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ABSTRACT 

The Optical Bust Switching (OBS) network has become one of the most 

promising switching technologies for building the next-generation of internet 

backbone infrastructure. However, OBS networks still face a number of security 

and Quality of Service (QoS) challenges, particularly from Burst Header Packet 

(BHP) flooding attacks. In OBS, a core switch handles requests, reserving one of 

the unoccupied channels for incoming data bursts (DB) through BHP. An 

attacker can exploit this fact and send malicious BHP without the corresponding 

DB. If unresolved, threats such as BHP flooding attacks can result in low 

bandwidth utilization, limited network performance, high burst loss rate, and 

eventually, denial of service (DoS). In this dissertation, we focus our 

investigations on the network security and QoS in the presence of BHP flooding 

attacks. First, we proposed and developed a new security model that can be 

embedded into OBS core switch architecture to prevent BHP flooding attacks. 

The countermeasure security model allows the OBS core switch to classify the 

ingress nodes based on their behavior and the amount of reserved resources not 

being utilized. A malicious node causing a BHP flooding attack will be blocked 

by the developed model until the risk disappears or the malicious node redeems
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 itself. Using our security model, we can effectively and preemptively prevent a 

BHP flooding attack regardless of the strength of the attacker. In the second part 

of this dissertation, we investigated the potential use of machine learning (ML) in 

countering the risk of the BHP flood attack problem. In particular, we proposed 

and developed a new series of rules, using the decision tree method to prevent 

the risk of a BHP flooding attack. The proposed classification rule models were 

evaluated using different metrics to measure the overall performance of this 

approach. The experiments showed that using rules derived from the decision 

trees did indeed counter BHP flooding attacks, and enabled the automatic 

classification of edge nodes at an early stage. In the third part of this dissertation, 

we performed a comparative study, evaluating a number of ML techniques in 

classifying edge nodes, to determine the most suitable ML method to prevent 

this type of attack. The experimental results from a preprocessed dataset related 

to BHP flooding attacks showed that rule-based classifiers, in particular decision 

trees (C4.5), Bagging, and RIDOR, consistently derive classifiers that are more 

predictive, compared to alternate ML algorithms, including AdaBoost, Logistic 

Regression, Naïve Bayes, SVM-SMO and ANN-MultilayerPerceptron. Moreover, 

the harmonic mean, recall and precision results of the rule-based and tree 

classifiers were more competitive than those of the remaining ML algorithms. 

Lastly, the runtime results in ms showed that decision tree classifiers are not only 
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more predictive, but are also more efficient than other algorithms. Thus, our 

findings show that decision tree identifier is the most appropriate technique for 

classifying ingress nodes to combat the BHP flooding attack problem. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation  

The Optical Burst Switching (OBS) network is a promising switching 

technology for building the next generation of Internet infrastructure. It typically 

represents a trade-off between two switching technologies: optical circuit 

switching (OCS) and optical packet switching (OPS). Even with all the OBS's 

network merits, such as resiliency, bandwidth/resources efficiency, and overall 

economic advantages, OBS networks still suffer from several quality of service 

(QoS) and security issues, such as burst loss due to bursts contention, bursts 

scheduling, and most importantly, Denial of Service (DoS) due to Burst Header 

Packet (BHP) flooding attacks. 

A BHP flooding attack can subjugate the core switches by sending a large 

number of BHPs into the network. Normally, when a core switch receives a BHP, 

it reserves a WDM channel for it and changes the status of the reserved channel 

from unoccupied to occupied. Attackers use this to flood the network with 

malicious BHPs without sending the corresponding data. The target node
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will blindly reserve a new WDM channel for each incoming malicious BHP 

without checking if the corresponding data arrives. When a legitimate request 

comes to the compromised core switch, there will be no unoccupied WDM 

channels available. This leads to preventing legitimate nodes from reserving the 

required network resources at the intermediate core switch [2], eventually 

causing a DoS attack. 

The main motivation for this research is to examine the behavior of edge 

nodes to counter the risks associated with BHP flood attacks in OBS 

networks. This can develop efficient security techniques that can manage the 

problem, as well as providing contributions to enhance the QoS in OBS network. 

Furthermore, we aim to examine the applicability of machine learning (ML) to 

the problem of BHP flooding attacks in OBS networks. This is to develop a more 

efficient detection system enabling the core switches to classify ingress nodes in 

an automated manner, and identify misbehaving ones as early as possible. To 

achieve this, we extensively investigated various ML techniques that adopt 

different learning approaches to the research problem considered. We seek to 

identify the most relevant ML technique(s) to solve the issue of BHP flooding 

attacks, in addition to revealing the reasons behind the relevancy. 

 

 



 

3 

 

1.2 Problem Overview 

1.2.1 Countering Burst Header Packet Flooding Attacks in Optical Burst 

Switching Networks 

The study of detection techniques of BHP flooding attack is very limited 

for OBS networks. This type of attack, which relies on the flooding approach, has 

been studied in traditional DoS against the TCP protocol [9, 10]. For instance, the 

SYN flooding attack intends to exhaust the resources of the TCP/IP stack (e.g. the 

backlog) of the victim host by generating enormous numbers of SYN requests 

towards it without completing a connection setup. The victim host will be unable 

to accept legitimate connection requests if its backlog is fully occupied by all the 

fake half-opened connections [11]. However, in the context of UDP protocol over 

an OBS network, there is no such study on preventing or even limiting BHP 

flooding attacks that we are aware of. Therefore, it is important to be able to 

monitor or study the behavior of edge nodes in an OBS network in the likelihood 

of dealing with such threats.  

In this part of the study, we propose and develop a new security 

system that can be added to OBS core node architecture to prevent BHP flood 

attacks. The countermeasure security system allows the OBS core node to classify 

the ingress nodes, based on both their behavior, and the amount of reserved 

resources not being utilized. A malicious node causing a BHP flooding attack 
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will be blocked by the system until the threat is resolved. The system is 

implemented, tested and verified using a modified NCTUNS simulator. The 

analysis shows that this is highly effective in preventing BHP flooding attacks, as 

well as in providing the network resources for the legitimate nodes.  

1.2.2. Decision Tree Rule Learning Approach to Counter Burst Header Packet 

Flooding Attacks in Optical Burst Switching Networks 

Machine Learning (ML) is a widely adopted and powerful data analysis 

technique which has displayed a highly predictive performance in multiple 

application domains, due to its ability to discover useful hidden knowledge that 

can be beneficial for decision making. However, a key challenge in adopting ML 

to counter BHP flood attacks is the unavailability of the training datasets. 

Therefore, this study is two-fold. Firstly,itdeterminesanddevelopsadatasetfrom 

thousands of simulation runs that can be converted into a classification task. 

Secondly, it investigates the use of a predictive model using ML to counter the 

risk of BHP flooding attack dilemmas experienced in OBS networks, proposing a 

tree-based decision architecture as an appropriate solution. 

Few related studies have used ML techniques within OBS networks [40, 

50]. These studies centred on data traffic identification, whereas our study is 

concerned with an entirely different issue – BHP flooding attacks. To the best of 

our knowledge, this study is the first to offer proposals and to develop a 
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decision-tree method of classification to solve the issue of BHP flooding attacks 

in OBS networks. Since previous studies have not used ML as a way of blocking 

misbehaving edge nodes which send DBs in OBS networks, we believe a solution 

is needed in order to address this critical issue in the initial phases of BHP 

flooding attacks. 

1.2.3 Detecting BHP-Flooding Attacks in OBS Networks: A Machine Learning 

Prospective 

A powerful and promising approach in identifying misbehaving edge 

nodes causing BHP flooding attacks is Machine Learning (ML), and in particular, 

classification techniques. A classification technique learns models by applying 

them to a large historical dataset derived from an edge node’s performance 

during a simulation run. The dataset contains behavior traces from a number of 

edge nodes, with respect to input data characteristics, sensitivity, efficiency 

performance, predictive performance, and model content. The learned model can 

then be utilized to single out (classify) misbehaving edge nodes based on their 

future performance as accurately as possible, hence disciplining them. Therefore, 

this part of the study investigates the BHP problem by evaluating a number of 

ML techniques in classifying edge nodes, and determines the most suitable 

method to prevent this type of attack.  
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This study evaluates Decision Tree (C4.5), Bagging, Boosting (AdaBosst), 

Probabilistic (Naïve Bayes), Rule Induction (RIpple DOwn Rule Learner-RIDOR), 

Neural Network (NN-MultilayerPerceptron), Logistic Regression, and Support 

Vector Machine-Sequential Minimal Optimization (SVM-SMO) on a real dataset 

to identify the most appropriate method(s) to combat the BHP flood attack 

problem in OBS networks.  

1.3 Overview of Dissertation 

We will address some of the problems facing OBS networks. The 

organization of this dissertation is as follows:  

Chapter 2 provides a background on BHP flooding attacks, and proposes 

a new security model, the node classifier, to counter BHP flooding attacks. We 

implemented a sophisticated data structure comprised of two layers, with the 

use of an adaptive sliding range window to classify ingress nodes into three 

varieties. This classification is based on the number of lost bursts from each 

ingress node during the time frame, to measure the performance of nodes and 

detect BHP flooding attacks at preliminary classes. The simulation results show 

that our proposed classifier is effective in preventing BHP flooding attacks. 

Chapter 3 investigates the applicability of the predictive model, using ML 

to counter the risk of BHP flooding attacks experienced in OBS networks, and 
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proposing a decision-tree based architecture as an appropriate solution. This 

architecture contains a learning algorithm that extracts novel rules from tree 

models using data processed from several simulation runs. Our simulation 

results show that the rules derived from our learning algorithm are able to 

accurately classify 93% of the BHP flooding attacks into either Behaving (B) or 

Misbehaving (M) classes. Moreover, the rules can further categorize the 

Misbehaving edge nodes into four sub-class labels of Misbehaving-Block (Block), 

Behaving-No Block (No Block), Misbehaving-No Block (M-No Block), and 

Misbehaving-Wait (M-Wait) with 87% accuracy. The results clearly show that 

our proposed decision-tree model is a viable solution in comparison to decisions 

undertaken by expert domains or human network administrators. 

Chapter 4 builds on our previous work from Chapter 3. One method 

to prevent a BHP flood attack is to detect the misbehaving edge nodes 

overloading the network with malicious BHPs, and take the proper action to 

secure and sustain the QoS performance in an OBS network using ML. This 

chapter investigates the BHP flood attack problem by evaluating a number of 

ML techniques in classifying edge nodes, and determines the most suitable 

method to prevent this type of attack. To be precise, we evaluate Decision Tree 

(C4.5), Bagging, Boosting (AdaBosst), Probabilistic (Naïve Bayes), Rule 

Induction (RIpple DOwn Rule Learner-RIDOR), Neural Network (NN-
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MultilayerPerceptron), Logistic Regression, and Support Vector Machine-

Sequential Minimal Optimization (SVM-SMO) on a real dataset to identify 

the most effective method(s) to combat the BHP flood attack problem in 

OBS networks. 
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CHAPTER 2 

COUNTERING BURST HEADER PACKET FLOODING ATTACK IN OPTICAL 

BURST SWITCHING NETWORKS 

2.1 Background  

Optical network is a modern network technology for transmitting 

information from one place to another by sending light through an optical fiber. 

The light forms an electromagnetic carrier wave that is modulated to carry 

information [1]. These features of optical networks provide high speed and huge 

bandwidth, which make optical networks a viable choice of the Internet 

backbone infrastructure [1]. The popularity of optical networks has led to the 

replacement of traditional copper wires by optical network fibers, and has also 

motivated many enterprises to invest in optical burst switching (OBS) network in 

particular within the past few years.   

OBS network is a promising switching technology for building the next-

generation Internet infrastructure [2, 3, 4]. It represents a trade-off between two 

switching technologies: optical circuit switching [2] and optical packet switching 

[3]. It uses one-way signaling scheme with an out-of-band method, which mean
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the burst header packet (BHP) is sent in a separate channel from the data burst 

(DB) channel. OBS is designed for a better utilization of wavelengths in order to 

minimize the latency (setup delay) and avoid the use of the optical buffers [4].  

OBS transmission technique keeps the data in the optical domain and 

allows for sophisticated electronic processing of control header information at 

another domain. As illustrated in Figure 2.1 (a), the transmission works by 

assembling the incoming data traffic from clients at the edge node (called ingress) 

of the OBS network into what is called data burst (DB). Then a BHP, which 

contains the information about the DB packets, including the burst length, arrival 

time, offset time, etc., is transmitted ahead over a devoted Wavelength Division 

Multiplexing (WDM) channel (out-of-band). The BHP precedes the DB by a time 

known as offset time in order to reserve the required resources and to set up the 

path configuration for the DBs in the core switches [5]. The BHP goes through 

Figure 2.1 (a) Assembling of packets at an ingress node; (b) BHP (O-E-O) 

conversion at a core switch to allocate the resources for the incoming data burst 

in OBS networks. 
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the Optical-Electronic-Optical (O-E-O) conversion at each intermediate node and 

is processed electronically to allocate the resources for the incoming data burst 

into the optical domain [6, 7] as shown in Figure 2.1 (b). OBS data bursts may 

have different lengths, and encompass many types of traffic (IP packets, ATM 

cells, optical packets, etc.). The ingress sends the data in the form of bursts which 

will be disassembled at the destination edge router (called egress).   

Even with all its merits, OBS networks like any other communication 

networks can suffer from several threats. Some of the known threats are orphan 

bursts, redirection of data bursts, replay, BHP flooding attack, fake burst header 

attack and denial of service attack [8].  

In this work, we are interested in the denial of service (DoS) that can be 

caused by BHP flooding attack, and aim to prevent a legitimate BHP from 

reserving the required network resources at the intermediate core switch. This 

type of attack relies on the flooding approach that has been studied in traditional 

DoS against the TCP protocol [9, 10]. For instance, the SYN flooding attack 

intends to exhaust the resources of the TCP/IP stack (e.g. the backlog) of the 

victim host by generating enormous numbers of SYN requests toward the victim 

host without completing connection setup.  The victim host will be unable to 

accept legitimate connection requests if its backlog is fully occupied by all the 

fake half-opened connections [11]. 
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In a similar way, the BHP flooding attack can subjugate the core switches 

when a malicious node sends large numbers of BHPs into the network without 

transmitting the actual DBs. When a core switch reserves WDM channels for the 

incoming BHPs, it changes the status of the reserved channels from unoccupied 

to occupied. Figure 2.2 demonstrates that when the target node (a core switch) 

receives malicious BHPs, the target node starts reserving new WDM channel for 

each malicious BHP. This prevents a legitimate BHP from reserving the required 

network resources at the intermediate core switch [2]. When a legitimate DB 

arrives and there are no unoccupied WDM channels available, the arrived DB 

will be dropped by the core switch and the reserved channels will be waiting for 

unidentified bursts which may never arrive [12].  

Figure 2.2 BHP Flooding attack on core switches in an OBS networks. 
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This paper proposes a new security model, called the node classifier, which 

is designed to counter BHP flooding attacks. The proposed model has an 

adaptive sliding range window to classify ingress nodes into three classes. This 

classification will be based on the number of lost burst from each ingress node 

during time window to measure the performance of nodes and detect BHP 

flooding attack at preliminary classes. 

2.2 Design of the Proposed Security Model 

In this section, we present our proposed security model designed for BHP 

flooding countermeasure, and it is illustrated in Figure 2.3. In order to combat 

BHP flooding attacks, we study and analyze the behavior of each node to 

discover the point when the node is misbehaving. This can be considered an alert 

to prevent the malicious BHPs from reserving the network resources. The 

proposed security model has several merits summarized as follows: 

 It only requires software modification and implementation, and does not 

require additional hardware.  

