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ABSTRACT

This dissertation project studies the development of infant sustained attention and its 

relation to brain functional connectivity from 6 to 12 months of age. Chapter 1 is a 

general introduction of the dissertation project. Chapter 2 is a review of the existing 

literature on the development of infant sustained attention. This chapter includes theories 

on infant sustained attention and findings from studies using behavioral and 

psychophysiological measurements. Chapter 3 is a review of the recent advances made in 

the study of the development of functional connectivity in brain networks. This chapter 

covers some empirical evidence for the development of functional networks using EEG 

and fMRI techniques. In Chapter 4 I introduce an experiment that examined the potential 

relation between infant sustained attention and distinct patterns of brain functional 

connectivity suggested by the literature reviewed in Chapter 2 and 3.  The sample of the 

experiment consisted of 59 participants aged from 6 to 12 months.  Infant sustained 

attention and inattention were defined by measuring infant heart rate changes. Functional 

connectivity was estimated with high-density EEG recordings from the electrodes on the 

scalp and with the reconstructed cortical source activities in brain regions. Graph theory 

measures were applied to give a broader view of the architecture of brain functional 

networks.  It was found that infant sustained attention was accompanied by attenuated 

functional connectivity in the dorsal attention and default mode networks in the alpha 

band. Graph theory analyses showed that there was an increase in path length and a 

decrease in clustering coefficient during infant sustained attention. The functional 
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connectivity in brain networks and the graph theory measures of path length and 

clustering coefficient were found to increase with age.  The small-worldness was found 

for infants at 6 and 8 months in the alpha and beta bands.  These findings lend support to 

the hypothesis of the relation between the distinct patterns of brain functional 

connectivity and infant sustained attention. The current findings also provide convergent 

evidence for the rapid development of functional connectivity in brain networks during 

infancy.  
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CHAPTER 1 

GENERAL INTRODUCTION 

Infant sustained attention is a type of endogenous attention that represents the 

arousal state of infants (Colombo, 2001; Richards, 1989a, 1989b). Both behavioral and 

psychophysiological methods have been employed in the study of infant sustained 

attention (Mallin & Richards, 2012; Xie, Mallin, & Richards, 2017). Infant sustained 

attention emerges at around 2 months of age and develops substantially during the first 

year of life (Colombo, 2001; Richards, 2008). There is empirical evidence showing that 

infant sustained attention is important for infants’ information processing and attention 

allocation (Xie & Richards, 2016a, b), which in turn affects the development of other 

high-level cognitive processes, such as memory encoding and learning (Richards, 2009, 

2010). A recent study by Xie, Mallin, and Richards (2017) sheds light on the neural 

mechanisms underlying infant sustained attention by showing its relation to 

electroencephalography (EEG) oscillatory activity in the theta and alpha rhythms. The 

existing literature suggests that the effects of infant sustained attention may result from or 

be associated with distinct pattern(s) of communications inside the brain.  

The application of network analysis provides an illuminating perspective on the 

dynamic interregional communications or connectivity inside the brain. A functional 

brain network is defined as the correlated dynamic physiological activities in various 

brain regions (Chu-Shore, Kramer, Bianchi, Caviness, & Cash, 2011; Goldenburg & 

Galván, 2015). Recent research has focused on the development of brain functional 
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connectivity over childhood and adolescence (Power et al., 2010). Studies with EEG 

measures have shown that the integration and segregation of information processing in 

brain networks develop dramatically from childhood to adolescence (Bathelt et al., 2013; 

Boersma et al., 2011). However, the empirical evidence for the development of functional 

networks during infancy is primarily obtained from fMRI research with sleeping or 

sedated infants.  It has been found that brain networks with functional significance, such 

as the default mode network (DMN), start to emerge during the first two years of life 

(Fair et al., 2007; Gao et al., 2009, 2011).  

The progress made in the field of network analysis expanded the means to 

examine the relationship between infant sustained attention and brain functional 

connectivity. The fundamental goal of the dissertation project was to study whether infant 

sustained attention is associated with distinct brain functional connectivity and how this 

relation might change in the first year of life. A second goal of the dissertation was to 

examine the development of brain functional connectivity in brain networks from 6 to 12 

months of age with EEG recordings. This age range was chosen because it has been 

shown as a key period for the development of infant sustained attention and brain 

functional networks (Richards, 2008, 2009; Gao et al., 2009). High-density EEG 

recordings, cortical source analysis, functional connectivity analysis, and graph theory 

analysis were applied to achieve these goals 
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CHAPTER 2 

 INFANT SUSTAINED ATTENTION 

2.1 Richards’ Model on Infant Sustained Attention 

Infant sustained attention has been predominantly studied by Richards and 

colleagues using the measure of heart rate (HR) derived from electrocardiogram (ECG) 

recordings. The HR model of infant sustained attention is shown in Figure 2.1. Infant 

sustained attention is the third of the four attention phases defined by HR changes during 

infants’ looking (Reynolds & Richards, 2008). The two attention phases preceding 

sustained attention are automatic interrupt and stimulus orienting. Infants are involved in 

detecting transient changes in the environmental stimulation during automatic interrupt. 

Stimulus orienting is the second phase that lasts for 3 – 5s. Infants decide whether to 

allocate additional mental sources to stimulus presentation based on its intrinsic 

properties (e.g., novelty and variety) during stimulus orienting. Infant HR during the 

phases of automatic interrupt and stimulus orienting starts to fluctuate, but is not 

significantly distinguished from the prestimulus baseline.  Automatic interrupt and 

stimulus orienting are both involved in the orienting and preprocessing of a stimulus. 

Because of this, these two phases have been combined and named as “pre-attention” or 

stimulus orienting in some recent studies (e.g., Guy, Zieber, & Richards, 2016; Xie & 

Richards, 2016a, b; Xie, Mallin, & Richards, 2017).  

Sustained attention is the distinct phase that follows stimulus orienting. Infant HR 

decelerates significantly and remains at a lower level than the prestimulus baseline during  
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Figure 2.1 Richards’ heart rate model of infant sustained attention. 
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sustained attention. The criterion for a significant HR deceleration has been typically set 

as the inter-beat intervals (IBIs) of five successive beats being longer than the median IBI 

of the five preceding beats (Reynolds & Richards, 2008). The IBI has an inverse 

association with HR. The lengthening of IBI corresponds to the deceleration of HR, and 

the shortening of IBI corresponds to the acceleration of HR. Sustained attention begins at 

4 - 5 seconds following the stimulus onset and lasts from 2 - 3 seconds to about 20 

seconds. It has been argued that the deceleration of HR during sustained attention results 

from the interactions between the frontal and the brainstem portions of the infant alerting 

network (Richards & Casey, 1991; Richards, 2008). The cortico-subcortical 

communication within the alerting network leads to various autonomic effects including 

the cardiac and respiratory changes (Reynolds & Richards, 2008).  

The attention phase that follows sustained attention is attention termination. 

Attention termination is accompanied by a significant HR acceleration. The criterion for 

a significant HR acceleration has been set as the IBIs of five successive beats being 

shorter than the median IBI of the five proceeding beats (Reynolds & Richards, 2008).  

Attention termination lasts for about 5 -6 seconds when HR returns to the prestimulus 

level. Attention termination also has been termed as attention disengagement because 

infants are more likely to shift their visual fixation elsewhere during this phase 

(Colombo, 2002). Attention termination, together with automatic disrupt and stimulus 

orienting, are typically categorized as inattention in empirical research (e.g., Guy et al., 

2016; Reynolds & Richards, 2005; Richards, 2003).   
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2.2 The Development of HR Defined Infant Sustained Attention 

Infant sustained attention as defined by HR develops substantially in the first year 

of life. Infant HR deceleration has not been found in infants younger than 6 weeks of age 

(Berg & Berg, 1979; Jackson, Kantowit, & Graham, 1971). The absence of sustained 

attention before 6 weeks suggests that the cortico-subcortical communication inside the 

alerting network may not be established in the first few weeks of life. Evidence of infant 

sustained attention has been obtained in infants as young as 8 weeks (Richards, 1989b). 

Richards (1989b) presented 8-week-old infants with varying and complex patterns of 

stimuli on a TV monitor.  Infants’ HR was measured and analyzed when they were 

looking at the stimulus presentation. Richards found that 8-week-old infants started to 

show different patterns of HR changes during looking, such as the HR deceleration 

(sustained attention) and HR acceleration (attention termination). A similar paradigm has 

been used in a following longitudinal study with infants tested at 14, 20, and 26 weeks 

(Richards, 1989a).  The duration of sustained attention and the amount of HR variability 

were found to increase dramatically from 14 to 26 weeks (i.e., 3 to 6 months) of age. The 

finding from Richards (1989a) suggests that there are substantial changes in the amount, 

depth, and frequency of sustained attention from 3 to 6 months.  Infant sustained attention 

continues to develop in the second half of the first year (Lansink, Mintz, Richards, 2000). 

