Table 4.1 provides information from consecutive LPA runs used to determine the 

best-fitting model.  As seen from the table, as classes were increased from the 2-, 3-, and 

4-class models, the AIC and BIC values decreased, while MLMR and LMR values 

remained statistically significant, suggesting improvement in model fit with each
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additional class.  Another indicator of improved fit was the increase in entropy value. The 

optimal fitting model is generally the model with the highest number of classes, lowest 

AIC and BIC values, and highest entropy, while maintaining statistically significant p-

values for the VLMR and LMR.  The best-fitting model is confirmed by the model with 

one less class than the model where the VLMR and LMR values become significant.  In 

this case, the 4-class model was not directly confirmed, but assumed when the 5-class 

model did not converge.  Several attempts were made to get the 5-class model to 

converge: starts were incrementally increased to the maximum 10,000 and 2500 (for 

second step), with 500 iterations, but to no avail.  The lack of convergence suggested the 

4-class model was the optimal fit. 

This study included multiple types of analyses.  The results from these analyses 

are organized under the heading of the question they related to.  The study focuses on 

how SES level relates to motivation profiles.  As such, the analyses and results speak to 

this, to the exclusion of other information provided in the process. 

4.2 WHAT MOTIVATIONAL PROFILES ARE EVIDENT WITHIN A NATIONAL 

SAMPLE OF 10TH GRADE STUDENTS? 

Per latent profile analysis, classes were extracted based on participants’ posterior 

probabilities, the likelihood a class member belongs to a class based on their response 

pattern to survey items.  The mean of these posterior probabilities yields the class 

probability and serves as an indicator that members were assigned to the correct class.  

The four classes in the chosen model had class probabilities ranging from .937 to .974, 

indicating high accuracy in class assignment.  Once the classes were determined, they 

were named based on their similar attributes.  The classes in this study were named based 
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on the constellations of the mean motivation scores, reported as Z-scores.  The high 

motivation class/profile had 1,249 members and reflected high levels of motivation with 

average scores at least one standard deviation above the mean for each of the motivation 

variables.  The moderate profile/class, had the most members with 6,004, and reflected 

average scores within one standard deviation above the mean for each of the motivation 

variables.  There were 3,593 members in the low profile/class, so named because the 

mean scores were within one standard deviation below the mean on each of the 

motivation measures.  The very low motivation profile/class had average motivation 

scores exceeding one standard deviation below the mean.  Although this class was very 

small (approximately 1%), it was distinct with 135 members.  Table 4.2 provides a 

summary of the named classes, number and proportion of members, mean scores for each 

of the motivation variables, and the class probabilities. 

 Correlation analysis.  A correlation analysis was completed on motivation 

profiles and SES level to determine the level of relationship between these two important 

sets of variables.  There was a clear pattern of relationships between SES level and 

motivation profiles, with more affluence associated with higher motivation levels and 

economic disadvantage associated with low motivation levels.  Specifically, the highest 

correlation for SES1 (highest SES level) was with the moderate motivation profile (r = 

.103, p = .01), indicating students in this SES level were more likely to be moderately 

motivated.  The highest positive correlation for the lowest SES level was with the low 

motivation profile (r = .102, p = .01), indicating students with less wealth are more likely 

to be have a low motivation profile.  There were also inverse relationships between 

motivation and SES levels and most, but not all, were statistically significant at the .01 
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level.  The strongest inverse relationship was between the highest SES level (SES1) and 

low motivation (r = -.155, p = .01) indicating that  more affluent students were less likely 

to have low motivation.  The reverse was indicated with SES4, the lowest SES level, 

which was negatively correlated with the high motivation class (r = .041, p = .01).  

Interestingly, SES2, the second highest SES level did not have any statistically significant 

correlations, suggesting that the relationship between motivation profile and economics is 

more diffuse.  SES3, the second lowest SES level was had weak, negative relationships 

with high and moderate motivation classes (r = -.030, and -.037, p = .01), and a weak 

positive relationship with the low motivation profile (r = .061, p = .01), indicating that 

like the lowest SES level, students were less likely to belong to the high or moderate 

profiles and more likely to belong to the low motivation group, but to a lesser degree.    

Table 4.3 provides a correlation matrix between SES level and motivation profiles.   

4.3 HOW DOES SES PREDICT MOTIVATION CLASS MEMBERSHIP? 

Two different analyses were used to answer this question: regression of the 

covariates on the class profiles, and a chi-square test of independence.  Each of these 

analyses explored how covariates related to the motivation profiles and the distribution of 

the profiles across SES level.  

Covariates.  After the optimal class model with four classes determined, 

covariates were added to the model and regressed on the motivation classes to determine 

which variables were associated with class membership. Covariates included math 

achievement (measured in 10th graded), reading achievement (measured in 10th grade), 

sex, race, geographic location (urban, suburban, or rural), and SES level.  While there 
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were findings associated with all the covariates, for purposes of this study, the focus was 

on SES level as it related to motivation class assignment. 

 The low motivation class was used as the referent group by which the other 

motivation groups were compared.  The referent group for SES level was the lowest SES 

level (SES4).  In Mplus, the statistics for the variables were reported as logits and 

interpreted as a multinomial regression.  For ease of interpretation, these logit values 

were exponentiated and converted to odds ratios.  Table 4.4 is a summary of the logit 

values (log-odds) with corresponding p-values, and odds ratios for each of the 

statistically significant covariates which was used to interpret findings for SES level and 

motivation profiles. 

 After controlling for prior achievement in math, race, sex, geographic location, 

the odds of being assigned to the high motivation profile increase 1.80 times (80%,  p < 

.001), if students were the highest SES level.  Being from the highest SES level increased 

the odds of membership in the moderate motivation group by 1.520 times (52%, p < 

.001), holding other variables constant.  SES level was not predictive of membership into 

the very low motivation group. Table 4.5 provides a summary of the frequency statistics 

for sex, race, geographic location, and SES level, and the proportion of membership for 

each motivation class. 

 Chi square test of independence.  The last type of analyses performed was the 

chi square test for association to determine the degree of relationship (or conversely, 

independence) of SES level and motivation profile.  The assumption is that there is no 

association between the two categorical variables.  The chi-square test of independence 

was conducted between SES level and motivation profile and there was a statistically 



 

 55 

significant association between these two variables, X2 (9) = 347.100, p < .001.  The 

Cramer’s V = .103, indicating a small effect size.    

 Table 4.6 provides the expected and actual counts of the individuals in each of the 

cells that correspond to motivation profile type and SES level.  As Table 4.6 illustrates, 

there was a disproportionate number of students from the high motivation profile who 

were under-represented in the lowest SES level, yet over represented in the highest SES 

level.  Conversely, in the low and very low profiles, there was under-representation of 

students at the highest SES level, and an over-representation of students at the lowest 

SES level.  While there is a clear relationship between low SES status and low 

motivation, and high SES status and high motivation, the data also show a high degree of 

distribution of motivation profile types across all levels of socioeconomic status.  For 

example, for SES2 and SES3, the actual count of members of the high, moderate, low 

and very low motivation profiles closely align, or are even match exactly the expected 

number.  This speaks to the heterogeneity of motivation profiles in a given population. 

4.4 WHICH MOTIVATION PROFILES BEST PREDICT OUTCOMES FOR 

STUDENTS AT THE LOWEST SES LEVEL? 

 To address this question, several analytic approaches were used: equality of 

means testing and regression analyses.  Hierarchical multiple regression and hierarchical 

logistic regression, adding related variables in blocks, were employed to parse out the 

contributions each related set of variables made to predicting distal educational outcomes.  

One of these blocks included interaction terms of motivation profiles and SES level to 

gain understanding as to any synergetic effect any of these combinations might have on 

outcomes.  Finally, regression analyses among students from the lowest SES level was 
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performed to better understand their educational outcomes as compared to the whole 

population under investigation.   

 Equality of means test.  As part of pseudoclass draws analysis, a equality of 

means tests was produced.  Equality tests of means used a chi square test (c2) to 

determine how class membership predicted distal outcomes: math achievement in 12th 

grade, high school graduation, enrollment in post-secondary education immediately 

following high school graduation, and post-secondary education completion.  The means 

were compared across classes using posterior-probability-based multiple imputations (i.e. 

multiple pseudoclass draws (Clark & Muthén, 2009)) and were interpreted similar to 

ANOVA.  There were three degrees of freedom for the overall test, and one degree of 

freedom for pairwise tests.   

 Math achievement in 12th grade.  The mean values for math achievement in 12th 

grade were 40.724 for the very low motivation group, 44.621 for the low motivation 

group, 53.094 for the moderate group, and 55.893 for the high motivation group, which 

were different to a statistically significant degree overall (c2 = 834.418(3), p < .001).  All 

values for the motivation classes were significantly different from each other.  Table 4.7 

provides the pairwise comparisons, the c2 and p-values. 

 High school graduation.  The variable for high school graduation was coded 1 = 

Yes for graduation, and 0 = No for no graduation, so the means were interpreted as 

percentages for successful graduation from high school.  The mean graduation rate for the 

four motivation classes were as follows: very low = .663, low = .835, moderate = .911, 

and high = .942.  The omnibus test for equality tests of means for high school graduation 

was statistically significant (c2 = 190.979 (3),  p < .001), and indicated that class 
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membership predicted graduation from high school.  All pairwise comparisons were 

statistically significant from each other (p < .001).  Table 4.8 provides the pairwise 

comparisons, the c2 and p-values.   

 Postsecondary enrollment.  The variable for postsecondary enrollment was also 

dichotomous (1 = Yes, 0 = No).  As such, the means were interpreted as percentages.  