 It is easy to be integrated with existing core switches architecture. 

 It is not necessary to modify all the core switches at once for the model to 

effectively work. Incremental deployment of the model can still enhance the 

security of the OBS network. 
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The model works by classifying all the ingress nodes into three possible 

classes, namely Trusted, Suspicious, and Blocked. Initially, the model classifies all 

the nodes into the Trusted class. As time goes on, the classifier changes the class 

assignment of each ingress node based on its observed performance such as 

packet arrival rate and packet dropping rate using a sliding range window. For 

example, if a node is acting normally by sending the BHP with its corresponding 

DB on the expected time (BHP arrival time + offset time), the node will be 

assigned to the Trusted class. However, when the ingress node at some point 

does not send a predefined number of corresponding DBs within the expected 

time, the classifier assigns Suspicious class to the node. In cases when the 

transmitted data do not arrive at all and the packet dropping rate keeps 

increasing, the ingress node will then be assigned to the Blocked class, hence 

subsequent BHPs from this node will no longer be accepted and none of the 

available resource will be reserved for this node. Lastly, in cases of any BHP 

Figure 2.3 The classification process of the proposed model. 
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flooding attack, the classifier will eventually add the compromised node to the 

blocked list. 

An ingress node can redeem itself from the Blocked and Suspicious classes 

back to Trusted by improving its throughput and lowering the packet dropping 

rate, i.e. stopping the BHP flooding attacks. In typical BHP attack, the attacking 

ingress node keeps sending the bogus BHPs. In this case, the core switches that 

place this attacking node in the Blocked class will not be able to forward its BHPs 

and will not allow the node to be allocated network resources. However, when 

the blocked node stops sending bogus BHPs and starts sending legitimate DBs, 

the arrived DBs will be used to redeem the node from the Blocked class.  

2.3 Implementation 

In this section, we discuss the implementation of our classification model 

in detail, and introduce its three main components (data structure, sliding range 

window, and classifier). 

2.3.1 Data Structure 

The model’s data structure is composed of two layers. The first layer 

allows a core switch to store and maintain information about each connected 

port (representing an ingress node) including the following fields: 

1) Port ID. 
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2) Class: The class currently assigned to this ingress node (i.e. Trusted, 

Suspicious, Blocked) 

3) Ingress node array size: The size of the array for each ingress node. The size 

will be incremented by each received BHP and decremented by each 

dropped BHP from the array. 

4) The number of dropped BHPs: This parameter keeps account of how many 

BHPs from each ingress node have been dropped based on the sliding 

range window. 

5) BHP Array: A pointer to the array of the BHPs. The array will be created 

dynamically for memory management purpose.  

The second layer of the model’s data structure is used to store information 

about the BHPs received from each incoming node (ingress node or core switch), 

including the following fields: 

1) BHP_ID: This item is used to check which BHP does and does not have 

corresponding data burst received.   

2) Offset Time: This is the time after which a BHP is considered  part of a 

flooding attack when no more data arrive  



 

17 

 

The primary reason of using this data structure is to efficiently manage 

and store the data regarding each connected node. Figure 2.4 depicts a bird’s eye 

view of this data structure management process. 

 2.3.2 Sliding Range Window 

The proposed classification model utilizes a sliding range window scheme 

that is implemented as a circular queue. The window enables the classifier to 

monitor the behavior of each connected node over short and long periods to 

assign the appropriate and accurate class to each node.  

The size of the window and the number of slots within the window need 

to be considered and configured carefully. Since most network performance 

Figure 2.4 The proposed data structure component of the proposed security 

model. 
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metrics such as throughput or dropping rate are usually calculated in the unit of 

seconds, e.g. transmitted bytes per second, a natural choice of the window size is 

one second. However, a congestion or unexpected high dropping in data traffic 

may happen wherein the number of dropped DB may fluctuate in each slot. For 

example, consider the following worst case scenario in which only one BHP is 

transmitted in one second and the corresponding DB has not arrived, the result is 

100% dropped packet rate in this period. Our classifier will block the node since 

the expected DB did not arrive. For this reason, we have to monitor the behavior 

of the edge nodes over short and long periods of time by computing packet 

dropping rate in each time slot using a sliding range window.  

Moreover, the time range threshold cannot be set too long such that the 

attacker can flood the network within a short period of time and then 

discontinue doing so without being detected. Further, the time range cannot be 

set too short either, otherwise we cannot accurately determine the behavior of the 

node.  Hence, in the case of Trusted class, we divide the window (one second) 

into 10 slots (one tenth of a second for each slot) during experimentations, 

whereas in the cases of Suspicious and Blocked classes, we double the number of 

time slots to 20 to closely monitor the node behavior. 

Within the sliding range window, there are multiple counters for 

calculating the numbers of transmitted and dropped BHPs. We define WS and 
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WE as the start and end of the sliding range window, respectively. The sliding 

range window method often finds the total number of dropped and arrived DB 

packets per slot using transmitted BHPs per slot, and it calculates the dropped 

packets rate per slot or over the entire window. Our model considers each time 

slot and the entire window range W (one second) to monitor the behavior of the 

ingress nodes. Subsequently, each ingress node will be assigned a class based on 

its packet dropping rate.   

Figure 2.5(a) shows an example of counting the number of harmful BHPs 

that its corresponding DB have not been received for a short period (i.e. per slot), 

such as ((0 = slot 1), (6 = slot 2), (5 = slot 3)). Figure 2.5(b) also illustrates the 

number of harmful BHPs for a long period (i.e. per second), such as (S1 through 

S10).  

 

Figure 2.5 (a) Number of dropped DBs in each slot or cycle; (b) number of 

dropped DBs for one second; 0 indicates no DBs has been dropped. 
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2.3.3 Classifier 

The basic idea of the classification model is to detect harmful ingress node 

at preliminary classes. However, what is the appropriate criterion for judging 

whether a node is under a BHP flooding attack? Based on previous research 

studies, i.e. [32, 33], a consistent high utilization of the network resources 

normally greater than 40% is an indication of network’s performance 

deterioration. Moreover, link utilization ratio (the link’s bandwidth being 

currently utilized by the network traffic) is another indicator of possible threats 

to the node. The node utilization can be calculated according to [33] using 

equation (1) 

 Utilization % = (data bits x 100) / (bandwidth x interval)  (1) 

The above two observations are typically used as indicators when a node 

is under a possible threat. In our model, we use 40% BHPs that do not have 

corresponding DB packets received as a threshold for blocking attacks. This is 

since 40% of the resources are reserved by malicious BHPs and are unused. This 

is a condition where we can be confident that the network is under BHP flooding 

attack. Note that this condition is distinguishable from network congestion, since 

in a congested network not only DB packets will be dropped, but BHPs as well. 

When using the 40% utilization as the single boundary of judging whether BHP 

flooding attack this may risk ignoring normal packet dropping cases such as 
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network congestion. Therefore, we split the 40% threshold into two ranges, in 

which the first 20% is considered trustworthy, and the second 20% is considered 

suspicious but allowing the node a chance to redeem itself as trustworthy again 

once the abnormality disappears. We define the class assignment value of the 

node using the following rules: 

 Trusted if: 80%  ArrivedRate  100%. 

 Suspicious if: 60%  ArrivedRate < 80%. 

 Blocked if:             ArrivedRate < 60%. 

Algorithm: Assign Node Class 

Input: Edge Router Number 

Output : Node Class 

Preprocessing: Data Structure and Sliding Window are populated with 

edge router information 

 

STEP 1 

 

Check Class 

IF (Edge Router has NO Class) THEN RETURN 

TRUSTED 

 

STEP 2 Calculate from each slot in the sliding window 

Total number of dropped packets (DP) 

Total number of arrived packets (AP) 

 

STEP 3 Calculate percentage of packet drop rate 

PDR ← (DP / DP+AP) * 100 

 

STEP 4 Assign node class by checking 

IF            (PDR  20) THEN  Class ← TRUSTED 

ELSE IF (PDR  40) THEN  Class ← SUSPICIOUS 

ELSE                                       Class ← BLOCKED 

 

STEP 5 RETURN Class 

 Figure 2.6 the process of classifying nodes 
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Figure 2.6 shows the algorithm process of classifying nodes. The 

procedure uses the sliding range window explained earlier and the classifier to 

assign each node its appropriate value. 

2.4 Evaluation and Analysis 

In this section, we explain the simulation setup and experimental results 

of our model. The simulation is conducted on a modified version of NCTUns 

network simulator to evaluate the performance of the proposed classifier [32]. 

The topology used in the simulation is shown in Figure 2.7, which contains eight 

core switches (3, 4, 5, 6, 7, 8, 9, 10) to simulate an OBS network, two ingress edge 

routers (2, 11), one egress edge router (12), one legitimate sender (1), one receiver 

(14) and one attacker (13). It is worth to note that the attacker node can be located 

in different places of the topology, but we choose to place it near the destination 

in order to emphasize its effect and because the probability of remaining 

undetected is high. Moreover, although our classifier can handle any number of 

Figure 2.7 OBS network topology used in evaluation. 
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ingress nodes and any number of attackers, in our experiments we use only one 

legitimate ingress node and one attacker. This is because we are interested in 

testing our classifier against the BHP flooding attack rather than testing the 

possible congestion in this topology.  

Table 2.1 shows the simulation parameters for the OBS network 

configuration. As for the traffic files, we created ten trace files with incremental 

traffic load rate (0.1 Gbps, 0.2 Gbps, 0.3 Gbps, …, 1 Gbps respectively, where 1 

Gbps is the maximum rate allowed by the simulator for each node) which 

represent the traffic transmitted by the legitimate sender. 

We conducted experiments based on a BHP flooding attacker of varied 

strengths to evaluate and compare our classifier with the default scheme which 

has no security measures. The objectives of these experiments are twofold:  

Table 2.1  

NCTUns Network Simulator parameter of the OBS Network configuration 
in evaluation 

Parameter Value 

Link bandwidth 1000Mb/s 

Propagation delay 1 μs 

Bit error rate 0 

Maximum burst length 15000 bytes 

Number of BHP channels  1 

Number of DB channels 1 

Use of Wavelength Conversion No 

Use of Fiber Delay Line (FDL) No 

Transport Layer Protocol UDP 
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1. Firstly, we want to observe the impact of BHP flooding attack on 

legitimate traffic when no security measure is employed; 

2. Secondly, we want to evaluate the effectiveness of our classifier in 

preventing the BHP flooding attack. 

We start with a lightweight attacker with 0.2 Gbps load. By attacker’s load 

we refer to the network resources collectively requested by the harmful BHPs 

sent by the attacker. Lightweight is relative to the traffic loads of other trace files 

used in our experiments. To increase the difficulty of detection, we make the 

attacker randomly flood the intermediate core switch with a random load of 

malicious BHPs with different interval time, and let the average attacker load 

reaches 0.2 Gbps. We test this lightweight attacker against all 10 trace files, with 

each trace file run three times and calculate the average. The results in terms of 

Figure 2.8 Comparison of percentage of lost packets number in the presence 

of 0.2 Gbps load of malicious BHPs. 
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packet dropping rate are shown in Figure 2.8. From this figure we can see that at 

the beginning when the legitimate traffic load is not very high, the packet 

dropping rate for the default scheme is not high. This is because the attacker load 

is relatively low which still leaves much bandwidth available for the legitimate 

traffic. The dropping rate of legitimate traffic starts at 26% and stabilizes to 

around 55% as the legitimate traffic load increases to 1 Gbps. This is expected 

since the legitimate traffic load becomes gradually higher than the attacker load 

and will request more bandwidth, which, however, has been falsely reserved by 

the attacker.  

The packet dropping rate of our classifier remains low, only around 1%. 

This is because our classifier detects the misbehaving node and assigns it to the 

Blocked class. Once the system blocks the attacking node, all the resources 

requested by the legitimate ingress node are granted and hence the packet 

dropping rate becomes low even for high traffic loads. The 1% of dropped 

packets is due to the period when the attacker was not yet classified into the 

Blocked class at the beginning of the simulation and was granted the resources 

requested by the bad BHPs, which leads to the slight dropping of legitimate 

packets at the initial phase. 

We continue testing with a medium-strength attacker with a load of 0.5 

Gbps, and a powerful attacker with a load of 1 Gbps, which is the maximum load 
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allowed by the simulator for each node. The results for these two cases are 

shown in Figures 2.9 and 2.10 respectively. For the default scheme, the packet 

dropping rate demonstrates similar trend as in Figure 2.8, except that the stable 

packet dropping rate is around 80% for the medium-strength attacker, and 

around 90% for the powerful attacker. These results are reasonable since higher 

attacker load gives the attacker a better chance to reserve the DB channel for 

longer time and may result in higher packet dropping rate for the legitimate 

traffic. By contrast, both Figures 2.9 and 2.10 show that for our classifier, the 

packet dropping rate remains as low as between 1% and 5%, which clearly 

demonstrates the effectiveness of our classifier in stopping the BHP flooding 

attack. 

Figure 2.9 Comparison of percentage of lost packets number in the presence of 

0.5 Gbps load of malicious BHPs. 
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Overall, the experimental results lead us to reach the following two 

conclusions. Firstly, if the BHP flooding attacker is more powerful to transmit its 

bad BHPs to request network resources at a higher rate, it can cause more 

legitimate DB packets to be dropped. Secondly, our classifier can effectively 

prevent the BHP flooding attack regardless of the strength of the attacker. 

Furthermore, the model relies on detecting/preventing the BHP flooding attack 

in time which makes our classifier model perform better. 

2.5 Related Studies 

In OBS network, there are several potential threats including traffic 

analysis, eavesdropping, spoofing, data burst redirection attack, burst 

duplication attack, replay attack, burstification attack, land attack and BHP 

flooding attack [8].  In this section, the focus will be on discussing security issues 

Figure 2.10 Comparison of percentage of lost packets number in the presence of 

1.0 Gbps load of malicious BHPs. 
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related to OBS network and present common threats particularly DoS flooding 

attacks based on the protocol level.  

In traffic analysis or eavesdropping attack, the attacker attempts to gain or 

access some unauthorized information about the target node by passively 

listening to the communication. The attacker in OBS can scan for an open 

vulnerability, and then intercepts active BHPs in order to compromise the 

corresponding data burst. When BHP gets compromised, the attacker will be able 

to analyze and monitor the transmitted information from the compromised BHPs 

which may expose him to the transparent DBs that contain the critical 

information. Passive attackers are hard to detect and can be seen a true troubling 

threat in OBS networks. In [13, 14, 15], the authors propose prevention 

techniques to overcome this type of attacks. 

In data burst redirection attack, the attacker injects a malicious BHP into 

the OBS network, causing the corresponding DB to be redirected to unauthorized 

destination. In OBS network, a DB is configured to follow the optical routing 

path set up by its associated BHP, but it is not able to authenticate the routing 

path of the BHP. If a malicious BHP is injected into the OBS network at a time 

such as offset time, any active DB can be misdirected to an unauthorized 

destination. The authors of [2], [12], [16] developed solutions to fight data burst 

redirection attacks. 
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In burstification attack, the attacker can compromise the ingress node by 

changing the DB size value that was originally recorded in the BHP. Then the 

actual DB could be mishandled as a different DB value according to the modified 

BHP, in which the receiving node will have to inquire for retransmission of the 

burst. This attack can happen at both edge (including ingress and egress) and 

core switches. The attacker will compromise the ingress node and modifies the 

burst size value to a larger size, such that the burst reservation time will increase, 

resulting in longer propagation delay and increased burst setup latency. In [17], 

the authors thoroughly discussed the burstification besides other threats that 

may occur on optical nodes. 