Its development lasts even into the second and third years of life (Richards & Cronise, 

2000; Ruff & Lawson, 1990) but with a much slower pace.  

2.3 Effects of Infant Sustained Attention on Attention Allocation and Orienting 

Infants show distinct patterns of visual fixation during sustained attention.  

Studies have consistently found that infant sustained attention is associated with 
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maintaining fixation on a focal stimulus in the presence of a peripheral distracting 

stimulus (Casey & Richards, 1988; Pérez-Edgar et al., 2010; Richards, 1989a, 1989b; 

Richards & Hunter, 1997; Richards & Turner, 2001). In these studies, a central stimulus 

was presented to attract infants’ fixation. A secondary stimulus was presented on a side 

monitor within the infants’ field of vision after they looked toward the central stimulus. 

This secondary stimulus was presented either during sustained attention or inattention. 

The infants were found to be less likely to be distracted by the secondary stimulus during 

sustained attention than during inattention. The improvement of engagement in the 

stimulus presentation has been argued as the result of the enhancement of general arousal 

and attention allocation during sustained attention (Richards, 2008, 2009). Researchers 

also have studied infant sustained attention during toy play (Lansink & Richards, 1997; 

Oakes, Madole, & Cohen, 1991; Oakes & Tellinghuisen, 1994; Ruff, 1986). The period 

when infants showed visual fixation on an object/toy has been named as focused attention 

and regarded as the behavioral marker of sustained attention (Ruff, 1986). Oakes and her 

colleagues found that focused attention during object manipulation was normally 

combined with turning the object or touching it with fingers with an intent facial 

expression (Oakes et al., 1991; Oakes & Tellinghuisen, 1994). This distinct pattern of 

visual fixation that infants showed during stimulus presentation and toy play indicates 

that visual fixation is an important behavioral index of infant sustained attention.  

Sustained attention has been found to benefit the saccadic localization of a 

peripheral stimulus. The localization of a saccade to a peripheral stimulus is a process 

involving attention orienting and saccade planning.  A few studies by Richards and 

colleagues have examined the effect of infant sustained attention on the localization of a 
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peripheral stimulus in infants aged between 5 weeks and 6 months (Hicks & Richards, 

1998; Hunter & Richards, 2003; Mallin & Richards, 2012; Richards & Hunter, 1997).  

For example, Mallin and Richards (2012) tested whether the latency of the localization of 

a peripheral stimulus would be facilitated by sustained attention in 3-, 4.5, and 6-month-

old infants. The authors employed a continuous presentation paradigm in which the 

experimental trials (e.g., images, videos) were presented continuously without an 

interstimulus gap (Pempek et al., 2010; Reynolds, Courage, & Richards, 2010). The 

continuous presentation paradigm was expected to elicit and extend sustained attention. 

Mallin and Richards (2012) presented the infants with a moving character at the center of 

the screen, and a peripheral moving character was presented once the infants’ fixation 

was judged to be on the center stimulus.  The localization of the moving character in the 

peripheral location was faster during sustained attention than inattention.  This finding 

indicates that sustained attention enhances infants’ ability to allocate their spatial 

attention and facilitates the early visual processing involved in the detection of a 

peripheral stimulus.  

Infants’ behavioral performance in a spatial cueing paradigm improves during 

sustained attention. Richards (2004) examined whether infants’ reaction time (RT) to the 

target in a special cueing paradigm would be faster during sustained attention than during 

inattention. Infants from 3 to 6 months were first presented with a central stimulus to 

attract their attention. A peripheral cue was presented either simultaneously with the 

central stimulus, after a 2s delay, or until a significant deceleration in HR occurred. 

Results from the “2s delay” trials replicated previous findings that the validity effect 

emerged from 3 months and the inhibition of return (IOR) effect did not show until 4.5 to 
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6 months (Richards, 2000, 2001). The simultaneous presentation of the central stimulus 

and peripheral cue resulted in no difference in RT among the valid, invalid, and neutral 

trials. When the cue was presented contingent on the occurrence of a HR deceleration, the 

IOR effect was found in 3-month-olds. Richards (2004) argued that infants’ behavioral 

responses associated with covert orienting were improved while attention engagement 

was well underway. The effect of infant sustained attention on the behaviors associated 

with covert orienting indicates that the neural mechanisms in the orienting network 

underlying these behavioral signatures may be energized during sustained attention.  

Distinct patterns of smooth pursuit have been shown in infants during sustained 

attention. Smooth pursuit refers to the continuous and smooth eye movement that occurs 

while tracking or following a moving object. Richards and Holley (1999) measured the 

effect of sustained attention on the development of smooth pursuit in infants from 2 to 6 

months of age.  The infants were presented with a small rectangle moving in a sinusoidal 

pattern at various speeds while their eye movements were recorded. The authors found an 

overall increase in infants’ smooth pursuit performance and their compensatory saccade 

amplitude at faster tracking speeds in all the ages. A more intriguing finding was that 

infants showed different patterns of stimulus tracking between the states of sustained 

attention and inattention when the stimulus speed increased to the highest velocity. The 

infants showed a tendency to shift from smooth pursuit to saccadic tracking during 

sustained attention but not during inattention.   

2.4 Effects of Infant Sustained Attention on Information Processing and Memory 

Sustained attention plays an important role in gathering and processing 

information. The increased brain arousal during infant sustained attention enhances the 
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efficiency of information processing (Colombo, 2001; Richards, 2008; Richards & 

Casey, 1992). The improved attention engagement, allocation and orienting during 

sustained attention also benefit the selection and processing of the presented stimuli (Guy 

et al., 2016; Xie & Richards, 2016a, b). Therefore, the majority of infants’ information 

processing takes place during sustained attention (Colombo, 2001).    

The facilitation effect of infant sustained attention on information processing 

leads to the close relation between sustained attention and recognition memory. Infants 

demonstrated better memory for the events they were exposed to during sustained 

attention compared to the events they were exposed to during inattention (Frick & 

Richards, 2001; Reynolds & Richards, 2005; Richards, 1997).  Richards (1997) tested the 

effect of sustained attention on infant recognition memory in 3- to 6-month-olds with two 

experiments. In the first experiment, infants were exposed to stimulus presentations 

ranging in duration from 2.5 to 20s in the familiarization procedure under indeterminate 

states of attention. It was found that the stimuli presented for 2.5 to 5s resulted in longer 

looking period to them (i.e., familiarity preference) in the following paired-comparison 

procedure, in which a familiar and a novel stimulus were presented side by side. The 

stimuli presented for 10 to 20s resulted in longer looking period to the novel stimulus 

(i.e., novelty preference) in the following paired-comparison procedure. In the second 

experiment, the same participants were presented with visual stimuli for 2.5 to 5s either 

during sustained attention or during inattention. It was found that the stimuli presented 

for around 5s during sustained attention resulted in the novelty preference in the 

following paired-comparison procedure, which was similar to the effect shown after a 20s 

familiarization in the first experiment. The duration of stimulus exposure in sustained 
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attention was also positively correlated with the possibility of the novelty preference in 

the paired-comparison procedure. The findings from Richards (1997) suggest that infant 

sustained attention and recognition memory are closely related and most of the 

information processing occurs during sustained attention. 

Infant sustained attention not only impacts the familiarization of stimulus 

presentation but also influences the recognition process. Infants were observed to show 

increased recognition performance if the recognition process occurred in sustained 

attention (Richards & Casey, 1992). The paradigm used by Richards and Casey (1992) 

resembled the one used by Richards (1997); however, the attention states were analyzed 

during the recognition process instead of the familiarization process. Richards and Casey 

found that 3- to 6- month-old infants spent 12 seconds on average in sustained attention 

in the paired-comparison procedure (i.e., recognition process). The infants spent about 

7.5 s looking at the novel stimuli and about 4.5 s looking at the familiar stimuli in the 

paired-comparison procedure during sustained attention.  Alternatively, the infants spent 

equal amount of time between looking at the novel and the familiar stimuli during 

inattention. The exhibition of recognition memory and novelty performance in the paired-

comparison procedure indicates infants’ attempt to acquire new information from the 

previously unseen stimulus during sustained attention. 

