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ABSTRACT

 In this thesis, a meshless semi-analytical computational method is presented to 

compute the ultrasonic wave field in the generalized anisotropic material while 

understanding the physics of wave propagation in detail. To understand the wave-damage 

interaction in an anisotropic material, it is neither feasible nor cost-effective to perform 

multiple experiments in the laboratory. Hence, recently the computational nondestructive 

evaluation (CNDE) received much attention to performing the NDE experiments in a 

virtual environment. In this thesis, a fundamental framework is constructed to perform the 

CNDE experiment of a thick composite specimen in a Pulse-Echo (PE) mode. To achieve 

the target, the following processes were proposed. The solution of the elastodynamic 

Green’s function at a spatial point in an anisotropic media was first obtained by solving the 

fundamental elastodynamic equation using Radon transform and spectral resolution 

theorem. Next, the basic concepts of wave propagation behavior in a generalized material 

and the visualization of the anisotropic bulk wave modes were accomplished by solving 

the Christoffel’s Equation in 3D. Moreover, the displacement and stress Green’s functions 

in a generalized anisotropic material were calculated in the frequency domain. Frequency 

domain Green’s functions were achieved by superposing the effect of propagating eigen 

wave modes that were obtained from the Christoffel’s solution and integrated over the all 

possible directions of wave propagation by discretizing a sphere. A MATLAB code was 

developed to compute the displacement and stress Green's functions numerically. Further, 

the numerically calculated Green’s functions were implemented and integrated with the 
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meshless Distributed Point Source Method (DPSM). DPSM technique was used to virtually 

simulate a PE NDE experiments of a half-space anisotropic material, inspected by a 

circular transducer immersed in the fluid. The ultrasonic wave fields were calculated using 

DPSM after applying the boundary conditions and solving the unknown source strengths. 

A method named sequential mapping of poly-crepitus Green’s function was introduced and 

executed along with discretization angle optimization for the time-efficient computation of 

the wave fields. The full displacements and stress wave fields in transversely isotropic, 

fully orthotropic and monoclinic materials are presented in this thesis on different planes 

of the material.  
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CHAPTER 1 

INTRODUCTION

With the advancement of human civilization, there has been a rapid evolution in 

the field of civil, mechanical and aerospace industry with the development of infrastructure 

such as highways, vehicles, aircrafts, etc. However, with the passage of time, the failure of 

these developed infrastructures is imminent. This inevitable failure of these structures can 

lead to economic harm, ecological imbalance, and loss of human lives. Hence, the scientists 

and engineers have researched to find different techniques such that it enables them to 

understand the state of the materials in these structures and risk factor involved with them. 

Nondestructive Evaluation (NDE) (Handbook 2009 April 7) is one such popular technique 

used for diagnosis of the structures, i.e., structural health monitoring (SHM) (Giurgiutiu 

2014). NDE/SHM provides the understanding of the physics of the material interaction, 

characterization of the state of the material and the estimation of remaining useful life of 

the structure. Although many NDE techniques have been developed and used by 

researchers, the ultrasonic NDE (Sachse, Castagnede et al. 1990) is the most popular due 

to its capability to see the materials from the inside.  A detailed study of ultrasonic wave 

propagation in different structures is essential for the optimal understanding of the 

ultrasonic nondestructive evaluation. The fundamental notion of ultrasonic nondestructive 

testing is to investigate the received ultrasonic signals to acquire information about the 

structures. The ultrasonic waves are introduced into the material with the help of ultrasonic 

or piezoelectric transducer as a probing energy, and the diagnosis of the material is carried 
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out by sensing the propagated energy from a distant location. For this purpose, there is an 

absolute need to understand the wave propagation behavior in these structures.  

Understanding the wave propagation behavior in different types of materials, 

isotropic and anisotropic, has been a topic of interest and research since past few decades. 

Although the fluid and isotropic media is more or less saturated field, the critical wave 

propagation features in anisotropic media are still not fully understood.  Due to the 

widespread application of engineered anisotropic materials, most popularly as composites, 

in many different areas of science and technology, significantly mechanical and aerospace 

industries, understanding the wave phenomena in these materials is of great importance. 

Wave propagation behavior is studied by investigating wave interaction with the material 

which manifests in the forms of reflection and transmission wave, giving rise to geometric 

dispersion. These interactions depend on many factors such as the geometric arrangements, 

mechanical properties, number and nature of the interfacial conditions and the loading 

conditions (Nayfeh 1995). The mechanical properties vary from the simple case of 

isotropic materials to the most general anisotropic ones, namely the "triclinic materials".  

Using the ultrasonic NDE experiments, researchers have been able to quantify and 

understand the rudimentary damage states in the materials. However, the complex damaged 

states such as hidden delamination, kissing bonds, trapped cracks present in these materials 

are not visualized and understood appropriately. With the traditional NDE techniques, 

detecting such complex damages and understanding the ultrasonic wave signals due to the 

effect of those damages can be an overwhelming task. Waves in anisotropic media with 

complicated geometries are difficult to understand using the traditional ray tracing methods 

(Sachse, Castagnede et al. 1990, Pradhan, Venu Kumar et al. 1999, Moser, Weber et al. 



3 

2005). Moreover, it is neither feasible nor cost-effective to perform all the possible 

experiments with various damage scenarios (Mal, Yin et al. 1991, Mouchtachi, El 

Guerjouma et al. 2004, Moser, Weber et al. 2005, Li, Liu et al. 2013, Marguères and 

Meraghni 2013) and geometries. Hence, it is not possible to understand the ultrasonic wave 

interactions in the structure with all possible damages and material degradation with 

experiments. Consequently, such task can only be possible by correctly understanding the 

physics of waves propagation in anisotropic media and numerically simulating the behavior 

of the application of an accurate and efficient technique. The most effective way to do so 

is by developing a reliable technology capable of virtually simulating any NDE 

experiments in a systematic and computationally swift manner, i.e., computational NDE or 

virtual NDE.  

The field of computational NDE or virtual NDE has been developing rapidly due 

to the necessity of simulating the elastodynamic wave phenomena in various materials in 

the most cost-effective and least computationally taxing fashion. Wave simulation is a 

theoretical field of research that began with the development of computer technology and 

numerical algorithms for solving differential and integral equations of several variables 

(Carcione 2007). In the field of computational wave modeling, these algorithms are 

important tools providing comprehension of wave propagation for a variety of applications. 

With the help of computational NDE, the researchers can compute the wave field for 

different materials with numerous wave-damage interaction scenarios and study the wave 

interaction behavior for those various situations. The knowledge gained in doing so can be 

schooled to identify and understand the quantitative fluctuation signals, which in turn will 

help us in the reliable interpretation of the real-life damage scenarios with the ability to 
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quantify the material properties. Moreover, some of these damages scenarios are, but not 

limited to, extent of internal damage and degree of material degradation (Sachse, 

Castagnede et al. 1990, Sahay, Kline et al. 1992, Hood and Mignogna 1995, Every and 

Kim 1996, Pradhan, Venu Kumar et al. 1999, Sharma 2002, Mouchtachi, El Guerjouma et 

al. 2004). To accomplish our ultimate goal of precise and prompt numerical wavefield 

modeling in any anisotropic structures with any complex scenarios, novel methodology 

and computational resources has to be optimally nominated. Hence, this thesis acts as a 

gateway to computational anisotropic wavefield modeling.
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CHAPTER 2 

HISTORICAL BLACKGROUND OF WAVE FIELD MODELING

Studies of the elastic waves propagation in anisotropic media have been of great 

interest to researchers in the field of NDE. This interest is further intensified by the recent 

expansion in the use of anisotropic materials in the form of composite materials, super 

alloys, and crystal structures in the wide variety of applications. However, the inevitability 

of the necessity of NDE started during the World War II to realize the upsurge in demand 

for quality assurance of the mechanical systems, machine components and the defense 

equipment. With the end of the war, the focus of NDE industry shifted from the defense 

sector to the human infrastructures due to the colossal growth of industrial sectors. Also, 

the quality assurance of the aerospace systems such as airplanes, satellites, and spaceships 

became the new agenda for the government agencies.  

In the post-war era, NDE was taken to further new heights with the invention and 

formulation of the novel configurations of the ultrasonic transducers for various 

applications. Hence, for the appropriate understanding of the ultrasonic wave field 

generated in front of the transducers and precise diagnosis of the state of the materials, it 

became essential to efficiently design the transducers as well as accurately interpret those 

ultrasonic signals. Even though the wave propagation behavior in the wires, rods, plates 

and various simpler structural components had been studied and understood, so was not 

the case for the ultrasonic transducers. Hence, the need has arisen for the understanding of 

the wave interaction phenomena in finite dimension transducers as it was different from 
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the application of plane wave assumption and the plane wave interaction for the structural 

components.  

Moreover, this rising necessity resulted in the mathematical modeling of the 

ultrasonic wave using Rayleigh-Sommerfeld integral technique. The technique is simply 

known as the ray tracing method. The ray tracing method simplified the ultrasonic wave 

problem by representing the waves as rays. The mathematical analysis involves studying 

the incident waves and providing the reliable and intuitive understanding of the wave 

energy through the structure. This technique relies on the high-frequency assumption of 

the ray theory. With the evolution of the technique, it was later known as dynamic ray 

tracing technique which required the solution of the Eikonal equation (Biondi 1992) and 

was used in ultrasonic wave field modeling generated by the ultrasonic transducer. 

Dynamic ray tracing is an improvement over the previously proposed models with a 

paraxial approximation for the plane wave incidents. Since it is known that the incident 

wavefronts are neither plane nor spherical in the real experiments using transducers, we 

had an understanding which was inaccurate, therefore, incomplete. Also, the technique 

involved significant information loss due to failure to extract exact amplitude information 

and track all the wave modes in the complex media. 

Similarly, about the development of the mathematical model of the anisotropic 

wave, the differences between wave propagation characteristics of isotropic and 

anisotropic media was first identified with the widely used bulk wave techniques. Later, 

Green’s function solution, used in the formulation of integral representations and boundary 

integral equations for scattering problems and understanding of the elastodynamic response 

of an unbounded homogeneous linearly elastic solid, was used in modeling the wave in 
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anisotropic media(Achenbach 1975). Various techniques have been used in the derivation 

of Green’s function. It has been derived using Cagniard de Hoop method by Kraut (Kraut 

1963) for transversely isotropic half-space and by Burridge (Burridge 1971) for an 

anisotropic halfspace. Simplified method to Cagniard de Hoop has been used by Willis 

(Willis 1973, Willis 1991) and Payton (Payton 2012) for several anisotropic halfspace 

problems. The Green’s function for unbounded, anisotropic elastic medium has been 

developed by Yeatts (Yeatts 1984). Moreover, the method has been further developed by 

Wang and Achenbach (Wang and Achenbach 1992, Wang and Achenbach 1993) to 

develop 2-D and 3-D Green’s functions for anisotropic solids. 