In land attack, the attacker compromises a node by making a copy of the 

BHP, modifying its destination address to the source address, and injecting the 

modified BHP into the OBS network. The result is that the corresponding data 

burst will reach the intended destination and the source itself. Due to this attack, 

some network resources will be wasted in sending the data burst back to the 

source, which in turn will cause some restriction on the sending resource in the 

best possible behavior. In [18], the authors discussed in details this type of attack.  

Research works more relevant to ours include [9, 10], [19], whose authors 

also addressed the problem of preventing BHP flooding attacks that may cause 

DoS. For instance, the authors of [9] proposed a new flow filtering architecture 
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that operates at the optical layer to filter out flooding attacks at early stages. The 

filtering process is performed based on comparing the offset time included in the 

BHP and the actual delay between this BHP and the associated DB. However, 

due to the high traffic rates in optical networks, the proposed flow filtering 

mechanisms cannot be effectively applied. 

In [10], the authors study the denial of service attack resulting from BHP 

flooding attack in the resources reservation protocols. The proposed 

countermeasure module uses the concept of optical codewords to optically filter 

the fake BHP and identify the compromised source node in the network. This 

module can work at the edge node but it cannot optically filter the fake BHP at 

the core switch. Moreover, the module does not perform any system validation 

at the core switch to evaluate the performance of each connected node in the 

network based on packet arrival rate/packet dropping rate and 

allowing/blocking security rules. 

In [19], the authors proposed a prevention mechanism to detect BHP 

flooding attack in TCP over OBS network. This mechanism is limited based on 

the statistical data collected from packets, and the threshold is not well defined 

to justify whether the behavior of the node is normal or under an attack. 

Moreover, the solution proposed by the authors increases the end-to-end delay 

which reduces the performance of the computer network with respect to its 
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associated Quality of service (QoS) variables. [19]’s prevention mechanism only 

reduces the trust value of the node until it reaches a value below the threshold. 

However, there is no real or immediate action to stop the attacks before they 

occur.   

It is worthy to note that flooding is a very common way to launch 

distributed denial of service (DDoS) attacks, in which the distributed attacking 

sources simultaneously transmit an overwhelming amount of malicious 

unwanted traffic toward the victim machine to congest the victim’s network and 

drain the victim’s communication and computation resources. Many approaches 

have been proposed to address DDoS flooding attacks, such as rate-limiting 

schemes [20,21,22,23,24,25] and IP traceback schemes [26,27,28,29,30,31]. 

However, the main purposes of these schemes are to identify the attacking 

sources and restrain them from sending excessive traffic. By contrast, the 

problem with BHP flooding attacks is that the attacking sources, whose identities 

are already known to the core switches, do not send out the corresponding data 

burst traffic after sending BHPs to reserve network bandwidth. This major 

difference deems the rate-limiting and IP traceback schemes unfit for addressing 

BHP flooding attacks. 
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2.6 Summary 

In this work, we proposed a new security classification model for 

countering BHP flooding attack with an adaptive sliding range window to detect 

nodes based on their behavior. The classifier enables core switches to measure 

the performance of incoming nodes and detect BHP flooding attack. The 

simulation results show that our proposed classifier is effective in preventing 

BHP flooding attack. They show that the overall packet dropping rate when the 

classifier is used is less than 5% in all traffic load cases under BHP flooding 

attack. This is a remarkable improvement over the default scheme that employs 

no security measures, which results in up to 90% packet dropping rate. The 

proposed classifier has been studied with various scenarios with different cases 

to demonstrate its capability of securing the OBS network from BHP flooding 

attack, such as critical links in the network. We note during experimentations 

that our classifier not only can secure the core switches in the OBS network, but 

also has the potential to improve the QoS performance of the OBS network. In 

the near future, we will extend the solution to increase the performance of our 

current model and add QoS improvement features for OBS networks based on 

the node classification. 
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CHAPTER 3 

DECISION TREE RULE LEARNING APPROACH TO COUNTER BURST 

HEADER PACKET FLOODING ATTACK IN OPTICAL BURST SWITCHING 

NETWORKS 

3.1 Background 

An Optical Network (ON) is a common network for transmitting data 

from source to destination via an optical fibre medium using light [1]. Featuring 

efficient quality performance indicators such as bandwidth and speed in contrast 

to traditional networks, ON is the preferable option for Internet infrastructure 

[2].  In order to make use of the huge bandwidth of ON, Optical Burst Switching 

(OBS) was proposed in [3] as the next generation of optical switching technology. 

Once it has obtained the User Datagram Protocol (UDP) packets, OBS network 

will assemble the packets from the clients at the edge nodes (ingress node) into a 

data burst (DB) and a burst header packet (BHP) will be transmitted in advance 

in order to preserve the network resources required before the DB is actually 

sent. However, an attacker can exploit this fact and can make an ingress node 

(source node) overloads (flood) the network with BHPs that reserve the 

resources without transmitting the actual DB [4]. It is important therefore, to
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ensure that prevention of BHP flooding attacks is set as a high priority in OBS, as 

it could severely reduce the performance of the entire network and eventually 

cause a Denial of Service (DoS) [5].  Despite the many advantages of the OBS 

network such as resiliency, bandwidth efficiency as well as its economic benefits, 

QoS and security can become issues for these networks, with consequences 

including burst loss as a result of BHP flood attacks [35, 10]. Attacks of this type 

are reliant on the flooding approach which has been examined in traditional DoS 

against the TCP protocol [11]. 

A limited number of studies exist in relation to dealing with and 

preventing issues caused by BHP flood attacks within OBS networks (such as, in 

[9, 10, 35, 36]). For example, [9] proposed a flow filtering architecture operating 

at the optical layer to filter out BHP flood attacks at an early stage. The filtering 

process is performed through a comparison between the offset time included in 

the BHP and the actual delay between this BHP and the associated DB. In [10], 

the authors examined the issue of DoS within the resources’ reservation 

protocols. This countermeasure adopts the method of using optical code words 

which filter out fake BHP in order to identify the compromised source node 

within the network. In [35] meanwhile, the authors proposed a prevention 

method which was built by gathering statistical data from packets used to detect 

a BHP flood attack in TCP within an OBS network. In [36], the authors proposed 
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and developed a new security model which could be integrated within an OBS 

core switch architecture to prevent BHP flooding attacks. Using a 

countermeasure security model enables the core switch of the OBS to classify the 

ingress nodes according to their behaviour in addition to the amount of reserved 

resources not being used. A malicious node which causes a BHP flooding attack 

can be blocked using this model until the risk is disappeared. The issues with 

these methods however is that they do not use the machine learning (ML) 

techniques which are available to identify edge node behaviour in order to 

counter the risk of BHP flooding attacks. These methods also contain their own 

faults and can be limited in their execution and therefore need further 

authentication.  

This study will examine the problems of DoS resulting from BHP flooding 

attacks in which legitimate BHPs are prevented from preserving network 

resources for legitimate DBs. The ML architecture we have developed features 

sets of beneficial learnings gathered from past simulations carried out using a 

reduced number of features including the bandwidth used, the average packet 

drop rate as well as the average delay time per second and other factors (further 

details are presented in Section 3.3). One of the most encouraging data analysis 

methods used by researchers for prediction is ML [37]. It features intelligent 

techniques in order to complete a specific task which is usually linked to 
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knowledge building or isolating patterns which are concealed [38]. Little 

research exists around the classification of edge nodes in preventing BHP 

flooding attacks within OBS networks. A large proportion of this research related 

to classifying traffic of computer networks through the use of ML, for example 

[39, 35, 40, 41], are not solely focused on the classification of BHP flood attack 

within OBS networks. Through our study, we find that ML can have a vital 

function in preventing BHP flood attacks, resulting in improved QoS. These 

results from the prediction decision used in ML techniques rely on automated 

knowledge learnt, which can impact the predisposed decisions made by users, 

leading to improved predictive accuracy. 

Classification is one of the most frequent ML tasks which require the 

prediction of a target attribute [42]. Classification related to building a model (the 

classifier) using a recorded set of data along with a number of variables using 

data processing, and then using the classifier in order to predict precise attributes 

(the class) within the hidden dataset [43]. In relation to the issue of BHP flooding 

attacks, the edge nodes can be classified into pre-defined classes, e. g. Behaving 

or Misbehaving, meaning that this issue can be classified within predictive tasks, 

and of course, classification.  The key objective therefore will be to forecast the 

type of edge nodes involved in order to prevent the risks associated with 

occupying network resources with improper use.  
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Of the different classification approaches used within various domains, 

the rule extraction from decision tree models is one of the most effective [44]. 

Decision tree models are a type of classification method which is cleverly built 

using an information theory approach [45].  For example, [46] used Entropy and 

Information Gain methods to build decision trees within an algorithm labelled 

C4.5. Using the training dataset to form the tree, every individual path stemming 

from the root node to the leaf represents a corresponding If-Then rule.  

In this Chapter, we have investigated the potential of machine learning in 

countering the risk of BHP flood attack problem. In particular, we have proposed 

and developed a new series of rules using the decision tree method as a way to 

prevent the risks of the BHP flood attack problem. Firstly, the decision tree 

method proposed will build a binary classification model which can classify the 

edge nodes into two classes (Behaving and Misbehaving).  Hundreds of 

simulation runs were used in order to collect the data to build the binary models, 

gathering the various attributes associated with how the edge nodes perform. It 

worth to note that the use of only two types of classes (binary) is intended for the 

researchers and developers who are interested in security of OBS networks and 

want only to identify suspicion nodes (Misbehaving). Next, the classification 

models were improved through splitting the Misbehaving class into further sub-

class labels as we desired to establish a priority procedure for data transmission 
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from the edge nodes (further details provided in Section 3.4). The proposed 

classification rule models were evaluated using different metrics to measure the 

overall performance of this approach. The experiments showed that using rules 

derived from the decision trees did indeed counter the BHP flooding attack 

problem and enabled the automatic classification of edge nodes at an early stage. 

3.2 BHP Flood Attack as Classification Problem 

In the field of artificial intelligence, ML is regarded as one of the most 

popular areas of research, and used for data analysis in various applications [42]. 

In recent years, researchers in the field of artificial intelligence and ML have 

developed several analytical methods which are directly concerned with the 

classification of datasets generated within various business areas. Some of the 

ML methods include Decision Trees [46], Greedy Induction [47], Associative 

Classification [43], Neural Network [47], Probabilistic [48], and Support Vector 

Machines [49]. Common ML methods tend to separate classification into three 

different sub-tasks, which are:  

 Learning: Learning involves the tasks of executing data processing on the 

dataset entered. One example is the associative classification method, in 

which class association rules, if they exist, are identified using an 

association rule algorithm. Meanwhile, decision trees will single out the 
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different input variable using Entropy (see Equation 4) in addition to a 

support vector machine method tries which will recognize a clear line 

within a hyper plane to identify the possible characteristics of the target 

class.  

 Model Building: This task is related to the building of a predictive model 

using the results of the previous task. The ML method will sometimes 

change the results of the learning task through retaining key elements to 

build the predictive model. For example, decision trees will prune 

pointless branches to cut down overfitting.  

 Class Forecasting: This task will use the ML method to measure the built 

model’s success rate in predicting the test data’s class values. The results 

of this step are used to serve as the model’s error rate or establish the 

negatives, model efficiency, classification accuracy and other factors.  

When a core switch within an OBS network reserves the wavelength 

division multiplexing (WDM) channels for the incoming BHPs, it will alter the 

status of these channels from unoccupied to occupied. If a core switch becomes 

the target of a BHP flooding attack and receives malicious BHPs, it will begin to 

reserve new WDM channels in correspondence with each received malicious 

BHP. This will prevent a legitimate BHP from reserving the essential network 

resources at this intermediate core switch [2]. If a legitimate DB becomes present 
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and no WDM channels are available, the core switch will drop the arrived DB, 

while the reserved channels will be waiting for unidentified bursts which may 

never arrive [50]. This research will focus on the BHP flooding attacks in terms of 

a classification issue as it is concerned with classifying edge nodes into a single 

type out of a limited number of possible class values such as Behaving or 

Misbehaving. Misbehaving nodes are defined as those send BHPs at a 

substantially higher rate without sending the corresponding DB.   

The definition of the classification problem is based on [51]. The training 

dataset is labelled as         , where     represents the combination of variables 

within the training dataset aside from the class variable, and    represents the 

class variable. A vector        can be assigned one of two disjoint point sets C1 

or C2 within an m-dimensional feature space.        is the ith training data row 

and             represents the ith class value. The aim is to derive a function, F, 

that maximizes the chance that          for each test data. Two-class problem 

(binary classification) is the simplest form of the classification; ci can be either -1 

(Misbehaving) or 1 (Behaving). This means Function      is: 

       
         
        

                              (1)   

In relation to an OBS network, BHP flooding attacks can be prevented if 

edge nodes are correctly classified into the appropriate types, with misbehaving 
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nodes being identified. More specifically, if the determination of the edge nodes 

that reserve network resources without proper use can occur in an early phase, 

then these nodes can be blocked. The blocking of the edge nodes means that the 

other ‘behaving’ edge nodes will be able to effectively reserve network resources, 

improving the resource management and QoS of the network. To deal with this 

issue, it is possible to build a model created from the edge nodes’ previous 

behavior displayed during the simulations. This enables the model to be used to 

automatically place the edge nodes into the right classifications in future 

simulations.    

3.3 The Proposed Rule-based Model for Anti-BHP-Flood Attack 

In this section, we will present the proposed classification architecture and 

its different phases. The various phases which must be included to promote 

classification rules necessary to counter BHP flooding attacks can be seen in 

Figure 3.1. In the initial phase, simulations were carried out to gather data 

relevant to the edge nodes performance indicators, which was then catalogued as 

the training dataset. Next, the training data set was pre-processed to remove 

noise or statistical biases. Once the data is cleaned, a filtering process takes place 

to detect the features which are the most influential, as well as reduce the 

dimensionality of the data. After selecting the features, the decision tree 



 

42 

 

algorithm will process the dataset to build a classification model that will then be 

transformed into rule sets. Any unnecessary rules are then be pruned to 

eliminate any redundant rules. The rule sets are finally applied to classify the 

edge nodes into a number of pre-defined classes against new test cases that had 

the same performance indicators. The following subsequent sections will explain 

the proposed classification architecture in further detail.  

 3.3.1 Understanding the Dataset  

When using ML to prevent BHP flood attacks, establishing the right 

training dataset from various nodes through the simulations remains a 

significant challenge. The domain expert will typically identify many variables 

that will directly and indirectly affect the OBS network which are also relevant to 

the sending performance of the nodes. The first challenge faced is creating the 

training dataset and determining the needed variables that ensure the ML 

Figure 3.1 The proposed rule based classification architecture for BHP flood 

Attack 
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method can be used in order to construct a predictive model. Identifying the 

necessary mechanism for converting the training dataset to the task of 

classification is another challenge. The initial challenge can be addressed by 

recording as many variables linked to the sending nodes as possible while the 

simulator is working. On the other hand, the second challenge can be addressed 

by establishing a new variable, the ‘class’ within the training dataset. Values of 

classes can be assigned using a knowledge base to the variable which is entered 

by domain experts, which will reduce biased data cases and make the building of 

the training dataset more legitimate. A comparison will be made between this 

class and the proposed ML’s predicted class to establish the effectiveness of the 

model in terms of accurate classification  

3.3.2 Training Dataset Preparation 

The right training dataset is very crucial step in order for ML algorithms 

to work as indented.  To prepare the training dataset for the purpose of 

identifying misbehaving nodes that are causing BHP flooding attack, numbers of 

simulations were carried out in order to collect the different variables related to 

the OBS network performance. Significant variables recorded include the 

sending node number, allocated bandwidth, bandwidth used, bandwidth lost, 

packet transmitted, packet dropping rate, packet received, transmitted byte, 

received byte, average delay time per second, and the percentage of BHP 
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flooding attack. For illustration purposes, Table 3.1 lists just four iterations for 

two of the edge nodes. 