2.5 The Model of the Development of Infant Attention Networks 

The effect of infant sustained attention on the orienting network and high-level 

cognitive functions (e.g., information processing and memory encoding) has been 

summarized by a previous study (Xie, 2016, Comprehensive exam paper).  Figure 2.2  

illustrates the model of the development of infant attention networks (Xie, 2016).  This 
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Figure 2.2 The model of the development of attention networks during infancy. 
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model includes the aforementioned impact of infant sustained attention, a major 

component of the infant alerting network, on infants’ spatial orienting and information 

processing. The unfilled vertical arrows/lines in the model indicate the relations between 

the networks and the cognitive functions. The back of an arrow means the source (or 

mechanism) of an effect. The front of an arrow means the site (or consequence) of an 

effect. The front of an arrow means the site (or consequence) of an effect. The filled 

horizontal arrows/lines demonstrate the developmental courses of the various 

components.  The back of an arrow indicates the proximate emergence of a component 

supported by empirical evidence. The gradual change of the darkness indicates the 

development (i.e., relative degree of maturity) of the component. The end of the 

horizontal arrows does not refer to the cease of the development of a component by the 

corresponding age. Instead, it means that the function of that component is well 

established and can be consistently measured by then. 

2.6 The ERP Correlates of Infant Sustained Attention 

 There has been a growing interest in the usage of scalp-recorded event-related 

potentials (ERPs) as a measure of infant visual attention. The ERP reflects the EEG 

activity time-locked to the onset of a stimulus. The usage of EEG and ERPs provides 

non-invasive methods to examine infants and children’s cortical activity and neural 

responses to different types of stimuli (de Haan, 2007).  

The correspondence between the HR-defined sustained attention and ERP 

components in infants have recently been established. The negative central (Nc) 

component is the most commonly used ERP measure for infant sustained attention. The 

Nc comprises a negative deflection that is most prominent in the fronto-central electrodes 
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(Goldman, Shapiro, & Nelson, 2004). The amplitude of the Nc peaks at about 400 – 

800ms after stimulus onset (Courchesne, Ganz, & Norcia, 1981) and increases with age 

over the first year of life (Richards, 2003; Webb, Long, & Nelson, 2005).  The 

association of infant sustained attention with the Nc component was first addressed in 

Richards (2003). The participants were tested at 4.5, 6, or 7.5 months of age and 

presented with Sesame Street clips and static pictures. The Sesame Street videos were 

used to elicit sustained attention and the brief stimuli were presented in a modified 

oddball procedure (Nelson & Collins, 1991). The modified oddball procedure includes 

frequent familiar (60%), infrequent familiar (20%), and infrequent novel (20%) stimuli 

for presentation. It was found that the amplitude of the Nc did not differ with the stimulus 

type; however, it was significantly larger during infant sustained attention than 

inattention (Richards, 2003). The Nc amplitude also was found to increase with age. The 

author argued that the Nc component might reflect the attention-getting properties of the 

stimulus and the activation of a general arousal system (i.e., the alerting system) in the 

brain.   

The link between the Nc component and infant sustained attention and the 

development of the Nc amplitude have been replicated by recent studies (e.g., Guy et al., 

2016; Reynolds et al., 2010; Reynolds & Richards, 2005; Xie & Richards, 2016a). For 

example, Xie and Richards (2016a) found that using a presentation paradigm that 

facilitated infant sustained attention and engagement elicited a greater Nc response to the 

stimulus presentation. The authors examined the effects of the interstimulus interval (ISI) 

in the stimulus presentation on infant attention.  They compared an ISI (1,500 – 2,000ms) 

that was typically used in infant EEG/ERP studies (e.g., Richards, 2003) with two shorter 
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durations (400 – 600ms, 600 – 1000ms). Using shorter ISIs was hypothesized to facilitate 

infant sustained attention because it would increase the presentation complexity and the 

amount of information presented in a certain period (Courage, Reynolds, & Richards, 

2006). Xie and Richards (2016a) found that using shorter ISIs for stimulus presentation 

resulted in more visually fixated trials and reduced frequency of fixation disengagement 

per experimental block. Using shorter ISIs also elicited greater HR deceleration during 

sustained attention.  The facilitation effects of using shorter ISIs on infant sustained 

attention enlarged infants’ Nc amplitude in response to the stimulus presentation 

regardless of the stimulus type (Xie & Richards, 2016a).   

The improved attention allocation and brain general arousal during sustained 

attention is thought to cause the enlarged cortical activation following a stimulus 

presentation (Reynolds & Romano, 2016; Richards, 2008). This argument has been 

supported by recent findings of the effects of infant sustained attention on ERPs 

components subserving different brain functional networks. Guy et al. (2016) examined 

infants’ ERP responses to faces and toys during various attentional phases. Two face-

sensitive infant ERPs, the N290 and the P400, were measured as neural correlates of 

infant face perception. Both the N290 and P400 responses were found to be larger during 

sustained attention than inattention. The N290 amplitude was greater to faces than toys 

during attention, but this effect was not shown during inattention.  Infant sustained 

attention also has been found to enhance the P1 and N1 components that represent the 

early visual processing of a visual stimulus. Xie and Richards (2016b) studied 3- and 4.5-

month-old infants’ ERPs and cortical source activities in response to the visual targets in 

a spatial cueing paradigm. The amplitudes of infants’ P1 and N1 components and their 
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corresponding cortical source activities were found to be enlarged during sustained 

attention than inattention in regardless of the cue-target validity.   

2.7 Infant Sustained Attention and EEG Oscillations 

The changes in infant behaviors and ERP components provide evidence for the 

consequences of infant sustained attention effects. Previous studies have linked the EEG 

oscillations in frequency bands (e.g., theta and alpha) to the sustained attention 

performance in infants (Xie et al., 2017) and adults (Sauseng et al., 2007). Therefore, the 

measuring EEG oscillatory properties in frequency rhythms should provide a way to 

understand the neural mechanisms underlying the effects of infant sustained attention.  

Two frequently studied infant EEG rhythms, theta and alpha rhythms, undergo 

substantial development during infancy. The frequency ranges used to define infant theta 

and alpha rhythms are about 2 to 6 Hz and 6 to 9 Hz respectively. The peak frequencies 

of infant theta and alpha rhythms show a developmental change during the first two years 

of life (Marshall et al., 2002). Marshall and colleagues found that infants did not show a 

clear pattern of alpha activity before 10 to 12 months of age, whereas infant theta activity 

emerged at younger ages. Infant alpha rhythm is more prominent over central and parietal 

than frontal electrodes; infant theta rhythm is more prominent over frontal and occipital 

than the central electrodes (Marshall et al., 2002; Orekhova, Stroganova, & Posikera, 

2001).   

 A study by Xie and colleagues (2017) examined the relation between infant 

sustained attention and infant EEG oscillatory activities with infants at 6, 8, 10, and 12 

months of age. The power spectral density (PSD) of the infant theta (2 – 6 Hz), alpha (6 – 

9 Hz), and beta (9 – 14 Hz) rhythms was estimated and compared between sustained 
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attention and pre-attention and attention termination. An increase of the theta PSD was 

found over fontal pole and parietal electrodes during infant sustained attention for the 10- 

and 12-month-olds.  An attenuation of the alpha PSD was found over frontal, central and 

parietal electrodes during sustained attention. This alpha effect started to emerge at 10 

months and became well established by 12 months. No difference for the beta rhythm 

was found between different attention phases.  Cortical source analysis was conducted 

with realistic infant MRI models to examine the potential generators of the effects found 

on the sensor level. The increased power in the theta band during sustained attention was 

localized to the orbital frontal, temporal pole, and ventral temporal areas. The alpha 

attenuation effect during sustained attention was localized to the brain regions composing 

the DMN including the medial prefrontal cortex, posterior cingulate cortex, precuneus, 

inferior parietal gyrus. The alpha effect also was localized to the pre- and post-central 

gyri.   

The study by Xie and colleagues established a connection between infant 

sustained attention and EEG oscillatory activities.  Their findings were compatible with 

previous infant and adult literature. Researchers have found an increase in the theta PSD 

that was referred to “theta synchronization” during infant anticipatory attention 

(Orekhova, Stroganova, & Posikera, 1999). They also have found an attenuation of the 

alpha PSD that was referred to as “alpha desynchronization” during infant attention to 

external stimulus (Orekhova, et al., 2001).  These theta synchronization and alpha 

desynchronization effects are robust electrical indices of brain arousal and attention 

allocation in adulthood (Ergenoglu et al., 2004; Sauseng et al., 2005, 2007). Xie et al. 

(2017) sheds light on the developmental origin of this relation between EEG rhythmic 
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activities and attention allocation and brain arousal. The changes in the effects of 

attention on the theta and alpha activities with age suggest the intertwined development 

of infant sustained attention and EEG oscillations during the first year of life. 

