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ABSTRACT 

 It is well established that valvulogenesis is a result of a complex interplay 

between genetic and environmental factors. Hemodynamics is one such environmental 

stimulus that is well documented to influence the development of heart valves. Using 

advanced imaging modalities, such as optical coherence tomography, investigators have 

better understood the effects of altering hemodynamic loads in the embryonic (avian) 

heart. However, the field of valvulogenesis is currently stagnant with a paucity of studies 

aiming to understand the molecular mechanisms influenced/affected by hemodynamic 

stimuli. Deciphering these pathways is critical from a valve development perspective, but 

also becomes vital as potential therapeutic targets, given the fact that several adult valve 

diseases have a congenital origin. Towards this end, we have developed a novel ex ovo 

method to alter hemodynamic stimuli through the chick embryonic heart by partially 

constricting the outflow tract (OFT). We acknowledge that the concept of banding a part 

of the developing heart has been exploited by several researchers; however, performing 

the banding intervention outside the eggshell not only highlights the novelty of our avian 

system, but also permits us to obtain sufficient tissue (from a statistical analysis 

standpoint) to carryout molecular biology experiments which was, until this point, 

impossible to achieve. Using this system, we have shown for the first time, that 

perturbation of intracardiac hemodynamics has consequences at the cellular and 

molecular level. Altered hemodynamics not only affected OFT cushion volume and 

expression of key players involved in valve development, but also led to a decrease in
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 epithelial-mesenchymal-transition, a pivotal process in valvulogenesis. The migratory 

capacity and secretory profile of atrioventricular cushions were also altered by changing 

intracardiac hemodynamics. Furthermore, when the constriction around the OFT was 

removed, anomalous cardiac phenotypes, resulting due to OFT banding, could not be 

rescued, while the expression of some genes returned to that observed in control tissue. 

Lastly, OFT banding seemed to have an influence on gene expression only if 

hemodynamics were altered at a certain developmental period. However, expression of 

collagen appeared sensitive to altered blood flow through the embryonic heart even at 

very early periods of embryonic development. 
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CHAPTER 1 

INTRODUCTION1 

  Valves in healthy adult four-chambered hearts allow for unidirectional flow of 

blood to both the pulmonary and systemic circuits. The fact that directionality of blood 

flow is a result of valves function was first observed by William Harvey who noted the 

importance of these structures by examining and calculating the amount of blood flowing 

in the body [1,2].  

 The adult heart has two sets of cardiac valves – semilunar (outlet) valves – aortic 

and pulmonary; and atrioventricular (inlet) valves – mitral and tricuspid. The tricuspid 

and pulmonary valves function to direct blood from the body to the lungs for oxygenation 

while the mitral and aortic valve function to maintain directionality of oxygenated blood 

flow to the body. The inlet valves have supporting structures, known as chordae 

tendineae, that connect the leaflets to the papillary muscle, which are absent in the 

semilunar valves [3]. 

 Structure and function of cardiac valves are primarily determined during early 

embryonic development. Consequently, abnormally formed heart valves, especially

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  Parts of this introduction have been excerpted from the following research articles 

(1) Menon V; Eberth JF; Goodwin RL; JD, P. Altered hemodynamics in the 
embryonic heart affects outflow valve development. J Cardiovasc Dev Dis. 2015, 
2, 108-124. (Open access)  

(2) Menon V; Eberth J; Junor L; Potts AJ; Belhaj M; DiPette DJ; Jenkins M; JD, P. 
Removing vessel constriction on the embryonic heart results in changes in valve 
gene expression, morphology, and hemodynamics. Dev Dyn 2017. 
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defective outflow valves, are the most common type of congenital heart defects (CHDs)

[4]. Abnormal cardiac valve structure may be present at birth; however, this may be 

asymptomatic and could subsequently predispose the individual to valve disease later in 

life. Thus, several adult valve diseases may be attributed to abnormal valve development 

which makes it imperative to understand the molecular basis of heart valve development 

and the effect that hemodynamics has on these processes. 

1.1 EMBRYONIC DEVELOPMENT OF CARDIAC VALVES 

The heart is the first organ to develop and function during embryogenesis. It 

initially forms as a tubular blood vessel comprised of endocardial endothelial cells 

(epithelial cell layer) surrounded by the myocardium [3] (figure 1.1a). Present between 

these two layers of the tubular heart is an acellular region known as the cardiac jelly (CJ); 

which is composed of extracellular matrix (ECM). [5]. This ECM, secreted by the 

myocardium, is primarily composed of glycosaminoglycans chondroitin sulfate and 

hyaluronan [6]. After the onset of rightward looping, the CJ expands at two distinct 

regions - the atrioventricular (AV) canal and the outflow tract (OFT) (figure 1.1b). These 

local CJ expansions are known as endocardial cushions (valve primordia) that eventually 

develop into the AV (inlet) and OFT (semilunar) valves [5,7]. The mechanisms of 

cushion development are conserved in both the AV canal and the OFT. In addition to the 

endocardially derived cells, neural crest cells also contribute to the OFT valves and OFT 

cushion epithelial-mesenchymal transition lags behind that occurring in AV cushions 

[3,8]. The endocardial cushions undergo differentiation, growth and remodeling to form 

the mature cardiac valves. The superior and inferior AV cushions fuse and remodel to 

form the anterior leaflet of the mitral valve and the septal leaflet of the tricuspid valve. 
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The left and right lateral AV cushions become the posterior mitral valve and the anterior 

and posterior tricuspid valve leaflets respectively [9]. The OFT cushions form the 

semilunar valves with the conotruncal cushions forming the right and left leaflets of the 

semilunar valves [10-12]. The intercalated OFT cushions form the posterior aortic and 

anterior pulmonic leaflets [10,12] (figure 1.2). 	
  

Epithelial-to-mesenchymal transition (EMT), a tightly regulated process, plays a 

crucial role in embryonic differentiation and development [13,14]. With respect to the 

embryonic heart, a subset of endocardial cells in the AV canal and OFT undergoes EMT 

in response to local signaling events thereby populating the CJ by adopting a migratory 

mesenchymal phenotype [7] (figure 1.1 c and d). Myocardium-derived signals induce 

EMT in the endocardial cells which hypertrophy, loose cell-to-cell contact and 

delaminate into the CJ. The endocardium then reforms a new cell layer [6,15].   Before 

the onset of EMT, the endocardial cells of the cushion exhibit a cobblestone appearance 

with undilated rough endoplasmic recticulum (RER) and underdeveloped Golgi [6]. 

Endocardial cells are activated immediately preceding EMT and have dilated RER and 

hypertrophied Golgi complexes. Mesenchymal cells, with filopodia, then migrate into the 

CJ.  

In an in vitro model it was shown that chick AV canal explants (consisting of 

endocardial cushion cells and myocardium) cultured on collagen gels exhibit EMT [16]. 

Furthermore, it has been shown that only the endothelium of the AV canal and OFT, but 

not that of the ventricle, undergoes EMT to produce the mesenchyme; thus demonstrating 

a requirement for specialized spatial signaling to induce EMT [17,18]. While EMT is 

very active during valve development, this controlled process ceases and functions at 
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basal level, once mature valves have formed, to produce mesenchyme to maintain normal 

functionality of the valves. Failure of EMT downregulation in mature valves results in the 

production of excess ECM and fibrous diseased valves. While all aspects of cushion 

EMT are still not clearly understood, recent studies have identified key EMT players 

[19,20] some of which, we have shown, to be altered in response to changing intracardiac 

blood flow.  

1.2 THE EFFECT OF HEMODYNAMIC STIMULI ON VALVE 
DEVELOPMENT 

 Cardiogenesis and valvulogenesis processes occur under flow conditions, as the 

embryonic heart beats and circulates blood soon after the primitive heart tube is formed. 

To meet the demands of the growing embryo, under normal conditions, the volumetric 

flow rates increase as does the ventricular pressure so as to pump larger blood volumes 

[21].  

As blood flows through the embryonic tubular heart, it exerts pressure on the 

vessel wall. Shear stress is produced due to friction between the flowing blood and the 

heart wall [22]. It is known that endothelial cells sense and respond to hemodynamics by 

means of mechanotransducer proteins [23] and initiate rearrangement of the cytoskeleton 

leading to these cells being aligned parallel to the direction of flow [22]. Hemodynamics 

has been shown to play an important role in regulating embryonic cardiogenesis 

[22,24,25]. Mechanotransduction and hemodynamics are important for cushion EMT 

[26,27] with alterations leading to compromised valve development and pathological 

conditions.  

Using a 3D tubular culture in vitro system in our laboratory, we have previously 

shown that shear stress influences the expression and deposition of fibrous ECM proteins 
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in both AV and OFT cushions [28,29]. However, it is not clearly understood how 

hemodynamics regulates (initiates and eventually terminates) EMT during heart valve 

development. 

1.3 ALTERED HEMODYNAMICS AND CONGENITAL HEART DEFECTS 

According to the Centers for Disease Control and Prevention (CDC), CHDs are 

the most common types of birth defects, affecting nearly 40,000 babies each year, and 

also are the leading cause of infant death in the U.S.A [30,31]. Though the incidence of 

CHDs is reported as 1 in every 100 live births, this percentage would be higher if 

embryos with CHDs were included in the statistics [32]. Abnormalities during embryonic 

heart development can result in miscarriages, and thus, these cases would not be reported 

as having a CHD [33-35].  

Valvular defects are the most common type (20-30%) of CHDs [4]	
  caused due to 

abnormally formed heart valves/septa. This is due to the fact that the structure and 

function of AV and outflow tract OFT valves are primarily determined during early 

embryogenesis [36]. However, many congenital valvular diseases remain asymptomatic 

until adulthood, thereby predisposing the patient to valve disease later in life. Treatment 

of diseased valves not only poses an economic constraint, but often requires valve 

replacement surgery [37]. The idea that several adult valve diseases can be attributed to 

abnormalities during development is highlighted by the fact that most of the replaced 

aortic valves have congenital abnormalities [38]. Valve insufficiency, valvular stenosis, 

ventrivular septal defect, persistent truncus arteriosus, double outlet right ventricle, mitral 

valve prolapse, left heart hypoplasia are some of the CHDs resulting due to altered 

intracardiac hemodynamics [39]. 
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Several studies have employed advanced imaging technologies to understand not 

only heart development but also the influence of hemodynamics on valvulogenesis [40-

45].	
  However, till date, there have been limited studies pertaining to understanding the 

genetic regulation by hemodynamics on valvulogenesis. The fact that hemodynamic 

stimuli play a pivotal role in valvulogenesis is well documented by numerous studies	
  

which demonstrate that altering hemodynamics through the developing heart (in vivo), 

leads to a spectrum of congenital heart defects (CHDs) [25,46-58]. For example, insertion 

of glass beads in the heart tube of zebrafish obstructed blood flow at the inlet and outlet 

and prevented looping and proper formation of the heart chambers [25]. Vitelline vein 

ligation of the chick embryo was shown to affect cushion development and lead to 

ventricular septal defects and outflow valve defects [57]. Ligation of the left atrium of 

chick embryos were shown to result in hypoplastic left heart [58]. Only once underlining 

molecular pathways are well understood, can we develop therapeutic targets to treat 

congenital valve diseases that manifest even in adults. To bridge this gap, we have 

developed a novel in vivo (ex ovo) embryonic avian (chicken) system to alter intracardiac 

hemodynamics by partial OFT constriction (banding) [59]. Mammalian embryos cannot 

be surgically manipulated in the maternal environment, i.e., they need to be excised from 

the uterus. Moreover, genes controlling developmental pathways and processes in the 

chicken heart are similar to those in humans. In addition, the chick embryo is easily 

accessible to surgical manipulations and allows for downstream in vivo imaging [60,61].  

The major advantage of our new banding system, compared to performing the 

intervention within the egg shell [62], is the ability to obtain a sufficient sample size (n) 

to carry out statistical analyses of key molecular biology experiments without any 
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compromise in embryo growth and development and cardiac physiology. Using this 

system, we recently reported on the genetic / cellular consequences of altering 

hemodynamics by increasing shear stress by banding in the embryonic chick heart 

[52,63] adding to the growing body of research that emphasizes the importance of 

maintaining normal hemodynamics during development. 

The study described here aims to understand the role of blood, not as a ‘carrier’ 

fluid, but as a physical factor in the early development of both outlet and inlet valves. We 

hypothesized that altering intracardiac hemodynamic loads through the chicken 

embryonic heart influences both EMT and ECM production resulting in abnormal cardiac 

valve development. 

The results described in this dissertation stem from experiments designed to 

answer three basic questions:  

(1) What are the cellular responses to and molecular consequences of altered 

intracardiac hemodynamics (“Molecular effects of altered intracardiac hemodynamics on 

OFT valve development”)?  

(2) Can the pathological phenotypes, resulting from perturbed hemodynamics 

through the embryonic heart, be rescued if the band around the OFT is removed (“Effects 

of releasing the constriction around the oft”)? 