Variables’ Descriptions 

 Itr: The iteration number. 

 Node: The edge node label. 

 FB: Initial Bandwidth assigned (given) to each node, the user (usr) in the 

experiments assign these values.  

 UB: This is what each node could reserve from the assigned Bandwidth 

from FB column. The drops here are due to congestions.  

 LB: The amount of lost Bandwidth by each node from the assigned 

Bandwidth at column FB.  

 PSBy: Packets size in Byte assigned specifically for each node to transmit. 

Note: 60 Byte will be added to the 1440 for the IP Header and the UDP 

Header ((Data size 1440 Byte) + (IP Header 40 Byte) + (UDP Header 20 

Byte)) =1500 Byte. 

 PT: Total transmitted packets (per second) for each node based on the 

assigned Bandwidth.  

 PR: Total received packets (per second) for each node based on the 

reserved Bandwidth. 

 PL: Total lost packets (per second) for each node, which based on the lost 

Bandwidth. 

 ByT: Total transmitted Byte (per second) for each node.  

 ByR: Total received Byte (per second) for each node based on the reserved 

Bandwidth. 

 ADTpS: Average Delay Time (per second) for each node. This is (End-to 

End Delay). 

Table 3.1 

Sample four iterations of two edge nodes   
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 PDR: Percentage of Packets Drop Rate for each node. 

 ByLR: Percentage of Lost Byte Rate for each node. 
 

Initially, the edge nodes were classified into only two classes, Behaving (B) 

and Misbehaving (M), as the issue was to identify the misbehaving nodes that 

reserve resources without the right usage and secure the network by the right 

action such as blocking it. We refer to this dataset as the ‘binary dataset’ since we 

have only the two classes B and M.  However, to improve the presentation of 

data further, and to better demonstrate the BHP flood attack scenario during the 

simulations, the binary dataset was augmented and a new dataset (multi-class 

dataset) was created.  The target classes of the multi-class dataset was linked 

with four possible sub-class labels, i.e. Behaving-No Block (No Block), 

Misbehaving-No Block (M-No Block), Misbehaving-Wait (M-Wait), and 

Misbehaving-Block (Block). These were assigned to a new column called “New 

Class: Action” based on the level of BHP flood attacks for 200 runs and using two 

edge nodes.  

In order to increase the statistical significance of the variables by 

smoothing their values and reducing the data variations or sudden drops in an 

iteration for each variable, the initial dataset (binary) and the augmented dataset 

(multi-class) were pre-processed. This was done by computing the average for 10 

consecutive iterations per variable, and for each node as one new data instance. 
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More specifically, for each node variable, the value of the data instance at its first 

iteration was the first 10 consecutive values’ averages in iteration 1 to 10, while at 

iteration 2, the second new instance value is iteration 2-11’s average values, etc. 

Finally, the dataset’s class values were assigned by a domain expert, i.e. (B and 

M) for the binary dataset and (No Block, M-No Block, M-Wait, and Block) for the 

multi-class dataset. The class assignments were based on a rule of thumb on two 

of the variables: the premeditated false resource utilization rate (percentage of 

BHP flooding attack) and the actual packet drop rate. (For more details about the 

simulation setup and the training dataset see section 3.4.1) 

 3.3.3 Feature Selection  

Choosing which features should be used to distinguish between behaving 

and misbehaving edge nodes is another challenge. However, this can be 

addressed through employing feature selection methods to filter the initial data. 

To determine the most relevant features in relation to the problem, a filtering 

method called Chi-square testing (CHI) was applied [52] with the Correlation 

Feature Set (CFS) [47] for verification.  

CHI is often used as a statistics metric and has been employed for use in 

both supervised and unsupervised learning applications to assess input data 

features’ validity. The CHI metric will test two chosen variables to measure their 

level of independence. In many cases, the target class of the input dataset will be 
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one of the variables, while the normal feature will be the other. In relation to the 

classification problem which is under discussion, the type of node (B, M) for the 

binary dataset and (Block, No Block, M-No Block, and M-Wait) for the multi-

class dataset, will be the class, while the feature could be anything from packet 

drop rate, bandwidth used, packet received, or other feature. Either way, the 

selected features will be unrelated to the other, although they will have 

significant links to the other classes being obtained. The CHI’s correlation score is 

given as: 

         
         

                       
.                            (2) 

  Where X is the frequency feature f and class c appearing together, Y is the 

frequency feature, f appears without class c, W is the frequency class c appears 

without feature f, Z is the frequency neither f or c appears, and N is the number 

of instances in the training dataset. 

The result of the CHI was verified using CFS which is known for being a 

more pessimistic form of filtering. CFS is used for verification because it has 

continuous input features (numbers and decimals), as opposed to the categorical 

features of CHI. Therefore, the input dataset needed to be discretized before CHI 

feature selection could be used. As CFS is able to work with both categorical and 

continuous features, it is important to use CFS to verify the dataset. 

 



 

48 

 

3.3.3.1 Feature Selection on Binary Dataset 

Table 3.2 shows the CHI scores from the processed binary dataset. It is 

important to note that four input features have been disregarded as part of the 

discretization process (where numeric variables are transformed into discrete 

variables) – the iteration number, node number, FB, and PSBy (abbreviation 

details can be found in Table 3.1). Once the CHI was applied, acceptable scores 

and high correlation against the class variables were noted in the features of 

“Lost Bandwidth” and “Packet Dropping Rate”. However, when applying CFS 

filtering method for verification before final results are recorded, three features 

seem to survive without the discretization process: “Used Bandwidth,” 

“Average_Delay_Time_Per_Sec,” and “Packet_Dropping_Rate”. Both filtering 

methods have highlighted “Packet_Dropping_Rate”, making the feature appear 

significant and so it has been retained. The “Average_Delay_Time_Per_Sec” and 

“Used Bandwidth” features have also been retained.  The “Lost Bandwidth” was 

discarded since it is the complement for “Used Bandwidth” and it would be 

Table 3.2 

CHI feature selection score generated from the binary training dataset   
CHI Score  Feature Name  

161.236  Lost_Bandwidth 
153.442  Packet_Dropping_Rate 
53.553  Packet_Received 
53.553  Used_Bandwidth 
53.553  Received_Byte 
51.818  Full_Bandwidth 
51.818  Packet_Transmitted 
51.818  Transmitted_Byte 
33.324  Average_Delay_Time_Per_Sec 
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ineffective if both were kept.  Finally, both the iteration number and the sending 

node were also noted.  

From the initial input dataset, three features (columns 3-5 in Table 3.3) 

have been chosen in addition to the iteration#, Node#, and the target class, as 

shown in Table 3.3. Two possible values exist for the target class: Behaving (B) or 

Misbehaving (M), which can be seen in the final column in the table. Table 3.3 

shows only a sample of four iterations for two of the edge nodes (9, 3) which are 

sending data. Each value in the selected features represents an average value 

computed from 10 sequential iterations. This is a vital step to ensure that the 

statistical power is retained and bias is minimized within the node performance 

results. 

 

 

 

Table 3.3 

Sample four iterations of the processed binary training dataset 
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3.3.3.2 Feature Selection on Multi-Class Dataset 

Table 3.4 below details the CHI scores for key variables for the multi-class 

dataset. The BHP flooding attack variable however has been ignored in the data 

processing phase since it has been used to construct the dataset, and thus there is 

concern about overfitting the model with biased results. An over-fitted model 

can generate great performance on the training dataset but a poor performance 

on any unseen datasets; therefore it has been ignored in the data processing 

phase. The CFS filtering method was used to verify the feature selection, 

meaning that the 10-Run-AVG-Drop-Rate remained the CHI and CFS’s most 

common variable. As a result, the selected variables were the 10-Run-AVG-Drop-

Rate and two variables selected through CHI filtering which were the 10-Run-

AVG-Bandwidth-Use and 10-Run-Delay. 

For illustration purposes, Table 3.5 shows how the edge nodes for every 

iteration was used to send data, and included the iterations which predominately 

featured misbehaving actions from both edge node. Iteration #5, for example, 

shows that node 3 has been assigned class = Block, as the BHP sent by this node 

did not contain data (high BHP flooding) meaning that a significant proportion 

Table 3.4 

CHI feature selection score generated from the multi-class dataset 

CHI Score Feature Name 

796 BHP Flood 

503.133 10-Run-AVG-Drop-Rate 

320.271 10-Run-AVG-Bandwidth-Use 

28.117 10-Run-Delay 
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of the BHPs had been reserved without use. However, although the same 

iteration showed misbehaving actions in node 9, the node was still permitted to 

transfer data (misbehaving but no block). Iteration #4 appears more complicated, 

as each of the nodes shows misbehaving actions, but not at the level of a 

significant BHP flood attack. As its dropping rate was smaller, node 9 was given 

higher priority over node 3. Nodes with low packet dropping rates (less than 0.39 

as a result of the rule already produced by the decision tree) would not be 

blocked and would be allowed to send data.  

After the datasets are created and pre-processed, the CHI filtering method 

was used to select the important features and verified using CFS filtering 

method, the next stage is to build the classification model. 

 

 

Table 3.5 

Sample of five iterations of the processed multi-class training dataset 
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3.3.4 Construction of Classification Models  

We propose an anti-BHP flooding attack classification algorithm based on 

decision trees. The proposed classification approach is shown in Figure 3.2. It 

separates data instances into subsets, which are further divided into smaller 

divisions until the subsets are homogenous or the termination condition has been 

met. If at the initial stage the data instances fit into one class (known as a pure 

dataset), a single rule will result to enable prediction of that class (lines 1-3). If, 

however, more than one label is associated with the training data, the 

Information Gain (IG) metric (Equation 3) will be used to determine the tree’s 

root node. This means the algorithm will iterate over the different attributes’ 

values in the training dataset to determine the attribute that has the largest 

information gain in splitting the training data per available class label (Lines 4-5). 

The information gain for each attribute is computed based on Entropy (Equation 

4). Once the largest gained attribute is identified then it be assigned as the root 

node (Lines 7-8), and the training cases are then clustered based on the splitting 

of this root variable. In other words, subsets of the training data are formed 

based on the root node’s possible values (line 9). Then, the same building tree 

function is invoked to on these subsets repeatedly, and the decision tree 

algorithm will keep dividing and clustering the data cases, while leaving 

heterogeneous data cases (conquer) out (lines 10-12). Each of the output tree’s 
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Input: Training dataset (T) and Tree { } 

Output: Classifier with rules CL 

Build_Tree (T) 

1) If T has one class 

2)    stop 

3) End if 

4) For each variable v    Do 

5)  calculate the information gain from splitting on v 

6) End for 

7) v_Max = The variable with the largest calculated 

information gain 

8) Tree = v_Max is added as a root node 

9) Tv = subsets of T that includes v_Max 

10) For each example in Tv Do 

11)    Treev= build_Tree (Tv) 

12)    Tree  Treev 

13)    Pruning function  

14)    Predict test cases  

15) End for 

Figure 3.2. Build_Tree algorithm for constructing a classification model 

nodes represents the features needing classification, while the values of the 

features are represented by the branches. Once the initial tree is built and the 

algorithm terminates the training phase (lines 1-12) the algorithm invokes a 

pruning procedure that prunes unnecessary branches in the tree without 

hindering the overall tree forecasted accuracy. 

                                                        
 
                       (3) 

                                                                                                                (4) 
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where 
cP  = Probability that T belongs to class l, Tf = Subset of T for which feature 

F has value fa. , |Tf| = Number of examples in Tf, and |T| = Size of T. 

Once the tree reaches a point where it cannot grow further, the building 

process will stop. One potential condition for termination involves growing the 

node continuously until every data instance is connected to the same class, or that 

similar values are shared by the data instances. The algorithm deals with many 

issues.  The nominal and continual variables are handled by the classification 

algorithm, which means it is effective for noise tolerance. The algorithm also deals 

with the missing values and considers them important, and thus they can be 

estimated using probabilistic weights. For a specific variable (feature) with a 

missing value, each of its branches is given a weight based on its corresponding 

estimated probability after splitting that variable. For instance, if we have one 

variable “Gender” which has two possible classes in a problem (Yes, No) with 

missing values. If, through branching Gender, we have 100 instances - 70 

associated with Female and 30 associated with Male, the weights assigned to the 

classes for this variable are 70/100 and 30/100. Now, when we get a data example 

without gender (missing value), this can be estimated at being weighted 70% 

(female) and 30% (male). This enables us to allocate more than one class with this 

data example, i.e. Yes and NO with weights 0.7 and 0.3 respectively.  
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The classification algorithm deals with overfitting by preventing the tree 

from growing once it reaches a certain point; to prune redundant partial trees 

does not contribute to overall predictive performance. The algorithm employs 

sub-tree replacement by replacing these unnecessary nodes with leaves. A post-

pruning procedure involves testing pairs of nodes with the common parent to 

verify whether joining them together would possibly improve the Entropy by 

less than a predetermined value. If so, the leaves are merged into a single node 

with all possible outcomes. Equations 5 and 6 give more insight about sub-tree 

pruning.  

      
            

  
                                                                                             (5) 

where vN  is the number of training cases at node v and cvN ,  is the number of 

training cases belonging to the largest frequency class at node v. The error rate at 

sub-tree T is calculated as  

      
             

          

             
                                                                                            (6) 

After constructing the decision tree out of the training dataset, every path 

from the root node to the leaf of the tree will then be converted into If-Then 

classification rules. There are three reasons for this conversion: 
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1) The classification system will be easy to understand, making the rules 

manageable to allow network administrators to comprehend how BHP 

flooding attacks work, as well as the possible issues arising.  

2) Data priority and blocking policies will be developed as a result of 

determining the sending behaviour of the edge nodes during the primary 

stages.  

3) Overlapping and redundancy within the rules can be identified by the 

network administrator, allowing processes for rule pruning to be 

developed.  

For illustration purposes, the process of converting the tree into rules is 

explained in Figure 3.3, which represents a simple decision tree for the binary 

classification of nodes. In the figure, the nodes are represented as rectangles 

while leaves are shown as circles. The root node represents the feature that best 

divides the cases, i.e. “10-Run-AVG-Drop-Rate”. Classification based on the best 

features continues until a parsimonious representation is obtained. In this 

example, once “10-Run-AVG-Drop-Rate” was chosen, the first branch was based 

on values less than or equal to 0.38. This split leads to the second variable, “10-

Run-AVG-Bandwidth-Use”. The variable then splits on values larger than/equal 

to 0.80 and values less than 0.80. Each of these splits reaches a leaf node that 

denotes the possible class. In Figure 3.3, the tree consists of two variables, the 
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class (B, M), and three possible rules. Each of these rules denotes a path from the 

root node to the leaf node. Decision trees are useful given their representation for 

classification problems, which constitutes a large portion of everyday 

applications. 

The following reasons demonstrate why a decision tree was chosen as a 

way to create the models: 

1) Decision tree models have been previously used by many researchers to 

solve classification problems, i.e. [53, 54], etc. They offer high performance 

in terms of classification accuracy and in different application fields. 