However, there remained the problem of inaccuracy in the modeling of both 

ultrasonic as well as anisotropic waves. To enhance the accuracy of modeling, various 

computational techniques have been developed and utilized by researchers, along with the 

advancement of technologies in past decades. Some of the popular computational 

simulation techniques used in the virtual NDE experiments are Finite Element Method 

(FEM) (Software 2009), Boundary Element Method (BEM) (Shaw 1979, X. Zhao. 2003), 

Indirect Boundary Integral Equation (IBIE) (M 1991, M 1993, Pointer T 1998, J 2007), 

Multi-Gaussian Beam Model (M-GBM) (J. J. Wen 1988, B. P. Newberry 1989, Spies 

1999), Charge Simulation Technique (CST) (C. Rajamohan 1999), Multiple Multi-Pole 

method (MMP) (Ballisti 1983, Hafner 1985, Imhof 2004), Spectral Element Method 

(SEM) (J Moll 2011), Elastodynamic Finite Integration Technique (EFIT) (Cara A.C. 

Leckey 2014), Distributed Point Source Method (DPSM) (Placko and Kundu 2001, Placko, 

Kundu et al. 2002, Banerjee 2006, Banerjee and Kundu 2006, Banerjee 2007, Banerjee 

2007, Banerjee and Kundu 2007, Placko and Kundu 2007, Banerjee 2008, Banerjee 2008, 
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Banerjee 2009), Gaussian Distributed Point Source Method (G-DPSM) (Rahani 2011) etc. 

Among all the techniques mentioned, FEM is the most dominant conventional method due 

to the availability of many commercial packages to perform these simulations. 

Unfortunately, spurious reflection at the element boundaries makes the FEM simulations 

incorrect. Moreover, it has also been found to be less accurate at higher frequencies. All 

competitive methods have their pros and cons. Hence, taking both the benefits and 

shortcomings into account, DPSM technique has been discussed and utilized in this thesis 

work to simulate the virtual NDE experiments. Nevertheless, before we proceed any further 

into the details of the DPSM, as pre-requisite we first briefly discuss the mechanics of 

anisotropic material and wave phenomena in an anisotropic material.
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CHAPTER 3 

CONCEPTS OF ANISOTROPY

Anisotropic materials have existed in the surrounding environment in nature. Some 

of the well-known natural anisotropic materials that we see in our daily lives are wood and 

stones which have been utilized to elevate our standard of living. Hence, due to its 

usefulness, anisotropic materials are also being engineered most famously as composites. 

In recent years, manufacturing and usage of composite materials in engineering field has 

skyrocketed as these materials can be engineered to a required specification. Anisotropic 

materials such as composites are a combination of two or more materials on a macroscopic 

scale to form an entirely new useful material. The well-designed composite material has 

improved properties such as strength stiffness, fatigue life, weight, acoustical insulation 

and so on.  

3.1 Stress-Strain relations for Elastic Materials 

The constitutive equation or generalized Hooke’s law relating stresses and strains in 

anisotropic materials can be formulated in contracted notation as follows, 

𝜎𝑖 = 𝐶𝑖𝑗𝜀𝑗  

Where 𝜎𝑖 are the stress components in a (x, y, z) or (1, 2, 3) coordinate system, 𝐶𝑖𝑗 is the 

stiffness or material property matrix, 𝜀𝑗 are the strain components, and i, j  = 1,2,…,6. 
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3.1.1 Stress-Strain relations for Anisotropic Materials  

There are materials with the different complexity of anisotropy. Based on the complexity, 

these materials are categorized as triclinic being fully anisotropic, monoclinic, orthotropic, 

transversely isotropic and finally, an isotropic material with no anisotropy. 

3.1.1.1 Triclinic Materials 

The stiffness matrix, 𝐶𝑖𝑗 has 36 constants. However due to symmetry, there are only 21 

independent constants. Therefore, the most general expression of constitutive equation for 

an elastic material is as follows. 

1 11 12 13 14 15 16 1

2 12 22 23 24 25 26 2

3 13 23 33 34 35 36 3

4 14 24 34 44 45 46 4

5 15 25 35 45 55 56 5

6 16 26 36 46 56 66 6

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

 

 

 

 

 

 

     
     
     
     

     
     
     
     
          

 

The above relation characterizes the most general anisotropic material also known as 

triclinic material. The triclinic material has no planes of material symmetry, and the three 

material axes are oblique to one another. 

3.1.1.2 Monoclinic Materials 

Let’s assume; there is one plane of material property symmetry, i.e., 1-2 plane or (z = 0) 

plane, then the constitutive equation reduces to  
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1 11 12 13 16 1

2 12 22 23 26 2

3 13 23 33 36 3

4 44 45 4

5 46 55 5

6 16 26 36 66 6

0 0

0 0

0 0

0 0 0 0

0 0 0 0

0 0

C C C C

C C C C

C C C C

C C

C C

C C C C

 

 

 

 

 

 

     
     
     
     

     
     
     
     
          

 

The above relation characterizes the anisotropic material known as monoclinic material. 

The monoclinic material has one plane of material symmetry and has 13 independent 

elastic constants. 

3.1.1.3 Orthotropic Materials 

Similarly, if there are two planes of material property symmetry, then there will exist a 

third mutually orthogonal place with symmetry. Therefore, for the material with three 

mutually orthogonal planes of symmetry, the constitutive equation reduces to  

1 11 12 13 1

2 12 22 23 2

3 13 23 33 3

4 44 4

5 55 5

6 66 6

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

C C C

C C C

C C C

C

C

C

 

 

 

 

 

 

     
     
     
     

     
     
     
     
          

 

The above relation characterizes the anisotropic material known as an orthotropic material. 

The orthotropic material has three planes of material symmetry and has nine independent 

elastic constants. Also, there is no dependency between normal stress and shear strains as 

well as between shear stress and normal strains. 
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3.1.1.4 Transversely Isotropic Materials 

Now, on top of the three mutually orthogonal planes of symmetry, if there exists a plane 

of isotropy, i.e., the material properties are same in all directions in that plane (let’s assume 

1-2 plane of isotropy), the constitutive equation reduces to  

1 111 12 13

2 212 11 13

3 313 13 33

4 444

5 544

6 611 12

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 ( ) / 2

C C C

C C C

C C C

C

C

C C

 

 

 

 

 

 

    
    
    
    

    
    
    
    

        

 

The above relation characterizes the anisotropic material known as transversely isotropic 

material. The transversely isotropic material has five independent elastic constants.  

3.1.1.5 Isotropic Materials 

Finally, if there exist infinite planes of material property symmetry, i.e., the material 

property is same in all possible directions, then the constitutive equation reduces to  

1 111 12 12

2 212 11 12

3 312 12 11

4 411 12

5 511 12

6 611 12

0 0 0

0 0 0

0 0 0

0 0 0 ( ) / 2 0 0

0 0 0 0 ( ) / 2 0

0 0 0 0 0 ( ) / 2

C C C

C C C

C C C

C C

C C

C C

 

 

 

 

 

 

    
    
    
    

    
    

    
    

        

 

The above relation characterizes the isotropic material. The isotropic material has 

only two independent elastic constants.
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CHAPTER 4 

WAVES IN ANISOTROPIC MEDIA

Wave propagation in anisotropic materials is significantly more complicated than 

in isotropic materials. The anisotropy in a material is caused by various factors such as fine 

layering, crystal/grain alignment or aligned fractures (Sinclair 2009). The material 

properties of an isotropic material are independent of the wave propagation direction. 

However, in an anisotropic material, material properties vary with the direction. Waves in 

anisotropic media (Auld 1990) does not propagate with spherical wavefront as it is known 

to exhibit in isotropic materials. Discussing the waves in a fully anisotropic (triclinic) 

material, let’s assume an ultrasonic transducer attached to an anisotropic media emitting 

the ultrasonic field in the direction of k vector (Fig. 4.1a).  

 

 

Fig. 4.1. An artistic view showing the schematics of the wave field inside a bulk anisotropic 

media a) showing the wavefront b) showing the slowness surface  

(a) (b) 
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If the wave is incident on an isotropic material, the wave energy propagates along 

the direction of the k vector. However, if the wave is incident on an anisotropic material, 

the wave does not propagate along k vector. Instead, the wave energy propagates along an 

entirely different direction creating a new wavefront. The wave propagation in anisotropic 

media is substantially different to the isotropic case in that elastic waves propagate with a 

velocity that is dependent on direction. Furthermore, unlike the isotropic case, three 

fundamental wave modes (Auld 1990, Rokhlin 2011) that propagate can be distinguished 

into one longitudinal and two shear waves. However, these modes are not necessarily pure 

modes as the particle vibration, or polarization (Lane 2014). It may be neither parallel nor 

perpendicular to the propagation direction. Hence, anisotropic modes are referred to as 

quasi-longitudinal and quasi-shear modes. The quasi-shear modes are further distinguished 

by their polarization: horizontal or vertical. The wave velocity for each of these modes is 

direction dependent. The wavefronts of these quasi-modes do not lie normal to the energy 

propagating direction and hence the phase and wave energy velocities do not coincide. It 

can be seen in fig 4.1a that the velocity of the wave energy, CE is at an angle φ with respect 

to the phase velocity, CP which is in the direction of the wave vector k. Also, the author 

would like to emphasize that the plane of energy propagation may or may not be on the 

same plane as the incident wave, i.e., the wave energy propagation direction represented 

by N vector may not be on the x1-x2 plane. It can be along any direction in the 3D 

coordinate system based on the material properties and the direction of the k vector. Also, 

the Fig. 4.1b depicts the slowness surface which is obtained by plotting the inverse of the 

phase velocity along the direction of the wave propagation, i.e., k vector. The direction of 
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the wave energy propagation is represented by the normal to that slowness surface, i.e., n. 

Hence the following understanding has been corroborated: in contrast to the phenomena in 

an isotropic material, the wavefront surfaces and the slowness surfaces are not concentric 

in the anisotropic material. 

 

Now to further our understanding of different surfaces, i.e., how they are related 

and represented in the anisotropic material as well as for the visualization of those surfaces, 

we now focus on Fig. 4.2a. In an anisotropic material, the phase velocity and slowness are 

different and therefore a clear distinction between the two needs to be made. Velocity 

surface is the surface that is obtained by plotting the values of the modal wave velocities 

along the direction of the wave vector k. In contrast, the slowness surface is a different 

surface, in comparison to the velocity surface, that is obtained by plotting the inverse of 

the wave velocity magnitudes along the same direction of wave vector k. It is interesting 

to note that the wave energy propagation direction is represented by the normal to that 

slowness surface. Successively, the wavefronts can be obtained by plotting the equal 

energy lines in the media. The wavefront is propagated along the direction of the energy 

propagation as shown in the Fig. 4.1a, which is also the direction of the normal to the 

slowness surface as shown in Fig. 4.2a. The mathematical derivation essential to the proper 

understanding of the phenomena is discussed and explained later in this chapter. 
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Fig. 4.2. a) Schematics of the wave surfaces and their relation b) relation of the phase 

velocity with the fundamental wave modes in anisotropic media.  

