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Figure 5.7: Nondimensional trends in head thickness, Hf and plume thickness with
R̂e0. The front position is measured from the upstream wall of the main-channel.
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Figure 5.8: Nondimensional trends in maximum near-bed horizontal velocity, Uh,
with R̂e0.
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Figure 5.9: Nondimensional trends in ∆X with R̂e0.
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Figure 5.10: Nondimensional trends in nose height with R̂e0.
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Figure 5.11: Nondimensional trends in F with R̂e0.

80



Chapter 6

Summary & Conclusions

Unsteady density current confluences are studied in this work, where two identical

density currents initiated by lock-exchange combine in a horizontal, asymmetrical

junction before continuing downstream as a combined current. The study focuses on

simulations which are validated experimentally. Findings are assessed in terms of the

initial conditions including the initial density difference, depth of the channel, and

junction angle.

The unsteady phenomena was studied through numerical simulation using the

continuum mechanics toolbox, OpenFOAM. The solver, twoLiquidMixingFoam, solves

the unsteady, incompressible Navier-Stokes equations. Turbulence modeling was han-

dled with a large-eddy-simulation approach and Smagorinsk-Lilly subgrid scale clo-

sure. In addition to the Navier-Stokes equations, the solver evaluated the species

continuity equation to conserve mass of a dissolved species or heat in a separate con-

servation equation. The species concentration determines the bulk density of each

cell in the computational grid which drives density current flows.

The governing equations were solved using the PIMPLE algorithm which merges

the PISO and SIMPLE algorithms. PIMPLE takes advantage of the implicit predictor-

explicit corrector steps of PISO while incorporating relaxation factors from the SIM-

PLE algorithm for smooth solution convergence. To solve discretized equations, the

GAMG and Gauss-Seidel smooth solvers were used. Time discretization was handled

using the first-order accurate Euler scheme.

To validate the numerical model, limited physical experiments were conducted.
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The 45◦ junction flume was equipped with a gate along each upstream reach of the

channel network with salt water (density = 1035 kg/m3) in each lock to a prescribed

depth and ambient water downstream of the lock gates. Three experiments were run:

two experiments involved a full-depth lock-exchange test with equal initial conditions

to verify repeatability of the experiments, and the third test was a partial-depth

release with the dense fluid equal to half the depth of ambient fluid. Numerical

simulation of the conditions of the physical experiments matchethe results well, thus

it was concluded that the numerical model is capable of capturing the flow phenomena

in terms of the bulk properties. To ensure the proposed solution grid accurately

captured the flow phenomena, the numerical simulations were retested with a refined

grid. When plotted together, little difference was observed in the bulk property results

between the base grid and refined grid.

Once the numerical model and proposed grid were validated, the numerical model

was applied to the case of 45◦ junction angles with variable initial density and channel

depth. Nine cases of full-depth density currents and three cases of partial-depth

density currents were tested. It was observed that when the two currents reach the

junction zone, the front velocity and thickness of the current increase in all cases.

Once the combined current continues downstream, an elevated plume of dense fluid

remains in the junction zone for the full-depth cases, whereas the thickest part of the

current is always close to the front position for the partial-depth cases.

When the bulk property results are nondimensionalized, no dependence on initial

density was observed. The channel depth does play a role in the bulk properties;

specifically, the front position is further downstream with increasing channel depth.

Additionally, the thickest part of the current remained further behind the nose of the

current with higher channel depth.

The initial conditions are combined in terms of an initial Reynolds number. It was

found that increased initial Reynolds number resulted in higher nose height in the
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junction. The post-confluence constant front velocity approaches a constant value of

0.56 at large initial Reynolds numbers, but decreases at lower values of Re.

The study of density current confluences is extended to cases of variable junction

angle. Along with varying initial density and channel depth, five junction angles are

tested for a total of 45 simulations. The trends in the bulk properties at each junction

angle are similar to those observed for the 45◦ case with little dependence on initial

density. The most apparent effect of increasing the junction angle is a higher peak

front velocity during reacceleration, and larger front thickness in the junction zone.

A parameter is proposed to combine the initial density, channel depth, and junc-

tion angle which gives a representation of the inertia entering the junction in the

main-channel downstream direction. It is defined as R̂e0 = Re0[1 + cos(θ)]. The

peak current and plume thicknesses both are indirectly correlated to R̂e0, and trend

lines are fit to the results. The peak horizontal velocity associated with the influx of

energy from the side channel and the peak horizontal velocity associated with con-

finement of the combined mass of dense fluid to the width of the downstream channel

both decrease with increasing R̂e0. At high values of R̂e0, the peak nose height and

constant downstream nose height both are constant, and downstream front velocity

also becomes constant. At lower values of R̂e0, the nose heights increase, and the

constant downstream froude number decreases.

Combining the observations from this work results in several general properties of

the role of the confluence in the pre- and post-confluence density currents which can

be summarized as follows.

• In all cases, the junction causes reacceleration of the front as well as an increase

in current thickness; both the peak front velocity and peak current thickness

increase at higher junction angles.

• The peak front velocity always occurs when the front is near the downstream
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junction point.

• For the range of densities tested, the effect of the junction is independent of the

initial density difference when bulk properties are nondimensionalized by the

initial conditions.

• The only major distinction between the full-depth and partial-depth cases is

that the latter does not leave an elevated plume in the junction zone, thus the

front is the thickest part of the current at all times.

• The peak current thickness and peak near-bed horizontal velocity both de-

crease at larger values of R̂e0. This should be expected since R̂e0 increases with

decreasing junction angle where the competition in the junction zone is less or-

thogonal, thus horizontal velocity components from the main- and side-channels

are superimposed.

• The effect of the initial conditions on the confluence behavior is only local at

high Reynolds numbers which is demonstrated by the peak Froude number

being dependent on channel depth and junction angle in the junction, but the

constant post-confluence downstream front velocity remains unchanged with

Reynolds number. Furthermore, the near-bed horizontal velocity converges to

a single value in the downstream reach regardless of initial conditions.

The work presented here gives a deeper understanding of the role of the junction

and initial conditions on the confluence of unsteady density current fronts. With the

conclusions and understanding presented in terms the general behavior of the currents

and bulk properties, further studies can now be conducted to assess specific problems

related to the flow phenomena. These can include detailed studies of mixing in the

junction, confluences of steady density current flows, cases with sloping and erodible

channel beds, and the effects of the confluence occurring in different flow phases
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other than the constant velocity phase. With this and further studies, the findings

can be applied to specific observations of density currents in natural systems such as

salt-wedge flows into coastal channel networks and turbidity current confluences in

submarine channel systems.
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