(3) Is there a period during embryonic development where the heart is more 

susceptible to changes in hemodynamics (“Molecular responses to OFT banding at 

different developmental stages”)?  
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Figure 1.1: Early formation of heart valves. M: Myocardium, E: Endocardium, CJ: 
Cardiac jelly, OFT: Outflow tract, V: Ventricle, SA: Sinus arteriosus, AVC: 
Atrioventricular canal, MES: Mesenchyme 
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Figure 1.2:	
  Endocardial cushions and heart valve leaflets. (A) Schematic of endocardial 
cushions in the atrioventricular (AV) canal and the outflow tract (OFT). The figure is a 
superior view of the heart with atria removed. The cushions are color coded to 
correspond to their derived valve leaflets illustrated in B. CTC. conotruncal cushions; 
ICC. intercalated cushions; sAVC. superior AV cushion; iAVC. inferior AV cushion; 
rlAVC. right lateral AV cushion; llAVC. left lateral AV cushion. (B) Schematic (superior 
view) of atrioventricular and semilunar valve leaflets that develop from the 
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corresponding cushions color coded in A. PV, pulmonary valve; AV, aortic valve; TV, 
tricuspid valve; MV, mitral valve.  
(reproduced with permission from Lin, C.; Lin, C.; Chen, C.; Zhou, B.; Chang, C. 
Partitioning the heart: Mechanisms of cardiac septation and valve development. 
Development 2012, 139(18), 3277-3299. doi: 10.1242/dev.063495 [64]).  
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CHAPTER 2 

MATERIALS AND METHODS-	
  MOLECULAR EFFECTS OF ALTERED 
INTRACARDIAC HEMODYNAMICS ON OFT VALVE 

DEVELOPMENT2 

Results described in this dissertation were obtained by performing experiments on 

chicken embryonic hearts. Avian embryos are not considered vertebrate animals under 

IUCAC regulations. 

2.1 OBTAINING CHICKEN EMBRYOS FOR SURGERY 

 Fertilized Bovan chicken eggs (Morgan Poultry Center, Clemson, SC) were 

incubated (blunt end up) in a humidified rocker incubator at 400C to obtain embryos at 

Hamilton and Hamburger (HH) stage 17 [65]. At this stage, the egg shell was sterilized 

with 70% ethanol and gently cracked, with a scalpel handle. The contents of the egg, with 

the embryo atop the yolk, were then carefully released into a deep petri dish containing 

warm Tyrode’s buffer supplemented with 1g/L sodium bicarbonate. Embryos that 

appeared abnormal, not at the right embryonic stage, incorrectly oriented on the yolk 

and/or were bleeding were not used for any experiments. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2	
  Parts of this chapter have been excerpted from the following research articles 

(1) Menon V; Eberth JF; Goodwin RL; JD, P. Altered hemodynamics in the 
embryonic heart affects outflow valve development. J Cardiovasc Dev Dis. 2015, 
2, 108-124. (Open access)  

(2) Menon V; Junor L; Balhaj M; Eberth JF; JD, P. A novel ex ovo banding 
technique to alter intracardiac hemodynamics in an embryonic chicken system. J 
Vis Exp 2016, 13. 
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2.2 OFT BANDING TO ALTER INTRACARDIAC HEMODYNAMICS  

Embryos were randomly divided into two groups: control and banded. Those in 

the banded group had their OFT partially constricted, at the OFT/ventricular junction 

(OVJ) as mentioned below (figure 2.1). Control embryos were not subjected to the 

banding intervention.  

1 cm-long threads were tweezed out from a single 11/0 nylon surgical suture and 

were tied into individual knots which were then UV sterilized. Before surgery, about 6ml 

of warm Tyrode’s buffer was pipetted onto the embryo. The suture was then positioned at 

the OVJ and the free end was then passed through the knot, thereby constricting the OFT 

at the OVJ. After surgery, another 6ml of warm Tyrode’s buffer was pipetted onto the 

embryo and yolk surface. Banding caused a 28% luminal constriction of the OFT, on 

average, as determined by optical coherence tomography (OCT).  

Control and banded embryos were incubated, ex ovo, at 400C in a humidified 

incubator for a period of 24 hr. (For all experiments in this dissertation, banding was 

performed on HH 17 chick embryos and studies were performed 24 hr post-surgery, 

unless otherwise stated).  

2.3 ANALYSIS OF CHANGE IN BLOOD FLOW VELOCITY 

 Changes in blood flow velocity at the OVJ of banded (n=5) and control (n=5) 

embryos were determined by ultrasound using the Vevo 770 imaging system 

(VisualSonics, Toronto, ON, Canada). The petri dish containing the embryo to be imaged 

was placed on a heating pad and carefully filled to the brim with warm Tyrode’s buffer, 

making sure that the yolk sac was intact. A 708 scanhead, operating in B mode, was used 

to obtain a 2D image of the beating heart and the stage was moved till the OVJ was 
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clearly visible. The PW mode, at a pulse repetition frequency of 20 kHZ, was used to 

obtain a waveform. For each embryo, peak velocities at the OVJ were measured for ten 

heartbeats. From the resulting data, the heart rate in beats-per-minute (BPM) was 

calculated by measuring the foot-to-foot time of the velocity wave so that HR=60/T. 

Time-dependent centerline and spatially averaged velocities were measured from the PW 

Doppler waveforms using built-in software algorithms and these waveforms were 

digitized using the ImageJ figure calibration plugin so that the time-averaged and peak 

velocities could be found [66]. Embryos with a slowing heart rate during the test were not 

used for analysis. 

2.4 THREE DIMENSIONAL (3D) OFT RECONSTRUCTION AND 
DETERMINATION OF EXTENT OF EMT 

Banded (n=3) and control (n=3) embryos were carefully excised from the yolk 

and fixed overnight in 2% paraformaldehyde (PFA). Extra embryonic membranes were 

left intact so as to prevent sectioning artifacts.  Fixed embryos were dehydrated through 

an alcohol series, cleared with xylene, and penetrated with and embedded in paraffin. 5 

µm serial sections were obtained on a microtome and stained with hematoxylin & eosin 

(H&E). Individual nuclei were counted from the H&E images of banded and control 

OFTs to determine the number of cells that invaded the cushions by EMT. TIFF images 

of the complete OFT were captured using a Nikon Optiphot-2 light microscope at a total 

magnification of 40X and loaded into the AMIRA software package (FEI Visualization 

Science Group, Burlington, MA, USA). All sections were aligned and the OFT and 

myocardium were segmented. A 3D model of the OFT was then generated from which 

the volume of the OFT cushion was determined. Models were reduced to 2,500 faces to 

improve manageability and exported as Stereolithography (.stl) files to Geomagic Studio 
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(Rock Hill, SC, USA) for smoothing and anatomical measurements of cross-sectional 

area and perimeter at the OVJ.  These reconstructions were then converted into the Initial 

Graphics Exchange Specification (IGES) file format for finite element analysis. 

2.5 COMPUTATION FLUID DYNAMICS (CFD) 

IGES files were imported as a continuous geometry into COMSOL Multiphisics 

4.3b (Comsol, Burlington, MA, USA). In COMSOL, faces perpendicular to the axis of 

blood flow were generated at the proximal (ventricle) and distal (OFT) sides to act as 

inlet and outlet conditions. A single representative 3D model was generated for the 

control, and a single representative 3D model was generated for the banded hearts. From 

these models, the cross-sectional areas at the OVJ were measured using Geomagic 

(Control: A = 14,491; Banded: A = 1714 µm2). Unique volumetric flow inlet boundary 

conditions were applied for each of the control (n = 5) and banded hearts (n = 5). At a 

given cross-section, the time-averaged, peak and late retrograde flow velocities were 

calculated from the spatially-averaged velocity and used to calculate the inlet time-

averaged, peak and late retrograde volumetric flow rates. A zero-pressure boundary 

condition was applied at the distal location for all samples. Despite the importance of a 

changing geometry during the cardiac cycle, our analyses are limited by the available 

imaging modalities to tissue arrested under physiological loading. Accordingly, a rigid 

wall assumption and no-slip boundary conditions were assigned for the remaining 

surfaces. Using a hematocrit of 19.4% for HH Stage 16–17 chick embryos, we assumed 

that blood, at high shear rates, behaved as a Newtonian fluid; therefore, the density ρ = 

1025 kg/m3 and apparent dynamic viscosity µ = 0.0015 Pa·s remained constant in our 

simulations. Accordingly, the lowest time-averaged shear rate from our simulations was γ 
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= 424 ± 113 s−1. Similarly, low peak Reynolds numbers (Re = 7.08 ± 1.06) indicated 

laminar flow behavior, while a rough estimate of the Womersley numbers (α = 0.18 ± 

0.02), a metric used to relate pulsatile-inertial to viscous effects, yields a low value, as 

well. Collectively, these results suggest that quasi-static conditions are sufficient for 

analysis [67]. Wall shear stresses were calculated on the surface of the blood-tissue 

interfaces and spatially averaged for each of the flow conditions (time-averaged, peak 

and late cardiac cycle retrograde flow). The time-averaged pressure drop across the 

stenosis was calculated as the difference between the inlet and outlet (P = 0 mmHg) 

pressures. 

2.6 EXTRACTION OF TOTAL RNA FROM OFT CUSHIONS 

OFT cushions (including the myocardial sleeve) were dissected after whole hearts 

were carefully excised from banded and control embryos. Each sample (n=3-4) consisted 

of OFT cushions from about 20-22 pooled hearts. Total RNA was extracted using the 

GeneJET RNA purification kit (Thermo Scientific,	
  Waltham, MA, USA) according to the 

manufacture’s protocol. RNA was eluted from the columns with 50ul of nuclease-free 

(NF) water (provided in the kit). After RNA extraction, the purity and concentration of 

the isolated RNA were determined spectrophotometrically using the NanoPhotometer 

Pearl (Implemen, GmbH, Munich, Germany). All RNA samples had A260/280 and 

A260/230 ratios > 1.9.	
  RNA samples were stored at -800C until further analysis.  

2.7 COMPLEMENTARY DNA (cDNA) SYNTHESIS 

cDNA was synthesized from total RNA using the iScript cDNA Synthesis Kit 

(BioRad,	
   Hercules, CA, USA). Five hundred nanograms of RNA was used in each 

reaction. Reverse transcription was carried out in the iCycler thermal cycler (BioRad,	
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Hercules, CA, USA).  Each cDNA sample was diluted 5X with NF water before being 

used for qPCR.  

2.8 QUANTITATIVE REAL-TIME POLYMERASE CHAIN REACTION 
(qPCR) 

qPCR was carried out using Fast SYBR Green Master Mix (Applied Biosystems 

Foster City, CA, USA) on a BioRad CFX connect system (BioRad, Hercules, CA, USA). 

The following run conditions were used: enzyme activation at 950C for 3min, 

denaturation at 950C for 10 sec, and annealing/extension at 600C for 30 sec (40 cycles). 

Water-only negative control was included for each gene. A melt curve analysis was 

performed on each run.  Each sample was run in triplicate and qPCR was repeated three 

times per gene. Relative gene expression was quantified using the Pfaffl method [68] 

with arbp as the housekeeping (normalizing) gene. Target-specific primers were designed 

using the Primer-BLAST software tool [69]. Primer sequences used for qPCR are listed 

in table 2.4.  

2.9 MICROAARAY 

Total RNA was extracted from OFT tissue from control and banded hearts as in 

2.6. Each sample (n=6) consisted of pooled OFT tissue from 25 hearts. RNA quality was 

assessed using an Agilent 2100 Bioanalyzer and RNA Integrity Numbers ranged from 9.3 

to 10.0. Microarray experiments were performed using Affymetrix’s platform. Total 

RNA samples were amplified and biotinylated using GeneChip WT PLUS Reagent Kit 

(Affymetrix, Santa Clara, CA).  Briefly, 100 ng of total RNA per sample was reverse 

transcribed into ds-cDNA using NNN random primers containing a T7 RNA polymerase 

promoter sequence. T7 RNA polymerase was then added to cDNA samples to amplify 

RNA, and then RNA was copied to ss-cDNA and degraded using RNase H. ss-cDNA 
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molecules were then fragmented and terminally labelled with biotin. Amplified and 

labeled samples were hybridized to ChiGene-1_0-st arrays (Affymetrix, Santa Clara, CA) 

for 16 h at 45°C using a GeneChip Hybridization Oven 640 and a GeneChip 

Hybridization, Wash, and Stain Kit (Affymetrix, Santa Clara, CA).  Hybridized arrays 

were washed and stained using GeneChip Fluidics Stations 450 (Affymetrix, Santa Clara, 

CA). Arrays were then scanned using a GeneChip Scanner 3000 7G system and computer 

workstation equipped with GeneChip Command Console 4.0 software (Affymetrix, Santa 

Clara, CA).  

Following completion of array scans, probe cell intensity (CEL) files were 

imported into Expression Console Software (Affymetrix, Santa Clara, CA) and processed 

at the gene-level using the Robust Multichip Analysis (RMA) algorithm to generate CHP 

files. After confirming data quality within Expression Console, CHP files containing log2 

expression signals for each probe were imported into Transcriptome Analysis Console 

Software version 3.0.0.466 (Affymetrix, Santa Clara, CA) to perform differential gene 

expression analysis between the experimental groups. A one-way between-subject 

analysis of variance statistics and p-value of 0.05 and a fold change of 1.5 were used as 

cutoff parameters. 

2.10 IMMUNOFLUORESCENCE (IF)  

 Five-micron paraffin-embedded heart sections containing OFT and AV cushions 

were stained by IF probing for targets listed in table 5. Appropriate secondary antibodies 

were used. Slides were deparaffinized by immersion in xylene and rehydrated by 

immersion in decreasing concentrations of ethanol.  Staining was performed as in table 6. 