 

 

 

Now with the help of Fig 4.2b, we try to visually understand the wave modes in the 

anisotropic media that have been discussed before. When the wave energy is introduced 

inside the anisotropic media, the wave breaks down into three fundamental modes(Auld 

1990, Rokhlin 2011). They are quasi Longitudinal (qL), quasi Shear 1 or Quasi Slow Shear 

(qSS), and quasi Shear 2 or quasi Fast Shear (qFS). If the wave vector (k) represents the 

intended direction of the wave energy propagation in anisotropic media, the wave energy 

propagates in a different direction due to the modal wave velocities and the propagation 

direction being different for the above mentioned three wave modes. Also, the resultant 

phase velocity of the wave packet along the k direction is a summation of projection of the 

three wave modes (qL, qSS, and qFS) along the direction of the k vector which can be 

envisioned from Fig 4.2b.  
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With the theoretical knowledge gained until now, regarding the wave propagation 

behavior in anisotropic media, we can see that modeling the anisotropic wave field using 

the conventional ray tracing methods would be a formidable task. Hence, it can no longer 

be denied that a simplified and compact mathematical model, incorporating all the behavior 

mentioned above into the mathematical formulation, is needed for modeling the detailed 

and exact wave field. 

4.1 Visualizing the Modal Wave Velocities 

             The fundamental elastodynamic equation (eq. 1) in anisotropic material (Auld 

1990), which is also known as the equilibrium equation in solid medium, can be written as 

𝜎𝑖𝑗,𝑗 + 𝑓𝑖 = 𝜌𝑢̈𝑖    (1) 

Where, 𝜎𝑖𝑗 is the stress tensor, 𝑢𝑖 is the displacement vector at a point in the solid, 

and 𝑓𝑖 is the body force per unit volume. From the equation, we can see that the derivative 

of the stresses is related to the body force and the force due to the dynamic motions, 

following the Newton’s second law. The stress is related to the strain in a linear elastic 

media (Rokhlin 2011) through their respective constitutive matrix equation (eq. 2). The 

material media is assumed linear since the wave has very short exposure time compared to 

the loading history of the material during the NDE inspection.  

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑚𝑙𝜀𝑚𝑙         (2) 

Using the linear strain-displacement relation, the elastodynamic equation takes the 

following form regarding displacement (Banerjee and Kundu 2007) as shown in Eq. 3. 
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𝐶𝑖𝑗𝑚𝑙
𝜕2𝑢𝑚

𝜕𝑥𝑗𝜕𝑥𝑙
+ 𝑓𝑖 = 𝜌𝑢̈𝑖   (3) 

Now, to comprehend the specifics and facts about the phenomena of anisotropic 

waves, we need to solve this complicated equation. Generally in an NDE experiment, a 

transducer which has a central actuation frequency is used. It implies that the transducer 

generates the maximum amplitude of the displacement at that frequency. However, there 

will be other proximal frequencies generating displacements with gradually lower 

amplitudes as well. Hence it is challenging, although not impossible, to be able to produce 

a monochromatic wave actuation with the help of ultrasonic transducer. In agreement to 

the assumption of linearity of the material, we know that the superposition theorem in the 

Fourier domain and the reciprocity theorem is valid. Thus, we can proceed to solve the 

above elastodynamic equation (eq. 3) using a monochromatic harmonic displacement 

function so that the solution is also valid for nearby frequencies generated by the 

transducer. Hence, assuming a monochromatic displacement function, we have 

𝑢𝑚 = 𝐴𝑔𝑚𝑒𝑖(𝐤.𝐱−𝜔𝑡)   (4) 

Where, A, is the scalar amplitude of the wave, 𝑔𝑚is the polarization direction, ω is 

the monochromatic wave frequency, k is the wave vector, x is the position vector. In 

addition, k.x represents the dot product between k and x which signifies the phase 

component of the wave. Subsequent to the assumption of displacement function as above, 

substituting eq. 4 in to the eq. 3 and simplifying the mathematical expressions (Banerjee 

and Kundu 2007), we get the following equation eq. 5. 

[𝐶𝑖𝑗𝑚𝑙𝑘𝑗𝑘𝑙 − 𝜌𝛿𝑖𝑚𝜔2]𝐴𝑔𝑚 = −𝑓𝑖  (5) 
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To solve the above equation as an eigenproblem and acquire the eigenvalues and 

the eigenvectors of a system, we need to consider a homogeneous equation, i.e., the system 

under the absence of the forcing functions. To do so, we, therefore, proceed to set the body 

force to zero, i.e., there is no external force acting on the system at the moment. Thus, we 

beget the nontrivial solution of the equation which can be written as  

[𝐶𝑖𝑗𝑚𝑙𝑛𝑗𝑛𝑙 − 𝜌𝛿𝑖𝑚𝑐2]𝑔𝑚 = 0    (6) 

Where, 𝑐2 = 𝜔2 𝑘2⁄  is the phase velocity of the wave along the direction of k 

vector, 𝑛𝑗   are the direction cosine of the wave propagation direction i.e., along the k vector, 

and 𝐶𝑖𝑗𝑚𝑙𝑛𝑗𝑛𝑙 is the Christoffel acoustic tensor. By solving the above equation, we are able 

to obtain the phase velocities and the phase vectors of the three fundamental wave modes 

that are propagating in the material with material constants 𝐶𝑖𝑗𝑚𝑙. 

 

The eq. 6 is well-known as Christoffel’s equation (Christoffel 1877, Auld 1990) 

which, in our case, defines a set of three homogeneous linear equations for the polarization 

direction. Each of these equations constitutes an eigenvalue problem with its eigenvalues 

identified as 𝑐2 along with the accompanying eigen vectors, 𝑔𝑚. Consequently, the solution 

of this equation will provide three eigen modes with wave velocities as 𝐶𝑞𝐿, 𝐶𝑞𝐹𝑆 and 𝐶𝑞𝑆𝑆, 

respectively, along the directions found from the eigen vectors. We are able to enhance our 

visual understanding with the help of Fig. 4.3. The solution is performed for a specific 

direction of wave propagation along the k vector with direction normal n. In a 3D 

coordinate system, the wave velocities are at the direction of their eigen vectors 𝛗𝐋, 𝛗𝐅𝐒, 

𝛗𝐒𝐒, respectively. We are now able to visually and mathematically comprehend the physics 
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of the phase velocities. We can clearly see that the summation of projection of the phase 

velocities of the three wave modes on the k vector gives the resultant phase velocity of the 

wave along k. However, the wave energy propagation direction is in the direction of the 

resultant group velocity. In view of the mathematical derivation and understanding that 

followed in this section, we now are equipped with the tool to compute and determine the 

modal wave velocities due to wave actuation in any direction just by changing the n vector 

pointing to any direction in the 3D coordinate system.    

 

 

Fig. 4.3. Pictorial representation of the Christoffel’s solution where the modal phase wave 

velocities are the eigenvalues and the direction of those wave modes are the eigenvectors.  

 

4.2 Solution of Elastodynamic Green’s Function 

Now we have a clear understanding of the phase information associated with the 

wave modes in bulk anisotropic media. Hence, we want to move forward to our primary 

goal of simulating the anisotropic wave field with the help of virtual NDE experiment using 

DPSM. However, before we advance to do so, we need to compute the elastodynamic 
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Green’s function in the anisotropic media (Yeatts 1984, Tverdokhlebov 1988, Kim, Every 

et al. 1994, Wang 1994, M., Schubert et al. 2000, Every, Pluta et al. 2004). In the upcoming 

portion of this section, we will see that the vital solution that we acquired by solving the 

Christoffel’s equation is very crucial in the calculation of the Green’s function.  

 

Now to develop the mathematical formulation of the Green’s function, we revisit 

the eq. 5. In contrast to transforming the equation into homogeneous in case of Christoffel’s 

equation, we introduce an impulse force with the help of Dirac Delta function in the media 

due to a point source, which by definition contributes to the development of the solution 

of the elastodynamic Green’s function. Based on this development, we modify the equation 

Eq. 5 to get the Cauchy-Navier Equation as shown below, 

[𝐶𝑖𝑗𝑚𝑙
𝜕2

𝜕𝑥𝑗𝜕𝑥𝑙
− 𝜌𝛿𝑖𝑚

𝜕2

𝜕𝑡2] 𝐺𝑚𝑝(𝑥𝑛, 𝑡) = −𝛿𝑖𝑝𝛿(𝑥𝒏)𝛿(𝑡)𝐹𝑝 (7) 

where, 𝐺𝑚𝑝(𝑥𝑛, 𝑡) is the time domain Green’s function at 𝑥𝑛 due to a point source 

actuation along the m-th direction with force amplitude 𝐹𝑝.    

 

Afterwards, we acquire the governing elastodynamic equation to find the Green’s 

function at a point 𝑥𝑛 in the frequency-wavenumber domain by transforming the eq. 7 to 

the Fourier domain (ℱ) for both spatial and temporal variables as follows,  

[𝐶𝑖𝑗𝑚𝑙𝑘𝑗𝑘𝑙 − 𝜌𝜔2𝛿𝑖𝑚]𝐺̃𝑚𝑝(𝑘𝑛, 𝜔) = −𝛿𝑖𝑝
1

(2𝜋)3
𝑓𝑝(𝜔) (8) 
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It is important to note that we used ℱ[𝛿(𝑥𝑛)] = 1 (2𝜋)3⁄ . Also, if we consider an 

operator that exist in the ℒ2 Hilbert space, the above equation can be written as  

𝐋𝑖𝑚𝐺̃𝑚𝑝(𝑘𝑛, 𝜔) = 𝛿𝑖𝑝
1

(2𝜋)3
𝑓𝑝(𝜔)  (9) 

where,  

𝐺̃𝑚𝑝(𝑘𝑛, 𝜔) =
1

(2𝜋)4
∭ ∫ 𝐺𝑚𝑝(𝑥𝑛, 𝑡)𝑒𝑖(𝑘𝑙𝑥𝑙−𝜔𝑡)𝑑𝑥3𝑑𝑡

∞

−∞

∞

−∞
  (10) 

𝐋𝑖𝑚(𝑘𝑛, 𝜔) = [𝐶𝑖𝑗𝑚𝑙𝑘𝑗𝑘𝑙 − 𝜌𝜔2𝛿𝑖𝑗] (11) 

 

Now, we can further transform the dynamic equation in the frequency-wavenumber 

domain into the equation in the frequency-space domain by the application of inverse 

Fourier transform with respect to  𝑘𝑛. Thus, attained frequency domain Green’s function 

in terms of the operator can be written as  

𝑔𝑚𝑝(𝑥𝑛, 𝜔) =
1

(2𝜋)3
∭ [𝐋𝑚𝑝(𝑘𝑛, 𝜔)−1]

∞

−∞
𝑒−𝑖𝑘𝑙𝑥𝑙𝑑𝑘3 (12) 

 

As we can see that the above equation is pretty thought-provoking since it indicates 

that the Green’s function at any point 𝑥𝑛 in space will be the integral of all the possible 

wave numbers i.e. the total Green’s function at any point 𝑥𝑛 is the superposition of the 

influences of the waves propagating in all the possible directions. Hence it is essential to 

compute the wave field in all possible due to a point source. 
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4.3 Wave Modes in all possible wave directions in 3D 