2.8 Suggestion for Future Research on Infant Sustained Attention 

There may be distinct pattern(s) of brain functional connectivity in certain EEG 

frequency bands during infant sustained attention. Studies discussed in the previous 

sections have shown that infant sustained attention is accompanied by improved 

information processing efficiency, attention allocation and orienting capacity, and 

enhanced brain arousal. These effects suggest the communications or functional 

connections between brain regions be distinguished during infant sustained attention. The 

potential relation between sustained attention and functional connectivity in infants 

should be studied by future research. This would advance our understanding of the neural 

mechanisms in brain networks underlying infant sustained attention. Recent advances in 

the field of brain network analysis expand the means to explore the pattern of the 

communication and connectivity between brain regions or channels on the scalp. Chapter 

3 gives an overview of the recently developed techniques for brain network analysis and 

the application of these techniques in the study of brain functional connectivity with 

children and adolescents.   
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CHAPTER 3 

DEVELOPMENT OF BRAIN FUNCTIONAL NETWORKS

3.1 Introduction to Brain Functional Networks 

 The application of fMRI and EEG methods provides ways to investigate the 

dynamic interregional communications inside the brain and their development over 

childhood. Resting-state functional magnetic resonance imaging (fMRI) is a frequently 

used method to study the development of functional brain networks (Goldenburg & 

Galván, 2015). The resting-state means the participant is not engaged in any specific 

experimental task (i.e., in a resting condition). High-density EEG recordings offer a 

comparatively easy-to-use alternative to measure brain functional networks (Boersma et 

al., 2011, 2013; Miskovic et al., 2015). The EEG recordings are more tolerant to young 

children’s movements compared to fMRI scanning, and thus using EEG makes it possible 

to investigate infant brain networks while they are awake. Physiological signals recorded 

from both methods have been recently analyzed with graph theory to model the topology 

of functional networks (Vertes & Bullmore, 2015). Studies using various methods have 

consistently shown that there is a shift from random organizations to more integrated 

brain networks over the brain development from infancy to adolescence (Power et al., 

2010).  

Construction of functional networks requires recording physiological signals from 

multiple spatial locations that can be either brain regions of interest (ROIs) or channels of 

EEG, functional near-infrared spectroscopy (fNRIS), or magnetoencephalography 
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(MEG). Correlated physiological activity inside a functional network is typically referred 

to as functional connectivity, which is estimated by analyzing the correlation between 

dynamic physiological signals recorded at multiple locations.   

There are three widely used methods to define functional networks, component 

analyses, seed-based correlation maps, and graph theory. Component analyses, such as 

the independent and principle component analyses (ICA and PCA), highlight the brain 

networks (i.e., components) in the psychophysiological signals that share variance in the 

time series (Damoiseaux et al., 2006). Seed-based correlation maps are constituted of 

spatial locations (e.g., ROIs and voxels) where physiological signals (e.g., BOLD, EEG 

source activity) are correlated with the signals in a seed ROI or voxel (Lowe et al., 1998).  

A broader view of brain functional networks may not be obtained with the component 

analyses or a seed map (Power et al., 2010). Graph theory provides a common framework 

to model the dynamic processes in brain networks (Rubinov & Sporns, 2010). It has 

recently been used to characterize the overall architecture of brain networks (Bullmore & 

Sporns, 2009; Power et al., 2010; Vertes & Bullmore, 2015). These three types of 

methods have been used in the studies that are discussed in the following sections. 

This chapter reviews recent studies that have advanced our understanding of the 

development of brain functional networks. The next section (3.2) introduces the methods 

that have been used to estimate the functional connectivity with EEG recordings.  The 

following section (3.3) gives a brief overview of graph theory. The last section (3.4) 

reviews the study of the development of brain functional networks using graph theory 

measures based on EEG recordings. It should be noted that a large body of evidence for 

the development of brain functional networks originates from the fMRI research with 
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children. However, fMRI was not used in this dissertation because it is more practical to 

use EEG than fMRI to study infants’ brain activation when they are awake. Therefore, 

the current article briefly mentions some findings from the fMRI research but emphasizes 

studies with EEG measures. A detailed review of fMRI research on the development of 

brain networks can be found elsewhere (e.g., Bullmore & Sporns, 2009; Power et al., 

2010; Vertes & Bullmore, 2015; Xie, Comprehensive Exam Paper).   

3.2 Measures of functional connectivity  

A few methods have been developed and employed for the estimation of the 

functional connectivity with EEG and MEG signals. The current section introduces four 

methods that have been frequently employed in the literature. They are the coherence, 

imaginary part of the coherency (IC), weighted phase lag index (wPLI), and the 

correlation between cortical reconstructed source activities. The coherence, IC, and the 

wPLI are mathematical methods used to examine the similarity and synchrony between 

the oscillatory activities in two or more EEG channels or brain regions. 

Cxy(f) =  
|G𝑥𝑦 (𝑓)|

√G𝑥𝑥(𝑓)∗G𝑥𝑥(𝑓)
 

The coherence (Cxy) between two signals x(t) and y(t) is defined by the equation 

above. The “t” refers to the time series. The “f” refers to the Fourier transformation of the 

signal in a certain time window (1s in the current project) obtained from the fast Fourier 

transform (FFT) analysis. The “Gxy” stands for the cross-spectral density (CSD) of the 

two signals “x” and “y” (e.g., two channels or brain regions) obtained from the frequency 

analysis. The “Gxx” and “Gyy” represent the power-spectral density (PSD) for the signal 

“x” and “y”.  It can be seen from the equation that the coherence is a measure of the 



 

22 

linear relationship between two signals. The coherence is an absolute value ranging 

between 0 and 1.   

Coherence has been widely accepted as a method to estimate functional 

connectivity. The usage of this method to estimate the brain functional connections has 

been extended to research with pediatric populations (e.g., Cuevas, Swingler, Bell, 

Marcovitch, & Calkins, 2012; Thatcher, Walker, & Giudice, 1987). However, there is an 

important issue in the interpretation of the coherence found between EEG electrodes due 

to the volume conduction or field spread problem (Nolte et al., 2004; Nunez et al., 1997). 

The volume conduction represents the currents flowing in different types of brain tissues 

surrounding the neural generators. The distance between the generators and the EEG 

electrodes and the tissues that the currents need to flow in would lead to the mix of the 

currents generated by multiple sources. There is also spatial blurring effect of the skull on 

the distribution of the EEG signal on the scalp. Thus, a signal underlying neuronal source 

might be recorded at multiple EEG sensors, especially when they are close to each other. 

This issue would cause spurious correlation (coherence) between these EEG sensors 

(Bastos & Schoffelen, 2016).  

Cohxy(f) =  
G𝑥𝑦 (𝑓)

√G𝑥𝑥(𝑓)∗G𝑥𝑥(𝑓)
 

New methods have been developed to reduce the effects of volume conduction 

and field spread on the estimation of functional connectivity between EEG sensors. The 

IC is one method that estimates the functional connectivity between two signals using the 

imaginary part of the coherency. The coherency (Cohxy) is defined by the equation above. 

It can be seen from the equation that coherence is the absolute value of the coherency. 

The coherency obtained from the Fourier transformation of time series x and y is a 
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complex quantity that includes a real part and an imaginary part. The imaginary part of 

the coherency is only sensitive to the synchronization between two signals that are time-

lagged to each other, i.e., it discards the contributions of 0o phase difference between two 

signals to their connectivity (Nolte et al., 2004). The rhythmic activity generated by one 

source could be observed in two or more EEG electrodes due to the volume conduction 

issue discussed above. If this is the case there should be 0o phase difference (i.e., no time 

lag) between the spuriously correlated signals observed in the EEG electrodes given that 

the electrical transmission in the brain is instantaneous in regardless of the sample rate of 

the data.  Thus, the IC method should outperform the coherence method in measuring the 

real interaction (connectivity) between two signals (Nolte et al., 2004). More details 

about the IC method and its comparison to the coherence method have been described in 

Nolte et al. (2004).  

The wPLI is another recently developed method that is more resistant to the 

volume conduction problem than the measurement of coherence. The wPLI is an 

extension of the phase lag index (PLI) method. The PLI estimates to what extent the 

phase leads or lags between two signals based on the imaginary part of the CSD of the 

two signals (Stam, Nolte, & Daffertshofer, 2007). A problem associated with the PLI 

method is that its estimation of the phase leads and lags can be impacted by noise 

perturbations in the signals, such as the electrical signals from the eye and muscle 

movements and externally-generated artifacts (Vinck et al., 2011). These noise 

perturbations could possibly have near zero phase difference and lead to the detection of 

“false positive” connections. The wPLI method was designed to solve this issue by 

weighting the phase differences according to the magnitude of the leads and lags so that 
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phase differences around zero would only have a marginal contribution to the wPLI 

results (Vinck et al., 2011). It has been shown that the wPLI outperforms the PLI and the 

IC in terms of reduced sensitivity to uncorrelated noise and increased power to detect 

changes in the phase synchronization between signals (Vinck et al., 2011).  