The motivation classes had the following rates of enrollment in postsecondary education: 

very low = .768, low = .775, moderate = .876, and high = .909, which were statistically 

different from each other, overall (c2 = 124.504 (3),  p < .001).  However, only some 

motivation classes were statistically significant from each other.  The very low motivation 

group was statistically different from the high group (c2 = 4.871 (1), p < .027), but not 

from the low or moderate motivation profiles.  The low motivation profile was statistically 

different from the moderate profiles (c2 = 73.023 (1), p < .001), and the high motivation 

class was different to a statistically significant degree than the low group (c2 = 94.856 (1),  

p < .001) and moderate group (c2 = 8.820 (1),  p < .001).  In sum, the only groups where 

enrollment rates into postsecondary education were not statistically different were 

between the very low and low profile, or the very low and moderate profile groups.  Table 

4.9 provides the pairwise comparisons, the c2 and p-values. 

 Postsecondary education completion.  The overall test for equality of means for 

postsecondary completion was statistically significant (c2 = 59.027 (3), p < .001), and 

indicated that motivation class membership predicted completion of a postsecondary 

degree.  Again, the means, interpreted as percentages, show postsecondary completion 

for each of the four motivation classes as follows: very low = .414, low = .455, moderate 

= .521, and high = .575.  Similar to postsecondary enrollment rates, the completion rates 



 

 58 

for postsecondary education were not statistically different between the very low and low 

profile, or the very low and moderate profile groups, but statistically significant between 

the other groups.  Table 4.8 provides the pairwise comparisons, the c2 and p-values.  The 

frequencies of high school graduation, postsecondary enrollment, and postsecondary 

completion for each motivation class are provided in Table 4.10. 

 To summarize, the findings of the equality of means test showed that the 

motivation profiles predicted all the educational outcomes to a statistically significant 

degree, based on the omnibus test.  The four motivation groups were significantly 

different from each other in predicting math achievement and high school graduation, the 

low and very low motivation profiles were similar in predicting postsecondary enrollment 

and postsecondary completion.  Although equality of means provided some information 

about predictive ability, additional analyses seemed indicated to provide details about the 

relationship between SES level and motivation profiles.   

 Regression analyses.  In addition to the equality of means testing completed in 

Mplus, regression analyses were completed in SPSS (version 23) to provide a more 

complete picture of the data with regard to the relationship between motivation profile 

and distal outcomes.  The panel weight was not applied in SPSS because sample sizes 

aligned with the samples sizes determined from LPA without the weight, and applying 

the weight reduced the sample size, indicating that double-weighting may have been an 

issue when the weight was applied in SPSS.  The regression analyses followed protocols 

as outlined by Laerd Statistics (2015). 

 Hierarchical multiple regression.  Hierarchical multiple regression was 

performed to determine how motivation class membership predicted math achievement in 
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12th grade, a continuous variable.  Unlike multiple regression, where all of the 

independent variables are added in one step, the independent variables were added in 

steps (blocks) to control for the effects of covariates and to better understand how related 

variables explained the variance in math achievement in 12th grade.  As such, 

independent variables were added into the regression model to see the effect of each of 

the variables on the dependent variable, keeping the referent group out of the model for 

interpretation purposes.  The referent group for sex was female, White for race, suburban 

for geographic location (urbanicity), and the lowest SES level (4th quartile).  In the first 

step (block 1), covariates were added: math achievement in 10th grade, sex (male), race 

(Native American, Asian, African American, Hispanic – no race affiliation, Hispanic – 

with race affiliation, Mixed race), urbanicity (urban, rural), and SES level (SESQ1 

(highest), SESQ2, SES3).  Motivation classes (high, moderate, very low) were added in 

the second step (block 2) to determine the effect motivation classes had on predicting 

math achievement in 12th grade.  Finally, interaction terms were added in the third step 

(block 3) to determine if interactions between motivation level and SES level and to 

understand the significance of any interactions on the dependent variable.  There were a 

total of 12 interactions entered into the model.  Each motivation class was multiplied with 

each SES level, keeping low motivation at each SES level out as the referent group.  The 

interactions were as follows: high motivation * SESQ1 (high), moderate motivation * 

SESQ1, very low motivation * SES1; high motivation * SESQ2 (upper middle class), 

moderate motivation * SESQ2, very low motivation * SESQ2; high motivation * SESQ3 

(lower middle class), moderate motivation * SESQ3, very low motivation * SESQ3; high 
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motivation * SESQ4 (low), moderate motivation * SESQ4, and very low motivation * 

SESQ4.  

All assumptions were checked.  There was independence of observations per 

design, and visual inspection of the scatterplot indicated a strong linear relationship 

between the dependent variable (math achievement in 12th grade) and the only other 

continuous variable in the model, math achievement in 10th grade.  The assumption of 

homoscedasticity, however, was violated and there was a decreasing funnel shape on the 

residuals graph.  The skewness of the studentized residuals was .142, and because 

modifications were only for moderately or strongly skewed distributions, the data were 

not transformed as to not over-correct.  Heteroscedasticity could weaken the 

generalizability of the results.  Although there was a high correlation between math 

achievement in 10th grade and math achievement in 12th grade (r = .903), VIF values 

were within the acceptable value range (below 10) with the highest VIG value being 

6.417, so multicollinearity was not violated.  There were 126 outliers (about 1%) in the 

sample that exceeded ±3 standard deviations for studentized residuals, but leverage points 

were well within the acceptable .2 “safe” range, with the highest value = .05362.  Cook’s 

Distance, an indicator of influential points, was also well within the acceptable range, 

below 1 (highest value = .04306).  Taking all the indices of unusual points into 

consideration, cases were deemed to not negatively impact results and were retained for 

analyses.  Lastly, the assumption of normality was met: residuals were normally 

distributed on the histogram, and P-P plot aligned with the diagonal graph.   

The full regression model with all of the variables to predict math achievement in 

12th grade was statistically significant, R2 = .824, F(25, 9357) = 1,746.327, p < .001, 
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adjusted R2 = .823.  As expected, the covariates in step 1 contributed the most in 

predicting math achievement in 12th grade.  Specifically, approximately 82% (R2 = .822, 

adjusted R2 = .821) of the variance was explained by math achievement in 10th grade, 

sex, race, urbanicity, and SES variables, which was statistically significant (p < .001).  

Adding motivation classes to the model improved the model slightly, but to a statistically 

significant degree, by increasing the variance by .002 (R2 = .823, p < .001).  Adding 

interactions into the model did not contribute at all to predicting math achievement in 12th 

grade (R2 = .823, p = .259).   

Based on the results of the full model, the coefficients for SES level and 

motivation profile were interpreted with a higher degree of focus, as these variables were 

of greatest interest.  SES level was statistically significant in predicting math 

achievement in 12th grade, when other control variables were held constant.  Compared to 

the lowest SES level, students from the highest SES level (SES 1, the 1st quartile) were 

predicted to score 2.003 (p < .001) points higher, while students from the 2nd and 3rd 

quartiles were predicted to score 1.521 (p < .001) points and .956 (p < .01) above peers 

from the lowest (4th) quartile, holding all other variables constant.  As previously stated, 

motivation class membership also contributed to the model in predicting math 

achievement in 12th grade.  Membership in the high motivation class predicted a 2.457 (p 

< .001) point increase in math achievement in 12th grade over those in the low motivation 

class, and an increase of 1.826 (p < .001) points if students belonged to the moderate 

motivation class, relative to the low motivation class, holding all other variables constant.  

Students in the very low motivation group were similar to their peers in the low 

motivation class.  Because interactions did not contribute to the model, these coefficients 
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were not interpreted.  Other covariates predicted math achievement in 12th grade: math 

achievement in 10th grade, identifying as male, Asian, and attending an urban school 

predicted more favorable outcomes to a statistically significant degree, compared to their 

referent groups and holding other variables constant.  Table 4.11 provides a list of each of 

the variables entered at each step, the unstandardized and standardized beta values, and 

whether or not they are significant, along with R2 and F values and changes in these 

values. 

Hierarchical multiple regression for math achievement in 12th grade for students 

at the lowest SES level.  Hierarchical multiple regression was completed exclusively for 

students from the lowest SES level (split out) to examine how motivation profiles relate 

to outcomes within this focal subsample.  As with the previous hierarchical multiple 

regression, the covariates (math achievement in 10th grade, sex, race, urbinacity) were 

added in the first block, except for SES level.  The model predicted math achievement in 

12th grade to a statistically significant degree, F(13, 1788) = 482.399, p < .001, and 

explained approximately 78% of the variance (R2 = .776, adjusted R2 = .775).  The 

model’s ability to predict math achievement improved after the second step, the addition 

of the motivation profiles, F(3, 1788) = 5.122, p = .002, and explained an additional R2 = 

.002.  The coefficients for the full model predicted that membership into the high 

motivation group at the lowest SES level predicted an increase in of 1.127, p = .027 

points in math achievement, and an increase of 1.124, p = .046 points if students were 

members of the moderate profile, holding all other variables constant.  As with the model 

using aggregate data, math achievement in 10th grade, being male and identifying as 

Asian were also statistically significant in predicting math achievement in 12th grade, 
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although urbanicity was not.  The variables entered in each step of the hierarchical 

multiple regression and the unstandardized beta coefficients used for interpretation are in 

Table 4.12 

Hierarchical logistic regression.  Hierarchical logistic regression was performed 

to determine if motivation class membership predicted distal outcomes on measures that 

were dichotomous.  The three dichotomous dependent variables, high school graduation, 

enrollment in post-secondary education the autumn following graduation, and completion 

of post-secondary education were coded 1 = Yes, 0 = No. 