From the previous section, we were able to gain some understanding regarding the 

wave behavior in anisotropic media and the calculation of Green’s function which is 

indispensable in the advancement of wave field modeling.We now know the superposition 

of all the waves propagating in all the possible directions is required for the computation 

of Green’s function. We first want to explore the solution obtained by solving Eq. 6 from 

the section 3.1 and associate it with the term 𝐋𝑖𝑚(𝑘𝑛, 𝜔) in the Eq. 12 so that we can 

physically realize and visualize the wave propagation in all possible direction for all three 

wave modes. By implementing the code in MATLAB to solve the Christoffel’s equation, 

we obtain the eigenvalues and eigenvectors i.e. phase, velocities and phase vectors for each 

direction of propagation of the waves. The Christoffel’s equation is solved for materials 

with various anisotropy such as isotropic, transversely isotropic, orthotropic, and 

monoclinic materials. We assume an anisotropic material with the material constants in the 

format shown below, 

 

[
 
 
 
 
 
𝐶11 𝐶12

𝐶21 𝐶22

𝐶13 𝐶14

𝐶23 𝐶24

𝐶15 𝐶16

𝐶25 𝐶26

𝐶31 𝐶32

𝐶41 𝐶42

𝐶33 𝐶34

𝐶43 𝐶44

𝐶35 𝐶36

𝐶45 𝐶46

𝐶51 𝐶52

𝐶61 𝐶62

𝐶53 𝐶54

𝐶63 𝐶64

𝐶55 𝐶56

𝐶65 𝐶66]
 
 
 
 
 

 

 

By solving for the wave slowness which is the inverse of the wave velocities in all 

possible direction of the wave propagation by discretizing a sphere, we can compare and 

differentiate the dissimilarity in the wave behavior in materials of different orders of 
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anisotropy. To do so, we select the materials with following material properties which are 

as follows.  

a) Orthotropic, Transversely Isotropic with material properties 𝐶11 = 143.8 𝐺𝑃𝑎, 

𝐶12 = 𝐶13 = 6.2 𝐺𝑃𝑎, 𝐶22 = 13.3 𝐺𝑃𝑎, 𝐶23 = 6.5 𝐺𝑃𝑎, 𝐶33 = 13.3 𝐺𝑃𝑎, 𝐶44 =

3.4 𝐺𝑃𝑎, 𝐶55 = 𝐶66 = 5.7 𝐺𝑃𝑎 and density,  = 1560 
3/Kg m  

 

b) Fully Orthotropic material with material properties 𝐶11 = 70 𝐺𝑃𝑎, 𝐶12 =

23.9 𝐺𝑃𝑎, 𝐶13 = 6.2 𝐺𝑃𝑎, 𝐶22 = 33 𝐺𝑃𝑎, 𝐶23 = 6.8 𝐺𝑃𝑎, 𝐶33 = 14.7 𝐺𝑃𝑎, 𝐶44 =

4.2 𝐺𝑃𝑎, 𝐶55 = 4.7 𝐺𝑃𝑎, 𝐶66 = 21.9 𝐺𝑃𝑎 and density, = 1500  
3/Kg m  

 

c) Monoclinic material with material properties, material properties 𝐶11 =

102.6 𝐺𝑃𝑎, 𝐶12 = 24.1 𝐺𝑃𝑎, 𝐶13 = 6.3 𝐺𝑃𝑎,  𝐶16 = 40 𝐺𝑃𝑎, 𝐶22 = 18.7 𝐺𝑃𝑎, 𝐶23 =

6.4 𝐺𝑃𝑎,  𝐶26 = 10 𝐺𝑃𝑎, 𝐶33 = 13.3 𝐺𝑃𝑎,  𝐶36 = −0.1 𝐺𝑃𝑎, 𝐶44 = 3.8 𝐺𝑃𝑎,  𝐶45 =

0.9 𝐺𝑃𝑎, 𝐶55 = 5.3 𝐺𝑃𝑎, 𝐶66 = 23.6 𝐺𝑃𝑎 and density, = 1560 
3/Kg m   

 

The four different types of slowness plots are presented for each mode, i.e., quasi-

longitudinal (QL), quasi-shear 1 (QS1) and quasi-shear 2(QS2) and compared to the wave 

velocity slowness of the longitudinal and two shear wave modes in aluminum, which is an 

isotropic material. The plots depict the slowness behavior in 3D surface plot and contour 

plots in three different planes, i.e., X-Y contour plot, Y-Z contour plot and X-Z contour 

plot. The 3D plot is color-coded to for the better visualization of the magnitude of the phase 

slowness with red being the highest and blue being the lowest magnitude. The QL contour 

plot is color-coded red, QS1 contour plot is color-coded green, QS1 contour plot is color-

coded blue.   
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Fig. 4.4. For Aluminum, 3D slowness plot:  a) quasi-longitudinal mode b) quasi-slow shear 

(qS1) mode and c) quasi-fast shear (qS2) mode. X-Y Contour plot: d) quasi-longitudinal 

mode e) quasi-slow shear (qS1) mode and f) quasi-fast shear (qS2) mode. Y-Z Contour 

plot: g) quasi-longitudinal mode h) quasi-slow shear (qS1) mode and i) quasi-fast shear 

(qS2) mode. X-Z Contour plot: j) quasi-longitudinal mode k) quasi-slow shear (qS1) mode 

and l) quasi-fast shear (qS2) mode. 

(a) (b) (c) 

(c) (d) (e) 

(f) (g) (h) 

(i) (j) (k) 
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Fig. 4.5. For Transversely Isotropic Material, 3D slowness plot:  a) quasi-longitudinal 

mode b) quasi-slow shear (qS1) mode and c) quasi-fast shear (qS2) mode. X-Y Contour 

plot: d) quasi-longitudinal mode e) quasi-slow shear (qS1) mode and f) quasi-fast shear 

(qS2) mode. Y-Z Contour plot: g) quasi-longitudinal mode h) quasi-slow shear (qS1) mode 

and i) quasi-fast shear (qS2) mode. X-Z Contour plot: j) quasi-longitudinal mode k) quasi-

slow shear (qS1) mode and l) quasi-fast shear (qS2) mode. 

(a) (b) (c) 

(c) (d) (e) 

(f) (g) (h) 

(i) (j) (k) 
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Fig. 4.6. For Orthotropic Material, 3D slowness plot:  a) quasi-longitudinal mode b) quasi-

slow shear (qS1) mode and c) quasi-fast shear (qS2) mode. X-Y Contour plot: d) quasi-

longitudinal mode e) quasi-slow shear (qS1) mode and f) quasi-fast shear (qS2) mode. Y-

Z Contour plot: g) quasi-longitudinal mode h) quasi-slow shear (qS1) mode and i) quasi-

fast shear (qS2) mode. X-Z Contour plot: j) quasi-longitudinal mode k) quasi-slow shear 

(qS1) mode and l) quasi-fast shear (qS2) mode 

(a) (b) (c) 

(c) 
(d) (e) 

(f) (g) (h) 

(i) 
(j) (k) 
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Fig. 4.7. For Monotropic Material, 3D slowness plot:  a) quasi-longitudinal mode b) quasi-

slow shear (qS1) mode and c) quasi-fast shear (qS2) mode. X-Y Contour plot: d) quasi-

longitudinal mode e) quasi-slow shear (qS1) mode and f) quasi-fast shear (qS2) mode. Y-

Z Contour plot: g) quasi-longitudinal mode h) quasi-slow shear (qS1) mode and i) quasi-

fast shear (qS2) mode. X-Z Contour plot: j) quasi-longitudinal mode k) quasi-slow shear 

(qS1) mode and l) quasi-fast shear (qS2) mode 

From the comparison of the phase slowness surfaces between the isotropic and 

anisotropic material, we see that while the slowness surfaces are spherical in an isotropic 

(a) (b) (c) 

(c) 
(d) (e) 

(f) 
(g) (h) 

(i) 
(j) (k) 
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material, they are non-spherical in an anisotropic material. Also, it is important to note that 

the slowness profile is circular in y-z plane of the transversely isotropic material (Fig. 4.6 

a, f, g, h) which is expected. The same circular profile is realized in a monoclinic material 

with a skewed axis of symmetry. In agreement with our theoretical understanding, we can 

verify the symmetry of the phase slowness about X-axis in the transversely isotropic 

material due to YZ being the plane of isotropy and no symmetry of the phase slowness 

along any axes in the orthotropic material. 

Furthermore, we will see that this information regarding 3D wave slowness for all 

wave modes are critical for the calculation of 3D Green’s function in the materials in the 

upcoming section.  

 

4.4 Exact Mathematical Expression for the Green’s Function 

In section 3.2, by the application of Fourier transformation, we were able to gain 

some physical and mathematical meaning of the Green’s function. However, by looking at 

the eq. 12, we can see that the equation is still not in the form which can be effortlessly 

implemented into the computer code.  Hence, our next step is to solve the Green’s function 

equation and develop a more convenient form such that we can compute the Green’s 

function in frequency domain. To achieve that, in this section, we are going to utilize few 

techniques and theorem and find the mathematical expression of the Green’s function 

which can be used in the numerical computation and modeling of the wave field. Also, the 

meaning of essential terms for the calculation of the Green’s function will be explained 

along with the derivation. About developing this new form of Green’s function equation, 
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we now treat the equation Eq. 7 with a different process, i.e., instead of applying the Fourier 

transform to space and time both we just transform the equation to the frequency domain.  

[𝐶𝑖𝑗𝑚𝑙
𝜕2

𝜕𝑥𝑗𝜕𝑥𝑙
+ 𝜌𝜔2𝛿𝑖𝑚] 𝑔𝑚𝑝(𝑥𝑛, 𝜔) = −𝛿𝑖𝑝𝛿(𝑥𝒏)𝑓𝑝(𝜔)  (14) 

By the observation of the frequency domain Green’s function in Eq. 14, we see that 

the equation is a second order partial differential equation and it is common knowledge 

that solving such higher order partial differential equation is an intricate task. Therefore, 

we need to find such a method that can transform these complex partial differential 

equations into a set of simple ordinary differential equations so that it can be solved without 

difficulty. 

One such method that we propose to use in this thesis work is called Radon’s transform 

method (Deans 2007). Radon’s transform is an elegant technique that helps in 

transformation of any 3D images into 2D planes and any 2D image into 1D line. Hence, 

this technique is heavily applied in the field of computed tomography (CT) and 3D image 

reconstruction from a cluster of 2D projection images taken on different planes. The 

transformation of 3D function into multiple functions projected on 2D planes is made 

possible by Radon transform by the parameterization of the orientation of the planes. 

Contrary to that, the transformation of images on the 2D planes to a 3D image is made 

possible by inverse Radon transform. Hence in our case, a forward radon transform is 

utilized in transferring a 3D function to a 2D function, parameterized by the definition of 

the 2D planes. 