Images were captured on the Zeiss LSM 510 META confocal scanning laser microscope 
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under identical settings for control and banded heart sections. n > 4 for each experiment. 

Each experiment included a no-primary negative control. 

2.11 HEROVICI’S COLLAGEN STAIN 

Five-micron paraffin-embedded heart sections containing OFT cushions were 

stained with Herovici’s collagen stain (American MasterTech, Lodi, CA) to determine 

the level of young collagen in cushions from banded vs. control hearts. Slides were 

deparaffinized as mentioned in section 2.10 and then stained as in table 7 (n>3 for each 

group). Images were captured using the Invitrogen EVOS FL Auto Cell Imaging System. 

Images from control and banded section were collected under identical microscope 

settings. 

2.12 TUNEL ASSAY 

 The DeadEnd Fluorometric TUNEL System (Promega, Maddison, WI) was used 

to investigate the effect of altered hemodynamics on apoptosis in OFT cushion tissue 

from banded vs. control hearts. Paraffin-embedded heart sections were deparaffinized as 

mentioned in 2.10. Sections were then permeabilized with 0.2% Triton for 5 min. After 

rinsing in PBS, slides were equilibrated with equilibration buffer for 10 min at RT. The 

TdT reaction mix was then added to sections followed by incubation at 370C for 60 min. 

After labeling, reaction was stopped by immersing slides in SSC for 15 min and rinsed in 

PBS. Nuclei were labled with DAPI. Slides were mounted with DABCO and images 

captured with the Nikon E600 Widefield Epifluorescence and Darkfield Microscopy 

System. Control and banded samples were capture with identical microscope settings. 

n=3.   

 



	
  19 

2.13 COLLAGEN GEL ASSAY 

 OFT and AV cushion tissues were dissected from control (n=3, 5 respectively) 

and banded (n=3, 4 respectively) hearts and seeded onto a PureCol (Advanced BioMatrix, 

Carlsbad, CA) collagen gel in a 24-well plate (1 explant/well).  

 Collagen gels were prepared by mixing chilled PureCol (3mg/ml) with MEM and 

HEPES in a ratio of 8:1:1. 400 µl of gelation solution was dispensed into wells of a 24-

well plate and allowed to solidify at 370C.  

 Cushion explants were then seeded on formed collagen gels. Explants were 

allowed to attach for 24 hr at 370C, after which DMEM, containing 10% FBS, 

penicillin/streptomycin and Amphotericin B, was added to each well and then cultured 

for another 24 hr. Then, culture media was aspirated, gels were fixed with 2% PFA and 

nuclei stained with DAPI. Z-stacks were captured on the Invitrogen EVOS FL Auto Cell 

Imaging System under identical settings, which were then imported into AMIRA, from 

which the number of mesenchymal cells invading the gel and the depth of gel invaded 

(bounding box) were determined.  

2.14 STATISTICAL ANALYSIS 

Student’s t-test was used for in-between group analysis with alpha = 0.05. 

Statistics and graphs were generated using Prism 5 (GraphPad Software, San Diego, CA, 

USA). Data are reported as mean ± SEM. 
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Table 2.1: Reaction setup using iScript cDNA synthesis kit (BioRad) 

Component Volume per reaction 

5X iScipt reaction mix 4 µl 

iScript Reverse Transcriptase  1 µl 

RNA template Scaled to 500 ng 

NF water Adjusted to 20 µl 

Total volume 20 µl 

 

Table 2.2: Run protocol for reverse transcription in the iCycler 

Reaction step Temperature Duration 

Priming 250C 5 min 

Reverse transcription 460C 20 min 

Enzyme inactivation 960C 1 min 

Hold 40C ∞ 

 

Table 2.3: qPCR reaction set up 

Component Volume per reaction 

Fast SYBR Green Master Mix (2X) 10 µl 

Forward primer (10 µm) 0.3 µl 

Reverse primer (10 µm) 0.3 µl 

Nuclease-free water 7.4 µl 

cDNA 2 µl 



	
  21 

Total volume 20 µl 

 

Table 2.4: Primer sequences used for qPCR 

Gene Forward (F) and reverse (R) primers 

arbp F: 5’-GCTTTGCTTCGGTCTTTGAG-

3’ 

R: 5’-AACAACTTTCCGATCACCAC-

3’ 

klf2 F: 5’-GCTTCTACCAGACAAACCCG-

3’ 

R: 5’-

CAGGACTGGCCCATAACTGT-3’ 

rhoA F: 5’-CAGCACCCTGCACTTGAGTA-

3’ 

R: 5’GCATCCTGTGAGTGCAGAAA-

3’ 

collagen 1 F: 5’-

TACCACTGCAAGAACAGCGT-3’ 

R: 5’-

TCGGTGACCCCATAGGTGAA-3’ 

collagen VI F: 5’- AGCAGGTTTTCCTTGCTGAA-

3’ 

R: 5’-TGCCAAGGATTTCATCATCA-
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3’ 

vinculin F: 5’-CAGGTAGTATCGGCTGCTCG-

3’ 

R: 5’-CCACCAGCCCTGTCATCTTT-

3’ 

elastin F: 5’-GTATCCCATCAAAGCTCCCA-

3’ 

R: 5’-CAGCTCCGTATTTAGCTGCC-

3’ 

periostin F: 5’-

GGATGGTATGAGAGGATGTC-3’ 

R: 

5’GCAAAGAAAGTGAATGAACC-3’ 

tenascinc F: 5’-

AGGACACAGCCTCTGCAAGT-3’ 

R: 5’-TACTGCCCCTGAGAGCTGAT-

3’ 

cdh11 F: 5’-

AAGACACTGGACCGAGAGGA-3’ 

R: 5’-

TTCTGAGGGCGGTTCCAAAG-3’ 

filamen A F: 5’-

CGGCGACTACACCATCAACA-3’ 
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R: 5’-GTCACTTTGGTGGGGTCGAA-

3’ 

tgfβrIII F: 5’-CTCTTACCGTCGTGGGCATT-

3’ 

R: 5’-CTGCTTCCCCTGTGTGAGAG-

3’ 

tgfβ2 F: 5’-

GAGAAAGCCAACCACAGAGC-3’ 

R: 5’-GGTACAGCTCTATCCGCTGC-

3’ 

tgfβ3 F: 5’-CACAATGAGTTGGGCATTTG-

3’ 

R: 5’-

GGAACTCTGCTCGAAACAGG-3’ 

snai2 F: 5’-CACGCTCCTTCCTGGTCAAG-

3’ 

R: 5’-

GGCTGCGGTATGATAGGGAC-3’ 

has2 F: 5’-CACCGCTGCTTACATTGTGG-

3’ 

R: 5’-

TGTGATGCCAGGATAGCACC-3’ 

mmp2 F: 5’-
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TGATGATGACCGCAAGTGGG-3’ 

R: 5’-

TGTAGATCGGGGCCATGAGA-3’ 

aqp1 F: 5’-

AAAATGTTCTGGAGGGCGGT-3’ 

R: 5’-CTGAGTTGCTGATGTCCCGT-

3’ 

smad 6 F: 5’-

TGCGAATGTCAGAGGTTGGG-3’ 

R: 5’-

CTCGTCGTTAGGAGACAGCC-3’ 

smad 7 F: 5’-CCAGACCGACGACGCAG-3’ 

R: 5’-

ATACCTGGAGTAGGGCGGAG-3’ 

htre1 F: 5’-CACCGACAGCCAAAACTCCT-

3’ 

R: 5’- 

CAGCCAGGTCCAAGTCATTCT-3’ 

thsda7a F: 5’- 

TGTGTGGAGGTGGCATTCAAA-3’ 

R: 5’-

GCCTTGAGGCTTCTTTTTCCTTG-3’ 

pdgfa F: 5’-
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GTGTCAAGGTGGCAAAAGTG-3’ 

R: 5’-

CCCTAGGCCTTCCAGTTTCTT-3’ 

tbx18 F: 5’-ACTAGCCAGCTCTGTAGCCT-

3’ 

R: 5’-TTGGGGGTGCAAATGTCTCA-

3’  

tcf21 F: 5’- 

TAACAAAGAGTTCGGGGCGT-3’ 

R: 5’- CCTTCCTGGCTCACACCATT 

-3’ 

aldha12 F: 5’- 

TGAATGTGGGGGTAAAGGGC -3’ 

R: 5’-

CAGGCCCAAAAATCTCCTCCT -3’ 

cdh6 F: 5’- 

GGGCGGATTATCAGGAACCA-3’ 

R: 5’-

TGAGTCAGGTGGCGTAGACT-3’ 

wt1 F: 5’- 

TGAAACGGCACCAAAGACGA-3’ 

R: 5’-

GGCTTTTCACTTGTTTTACCTGT -
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3’ 

cd44 F: 5’- 

TCATTCTTCTGGAGGAGGTGAA-3’ 

R: 5’-

ACGTAGACCTAGTACTTGCAGGA-

3’ 

bmp10 F: 5’-TGAAGACCTTGCTTCCCACC-

3’ 

R: 5’-GTGTAGAGTCTCAGCTCCGC-

3’ 

tgm2 F: 5’-

AGAGCGAAGGGGTTTACTGC-3’ 

R: 5’-

TTGACCTCCGCAAAGACGAA-3’ 

sert F: 5’-TGGTTCTACGGCATCACCCA-

3’ 

R:5’-

GACAGAAAGCTGCAAGTGACAA-

3’ 

 

Table 2.5: Antibodies used for IF 

Target Host species Company 

Type I Collagen Rabbit Millipore 
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Periostin Rabbit Abcam 

IST-9 Mouse Abcam 

PCNA Mouse Novus Biologicals 

Vimentin Mouse Sigma 

Fibronectin Rabbit Santa Cruz 

Biotechnology 

Phospho-ERK1 

(pThr202/pTyr204) and 

ERK2 (pThr185/pTyr187) 

Rabbit Sigma 

N cadherin Mouse Developmental Studies 

Hybridoma Bank 

TGM2 Rabbit Neomarkers 

 

Table 2.6: Immunofluorescence protocol 

Step Reagent Time/duration 

Permeabilize PBS/ 

0.1% Triton – X 

3x – 15 min each 

Glycine wash 0.3M Gly 30 min RT 

Rinse PBS 3x – 5 min each 

Block 2% BSA/PBS 1h @ 370C 

Rinse PBS 3x – 5 min each 

Probe with 10 Primary ab (1:100) in 1% 

BSA/PBS 

Overnight at 40C 
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Rinse 1% BSA/PBS 2x – 15 min each 

Rinse PBS 3x – 5 min each 

Probe with 20 Secondary Ab (1:100) in 

1% BSA/PBS 

1 h @ 370C 

Rinse 1%BSA/PBS 2x - 15 min each 

Rinse PBS 3x – 5 min each 

Nuclear stain DAPI (1:5000) 20 min @ RT 

Rinse PBS 2x 15 – min each 

Mount DABCO  

 

Table 2.7: Protocol for Herovici's collagen stain 

Step Duration 

Immerse in Wigert’s Hematoxylin 5 min 

Rinse with tap water 45 sec 

Immerse in Herovici’s working 

solution 

2 min 

Immerse in 1% acetic acid 2 min 

Dehydrate with absolute alcohol 3 changes, 1 min each 

Clear with xylene 3 changes, 1 min each 
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Figure 2.1: OFT banding. (a) Schematic representation of banding site. (b) Ex ovo 
banded embryo imaged 24h after surgery. OVJ: OFT/Ventricle junction; V: ventricle 
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CHAPTER 3 

MATERIALS AND METHODS- EFFECTS OF RELEASING THE 
CONSTRICTION AROUND THE OFT3 

3.1 REMOVAL OF THE BAND AROUND THE OFT 

After correct staging and visualization of intact blood islands and embryo posture, 

the OFT of HH 17 chick embryos was banded at the junction of the OFT and ventricle 

(OVJ) using surgical suture as mentioned in 2.2. Embryos in the control group were not 

subjected to OFT banding. Both cohorts of embryos were then allowed to develop, ex 

ovo, for 24 hr in a humidified incubator. 24 hr after banding, embryos in the banded 

group had the suture surgically removed by carefully cutting the knot. Any embryos that 

showed signs of bleeding were not used in the study. Following band removal, embryos 

were maintained ex ovo for two time points: 24 hr post-band removal (PBR) and 48 hr 

PBR. Control embryos were stage-matched with PBR embryos. Thus, embryos were 

divided into the following four groups: (1) 24 hr PBR Control, (2) 24 hr PBR Recovery, 

(3) 48 hr PBR Control and (4) 48 hr PBR Recovery (figure 3.1).  

3.2 ULTRASOUND-MEDIATED ANALYSIS OF BLOOD FLOW VELOCITY 

Embryos from all four groups were subjected to 2D ultrasound imaging using the 

Vevo 3100 imaging system (VisualSonics, Toronto, ON, Canada) and velocity data were 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3	
  Parts of this chapter have been excerpted from the following research articles 

(1) Menon V; Eberth J; Junor L; Potts AJ; Belhaj M; DiPette DJ; Jenkins M; JD, P. 
Removing vessel constriction on the embryonic heart results in changes in valve 
gene expression, morphology, and hemodynamics. Dev Dyn 2017. 
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analyzed as detailed in 2.3. Embryos that demonstrated a decreased heart rate or signs of 

bleeding during imaging were excluded from analysis. (24 hr PBR control: n = 9; 24 hr 

PBR recovery: n = 6; 48 hr PBR control: n = 7; 48 hr PBR recovery: n = 7) 

3.3 TOTAL RNA EXTRACTION, cDNA SYNTHESIS AND qPCR 

 Total RNA was extracted from OFT cushion tissue using the GeneJET RNA 

purification kit and quantified as mentioned in 2.6. Each sample (n = 3 for each group)  

consisted of OFT tissue pooled from 15 – 20 hearts. Five hundred nanograms of RNA 

were converted into cDNA using the iScript cDNA Synthesis Kit (BioRad, Hercules, CA, 

USA) as described in 2.7. Before performing qPCR, each cDNA sample was diluted five 

times with NF water. qPCR was performed using SYBR green chemistry and data 

analyzed as mentioned in 2.8.  