The effects of volume conduction on spurious connectivity are much alleviated 

when analyzing the correlations between reconstructed cortical source activities 

(Schoffelen & Gross, 2009). Although there are also issues associated with estimating 

cortical source activities, such as the uncertainty about the inverse solution, a detailed 

discussion about these issues is out of the scope of this article. the Cortical source 

analysis with realistic MRI models provides an alternative way to study cortical 

activation during the awake state (Michel et al., 2004; Michel & Murray, 2012). 

Functional connectivity between brain ROIs can be estimated after the cortical 

reconstruction of the time-series on the scalp.  For example, Bathelt et al. (2013) 

calculated the cross-correlations between the cortical reconstructed time-series in brain 

ROIs. In another study, Hillebrand, Barnes, Bosboom, Berendse, and Stam (2012) 

measured the coherence and the PLI between the cortical reconstructed time-series in 

brain ROIs.  The results from these studies were described in the following sections. 

The outputs from the estimation of the functional connectivity with the 

aforementioned methods can be used to generate the adjacency matrix.  The adjacency 

matrix is a N X N matrix that represents the overall functional network with Nx(N-1)/2 

unique connections. The “N” is the number of electrodes or brain ROIs. Each element 

represents the connectivity between a pair of electrodes or brain ROIs. The seed-based 

functional connectivity between EEG electrodes or brain ROIs can be extracted from the 



 

25 

adjacency matrix. The architecture of the overall functional network (i.e., the topology) 

represented by the adjacency matrix can be studied with graph theory measures. The 

graph theory measures are described in the following section.  

3.3 Graph theory  

 Functional networks can be described as graphs that are composed of nodes and 

edges. The nodes stand for the components and the edges stand for the pairwise 

correlations between the nodes in a functional network (i.e., graph; see Bullmore & 

Sporns, 2009, for review). Nodes can be ROIs, voxels, or collection of voxels in fMRI 

research. They can also be channels in EEG, fNIRS, and MEG research. Edges can be 

correlations between the BOLD signals in different ROIs or between the EEG oscillations 

in various EEG channels. The structure of a graph is typically described as a list of nodes 

and edges (between nodes). This structure can be conveniently organized as a matrix 

termed as an adjacency matrix. Each node has a column and a row in this matrix. The 

adjacency matrix illustrates the pairwise correlations (i.e., edges) between nodes. 

There are measures in graph theory to qualify and quantify the connectivity in a 

network. For example, the path length is the minimum number of edges traversed to go 

from any given node to another one in the network (Bullmore & Sporns, 2009). Two 

nodes in a binary network (matrix) may not directly connecting to each other because the 

connectivity value between them might be zero. Thus, the minimum number of 

edges/connections between them would be larger than one because one node needs to go 

through other nodes to reach the target node. In a weighted network, the inverse of the 

correlation between each pair of the nodes is calculated to represent the “path” between 

them. The shortest path length is then calculated as the minimum value for the sum of 
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connections between these two nodes, i.e., the inverse of the strongest correlations 

between two nodes. The clustering coefficient of a node is the number of connections that 

exist between the nearest neighbors of a node, expressed as a proportion of the maximum 

number of possible connections between the nearest neighbors of the node (Bullmore & 

Sporns, 2009). For example, if there are four nodes surrounding the target node and two 

of the neighbors are connected the clustering coefficient would be 0.167 (1 connection 

divided by 6 potential connections).  The path length and the clustering coefficient 

represent the global and local network efficiency respectively (Bullmore & Sporns, 

2009). It is because path length reflects how fast or efficient the information can be 

transmitted between distant nodes, and clustering coefficient reflects how efficient the 

information can be transmitted between nodes closed to each other. Measures of path 

length and clustering coefficient confer properties of the network as a whole instead of on 

individual nodes. One measure of the centrality of a node is the sum of all edges 

connected to a node. This is called the degree centrality or the degree of a node 

(Bullmore & Sporns, 2009). High-degree nodes that play important roles in the network 

structure and dynamics are called hubs (Power et al., 2010).  A second measure of the 

centrality of a node is to calculate the fraction of all shortest paths in a network that cross 

over a given node. This property is called the betweenness centrality of a node, which is a 

useful measure of how much information might traverse certain parts (i.e., nodes, ROIs, 

voxels) of a network (Bullmore & Sporns, 2009). Nodes with high betweenness centrality 

may be crucial bridges for the communication between different parts of a network 

(Power et al, 2010).  
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The measure of small-worldness, which is based on the parameters of path length 

and clustering coefficient indicates the efficiency of local and global communication 

inside a network.  The calculation of the small-worldness is described in Chapter 4. The 

fundamental insight of the small-world structure is that networks can possess both high 

clustering coefficients and short path lengths (Watts & Strogatz, 1998). These properties 

make the networks simultaneously efficient on local and global communications (Watts 

& Strogatz, 1998). More details about the measure of small-worldness in graph theory 

can been found in recent reviews (e.g., Bullmore & Sporns, 2009; Chu-Shore et al, 2011; 

Power et al., 2010; Rubinov & Sporns, 2010; Vertes & Bullmore, 2015). 

3.4 Development of functional networks based on EEG Recordings 

Examination of connectivity between EEG oscillations using graph theory has 

become an alternative of studying brain functional networks in developmental 

populations in addition to the usage of fMRI. There is growing interest in using EEG to 

examine the development of brain networks in pediatric populations because of the easy 

application of EEG and its tolerance to movement compared to fMRI (Boersma et al., 

2011; Smit et al., 2011). Progress in this approach has recently been made by conducting 

cortical source analysis with age-specific children MRI templates so that brain networks 

can be constructed based on connectivity between neural substrates (Bathelt et al., 2013). 

Results from these EEG studies have shown consistent findings on the development of 

brain functional networks with those from the fMRI studies. Overall, there were changes 

in both integration and segregation of information processing in children’s resting-state 

functional networks measured with EEG recordings. The current section reviews some 

existing EEG studies on the development of resting-state functional networks during 
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resting state. It also discusses and summarizes some recently developed methods based 

on EEG data that can be used to study functional connectivity and networks in the current 

project with infants.   

The examination of connectivity between EEG oscillations using graph theory 

provides insights into the changes in the electrophysiological dynamics within functional 

networks. A longitudinal study conducted by Boersma and colleagues (2011) recorded 

resting-state eye-closed EEG oscillations from children at 5 and 7 years of age. 

Synchronization likelihood (SL) represents the co-oscillation between EEG signals.  It 

has been used as a measure of functional connectivity between different scalp areas or 

brain regions in EEG studies. Boersma and colleagues (2011) calculated the SL in three 

frequency bands (theta: 4 – 6 Hz, alpha: 6 – 11 Hz, and beta: 11 – 25 Hz,) between each 

pair of electrodes to obtain SL-weighted graphs. The mean SL over all pairs of eletrodes 

was found to decrease from 5 to 7 years of age. Boersma et al. (2011) interpreted this 

finding as an overall decrease in functional connectivity that might reflect the pruning of 

unused synapses and the preservation of strong connections. The authors postulated that 

the process of synaptic pruning and the preservation of useful connections might result in 

more cost-effective networks.  To test this hypothesis, the authors also calculated the 

mean normalized clustering coefficient and average path length to characterize network 

organization. They found that the average clustering coefficient increased from 5 to 7 

years of age in the alpha rhythm and the average path length increased during this age in 

all three frequency bands. These findings were interpreted as reflecting a shift from 

random to more organized functional networks during the development of human brain 

over childhood.  
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Convergent evidence came from large cross-sectional studies that investigated the 

development of brain functional connectivity throughout the lifespan (Smit et al., 2011, 

2012). For example, Smit et al. (2012) utilized graph theory to examine the connectivity 

patterns between EEG electrodes in resting-state networks constructed with EEG 

oscillations and SL values.  EEG recordings were digitally filtered in three frequency 

bands of interest: alpha (6-13 Hz), beta (15-25 Hz), and theta (3-5.6 Hz). Participants 

were aged from 5 to 71 years. The analyses in Smit et al. (2012) revealed a substantially 

increased average clustering coefficient and path length of the resting-state functional 

networks from childhood to adolescence. The increase of clustering and path length 

continued at a slower pace into adulthood peaking at around 50 years. These changes 

suggested decreases in network randomness and increases in order. The authors argued 

that the protracted increases in connectivity were consistent with white matter 

development curves that change from a relatively random to a more ordered organization 

found by research using diffusion tensor imaging (DTI) (Paus, 2010; Westlye et al., 

2010). Although the findings of functional connectivity between signals in EEG 

electrodes have shed light on the development of brain functional networks, limited 

information about the connectivity between the underlying brain regions could be 

inferred from scalp recorded EEG data.   