Now let’s proceed to the underlying mathematical understanding of Radon transform. 

Assuming 𝑥1, 𝑥2 and 𝑥3 are the coordinates of a point (𝐱) in a Euclidean space 
3 , Radon 
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transform (Banerjee and Kundu 2007) of any function 𝑔(𝐱), which is defined and 

absolutely integrable over all space, can be written as         

𝑔̃(𝛍⃗⃗̂ , ℎ) = 𝑅{𝑔(𝐱⃗ )} = ∫𝑔(𝐱)𝛿(ℎ − 𝛍⃗⃗̂ . 𝐱⃗ )𝑑Ω (15) 

Where 𝑑Ω is the volume element and equation (15) is a surface integral over the 

plane ℎ = 𝜇𝑘𝑥𝑘. The physical meaning of the integral could be briefly described in 2D and 

3D using the Fig. 4.8. In case of 2D, the infinite numbers of lines can be defined as the 

function of distance ℎ from the origin with their local orientation of the lines designated by 

their unit normal 𝛍⃗⃗̂  such that each line can be represented by a point in the Radon space. 

Similarly, in case of 3D, the infinite numbers of planes can be defined as the function of 

distance ℎ from the origin with their local orientation of the planes designated by their unit 

normal 𝛍⃗⃗̂  such that 3D image can be represented by a 2D plane in the Radon space. The 

Dirac 𝛿 function in eq. 15 signifies that the values exist only on the plane 𝛍⃗⃗̂ , ℎ and 

everywhere else the integral ceases to exist, i.e., it is zero.  

 

Fig. 4.8. A schematic diagram to visualize the Radon transform in 2D and 3D. The figure 

shows that the integral is performed over a circular domain with different radius in 2D and 

over a sphere with different radius in 3D.   
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Radon transform has many elegant features. However, here we mention few of 

them that was adopted in the process of transforming the partial differential equation (Eq. 

14) into the coupled ordinary differential equations. Those features are as follows. 

Radon transform of derivatives of a function (Wang 1994) can be written as  

𝑅 {(
𝜕2𝑔

𝜕𝑥𝑖𝜕𝑥𝑗
)} = 𝜇𝑖𝜇𝑗

𝜕𝑔̃(ℎ,𝛍)

𝜕ℎ2   (16) 

Moreover, the inverse Radon transform of the above equation (Wang 1994) can be 

written as 

𝑔(𝐱,ω) = −
1

8𝜋2 ∭
𝜕2𝑔̃(ℎ,𝛍)

𝜕ℎ2 |
ℎ=𝛍.𝐱

𝑠𝑝ℎ𝑒𝑟𝑒

|𝛍|=1
𝑑Ω(𝛍)  (17) 

We use these identities in our forthcoming calculations. After applying the Radon 

transform on the eq. 14 we get coupled ordinary differential equations. 

 Γ𝑖𝑚
𝑑2𝑔̃𝑚𝑝

𝑑ℎ2 + 𝜔2𝛿𝑖𝑚𝑔̃𝑚𝑝 = −𝛿𝑖𝑝
𝑓𝑝(𝜔)

𝜌
𝛿(ℎ)        (18) 

Γ𝑖𝑚 =
𝐶𝑖𝑗𝑚𝑙𝜇𝑗𝜇𝑙

𝜌
 ;  𝐵𝑚𝑗𝐵𝑗𝑝 = 𝜔2Γ𝑖𝑚

−1   (19) 

By looking the set of ordinary differential equations (eq. 18), we can realize that 

the Eigenvalue solution is required in solving those equations. However, it is quite 

fortunate that we have already addressed the needed Eigensolution or the phase information 

using the equation in Eq. 6. Besides, the wave propagation direction pointed by the 

direction cosine 𝑛𝑖 in eq. 6 are equivalent to the direction cosine of the plane used for 

integration in Radon transform in eq. 16. The solution (Yeatts 1984) of the eq. 18 can be 

written as, 



 

33 

𝑔̃𝑚𝑝 =
𝑖

𝜔2𝜌
𝑓𝑝𝐵𝑗𝑝𝑒𝑖ℎ𝐵𝑚𝑗   ;  ℎ > 0   (20) 

Further applying the spectral theorem, we can write an analytic function L which 

is a function of the Γ𝑖𝑚 matrix in the following form   

𝐋(Γ𝑖𝑚) = ∑ 𝐋(𝛾𝑧)(𝑃𝑖𝑚)(𝑧)𝑛
𝑧=1   (21) 

Where z is the index is eigenvalues for the summation and n is the total number of 

eigenvalues in the system. Since in our case we have three eigenvalues, hence 𝑛 = 3. 𝛾𝑧 is 

the z-th eigen value and (𝑃𝑖𝑚)(𝑧) is the projection matrix of the z-th eigen mode. The 

correspondence between the eigen modes with the wave velocities 𝐶𝑞𝐿, 𝐶𝑞𝐹𝑆, 𝐶𝑞𝑆𝑆,  their 

eigen vectors 𝛗𝐋, 𝛗𝐅𝐒, 𝛗𝐒𝐒, respectively and the new parameter defined as 𝛾𝑧 and  (𝑃𝑖𝑚)(𝑧) 

can be explicitly written as follows    

𝛾1 = (𝐶𝑞𝐿)
2
 ;  𝛾2 = (𝐶𝑞𝐹𝑆)

2
 ;  𝛾3 = (𝐶𝑞𝑆𝑆)

2
    (21) 

(𝑃𝑖𝑚)(1) = 𝜑𝐿𝑖𝜑𝐿𝑚 ;  (𝑃𝑖𝑚)(2) = 𝜑𝐹𝑆𝑖𝜑𝐹𝑆𝑚 ;  (𝑃𝑖𝑚)(3) = 𝜑𝑆𝑆𝑖𝜑𝑆𝑆𝑚   (22) 

            Based on these understanding, by the application of spectral resolution theorem, we 

can further write the analytic transformed displacement function as 

𝑔̃𝑚𝑝 =
𝑖

𝜔2𝜌
𝑓𝑝 ∑

𝜔

√𝛾𝑧
𝑒

𝑖ℎ(
𝜔

√𝛾𝑧
)3

𝑧=1 (𝑃𝑚𝑝)
(𝑧)

  (23) 

Now applying the inverse Radon transform, we get the displacement Green’s 

function (Yeatts 1984) in the frequency domain 

𝑔𝑚𝑝(𝑥𝑛, 𝜔) =  
𝑖𝜔

8𝜋2𝜌
𝑓𝑝 ∑ ∭ 𝐻𝑧(𝜇𝑖𝑥𝑖)

1

𝛾𝑧√𝛾𝑧
(𝑃𝑚𝑝)

(𝑧)
𝑒

𝑖ℎ(
𝜔𝜇𝑖𝑥𝑖
√𝛾𝑧

)𝑠𝑝ℎ𝑒𝑟𝑒

|𝛍|=1
𝑑Ω(𝛍)3

𝑧=1  (24) 
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Where, 𝐻𝑧(𝜇𝑖𝑥𝑖) is the Heaviside step function which implies that the integral only 

exists for 𝜇𝑖𝑥𝑖 ≥ 0 and it vanishes for 𝜇𝑖𝑥𝑖 < 0. Hence the integral in eq. 24 is valid only 

when the angle between the direction of wave propagation and the Radon’s plane is less 

than or equal to 900. To add to that, we can say that the intended direction between a source 

and a target and the reduced 2D Radon planes will make a hemisphere, inside which the 

integral (eq. 24) is valid. This equation ep. 24 is the expression for the displacement 

Green’s function in frequency domain. 

 However, we want an even more simplified expression for the Green’s function. 

To achieve that, we shall revisit the eq. 12. By substituting the corresponding relation 

discussed in eq. 21 and applying the spectral theorem, following the simplification, we can 

express the inverse of the Christoffel’s operator 𝐋𝑚𝑝(𝑘𝑛, 𝜔) as follows 

𝐋𝑚𝑝(𝑘𝑛, 𝜔)−1 = ∑
𝜑𝑚𝑖

(𝑧)𝜑𝑖𝑝
(𝑧)

𝜌𝛾𝑧|𝑘|2−𝜌𝜔2
3
𝑧=1 = ∑

𝛾𝑧
−1(𝑃𝑚𝑝)

(𝑧)

𝜌(|𝑘|2−𝜔2/𝛾𝑧)
3
𝑧=1  (25) 

By substituting Eq. 25 into the Eq. 12, we get an alternative expression for the 

displacement Green’s function which we can write as follows.  

𝑔𝑚𝑝(𝑥𝑛, 𝜔) =  
𝑓𝑝

(2𝜋)3
∑ ∭ [(𝑠𝑧)

2(𝑃𝑚𝑝)
(𝑧)

𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙]

𝑠𝑝ℎ𝑒𝑟𝑒

|𝐫|=1

3

𝑧=1

× 

∫ [
exp (−𝑖|k| 𝑥1𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙+𝑥2𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙+𝑥2𝑐𝑜𝑠𝜃)

(|𝑘|2−𝜔2(𝑠𝑧)2)
]

∞

−∞
𝑘2𝑑𝑘 (26) 

 

We can see that the above equation is explicitly in the spherical coordinate system. 

The Green’s equations represented by Eq. 24 and Eq. 26 must be equal as one is just an 

alternative form of the other.   
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However, in eq. 26, the latter part of the integral has a pole at |𝑘|2 = 𝑎2 , where 

𝑎 = 𝜔𝑠𝑧 which can be simplified by the application of the following identity known as 

Cauchy’s integral formula (Every, Pluta et al. 2004). 

∫
exp (𝑖𝑘𝑢)

(𝑘2−𝑎2)

∞

−∞
𝑘2𝑑𝑘 =  𝜋𝑖𝑎𝑒𝑖𝑎|𝑢| + 2𝜋𝛿(𝑢) (27) 

Substituting the Cauchy’s integral identity (Eq. 27) into Eq. 26 and performing 

mathematical simplifications, we get the final expression for the displacement Green’s 

functions in the frequency domain.   

𝑔𝑚𝑝(𝑥𝑛, 𝜔) =   
𝑖𝜔𝑓𝑝

2(2𝜋)2𝜌
∑   ∭ [(𝑠𝑧)

3(𝑃𝑚𝑝)
(𝑧)

exp(𝑖(𝑘𝑖𝑥𝑖)
(𝑧)) 𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙]

𝑟=1 𝜃=𝜋; 𝜙=2𝜋

𝑟=0 ; 𝜃=0; 𝜙=0

3

𝑧=1

 

+
1

2(2𝜋)2𝜌|𝐱|
∫ (𝑠𝑧)

2(𝑃𝑚𝑝)
(𝑧)

𝑑𝜙
2𝜋

0
   (28) 

In the final expression above, we can see that the Green’s function is calculated by 

integrating over the sphere and summing all three wave modes such that it incorporates the 

influence of all the wave propagation in all possible direction. For the visual understating 

of the expression, we look into the representative figure (Fig 4.9) below. 
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Fig 4.9. A schematic diagram to visualize the integral in Eq. 28.  