3.4 DETERMINATION OF OFT CUSHION AND CELL VOLUME AND CFD 
ANALYSIS 

 OFT cushion and cell volumes were determined from AMIRA 3D models 

generated using H&E stained TIFF images of the entire OFT as in 2.4 (n = 3 for each 

group). Cell volume was determined using the same AMIRA software on the same 

images following the segmenting of the nuclei of cells in the OFT cushion. Every fourth 

slice was taken for cell volume calculation as we assumed that taking every fourth slice 

would not contain the same cells. Cushion volumes and cell volumes were determined 

and used in determining the ratios of cell volume to cushion volume. 

From AMIRA, 3D reconstructed OFT from each of the four groups, was reduced 

to 2,500 faces and exported as a sterolithography (.stl) file. The .stl files were then 

imported into Geomagic Design X (3D Systems, Rock Hill SC, USA) where 3D 

reconstructions were smoothed, re-meshed, and surfaced. The final model was exported 
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as an Initial Graphics Exchange Specification (IGES) file format and imported into 

COMSOL Multiphysics 4.3b (Comsol, Burlington, MA, USA) for CFD analysis. Planar 

faces perpendicular to the inlet and outlet were created and 20 µm thick sections of the 

OFT, just distal to the ventricle but proximal to OFT septation, were chosen for analysis. 

CFD analysis was performed as detailed in 2.5.   

3.5 STATISTICAL ANALYSIS 

 As in 2.14, Student’s t-test was used for in-between group analysis with alpha = 

0.05.  

 

 

 

Figure 3.1: Schematic representation of our experimental paradigm. The OFT of HH 
16/17 chick embryos was banded at the OVJ and allowed to develop for 24 hr; after 
which the band was surgically removed. Embryos were then allowed to develop for two 
time points post band removal (PBR): 24 hr PBR and 48 hr PBR. Control embryos were 
stage-matched to embryos that had the OFT constriction removed 
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CHAPTER 4 

MATERIALS AND METHODS (PRELIMINARY STUDY)- 
MOLECULAR RESPONSES TO OFT BANDING AT DIFFERENT 

DEVELOPMENTAL STAGES 

4.1   OFT BANDING AT DIFFERENT DEVELOPMENTAL STAGES 

 Fertilized Bovan chicken eggs were incubated as mentioned in 2.1 to obtain 

embryos at HH 14 and HH 20 [65].   At the appropriate stage, embryos were randomly 

divided into control and banded groups, with the banded embryos undergoing OFT 

banding as detailed in 2.2. Both groups of embryos (control and banded) were allowed to 

develop for another 24 hr, after which OFT cushion tissue was dissected and used for 

gene expression profiling by qPCR. 

4.2 RNA EXTRACTION, REVERSE TRANSCRIPTION AND qPCR  

 Total RNA was extracted from HH 14 control (n = 3) and banded (n = 3) OFT 

tissue and HH 20 OFT tissue from control (n = 3) and banded (n = 3) hearts at the 24 hr 

time point as described in 2.6. cDNA synthesis and qPCR was performed exactly as 

stated in 2.7 and 2.8 respectively.  

4.3 STATISTICAL ANALYSIS 

As in 2.14, Student’s t-test was used for in-between group analysis with alpha = 

0.05.  
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CHAPTER 5 

RESULTS-	
  MOLECULAR EFFECTS OF ALTERED INTRACARDIAC 
HEMODYNAMICS ON VALVE DEVELOPMENT4 

5.1 EFFECT OF OFT BANDING ON BLOOD FLOW VELOCITY 

 Ultrasound imaging was performed to investigate whether the constriction of the 

OFT (figure 5.1 a, b) resulted in a change in flow velocity across the OVJ.	
  The suture 

placed around the OVJ was clearly visible in a B-mode 2D image of the beating heart 

(figure 5.2 a). As expected, centerline flow velocity, measured with PW Doppler (figure 

5.2 b, c), yielded higher time-averaged (control = 2.54 ± 0.68 cm/s, banded = 17.6 ± 6.32 

cm/s; p = 0.002) and peak velocities (control = 8.57 ± 2.54 cm/s, banded = 51.5 ± 17.16 

cm/s; p = 0.0018) at the banded OVJ relative to the control OVJ (figure 5.2 d). No 

statistical differences were found between heart rates of control (95.8 ± 21.4 BPM) and 

banded (108 ± 23.0 BPM) embryonic chick hearts (figure 5.2 e) (p = 0.19) or between  

the late cycle retrograde flow velocities (control = −1.44 ± 1.55 cm/s, banded = −2.74 ± 

2.43 cm/s; p = 0.44) (figure 5.2 d) 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4	
  Parts of this chapter have been excerpted from 

(1) Menon V; Eberth JF; Goodwin RL; JD, P. Altered hemodynamics in the 
embryonic heart affects outflow valve development. J Cardiovasc Dev Dis. 2015, 
2, 108-124. (Open access).  

(2) Menon V; Junor L; Eberth J; ford SM; McPheeters M; Jenkins M; Belhaj M; JD, 
P. Molecular consequences of cardiac valve development as a result of altered 
hemodynamics. Microsc. Microanal. 2017, 23 
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5.2 EFFECT OF OFT BANDING ON COMPUTED HEMODYNAMICS 

A 3D streamline velocity plot was generated from computational fluid dynamics 

(CFD) simulations to show the path and velocity magnitude within the developing 

embryonic chick heart. Consistent with the Doppler studies, the highest velocity occurred 

at the OVJ banding site (figure 5.3). Consequently, this location experienced the highest 

time-averaged and peak wall shear stresses (figure 5.4). 

When spatially averaged, significant differences were found between the time-

averaged control (0.97 ± 0.26 Pa) and banded (6.1 ± 2.19 Pa) wall shear stresses (p = 

0.002) (figure 5.5 a). Peak spatially-averaged wall shear stresses were also found to be 

significantly different between control (3.30 ± 0.50 Pa) and banded (17.8 ± 5.96 Pa) 

hearts (p = 0.002) (figure 5.5 a). No statistical differences in shear stresses were found at 

the late retrograde flow condition (control = −0.71 ± 0.49 Pa, banded = −0.95 ± 0.88 Pa; 

p = 0.32). Banding generated a 5.32 ± 1.19-mmHg pressure gradient across the banding 

site, whereas normal hearts experienced a pressure drop of 0.20 ± 0.05 mmHg through 

this section (Figure 5.5 b) (p < 0.001). Overall, no statistical differences were found 

between the volumetric flow rates in the control (0.18 ± 0.05 mm3/s) and banded (0.15 ± 

0.05 mm3/s) embryonic chick hearts (p = 0.32) (Figure 5.5 c). 

5.3 EFFECT OF OFT BANDING ON OFT CUSHION VOLUME AND EXTENT OF 
EMT 

 To determine whether the alteration in hemodynamics in the embryonic heart 

caused any change in the volume of the OFT cushions, the OFT of banded and control 

hearts were 3D reconstructed from H&E TIFF images of the OFTs (figure 5.6 a) using 

AMIRA (figure 5.6 b).  A comparison of the AMIRA-generated volume data revealed a 
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significant decrease in the OFT cushion volume of banded hearts compared to the control 

hearts (figure 6.6 c) (p = 0.01).  

Individual nuclei that invaded the OFT cushions were counted from H&E images 

(figure 5.6 a) which revealed that OFT banding led to a significant decrease in the 

number of cells that entered the OFT cushion tissue, by means of EMT, in the banded 

relative to control OFT (figure 5.6 d) (p=0.002). 

 Transcript levels of the water channel aqp1 were significantly upregulated in OFT 

cushion tissue from banded hearts relative to that of controls (figure 5.7 a) (p=0.043). 

Mesenchymal cells in the OFT cushion from banded hearts exhibited an increase in 

proliferative capacity compared to control OFT cushion as revealed by PCNA staining 

(figure 5.7 b).  

5.4 EFFECT OF OFT BANDING ON RELATIVE EXPRESSION OF GENES 
INVOLVED IN VALVE DEVELOPMENT 

Real-time PCR was carried out to investigate the effects of constricting the OFT 

on the expression of a selected panel of genes that are critical to valve development (table 

5.1). Transcript levels of the mechanotransducer rhoA were significantly lower in the 

OFT cushion from banded hearts relative to OFT cushions of control hearts (p = 0.02). 

No significant differences were observed in the mRNA expression of shear-responsive 

klf2 between OFT cushions of banded and control hearts (p = 0.12).  

 The OFT cushions of banded hearts exhibited significantly decreased mRNA 

levels of collagen1α1 (colI) (p = 0.01) and increased transcript levels of periostin (p = 

0.01) compared to OFT cushion tissue of the control hearts. Though there was a 

downregulated trend in the expression of tenascin C (p = 0.08) in OFT cushion from 
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banded hearts, there were no significant differences in the mRNA levels of elastin (p = 

0.19) and vinculin (p = 0.12) in the OFT cushion of banded vs. control hearts.   

 The expression of tgfβRIII mRNA and that of tgfβ3 were significantly 

upregulated (p = 0.004 and p = 0.02 respectively) in OFT cushions of banded vs. control 

hearts; however, there were no differences in the expression levels of tgfβ2 (p = 0.25) in 

OFT tissue from hearts in these two groups. Moreover, no significant differences were 

observed in the transcript levels of snai2 (p = 0.14) and has2 (p = 0.1), while mRNA 

expression of mmp2 was significantly upregulated (p = 0.03) in the OFT cushion from the 

banded hearts compared to OFT tissue from controls. Though the mRNA expression 

levels of cdh11 were significantly downregulated (p = 0.02) in OFT cushions of banded 

hearts there were no significant changes in transcript levels of filamen A (p = 0.34) 

between OFT cushions of banded vs. control hearts. 

 About 116 genes were differentially expressed, at the mRNA level, in banded 

OFT cushion tissue compared to controls as revealed by microarray analysis. From these, 

the expression of 11 genes, that have specific roles in valvulogenesis, was validated by 

qPCR.  

5.5 EFFECT OF OFT BANDING ON EXPRESSION OF ECM PROTEINS 

 Herovici’s collagen staining was performed to determine the level of type I 

collagen in OFT cushions (figure 5.9). There appeared to be a decrease in type I collagen 

in OFT cushion of banded hearts compared to that of control. As expected, no mature 

collagen was detected in heart sections from banded or control embryos.  

 IF revealed that OFT cushion from banded hearts had a decreased collagen type I 

expression relative to that from the controls (figure 5.10 a). Periostin was expressed more 
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in the myocardium of OFT than control hearts while OFT from banded hearts had 

increased periostin localization in the cushion (figure 5.10 b). IST-9 (fibronectin splice 

variant expressed in mesenchyme) expresssion was higher in the cushion of banded OFT 

compared to the OFT of control hearts (figure 5.10 c).  

5.6 EFFECT OF OFT BANDING ON SIGNALING PATHWAYS 

 In addition to upregulation of tgfβ3 and tgfRIII, banded OFT cushion tissue also 

showed an increase in message levels of the inhibitory smads – smad6 (p=0.0493) and 

smad7 (p=0.0435) (figure 5.11). OFT cushions from banded hearts exhibited a decrease 

in the expression of mesenchymal markers- N cadherin, fibronectin and vimentin, as seen 

by IF of heart sections containing OFT (figure 5.12).  

 The number of mesenchymal cells that invaded the collagen gel were significantly 

less in OFT explants from banded vs. control hearts (p=0.0300), though there was no 

significant difference in the depth of the gel invaded by these cells from both groups 

(p=0.3217) (figure 5.13).  

 The expression of htr1e, at the transcript level, was significantly downregulated 

(p=0.0003, while mRNA levels of tgm2 (p=0.0009) and sert (p=0.0378) were 

significantly upregulated in banded OFT tissue compared to control. There was also an 

increase in tgm2 at the protein level in OFT cushion from banded hearts relative to that 

from control, as revealed by IF (figures 5.14 and 5.15).  

5.7 EFFECT OF OFT BANDING ON APOPTOSIS 

  There was no significant incidence apoptosis in the OFT cushion mesenchyme 

from control or banded hearts as revealed by TUNEL staining (figure 5.16).  
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5.8 EFFECT OF OFT BANDING ON EXPRESSION OF ECM / EMT PROTEINS AND 
ON PROLIERATION OF MESENCHYME IN AV CUSHIONS 

IF was performed on AV sections. There appeared to be increased collagen type I 

in AV cushions from control hearts compared to those from banded hearts (Fig 5.17 a). 