2) Decision tree models are easy to understand since they can easily 

transform into a knowledge base that contains a set of If-Then rules. Recall 

then, that each path from the root to the leaf denotes a rule. The novice 

Figure 3.3 Decision tree model example. 
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user, or even domain experts, will be more interested in the rationale 

behind any predictive decision rather than just the predictive decision 

itself. Since the models contain rules that are easy to interpret and 

manage, these models can be extremely useful in decision making by end-

users when compared with models derived by other ML approaches such 

as support vector machines, probabilistic, or neural networks. 

3) The availability of decision tree models in ML tools such as R [55] and 

WEKA [56] means that researchers do not have to re-develop them, which 

saves a significant amount of time. 

3.3.5 Prediction of Test Cases  

Finally, the proposed classification model will use the established rule sets 

to predict the value of each class. We proposed a basic prediction method that 

takes into account the first rule that completely matches the test case variables’ 

values. Alternatively, the algorithm will search for the rule corresponding to all 

attribute values inside the test case, in order for the actual test case to be 

classified. To accomplish the task of prediction, our prediction method covers the 

discovered rules in a top-down fashion and assigns the class of the rule that 

matches the test case variables’ values. If there are no rules fully matching the 

test case, then the class label of the first partly matching rule will be assigned to 
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the test case. If no rules partly match the test case, then the majority class in the 

training dataset is given to the test case. 

3.4 Experimentation and Results Analysis 

3.4.1 Preliminaries  

In this section, we evaluate the performance of the proposed decision tree 

technique on a dataset that consists of a number of simulation runs aiming to 

improve the performance of UDP over OBS networks. All of the variables related 

to the network’s performance were collected by running the NCTUns simulator 

for hundreds of runs on NSFNET topology [32]. One of the advantages of using 

NSFNET topology is that we will have the ability to add and simulate any 

number of nodes in the OBS network. The second advantage is that we will have 

the ability to record all the different cases that might take a place in the normal 

scenario where a single and multiple nodes are placed at different location. 

Furthermore, we will have the ability to position the attacker at any location, 

observe the behavior of the attacker and record its effect on other legitimate 

nodes based on its location. Using the NCTUns simulator with the necessary OBS 

modules [32], we collect the data used for classification which resemble the real 

world OBS network for training purpose. Therefore, for the normal scenario, the 

topology used to establish the training dataset in the simulation contains 
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fourteen core switches which linked to an ingress or egress (edge routers) and 

then linked to a legitimate senders or receivers (Host-PC). As mentioned earlier, 

the location of the ingress and egress edge routers are randomly chosen in order 

to examine the network’s performance of multiple nodes at different location in 

the OBS network. The following strategy has been developed to create the 

training dataset. 

1) Set the duration of the simulation to 10 minutes and the number of edge 

nodes to M. 

2) Record the different variables (see Table 3.1 for details).   

3) The edge nodes’ bandwidth capacity varied during the simulations in 

order to assess different situations. This is done to ensure all possible 

cases – normal, contention and congestion are covered.  

4) Repeat for N number of the simulations.  

Initially, we record the performance of each individual node with only 

one sender and one receiver. For each simulation run, the bandwidth of the node 

was assigned to 100 Mbps and then incrementally increases to 200 Mbps, 300 

Mbps, 400 Mbps, until we reach the maximum bandwidth of the simulator which 

is 1000 Mbps. This is in turn to record and observe how much traffic each node 

can transmit based on its distance from the receiver when assigned different 

bandwidth. Afterwards, we start by randomly adding more senders and 
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receivers, increasing the bandwidth of nodes at each simulation run (100 Mbps, 

200 Mbps, 300 Mbps ...1000 Mbps) and simultaneously making the nodes 

transmit as much packets as it can in one second. This is in order to observe all 

the variables related to the node’s performance i.e. (packets drop rate), the 

amount of traffic which has been transmitted by each node and also to 

distinguish between the normal, contention, and congestion scenarios during the 

simulation for each run. On the other hand, for the attacker scenario, we 

duplicate the same topology but this time by randomly placing the attacker at 

different location. This is for the aim to record the node’s performance and 

observe the affect of the attacker on the legitimate node when placed on different 

locations.  

During the simulations, the network load was adjusted in each simulation 

run, featured random (attacker node) and static (legitimate node) traffic for the 

number of nodes to assess the classifiers’ effectiveness. In addition, the attacker 

node can be located in different places of the topology; hence we randomly place 

it at different locations to seek its true performance on the OBS network. 

Moreover, although our topology can handle any number of ingress nodes and 

any number of attackers, in the experiments we used single, multiple legitimate 

ingress nodes and one attacker in each simulation run since we are interested in 

testing the classifiers against the BHP flooding attack rather than testing the 
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possible congestion in this topology. Every wavelength channel has 1 Gbps of 

bandwidth capacity (1 Gbps is the maximum rate allowed by the simulator for 

each node) which represent the traffic transmitted by the legitimate sender. Each 

WDM link has one control channel for BHPs and two data channels for DBs. The 

wavelength conversion capability was not assumed at the core switch.  

Table 2.1 shows the simulation parameters for the OBS network 

configuration. As for generating the traffic, the UDP traffic was transmitted using 

the greedy mode (which transmits the maximum number of packets) with an 

average packet size of 1500 bytes and duration of one second for each run. On 

the other hand, the attacker’s traffic have been generated using the simulator, but 

without pre-setting values. Situations for the edge nodes that (in simulation 

runs) would end up in random levels of BHP flood attacks were created. A point 

has been made to show scenarios in which there are occupied resources in the 

OBS network without utilization with different occupancies. The simulator may 

run for several minutes to achieve the result for “one second” depending on the 

load assigned.      

For the learning process, we used supervised learning approach. This is 

since we are aiming to build a predictive model to counter the BHP flooding 

attack problem using the data collected from previous performance results of the 

edge nodes during a number of simulation runs. Supervised learning involves 
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processing datasets to learn the classification models that are then utilized or 

used to automatically classify edge nodes during a future simulation run to the 

right class. The learning during the data processing phase is often guided toward 

a target variable called the class label and hence the model generated only 

predicts the target class variable. A common example of supervised learning is 

loan approval application in banking which aims to either approve or reject loans 

submitted by clients.  

Since we are seeking to identify the behaviour of UDP over OBS networks 

by predicting the behaving ingress nodes from the misbehaving ones, supervised 

learning approach was adopted to accomplish this task. In supervised learning, 

an input data with several input variables plus a target class label is needed.  The 

input data in our case consists of different performance indicators related to the 

UDP over OBS networks that have been formed and a target class label (as 

previously discussed in section 3.3.3). This data is basically called a training 

dataset and it is used as an input to the supervised learning algorithm to  

a) Discover useful correlations between the performance indicators and the 

class label 

b) Construct a classification model (classifier) that can be utilized to forecast 

the class label value in test cases 
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The supervised learning algorithm utilized to build the predictive model 

is based on useful If-Then knowledge base derived by a proposed decision tree 

algorithm (Sections 3.4.2 and 3.4.3 gives further details). To test the proposed 

classification algorithm and its types of feature selection, the WEKA ML tool was 

used [56]. WEKA is an open source Java platform implemented at Waikato 

University of New Zealand. The platform features various techniques for data 

analysis and can be used to perform a number of tasks including visualization, 

predictive and descriptive tasks. Classification, rule association, clustering, time 

series, regression and feature selection are some of WEKA’s techniques. 

In order to calculate the measure of evaluation during the building of the 

predictive models, a ten-fold cross validation evaluation approach was adopted 

[37]. In ML testing, this is a popular method as it can help to reduce overfitting 

within the training dataset. Overfitting typically occurs when the learning 

method over-trains on the input dataset to maximize the predictive performance 

of the resulting models. This leads to the serious issue of displaying effective 

performance on the training data, but poor performance on any test data, and 

thus the models’ performance cannot be generalized, with the models being 

rejected. The ten-fold cross validation process works through splitting the 

training data set into ten partitions. The classification algorithm is trained on 
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10-Run-AVG-Drop-Rate < 0.395560763 

|  10-Run-AVG-Bandwidth-Use < 0.8003310674999999: B 

|  10-Run-AVG-Bandwidth-Use >= 0.8003310674999999: M 

10-Run-AVG-Drop-Rate >= 0.395560763 

|  10-Run-AVG-Drop-Rate < 0.410186542 

|  |  10-Run-AVG-Drop-Rate < 0.4060369875 

|  |  |  10-Run-Delay < 5.5215E-4 

|  |  |  |  10-Run-Delay < 5.237E-4: M 

|  |  |  |  10-Run-Delay >= 5.237E-4: B 

|  |  |  10-Run-Delay >= 5.5215E-4: M 

|  |  10-Run-AVG-Drop-Rate >= 0.4060369875: B 

|  10-Run-AVG-Drop-Rate >= 0.410186542: M 
 

Figure. 3.4. The initial binary classification model. 

 

nine partitions and then evaluated on the remaining partition. The procedure is 

repeated 10 times and accuracies derived at each run are averaged. 

All experiments have been conducted using a computing machine with a 

2.3 GHz processor. C4.5 decision tree algorithms have been used for data 

processing to derive the predictive models for the BHP flooding attacks [46]. 

Finally, as discussed previously, CHI and CFS WEKA filters were used for 

feature selection [52, 57]. 

3.4.2 Results on the Binary-Class Dataset 

After the training dataset has been processed and the features have been 

selected, the decision tree algorithm was applied to the binary-class dataset in 

order to generate a predictive model for classifying the edge nodes into the 

appropriate categories. Two categories, the Behaving node (B) and Misbehaving 
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node (M) were featured in the primary dataset. The primary predictive model 

(featuring three variables and the class) can be seen in Figure 3.4. 

The classification model’s effectiveness is typically measured using either 

the classification accuracy or the error rate, which can be seen in equations 7 and 

8. Using these metrics, the test data is allocated a predicted class by the model. 

When the test data class results are similar to a models’ predicted class, a correct 

classification is recorded. Otherwise, a misclassification is counted. For test data 

with N data instances, the classification accuracy denotes the proportion of the 

correctly classified data instances from N, whereas the error rate is the 

proportion of misclassified data instances from N.  A 93% accuracy of the binary 

decision tree model was recorded, meaning that centred on the nodes behaviour 

dataset, it could correctly assign almost 93% of the data instances into the correct 

categories, misclassifying 16 instances. The reason why many of the 

misclassifications occurred was due to a behaving/misbehaving overlap in the 

dropping packet average rate. More specifically, an average packet dropping rate 

of between 32% - 40% was observed in 75% of the misclassified instances. The 

rest of the misclassified instances resulted from exceptional cases, such as when 

there was a high dropping rate caused by congestion rather than BHP flood 

attacks. It can also be due to uncertain behaviours in sending packets from the 

edge nodes, including packet delays or bandwidth usage.  
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The binary classification model produced from the network dataset 

contains three features. These features helped in the generation of several 

automated rules that have been extracted from the tree model. After rule-

pruning, these rules are described as follows:  

1) IF 10-Run-AVG-Drop-Rate < 0.395560763 AND 10-Run-AVG-Bandwidth-

Use< 0.8003310674999999  

THEN Class = B (205 cases classified correctly and 6 cases incorrectly)  

2) IF 10-Run-AVG-Drop-Rate < 0.395560763 AND 10-Run-AVG-Bandwidth-

Use >0.8003310674999999 

THEN Class = M (2 cases classified correctly and 1 case incorrectly)  

3) IF 10-Run-AVG-Drop-Rate is between (0.395 & 0.41) AND 10-Run-Delay is 

between (5.5215E-4 and 5.237 E-4)  THEN Class = B  (2 cases classified 

correctly and 2 cases incorrectly)  

4) IF 10-Run-AVG-Drop-Rate is between (0.395 & 0.41) AND 10-Run-Delay > 

5.237 E-4) 

THEN Class = M (22 cases classified correctly and 3 cases incorrectly)  

5) IF 10-Run-AVG-Drop-Rate is between (0.4060 & 0.4101)  

THEN Class = M (4 cases classified correctly and 0 case incorrectly) 

6) IF 10-Run-AVG-Drop-Rate > 0.41  

THEN Class = M (147 cases classified correctly and 4 cases incorrectly)  
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The above shows that rules 5 and 6 can be combined into one rule 

showing that “IF 10-Run-AVG-Drop-Rate > 0.41 Then Class= M Otherwise Class= 

B.” However, the number of errors when merging this rule increases from four 

misclassified instances to 10.  To remove noisy feature-class correlations, pruning 

was used to improve the initial decision tree, which produced the following 

important rules:  

 IF 10-Run-AVG-Drop-Rate <= 0.395522 Then Class = B (214 cases classified 

correctly and 6 cases incorrectly) 

 IF 10-Run-AVG-Drop-Rate > 0.395522 Then Class = M (184 cases classified 

correctly and 10 cases incorrectly) 

Just 16 misclassifications occurred within the above rules, equating to a 

4.27% error rate using just one feature: 10-Run-AVG-Drop-Rate. While the 

classification accuracy has been improved using two basic rules from the 

decision tree algorithm, the first rule of the initial model has not led to a loss of 

knowledge. Using decision trees and other ML predictive models can help end-

users by providing edge nodes with a binary classification, uncovering 

otherwise-hidden knowledge. This gained knowledge can help automate the 

classification of edge nodes as well as assisting the Network Administrators and 

other domain experts to determine the performance of edge nodes themselves. 
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3.4.3 Results on the Multi-Class Dataset  

Next, a more comprehensive model that contained multiple categories is 

introduced to better reflect the reality of the BHP flood attacks. Following the 

processing of the training dataset and selection of the features, the decision tree 

algorithm was applied to the multi-class dataset in order to provide the 

predictive model for classifying the edge nodes into their correct categories. Four 

categories, the Misbehaving-Block (Block), Behaving-No Block (No Block), 

Misbehaving-No Block (M-No Block), and Misbehaving-Wait (M-Wait) were 

featured in the new dataset. 

The decision tree-rule method was applied for data processing in the new 

multi-class dataset, and seven rules emerged. These rules are displayed as 

follows: 

1. IF 10-Run-AVG-Drop-Rate <= 0.4 Then No Block  

(225 cases classified correctly and 0 cases incorrectly)  

2. IF 10-Run-AVG-Drop-Rate <= 0.509 AND 10-Run-AVG-Drop-Rate <= 

0.416 Then M-No Block  

(33 cases classified correctly and 3 cases incorrectly) 

3. IF 10-Run-AVG-Drop-Rate > 0.515 Then Block  

(58 cases classified correctly and 22 cases incorrectly) 

4. IF 10-Run-AVG-Bandwidth-Use <= 0.53 Then M-No Block  
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(47 cases classified correctly and 9 cases incorrectly) 

5. IF 10-Run-Delay > 0.0009 Then M-No Block  

(17 cases classified correctly and 2 cases incorrectly) 

6. IF 10-Run-Delay <= 0.0007 AND 10-Run-Delay <= 0.0006 AND 10-Run-

AVG-Bandwidth-Use > 0.545 Then M-No Block  

(8 cases classified correctly and 3 cases incorrectly) 

7. Otherwise M-Wait (10 cases classified correctly and  4 cases incorrectly) 

From the new multi-class model, the packet drop rate variable remains the 

most critical for preventing BHP flooding attacks, as it appears in the tree 

model’s first three rules. There is no error rate within the first rule while it also 

encompasses a spread of data instances (i.e. 225), signifying a strong rule when 

trying to identify behaving and misbehaving edge nodes, which can then be 

separated further to isolate the edge nodes which may be leading to BHP 

flooding attacks. Meanwhile, the next rule identified 33 instances correctly versus 

3 incorrect ones. Again, this is a significant rule which showed that data was still 

able to be transmitted, despite the misbehaving edge nodes and therefore was a 

reliable QoS indicator in terms of the average packet drop rate variable of the 

nodes. It is clear in the third rule that as the average packet drop rate goes above 

51.5% in misbehaving nodes, it shows signs of reserving unused resources as a 

result of the BHP flood attacks causing the large part of the packet dropping. 
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1. IF 10-Run-AVG-Drop-Rate <= 0.4 Then No Block (225.0) 

2. IF 10-Run-AVG-Drop-Rate > 0.4 

AND  10-Run-AVG-Drop-Rate <= 0.509 Then M-No Block (112.0/23.0) 

3. IF 10-Run-AVG-Drop-Rate > 0.4 

AND  10-Run-AVG-Drop-Rate > 0.509: Block (61.0/24.0) 

 

Figure 3.5. The multi-class classification model with pruning  

 

This node therefore will be prevented from sending further data. The remaining 

rules generated in the model (rules 4-7) are useful since two additional variables 

have been used: average bandwidth used and delay per second. However, these 

rules are associated with larger error rates and cover a limited number of data 

instances. For example, the last two rules only cover 25 instances, 7 of which are 

misclassified. 