As with hierarchical multiple regression, variables were added in steps (blocks) to 

control for the effects of the covariates and to better understand how related variables 

explained the variance in each of the three dependent variables.  The referent group for 

sex was female, White for race, suburban for geographic location (urbanicity), and the 

lowest SES level (4th quartile).  In the first step (block 1), covariates were added: math 

achievement in 10th grade, sex (male), race (Native American, Asian, African American, 

Hispanic – no race affiliation, Hispanic – with race affiliation, Mixed race), urbanicity 

(urban, rural), and SES level (SESQ1 (highest), SESQ2, SES3).  Motivation classes 

(high, moderate, very low) were added in the second step (block 2) to determine the 

effect motivation classes had on predicting math achievement in 12th grade.  Finally, 

interaction terms were added in the third step (block 3) to determine if interactions 

between motivation level and SES level and to understand the significance of any 

interactions on the dependent variable.  There were a total of 12 interactions entered into 

the model.  Each motivation class was multiplied with each SES level, keeping low 

motivation at each SES level out as the referent group.  The interactions were as follows: 
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high motivation * SESQ1 (high), moderate motivation * SESQ1, very low motivation * 

SES1; high motivation * SESQ2 (upper middle class), moderate motivation * SESQ2, 

very low motivation * SESQ2; high motivation * SESQ3 (lower middle class), moderate 

motivation * SESQ3, very low motivation * SESQ3; high motivation * SESQ4 (low), 

moderate motivation * SESQ4, and very low motivation * SESQ4.  

All assumptions were checked.  Multicollinearity between the independent 

variables were checked for each dependent variable.  Multicollinearity did not appear to 

be a problem as VIF values did not exceed 1.2 between any of the independent variables.  

The linearity assumption using the Box Tidwell test were all non-significant, indicating 

linearity between the dependent variables and math achievement in 10th grade.  Linearity 

between the dependent variables and categorical variables was not applicable.  All 

outliers were retained in the data for analyses (only applicable for high school graduation, 

where there were six outliers).  Tables 4.13, through 4.18 provide the hierarchical logistic 

regression results of the each of the dichotomous outcome variables: high school 

graduation, post-secondary enrollment, and post-secondary completion and all relevant 

information on which the following interpretations were based.  While the odds ratios 

were provided for all the covariates, because this study is interested in SES level and 

motivation class membership, only those odds ratios were interpreted.   

 Logistic regression of high school graduation (HSGRAD).  The full model with 

all of the variables to predict high school graduation examined.  It was statistically 

significant, X2 = 1081.199 (25), p < .001, and explained almost 19% of the variance 

(Nagelkerke R2 = .188).  The block (block 0) predicted 89.1% accuracy of correct 

classification for high school graduation without any predictor variables.  The addition of 
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the control variables (sex, race, geographic location, and SES level) did not improve the 

model’s accuracy, which remained at 89.1.  The model had a 2.8 accuracy rate of 

predicting students would not graduation from high school, only correctly predicting 

34/1196, while the accuracy rate of correctly predicting high school graduation was 

99.6%, correctly predicting 9743/9781.  The Hosmer and Lemeshow test was significant 

(p = .027), indicating a poor fit with the data.  The predictor variables explained almost 

18% of the variance in high school graduation (Nagelkerke R2 = .179).  The addition of 

the motivation classes into the model (step 2) did not improve the model’s accuracy in 

predicting high school graduation, but the omnibus test remained statistically significant 

with the addition of the step, X2 = 44.314 (3), p < .001, and increased the variance by 

.008 (Nagelkerke R2 = .187). The Hosmer and Lemeshow test was significant with the 

addition of these variables, indicating an improvement in fit with the data.  When the 

interaction terms were added in the third step (block 3), the variance remained virtually 

unchanged (Nagelkerke R2 = .188) and the omnibus test was no longer statistically 

significant, X2 = 10.246 (9), p = .331.  Additionally, the Hosmer and Lemeshow Test 

became statistically significant, indicating that the addition of the variables made the data 

fit less well than the previous model.   

Because the addition of the third step (block) was not statistically significant, the 

log ratios (Exp(B)) values for second step (block) were interpreted giving attention to 

SES level and motivation profile.  The odds of graduation from high school increased 

2.415 times (70.7%,  p < .001), 1.928 times (92.8%,  p < .001), and 1.411 times (41.1%,  

p < .001), for students who came from households in the highest earning SES quartile 

(SES1), the 2nd highest (SES2), and 2rd lowest (SES3) quartiles respectively, relative to 
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the lowest SES quartile, holding other variables constant.  As previously noted, 

motivation class was a significant predictor of high school graduation.  The odds of 

graduating high school increased 1.794 times (79.4%, p <  .001) for members of the high 

motivation profile, and 1.342 times (34.2%, p  <  .001) for students with moderate 

motivation profiles, compared to the low motivation profile, holding all other variables 

constant.  Comparatively, students from the very low motivation group were at .497 times 

reduced odds (p  <  .001) of graduation, holding other variables constant.  Math 

achievement in 10th grade predicted high school graduation, while male students as well 

as those identifying as Native American, Hispanic, and mixed race were less likely to do 

so.  See Table 4.13 for details. 

Hierarchical logistic regression of high school graduation for students at the 

lowest SES level.  Additional analyses were completed looking specifically at high school 

graduation of students in the lowest SES level (SES4).  In the first step control variables 

were added into the model (math achievement in 10th grade, sex, race, and urbanicity).  

This model without any predictor variables had an accuracy rate of 75%, which increased 

to 78.8% after the control variables were added.  The omnibus test was statistically 

significant, X2 = 176.559 (10), p < .001.  Variance explained was 11% (Nagelkerke R2 = 

.114), and the Hosmer & Lemeshow test was not significant at .172, indicating a good fit 

with the data.  The second step, the addition of the motivation classes, was also 

statistically significant, X2 = 14.169 (3), p = .003, and explained an additional .009 in 

variance.  The accuracy of the model increased to 79%, correctly predicting that students 

did not graduate from high school only 3.3% of the time (16/491), but correctly 

predicting students graduated 99.4% of the time (1816/1827).  For students at the lowest 
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SES level, only belonging to the moderate motivation group predicted high school 

graduation.  The odds of students in this motivation profile graduating high school was 

increased 1.458 times (45.8%, p = .005).   Again, math achievement in 10th grade 

predicted graduation and male students were less likely to graduate than females, holding 

other variables constant.  Table 4.14 provides details about the odds ratios.  

Logistic regression of post-secondary enrollment.  The model without any 

independent variables had an accuracy rate of 86.7% in predicting students would enroll 

in postsecondary education immediately following high school graduation.  When the 

control variables were added (math achievement in 10th grade, sex, race, urbanicity, SES 

level) the model’s ability to accurately predict the outcome did not improve, however the 

model statistically significant X2 = 660.247 (13), p < .001, and explained 15% of the 

variance (Nagelkerke R2 = .154).  The Hosmere and Lemeshow test was .205, indicating 

the data fit the model.  The addition of the second step, the motivation profiles, did not 

improve the model’s accuracy rate, but it explained .009% more variance (Nagelkerke R2 

= .163) and the step contributed to a statistically significant degree, X2 =42.473 (3), p < 

.001.  The Hosmere and Lemeshow test was .241.  The addition of the interaction terms 

in the third step did not contribute to the model to a statistically significant degree X2 = 

7.369 (9), p < .599.  As such, the Exp(B) values for the second model were interpreted, 

looking specifically at SES level and motivation profiles. 

As with high school graduation, SES level and motivation profile predicted 

enrollment in postsecondary education.  Students from the highest SES level had the 

highest odds of enrollment at 2.612 times (72.3%, p < .001), and even higher odds of 

1.789 times (78.9%, p < .001) for students at the 2nd highest quartile, and 1.286 times 
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(28.6%, p = .013) for students in the 2nd lowest SES (Q3) quartile compared to the 

lowest SES quartile, holding other variables constant.  As previously stated, motivation 

class added to the accuracy of the model, overall.  The odds of postsecondary enrollment 

increased 1.814 times (81.4%, p < .001) for students in the high motivation class, and 

1.583 times (58.3%, p < .001) for those from the moderate motivation class compared to 

the low motivation class, holding all other variables constant.  There was no statistical 

difference between the low and very low motivation groups.  Math achievement in 10th 

grade predicted postsecondary enrollment, while being male and identifying as Hispanic 

decreased the odds compared to referent groups, holding other variables constant.  Table 

4.15 provides the odds ratios and significance levels for each of the variables entered in 

steps in the hierarchical logistic regression predicting postsecondary enrollment. 

Hierarchical logistical regression for postsecondary enrollment for students at 

the lowest SES level. As with high school graduation, additional analyses were completed 

looking at postsecondary enrollment of those at the lowest SES level, using the same 

steps as previously described.  Without any predictor variables, the model predicted a 

75% accuracy rate of postsecondary enrollment, which declined to 74.4% after the 

control variables were added.  None-the-less, the model was statistically significant at 

predicting, X2 = 96.139 (10), p < .001, and explained 12% of the variance, (Nagelkerke 

R2 = .121).  The Hosmer and Lemeshow test was .742.  The addition of the motivation 

profiles in step two increased the accuracy of the model to a statistically significant 

degree, X2 = 7.708 (3), p = .052, and explained an additional .009 in variance 

(Nagelkerke R2 = .130).  Similar to the hierarchical logistic regression analysis for 

students at the lowest SES level that predicted high school graduation, relative to the low 
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motivation class, the only motivation class that increased the likelihood of enrollment in 

postsecondary education was the moderate motivation profile, which increased the odds 

by 1.543 (54.3%, p = .005), holding all other variables constant.  Increased math 

achievement in 10th grade improved the odds of enrollment in postsecondary education, 

as did identifying as Asian, while being male decreased the odds, compared to the 

referent groups and holding other variables constant.  See Table 4.16 for details. 

Hierarchical logistic regression for post-secondary education completion.  As 

with the other hierarchical logistic regression, the models were examined as blocks of 

variables added into the model.  The model predicting postsecondary completion 

modestly improved from 52.9% accuracy to 60.1% accuracy after adding math 

achievement in 10th grade, sex, race, geographic location, SES level.  This model was 

statistically significant with an omnibus test of X2 = 451.512 (13), p = .001, which 

explained only 7% of the variance (Nagelkerke R2 = .073).  The Hosmer and Lemeshow 

test was not statistically significant (p = .378), suggesting an adequate fit with the data.  