Periostin (Fig 5.17 b) and IST-9 (Fig 5.17 c) expression was much higher in the control 

myocardium and endocardium compared to these regions in the AV cushions of the 

banded heart. There appeared to be an increase in intensity of signal of fibronectin and 

vimentin from AV cushions of banded hearts compared to that from AV cushions of 

control hearts (figure 5.18). PCNA was used as a marker for proliferation. There seemed 

to be an increase in the proliferative status of mesenchyme in AV cushions of banded vs. 

control hearts (figure 5.20). Furthermore, a gap was observed between the two AV 

cushions in the banded heart sections (indicated by arrowheads). 

5.9 EFFECT OF OFT BANDING ON AV CUSHION EXPLANT MIGRATION ON 
COLLAGEN GEL 

 A collagen gel assay was performed with AV cushion explants to 

investigate if altered hemodynamics induced by OFT banding had any effect on AV 

cushion cell migration (figure 5.19). There was no significant difference in the number of 

cells that invaded the collagen gel (p=0.4684). However, the cells from AV explants of 

OFT banded hearts, showed a significant decrease in the depth of the gel invaded 

(p=0.0294).  
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Table 5.1: Differential expression of genes critical to valve development, upon OFT 
banding, in OFT cushion tissue of banded and control hearts 
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Table 5.2: Genes revealed in the microarray study validated by qPCR. Data represent 
changes in OFT from banded relative to that from control hearts. 
 

    

 

 

Figure 5.1: Our in vivo (ex ovo) chicken embryonic system. (a) Whole chicken embryo 
with OFT banded, imaged after 24h. (b) Isolated chick embryonic heart, 24h after OFT 
banding 
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Figure 5.2: Ultrasound imaging. (a) B mode of a banded embryo showing the suture at 
the OVJ. Pulsed Wave Velocity (PWV) at the OVJ for the (b) control and (c) banded 
hearts. (d) OFT banding causes significant changes in the time averaged and peak 
centerline velocities measured at the OVJ. (e) Heart rate remains unchanged between 
controls and banded chick hearts 
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Figure 5.3: Velocity magnitude streamlines for (top) control chick hearts and (bottom) 
OFT banded chick hearts at the time-averaged flow velocity, peak flow conditions and 
late in the cardiac cycle during retrograde flow. V, ventricle; OVJ, OFT/ventricle 
junction; OFT, outflow tract 
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Figure 5.4: Wall shear stress magnitude for (top) control chick hearts and (bottom) OFT 
banded chick hearts at the time-averaged flow condition, during peak flow conditions and 
late in the cardiac cycle during retrograde flow. V, ventricle; OVJ, OFT/ventricle 
junction; OFT, outflow tract 
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Figure 5.5: Hemodynamic variables. (a) the spatially-averaged wall shear stress at the 
time-averaged flow condition, during peak flow conditions and late in the cardiac cycle 
during retrograde flow, (b) time-averaged pressure gradient and (c) the volumetric flow 
rate. * p < 0.05. 
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Figure 5.6: 3D reconstructed OFT.(a) Representative H&E stained images of a control 
(left) and banded OFT (right). (b) Cut-away view of a control (left) and banded (right) 
OFT showing cushion (yellow) and myocardium (red). Effect of OFT banding on (c) 
OFT cushion volume and (d) number of cells undergoing EMT. V: ventricle, S: position 
of suture  
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Figure 5.7: Compensatory mechanisms for decreased OFT cushion volume and cell 
number. Increase in AQP1 transcript level and increase in proliferation (PCNA staining) 
could potentially be compensatory mechanisms to counteract decreased cushion volume 
and reduced cell number resulting due to altered hemodynamics. Bars = 50 microns. M: 
Myocardium, E: endocardium, V: Ventricle 
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Figure 5.8: Transcriptome analysis upon OFT banding. Volcano plot resulting from 
microarray analysis of banded vs control OFT showing 116 transcripts exhibiting ≥ 1.5 
fold change (red: upregulated, green: downregulated). Data represent changes in OFT 
from banded relative to that from control hearts. 
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Figure 5.9: Herovici’s collagen stain. A decrease was observed in the localization of type 
I collagen in the OFT cushion from banded vs. control hearts. Bars = 50 microns. M: 
Myocardium, E: endocardium, V: Ventricle  
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Figure 5.10: IF of OFT sections. OFT sections were probed for (a) Type I collagen, (b) 
Periostin and (c) IST-9 by IHC-P. Bars = 50 microns. M: Myocardium, E: endocardium, 
V: Ventricle 
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Figure 5.11: Effect of OFT banding on mRNA levels of inhibitory smads. * indicates 
statistical significance.  
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Figure 5.12: Downregulation of EMT/mesenchymal markers in OFT cushion from 
banded hearts relative to that of controls. Bars = 50 microns. M: Myocardium, E: 
endocardium, V: Ventricle 
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Figure 5.13: Collagen gel assay with OFT explants. There was a significant decrease in 
the number of cells that invaded the gel from OFT explants excised from banded hearts 
relative to that of control hearts, though there was no significant difference in the depth of 
the collagen invaded by cells derived from explants in both groups.  
 

 
 
Figure 5.14: Effect of OFT banding on sert and tgm2 expression. Expression of sert (a) 
and tgm2 (b) were upregulated at the transcript level in response to OFT banding. (c)  
OFT from banded hearts showed increased protein expression of TGM2 relative to that 
from controls. Bars = 50 microns. M: Myocardium, E: endocardium, V: Ventricle.  
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Figure 5.15: Effect of OFT banding on htr1e and pERK1/2. Altered hemodynamics due 
to OFT banding caused a decrease in mRNA levels of htr1e (a); although there was no 
noticeable difference in protein expression of phospho ERK 1/2 in OFT cushion from 
banded vs. control hearts.  Bars = 50 microns. M: Myocardium, E: endocardium, V: 
Ventricle. 
 

   
 
Figure 5.16: No apoptotic cells were observed in OFT cushion from banded or control 
hearts. E: endocardium. Bars = 50 microns.  
 
  
 



	
  

55	
  

 
Figure 5.17: IF of AV sections. AV sections were probed for (a) Type I collagen, (b) 
Periostin and (c) IST-9 by IF. Arrowheads indicate a gap between AV cushions from 
banded hearts. Bars = 50 microns. M: Myocardium, E: endocardium. 
  



	
  

56	
  

 
 

Figure 5.18: Effect of OFT banding on expression of EMT markers in AV cushions. AV 
sections were probed for (a) fibronectin and (b) vimentin by IF. Arrowheads indicate a 
gap between AV cushions from banded hearts. Bars = 50 microns. M: Myocardium, E: 
endocardium. 
 

 
 
Figure 5.19: Collagen gel assay with AV cushion explants. There was no significant 
difference in cell number from AV cushion explants from both groups seeded on collagen 
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gels, although the depth of the gel invaded was significantly decreased in AV cushion 
explants from banded hearts relative to that of controls.  
 
 

 
 
Figure 5.20: Effect of OFT banding on proliferation of AV cushion mesenchyme with 
PCNA as a marker for cell proliferation. Arrowheads indicate a gap between AV 
cushions from banded hearts. Bars = 50 microns. M: Myocardium, E: endocardium.  
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CHAPTER 6 

RESULTS- EFFECTS OF RELEASING THE CONSTRICTION AROUND 
THE OFT5 

6.1 EFFECT OF BAND REMOVAL ON THE PHENOTYPE OF THE DEVELOPING 

HEART 

As described in the experimental procedures and shown in figure. 3.1, embryos 

were banded at HH16-17 and incubated for 24 hr; after which the band was removed and 

embryos were further incubated until two post-band-removal (PBR) time points were 

reached: 24 hr PBR and 48 hr PBR. Four groups of tissues were therefore analyzed in the 

present work: 24 hr stage matched control, 24 hr PBR recovery, 48 hr stage matched 

control and 48 hr PBR recovery (controls were stage-matched with the recovery 

embryos). At the appropriate time points, embryos from each of the four groups were 

excised from the yolk, hearts dissected, and images captured under a dissection scope. At 

the 24 hr PBR time point, hearts of the embryos in the recovery group (figure 6.1 b) had a 

deformed OFT relative to that of the control hearts (figure 6.1 a). At the 48 hr PBR time 

point, the early septation of the OFT into the aorta and pulmonary artery could be clearly 

seen in the control hearts (figure 6.1 c). However, hearts in the recovery group continued 

to exhibit abnormal phenotypes (figure 6.1 d). H&E stained heart sections revealed a 
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  Parts of this chapter have been excerpted from  
Menon V; Eberth J; Junor L; Potts AJ; Belhaj M; DiPette DJ; Jenkins M; JD, P. 
Removing vessel constriction on the embryonic heart results in changes in valve gene 
expression, morphology, and hemodynamics. Dev Dyn 2017	
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continuity of the OFT and AV cushions in the 24 hr PBR control hearts (figure 6.3 a), as 

is expected during normal heart/valve development. However, in the recovery group at 

this time point, the OFT remained separate from the AV cushions (figure 6.3 b). 48 hr 

after band removal, the recovery hearts exhibited OFT and AV cushions similar to that in 

the control group (figure 6.3 c and d), however the OFT of the 48 hr PBR recovery hearts 

(figure 6.3 d) appeared elongated relative to the controls at this time point. 

6.2 EFFECT OF BAND REMOVAL ON RELATIVE EXPRESSION OF GENES 
INVOLVED IN EMT AND VALVE DEVELOPMENT 

Genes selected in the current study are those that previously showed significant 

differential expression 24 hr after OFT banding (i.e., 24 hr post-surgery – PS; table 5.1). 

Shown in figure. 6.4 are the mRNA expression patterns of these transcripts in the OFT 

tissue from the recovery hearts relative to those in the control group at the respective 

time-points. Gene expression data reported here are transcript levels in the recovery 

group relative to that of the controls (i.e., 1.000). 24 hr PBR mRNA level of the 

mechanotransducer rhoA, in the recovery group, was similar to that of the controls 

(0.8689 ± 0.05687, p=0.1040). However, 48 hr after band removal, rhoA expression was 

downregulated (0.7154 ± 0.03212, p=0.0072). We analyzed the relative expression of 

genes coding for three important ECM proteins – collagen type I, periostin and collagen 

type VI. 24 hr PS, transcript levels of collagen VI were significantly downregulated 

relative to controls (0.4510 ± 0.08549, p=0.0040). At the 24 hr PBR time point, message 

levels of collagen I and collagen VI were both upregulated (1.259 ± 0.001197, p=0.0063 

and 2.499 ± 0.1714, p=0.0049, respectively). However, 48 hr after removing the band, 

expression of these targets was normalized (1.038 ± 0.03153, p=0.3622 and 0.9642 ± 

0.07846, p=0.3746). Periostin gene expression was upregulated 24 hr PBR (1.916 ± 
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0.1474, p=0.0092), but then downregulated at the 48 hr PBR time point (0.2397 ± 

0.04456, p=0.0106). We further analyzed the expression of genes involved in EMT and 

cell migration. Transcript levels of tgfbRIII (Type III TGF beta receptor) were 

normalized at the 24 hr PBR time point (1.054 ± 0.1831, p=0.4015), but 48 hr after band 

removal, levels were significantly lower relative to stage- matched controls (0.7688 ± 

0.03122, p=0.0069). However, mRNA levels of the type III TGF beta ligand (tgfbIII) 

continued to be upregulated 24 hr PBR and were then normalized 48 hr PBR (1.674 ± 

0.005772, p=0.0078 and 0.9494 ± 0.08052, p=0.3301). Expression of mmp2 and 

cadherin-11 (cdh11) were normalized 24 hr PBR (1.109 ± 0.05288, p=0.1766 and 1.023 ± 

0.1173, p=0.4538) and continued to be similar to controls even 48 hr after the band was 

removed (0.9642 ± 0.07846, p=0.3746 and 0.9849 ± 0.07089, p=0.4682).  

6.3 EFFECT OF BAND REMOVAL ON OFT CUSHION AND CELL VOLUME 
 

Our previous studies demonstrated that following 24 hr of banding the OFT cushions 

showed a significant volume reduction. To that end, we examined the hearts and OFTs 

following band removal to assess any changes that were created.  AMIRA-generated 

3D models of the OFT were used to determine the volume of the OFT cushions after 

band removal. 24 hr PBR cushion volume of the OFT in the recovery group was 

significantly lower compared to that of the control group (p=0.0262) (figure 6.5 a). 

However, in contrast, cushion volume of OFT 48 hr after removing the band showed no 

significant reduction in volume to that of the control group at this time point (p=0.3027) 

(figure 6.5 b). That finding prompted us to examine whether there was a corresponding 

change in the cellular volume as well within the cushion. Using the AMIRA program, 

we examined every fourth 5 um section through the cushion and collected the cell 
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volumes for cells within the cushions analyzed above. This was done to assure that we 

did not count a cell multiple times. Assuming that our cell volume measurements were 

taken at similar thresholds throughout and that all mesenchymal cells have a similar 

volume, the cell volumes are reflective of the cell number in each cushion analyzed. At 

both time points, 24 and 48 hr PBR, there were no significant increases in the cell 

volume within the cushions (p=0.1238; p=0.4836 respectively) (figure 6.6 a). However, 

when we took into consideration the volume of the cushion itself and calculated a ratio 

of cushion volume to cell volume we found a significant decrease in the ratio at 24 hr. 

(p=0.0237) (figure 6.6 b). This significance observed at 24 hr. PBR was subsequently 

lost when we examined the 48 hr. PBR ratio of cushion to cell volume (p=0.1976). 