The main feature contributing to BHP flooding attacks remains the 10-

Run-AVG-Drop-Rate with 10-Run-AVG-Bandwidth-Use and 10-Run-Delay 

following next. The multi-class models had a fair predictive accuracy of 83.66%. 

Interestingly, the accuracy increases to nearly 87% if the pruning method is used.  

Moreover, the number of rules shrinks to just three rules in the set, which can be 

seen in Figure 3.5. Just one variable is used within the newly pruned model: 10-

Run-AVG-Drop-Rate. According to Figure 3.5, 225 instances are accurately 

covered by the first rule, making it appear as an effectively predictive rule. There 

were 23 misclassified instances in the second rule out of a total of 135, while the 

highest error rate versus lowest data coverage was found in the third rule. 
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To better visualize the performance of the algorithm, confusion matrix 

(Table 3.6), also known as error matrix, is used [58]. Figure 3.6 shows a decision 

tree model confusion matrix derived from the multi-class dataset. It examines 

both the predicted and accurate class values from the classification as shown in 

Table 3.6, where the different rows represent the actual class instances and the 

predicted classes are presented in the columns [58]. The performance of the 

classification model is usually measured using either the error rate (Equation 7) 

or the classification accuracy (Equations 8).  

                                                                                                                (7) 

                             
       

             
                                                          (8) 

Where TP (True Positive) represents data instances that were predicted 

“Yes” and their actual class is “Yes”, the FP (False Positive) represents the data 

instances that are incorrectly predicted “Yes” and their actual class is “No,” FN 

(False Negative) denotes data instances that incorrectly predicted as “No” but 

have actual class “Yes,” and TN (True Negative) denotes data instances that are 

correctly predicted “No” and their actual class is “No. 

Table 3.6 

Confusion matrix for classification task in ML 

 
Predicted Class 

 YES NO 

A
ct

u
al

  

C
la

ss
 YES True Positive  (TP) False Negative (FN) 

NO False Positive (FP) True Negative (TN) 
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 a      b    c     d  <-- classified as 

224  1     0     0 |  a = No Block 

 0     89   24   0 |  b = M-No Block 

 0     21   30   0 |  c = Block 

 0     9      0    0 |  d = M-Wait 

 

Figure 3.6. The confusion matrix of the decision tree model derived from 

the multi-class dataset 

 

Figure 3.6 shows that the behaving edge nodes have been identified by the 

decision tree method without any errors (224 instances have been correctly 

predicted “No Block,” and they are behaving edge nodes). The misbehaving 

edge nodes were the ones which posed a problem. More specifically, 24 of the 

113 actual misbehaving nodes (not at BHP flood attack levels) were blocked. 

Meanwhile, 21 of the 51 instances were identified as misbehaving, but were not 

blocked and instead were predicted as “M-No Block”. An explanation for the 

misclassifications could be due to the high packet drop rates, but not at a 

significant level for them to be blocked. This means that in some iterations, the 

edge nodes will have reserved network resources, leaving the other portion of 

resources unused as a result of the BHP flooding attack.  

Another notable result in the confusion matrix is that all of the data 

instances that should belong to class “M-Wait”, have been misclassified to class 

“M-No Block”. This is due to two reasons.  The first reason is that a node gets 

classified as M-Wait only if there is a competition on reserving the resources 

between two or more nodes that have high drop rates but not to the point of 
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blocking.  In such case, the node with higher drop rate has to wait since it has 

less priority due to its misbehaviour.  In the experiments, we minimized these 

scenarios having two data channels in the simulator setting since we are more 

interested in the other three sub-class labels; more specifically, the blocking. The 

second reason is the overlapping data between the two sub-class labels (M-No 

Block and M-Wait). While misbehaving behaviour is present within both sub-

class labels and very likely has a high drop rate, the rate is not high enough to 

ensure that the instances are blocked. In this instance therefore, the decision tree 

failed to identify 9 challenging data instances, and instead misclassified them 

into a class which had some similar data instances. To overcome this issue, more 

simulation runs can be performed to have larger data representations for sub-

class labels M-Wait in order to allow the learning algorithm to differentiate 

among the sub-class labels in the resulting tree models.  

It is clear from the confusion matrix that the misbehaving edge nodes are 

the most difficult cases to predict. As a matter of fact, the false positives and true 

negatives presented in the confusion matrix by the decision tree method proves 

that the models derived are not overfitted. This is because during the simulation 

run, random levels of reserving network resources by the sending nodes were 

ensured. By separating the misbehaving class into three possible sub-class labels, 

the reality of the BHP flooding attack issue is exposed, creating errors as well as 
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providing more specific classification for the edge nodes. Transmitting data 

through automatic classification is a key method for ensuring better quality of 

service (QoS) through reserving resources.  

3.5 Related Studies 

In recent years, researchers have been drawn to the significant issue of 

data flow management within computer networks. The problem rested in the 

inability of packet headers to hold enough information to enable automatic 

classification, leading to a low accuracy in labelling traffic flow. Previous studies 

[38, 39] have employed ML methods in order to classify packets and flow within 

the Internet. Meanwhile, few related studies have used ML techniques within 

OBS networks [40, 50]. 

In [40], the authors differentiated between contention and congestion 

problems in OBS networks by classifying data burst losses. The authors 

developed a measure called the ‘number of bursts between failures’ (NBBF), 

which is designed to accurately identify the types of losses. The method applied 

both expectation maximisation (EM) algorithm [59] and Hidden Markov Chain 

(HMC) [60] to a sample of data gathered from burst losses. More specifically, the 

NBBF at egress nodes between two lost bursts is recorded so that the losses can 

be categorized, followed by the use of a HMM classification algorithm in order to 
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identify the kind of loss. The studies carried out show that this hybrid ML 

approach can single out both congestion and contention losses. 

The authors of [50] employed a new form of routing mechanism for JET-

based OBS networks called ‘graphical probabilistic routing model’, which 

identifies less commonly-used links on a hop-by-hop basis through adopting a 

Bayesian network [61]. The algorithm uses neither FDL nor wavelength 

converters at the OBS’ core switch. The simulation results of the study show that 

the adaptive routing algorithm suggested is more effective at reducing the Burst 

Loss Ratio (BLR) in comparison to more fixed methods.  

The authors of [35] proposed one of the earliest uses of ML in order to 

classify Internet data traffic. They used a Naïve Bayes probabilistic method of 

classification [48]. The early training dataset was built using various traffic flow 

identifiers such as flow length, port ID, the time elapsed between two 

consecutive flows as well as other identifiers. Traffic flow was manually assigned 

by a domain expert while the dataset was prepared. Next, the training dataset 

underwent the Naïve Bayes algorithm in order to produce a system of 

classification which would be able to instinctively predict approaching traffic 

flows. Large volumes of data were tested and displayed a 65% accuracy rate 

using the Naïve Bayes method, rising to 95% after some adjustments to the 

dataset, such as the use of feature selection.  
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The authors of [39] examined the issue of data traffic in order to 

strengthen network resource management, doing so through permitting the 

network manager to recognize different data traffic types. More specifically, the 

authors aimed to determine a key issue in relation to network performance in 

terms of source, destination, traffic quantities and so on, with recommended 

actions that the network manager should take. The study involved the collection 

of data traffic features including byte counts, connection duration, packet size, 

interarrival statistics amongst as well as others. Next, they applied the EM 

clustering algorithm to the dataset in order to cluster the traffic flows into a set of 

groups. The results recorded demonstrated that six key clusters, based on single 

and bulk transactions, could distinguish between the traffic flows to allow more 

in depth flow examination. They did not provide information on the 

categorization of the data flows following the clustering process. 

In [41], the authors surveyed the various ML approaches which had been 

used between 2004 and 2007 to classify and manage IP traffic within different 

forms of computer networks. They based their research around the existing ML 

classification methodology, feature selection, model evaluation and type 

learning. Both supervised and unsupervised learning approaches were examined 

using them to complete traffic flow classification across various typical computer 

networks. They examined unsupervised learning using clustering as well as 
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other tested approaches including EM and K-Means. Methods discussed for 

supervised learning included probabilistic (Naïve Bayes), K-Nearest Neighbour 

(KNN) [62], and Genetic Algorithm (GA) [63]. Finally, they examined the various 

evaluation approaches employed in order to judge whether or not the ML 

approaches were effective. 

The ML-based academic studies discussed above have centred on data 

traffic identification, whereas this study is concerned with a completely different 

issue – BHP flooding attack. To the best of our knowledge, this study is the first 

to offer proposals and to develop a decision tree method of classification to 

provide a solution to the issue of BHP flooding attack in OBS networks. Since 

previous studies have not used ML as a way to block misbehaving edge nodes 

which send DBs in OBS networks, we believe a solution is needed in order to 

address this critical issue in the initial phases of BHP flooding attacks. 

3.6 Summary  

Although serving as one of the most promising optical switching 

technology for optical networks, OBS network is a technology that has not 

matured enough for it to be implemented and deployed. The basic idea of OBS 

relies mainly on the concept of sending BHP in advance to reserve the resources 

as well as setting the path for the packets that are aggregated into data bursts at 

the edge nodes.  Compromising an edge node by an attacker and sending BHPs 
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in large volumes without sending corresponding data bursts can lead to a serious 

security issue called BHP flooding attack. Network performance as well as QoS 

can be severely affected by BHP flooding attacks, which is why it is important to 

develop new classification strategies for identifying edge nodes with 

misbehaving sending behaviours at the initial stages.  

This research proposes to use ML to develop a new architecture based on 

decision tree that will accurately and effectively classify edge nodes of OBS 

networks using straightforward If-Then rules. These rules are discovered from 

real data related to multiple performance indicators (variables) recorded by a 

simulator. Initially, the proposed rules are able to classify the sending nodes into 

Behaving and Misbehaving with 93% accuracy. The models that are more 

realistic are then produced after dividing the Misbehaving class into four sub-

class labels in order to further classify this type of node based on data priority. 

Experimentations using multiple edge nodes on a large dataset collected from a 

number of simulation runs revealed that the rules generated by the classification 

algorithm are highly effective in preventing misbehaving nodes from sending 

data, and therefore able to counter the BHP flooding attack problem. More 

specifically, the tree models generated from the binary dataset were able to 

classify edge nodes with 93% accuracy. In addition, the modified decision tree 

models for the misbehaving nodes (multi-class dataset), had an 87% accuracy 
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when splitting the Misbehaving class into four sub-class labels: Misbehaving-

Block (Block), Behaving-No Block (No Block), Misbehaving-No Block (M-No 

Block), and Misbehaving-Wait (M-Wait). This breakdown meant that we could 

develop a fine-grained strategy for data priority for the edge nodes using the 

information gathered from the classification models. In the near future, we 

intend do an experimental study to evaluate several ML algorithms in order to 

seek the one which has the best performance for the BHP flooding attack 

problem. Also, we hope to further improve the classification architecture through 

being able to add further volumes of nodes, while also building the new learning 

algorithm into the simulator. 
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CHAPTER 4 

DETECTING BHP-FLOODING ATTACK IN OBS NETWORK: A MACHINE 

LEARNING PROSPECTIVE 

4.1 Background 

An optical network (ON) is a known medium for data transmission, 

adopting an Optical Burst Switching (OBS) network for the Internet [64]. In an 

OBS network, burst header packets (BHPs) are transmitted in advance to allocate 

enough resources prior to sending the actual data bursts (DBs), ensuring network 

management and Quality of Service (QoS). This enables attackers to flood the 

network with malicious BHPs, reserving the network resources without proper 

use. In this case, malicious BHPs continue to reserve the network resources 

without sending the actual DBs, hindering the performance of the OBS network, 

in some cases causing Denial of Service (DoS) [65]. Therefore, it is essential to 

prevent BHP flooding attacks in OBS networks by blocking misbehaving ingress 

nodes that continuously transmit malicious BHPs, and preventing the legitimate 

BHPs from reserving the required resources at the intermediate core switch.
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Limited research works detecting BHP flooding attacks in OBS networks 

exist, e.g. [9, 10, 65]. In [9], a data flow classification architecture was 

implemented at the optical layer to combat BHP flooding attacks. This method 

distinguishes between the offset time inside the BHP and the recorded delay 

between this BHP and its related DB. [10] utilized optical code words to single 

out malicious BHPs sent by ingress nodes in an OBS network. The authors used 

statistical data analysis related to packets sent and dropped to detect 

the possibility of BHP flooding attacks. [65] developed a new security model to 

be implemented into the OBS core switch to prevent BHP flooding attacks. 

The countermeasure security model can detect malicious ingress nodes based on 

their behavior, alongside the amount of reserved resources that are not being 

utilized, and block any malicious ingress nodes until the threat ceases. The 

reported results using the NCTUns network simulator showed that the security 

method of [65] was able to effectively differentiate among legitimate and 

malicious ingress nodes, thus maintaining good network performance. 

Despite the few recent studies on BHP flooding attacks, the detection rate 

is still low. Further, the entire process relies on the domain experts’ knowledge 

and experience. Therefore, there is a need for a more efficient detection system 

that can engage the core switch in OBS network, thus identifying misbehaving 

ingress nodes in an automated manner as early as possible. One promising 
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approach to accomplish this is the Machine Learning (ML) method. This uses the 

historical performance of source nodes during data transmission to construct 

classification models known as classifiers. The classifiers then predict whether 

the source nodes are sending legitimate BHPs or not, and filter out malicious 

BHPs that might cause flooding attacks. The outcomes of the ML method will 

enable security administrators to quickly block misbehaving ingress nodes until 

they change their behaviors. (It is the firm belief of the authors) that classifying 

ingress nodes using ML to counter BHP flooding attacks is yet to be studied 

within an OBS network.  

This study examines the performance of ML methods to counter the risks 

associated with BHP flood attacks in OBS networks. The problem studied is a 

typical predictive task in classification, in which different variables linked with 

ingress nodes’ performances are collected whilst sending BHPs (in simulation 

runs), and are saved in a training dataset. Examples of variables are not limited 

to iteration number, but can include the sending node label, packets sent, packets 

dropped, delay time, and so on. More details on the complete dataset of variables 

can be found at [66], and are briefly explained in Section 4.3. The ML role 

involves processing the different variables in the dataset to obtain concealed 

information useful for prediction (classifier). This classifier is then used to 

categorize ingress nodes in certain future scenarios as accurately as possible, 
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improving the manual classification which indeed requires care, time and 

experience.  