Adding the motivation profiles into the second step (block 2) increased the accuracy of 

the model nominally, to 60.3%, but to a statistically significant degree X2 = 8.118 (3), p = 

.044.  It had a 70.6% accuracy rate of predicting postsecondary completion (3017/4272), 

and a 48.6% accuracy rate of correctly predicting that students would not earn a 

postsecondary degree (1953/3801).  The addition of the interaction terms did not 

contribute to the model, X2 = 10.027 (9), p = .348, so was not considered when 

interpreting Exp (B) values which focused on SES level and motivation class 

membership in predicting postsecondary completion.   
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Consistent with the other outcomes, SES level and motivation profile were 

statistically significant predictors of post-secondary education completion.  Again, 

holding all other control variables constant, SES levels predicted postsecondary 

completion: Students from the top two quartile of SES level had increased odds of 1.590 

times (59.0%, p < .001), and 1.216 times (21.6%, p = .008) relative to low SES of 

completing a postsecondary degree, when other variables were held constant.  Students in 

the high motivation class and moderate motivation class had increased odds of 

completing a postsecondary degree of 1.216 times (21.6%, p=.014), and 1.122 times 

(12.2%, p=.033) relative to the low motivation group, holding all other variables constant. 

As with other outcomes, higher math achievement in 10th grade increased the odds of 

postsecondary completion, while being male, African American, or Hispanic decreased 

the odds, compared to referent groups and holding other variables constant.  Table 4.17 

provides the odds ratios and significance levels for each of the variables entered in steps 

in the hierarchical logistic regression predicting postsecondary completion. 

Hierarchical logistic regression for postsecondary completion of students at the 

lowest SES level.  To predict postsecondary completion for students at the lowest SES 

level, hierarchical logistic regression was completed, using the same step as above: step 

one adding the control variables, and step two adding the motivation profiles.  Similar to 

the analyses above, the model without any predictor variables had an accuracy rate of 

53.3%, which improved to 58.5% when the control variables were added in the first step.  

This model predicted the outcome to a statistically significant degree X2 = 66.211 (10), p 

< .001, and explained 5% of the variance (Nagelkerke R2 = .049).  The data fit the model, 

as indicated by the Hosmer and Lemeshow test at .871.  The addition of the motivation 
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profiles in step two did not improve the model, X2 = 2.303 (3), p = .512 and none of the 

motivation profiles were able to predict completion of a post-secondary degree.  

Consistent with all other outcomes, math achievement in 10th grade was a significant 

predictor in postsecondary completion, while males were less likely than females to 

achieve outcome when other variables were held constant, but race was not a factor.  See 

table 4.18 for details about the odds ratios for the hierarchical logistic regression 

predicting postsecondary completion for the lowest SES level.  Table 4.19 provides 

frequencies for each of the predictors/control variables for each of the outcomes of the 

hierarchical logistic regression analyses.  Table 4.20 provides the frequencies of high 

school graduation, postsecondary enrollment, and postsecondary completion for each 

motivation class. 

 To summarize, hierarchical regression analyses were completed to examine how 

control variables and motivation profiles differentially added to the model’s ability to 

predict math achievement in 12th grade, high school graduation, postsecondary 

enrollment, and postsecondary completion.  Interactions between SES level and 

motivation level were also examined.  The interactions were not significant, and therefore 

were not further considered or interpreted.  The outcome measures were examined for the 

entire population under investigation, using the lowest SES level as the referent group.  

The outcomes for the lowest SES quartile were then examined in isolation in order to 

ascertain how that group fares in comparison to their more affluent peers.  SES level 

predicted favorable outcomes.  Generally speaking, the higher the SES level the higher 

the math achievement scores and better odds for graduating high school, enrolling in 

postsecondary education, and completing postsecondary education.  This was also true of 
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motivation class membership for the entire population in the ELS:2002 data: The high 

and moderate motivation profiles consistently predicted the higher the math achievement 

scores, as well as higher odds of graduating from high school, enrolling in postsecondary 

education, and completing post-secondary education.  However, motivation profiles for 

students in the lowest SES did not consistently predict these outcomes.  The high and 

moderate motivation profiles for students in the lowest SES quartile predicted math 

achievement scores on par with the aggregate of students, indicating that all students, 

regardless of SES level are able to achieve to higher levels with higher levels of 

motivation.  What was not expected was that only the moderate motivation profile was 

able to predict high school graduation and postsecondary enrollment, and motivation 

profile was not predictive of postsecondary completion at all.  It is not clear why the high 

motivation profile did not predict outcomes over the moderate group, but lack of power 

due to small numbers might explain this unexpected finding.  Other covariates also 

predicted educational outcomes, but were not expounded upon as they were of less 

interest in this particular study.   

 This chapter discussed a number of different types of statistical analysis involved 

in this study, including the latent profile which extracted motivation profile on which 

much of these analyses are based.  Taken together, the analyses illustrate a common 

theme.  First, covariate analyses demonstrated that being from the SES level predicted 

membership into motivation profile, with highest SES membership predicting 

membership into the high and moderate motivation profiles.  The equality of means test 

showed how motivation profiles predicted educational outcomes: math achievement in 

12th grade, high school graduation, enrollment in postsecondary education immediately 
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following graduation, and postsecondary completion, with high and moderate motivation 

profiles consistently predicting these outcomes, while low and very low profiles not being 

statistically different from each other in predicting postsecondary enrollment and 

completion.  Correlation analyses between SES level and motivation profiles indicated a 

relationship between these two variables, the strongest relationships being an inverse 

relationship between high SES level and low motivation, and low SES level and high 

motivation.  These findings were mirrored in the chi-square test which also spoke to the 

disproportionate number of students with low and very low motivation profiles from the 

lowest SES level, and inversely, high numbers of students from the high motivation 

profile from the highest SES level.  Additionally, the chi-square test also showed that, 

while there is a clear relationship between SES level and motivation, there is also 

variability in motivation profiles at every SES level.  Finally, the regression analyses 

demonstrated how both high SES level and high and moderate motivate profiles bode 

well for educational outcomes, and moreover, even for those in the lowest income level, a 

high motivation profile predicted as favorable an outcome for math achievement and high 

school graduation as other SES levels. 
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Table 4.1 

Model runs to determine optimally fitting model  
             
N = 10,981 
   Log      VLMR  LMR 
Classes  Likelihood AIC         BIC  p-value  p-value           Entropy 
2 -65502.316 131046.633    131200.017 0.0000  0.0000  0.830 
3 -61568.864 123201.727    123435.456 0.0000  0.0000  0.876 
4 -60252.894 120591.788 120905.860 0.0046  0.0051  0.904 
5 Convergence was not achieved         
Note. Bold indicates optimal fitting model. 
 
Table 4.2 

Class names, means of motivation variables on which classes were determined, and class 
probability values 
             
     Profile/Class Names      
N = 10,981  High   Moderate  Low   Very Low 
   n = 1249  n = 6004 n = 3593 n = 135 
Means   (11.4%)   (54.7%)  (32.7%)  (1.2%)  
BYMATHSE  1.156        0.246  -0.704   -1.817       
BYENGLSE  1.257   0.266  -0.782       -2.11 
BYCONEXP  1.382    0.371       -0.964       -2.446       
BYINSTMO  1.425   0.215       -0.778       -1.791       
BYACTCTL  1.518   0.284       -0.910       -2.243       
Class Probability 0.947   0.945   0.937   0.974  
  
Table 4.3  

Correlation matrix between motivation profile/class and SES level, using Spearman’s Rho 
 
SES level  SES1  SES2  SES3  SES4 
   High      Low  
High    .075**  -.011  -.030**  -.041** 
Moderate   .103**  -.001  -.037**  -.077** 
Low   -.155**    .009    .061**    .102** 
Very Low   -.028**  -.003  - .001   .036** 
**correlation is significant at the .01 level  
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Table 4.4  

Covariates as they predict membership to class using low as referent group 
             
   High                 Moderate        Very Low      

   Log-     p-    Odds  Log- p-  Odds Log-    p-        Odds  
Variable      Odds    Value  Ratio  Odds Value Ratio Odds   Value   Ratio  
Achievement:   
Math Ach (10th)  0.065 0.001 1.067       0.042    0.001 1.043  -0.008  0.664  0.992 
Read Ach (10th)  0.026 0.001 1.026  0.030 0.001 1.030  -0.040   0.054  1.041 
F1SEX: (F)  0.265 0.008 1.303  0.207 0.003 1.231    0.174  0.470  1.190 
Race: (White)  
Native Amer.  0.113 0.841 1.142  0.235 0.490 1.267  -17.131  0.001 3.632^8 
Asian   0.283 0.083 1.327  0.099 0.442 1.105    -0.105  0.804 0.900 
African Amer.  1.369 0.001 3.935  0.790 0.001 2.207    -0.460  0.323 0.631 
Hispanic  0.823 0.001 2.277  0.535 0.001 1.714    -0.237  0.653 0.789 
Hispanic  0.810 0.001 2.248  0.399 0.007 1.491    -0.214  0.619 0.807 
2+ Race -0.259 0.304 0.772  -0.132 0.423 0.877      0.293  0.557 1.340 
Urbanicity: (Suburban) 
Urban   0.287 0.013 1.332  0.195 0.018 1.215    -0.138   0.616 0.871 
Rural   0.071 0.586 1.074  -0.020 0.817 0.981    -0.137   0.668 0.872 
SES (Low)   
SES Q2   0.028 0.848 1.028  0.082 0.339 1.085  -0.202   0.538 0.817 
SES Q3   0.076 0.617 1.079  0.102 0.304 1.107      0.036   0.916    1.037 
SES Q4   0.588 0.001 1.800  0.419 0.001 1.520  -0.011   0.978    1.011  
Bold indicates statistical significance at the .05 level or above  
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Table 4.5  