The functional connectivity in different EEG frequency rhythms has been 

measured with alternative methods. For example, Miskovic and colleagues (2015) 

examined the development of brain networks and functional connectivity computed with 

the IC (Nolte et al., 2004) between signals in EEG electrodes. They found that the 

average path length and strength homogeneity decreased from 7 to 11 years in the alpha 
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rhythm (7 – 14 Hz). Strength homogeneity reflects how evenly the connectivity is 

distributed among electrodes with higher value meaning more evenly distributed 

connectivity. The finding of a decrease of path length was inconsistent with previous 

EEG research discussed above. The inconsistency might be due to the different 

techniques used by these studies to compute EEG functional connectivity.  There have 

been other techniques used to compute EEG and MEG functional connectivity in addition 

to the ones mentioned above, such as coherence (Cuevas et al., 2012), phase lag index 

(Stam et al., 2007), and weighted phase lag index (Vinck et al., 2011). The differences 

between these methods and their advantages and disadvantages have been discussed 

elsewhere (Bastos & Schoffelen, 2016).  

Recent progress has been made in the study of the development of resting-state 

functional networks with EEG recordings. Bathelt and colleagues (2013) conducted 

cortical source analysis of EEG recordings with head models created from age-specific 

MRI templates, and then examined functional connectivity between localized activation 

in cortical regions using graph theory. In contrast to the previously reported channel-level 

analysis, the approach used by Bathelt and colleagues provided information about the 

cortical areas that are most likely to be involved in the functional networks (c.f., Babiloni 

et al., 2005; De Vico Fallani et al., 2007). 

The methods used by Bathelt and colleagues could be summarized into five steps. 

First, the authors collected the EEG data from children aged between 2 to 6 years while 

the participants watched a video clip of calming scenes for 2 minutes. Second, EEG 

preprocessing was completed by segmenting the EEG recordings into 1s epochs, filtering 

the EEG data to 1 to 40 Hz, and conducting artifact detection and channel interpolation.  
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Preprocessed EEG recordings were filtered into different frequency bands (e.g., alpha, 

beta, theta). Third, cortical reconstruction of the EEG data was conducted with the 

current density reconstruction (CDR) technique, which resulted in current density 

amplitude in the brain. The brain was segmented into 68 cortical regions (i.e., ROIs), and 

thus the cortical reconstructions (current density amplitudes) were parcellated into these 

ROIs.  Fourth, the time series of cortical ROIs derived from EEG segments were 

correlated in pairwise correlations, and a relative threshold for the correlation values was 

chosen to take the different noise levels of the recordings into consideration. The fourth 

step resulted in connectivity (adjacency) matrices that describe the connectivity between 

each pair of the ROIs, separately for different frequency rhythms. Finally, graph theory 

measures, such as node degree, clustering coefficient, and path length, were derived from 

the adjacency matrices.  

The majority of the findings by Bathelt et al. (2013) were consistent with previous 

fMRI and EEG literature. The findings of the increase of the node degree, clustering 

coefficient, and betweenness centrality of the functional networks with age were 

comparable to previous literature (Boersma et al., 2011; Power et al., 2010; Smit et al., 

2011, 2012). The average path length was found to decrease with age. This finding was 

inconsistent with the increase of path length throughout childhood shown by the channel-

level analyses (Boersma et al., 2011; Smith et al., 2011, 2012). However, the decrease of 

path length found by Bathelt et al. (2013) was interpreted as being in alignment with the 

increase of functional integration observed in fMRI research (e.g., Fair et al., 2007, 2008, 

2009; see Power et al., 2010, for review). Bathelt et al. (2013) also applied eigenvalue 

decomposition to obtain functional modules. Modules within networks are groups of 



 

32 

nodes (i.e., ROIs) that are richly connected with one another within the larger framework 

of the entire network (Power et al., 2010).  Functional modules are networks comprising 

groups of nodes with similar functions. Bathelt et al. (2013) found several functional 

modules involving interconnected brain regions that were identifiable in different EEG 

frequency bands (alpha, beta, theta). The connections within these modules remain 

unchanged but the inter-hemispheric connections between modules increased between 2 

and 6 years of age. 

The methodological advances in the Bathelt et al. (2013) might result in the more 

comparable finding to the previous fMRI literature. Bathelt et al. (2013) conducted 

cortical source analysis to examine brain connectivity among cortical regions instead of 

only using scalp-recorded EEG signals. The volume conduction effect, as mentioned 

earlier, would lead to the mixing and spatial smearing of the source activity estimated 

from scalp-recorded EEG. Therefore, the connectivity patterns constructed with source 

activity in various cortical areas (Bathelt et al., 2013) might differentiate from those 

generated with EEG signals recorded from the scalp (Boersma et al., 2011; Smit et al., 

2011, 2012). 

Another progress made by Bathelt et al. (2013) was the use of age-specific 

average MRI templates to create a head model for their cortical source analysis.  The 

templates were obtained from the Neurodevelopmental MRI Database (Richards, 

Sanchez, Phillips-Meek, & Xie, 2016; Richards & Xie, 2015). An accurate MRI model 

that describes the materials inside the head and their relative conductivity is beneficial for 

source analysis of EEG signals (Michel et al., 2004; Reynolds & Richards, 2009). Age-

specific MRIs may be especially important for pediatric populations (e.g., infants and 
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young children) due to the neuroanatomical differences that would be a poor fit with an 

adult MRI template (Reynolds & Richards, 2009; Richards & Xie, 2015).  A significant 

advance in cortical source analysis with infant and young child participants will be 

obtaining MRIs for individual participants who also are tested in the experimental 

procedures (Guy et al., 2016; Reynolds & Richards, 2009).  However, it is difficult to 

obtain individual structural MRIs for such participants in a typical experiment.  One 

alternative is to use MRI models from similarly aged infants or young children, such as 

MRIs from infants or young children with similar head shape and size (Reynolds et al., 

2010) or an age-appropriate MRI average (Liao, Acar, Makeig, & Deak, 2015). Bathelt et 

al. (2013) created the head models for source analysis with age-appropriate MRI 

templates to minimize the errors that would be caused by the differences between the 

anatomical features of the participants’ brain and head and the features of the average 

norm. 

 To sum up, results from different neuroimaging modalities (fMRI, EEG, cortical 

source analysis) converged on a substantial development of brain functional networks 

throughout childhood and adolescence. Studies using graph theory have shown that the 

characteristics of brain networks, such as clustering efficiency and path length, changed 

over development from childhood to adolescence. Some of the findings discussed above 

suggested an increase of local efficiency, as well as global integration during the brain 

development.  Studies with EEG recordings provided insights into correlated 

neurophysiological dynamics between electrodes and cortical sources. Techniques based 

on EEG recordings made it practical to study the development of functional networks in 

infancy during awake state. Cortical source analysis of EEG recordings has been shown 
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as a reliable neuroimaging method to be used in the study of brain functional connectivity 

in children. Age-specific MRI templates (e.g., the Neurodevelopmental MRI Database, 

Richards et al., 2016) that provide accurate anatomical information about infants’ brain 

can be used to facilitate the cortical reconstruction. 

3.5 Brain Structural Development in the First Year of Life 

Recent MRI research offers insights into the potential structural underpinnings of 

the development of brain functional connectivity during infancy. There are rapid 

increases of gray matter (GM) volume during the first year of life primarily due to the 

synaptogenesis process.  For example, the total hemispheric volume of GM increases by 

149% in the first year with regional difference in the developmental trajectory 

(Knickmeyer et al., 2008). The dramatic development of GM should drive the functional 

maturation in brain regions.  White matter (WM) develops at a slower pace in the first 

year with a total hemispheric increase in volume of 11% (Knickmeyer et al., 2008; cf. 

Richards & Xie, 2015). Although WM volume develops at a slower pace, a recent study 

using diffusion tensor imaging (DTI) observed substantial development of WM fiber 

tracts connecting major brain regions from 6 to 12 months of age (Wolff et al., 2012).  