6.4 HEMODYNAMIC CHANGES IN RESPONSE TO BAND REMOVAL 

Overall no significant differences were found in the heart rate at either time point 

(24hr stage matched control=154.9 ± 10.52 BPM; 24hr PBR recovery=135.8 ± 10.04; 

48hr control=168.5 ± 14.44; 24hr PBR=166.3 ± 18.51; p=0.4635; figure 6.7). In our prior 

work, we demonstrated that the application of a fixed diameter band around the outflow 

tract of the HH-stage 16-17 embryonic chick heart resulted in localized increases in time 

averaged (control = 2.54 ± 0.68; banded = 17.6 ± 6.32 cm/s) and peak (control = 8.57 ± 

2.54; banded = 51.5 ± 17.16 cm/s) centerline velocity. These increased velocities resulted 

in higher levels of time averaged (control=0.97 ± 0.26; banded 6.1 ± 2.19 Pa) and peak 

wall shear stress (control=3.30 ± 0.50; banded=17.8 ± 5.96 Pa) in the OFT. In this study, 

our recovery groups showed similar velocities to the time-matched controls 24 hrs after 

band removal, in terms of time-averaged (24hr PBR control=13.63 ± 1.337; 24hr PBR 

recovery = 16.36 ± 1.734 cm/s; p=0.1146; figure 6.8 a), peak (24hr PBR control=53.07 ± 
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5.536; 24hr PBR recovery = 61.72 ± 7.957 cm/s; p=0.1864; figure 6.8 b), and retrograde 

(24hr PBR control=-6.264 ± 1.447; 24hr PBR recovery= -3.819 ± 2.044 cm/s; p=0.1663; 

figure 6.8 c) velocity. Likewise, similar velocities were observed at the 48 hr PBR time 

point in terms of time-averaged (48hr PBR control=16.99 ± 1.176; 48hr PBR recovery= 

16.06 ± 1.914 cm/s; p=0.3437; figure 6.8 d), peak (48hr PBR control=63.82 ± 4.752; 

48hr PBR recovery= 63.06 ± 3.130 cm/s; p=0.4483; figure 6.8 e), and retrograde (48hr 

PBR control=-10.52 ± 1.784; 48hr PBR recovery= -11.59 ± 3.191 cm/s; p=0.3708; figure 

6.8 f) velocity.  

No statistically significant differences were found 24 hr after removing the band 

for time averaged wall shear stress (24hr PBR control= 1.067 ± 0.1107; 24hr PBR 

recovery=0.9780 ± 0.1128 Pa; p=0.2993; figure 6.9 a), peak wall shear stress (24 hr PBR 

control=53.07 ± 5.536, 24 hr PBR recovery=61.72 ± 7.957; p=0.1864; figure 6.9 b) or 

retrograde wall shear stress (24 hr PBR control=-6.264 ± 1.447, 24 hr PBR recovery =-

3.819 ± 2.044; p=0.1663; figure 6.9 c). However, time averaged (48 hr PBR 

control=1.227 ± 0.08780, 48 hr PBR recovery=1.688 ± 0.1118; p=0.0035; figure 6.9 d) 

and peak (48 hr PBR control=3.709 ± 0.3103, 48 hr PBR recovery=4.815 ± 0.2244; 

p=0.0068; figure 6.9 e) wall shear stress were increased in the recovery group 48 hr after 

band removal, although retrograde wall shear stress (48 hr PBR control=-0.4691 ± 

0.1062, 48 hr PBR recovery=-0.7163 ± 0.1266; p=0.0803; figure 6.9 f) appeared different 

but did not reach statistical significance at this sample size. 
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Figure 6.1: Bright field images of whole embryonic hearts illustrating the effect of OVJ 
band removal. (a), (c) show representative images of stage-matched control hearts at 24 
and 48 hr respectively. (b), (d) illustrate the altered morphology observed from 24 and 
48hr PBR. The two predominant observed phenotypes are shown in (d) 1-2. Both show 
OFT changes. Ventricle (V) and outflow tract (OFT) are designated. The hashed line 
represents the area that the band is placed. Bar=500 microns. 
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Figure 6.2: Band removal did not have any significant difference in width of the outer 
wall of the OFT at 24 hr and 48 hr PBR time points.  
 

 
 
Figure 6.3: H&E stained heart sections obtained from stage matched controls and 
following band removal.  24 hr PBR control (a), and 48 hr PBR control (c) show normal 
phenotypes in both sets of cushions. In contrast, both 24 hr PBR recovery (b), and 48 h 
PBR recovery (d) hearts show altered phenotypes. An elongated OFT (d) is one of the 
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phenotypes observed in the 48 hr PBR hearts.  Outflow tract (OFT), atrioventricular (AV) 
and ventricle (V). Bar = 100 microns 
 

 
Figure 6.4: qPCR analysis of the effect of band removal on relative expression of genes 
critical to EMT and valvulogenesis. OFTs were excised from heart at the appropriate time 
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frames and ran for changes in gene expression. A variety of outcomes were observed for 
the various genes. Each up or down regulated time point was given its designation if it 
was statistically significant. As was previously described by us all of the genes chosen 
were altered immediately upon band removal. Some genes returned to returned to 
baseline levels at 24 hr PBR (48 hr PS) e.g. Rho A, MMP2 and CDH11. Others were 
upregulated at that time and several showed a downregulation at the 48 hr PBR time 
point (RhoA, Periostin, and TGFßRIII). Post band removal (PBR), Post surgery (PS). * 
indicates p<0.05 
 

 
 
Figure 6.5: Changes in OFT cushion volume in response to band removal. Cushion 
volumes were determined from Amira reconstruction of hearts from both control and 
PBR recovery hearts at 24 and 48 hr PBR. Cushion volume showed a significant decrease 
in the 24 hr PBR hearts compared to stage- matched controls (a). However, by the 48 hr 
PBR time point, there was no significant volume change when compared to stage 
matched controls (b). * indicates p<0.05 
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Figure 6.6: Calculation of Cushion and Cell volumes (µm3) in recovery hearts. Recovery 
hearts at 24 and 48 hr PBR were serial-sectioned and images collected for analysis using 
AMIRA software. At both time points following band removal, no significant volume 
changes were observed compared to control cushion volume. However, at 24 hr PBR, 
there was a significant decrease in the cell volume/cushion volume ratio. By 48 hr PBR 
there was no longer any significance in the ratio 
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Figure 6.7: Effect of band removal on heart rates. Embryonic heart rates (a) 24 hr PBR 
and (b) 48 hr PBR with age-matched controls. Ultrasound data was acquired from the 
hearts and used to obtain heart rates. There were no statistically significant differences 
found at either time point (24 hr PBR (a), 48 hr PBR (b)) compared to controls. 
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Figure 6.8: Effect of band removal on blood flow velocity. Measured time averaged, 
peak, or retrograde flow velocity (a-c) 24 hr post band removal (PBR) or (d-f) 48 hr PBR 
with age matched controls. No statistically significant differences were found at either 
time point or during any stage in the cardiac cycle 
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Figure 6.9:	
  Effect of band removal on shear stress. Computed time averaged, peak, or 
retrograde shear stress (a-c) 24 hr post band removal (PBR) and (d-f) 48 hr PBR with age 
matched controls. (*) indicates statistical significance between the 48 hr PBR and the 48 
hr control. 
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CHAPTER 7 

RESULTS (PRELIMINARY STUDY)-	
  MOLECULAR RESPONSES TO 
OFT BANDING AT DIFFERENT DEVELOPMENTAL STAGES 

 qPCR was carried out to investigate if there exists a window of time during 

embryonic development during which altered hemodynamics through the embryonic 

heart has any effect on the expression of those transcripts that were shown to be affected 

24 hr after banding HH 17 OFTs (5.4).  

7.1 EFFECT OF OFT BANDING AT HH 14 ON RELATIVE EXPRESSION OF 
GENES INVOLVED IN VALVE DEVELOPMENT 

 The expression of collagen type I was significantly upregulated in OFT tissue of 

banded relative to that from control hearts (p=0.0121). However, there was no significant 

change in expression of other genes between OFT tissue from banded vs. that from 

control hearts. (rhoA p=0.4904, collagen type VI p=0.2015, periostin p=0.2592, tgfbRIII 

p=0.4030, tgfbIII p=0.4984, mmp2 p=0.4729, cdh11 p=0.3247).  

7.2 EFFECT OF OFT BANDING AT HH 20 ON RELATIVE EXPRESSION OF 
GENES INVOLVED IN VALVE DEVELOPMENT 

 Of all the genes analyzed, only the expression of collagen VI was downregulated 

significantly in banded OFT vs. control (p=0.0390). Expression of other genes were not 

significantly different in OFT tissue from banded vs. control hearts (rhoA p=0.3003, 

collagen type I p=0.4346, periostin p=0.4935, tgfbRIII p=0.1219, tgfbIII p=0.2469, 

mmp2 p=0.2547, cdh11 p=0.2169).  
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CHAPTER 8 

DISCUSSION- MOLECULAR EFFECTS OF ALTERED 
INTRACARDIAC HEMODYNAMICS ON VALVE DEVELOPMENT6 

 As stated earlier, several studies have reported the fact that perturbation of 

hemodynamics in the embryonic heart leads to a spectrum of congenital heart / valve 

defects [46-54,63]. We recently showed that altering intracardiac hemodynamics by 

partial OFT constriction via banding, has consequences at the cellular and genetic level 

[52,63]. As a result, we have started to investigate the potential processes that go awry 

when normal hemodynamic stimuli are affected in the developing heart.	
   Our banding 

model in the chick embryo mimics these other systems of altered hemodynamics while 

allowing a more rapid investigation of cellular / molecular perturbations that lead to these 

defects.	
   Furthermore, it is plausible that disruption of blood flow is similar to that 

observed in valvular defects such as calcified aortic valves and/or bicuspid aortic valve 

disease [70,71].	
  While the long-term goal of our laboratory is to further examine our 

model system and decipher if the resulting genetic and cellular anomalies are parallel to 

those seen in the aforementioned adult etiologies, the purpose of this study was to alter

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
6	
  Parts of this chapter have been excerpted from 

(1) Menon V; Eberth JF; Goodwin RL; JD, P. Altered hemodynamics in the 
embryonic heart affects outflow valve development. J Cardiovasc Dev Dis. 2015, 
2, 108-124. (Open access).  

(2) Menon V; Junor L; Eberth J; ford SM; McPheeters M; Jenkins M; Belhaj M; JD, 
P. Molecular consequences of cardiac valve development as a result of altered 
hemodynamics. Microsc. Microanal. 2017, 23 
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the hemodynamics in the embryonic chicken heart by partially constricting the OFT, and 

to study the effects of this intervention on early valve developmental processes. 

 Hemodynamics in the chicken embryonic heart were altered by banding the OFT 

at the OVJ.  This constriction led to a significant ‘jet effect’ at the OVJ as revealed by 

ultrasound-mediated flow velocity measurements and prolonged increased levels of wall 

shear stress. Despite the increased cardiac afterload, the volumetric flowrate and heart 

rate were similar between controls and banded hearts. This result is indicative of adequate 

distal tissue perfusion and little change to systemic cardiovascular physiology. A 

subsequent lumen narrowing was also experienced in the distal portions of the OFT and 

confirmed by AMIRA 3D reconstructions. This distal lumen narrowing is consistent with 

the findings of other researchers [72] who hypothesized that this effect may be due to 

paracrine factors released at the banding site. Regardless, at a consistent volumetric flow 

the narrowed lumen led to an increase in spatially averaged wall shear stresses and a 

concatenate increase in the differential pressure. Flow-induced wall shear stresses are a 

result of the viscous properties of flowing blood thereby creating physical signals that are 

sensed directly by the epithelial cell-lined lumen. Although pressure likely plays an 

important role in the EMT process, the differentiation, morphology and gene expression 

effects herein are attributed solely to changes in shear stress. The role of pressure in the 

EMT process is reserved for future work. 

 The control peak flow velocities measured for the OFT in our study (8.57 ± 1.28 

cm/s) compare well to those of prior researchers, including Bharadwaj et al. for HH16 

(9.2 ± 0.09 cm/s) and Liu et al. for HH18 (6.2 ± 0.7 cm/s) [73,74]. Liu et al. also reported 

a retrograde flow velocity of −2.0 ± 2.0 cm/s, and we found this value to be very close at 
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−0.72 ± 0.77 cm/s. An estimation of time-averaged velocities from the full velocity 

profile of both of the aforementioned studies is also in the range of our measured value of 

2.54 ± 0.68 cm/s. Our banding model, however, has Doppler measured centerline 

velocities much greater than those presented by Midgett et al. [62]. Despite those 

differences, our results are reasonable when considering proportional changes in cross-

sectional area caused by the banding process. 