Descriptive statistics of motivation profile indicating sex, race, geographic location (urbanicity), 
and SES quartile  
             
N = 10,981   High   Moderate  Low  Very Low  
        n = 1249 n = 6004    n = 3593 n = 135  
    (11.4%)  (54.7%)  (32.7%)  (1.2%)   
SEX N = 10,981     
   Male     570 (45.6%)  2753 (45.9%)  1759 (49.0%) 63 (46.3%) 
   Female    679 (54.4%) 3250 (54.1%) 1834 (51.0%) 73 (53.7%)  
RACE N = 10,984* 
   White    792 (63.4%) 4038 (67.3%) 2340 (65.1%) 87 (64.0%)  
   Native American      7 (0.6%) 46 (0.8%) 34 (0.9%) 0 (0.0%)  
   Asian    60 (4.8%) 240 (4.0%) 129 (3.6%) 5 (3.7%)  
   African American    182 (14.6%) 672 (11.2%) 366 (10.2%) 11 (8.1%)  
   Hispanic (no race)      75 (6.0%) 365 (6.1%) 241 (6.7%) 10 (7.4%)  
   Hispanic (race)   96 (7.7%) 401 (6.7%) 284 (7.9%) 12 (8.8%)  
   More than 1 race  38 (3.0%) 242 (4.0%) 200 (5.6%) 11 (8.1%)  
URBANACITY N = 10,981 
   Urban     379 (30.3%) 1662 (27.7%) 888 (24.7%) 31 (22.8%) 
   Suburban                635 (50.8%) 3179 (53.0%) 1924 (53.5%) 77 (56.6%)  
   Rural    235 (18.8%) 1162 (19.4%) 781 (21.7%) 28 (20.6%)  
SES QUARTILE N = 10,977* 
   SES1 (lowest quartile)  225 (18.0%) 1165 (19.4%) 1000 (27.8%) 45 (33.1%) 
   SES2 (2nd lowest)  263 (21.0%) 1419 (23.7%) 993 (27.6%) 34 (25.0%) 
   SES3 (2nd highest)  307 (24.6%) 1591 (26.5%) 948 (26.4%) 37 (27.2%) 
   SES4 (highest quartile) 455 (36.4%) 2950 (26.9%) 652 (18.1%) 20 (14.7%) 
*Number of cases is different from total count because cell counts were rounded 
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Table 4.6  

Chi square test for SES level and motivation profile 
 
      Motivation Profile 
   High  Moderate  Low  Very Low 
SES Level  Exp/Count Exp/Count  Exp/Count Exp/Count 
SES1 (lowest)  264.2 / 206 1286 / 1115  741.8 / 954 26 / 43 
SES2   290.6 / 246 1413.7 / 1329  816 / 947 28.6 / 28 
SES3   320.6 / 304 1560.6 / 1559  900 / 920 31.5 / 30 
SES4 (highest)  375.6 / 495 1828.6 / 2087  1054.8 / 692 36.9 / 22  
X2 (9) = 347.100, p < .001.  Cramer’s V = .103, indicating a small effect size. 
 
Table 4.7  

Equality of means results for math achievement in 12th grade 
         
Omnibus test: c2 = 834.418 (3), p < .001 
Comparison groups  Chi-Square p-value   
Very low vs. low  9.269  <0.001 
Very low vs. moderate  94.950  <0.001 
Very low vs. high  126.474  <0.001 
Low vs. moderate  553.726  <0.001 
High vs. low   409.865  <0.001 
High vs. moderate  26.867  <0.001   
Bold indicates statistical significance at the .05 level or above 
 
Table 4.8  

Equality of means results for high school graduation  
         
Omnibus test: c2 = 190.979 (3), p < .001 
Comparison groups  Chi-Square p-value   
Very low vs. low    16.455  <0.001 
Very low vs. moderate    35.170  <0.001 
Very low vs. high    43.451  <0.001 
Low vs. moderate    82.418  <0.001 
High vs. low   117.617  <0.001 
High vs. moderate    13.902  <0.001   
Bold indicates statistical significance at the .05 level or above 
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Table 4.9  

Equality of means results for post-secondary enrollment  
         
Omnibus test: c2 = 124.504 (3), p < .001 
Comparison groups  Chi-Square p-value   
Very low vs. low    0.014  0.906 
Very low vs. moderate    2.926  0.087 
Very low vs. high    4.871  0.027 
Low vs. moderate  73.023  <0.001 
High vs. low   94.856  <0.001 
High vs. moderate    8.820  <0.001   
Bold indicates statistical significance at the .05 level or above 
  
Table 4.10  

Equality of means for post-secondary education completion for each SES level 
         
Omnibus test: c2 = 59.027 (3), p < .001 
Comparison groups  Chi-Square p-value   
Very low vs. low    0.490  0.484 
Very low vs. moderate    3.465  0.063 
Very low vs. high    7.389  0.007 
Low vs. moderate  26.225  <0.001 
High vs. low   41.748  <0.001 
High vs. moderate    9.528  0.002   
Bold indicates statistical significance at the .05 level or above 
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Table 4.11  

Hierarchical Multiple Regression Predicting math achievement in 12th grade from control 
variables, motivation class, and interaction effects of motivation level and SES levels 
             
     Math Achievement in 12th Grade    
   Model 1  Model 2  Model 3  
Variable  B ß  B ß  B ß  
STEP 1: Control Variables 
   Math Achieve 10th  1.109  .870***  1.094  .858***  1.094  .858***  
   Male     .578  .019***    .633  .021***    .631  .021*** 
   Native American -1.371 -.008  -1.349 -.007  -1.387 -.008 
   Asian    1.246  .025***  1.210  .025***  1.206  .024*** 
   African American   -.624 -.013**      -.845 -.017***   -.825 -.017*** 
   Hispanic (no race)   -.701 -.011    -.869 -.013**      -.841 -.013** 
   Hispanic (race)    .513  .009     .390  .007     .395  .007 
   Mixed     .102  .001     .130  .002     .148  .002 
   Urban         .577  .018***    .509  .016***    .505  .016*** 
   Rural    -.450 -.012**      -.457 -.012**      -.457 -.012** 
   SESQ1 (high)  2.679  .084***  2.522  .079***  2.003  .063*** 
   SESQ2   1.521  .045***  1.453  .043***  1.521  .045*** 
   SESQ3      .850  .024***    .817  .023***    .956  .024** 
 
STEP 2: Motivation Class    
   High Motivation    1.799 .039***   2.457  .053*** 
   Moderate Motivation    1.261 .042***   1.826  .061*** 
   Very Low Motivation    -.653 -.004    .042  .000 
 
STEP 3: Interaction of Motivation and SES level    
   Very Low * High SES          -.035  .000 
   High Mot * Upper Mid      -1.158 -.013* 
   Mod * Upper Mid         -.685 -.016 
   Very Low * Upper Mid        -.739 -.002 
   High * Lower Mid         -.373 -.004 
   Mod * Lower Mid         -.962 -.021** 
   Very Low * Lower Mid      -2.066 -.007 
   High * Low         1.249 -.001 
   Mod * Low          -.597 -.012 
*signifies (p < .05), ** signifies (p < .001), *** signifies (p < .001) 
  



 

 80 

Table 4.12  

Hierarchical multiple regression for lowest SES level predicting math achievement in 12th grade 
from control variables, motivation class, and interaction effects of motivation   
             
     Math Achievement in 12th Grade    
    Model 1  Model 2    
Variable   B ß  B ß    
STEP 1: Control Variables 
   Math Achieve 10th   1.094  .875*** 1.082  .866*** 
   Male      .302  .001    .375  .014*** 
   Native American  1.466  .011  1.472  .011 
   Asian     1.485  .038**  1.439  .037** 
   African American    - .196 -.005  - .428 -.011 
   Hispanic (no race)    .362  .009         .231  .006 
   Hispanic (race)     .666  .016       .549  .013 
   Mixed   - .946 -.014  - .936 -.014 
   Urban         .471  .016    .420  .015 
   Suburban     .231  .008    .248  .009 
    
STEP 2: Motivation Class    
   High Motivation     1.127  .027**   
   Moderate Motivation     1.124  .046***    
   Very Low Motivation       .079  .001    
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Table 4.13  

Hierarchical Logistic Regression Predicting high school graduation from control variables, 
motivation class, and interaction effects of motivation level and SES levels 
             
     High School Graduation    
   Model 1  Model 2  Model 3  
Variable  B Exp(ß)  B Exp(ß)  B Exp(ß)  
STEP 1: Control Variables 
   Math Achieve 10th   .070 1.072***  .065 1.067***  .065 1.067*** 
   Male   -.510   .600*** -.487   .614*** -.491   .612*** 
   Native American -.716   .489**  -.724   .485**  -.729   .483** 
   Asian    -.090   .914  -.124   .884  -.127   .880 
   African American  .008 1.008  -.081   .922  -.081   .922 
   Hispanic (no race) -.340   .712*** -.403   .668*** -.401    .669*** 
   Hispanic (race) -.269   .764**  -.329   .720*** -.331   .718** 
   Mixed  -.438   .645*** -.446   .640*** -.450   .637*** 
   Urban       .031 1.031   .020 1.020    .013 1.013 
   Suburban   .053 1.055   .062 1.064    .061 1.063   
   SESQ1 (high)   .928 2.529***  .882 2.415***   .806 2.239*** 
   SESQ2    .670 1.955***  .656 1.928***   .693 1.999*** 
   SESQ3     .357 1.429***  .345 1.411***   .313 1.367** 
 
STEP 2: Motivation Class    
   High Motivation     .584 1.794***   .351 1.421   
   Moderate Motivation     .294 1.342***   .300 1.350**   
   Very Low Motivation    -.698   .497*** -.584   .557   
 