The ultimate aim of this study is to examine the applicability of ML to the 

problem of BHP flooding attacks in OBS networks. To achieve this, we 

extensively investigated various ML techniques that adopt different learning 

approaches to the research problem considered. We seek to identify the most 

relevant ML technique(s) for solving the issue of BHP flooding attacks, in 

addition to revealing the reasons behind the relevancy. Thus, we endeavor to 

answer the following research questions:  

 Can ML be used as a BHP detection approach in an OBS network? 

 Which ML techniques improve detection rate and time performance?  

 Which ML technique is more suitable to end-users, and why? 

The ML approaches considered in this study are Logistic Regression, 

Naïve Bayes, RIDOR, SVM-SMO, NN-MultilayerPerceptron, C4.5, AdaBoost, 

and Bagging [45, 48, 67, 68, 69, 70, 71, 72]. The diversity of the ML approaches 

strengthens the confidence in the results, hence our recommendations (see 

Sections 4.3, 4.4 & 4.6). The performance of the wide range of ML techniques has 

been measured using different metrics, against a published dataset at UCI 

(University of California-Irvine) repository [73]. Specifically, we utilized 

classification accuracy, classifiers’ construction time in milliseconds (ms), 
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precision, recall, and the harmonic mean among other measures (Section 4.3 & 

4.4 give further details) [74].  

4.2 The Considered Machine Learning Techniques 

Since the BHP flooding attack is a typical prediction problem, 

classification methods in ML seems appropriate to identify malicious and 

legitimate edge nodes. In classification problems, a model called the classifier is 

constructed from historical labelled dataset(s). The learned classifier is then 

employed to forecast the class label in datasets that are unlabeled, known as test 

datasets [43, 75]. The quality of the classifiers extracted by ML methods rely 

primarily on the classification accuracy, as well as other known evaluation 

metrics such as recall, precision, and harmonic mean [38]. In addition, classifiers 

formed after data processing differ based on the ML techniques used. For 

instance, rule induction classifiers contain rules, and Naïve Bayes classifiers hold 

just class memberships in a probability format [76]. In this section, we highlight 

eight different ML techniques that generate different type of classifiers. 

Specifically, we investigate classifiers extracted by Logistic Regression, 

Probabilistic-Naïve Bayes, Rule Induction- RIDOR, Support Vector Machine -

Sequential Minimal Optimization (SVM-SMO), Neural Network-NN-

MultilayerPerceptron, Decision Tree-C4.5, Boosting-AdaBoost, and Bagging [45, 
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48, 67, 68, 69, 70, 71, 72]. The choices of these techniques are mainly based on the 

following facts: 

1) Different learning methodologies are employed for data processing  

2) Different classifier formats are presented to the end-user 

3) Applicability and usage in previous domains in particular computer 

networks, computer security among others, i.e. [43, 75, 77, 47, 78, 79]. 

Steps of machine learning are shown in Figure 4.1, and are briefly explained 

below. 

1) Data pre-processing (Optional): In this step, any noise related to the training 

dataset, such as missing values, duplications, and feature selection are 

completed. The output of this step is a processed dataset.  

2) Training: In this step, the ML technique processes the data for knowledge or 

patterns. In classification techniques, the classifier is constructed in this 

step.  

3) Evaluation: The classifier is evaluated on a test dataset to measure its 

effectiveness. This step results in different evaluation metrics. 

4) Pattern Visualization (Optional): In this step, the outcomes as well as its 

quality measures are presented to the end-user in a non-technical manner 

to ease decision making.  
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The next section briefly summarizes known ML learning approaches that 

this study investigates to be utilized in solving the BHP flood attacks problem. 

4.2.1 Rule Induction - RIDOR 

Rule induction is a classification approach that normally extracts If-Then 

rules in a sequential fashion [76]. Typically, a rule induction technique divides 

the input dataset into splits according to the available class values. Then, for each 

class split, the induction technique learns and derives If-Then rules based on 

mathematical metrics, such as a rule’s expected accuracy (Equation (9)). Data 

examples in a split, for instance A, are positive examples for the class of A, and 

are considered negative examples for the other class labels in the other data 

splits. For a data split, the induction technique builds an empty rule, and then 

adds items to the rule’s antecedent (left hand side/body) until the rule meets a 

termination condition. When this occurs, the rule is generated, and all data 

examples that the rule classifies are discarded. Then, the induction technique 

Figure 4.1. Steps of ML classification technique 
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learns the next rule from the same split until the data split becomes empty. 

Following this, the induction technique moves to the next data split until all data 

splits become empty, or no more rules with acceptable accuracies can be 

discovered [78]. Common rule induction techniques are RIDOR [67] and RIPPER 

[80].  

RIDOR, for example, derives a default rule class, and then learns all the 

exceptions for that default rule using Incremental Reduced Error Pruning (IREP) 

[81], a learning method. An exception is a rule able to forecast the class label 

other than the default class. IREP eliminated one exhausting phase of an earlier 

rule induction technique called Reduced Error Pruning (REP), saving substantial 

training time. In RIDOR, the training dataset is divided into pruning (1/3) and 

growing (2/3) subsets. Then, RIDOR builds incremental rules one at a time. When 

a rule is about to be evaluated for possible pruning, its training data examples in 

the pruning and growing subsets are removed, and the rule gets extracted. 

During pruning, RIDOR considers deleting items from the rule’s body and 

terminates the pruning phase when removing an item from a rule cannot 

improve the rule’s accuracy.  

                                                      (9) 

where P = the # of positive instances covered by a rule r (both antecedent and 

consequent) 
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T= the total # of instances covered by r’s antecedent  

4.2.2 Decision Tree Rules – C4.5 

C4.5 [70] is a decision technique utilizing Entropy and Information Gain 

(IG) (Equations 10-11 below) to construct tree based classifiers for prediction. To 

build a classifier, initially, the IGs for all variables in the training dataset, other 

than the class variable, are computed, and a root with the highest IG is selected. 

The IG is calculated based on how informative a data variable is in dividing the 

examples in the training dataset with respect to the class label. When a root is 

chosen, the algorithm excludes it in the next iteration and repeatedly calculates 

the IGs for the other available variables, until the tree cannot be built any further 

or the remaining data examples are linked with just a single class. In the formed 

decision tree, a path from the root node to any leaf denotes a rule, and the leaf 

denotes a decision (class label).  

                                                        
 
                     (10)  

                                                                                                              (11) 

 where 
cP  = Probability that T belongs to class l, Tf = Subset of T for which feature 

F has value fa. , |Tf| = Number of examples in Tf, and |T| = Size of T.  

 

 



 

90 

 

4.2.3 Probabilistic Methods- Naive Bayes  

In classification, when a test example requires a class label, an efficient 

way to classify the test example is to use NB technique, which is based on Bayes 

theorem. NB calculates the probability of the test example with respect to each 

class label using prior knowledge of the test example’s variables, and their 

appearances with each class in the training dataset. The frequency of each 

variable and the class in the training dataset is obtained in addition to the 

frequency of each class label. Then, all probabilities are multiplied by each other 

and the test data example is given the class with the highest probability score 

(Equation 12 below). NB predicates independent assumptions for variables and 

the class, which is not necessarily true in real application data [82]. Nevertheless, 

this probabilistic technique is highly efficient in deriving classifiers in contrast to 

other ML techniques [83].  

Given a test data example as a vector A = (a1, a2, …, am) where each a is a 

variable, using NB, the conditional probability can be obtained as: 

         
            

    
              (12) 

The test data example will be given the class with the greatest 

probability        . 
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4.2.4 Boosting and Bagging 

Bagging and Boosting learning approaches use the training dataset in 

multiple trails to produce numbers of weak classifiers, that are then merged to 

form a global classifier [84]. The idea is to utilize both the weak and the strong 

classifiers in predicting the class label of test data.  

In Boosting, a weak classifier is simply built from the input dataset, and 

then utilized to assign class labels to the training data examples. The next weak 

classifier is built from the training data, and training examples that have not been 

correctly classified by the previous weak classifier are selected more often to be 

re-classified by the current weak classifier, improving the model’s predictive 

accuracy. The below steps clarify how Boosting algorithms, such as AdaBoost 

[71, 85], work:  

1) Select a base ML algorithm for learning such as a rule based classifier  

2) The base algorithm learns a weak classifier from the training dataset and 

assigns an equal weight for each training data example 

3) When there are misclassification cases (incorrectly classified data 

examples), we re-apply the base ML algorithm, and pay more attention to 

the unclassified data examples to improve the predictive performance  

4) Repeat steps 2-3 until the intended accuracy has been derived  
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5) Merge the weak classifiers to produce a strong classifier 

6) When a test data needs to be classified, use a voting mechanism to assign 

the class label from the strong classifier and the weak classifiers.  

In the Bagging classification approach [72], sample data examples are 

generated for each trail (iteration) from the original training dataset (often with 

the same size of the original training dataset). Then, a base ML algorithm is used 

to generate a classifier from the sample, and the process is repeated a number of 

times. Finally, all derived classifiers are aggregated together to form a global 

(strong) classifier. When test data is about to be classified in the Bagging 

approach, the class is assigned based on a voting mechanism using both the 

global and weak classifiers, similar to the Boosting approach. The difference 

between Bagging and Boosting approaches is that in Bagging, when the data 

sample is produced from the training dataset, the resembling process is not 

reliant on the performance of any previously derived classifiers, as it is in 

Boosting. 

4.2.5 ANN 

An Artificial Neural Network (ANN) consists of interconnected neurons 

that transform a set of input examples into desired output (class) without having 

to reveal the transformation details [47]. The ANN advantage comes from 
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choosing the right numbers of the hidden neurons, and the results often rely on 

the input variables features and weights associated with their interconnections. 

Nevertheless, determining the numbers of hidden neurons and other important 

thresholds prior to data processing is fundamental to the quality of the outcome 

in ANN algorithms. Questions such as, what is the right number of hidden 

layers, epoch size, and acceptable learning rate, among others, need to be set by a 

domain expert in order to generate fair and acceptable classifiers. Overall, 

researchers still utilize train-and-error methods to tune the aforementioned 

parameters since there is no clear methodology for setting these up [86]. ANNs 

utilize sigmoid functions during constructing classifiers, in which weights are 

repeatedly amended to come up with the desired error rate that the domain 

expert had set prior to the beginning of the learning phase. 

4.2.6 SVM 

SVM is a classification approach proposed to enhance the predictive 

performance of classic classification techniques [87]. This approach depends on 

hyperplanes, which divide data examples based on class memberships. The SVM 

learning mechanism sorts data examples using mathematical functions known as 

kernels. A kernel computes the similarity of data examples using the available 

classes in the training dataset [88]. Often, kernels are determined by SVM 

experts, and then utilized for the classification phase.  
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SMO trains SVM on a large quadratic programming (QP) optimization 

problem [68]. SMO decomposes the QP problem into a number of smaller 

problems, and then solves them by avoiding a numerical QP inner loop. The 

computing resource needed in the particular memory for SMO is linear in the 

training dataset size, which permits the SMO algorithm to process larger input 

datasets. Reported experimental results revealed that SVM algorithms such as 

SMO generate high predictive classification systems in multiple domains, 

especially text categorization rather than probabilistic, and induction [87, 89]. 

4.2.7 Logistic Regression  

When the target variable in classification dataset is continuous, (numeric) 

classic ML methods such as rule induction, decision trees, and covering are not 

able to produce a classifier. Linear regression can solve such a problem by 

offering methods describing the training dataset in the context of a predictive 

task, by revealing the relationships between independent variables and the class 

variable (dependent). Unlike linear regression, in Logistic regression, the class 

variable is not continuous, but is rather categorical (predefined possible values) 

[45, 90].  

Logistic regression is formulated based on Equation 5 below:  

  
     

                       (13) 
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where p = probability of Y = 1  

 e = base of the natural logarithm (around 2.718) 

 a and b = inputs parameters of the logistic model 

Due to the curvilinear correlation between p and X, b in (Equation 13) is 

different than b in a typical linear regression model. We can linearize the logistic 

regression model by converting the dependent variable from a likelihood 

(probability) to a logit, as shown in Equation 14. 

    
 

   
                    (14) 

   
 

   
  = logit (log odds) of Y = 1                 (15) 

where 

a and b = inputs of the logistic model 

The logit (Equation 15) is often named a link function, because it gives a 

linear conversion of the logistic regression model.   

4.3 Experimental Setting and Data 

This section investigates the ML algorithm’s performance on a simulated 

dataset generated by the NCTUns simulator for over a thousand runs on 

NSFNET topology [32]. The aim is to enhance the performance of UDP on OBS 

networks by automatically detecting misbehaving ingress nodes that may cause 
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BHP flood attacks, helping to manage the network’s resources. By employing 

NSFNET topology, we can insert and simulate with any number of nodes, in 

order to investigate different scenarios. The simulation parameters for the OBS 

network configuration are displayed in Table 2.1. The simulator may need to run 

for 15 to 45 minutes to obtain the result for just “one second” depending on the 

load assigned.  

All experiments have been conducted utilizing a recently developed 

simulated dataset that belongs to the authors. This can be obtained from the UCI 

Machine Learning Repository (University of California-Irvine) dataset [73]. This 

contains twenty-two variables related to flooding attacks, including the class 

variable. The variables collected during the NCTUns simulator directly associate 

with the OBS network’s performance. The dataset size consists of 1075 examples, 

and each example denotes one iteration (a simulation run) in which an ingress 

node is sending data over the OBS network. Different scenarios, including BHP 

flood attacks without pre-setting values, have been generated during the 

simulation, ensuring that ingress nodes have random levels of BHP flood attacks. 

This is essential to show situations of occupied network resources without 

proper utilization and with different occupancies. During the simulated runs, 

two ingress nodes were used. In addition, for each simulation run, the 

bandwidth of the node was initially assigned to 100 Mbps, and then 
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incrementally increased to 200 Mbps, 300 Mbps, 400 Mbps, and so forth, until the 

maximum bandwidth, i.e. 1000 Mbps, is reached.   

For illustration purposes, Table 4.1 depicts eight variables with five 

iterations exhibiting how the ingress nodes for every simulation run were used 

to transmit data. The table displays iterations that demonstrated behaving and 

misbehaving edge nodes. The dataset contains four possible class labels (Block, 

No Block, Misbehaving-No-Block, Misbehaving-Wait), and thus the problem is a 

multi-class classification. In Table 4.1, at iteration #1, ingress node 3 was 

permitted to send data, since it was classified as a behaving node. Ingress node 9, 

associated with a low BHP flooding rate, was slightly misbehaving, yet because 

of its low packet dropping rate, it was not blocked. However, at iteration #5, 

ingress node 3 was blocked, since this node was causing high BHP flooding, its 

BHPs reserving bandwidth without utilization. At the same iteration, despite 

Table 4.1 

Sample of five iterations of the processed multi-class training dataset 
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node 9 misbehaving, it was still permitted to send data (misbehaving but no 

block). A trickier scenario is illustrated at iteration #4, in which both ingress 

nodes are misbehaving, yet are not reaching a BHP flooding attack. Therefore, 

node 3, due to its higher BHP flood rate, delays until node 9 transmits its data.  