 We found time-averaged (0.97 ± 0.26 Pa) and peak (3.30 ± 0.50 Pa) wall shear 

stress values to be near those found by Bharadwaj et al. for the HH16 chick (0.36 Pa and 

0.97 Pa, respectively) [73]. Liu et al. also showed graphically the peak wall shear stress 

for the HH18 chick to be somewhere around 6 Pa [74]. Our values fall between these two 

estimates, and the differences could be attributed to the source tissue location, 

assumptions on the velocity profile, tissue fixation geometry or from spatially averaging 

across a larger tissue area. Without more advanced imaging modalities (e.g., micro-CT), 

we are unable to quantify cushion expansion in real time and require tissue fixed under 

physiological conditions for our geometric-based CFD analysis. These two factors 

contribute to error in our shear stress calculations and are acknowledged limitations to 

this work. Regardless, the results of our CFD study provide a reasonable comparison 

between control and banded tissues 

Cushion volume and number of cells undergoing EMT were decreased by 39% 

and 69% respectively, in the OFT of the banded hearts relative to control hearts. These 

observations highlight the fact that hemodynamics plays a significant role in formation of 

the valve primordia during the initial stages of valve development that occur in HH16-17 

embryos, the stage chosen for the OFT banding surgery. These reductions in OFT 
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cushion volume and cell number could potentially lead to the formation of abnormal, 

hypocellular OFT valves.  

 Aquaporins (aqp) are water channels that shuttle water across a 

concentration gradient [75,76]. Transcript levels of aqp1 were significantly upregulated 

in the OFT tissue of banded hearts compared to that from control. This may be a 

compensatory mechanism to counteract the decrease in cushion volume resulting due to 

altered hemodynamics. The OFT cushion mesenchyme from the banded hearts also 

exhibited an increase in proliferative status, indicated by increased PCNA staining, 

relative to that of controls. This may be another compensatory mechanism in response to 

the banding insult to increase the number of cells in the cushion and attempt to achieve 

homeostasis.  

As evidenced in the CFD model, there is a significant change in wall shear stress 

in, and distal to, the banding regions. However, for technical reasons, cushion tissues of 

the entire OFT were collected, which includes regions directly beneath/surrounding the 

band as well as regions post- and pre- constriction. Thus, the gene expression results 

reported in this study represent changes that occur in the whole OFT cushion tissue rather 

than at discrete locations.  Since CFD simulations predicted spatially averaged wall shear 

stresses to be significantly higher in the banded model, we compared the entire tissue 

gene expression to the entire tissue shear stresses.  

Endocardial cells, that line the lumen of the embryonic heart and the adult 

cardiovascular system, are the first to experience and respond to shear stress by 

mechanotransduction signaling pathways [77]. When comparing flow (therefore shear 

stress) to no flow (no shear) we have previously shown that rhoA, a small GTPase 
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involved in regulating the actin cytoskeleton, is upregulated in the presence of flow in in 

vitro cultures of AV [28] and OFT cushions [29], and is also an important 

mechanotransducer, in 3D cultured AV cushion explants [13]. At high levels of shear 

stress however, rhoA was shown to be down-regulated compared to physiological levels 

[14]. In the present study, we also observed a significant decrease in rhoA transcript 

levels in OFT cushions of the banded hearts. This decrease in rhoA transcription could 

potentially lead to inappropriate mechanotransduction and thus altered ECM production 

leading to abnormally formed OFT valves. Kruppel-like factor 2 (klf2) is an important 

shear-responsive transcription factor [78,79] and appears to have a role in normal valve 

development and regulates the EMT process [80]. We did not observe any significant 

change in the mRNA expression of this gene upon constricting the OFT. This may be a 

consequence of analyzing the expression of this gene in whole OFT cushion, and not just 

the region where shear stress is altered.  

The mature OFT valve consists of three distinct ECM layers that confer special 

properties to valve function. The ventricularis offers elasticity to the OFT valves allowing 

them to extend and recoil, the middle spongiosa layer acts as a shock-absorber, and the 

collagen-rich fibrosa confers stiffness and strength [38,81]. The production / deposition 

of fibrous ECM proteins is important to maintain valvular integrity in order to allow 

valves to function efficiently and to prevent backflow of blood during the cardiac cycle; 

consequently aberrant expression and deposition of valve ECM proteins is associated 

with abnormalities in valve development and pathological states [38]. Collagen is the 

most abundant fibrous ECM protein in the mature valve with mutations in collagen1α1 

leading to, among other conditions, aortic valve insufficiency that requires valve 
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replacement [38]. Tenascin C is a matricellular protein that is highly expressed during 

development and is associated with endocardial cushion tissue EMT. Elastin is found in 

the ventricularis, the aspect of the OFT valves that faces blood flow. It has been shown, 

in humans, that elastin content increases in the outflow valves from the fetal stage to 

adult [82]. In our study, we found a decreased expression of colI at the mRNA level and a 

downregulated trend in mRNA expression of tenascinC in OFT cushions from banded 

hearts relative to that from controls. We have previously shown that in the presence of 

flow and therefore shear stress, transcript levels of colI and tenascinC are decreased in in 

vitro 3D cultured HH25 OFT cushions compared to no flow controls [29].  Yet when 

compared to physiological levels of shear stress there were no observable differences 

when shear stresses were elevated to pathologically high levels (e.g., those generated 

from OVJ banding) [29]. Although the stage of the embryos in the present study 

subjected to banding surgery does not represent that stage at which there is complete 

expression of ECM genes, the reduction in colI may be attributed to the change in shear 

stress through the banded OFT. However, it appears that spatially averaged shear stress 

does not significantly influence expression of elastin and vinculin at least at the mRNA 

level at this embryonic stage. Importantly, it should be pointed out that the presence of 

flow did decrease mRNA expression of elastin in 3D cultured OFT cushions from HH 25 

hearts and that pathologically high levels of shear stress also increased mRNA expression 

[29]. These differences are also likely attributable to the stage-dependent influence of 

hemodynamics on transcription of this gene. In the present study we observed increased 

transcript of periostin in the high shear stress model which are in parallel with our in vitro 

3D OFT explant experiments [29] where transcript levels of periostin were upregulated in 
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OFT cushion tissue. Periostin is a product of TGFβ3 signaling and has been shown to 

regulate chick AV valve maturation [83].  

The coordinated signaling events between TGFβ, BMP and Notch pathways are 

important for EMT and thus formation of valve primordia and eventually the 

development of mature cardiac valves [84-86]. In the current study, we investigated the 

expression of a representative panel of genes important for EMT. The type III TGFβ 

receptor (TGFβRIII) is the ligand presenting receptor and plays an important role in 

cushion EMT [87]. We observed a significant increase in gene expression of tgfβRIII and 

tgfβ3 in the OFT cushions of the banded hearts. However, there was no significant 

difference in expression levels of tgfβ2 between OFT of the banded and control hearts. 

Snai2 is an important transcription factor of TGFβ signaling that induces EMT by 

decreasing expression of adhesion molecules including E-cadherin [5]. Even though we 

did not observe any alteration in gene expression of snai2 in OFT tissue from the banded 

hearts, there was a significant decrease in the number of cells undergoing EMT and thus 

invading the cushion tissue. This may be due to the effect of altered hemodynamics on a 

Snai2-independent EMT process. Thus, there seems to be activation of only the upstream 

events of TGFβ signaling in OFT tissue by the change in hemodynamics in the heart. The 

increase in TGFβ3 levels could partially contribute to the enhanced expression of 

periostin in OFT cushions of the banded heart. OFT banding did not lead to any 

significant alteration in hyaluronic acid synthetase 2 (has2) and filamen A mRNA in OFT 

tissue. Has2 synthesizes hyaluronic acid, which is a major component of cushion ECM 

and is required for cushion EMT [88,89]; while filamen A is involved in cell migration. 

Thus, hemodynamics may not influence the expression of these genes at this site at least 
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at this early stage of valve development. Cadherin-11 (CDH11) is a type II classical 

cadherin that is found in the endothelium and mesenchyme of embryonic cushion tissue 

and may play a migratory role in populating the cardiac jelly [90]. OFT banding led to a 

significant downregulation in the expression of cdh11 in OFT cushions. This indicates 

that changing cardiac hemodynamics in the embryonic heart could potentially affect the 

migration of endothelial cells, an important process of valve formation. Lastly, we found 

a significant increase in the expression of matrix metalloproteinase 2 (mmp2) in the OFT 

cushions of the banded hearts. MMP2 is required for degradation of the ECM and cell 

migration. However, it should be noted that MMP2 has to be proteolytically activated 

[91], which was not investigated in our study. Thus, we can only conclude that altered 

intracardiac hemodynamics seems to influence the expression of this gene at the mRNA 

level.  

Of the 116 genes, revealed in global transcriptome analysis, that were 

differentially expressed in OFT cushion tissue from banded relative to that of control 

hearts, the expression of 11 genes was validated by qPCR These genes were selected due 

to their specific roles in heart and valve development including migration of endotholelial 

cells, valve leaflet formation and EMT [92-99]. Differential expression of these genes 

due to altered hemodynamics could have pathological consequences leading to the 

development of abnormal OFT valves with compromised function.  

 Both Herovici’s collagen staining and IF revealed a decrease in the expression of 

type I collagen in cushions of OFT from banded vs. control hearts. There was also 

increased deposition of periostin and IST-9 in the banded cushions relative to that from 

control hearts. This abnormality in the expression and deposition of ECM proteins could 



	
  

80	
  

have pathological consequences. Thus, alteration of hemodynamic stimuli within the 

embryonic heart affects the mRNA and protein expression and localization of ECM in 

OFT cushions in vitro [29] and in vivo.   

 As mentioned above, message levels of tgfβ3 and tgfβRIII were upregulated in 

response to OFT banding. However, transcript levels of inhibitory smads (smad6/7) were 

also upregulated as a result of altered intracardiac hemodynamic loads. Moreover, there 

was decreased expression in EMT/mesenchymal markers – N cadherin, fibronectin and 

vimentin – in the OFT cushions from banded relative to control hearts. To definitively 

identify a decrease in EMT in response to altered hemodynamics, a collagen gel assay 

was performed by seeding OFT cushion explants from control and banded hearts on 

collagen gels. Although there was no significant change in the depth of the collagen 

invaded by mesenchymal cells from control and banded OFT explants, the number of 

cells were significantly lower from OFT explants from the banded hearts compared to 

explants from control hearts. Furthermore, as mentioned above, there was a reduction in 

cell number in the OFT cushions from banded hearts in relation to OFT cushions from 

controls (counted from H&E stained heart sections). Thus, we conclude that perturbation 

of hemodynamic stimuli through the embryonic heart leads to a decrease in EMT which 

could lead to the development of pathological OFT valves. 

 Serotonin is a neurotransmitter that also has exerts activity in the heart and 

vasculature [100-102]. Extracellular and intracellular activities of serotonin seem to be 

important for development and functioning of heart valves [103]. Transcript levels of the 

serotonin receptor (htr1e) were significantly downregulated in OFT cushion tissue from 

banded hearts compared to that from controls. Receptor binding was shown to activate 
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TGFβ signaling [103]. In our study, we did not see any noticeable change in the 

phosphorylation of ERK 1 / 2 in OFT from banded relative to control hearts. Thus, it is 

possible that OFT banding does not have an effect on non-canonical TGFβ signaling. 

While there was no significant change in mRNA levels of smad4 in OFT tissue of banded 

vs. control (data not shown), SMAD phosphorylation status was not evaluated in 

response to altered hemodynamics in our banded system. However, as noted above, OFT 

banding did lead to a decrease in OFT cushion EMT as well as decreased expression of 

ECM proteins type I collagen and fibronectin.  

It was recently shown that serotonin molecularly interacts with filamen A and this 

interaction is dependent on the activity of the enzyme transglutaminase 2 (TGM2) [104]. 

This TGM2-mediated serotonylation of filamin-A has been shown to be important in the 

organization of valve ECM layers [104]. In our study, there was no significant alteration 

in the mRNA level of filamen A; however, the serotonin transporter (sert) was 

significantly upregulated in OFT tissue from banded vs. that of control hearts. tgm2 

expression was increased, both at the mRNA and protein level. Even though our 

experiments were performed on embryos very early in development, abnormality in 

expression of these players could potentially affect future valve ECM stratification and 

thus lead to formation of diseased valves.  

 There was no significant loss of OFT cushion cells due to apoptosis in control and 

banded hearts as revealed by TUNEL staining, as would be expected at this stage of 

embryonic development [105].  

 OFT banding did not cause any significant change in transcript levels of genes in 

table 5.1 in AV cushion tissue relative to AV cushions of controls (data not shown). This 
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could probably indicate that altering hemodynamics in the OFT (by banding) causes 

changes in gene expression limited locally to OFT tissue, at least at this stage in 

embryonic development. However, IF experiments revealed differential expression and 

localization of EMT / ECM proteins in AV cushions from OFT banded hearts relative to 

AV cushions of non-banded controls. There seemed to be a decrease in deposition of 

ECM proteins, such as type I collagen and periostin, in AV cushions from banded vs. 

controls, there also seemed to be an increase in EMT markers fibronectin and vimentin. 

However, when AV cushion explants were seeded on collagen gels, no statistically 

significant differences were observed in the number of cells invading the gel from AV 

explants from banded and control groups, although there was a significant decrease in the 

depth of the gel invaded by cells from AV explants from OFT banded hearts. Thus, even 

though EMT markers seem to be upregulated in AV cushions from banded hearts, there is 

no difference in AV cushion mesenchymal cell number between the two groups, as 

revealed by collagen assay. These data suggest that perturbation of intracardiac 

hemodynamics by OFT banding, affects the secretory profile (decrease in ECM 

deposition) and migratory capacity of AV mesenchyme (decrease depth of collagen 

invaded). While the expression of EMT markers appears to be upregulated in AV 

cushions from banded hearts, OFT banding does not seem to affect the EMT process in 

the AV cushions (invading cell number in collagen assay), at least at this developmental 

stage and at this time point of analysis (24 hr post banding).  