 

 

It is required to calculate the wave field in the intended direction of wave 

propagation (blue arrow) at any target point (black dot with blue ring) due to any source 

point (red sphere). For that purpose, the influence of the wave field at the target due to all 

three wave modes in all possible wave direction (green arrow) is considered. Also, only 

the forward propagating waves, i.e., the grid points on the sphere above the midplane (gray 

plane) are considered which is similar to the existence of Heaviside step function in Eq. 

24. Furthermore, the normal to the gray plane can be visualized as a radon plane ℎ = 𝜇𝑘𝑥𝑘 

in Fig. 4.9 where 𝜇𝑘 is identical to 𝑛𝑘.  The second part of the integral in Eq. 28 pertains to 

the perimeter of the circle on the midplane (gray plane) perpendicular to the blue arrow.  

After the computation of displacement Green’s function, we proceed to compute 

the stress Green’s function. Moreover, for that, we change our nomenclature of 

displacement Green’s function to avoid the confusion in the derivation and the simplicity 
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of understanding of the equation; we write 𝑔𝑚𝑝 = 𝑢𝑚
𝑝

 . Before we can calculate the stress 

Green’s Function, we need to calculate the strain. 

The strains at the target point can be calculated with the help of strain-displacement 

relation which requires taking the spatial derivative of the displacement Green’s functions 

obtained from the eq. 28.  The expression is as follows. 

𝜀𝑝
𝑚𝑗 =

1

2
(𝑢𝑚,𝑗

𝑝 + 𝑢𝑗.𝑚
𝑝 ) (29) 

Finally, to calculate the stress Green’s Function tensor for a specific direction of 

point force along p, we will use the constitutive equation for the anisotropic medium given 

by, 

𝜎𝑝
𝑖𝑘(𝐱) = 𝐶𝑖𝑘𝑚𝑗𝜀

𝑝
𝑚𝑗(𝐱) (30) 

Where, 
p

ik  is the stress tensor at the target point (x) due to the source point with 

force along the p-th direction.  

Hence, we finally have both the displacement and stress Green’s Functions 

required for the modeling of the wave field in anisotropic media.
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CHAPTER 5 

NUMERICAL COMPUTATION OF GREEN’S FUNCTION 

Now that we have the mathematical derivation required for the calculation of the 

displacement and stress Green’s Functions, we can proceed with the modeling of the wave 

field in anisotropic media. However, before that, we want to make sure that the 

implementation of Green’s function into MATLAB code is verified. Also, we also want to 

understand the physical meaning of the Green’s function as well as visualize the behavior 

of materials with different types of anisotropy. Therefore, we first calculate the Green’s 

function for materials that we already considered in chapter 3, a) Transversely isotropic, b) 

Fully orthotropic, c) Monoclinic material and compare it to the isotropic material, 

aluminum to see the difference between the isotropic and anisotropic material. For that 

purpose, we consider two geometric configurations as shown in Fig. 5.1. 

In the Fig. 5.1a, we have a configuration for calculation of the displacement Green’s 

function along a straight line inside the materials.  The configuration is composed of eleven 

target points with a spacing of 1mm and point source with an excitation frequency of 

1MHz. The target points and point source is separated by a distance of 10mm. The 

displacement Green’s function is numerical computed and plotted along the line of target 

points.  
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Fig. 5.1. Schematics of configurations to calculate the Green’s function a) for a line b) 

for a plane 

 

 

 

Fig. 5.2. Numerical computation of displacement Green’s function (unit mm) due to forces 

acting along 1, 2 & 3directions in Fig 5.1a when the inside material is Isotropic. a) 

displacements along 𝑥1direction, b) displacements along 𝑥2direction c) displacements 

along 𝑥3direction  

 

 

(a) (b) (c) 

(a) (b) 
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Fig. 5.3. Numerical computation of displacement Green’s function (unit mm) due to forces 

acting along 1, 2 & 3directions in Fig 5.1a when the inside material is Transversely 

Isotropic. a) displacements along 𝑥1direction, b) displacements along 𝑥2direction c) 

displacements along 𝑥3direction  

 

 

 

 

 

Fig. 5.4. Numerical computation of displacement Green’s function (unit mm) due to forces 

acting along 1, 2 & 3directions in Fig 5.1a when the inside material is Fully Orthotropic. 

a) displacements along 𝑥1direction, b) displacements along 𝑥2direction c) displacements 

along 𝑥3direction  

 

 

 

(a) (b) (c) 

(a) (b) (c) 
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Fig. 5.5. Numerical computation of displacement Green’s function (unit mm) due to forces 

acting along 1, 2 & 3directions in Fig 5.1a when the inside material is Monoclinic. a) 

displacements along 𝑥1direction, b) displacements along 𝑥2direction c) displacements 

along 𝑥3direction  

 

If we look at the displacement Green’s function plot for line configuration (fig 5.2 

– 4.5), we see that for the isotropic material, the displacements are maximum at the center, 

i.e., at the closest proximity to the point source actuation and decays along either side. 

Similarly, for the transversely isotropic material assuming a composite, the displacements 

are not maximum at the center. Instead, it bifurcates along the fiber direction. Also, we can 

see the various behavior depicted by the orthotropic and monoclinic material. Since the 

behavior illustrated agree to our theoretical understanding of the material, the 

implementation of Green’s function is verified. 

Now to further enhance our numerical computation and understanding of the 

Green’s function, we calculate the Green’s function for a plane or rectangular domain. In 

the Fig. 5.1 b, we have a configuration for calculation of the displacement and stress 

Green’s function in an arbitrary plane inside the Transversely Isotropic material.  The 

configuration is composed of 51 X 51 target points with a spacing of 1mm in a square plane 

of 10 mm X 10 mm and point source with an excitation frequency of 1MHz. The plane of 

target points and point source is separated by a distance of 2 mm. The stress and 

(a) (b) (c) 
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displacement Green’s function is numerical computed and plotted as a contour plot along 

the plane of target points. 

Based on the displacement and stress Green’s functions (Fig. 5.6 – 5.8), we were 

able to understand that the Green’s function represents the influence of the source with unit 

load at any arbitrary target point in the space as well as its dependency on the material 

property. Also, we also enriched our numerical computation and can finally progress with 

the calculation of ultrasonic wave field in an anisotropic solid, when the bounded ultrasonic 

beam is generated from 1 MHz ultrasonic transducer.  

 

 

Fig.5.6. Numerical computation of displacement Green’s function (unit mm) in 

Transversely Isotropic material a) 𝑔11  b) 𝑔22 c) 𝑔33  d) 𝑔31 𝑜𝑟 𝑔13 e) 𝑔32 𝑜𝑟 𝑔23 f) 

𝑔21  𝑜𝑟 𝑔12 

(a) (b) (c) 

(d) (e) (f) 
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Fig. 5.7. Numerical computation of Stress Green’s function (unit GPa) in the Transversely 

Isotropic material due to source actuating along 1-direction. a) 𝜎11  b) 𝜎22 c) 𝜎33  d) 

𝜎32 𝑜𝑟 𝜎23 e) 𝜎31 𝑜𝑟 𝜎13 f) 𝜎21  𝑜𝑟 𝜎12 

 

Fig. 5.8. Numerical computation of Stress Green’s function (unit GPa) in the Transversely 

Isotropic material due to source actuating along 3-direction. a) 𝜎11  b) 𝜎22 c) 𝜎33  d) 

𝜎32 𝑜𝑟 𝜎23 e) 𝜎31 𝑜𝑟 𝜎13 f) 𝜎21  𝑜𝑟 𝜎12

(a) (b) (c) 

(d) (e) (f) 

(a) (b) (c) 

(d) (e) (f) 
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CHAPTER 6 

NUMERICAL COMPUTATION OF WAVE FIELD WITH THE 

IMPLEMENTATION OF DPSM 

For numerically computing the wave field in anisotropic media, we institute the 

analytical model developed for the Green’s function into a numerical technique called 

Distributed point source method (DPSM). Therefore, we first provide a brief introduction 

to DPSM. DPSM is a recently developed mesh-free semi-analytical technique developed 

by Placko and Kundu (Placko and Kundu 2001, Placko, Kundu et al. 2002). They used the 

technique to model the wave propagation in fluid media, and the technique was further 

developed by Banerjee (Banerjee and Kundu 2007) to model the isotropic solids. DPSM is 

used because it helps to overcome the limitations such as the inability to correctly model 

critical reflection phenomena, failure to adapt to the change in the interface curvature and 

necessity of far-field approximation. In DPSM, the Green’s function is essential to 

calculate the displacement and stress profile and simulate the wave propagation behavior.  

DPSM, as the name suggests, is the numerical technique based on distributing the 

source and target points in the actuator such as transducer and boundary and interfaces of 

the problem geometry. The ultrasonic field generated by the source such as transducer is 

the summation of the field generated due to all the point sources distributed at the 

transducer. Similarly, at the interface, there are transmitted and reflected field which is 

represented by placing the two layers of point sources on either side of the interface. Then, 

the source strengths of the point sources distributed over the transducer and the interface 
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is calculated by satisfying the boundary and the interface continuity conditions as required. 

Finally, displacement and stress profile in the anisotropic medium and the pressure profile 

in the fluid medium can be calculated with the help of the source strengths. 

 

Fig. 6.1. a) the total field at A is calculated by superposing the contribution of all point 

sources distributed along the boundary of the anisotropic medium. b) the three mutually 

perpendicular forces that are contained in the point source. 

 

6.1 Numerical Computation of Wavefield in Anisotropic Half-space 

Now that we are acquainted with the theory of DPSM, we will compute the 

ultrasonic wave field in anisotropic half space. The schematic diagram (Fig 6.2) illustrates 

the setup that has been used for the numerical simulation using DPSM. A circular 

transducer and an anisotropic half-space are immersed in the fluid. The point sources are 

distributed below the transducer and on both sides of the interface between the two media. 

The contribution of different point sources is as shown by the lines connecting the relevant 
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point sources to the points of interest (C, D). The total ultrasonic field at any arbitrary point 

C in the anisotropic solid is produced by the superposition of the strength of all the point 

sources denoted by 𝐀𝐼∗ whereas the total ultrasonic field at any arbitrary point D in the 

fluid is produced by the superposition of the strength of all the point sources denoted by 

𝐀𝑠 and 𝐀𝐼. However, at the moment those source strengths required are unknown. 

Pertaining to the modeling of the current problem, the length of the interface is taken to be 

10mm and 115 point sources were distributed on either side of the interface following the 

wave length - source diameter rule explicitly described in the previous articles (Banerjee 

2007, Banerjee and Kundu 2007). A 1 MHz transducer with the diameter of 2 mm is 

submerged in to the water and 100 point sources were distributed concentrically just below 

its transmitting face. The distance between the transducer and interface is taken as 5 mm. 

For the actuation of transducer, unit velocity is prescribed on the transducer face.  