STEP 3: Interaction of Motivation and SES level    
   High * S1 (high)         .104 1.110  
  
   Mod * S1          .155 1.168 
   Very Low * S1        -.463   .629     
   High * S2          .612 1.844    
   Mod * S2        -1.77   .838   
   Very Low * S2         .433 1.541 
   High * S3          .465 1.591 
   Mod * S3          .034 1.034* 
   Very Low * S3         .034  .602   
*signifies (p < .05), ** signifies (p < .01), *** signifies (p < .001) 
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Table 4.14  

Hierarchical logistic regression for lowest SES level predicting high school graduation from 
control variables and motivation class 
             
     High School Graduation    
    Model 1  Model 2    
Variable   B Exp(ß)  B Exp(ß)    
STEP 1: Control Variables 
   Math Achieve 10th    .060 1.062***  .056 1.058*** 
   Male    -.519   .595*** -.483   .617*** 
   Native American  -.659   .517  -.720   .487 
   Asian      .263 1.301   .235 1.266 
   African American    .083 1.087  -.013   .987  
   Hispanic (no race)      -.185   .831  -.250   .779  
   Hispanic (race)      -.164   .849  -.228   .796 
   Mixed   -.526   .591  -.545   .580 
   Urban       -.182   .834  -.188   .829  
   Rural     .072 1.074   .083 1.087 
    
STEP 2: Motivation Class    
   High Motivation       .377 1.458   
   Moderate Motivation       .320 1.377**   
   Very Low Motivation     - .612   .542     
*signifies (p < .05), ** signifies (p < .01), *** signifies (p < .001) 
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Table 4.15  

Hierarchical logistic regression predicting postsecondary enrollment from control variables, 
motivation class, and interaction effects of motivation level and SES levels 
             
     Postsecondary Enrollment    
   Model 1  Model 2  Model 3  
Variable  B Exp(ß)  B Exp(ß)  B Exp(ß)  
STEP 1: Control Variables 
   Math Achieve 10th   .061 1.063***  .056 1.058***  .056 1.057*** 
   Male   -.351   .704*** -.346   .707*** -.347   .707*** 
   Native American -.174   .840  -.132   .876  -.152   .859 
   Asian     .343 1.410**   .316 1.371*   .309 1.362** 
   African American -.108   .897  -.180     .835  -.175   .840 
   Hispanic (no race) -.167   .845   -.235   .790  -.239    .788* 
   Hispanic (race) -.306   .736*   -.380   .684**   -.386    .680*** 
   Mixed  -.320   .726*  -.306   .736  -.305   .737 
   Urban       .125 1.133   .112 1.119   .112 1.119 
   Suburban   .055 1.057   .057 1.059   .059 1.061 
   SESQ1 (high)   .997 2.711***  .960 2.612***  .884 2.419*** 
   SESQ2    .586 1.796***  .582 1.789***  .439 1.551** 
   SESQ3     .260 1.297**   .251 1.286*   .294 1.341 
 
STEP 2: Motivation Class    
   High Motivation    .595 1.814***  .295 1.343  
   Moderate Motivation    .460 1.583***  .432 1.541  
   Very Low Motivation    -.215 .806   .375 1.455  
 
STEP 3: Interaction of Motivation and SES level    
   High * S1 (high)        .467 1.594  
   Mod * S1         .061 1.062 
   Very Low * S1       -.587   .556  
   High * S2         .806 2.239 
   Mod * S2         .153 1.166 
   Very Low * S2       -.669   .512 
   High * S3         .053 1.055 
   Mod * S3        -.086   .918 
   Very Low * S3       -.011   .364   
*signifies (p < .05), ** signifies (p < .001), *** signifies (p < .001) 
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Table 4.16 

Hierarchical logistic regression for lowest SES level predicting postsecondary enrollment from 
control variables and motivation class 
            
     Postsecondary Enrollment   
    Model 1  Model 2   
Variable   B ß  B ß    
STEP 1: Control Variables  
   Math Achieve 10th    .057 1.059***  .054 1.056*** 
   Male    -.436   .646**  -.422   .656** 
   Native American   .044 1.045   .024 1.025 
   Asian      .856 2.353***  .839 2.314*** 
   African American     .047 1.048   .014 1.014  
   Hispanic (no race)        .295 1.343   .259 1.296 
   Hispanic (race)      -.088   .916  -.134   .875 
   Mixed    .515 1.673  -.543 1.721  
   Urban       -.143   .866  -.151   .860 
   Suburban   -.160   .852  -.175   .839 
    
STEP 2: Motivation Class    
   High Motivation       .276 1.318   
   Moderate Motivation       .434 1.543**   
   Very Low Motivation       .322 1.379    
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Table 4.17 

Hierarchical logistic regression predicting high postsecondary completion from control 
variables, motivation class, and interaction effects of motivation level and SES levels 
             
     Postsecondary Completion     
   Model 1  Model 2  Model 3  
Variable  B Exp(ß)  B Exp(ß)  B Exp(ß)  
STEP 1: Control Variables 
   Math Achieve 10th   .025 1.026***  .024 1.024***  .024 1.024*** 
   Male   -.269   .764*** -.265   .767*** -.264   .768*** 
   Native American -.504   .604  -.504   .604  -.507   .602 
   Asian    -.075   .928  -.079   .924  -.082   .921 
   African American -.476   .621*** -.497   .609***  -.498   .608*** 
   Hispanic (no race) -.429   .651*** -.444   .642***  -.449   .638*** 
   Hispanic (race) -.264   .768**   -.278   .757**    -.281   .755** 
   Mixed  -.263   .768*  -.260   .771*    -.261   .770* 
   Urban       .171 1.186*   .166 1.181*     .164 1.178* 
   Suburban   .112 1.118   .113 1.120     .112 1.119 
   SESQ1 (high)   .474 1.606***  .463 1.590***    .475 1.608*** 
   SESQ2    .199 1.220**   .196 1.216**     .147 1.158 
   SESQ3     .081 1.085   .079 1.082     .125 1.113 
 
STEP 2: Motivation Class    
   High Motivation       .197 1.217*     .262 1.299  
   Moderate Motivation       .115 1.122*     .106 1.112  
   Very Low Motivation     -.170   .844    -.203   .816  
 
STEP 3: Interaction of Motivation and SES level    
   High * S1 (high)         -.206   .814   
   Mod * S1           .016 1.016 
   Very Low * S1          .932 2.540 
   High * S2           .129 1.137 
   Mod * S2           .057 1.059 
   Very Low * S2         -.099  .906 
   High * S3          -.077  .926 
   Mod * S3          -.059  .943 
   Very Low * S3       -1.172  .310   
*signifies (p < .05), ** signifies (p < .001), *** signifies (p < .001) 
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Table 4.18 

Hierarchical logistic regression for lowest SES level predicting postsecondary completion from 
control variables and motivation class 
           
     Postsecondary Completion      
    Model 1  Model 2   
Variable   B ß  B ß   
STEP 1: Control Variables  
   Math Achieve 10th    .025 1.025***  .023 1.023*** 
   Male    -.397   .673*** -.391   .676*** 
   Native American  -.814   .443  -.811   .445 
   Asian      .286 1.331   .290 1.336 
   African American    -.402   .669  -.426   .653 
   Hispanic (no race)       -.228   .796  -.242   .785 
   Hispanic (race)      -.128   .880  -.143   .866 
   Mixed   -.387   .679  -.390   .677 
   Urban       -.130   .878  -.141   .868 
   Rural    -.054   .947  -.053   .948 
    
STEP 2: Motivation Class    
   High Motivation      .269 1.309   
   Moderate Motivation      .115 1.122   
   Very Low Motivation     -.242   .785   
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Table 4.19 

Frequencies of predictors for each dichotomous outcome in logistic regression 
 
Predictor  HS GRAD  PS ENROLL  PS COMPLETE 
Native Amer.       81       37       45 
Asian    1075     821     827 
African Amer.   1168     736     815 
Hisp (no race)     655     356     427 
Hisp (race)     775     455     500 
2+ Race     548     347     370 
White    6675   4793   5089 
High    1251   1010   1029 
Moderate   6090   4509   4706 
Very Low     123       42       60 
Low    3513   1984   2278 
SES1(high)   3296   2829   2821 
SES2     2813   2032   2147 
SES3    2550   1557   1759 
SES4 (low)   2318   1127   1346 
Urban    3489   2497   2654 
Suburban   5497   3799   4057 
Rural    1991   1249   1362 
Male    5213   3319   3498 
Female    5764   4226   4575   
 
 
Table 4.20  

Frequencies for high school graduation, postsecondary enrollment, and postsecondary 
completion for each motivation class  
            
  High         Moderate   Low      Very Low  
  n = 1249       n = 6004     n = 3593 n = 135  

(11.4%)   (54.7%)   (32.7%)  (1.2%)  
HS GRAD 
N = 10,981 n = 1249  n = 6004  n = 3593 n = 135 
   Yes  1,180 (94.5%)  5,475 (91.2%)  2998 (83.4%) 90 (66.2%) 
   No   69 (5.5%)  529 (8.8%)  595 (16.6%) 46 (33.8%) 
PS ENROLL 
N = 7,572 n = 1035  n = 4427  n = 2059 n = 51 
   Yes  940 (90.8)  546 (12.3%)  1596 (77.5%) 38 (74.5%) 
   No  95 (9.2%)  3881 (87.7%)  463 (22.5%) 13 (25.5%) 
PS COMPLETE 
N = 9,354 n = 1165   n = 5327  n = 2783 n = 79 
   Yes  663 (56.9%)  2774 (52.1%)  1275 (45.8%) 33 (41.8%) 
   No  502 (43.1%)  2553 (47.9%)  1508 (54.2%) 46 (58.2%
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CHAPTER 5 

DISCUSSION 
 

This study contributed to the extant literature about motivation in high school 

students by using Expectancy Value Theory and a person oriented approach as the 

framework to explore how the context of socioeconomic status relates to the formation of 

motivation profiles and the roles these profiles may have in predicting education 

trajectories.  Five motivation variables were of interest: self-efficacy in math, self-

efficacy in English, control expectation (expectations for success in academic learning), 

action control (self-rated effort and control), and instrumentation motivation, also 

referred to as utility interest (measure of extrinsic motivation).  These variables, per the 

EVT model, help explain what drives students to achieve in school and choose to 

continue their education through post-secondary pursuits.  Contextual variables such as 

biological, psychological, and environmental factors, are also considered in the EVT 

model as they contribute to the formation of ability beliefs, expectancy beliefs, and 

values that operate on school-related behaviors to produce outcomes (Eccles & Wigfield, 

2000; Wang & Degol, 2013).  The contextual factors in the EVT model are broad and 

could easily be extended to include other ecological factors, such as socioeconomic 

status.
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The sample under investigation was a national sample of 10th grade students 

questioned about their attitudes and experiences in high school to better understand 

educational opportunities and trajectories (Ingles et al., 2014).  These educational 

experiences are developmentally based, unique to each individual, and a compilation of 

complex interactions between the person and the environment.  It was also assumed that 

the population used was comprised of subpopulations, thus in keeping with the 

underlying assumptions of the person-oriented approach (Bergman & Magnusson, 1997). 