The Waikato Environment for Knowledge Analysis (WEKA) tool was 

adopted to process the dataset using ML [56]. This tool is a Java-based open 

source, containing various methods related to ML, data mining, visulization, 

data filtering, and variable selection among others. For all considered ML 

algorithms, a 10-fold cross validation (10 fold-CV) method was employed during 

the training phase [56]. 10 fold-CV is a common testing method in ML that 

ensures the input dataset splits into 10 folds. The algorithm is then trained on 9 

folds, and evaluated against the remaining fold to generate the error rate. This 

procedure is repeated ten times, and all error rates are averaged to show the 

overall performance of the learning algorithm. The machine used to run all 

experiments is Intel® Xeon with 3.72 GHz 2 processors. 

A number of ML algorithms have been selected to counter the risk of BHP 

flood attacks by detecting misbehaving ingress nodes. In particular, Simple 

Logistic Regression, Naïve Bayes, RIDOR, SVM-Sequential Minimal 

Optimization (SVM-SMO), NN-MultilayerPerceptron, C4.5, AdaBoost, and 

Bagging [45, 48, 67, 68, 69, 70, 71, 72]. We would like to evaluate the classification 
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systems’ predictive accuracies derived from the aforementioned ML algorithms 

on the BHP flood attack problem. The main metrics used in the ML algorithms’ 

comparisons are:  

1) Classification accuracy in % 

2) True Positives (TPs) and False Positives (FPs) 

3) Precision, Recall and Harmonic Mean (F-measure) 

4) Training time measured in milliseconds (ms) to build the classifiers  

5) Classifiers content for the rule induction, Bagging and tree based 

algorithms  

These evaluation measures mathematical descriptions are given below:  

   
  

     
               (16) 

   
  

     
               (17) 

      
      

     
               (18) 

         
     

           
             (19) 

where TP is the number of data examples correctly classified by class A, TN is 

the number of data examples correctly classified by class -A, FP is the number of 

A’s examples incorrectly classified as -A, and FN is the number of -A examples 

incorrectly classified as A. 
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Prior to running the ML learning algorithms against the BHP flooding 

attacks dataset, we pre-processed the dataset using Correlation Features Sets 

(CFS) to determine the most influential features [57]. CFS is a well-known feature 

selection method which heuristically examines the correlation of each feature 

with the class label in order to discard any redundant or low correlated features. 

After running the CFS on the initial dataset, three features (Drop-Rate, 

Bandwidth-Use, BHP-Flood) were identified to be more effective to combat the 

BHP flood attack problem. Hence, we will utilize these features during the 

training phase for the classifiers.  

4.4 Results Analysis 

Figure 4.2 highlights the classification accuracies derived by the ML 

classifiers from the dataset. It is clear from the figure that the Bagging, rule 

induction (RIDOR), and decision tree (C4.5) classifiers have higher prediction 

rates than that of the remaining classifiers. Noticeably, the C4.5 algorithm 

outperformed the remaining algorithms when it comes to predictive accuracy. To 

be exact, its prediction accuracy is 4.66%, 14.52%, 20.84%, 1.68%, 26.42%, 39.07%, 

18.05% higher than those of RIDOR, Naïve Bayes, Simple Logistic Regression, 

Bagging, SVM-SMO, AdaBoost, and NN- MultilayerPerceptron, respectively. The 

superiority of C4.5 may be due to the intensive backward and forward pruning 
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implemented after constructing the tree. C4.5 trims sub-trees that lead to larger 

errors, replacing them with more accurate leaves, resulting in concise, yet highly 

predictive, classifiers. In addition, the C4.5 algorithm triggers an implicit 

discretization procedure based on Entropy, converting continuous variables into 

discrete ones prior to the training phase. This ensures small intervals for each 

continuous attribute, easing the data processing, and ensuring its efficiency. 

Finally, Bagging and RIROD classifiers seem competitive in the decision tree, 

both algorithms using effective pruning procedures to cut down the number of 

rules produced.  

Figure 4.3 displays the classifiers’ sizes for the top three predictive 

classifiers (C4.5, Bagging, RIDOR). It is clear from the figure that Bagging derives 

larger classifiers compared to both RIDOR and C4.5 algorithms. This is due to 

the generation of multiple local classifiers, and the integration step forming a 

Figure 4.2 Classification accuracies in % derived by the ML 

algorithms 
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final tree structure, which may lead to many branches and leaves. The classifier 

presented by RIDOR is the least predictive among those of the three algorithms, 

yet it contains a concise set of rules. For the user’s perspective, a more concise set 

of rules could make it easier for network administrators to understand and 

manually control the BHP flooding attack problem. C4.5, on the other hand, 

offers moderate-sized classifiers that have superiority in classification accuracy 

over RIDOR and Bagging respectively. In fact, C4.5 covered more training 

examples than RIDOR, discovering more rules that may contribute to the 

increase in predictive performance. 

Figures 4.4a - 4.4d show the true positives (TPs), false positives (FPs), true 

negatives (TNs) and false negatives (FNs) respectively for the considered 

algorithms on the BHP flood attack dataset. The TPs and TNs are consistent with 

the classification accuracy rates derived beforehand, in which C4.5, Bagging and 

Figure 4.3 The classifiers’ sizes of RIDOR, Bagging and C4.5 

algorithms 
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RIDOR achieved higher TPs than that of the remaining algorithms. For example, 

RIDOR correctly classified “Block”, “No Block” and “M- No Block” class labels 

without any error. However, for the hard-to-detect cases, i.e. the ones which 

belong to the “M-Wait” class, 28 instances have been misclassified by RIDOR as 

the “M=No Block” label. For the TNs results, AdaBoost algorithm seems have the 

rates because it was unable to clearly differentiate among the four class labels in 

particular M-Wait, which its instances have been completely misclassified to M-

No Block class label. 

Figure 4.4a The TPs of the 

ML algorithms 

 

Figure 4.4b The FPs of the 

ML algorithms 

 

Figure 4.4c The TNs of the 

ML algorithms 

 

Figure 4.4d The FNs of the 

ML algorithms 
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The results of the TPs, TNs, FNs and FPs show that “Block” and “No 

Block” cases are easy to detect by the ML algorithms, but cases that belong to 

class labels “M-Wait” and “M-No Block” are harder to be detected, due to 

overlaps between these two class labels. To be precise, in terms of FPs, the three 

least performed algorithms (AdaBoost, SVM-SMO, Logistic) are associated with 

300, 204, and 254 misclassifications respectively. These figures clearly reveal the 

reasons behind the low predictive rates of these three algorithms in detecting 

difficult-to-classify cases of “M-Wait” and “M-No Block”. To overcome this issue 

of overlapping between class labels, more data cases covering “M-No Block” and 

“M-Wait” are needed, so the ML algorithms can further distinguish between 

them during the learning phase. This is due to the fact that the misbehaving 

nodes are further decomposed in the dataset into three sub-class labels, in order 

to reflect the true nature of the problem and reduce overfitting during the 

learning phase. Moreover, and in terms of FNs, decision tree and Bagging 

algorithms consistently derived good results when compared with the remaining 

algorithms. To be exact, Bagging algorithm only wrongly classified 11 instances 8 

of which belong to the hard to classify class M-Wait. Typically, we do not desire 

to end up with a binary classification problem in which the ML algorithm 

decides whether the ingress node is behaving or misbehaving. However, we do 

aim to understand to which degree the node is misbehaving, and if two nodes 
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are misbehaving, which may be allowed to transmit data, and which should 

delay in using their flooding or network utilization rates. Therefore, it was 

necessary to further split the misbehaving class into multiple class labels during 

the data collection phase. 

Figure 4.5 shows three more types of measures: precision, recall, and F-

measure. The precision results displayed in Figure 4.5 shows a consistency with 

classification accuracy rates, and highlights that malicious ingress nodes are 

harder to be detected than behaving ingress nodes, at least for the dataset and 

algorithms used. Usually, high precision rates, such as in C4.5, RIDOR and 

Bagging, relate to their low FPs. C4.5 achieved the largest precision and 

AdaBoost the lowest. In the precision results, seven out of eight algorithms have 

consistent results when compared to their accuracies, except for the AdaBoost 

algorithm. The precision of AdaBoost declined significantly to 0.397 (39%) due to 

a large number of FP cases, as shown in Figure 4.5. Precision shows the number 

of correctly classified cases from all that have been classified. On the other hand, 

recall results in the same figure denotes the number of correctly classified cases 

in all cases intended to be correctly classified. In the recall results, all the ML 

algorithms have consistent results when compared to their predictive accuracies.  

To have a clearer insight into precision and recall alongside one another, 

we generated the scores when using the F1 measure. The F1 score takes the 
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weighted average of recall and precision (false negatives and false positives) into 

consideration, especially when involving data such as our four unevenly 

distributed class labels. In our study, we can observe that C4.5, RIDOR and 

Bagging still generate highly competitive F1 scores compared to the remaining 

considered algorithms on the BHP flood attack dataset.  

Lastly, Figure 4.6 depicts the runtime in millisecond (ms) taken from the ML 

algorithms in constructing the classifiers. Here, the fastest algorithms were Naïve Bayes 

and C4.5. Naive Bayes uses simple likelihood calculations for all variables in the test 

dataset using their frequencies in the training dataset, hence no rule learning being 

involved. Alternately, the C4.5 algorithm employs fast learning based on computing 

Entropy for the variables in the training dataset to build tree based classifiers. Hence, 

these two algorithms are quite efficient in building predictive classifiers in contrast to 

alternative ML algorithms. The MultilayerPerceptron NN algorithm was the slowest 

algorithm in building the classifier due to the exhaustive search this algorithm employs, 

Figure 4.5 The Precision, Recall and F1 scores of the ML algorithms   
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which is based on pre-setting the desired expected error achieved. This often necessitates 

repetitive training dataset scans. 

4.5 Studies Related to Application of Machine Learning in Detection and 

Classification Tasks 

Despite the scarcity of literature, this section highlights these studies and 

others related to primarily utilizing ML in different types of computer networks 

[40, 91, 92, 93, 35, 41].  

[40] investigated the problems of BHP flood attacks in OBS networks to 

differentiate the types of data bursts, i.e. congestion or contention. A new metric 

named “number of bursts between failures” (NBBF) was proposed to detect 

which type of data bursts losses occur. In the process of classifying these data 

bursts, the authors applied two methods: unsupervised expectation 

maximization (EM) and a supervised Hidden Markov Chain (HMC). Reported 

Figure 4.6 The time in ms needed to build the classifiers of the ML 

algorithms 
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results showed that when both methods are integrated, the accuracy of 

distinguishing among types of bursts losses is increased.  

[91] investigated the Distributed Denial-of-Service (DDoS) flood attacks 

on the transport and application layers, and developed a detection mechanism 

that analyzes the traffic according to types of packets, packet arrival rate and 

server capacity. The detection mechanism relies on recording and monitoring 

information related to address pair (source and destination), the type of packet, 

the port addresses of the source and destination among others. The key to 

success of [91]’s method is the predefined setting value of the server capacity. No 

experiments have been conducted to reveal the pros and cons of the detection 

method of DDoS flood attacks.  

[92] investigated the problems of reducing flood attacks and other service 

attacks in computer networks using ML. These types of attacks normally belong 

to DDoS flooding attacks, and other risk that impair Internet security. The aim 

was to identify the misbehaving sources (nodes) in order to block their messages 

from their intended destinations. In the learning model proposed, elements of 

the network share behavior information about the network’s performance, so the 

classifier may amend or enhance the model’s behavior by blocking potentially 

detrimental messages. Reported experimental results revealed a 95% detection 

rate using a probabilistic classifier. 
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[93] reviewed different learning mechanisms utilized to detect DDoS 

flooding attacks, in particular, SYN flooding. This type of flooding attack harms 

the network performance: when packets flood the network, many users may 

suffer server access delays. In some cases, the server shuts down entirely from 

SYN flooding attacks. The authors of [93] critically analyzed different approaches 

related to ML, statistical analysis, and router based among others.  

[35] adopted the Naïve Bayes (NB) probabilistic classification algorithm 

[48] to detect the type of Internet traffic. Before applying NB, features related to 

traffic flow such as port identification, elapsed time between two consecutive 

flows, and the flow length among others, were collected. The type of traffic flow 

variable was assigned by a domain expert in the dataset, and NB was applied to 

generate probabilistic classification systems to predict the traffic flow variable. 

The classification system derived by NB shows low predictive rates, but when 

the authors utilized feature selection methods prior to the training phase, the 

accuracy rate of the classification systems was improved. 

The IP traffic classification problem was studied in the context of ML by 

[41]. The authors surveyed and compared the performance of supervised and 

unsupervised ML algorithms, and highlighted the role of feature assessment in 

pre-processing the IP traffic dataset. Results showed that NB, EM and decision 

tree algorithms often produce consistent results, with high classification accuracy 
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for the IP Internet traffic problem. Moreover, a number of recommendations 

have been highlighted based on the survey, such as: 

1) ML algorithms generate different results for the IP traffic problem because 

of the different learning mechanisms they employ in deriving the 

classification systems. Hence, hybrid learning seems appropriate for 

future investigation 

2) Different requirements are sought by ML algorithms because learning 

environments differ from one algorithm to another, as well as 

configurations  

3) It is essential to investigate real time learning, at least for the IP Internet 

traffic classification problem, in which the ML will, while in progress, 

derive the classifiers rather than using static datasets 

4) Feature selection methods can be useful in some Internet application 

problems such as IP Internet traffic classification 

The majority of recent research contends that utilizing ML techniques in 

computer networks relates to DDoS flood attacks using primarily adaptive 

distributed mechanisms, while other studies investigated data traffic analysis. 

This study investigates an entirely new issue – BHP flood attacks in OBS 

networks. We believe that ML has not yet been adopted to develop predictive 

models to counter BHP flood attacks in OBS networks.  
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4.6 Summary 

In spite of the many benefits of an OBS network, such as bandwidth 

efficiency, economic values and resiliency, OBS networks can become vulnerable 

when burst loss occurs during ingress nodes sending data, causing BHP flood 

attacks. This problem may deteriorate the overall network’s performance, due to 

the allocating of resources without proper usage. BHP flood attacks hinder the 

QoS of the OBS network, hence potentially causing a severe problem – the Denial 

of Service (DoS). This paper investigated the aforementioned issue by applying 

Machine Learning to automatically detect misbehaving ingress nodes, and 

blocking them in a preliminary stage. We evaluated various ML algorithms via 

simulation data, involving more than two ingress nodes and over 530 runs. The 

aim was to classify ingress nodes as accurately as possible, using variables 

related to their performance, such as packet drop rate, bandwidth used, and 

average delay time among others. Experimental results from a processed dataset 

related to BHP flood attacks showed that rule based classifiers, in particular 

decision trees (C4.5), Bagging, and RIDOR, consistently derive high predictive 

classifiers compared to alternate ML algorithms, including AdaBoost, Logistic 

Regression, Naïve Bayes, SVM-SMO and NN-MultilayerPerceptron. Moreover, 

the harmonic mean, recall and precision results of the rule based and tree 

classifiers were more competitive than those of the remaining ML algorithms. 



 

112 

 

Lastly, the runtime results measured in terms of millisecond showed that 

decision tree classifiers are not only more predictive, but are also more efficient 

than the rest of the algorithms. Thus, this is the most appropriate technique for 

classifying ingress nodes to combat the BHP flood attack problem. This paper is 

one of the initial attempts on adopting ML techniques to automatically classify 

ingress nodes in OBS networks. 

In the near future, we intend to build a new rule-based classifier using the 

decision tree, and embed it inside the simulator to detect misbehaving nodes 

during the simulation phase. 
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