 As in the banded OFT cushions, AV cushion mesenchyme from banded hearts 

revealed an increase in proliferation as seen by PCNA IF staining. Furthermore, AV 

sections from OFT banded hearts revealed a gap between the two AV cushions. At this 
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stage of development, the two AV cushions are close to fusing (as seen in control heart 

sections). This gap might be due to differential pressure created in the AV canal as a 

result of OFT banding. While studies have reported an increase in ventricular pressure as 

a result of OFT banding [72,106], real-time changes in pressure at different locations in 

our system due to OFT banding need to be determined. 
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CHAPTER 9 

DISCUSSION- EFFECTS OF RELEASING THE CONSTRICTION 
AROUND THE OFT7 

The focus of this study was to investigate if the altered cellular and molecular 

profile, due to changes in hemodynamics, could be reversed if the band around the OFT 

was released. 

Morphological examination of hearts revealed that even after the band around the 

OFT was released, the OFT continued to show a deformed configuration relative to the 

controls. At the 24 hr PBR time point, the OFT of the recovery hearts was bent to a 

greater degree relative to that of the controls. In comparison, 48 hr PBR hearts displayed 

a couple of different altered phenotypes with the majority of those exhibiting an 

elongated phenotype with a narrower overall ventricle. Surprisingly, when the distance of 

the outer wall of the OFT was measured from the whole heart images, there was no 

persistent narrowing of the OFT (figure 6.2). These anomalous cardiac phenotypes are 

likely to affect immediate and future cardiac function. 

Hemodynamics adapt to meet the evolving demands of the developing embryo. 

Accordingly, we observed that the blood flow velocity steadily increased with embryo 

maturity as expected, and was dramatically altered with the application of a fixed
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  Parts of this chapter have been excerpted from  
Menon V; Eberth J; Junor L; Potts AJ; Belhaj M; DiPette DJ; Jenkins M; JD, P. 
Removing vessel constriction on the embryonic heart results in changes in valve gene 
expression, morphology, and hemodynamics. Dev Dyn 2017	
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 diameter band around the OVJ. The banding process creates a stenotic jet as documented 

previously and confirmed by others [52,62,107]. Our measured velocity is close to those 

reported by other investigators analyzing early stage embryos at the proximal outflow 

tract [44,62,73,74]. We note that at later time points, OFT septation has a dramatic effect 

on distal hemodynamic analysis and for simplicity purposes, we focused our attention on 

a consistent but proximal section of the OFT near the OVJ. As such we found that at 24 

and 48 hr after removal of the band, blood flow velocity at this location had returned to 

levels near those of the stage- matched controls; a pattern repeated for the time averaged, 

peak, and retrograde flow velocities. For the 24 and 48 hr stage matched controls, our 

shear stress values were slightly lower than those described by other researchers [73]. but 

as noted earlier, this depends largely on the location of the analysis. Time averaged, peak, 

and retrograde wall shear stress were shown to be restored for the 24 hr PBR time point, 

but somewhat surprisingly, it was not restored at the 48 hr PBR time point when 

compared to stage-matched controls. Differences were minor but statistically significant. 

We note that these differences were likely caused by shape, rather than size effects. Two 

predominant morphological changes were observed in the PBR hearts represented by a 

thinner elongated ventral and a shorter wider heart with an increased flexure of the OFT. 

Regardless, failure to generate normalized shear stress could be due to pathological 

processes that occurred early on (as a result of banding) thereby creating altered tissue 

morphologies. This could potentially lead to a vicious cycle of growth and remodeling or 

complete restoration of a healthy phenotype. Future work will be needed to elucidate the 

long-term effects.  
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Overall, our gene expression data indicate that after releasing the band, transcript 

levels, of the key EMT and valve development genes analyzed in this study, vary in their 

response. Increased shear stress contributes to both immediate and delayed gene 

expression profiles so it is difficult to tease out cause-and-effect from this alone. 

Furthermore, there appears to be a gene-specific, rather than a process-specific, response 

to band removal. We speculate the one possible scenario is that 24 hr after banding, the 

heart undergoes a “first wave” of remodeling in response to altered intracardiac 

hemodynamics. For example, colVI, tgfß3 and periostin were upregulated early following 

band removal (i.e. 24hr PBR). Then, some cellular and molecular processes do not 

immediately return to normal, instead the heart undergoes a “second wave” of 

remodeling which are represented by changes in rho A, tgfßRIII and periostin. 

Genes known to play a role in mechanotransduction, ECM production and EMT 

showed varying responses to removal of the OFT band. An important mechanotransducer 

is rhoA. 24 hr after the band was removed, rhoA transcript levels in the OFT of the 

recovery hearts were normalized, which would indicate that any potential consequences 

of altered intracardiac hemodynamics on mechanotransdution, 24 hr after banding, were 

not observed. However, at the 48 hr PBR time point, rhoA message levels are 

downregulated, which may suggest inappropriate ECM production due to altered 

mechanotransduction which could lead to abnormal OFT valves.  

ECM produced by cushion mesenchyme is pivotal for the formation of healthy 

cardiac valves with abnormal expression/deposition of ECM proteins leading to 

pathological conditions [38]. Transcript levels of both collagen I and VI showed similar 

expression patterns: upregulated at 24 hr PBR and then normalized at the 48 hr PBR time 
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point. In contrast, periostin mRNA is upregulated 24 hr PBR, but is then downregulated 

48 hr PBR. The dysregulation observed in the expression of collagen and periostin 24 hr 

PBR suggests that the ECM remodeling is likely taking place and by 48 hr PBR the 

expression begins to taper back to normal levels. Even though collagen levels are 

normalized 48 hr PBR, the initial alterations may still have negative consequences on 

OFT valve development despite levels tending to normalize. It is possible that what is 

occurring is a change in the timing of the remodeling and despite normalizing of 

transcript levels, proper development of cushion is already altered.  

Finally, the expression of a panel of important genes involved in EMT and cell 

migration showed a variety of responses. Transcript levels of the ligand-presenting type 

III tgf beta receptor (tgfbRIII) were normalized 24 hr PBR, but are downregulated 48 hr 

PBR. The type III tgf beta ligand (tgfbIII), in contrast, continued to stay upregulated 24 hr 

PBR and at the 48 hr PBR time point, levels normalized to those of stage-matched 

controls. mmp2 and cdh11 were normalized at the 24 hr PBR time point and continued to 

maintain expression levels similar to 48 hr stage matched controls.  

As reported previously, OFT banding causes a significant decrease in the volume 

of the OFT cushion, 24 hr after surgery. We continue to see this decrease in OFT cushion 

volume 24 hr after releasing the band. This suggests that even once hemodynamic stimuli 

are restored, the OFT continues to exhibit a decrease in cushion volume. 48 hr PBR, 

cushion volume of the OFT in the recovery group is normalized; however, the OFT 

lumen still exhibits a malformed phenotype. Thus, with respect to cushion volume, it 

seems like the OFT cushion does recover from banding, but the cardiac pathological state 

caused by altered hemodynamics does not seem to improve even 48 hr after the band has 
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been removed. In addition, we also previously demonstrated that OFT cushions were 

hypocellular 24 hr post surgery. Here, we report that even though we do not see any 

significant differences in cell volume at either 24 or 48 hr PBR, we do see a significant 

decrease in the cushion to cell volume ratio at 24 hr PBR. This makes sense as our 

cushion volume is decreased and cell volume is not significantly decreased. This may be 

indicative of the cells slowing their secretory phenotype in response to the banding and 

increasing their proliferative capacity. In contrast, at 48hr PBR the cell volume is similar 

to control and the ratio of cushion to cell volume is no longer significant. This decrease in 

cushion volume early could lead to inappropriate ECM production and thus defective 

OFT cushion and eventually valve development. It is important to mention that we have 

observed no significant apoptosis in the OFT cushion mesenchyme from control or 

banded hearts 24 h after surgery.  

A clear limitation to our hemodynamic analysis is the use of fixed geometries in 

CFD simulations. Although our H&E stained cross sections were fixed under 

physiological conditions, they represent a single time point in the changing cardiac cycle 

that involves both expansion and retraction of the tissue. On the other hand, the 

hemodynamic waveforms were recreated for the entire cardiac cycle. Banded and control 

wall dynamics have been examined by other groups and shown to play an important role 

in this model system, but requires more advanced imaging modalities than are available 

at our institution [107]. We acknowledge this to be a limitation in our current study, 

however, when considered with the genetic and cellular profiles in this dynamic tissue, 

the current work lends insight into these important and complicated relationships.
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CHAPTER 10 

DISCUSSION (PRELIMINARY STUDY) -	
  MOLECULAR RESPONSES 
TO OFT BANDING AT DIFFERENT DEVELOPMENTAL STAGES 

 Optical pacing is another method used to alter hemodynamics though the 

developing heart which has been shown to cause several CHDs [53,108-110]. It was 

observed that pacing hearts only at a certain developmental stage resulted in the paced 

embryos exhibiting CHDs (Jenkins lab – personal communication). Thus, there seems to 

be a ‘window of vulnerability’ during embryonic development where the heart is more 

susceptible to changes in hemodynamics.  

As mentioned in above sections, our data suggest that there is adaptation by the 

heart in response to the OFT banding. Once the constriction is released, the heart goes 

through another adjustment and subsequent molecular remodeling occurs. This 

preliminary study was designed to investigate if there exists such a developmental period 

of enhanced susceptibility of chick embryonic hearts to OFT banding. HH 14 represents 

the developmental stage before which cushion EMT begins and at HH 20 OFT cushions 

undergo active EMT. Gene expression was profiled 24 hr after banding at HH 14 and HH 

20 from OFTs of banded relative to control embryos at these stages.  

There was no significant change in the expression of genes analyzed in OFT 

cushion tissue from banded compared to that from control hearts at HH 14 except for 
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type I collagen, which was upregulated. Type VI collagen showed a decreased 

expression, at the mRNA level, in banded OFTs at HH 20. As described above, transcript

levels of type I and type VI collagen were downregulated in OFTs obtained 24 hr after 

banding at HH 17. These data suggest that expression of collagen is sensitive to changes 

in flow through the embryonic heart. Thus, for most of the genes analyzed, expression 

seems to be affected only if hemodynamic stimuli are altered at that developmental stage 

at which EMT commences. However, the differential mRNA expression of collagen in 

response to OFT banding at early and late embryonic developmental periods could 

potentially lead to anomalous OFT valve development with a compromise in function. 
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CHAPTER 11 

CONCLUSIONS 

We have developed a novel ex ovo OFT banding method of altering 

hemodynamics through the developing chick heart. Using this method, it is now possible 

to investigate the cellular and molecular biology of perturbed hemodynamics, which had 

not been done previously. Ultrasound imaging and CFD analysis confirmed that banding 

the OFT at the OVJ caused an increase in blood flow velocity and a corresponding 

increase in shear stress without any significant compromise on cardiovascular function 

thereby validating the banding protocol. Using this model, we have shown for the first 

time, that altered intracardiac hemodynamics has consequences at the cellular and 

molecular level which could potentially lead to the formation of abnormal cardiac valves. 

OFT EMT and ECM production were negatively affected by the banding intervention. 

OFT banding also influenced the secretory profile and migratory capacity of AV cushion 

cells. 

Banding the OFT and its subsequent release results in continued morphologically 

altered hearts. In addition, perturbed hemodynamic stimuli persist once the OFT is no 

longer constricted. Moreover, some aspects of the genetic/cellular profiles, affected by 

altered hemodynamics, seem to normalize, especially 48 hr after band release. However,  

not all processes normalize in response to band removal (e.g., cushion volume). 

Moreover, this suggests that at this time in development, the heart is very susceptible to 

changes in hemodynamics. Cardiac defects due to changes in hemodynamic stimuli may 
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be the result of a short perturbation that is then resolved. However, this would need to be 

verified by examining older hearts that have had early perturbations for a short period. It 

could well be that the time in which the band is placed is more crucial than the length in 

which the band is maintained. 
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CHAPTER 12 

FUTURE STUDIES 

 One of the advantages of the ex ovo banding model described here is that it 

allows for molecular analysis of acute effects of altered intracardiac hemodynamics. 

However, an important next step is to evaluate the chronic defects induced by perturbing 

hemodynamics through the heart by banding at early developmental stages and studying 

the pathways and cellular responses at later stages. This will allow for identification of 

potential mechanisms that go awry due to altered hemodynamic stimuli leading to 

congenital valvular defects. 

 It is well known that OFT banding changes the pressure within the heart. 

However, due to limitations in the availability of pressure sensors, we were not able to 

obtain real-time pressure changes in response to banding. It would be important to 

determine these variations in pressure especially in the AV canal, which would 

conclusively explain the gap seen between the AV cushions of the OFT banded heart.  

 Studies from our laboratory have so far shown EMT to be altered due to OFT 

banding. This has been demonstrated at the cellular as well as genetic levels. It is then 

crucial to identify epigenetic markers that are altered due to banding. Towards this end, 

ChiP-Seq will be performed to identify alteration of chromatin marks specific to EMT in 

response to changing intracardiac hemodynamics.  

While we have shown OFT banding to alter molecular processes, it is imperative 

to determine if other methods used to change blood flow through the embryonic heart 
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 lead to CHDs by affecting similar pathways. Towards this end, chick embryos will be 

optically paced and the resulting molecular pathways dissected. 
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