 This study sought to address three research questions: 1) What motivation profiles 

are evident within a national sample of 10th grade students? 2) How does SES predict 

motivation class membership?, and 3) Which motivation profiles best predict outcomes 

(math achievement in 12th grade, high school graduation, postsecondary enrollment 

immediately after graduation, postsecondary completion) for student at the lowest SES 

level?  This chapter will discuss the findings that answer these questions and their 

implications as well as the limitations of this study and suggestions for future research. 

5.1 WHAT MOTIVATIONAL PROFILES ARE EVIDENT WITHIN A NATIONAL 

SAMPLE OF 10TH GRADE STUDENTS? 

Results of the latent profile analysis yielded four distinct profiles named high, 

moderate, low, and very low.  Members of the high motivation profile endorsed ratings 

exceeding one standard deviation above the mean on all five motivation measures: math 

self-efficacy, English self-efficacy, instrumentation motivation (utility value), control 

expectation, and action control.  The moderate motivation group had motivation scores 

just above the mean on all measures, but did not exceed one standard deviation, while the 

low motivation profile had scores that approached but did not exceed one standard 
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deviation below the mean.  The fourth, very low motivation class was very small and 

comprised only 1.2% of the population, yet was distinct and reflected extremely low 

levels of motivation that approached and/or exceeded two standard deviations below the 

mean.   

One striking feature about all of the motivation classes was how “flat” they were, 

meaning that respondents endorsed motivation items very similarly so that the means on 

the measures were about the same, regardless of the type of motivation.  These finding 

differed from findings from other studies using person oriented approaches (e.g. cluster 

analysis or latent class/profile analysis) (Hayenga & Corpus, 2010; Pastor et al, 2007; 

Ratell et al., 2007; Tuominen-Soini, Salmela-Aro, & Niemivirta, 2011; Viljaranta et al., 

2009), all of which found greater heterogeneity in the means across motivation profiles as 

well as more variability in the relationships between motivation variables. 

There are a number of possible explanations for this “flatness” phenomenon.  

First, developmentally motivation decreases beginning in middle school, which feasibly 

could extend to high school where student-teacher relationships become even more 

distant and coursework may be perceived as less relevant (Eccles and Roeser, 2009).  The 

motivation measures were taken in the 10th grade year, sometimes referred to as the 

“sophomore slump,” so students could have conceivably endorsed motivation on all 

measures similarly because they were disinterested in the survey.  

Another explanation is the question placement on the student survey that asked 

about motivation and attitudes.  The question that surveyed students on measures of 

motivation was number 89 out of 98.  Furthermore, this item consisted of 22 sub-

questions protracting the length of the questionnaire.  Questionnaire length not only 
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affects levels of cooperation by participants, but questions placed toward the end of a 

survey also tend to have less variability in responses and have shorter responses, if open-

ended (Galesic & Bosnjak, 2009).  Students may have experienced survey fatigue and 

higher levels of apathy about their responses given the length of the survey overall, 

combined with the late placement of this multiple-part question, and thus rated the 

questions similarly on the 4-point scale. 

Lastly, the “flatness” of the profiles might be explained by the number of 

response items on the rating scale for the motivation questions.  With the exception of the 

study by Hayenga and Corpus (2010), who used a five-point scale, all the other studies 

noted above based their motivation measures on seven-point Likert scales.  Having more 

options in the scales might have provided higher calibration and variability in responses.  

Greater number of response options on Likert-type scales are associated with higher 

reliability and factorial validity, which decrease with fewer response options (Lozano, 

Garcia-Cueto, & Muniz, 2008).  The minimum number or response options 

recommended is four, with seven being the maximum (Lozano, Garcia-Cueto, & Muniz, 

2008).  The item-rating scale for the motivation measures on the ELS:2002 student 

questionnaire were 4-point scales, which could have decreased the variability in 

responses.   

5.2 HOW DOES SES PREDICT MOTIVATION CLASS MEMBERSHIP? 

This study was primarily interested in the context of SES level, and although there 

were findings related to other covariates in this study, SES level remained the focus to the 

exclusion of other contexts and findings.  A pattern of findings from the various analyses 

completed in this study converged on the same theme: SES level was related to 



 

 92 

motivation profile assignment.  Students from the highest SES level were more likely to 

be assigned to the high and moderate motivation profiles, per the covariate analyses that 

predicted class membership.  This finding was echoed in the correlations between SES 

level and profile status and the chi-square test of independence.  The chi-square analyses 

reflected an inverse relationship between SES level and motivation profile, with students 

from the highest SES level being less likely to be assigned to the low or very low 

motivation profiles, and vice versa.  Students from the highest SES level were 

disproportionately represented in the high motivation class, and students from the lowest 

SES level were disproportionately represented in the low and very low motivation 

profiles.   

Early research on the topic of motivation and economic status indicated 

motivation was lower in young children from economically disadvantaged households 

(Battle & Rotter, 1963; Friedman & Friedman, 1973; Ziegler & Kanzer, 1962), findings 

that were again supported decades later (Battistich et al., 1995; Brown, 2009; Malakoff, 

Underhill, & Ziegler, 1998).  Bandura and colleagues (2001) demonstrated that SES 

alone did not directly affect motivation, but rather familial influences such as parents’ 

beliefs and educational and occupational goals for their children indirectly influenced 

their children’s motivations. 

5.3 WHICH MOTIVATION PROFILES BEST PREDICT OUTCOMES FOR 

STUDENTS AT THE LOWEST SES LEVEL?   

Motivation profiles, when entered as a block, were statistically significant in 

virtually all the hierarchical regression models and the omnibus tests for all the equality 

of means tests also demonstrated that motivation profiles were significant in predicting 
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educational outcomes: higher math achievement in 12th grade, and improved odds for high 

school graduation, postsecondary enrollment immediately following high school, and 

postsecondary completion.  It is equally important to note that, when entered into the 

models, the interactions between SES level and motivation profiles were not statistically 

significant.  The combinations of SES level and motivation profiles did not have any 

effect on math achievement in 12th  grade, high school graduation, enrollment in 

postsecondary education, or postsecondary completion.  Rather, SES and motivation 

profiles acted separately, each having their own effect on outcomes.  Although the 

contribution of motivation profiles was small (p < .01) in predicting outcomes, it was 

statistically significant.  In post-hoc analysis, when entered in the first block of the 

hierarchical regression models, motivation profiles accounted for much more of the 

variance at R2 = .08, indicating an even higher effect.  Entering variables of interest into 

hierarchical regression models before covariates has been used in other studies to better 

demonstrate the contribution of those variables, given how variance explained can be 

impacted depending on order in which variables are entered (Petrocelli, 2003). 

Of no surprise, the high motivation profile predicted the best outcomes: the 

largest increases in math achievement, and higher odds for high school graduation, 

postsecondary enrollment, and postsecondary completion.  The moderate motivation 

group also predicted these favorable outcomes, but to a lesser degree.  These findings 

were consistent when the data were aggregated and examined across all four SES levels.  

When hierarchical regression analyses were performed on the lowest SES level 

independently, however, a somewhat different picture emerged.   
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When examined in isolation, for students in the lowest SES quartile, membership 

in the high and moderate motivation profiles predicted favorable outcomes, but not 

consistently, and perhaps not to the same magnitude as when the SES levels were 

combined.  Students in the lowest SES level assigned to the high and moderate 

motivation profiles were also predicted to have higher math achievement scores 

compared to their peers in the low motivation profile, however, the magnitude of scores 

was about half compared to when the data were aggregated.  This difference, however, 

was not tested to determine if was statistically significant.  There were differences for 

high school graduation, postsecondary enrollment, and postsecondary completion as well.  

Membership in the high and moderate motivation groups predicted better odds of high 

school graduation for the data examining all SES levels, but when the lowest SES level 

was isolated, only the moderate motivation profile predicted high school graduation and 

postsecondary enrollment.  Postsecondary completion was not able to be predicted from 

motivation for the lowest SES level.  These results may be less indicative of low SES 

levels, but rather, related to power issues as a result of smaller motivation profiles sizes 

given the break-down by SES strata.  But lack of power may not be the only issue that 

confounded outcomes.   

The outcomes themselves may confound the findings as they may not be as 

dependent on motivation as one might intuitively think.  For example, high school 

graduation may not depend on or accurately reflect motivation.  Under Every Student 

Succeeds Act (2015), one measure of school accountability is graduation rate.  Schools 

encourage or even push as many students to graduate as possible, perhaps in spite of 

students’ motivation to do so.  This seemed reflected in the graduation rates in this data 
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set: even among students in the low motivation group, 83% graduated from high school, 

which was higher for higher motivation profiles.  Clearly, students graduate from high 

school at rates that supersede what one would expect given motivation profiles.  Indeed, 

66% of students in the very low motivation profile graduated! 