 

Fig. 6.2 a) Schematics (not to scale) of the wave field computation problem in anisotropic 

solid half space, point sources distributed over the x-y plane, however, only two orthogonal 

line of point sources are shown b) cross-section view of the NDE problem along x-z plane. 
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First, to calculate the unknown source strengths, we need to solve the satisfied 

boundary conditions (Banerjee 2007, Banerjee and Kundu 2007). If we assume the normal 

velocity at the transducer face to be 
0SV , the boundary condition on the transducer surface 

can be written as  

0SS S SI I SM A M A V                             (31) 

The displacement normal at the fluid-anisotropic interface should be continuous.  

*3 3 3 *IS S II I II IDF A DF A DS A       (32) 

Also, the normal compressive stress in the anisotropic and pressure in the fluid 

should be continuous at the interface.  

                    
*33 *IS S II I II IQ A Q A S A       (33) 

The shear stresses in the anisotropic medium should vanish at the interface.  

*

*

31 * 0

32 * 0

II I

II I

S A

S A




               (34) 

Where, M represents the velocity Green’s function matrix in the fluid, Q represents 

the pressure Green’s function matrix in the fluid, S33, S31 and S32 represents the stress 

Green’s function matrix in the anisotropic material for 𝜎33 , 𝜎31 and 𝜎32, respectively. DF3 

is the displacement Green’s function matrix in the fluid in the 𝑥3 direction, u3 is the 

displacement Green’s function in the solid in the 𝑥3 direction. SS means the wave field on 

the surface S due to the source layer S, similarly II* means the respective wave field at the 
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interface I due to the source layer I*. By solving the equations (31), (32), (33), (34) as 

shown in matrix form (Banerjee and Kundu 2007, Banerjee, Kundu et al. 2007) below, we 

can calculate the source strengths. 

0*

1 *

*

*

0

33

03 3 3

* 00 0 31

0 0 32

SS SI

S SIS II II

IIS I II

III

II

M M

A VQ Q S

ADF DF DS

AS

S

 
 

        
      
     

    
  

    (35) 

From the matrix equation Eq. 35, we can see that to implement the standard 

procedure of DPSM (Banerjee 2007, Banerjee and Kundu 2007), the Green’s function for 

both the fluid and the solid media needs to be computed.  

Hence, the Green’s function terminologies required needed for the formulation of 

DPSM is put together for the convenience and computation of wave field in the respective 

domains.  

6.1.1 Expressions for Velocity, Pressure and Displacement Green’s Function 

in fluid 

Let’s assume the fluid to be a homogeneous isotropic medium that has no shear 

strength and equal pressure in all direction. The Green’s Function terminologies (Banerjee 

2007, Banerjee and Kundu 2007) at any target point, x due to source acting at y can be 

expressed as follows. 
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Where 
2 2

1 1
( )

( )

m
f n

m
f n

ik r
ik rm m m m

in n f in inm

n

e
g R r ik R e R

r r

 
  

  

; 

m m
m in in

in m

in

x y
R

r


 ; , 1,2,3t i   

6.1.2 Expressions for Displacement and Stress Green’s Function in 

Anisotropic Solid 

The Green’s Function terminologies for the anisotropic solid are formulated with 

the help of the expressions developed in the previous chapter 3. The equation used is 
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displacement Green’s Function eq. 28 and stress Green’s Function eq. 30 which are written 

below. 

𝑔𝑚𝑝(𝑥𝑛, 𝜔) =   
𝑖𝜔𝑓𝑝

2(2𝜋)2𝜌
∑   ∭ [(𝑠𝑧)

3(𝑃𝑚𝑝)
(𝑧)

exp(𝑖(𝑘𝑖𝑥𝑖)
(𝑧)) 𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙]

𝑟=1 𝜃=𝜋; 𝜙=2𝜋

𝑟=0 ; 𝜃=0; 𝜙=0

3

𝑧=1

 

+
1

2(2𝜋)2𝜌|𝐱|
∫ (𝑠𝑧)

2(𝑃𝑚𝑝)
(𝑧)

𝑑𝜙
2𝜋

0
   (28) 

𝜀𝑝
𝑚𝑗 =

1

2
(𝑢𝑚,𝑗

𝑝 + 𝑢𝑗.𝑚
𝑝 ) (29) 

𝜎𝑝
𝑖𝑘(𝐱) = 𝐶𝑖𝑘𝑚𝑗𝜀

𝑝
𝑚𝑗(𝐱) (30) 
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 
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M

i i i

M

i i i

M

i i i NX M

s s s

s s s

S i

s s s

 
 
 
 
 
 
 
 

 where, 
3 3 3 3[ ]nm m m m

i i i i ns    and 1,2,3i   

By substituting the Green’s function terminologies as required in the matrix 

equation Eq. 35, we can now calculate the source strengths. The source strengths are 

obtained hence known for each layer by solving the simple linear algebra problem put forth 

by the matrix equation Eq. 35.  
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After obtaining the source strengths, we can now compute the wave field for the 

anisotropic half space media. As we have mentioned before, we compute the wave field 

for three different types of anisotropic material: a) Transversely isotropic, b) Fully 

orthotropic, c) Monoclinic material.  

6.2 Processes to Speed up the Computation 

6.2.1 Sequential Mapping of Poly-Crepitus Green’s Function 

In accordance to DPSM, the ultrasonic field generated at any arbitrary target point 

is the summation of the field generated due to all the point sources distributed at the 

transducer for which the Green’s function needs to be computed. Furthermore, looking at 

the derived Green’s function expression, we have realized that to calculate the Green’s 

function, we need to consider the waves are propagating in all possible direction which is 

accomplished by integrating over the sphere and summing all three wave modes. However, 

after implementing the Green’s function expression, it has been realized that the calculation 

of Green’s function due to multiple source points is computationally demanding and 

inefficient such that it is virtually impossible to compute the full wave field in the 

anisotropic media in a time efficient manner even for a simple half-space problem. 

Therefore, to get rid of computational strain and the time inefficiency, we introduced a 

method called Sequential mapping of Green’s function. It followed a simple yet brilliant 

argument that the Green’s function at a target point is always same due to a unit load acting 

on the source point. That is to say, the Green’s function at a target point due to a source is 

always constant, given the direction cosine of the line joining the source-target combination 

is constant. 
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Based on this argument, further, the following method is implemented in the code. 

Let’s assume a set of n number of source points as well as m number of target points in a 

2D system as shown in Fig 6.3. Now to implement the sequential mapping of Green’s 

function, the number of target points is extended from m to (2m-1) as shown in Fig 6.3(a) 

and (b). The Green’s function at (2m-1) extended target points due to a central point source 

is calculated only once as shown in Fig 6.3(c). Then the Green’s function at m original 

target points is sequentially mapped and appropriately assigned by mimicking the central 

point source located at the location of the point sources below the actuation plane. For 

illustration, the allocation of (2m-1) Green’s function to the original m target point due to 

the first source point is shown in Fig 6.3(d). In case of first source point, the Green’s 

function from m-th to (2m-1)-th is allocated to the original target points as illustrated in 

Fig 6.3(d). Due to this technique, the process with ‘conventional DPSM,' which originally 

demanded (m*n) computations of Green’s function is reduced to only (2m-1) computations 

and hence reduced the computation time by the factor of ((2m-1) /m*n). Similarly, the 

mapping technique is implemented in 3D. In case of a 3D system, the number of target 

points is extended from m1*m2 to (2m1-1) * (2m2-1) as shown in Fig 6.3(e) and (f). It can 

be seen that the Green’s function at the target point (blue box) due to central source point 

is same as the Green’s function at the target point (yellow box) due to corner source point 

as shown in Fig 6.3(f). Now the Green’s function at the (2m1-1) * (2m2-1)  extended target 

points due to the central point source is calculated. Then the (2m1-1) * (2m2-1) Green’s 

function is sequentially mapped to the original set of target points due to all n1*n2 number 

of point sources in a similar manner described for the 2D system. For 3D system, the 

computation time is reduced by the factor of (2m1-1) * (2m2-1)/ (m1*m2) * (n1*n2). 



 

53 

Please visit the code named Aniso_green.m in the appendix for the detailed implementation 

and understanding of the technique.  

 

Fig. 6.3: A schematics showing the sequential mapping of Green’s function, a) source 

and target point combinations b) extended target points in 2D c) Calculated Green’s 

function on extended point sources d) Assignment of Green’s function for an edge source 

e) source-target combinations in 3D, f) sequential mapping of 3D Green’s function. 

 

6.2.2 Maximizing the Discretization Angle for Anisotropic Green’s function 

Eq. 28 and 30 are computed numerically. The integral requires an optimized discretization 

angle that can result converged Green’s function while reducing the computational time. 

Average of resultant absolute displacement were computed with different degrees of 

discretization along θ and φ in transversely isotropic, orthotropic and monoclinic material 

(please refer section 7 for material properties) along with a line at a distance of 1mm from 

a point source at 1 MHz frequency. Results with both discretization angles, ∆θ and ∆φ with 
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and 0.5o and 1o were almost identical with 0.0001% error in all material class. The average 

percentage error was calculated for various discretization angles, and the convergence 

curve is shown in Fig. 6.4a. Computation burden with ten as the discretization angle is still 

comparatively massive and unacceptable. However, it can be seen that the discretization 

angle between 3o and 5o resulted almost converged result with error <~1.3%, but the 

computational burden was reduced significantly. Hence, for the proposed virtual NDE 

experiment at 1 MHz, an optimized 5o discretization is used considering the tradeoff and 

benefit between the accuracy and the computational efficiency. Standardizing the 

discretization angle is valuable for universal application of DPSM. Further the overall gain 

was estimated with the computational efficiency, after implementing both the sequential 

mapping and an optimized discretization angle for the problem described above in Fig. 6.2, 

took only 1.6 hours. Fig. 6.4b shows, how two additional improvements reduced the 

computational burden of DPSM unprecedentedly by ~90 times compared to the 

conventional DPSM with ten as the discretization angle. A standard computer with Intel(R) 

Core(TM) i7-6500U CPU @ 2.5 GHz with 8 GB RAM was used. 

 

Fig. 6.4: a) Convergence study with the discretization angle for Green’s function 

computation b) Increase in computational efficiency while solving a virtual NDE problem 

described in Fig. 6.2 in a transversely isotropic medium. 
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6.3 Wavefield Modeling of Transversely Isotropic Half-space 

We first compute the wave field for the transversely isotropic half-space. While doing 

so, we first confirm that the source strengths are appropriately computed by solving the 

governing matrix ep. 35. To do so, we calculate both the pressure and normal stresses at 

the fluid-solid interface to check if the boundary conditions are matched (Fig. 6.5). The 

verification was performed by applying the convergence criteria (𝑟 ≤ 𝜆/2𝜋) where the 

distance between two adjacent point sources was  2𝑟, discussed in previous publications 

(Banerjee and Kundu 2007). 