The changes in WM fiber tracts during the first year were quite visible in averaged MRI 

brain templates (Richards & Xie, 2015). The posterior limb of the internal capsule was 

well myelinated at 3 months; posterior regions of the hemispheres (e.g., occipital and 

temporal lobes) showed myelination at 9 months, and seemingly full coverage of 

myelination by about 12 months of age (Richards & Xie, 2015).  The development of 

WM fiber tracts during the first year of life should improve structural connections and 

signal integration between brain areas, thus influencing functional connectivity analysis 
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at this age. The myelination does not occur at an equal rate throughout the brain (Giedd et 

al., 1999), which might have an impact on the functional connectivity involving different 

regions. For example, the functional connectivity involving the frontal regions might be 

delayed compared to the connectivity within the visual network. 
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CHAPTER 4 

THE STUDY OF THE DEVELOPMENT OF INFANT 

SUSTAINEDATTENTION AND BRAIN FUNCTIONAL 

CONNECTIVITY DURING INFANCY

Introduction 

The existing literature described in Chapter 2 and 3 suggests distinct pattern(s) of 

brain functional connectivity during infant sustained attention. Distinguished functional 

connectivity might underlie the effects of infant sustained attention on various cognitive 

processes. This potential relation between functional connectivity and infant sustained 

attention has not been examined, and its development during the first year of life is still 

unclear.  

 The primary objective of this dissertation was to directly link infant sustained 

attention to functional brain connectivity. Infant sustained attention and the phase of 

inattention were defined based on infant HR changes while looking at stimulus 

presentation (Reynolds & Richards, 2008; Xie et al., 2017). The weighted phase lag 

index (wPLI; Vinck et al., 2011) between EEG oscillations in the theta, alpha, and beta 

frequency bands were measured to represent the functional connectivity. The 

connectivity was examined using both the sensor activities and the cortical source 

activities in different brain regions.  Cortical source reconstruction was conducted with 

realistic head models created with age-appropriate average MRI templates (Richards et 

al., 2015; Richards & Xie, 2015). Seed-based functional connectivity analysis was 
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conducted for five major brain networks suggested by an adult resting-state fMRI study 

(Yeo et al., 2011). These included the visual, somatomotor, dorsal attention, ventral 

attention, and default mode networks. The default mode, dorsal attention, and ventral 

attention networks were chosen because their function is related to attention as described 

in Chapters 1 and 2.  The somatomotor network was chosen because a prior study has 

found the effect of infant sustained attention on the activity in the ROIs involved in this 

network (Xie et al., 2017). The visual network was chosen for comparison because Xie et 

al. (2017) found that the activities in the visual areas were not affected by infant sustained 

attention, although research with adults has shown the changes in the alpha band 

oscillations in the visual areas as a function of attention orienting (Sauseng et al., 2005). 

Graph theory measures of path length, clustering coefficient, and small-worldness were 

used to estimate the overall topology of brain functional networks.  Functional 

connectivity during infant sustained attention was hypothesized to be attenuated in the 

alpha band and increased in the theta band within the five brain networks.  This 

hypothesis was made based on previous EEG studies on infant attention that have found 

an opposite pattern of the changes in the power of the alpha and theta bands during 

sustained attention (e.g., Orekhova, Strognova, & Posikera, 1999, 2001; Xie et al., 2017). 

It was also hypothesized to find differences in the graph theory measures between infant 

sustained attention and inattention. However, no specific hypothesis was made for how 

the patterns would be different between the two attention phases because no study has 

been conducted to examine infant attention with graph theory measures.  

 The development of functional connectivity in brain networks before the age of 

two has not been studied with high-density EEG recordings.  Therefore, it is an open 
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question whether the development of brain functional connectivity during infancy 

measured with EEG recordings would converge on the previous findings reported from 

fMRI research (e.g., Cao et al., 2017; Fair et al., 2007; Gao et al., 2009, 2011).   

A second goal of the dissertation project was to investigate the development of 

brain functional connectivity with high-density EEG recordings for infants aged between 

6 and 12 months. The same functional connectivity and graph theory measures were used 

to accomplish the second goal. One hypothesis was that infants would show a decrease of 

path length and an increase of clustering coefficient and small-worldness during this age 

period. A second hypothesis was that the functional connectivity in the five major brain 

networks would increase from 6 to 12 months of age for all three frequency bands. These 

hypotheses were made based on the aforementioned EEG and fMRI studies on the 

development of brain functional connectivity over infancy and childhood, as well as the 

anatomical changes found in the first year of life.   

Method 

Participants 

The final sample had 59 participants and contained the following numbers of 

participants for each age group: 6 (N = 15, M = 184.4 days, SD = 15.51), 8 (N = 17, M = 

239.4, SD = 15.02), 10 (N = 14, M = 289.3, SD = 14.53), and 12 (N = 13, M = 350.6, SD 

= 13.77) months.  The gender information for two subjects were missing. There were 25 

(43.86%) females in the rest of the 57 subjects. An additional eight participants were 

tested but they became fussy before the end of the data collection. Two participants did 

not finish the experiment due to equipment failure (e.g., programs crashed). Another nine 

participants were excluded from analyses due to excessive artifacts (e.g., eye or body 
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movements and noise) in their data.  Thus, sixty-eight participants were tested in total 

ranging in age from 6 to 12 months. The number of participants recruited for each group 

was listed as follow: 6 (N = 18), 8 (N = 17,), 10 (N = 16), or 12 (N = 17) months of age. 

Apparatus and Stimuli 

A color monitor, two cameras, and computers were used for stimulus presentation 

and video recording. Microsoft Visual C ++ programs were used for presentation and 

experimental control. The stimuli included seven Sesame Street dancing and singing 

sequences made from the movie, “Sesame Street’s 25th Anniversary”. The character in a 

scene might talk (or sing) at one location, disappear from the scene, move from one 

location to another on the screen, or disappear as it was moving across the screen.  These 

characters were placed over a static background in order to improve infants’ engagement 

in the presentation (Mallin & Richards, 2012).  These Sesame Street characters have been 

consistently used to elicit different attention phases during infants’ looking (Courage, 

Reynolds, & Richards, 2006; Guy et al., 2016; Richards, 2010). 

Procedure 

One randomly selected Sesame Street movie sequence was presented at the 

beginning of each experimental block. When the infant looked toward this movie, a 

randomly selected Sesame Street character was presented on the left or the right side of 

the monitor. The character stayed at that location singing or dancing for 8 – 12 s. The 

character then moved to the other side of the monitor and stayed there for 8 – 12 s. The 

character moved back to the original side for an additional 8 – 12 s.  The character might 

also disappear, i.e., hide behind the scene for a few seconds. However, the data collected 

during the disappearance of the character were excluded from further analyses. A new 
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character was then introduced with these procedures.  One experimental block lasted until 

two minutes had elapsed. It was repeated with a new Sesame Street movie and character 

sequences. 

Judgment of Visual Fixation 

 Participants’ looking was judged based on the review of the video recordings. A 

single experimenter determined if the participant was looking toward the video 

presentation. Looking away from the presentation was marked by the experimenter. Data 

were only used for further analyses when a participant looked toward the presentation.  

ECG Recording and HR Defined Attention Phases 

The ECG data were recorded with two Ag-AgCL electrodes placed on each 

infant’s chest. The R-R interval is the latency period between the R waves of two 

heartbeats, and it was used to compute the inter-beat-interval (IBI). The IBI has an 

inverse association with HR, such that HR deceleration corresponds to lengthening of the 

IBI and HR acceleration corresponds to shortening of the IBI.  

Attention phases were defined based on HR (IBI) changes during infants’ looking. 

The phase of sustained attention was defined as the time when there was a significant 

deceleration of HR compared to the prestimulus level and the HR remaining at the 

lowered level. The phase of inattention consisted of the phase of pre-attention (stimulus 

orienting) and attention termination.  The pre-attention phase was defined as the period 

between the onset of a look and a significant HR deceleration. The phase of attention 

termination was defined as the period that HR returned to the prestimulus level. More 

details about the criteria used to define these phases could be found elsewhere (Reynolds 

& Richards, 2008; Xie et al., 2016a, b).  
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EEG Recording and Preprocessing 

EEG was recorded simultaneously with the ECG. The Electrical Geodesics 

Incorporated (EGI, Eugene, OR) EEG system was used for EEG recording. The data of 

34 participants were recorded with the 128-channel “Geodesic Sensor Net (GSN)”. The 

data for the rest 25 participants were recorded with the 128-channel “HydroCel Geodesic 

Sensor Net (HGSN)”. EEG was measured from 124 channels in the electrode net. The 

other four channels were left for the Ag-AgCl electrodes used to measure ECG and 

electrooculogram (EOG). The EEG was recorded with 20 K amplification at a 250 Hz 

sampling rate with band-pass filters set from 0.1 – 100 Hz. The channel impedance was 

measured and accepted if it was below 100 kΩ. The EEG recording was referenced to the 

vertex and then algebraically recomputed to an average reference.  