On the other side of the coin, lack of postsecondary enrollment and completion 

may also not reflect motivation accurately.  Approximately 43% of students from the 

high motivation profile and 48% if students from the moderate motivation profile did not 

complete postsecondary degrees.  This suggests that other factors, such as economics, 

may have been far more influential on this outcome than motivation levels and may 

instead speak to the income-achievement gap, as disproportionately more students from 

higher income levels complete postsecondary degrees (NCES, 2015).  The literature is 

replete with studies that support the existence of the income-achievement gap (Duncan & 

Murnane, 2011), yet there have been no known studies that examine if there is an 

income-motivation gap.  This study starts to fill the void in the literature about the 

relationship between the context of SES level and motivation on the outcomes of high 

school students. 

5.4 IMPLICATIONS 

 This study made unique contributions to understanding the constellation of 

motivation profiles, the contexts that relate to these profiles, and how motivation profiles 

predict educational outcomes: math achievement in 12th grade, high school graduation, 

postsecondary enrollment, and postsecondary completion.  Results from the hierarchical 

regression and other analyses conducted in this study align with extant research that 

higher motivation profiles portend more favorable educational outcomes (Hsieh, 
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Sullivan, & Guerra, 2007; Komarraju, Karau, & Schmeck, 2009).  However, these 

outcomes may not be as predictable for highly motivated students who come from 

economic disadvantage.  Although this may be due to limited power, continued 

investigation into this finding seems warranted.  The findings from this study have 

implication for educators, administrators, and policy-makers alike. 

 Motivation profiles.  Based on the findings from this study using ELS:2002 data, 

students were found to have similar motivation levels for different types of motivation, 

which were either high, moderate, low, and very infrequently, very low.  The motivation 

variables were highly correlated.  Teachers and educators should understand that these 

motivation profiles are predictive of educational outcomes, with high motivation being 

optimal, and moderate as minimal for predicting positive educational trajectories (Gillet, 

Morin, & Reeve, 2017).   

In addition to SES level, interesting information was garnered from this study 

about covariates and how they predicted membership into motivation profiles.  Males 

were more likely to be assigned to the high motivation profiles than females, as were 

African American and Hispanic students, while geographic location had little relationship 

with motivation profile.  These insights may be helpful to educators to know, but 

ultimately, it does not change the directive – teachers at all levels must build ability 

beliefs, expectancy beliefs, action control and educational value motivations in students. 

Increasing and sustaining healthy levels of motivation is important, especially 

because motivation tends to decline beginning in middle school and into high school 

(Eccles & Roeser, 2009), and motivation profiles stabilize during early adolescence 

(Marcoulides, Gottfried, Gottfried, & Oliver, 2008).  Moreover, motivation does not 
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work in isolation, so a change in one type of motivation can negatively or positively 

affect the motivation profile as a whole, especially when the motivations are highly 

related (Otis, Grouzet, & Pelletier, 2005).  It is therefore incumbent on teachers and 

administrators to utilize classroom structures and pedagogy that promote adaptive 

motivation in students (Ames, 1992; Meece, Anderman, & Anderman, 2006). 

 Motivation and SES relationship.  The relationship between motivation and 

SES has implications at every level.  Policy-makers need to explore equitable funding 

within school systems.  Schools from less affluent communities are not afforded the same 

resources because funding is often localized and based primarily on property taxes, 

biasing communities with high proportions of home-ownership.  Policies-makers at local 

and state levels need to implement educational programs, such as Pre-K, in high-poverty 

areas to foster ability beliefs, expectancy beliefs, and values that fuel current and future 

learning.  Additional resources also need to be funneled into high poverty schools to 

engage students, augment learning, and help channel energies towards productive choices 

following high school.   

 Administrators (i.e. principals) should implement policies within their school to 

foster adaptive and healthy motivation centered around mastery (Anderman, 2011) as 

well as positive school cultures (Cohen, McCabe, Michelli, & Pickeral, 2009).  

Additional measures, such as promoting parent-teacher relationships and community 

supports would be especially important in high poverty schools in order to engage 

students and their families (Epstein & Sanders, 2006).  Efforts to increase academic 

socialization should be made beginning in the primary school years with the goal of 

increasing value orientations (Hill, 2001).  Professional development may also be 
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necessary to help teachers address the overwhelming demands on them that require skills 

far beyond teaching skills.   

 Classroom teachers serving low income schools must be especially vigilant to 

implement classroom structures and pedagogical methods that promote motivation in 

students (Ames, 1992; Meece, Anderman, & Anderman, 2006).  Knowledge of the 

relationship between motivation and SES alone may only serve to add to the pressure that 

these teachers already experience related to achievement, so additional instruction and 

support may be required.  Increasing self-efficacy for learning accompanied self-

regulation skills that increase effort and persistence should supersede pressure to succeed 

on standardized measures of achievement, which may ultimately squelch motivation in 

the students where motivation may be most fragile.    

5.5 LIMITATIONS AND FUTURE RESEARCH 

 As with all studies, this study was not without its limitations.  Most of the 

limitations of this study were related to the use of secondary data.  The use of ELS:2002 

data provided many benefits, such as variables of interest, a large sample size, and good 

power.  The limitations were in the pre-determined questions and measurements.  The 

motivation constructs in the ELS:2002 data were well suited for this study, and the 

coefficients of reliability were strong (.84 – .94), yet the questions may not have been 

sufficiently different to truly differentiate between motivation types, at least in students’ 

minds which might have contributed to their responding to all the questions similarly. 

Additionally, the 4-point rating scale may not have been sufficient to capture the 

variability in motivation, and thus may have contributed to the “flat” profiles, as 

previously discussed.   
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Another limitation of the secondary data was there were no follow-up measures 

on motivation at 12th grade.  Measures taken in 12th grade might have better reflected 

students’ motivation profiles measured in 10th grade after maturation occurred and 

important life-choices became more imminent.  Although previous research has shown 

that motivation profiles stabilize around middle school (Gillet, Morin, & Reeve, 2017; 

Marcoulides et al., 2008), little work has explored whether motivation remains stable in 

late adolescence.  A follow-up of motivation measures would have allowed addition 

studies using transitional analysis, which would have provided interesting insight. 

Lastly, the most challenging aspect of the secondary data was related to 

accounting for the complex sample design and applying weights.  Even one of the more 

sophisticated statistical software packages (i.e. Mplus) was unable to accommodate all 

the weights required for the analyses.  Specifically, neither the panel weight nor the PSU 

could be applied to the distal outcome measures in Mplus.  In fact, the weight prohibited 

the use of the 3-step method, which is the preferred method for examining distal 

outcomes.  There was also a small problem when transitioning to from Mplus to SPSS 

and this transition between software packages was not completely seamless.  The sample 

sizes aligned for analyses in SPSS only when the weight was off, which created slight 

shifts in the distribution of cases in the motivation class sizes.  Overall, the benefits 

outweighed the limitations and the ELS:2002 data provide ample opportunity for future 

research.   

5.6 FUTURE RESEARCH 

A different type of analysis, such as factor mixture modeling, might allow the 

researcher to gain a deeper understanding of the relationship between SES level and 
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motivation profiles, and should be considered for the future. Factor mixture modeling is a 

hybrid of latent class analysis and factor analysis, which allows assumptions to be relaxed 

and allows correlations between indicators on measures that are also related to a latent 

variable thus allowing conditional dependence in the analysis (Morin, Morizot, Boudrais, 

& Madore, 2011).  

Exploratory analyses on this same data set (ELS:2002) were performed 

completing LPA at each SES level.  Preliminary analyses found the same types of 

profiles, high, moderate, low, and very low (for the lowest SES level only), but the small 

class sizes in some of the profiles may have been too small to predict outcomes.  

Additional exploration, such as regression analysis parsing out motivation variables, may 

yield a deeper understanding as to how motivations operate differently on each SES level.   

 The goal of this line of research is to better understand the relationship between 

ecological contexts on motivation in students.  This will allow researchers to target 

interventions to improve, not just motivation, but ultimately improve outcomes for all 

students.  More importantly, the goal is to increase equity to those students who do not 

have the same level of educational and social capital others have based solely on the 

economic status of their families.    

5.7 CONCLUSION  

 This study made important contributions to the literature in a number of ways.  

First, this study added to the extant research using Expectancy Value Theory (Wigfield & 

Eccles, 2000) and supported that high school students with high self-efficacy in math and 

English, expectations for success, who exert effort and persistence, and hold utility value, 

not only graduate high school at higher rates, but also go on to enroll in postsecondary 
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education immediately following high school and earn postsecondary degrees at high 

rates than students with lower motivation profiles.  Furthermore, by exploring the 

relationship of SES and motivation profiles, this study extended the concept that contexts 

may be related to the formation of motivations and values, also included in the EVT 

model, but studied to a lesser degree (Wang & Degol, 2013). 

 The methodological approach, latent profile analysis, also contributed to the 

literature in ways that a variable approach would not allow.  First, it demonstrated how 

tightly different motivation constructs cluster together to form profiles that predicted 

benchmark educational outcomes.  Additionally, it allowed for exploration as to how 

covariates relate to these profiles, and provided important insights about the relationship 

between SES and motivation.  LPA also demonstrated that while there is a pattern of 

relationships, there is also heterogeneity of motivation profiles across SES levels.  SES 

levels do not predetermine motivation profiles and underscores the importance of 

considering a multitude of factors that contribute to it. 

 In light of the income-achievement gap that is plaguing our nation, this study 

opens the door to a line of research to explore the possibility of an income-motivation 

gap, which has implications for the classroom and educational policies.  This study also 

sets a path for future research toward improving educational outcomes in our less 

advantaged students.
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