 

 

Fig 6.5. Pressure and normal stress (σ33) distribution at the fluid-solid interface  

 

Now that, the matching of the boundary condition at the fluid-solid interface is confirmed, 

we proceed to compute the wave field for the full domain, i.e., pressure in fluid and the 

stress in solid. First, we compute the stresses (σ11 and σ33) and pressure for the full domain 

which is shown in fig 6.6a and b respectively. We compare the solution with the wave 

stresses field in isotropic half space (fig 6.7a and b) so that we can physically understand 
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the wave phenomena in transversely isotropic material and differentiate it in comparison 

to the isotropic material. 

Fig 6.6. a) Stress11 (σ11) distribution in transversely isotropic half-space b) Stress33 (σ33) 

distribution in transversely isotropic half-space in GPa 

Fig 6.7. a) Stress11 (σ11) distribution in isotropic half-space b) Stress33 (σ33) distribution 

in isotropic half space in GPa 

For the comparison of the stress fields in transversely isotropic and isotropic 

material, we assume the transversely isotropic material as a unidirectional composite 

material with fiber direction along the x-axis such that the y-z plane is the plane of isotropy. 

We can see that the maximum or dominant wave energy is bifurcating along the fiber 

direction for both stress field as shown in fig 6.6a and b which is in agreement with our 

theoretical understanding. Conversely, in case of isotropic material we see that the 
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maximum or dominant wave energy is propagating along the along the actuation direction 

for both stress field as shown in fig 6.7a and b. 

We now have successfully computed the wavefield in a transversely isotropic 

material exhibiting the correct physics of wave phenomena. We also compute the wave 

field in the orthotropic and monoclinic material. The wavefield in x-z and y-z planes were 

computed, such that the difference in wave fields are made apparent in oppose to isotropic 

material which exhibits same wave field on both x-z and y-z planes. 

 

6.4 Wavefield Modeling of Orthotropic Half-space 

 

The stress fields in the orthotropic material on the x-z plane (Fig 6.8 a & b) and y-z 

planes (Fig 6.9 a & b) are presented. 

 

 

Fig 6.8. Wave field plot on x-z plane a) Stress11 (σ11) distribution in fully orthotropic 

half-space b) Stress33 (σ33) distribution in fully orthotropic half space 
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Fig 6.9. Wave field plot on y-z plane a) Stress11 (σ11) distribution in fully orthotropic 

half-space b) Stress33 (σ33) distribution in fully orthotropic half space 

 

 

6.5 Wavefield Modeling of Monoclinic Half-space 

 

The stress fields in the orthotropic material on the x-z plane (Fig 6.10 a & b) and 

y-z planes (Fig 6.11 a & b) are presented. 

 

 

Fig 6.10. Wave field plot on x-z plane a) Stress11 (σ11) distribution in monoclinic half 

space b) Stress33 (σ33) distribution in monoclinic half space 
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Fig 6.11. Wave field plot on y-z plane a) Stress11 (σ11) distribution in monoclinic half 

space b) Stress33 (σ33) distribution in monoclinic half space 

 

The stress fields in fully orthotropic and monoclinic materials on x-z and y-z planes 

are compared. The qualitative and quantitative differences are evident. The differences 

could be explained by the modal slowness behavior shown by the wave mode on the x-z 

plane for all the three materials plotted in Fig 4.5, 4.6, & 4.7. The maximum wave energy 

on an x-z plane is contributed mostly by the quasi-longitudinal wave mode and minimally 

influenced by the other quasi-shear modes, hence to the qualitative similarities of the wave 

fields between the orthotropic and monoclinic material over the x-z plane are evident. 

Similarly, the qualitative differences of the wave fields between the orthotropic and 

monoclinic material over the y-z plane are evident from the modal slowness behavior 

shown by the wave mode on the y-z plane for all the three materials.
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CHAPTER 7 

CONCLUSION AND FUTURE ENDEAVORS

Understanding the wave propagation behavior is a crucial step. Consequently, it 

helps in the understanding of the physics of different materials and critically comprehend 

the differences between them. First, the fundamental conceptions of wave propagation 

behavior in the anisotropic material have been discussed. The modal waves have been 

visualized by solving the Christoffel’s Equation. By incorporating those notions, the 

anisotropic Green’s displacement and stress function have been developed, first using 

quadruple Fourier transformation for the physical understanding then again using a novel 

method known as Radon transform and Spectral Resolution Theorem in the spherical 

coordinate system for the more straightforward implementation into the MATLAB code. 

Finally, wave propagation behavior has been simulated and modeled for the different 

anisotropic medium by numerical computing the Green’s function and employing it into 

Distributed point source method (DPSM). DPSM technique has been used in modeling the 

ultrasonic field generated by a finite size transducer near a fluid-solid interface, and the 

field is computed inside both fluid and solid media. A method named Sequential Mapping 

of Poly-Crepitus Green’s Function has been introduced for the time-efficient computation 

of the wave field. In conclusion, in this thesis work, we were able to successfully model 

the full wave field in an accurate and time efficient manner. 

For the future endeavors, this technique will further be used for the computational 

anisotropic wavefield modeling in a more complex geometry and anisotropy which will 



 

61 

ultimately assist in the advancement of NDE community.  Shortly, this technique will be 

used in computing the wave field in structures such as composite plates, multilayered 

media, and porous media.
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APPENDIX A 

ANISOGREEN.M 
 

function[DS1ii,DS2ii,DS3ii, S11ii, S22ii, S33ii, S12ii, S31ii, S32ii]=Aniso_green(Sw_IntrFcCoord_Cent, 

CoordCentSourcePt, C, Theta, Phi, CV, FI, NumTestPt, NumSourcePt_Intface_x, NumSourcePt_Intface_y,  

Solid_rho, w, dTheta, dPhi) 
  
%%Displacement Green's Function 
  
%% Initialization 
NumSourceTot=NumSourcePt_Intface_x*NumSourcePt_Intface_y; 
  
% For Final allocation of Displacements and Stresses 
DS1ii = zeros(NumSourceTot,NumSourceTot,3); 
DS2ii = zeros(NumSourceTot,NumSourceTot,3); 
DS3ii = zeros(NumSourceTot,NumSourceTot,3); 
  
S11ii = zeros(NumSourceTot,NumSourceTot,3); 
S22ii = zeros(NumSourceTot,NumSourceTot,3); 
S33ii = zeros(NumSourceTot,NumSourceTot,3); 
S12ii = zeros(NumSourceTot,NumSourceTot,3); 
S31ii = zeros(NumSourceTot,NumSourceTot,3); 
S32ii = zeros(NumSourceTot,NumSourceTot,3); 
  

  
NumTrgGreenExtnd_x=(2*NumSourcePt_Intface_x-1); 
NumTrgGreenExtnd_y=(2*NumSourcePt_Intface_y-1); 
  
% For Temporary allocation of Displacements and Stresses 
tu1_11 = zeros(NumTrgGreenExtnd_x,NumTrgGreenExtnd_y,3); 
tu2_11 = zeros(NumTrgGreenExtnd_x,NumTrgGreenExtnd_y,3); 
tu3_11 = zeros(NumTrgGreenExtnd_x,NumTrgGreenExtnd_y,3); 
  
tS11_11 = zeros(NumTrgGreenExtnd_x,NumTrgGreenExtnd_y,3); 
tS22_11 = zeros(NumTrgGreenExtnd_x,NumTrgGreenExtnd_y,3); 
tS33_11 = zeros(NumTrgGreenExtnd_x,NumTrgGreenExtnd_y,3); 
tS12_11 = zeros(NumTrgGreenExtnd_x,NumTrgGreenExtnd_y,3); 
tS31_11 = zeros(NumTrgGreenExtnd_x,NumTrgGreenExtnd_y,3); 
tS32_11 = zeros(NumTrgGreenExtnd_x,NumTrgGreenExtnd_y,3); 
  
%% Calculation Starts 
  
CoordCentSourcePt_x=CoordCentSourcePt(1); 
CoordCentSourcePt_y=CoordCentSourcePt(2); 
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CoordCentSourcePt_z=CoordCentSourcePt(3); 
  
for h=1:NumTrgGreenExtnd_y 
    for i=1:NumTrgGreenExtnd_x                  % total no. of target point 
         
        Sw_TrgLoc = i+(h-1)*NumTrgGreenExtnd_x; 
        Tr = [(Sw_IntrFcCoord_Cent(1,Sw_TrgLoc)-CoordCentSourcePt_x), 

(Sw_IntrFcCoord_Cent(2,Sw_TrgLoc)-CoordCentSourcePt_y), (Sw_IntrFcCoord_Cent(3,Sw_TrgLoc)-

CoordCentSourcePt_z)]; 
         
        [u1,u2,u3,S11,S22,S33,S23,S13,S12] = solid_green(Tr, C, Theta, Phi, CV, FI, NumTestPt,  Solid_rho, 

w, dTheta, dPhi); 
         
        tu1_11(i,h,:) = u1; 
        tu2_11(i,h,:) = u2; 
        tu3_11(i,h,:) = u3; 
        tS11_11(i,h,:) = S11; 
        tS22_11(i,h,:) = S22; 
        tS33_11(i,h,:) = S33; 
        tS12_11(i,h,:) = S12; 
        tS31_11(i,h,:) = S13; 
        tS32_11(i,h,:) = S23; 
         
    end 
end 
  
for indicey=1:NumSourcePt_Intface_y 
    for indicex=1:NumSourcePt_Intface_x                %total number of sources 
         
        for dir=1:3                  % total no. of target point 
           
            src_pt = indicex+(indicey-1)*NumSourcePt_Intface_x; 
            trg_pts = (NumSourcePt_Intface_x+1-indicex):(NumTrgGreenExtnd_x+1-indicex); 
           
            for indiceyp = 1:NumSourcePt_Intface_y 
                 
                sw_index_y = NumSourcePt_Intface_y-indicey+indiceyp; 
                trg_val = (indiceyp-1)*NumSourcePt_Intface_x+1:(indiceyp)*NumSourcePt_Intface_x; 
                 
                DS1ii(trg_val,src_pt,dir) = tu1_11(trg_pts,sw_index_y,dir);    % Displacement in mm 
                DS2ii(trg_val,src_pt,dir) = tu2_11(trg_pts,sw_index_y,dir);    % Displacement in mm 
                DS3ii(trg_val,src_pt,dir) = tu3_11(trg_pts,sw_index_y,dir);    % Displacement in mm 
                 
                S11ii(trg_val,src_pt,dir) = tS11_11(trg_pts,sw_index_y,dir);  % Stress in GPa 
                S22ii(trg_val,src_pt,dir) = tS22_11(trg_pts,sw_index_y,dir);  % Stress in GPa 
                S33ii(trg_val,src_pt,dir) = tS33_11(trg_pts,sw_index_y,dir);  % Stress in GPa 
                S12ii(trg_val,src_pt,dir) = tS12_11(trg_pts,sw_index_y,dir);  % Stress in GPa 
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                S31ii(trg_val,src_pt,dir) = tS31_11(trg_pts,sw_index_y,dir);  % Stress in GPa 
                S32ii(trg_val,src_pt,dir) = tS32_11(trg_pts,sw_index_y,dir);  % Stress in GPa 
                 

                 
            end 
        end 
    end 
end 
display('Green displacement and stress calculated') 
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