The EEG recordings were preprocessed using the EEGLAB toolbox (Delorme & 

Makeig, 2004) in MATLAB (R2015b, the Mathworks, Inc.). Preprocessing included 

filtering, segmentation, inspection for artifacts, channel interpolation, and data filtering. 

The continuous EEG data was filtered with band-pass filters set from 1 – 50 Hz. The 

filtered data was then segmented into 1s epochs (Bathelt et al., 2013).  The EEG epochs 

were inspected for artifacts (∆EEG > 200 μV or ∆EEG > 100 μV within 50 ms). 

Independent component analysis (ICA) was conducted using the “runica” program in 

MATLAB to remove components of eye movements. Channel interpolation was 

conducted using the five closest channels if there were fewer than 12 channels that were 

missing or had bad data.  Each attention phase must have at least 10 clean trials for the 

data to be included for further analyses (DeBoer, Scott, & Nelson, 2007). The details of 

the preprocessing for the EEG data have been described in Xie et al. (2017). 
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Cortical Source Reconstruction  

 Figure 4.1 demonstrates the pipeline for source-space functional connectivity 

analysis from the step of cortical source reconstruction. It illustrates the procedures and 

the outputs for the methods described in the following sections including cortical source 

reconstruction, parcellation of cortical reconstructions into brain ROIs, and functional 

connectivity analysis with the wPLI method. 

The cortical source reconstruction of EEG recordings for different frequency 

bands was conducted with the Fieldtrip (Oostenveld et al., 2011) toolbox. The steps of 

source analysis included the selection of anatomical MRI, construction of realistic head 

models, distributed source reconstruction, and segmenting source activity of the whole 

brain into ROIs. Details about each step have been described by Xie and Richards 

(2016b) and Xie et al. (2017). These steps were also compatible with those employed by 

Bathelt et al. (2013) and Hillebrand et al. (2012) with older children and young adults. 

An age-related average MRI template was selected for each age group from the 

Neurodevelopmental MRI Database (Richards et al., 2016; Richards & Xie, 2015). These 

MRI templates were used to create the realistic head models. Anatomical MRIs were 

segmented into component materials with the GM and eyes being used as source 

volumes. Finite Element Method (FEM) model with 5 mm spatial resolution were 

created. A forward model was created for each MRI template with the FEM model, 

source volumes, and an electrode placement map (Richards, Boswell, Stevens, & 

Vendemia, 2015). The forward model was then used to estimate the lead field matrix and 

the spatial filter matrix (inverse of the lead field matrix). 



 

43 

  

Figure 4.1 Pipeline for the functional connectivity analysis in the source space. 
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 Cortical source reconstruction was conducted using the current density 

reconstruction (CDR) technique with the head models, lead field matrix, and the spatial 

filter matrix. Distributed source reconstruction of the EEG time-series in each epoch was 

conducted with the exact-LORETA (eLORETA; Pascual-Marqui, et al., 2011) as the 

constraint. This process resulted in source activities in three moments (directions) for 

each source voxel.  The dimension that explains the most variance of the source activities 

in a voxel was used to represent its activation (Bathelt et al., 2013; Hillebrand et al., 

2012). The details of the procedures for source analysis have been described by Xie and 

Richards (2016b).  

Parcellation of Cortical Source Activity into ROIs 

The reconstructed cortical time-series in GM voxels were parcellated into brain 

ROIs.  Anatomical brain MRIs were segmented into ROIs using the LPBA brain atlas 

(Shattuck et al., 2008).  This resulted in 48 cortical ROIs. The reconstructed time-series 

in the source voxels were averaged for each brain ROI (Bathelt et al., 2013; Dai et al., 

2017).  The reconstructed time-series also were parcellated into 20 cortical areas that are 

the major components of five brain networks defined by Yeo and colleagues (2011).  The 

five networks included the visual, somatomotor, dorsal attention, ventral attention, and 

the DMN networks. The Yeo 7 and 17 networks (Yeo et al., 2011), Automatic 

Anatomical Labeling (AAL; Tzourio-Mazoyer et al., 2002), LPBA (Shattuck et al., 

2008), and the Hammers (Hammers et al., 2003) atlases were used to define the 20 

cortical ROIs (i.e., components) included in these networks.  The ROIs for the five brain 

networks were illustrated in Figure 4.2. The atlases and the procedures used to construct 

the ROIs are described in Table 1. 
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Functional Connectivity Analysis 

The first step in functional connectivity analysis was to assess the power spectral 

density (PSD) and the cross-spectral density (CSD) with frequency analysis in the 

Fieldtrip toolbox. The EEG time-series were filtered with different cutoffs before 

frequency analysis: infant theta (2 – 6 Hz), alpha (6 – 9 Hz), and beta (9 – 13 Hz) bands. 

The Fast Fourier Transform (FFT) was applied on the EEG time-series with a 1s-width 

Hanning window and 50% overlap (i.e., Welch’s method, Welch, 1967).  The PSD and 

the CSD were calculated separately for the three frequency rhythms.  This frequency 

analysis was conducted for the data in the electrodes, as well as the reconstructed source 

activities in brain ROIs. 

Functional connectivity analysis was then conducted separately for the three 

frequency bands in the Fieldtrip toolbox using the PSD and CSD. The weighted phase lag 

index (wPLI) was calculated to estimate the functional connectivity between the 126 

EEG electrodes, the 20 ROIs for the five brain networks, as well as the 48 cortical ROIs 

defined by the LPBA atlas.  The functional connectivity analysis generated N x N 

adjacency matrices where N stands for the number of electrodes or brain ROIs. Each 

value or element in these adjacency matrices represented the wPLI value between a pair 

of electrodes or brain ROIs.  There were N x (N – 1) / 2 unique connections in these N x 

N matrices. The Fisher’s r-to-z transformation was applied to these “correlation” values 

in the adjacency matrices to improve the normality of their distribution.  

The adjacency matrices for the functional connectivity between the EEG 

electrodes were reorganized into virtual electrode clusters. There were 10 clusters that 

were the frontal pole, left frontal, right frontal, left temporal, right temporal, left central,  
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Visual	 DMNSomatomotor

Dorsal	attention Ventral	attention

Figure 4.2 The 20 ROIs included in the five brain networks displayed in an infant brain MRI and a 3D brain 

surface image. 
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Table 4.1 Five Brain networks used for the functional connectivity analysis, the 20 cortical ROIs 

included in the networks, and the atlases used to make these ROIs. The atlases included the Yeo 

atlases for 7 and 17 networks (Yeo et al., 2011), the AAL (Tzourio-Mazoyer et al., 2002) LPBA 
(Shattuck et al., 2008), Hammers (Hammers et al., 2003), and Harvard-Oxford (Smith et al., 

2004) atlases. 

Brain Networks 

Visual  

 

 
Somatomotor  

 

 
Dorsal Attention 

ROIs 

Peripheral visuaROI (left and right) 

Central visual ROI (left and right) 
 

Dorsal somatomotor ROI (left and right) 

Ventral somatomotor ROI (left and right) 

 
Superior parietal gyrus (SPG

1
) and Intraparietal 

sulcus (IPS
1
) (left and right) 

Frontal eye field (FEF2) (left and right) 
 

Atlases 

Yeo 17 Networks 

 

 
Yeo 17 Networks 

 

 
Yeo 7 Networks 

AAL 

Ventral Attention 

  

Temporal parietal junction (TPJ
3
; left and 

right) 

Ventral frontal cortex (VFC
4
; left and right) 

 

Yeo 7 Networks 

      AAL 
 

Default Mode5  Medial prefrontal cortex 

Precuneus/Posterior cingulate cortex 

Inferior parietal lobule (left and right) 

Yeo 7 Networks 

Hammers;LPBA 

Harvard-Oxford 

Notes: 1The SPG and IPS (i.e., the posterior part) of the dorsal attention network was made with the 

overlapping areas between the SPG and IPS in the AAL atlas and the Yeo dorsal attention network.  
2
The FEF ROI was generated by taking the overlapping area between the Yeo dorsal attention network 

and the middle, superior frontal, and the precentral gyri in the AAL atlas.  
3The TPJ ROI was generated by taking the overlapping area between the Yeo ventral attention network 
and the supramarginal, superior and middle temporal gyri in the AAL atlas. 
4
The VFC ROI was generated by taking the overlapping area between the Yeo ventral attention network 

and the pars opercularis, Rolandic operculum, insula, superior temporal gyrus, and superior temporal pole 
in the AAL atlas. 
5The DMN in the current study was generated by taking the overlapping area between the Yeo DMN and 

the DMN made in Xie et al. (2017).  
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right central, left parietal, right parietal, and the occipital-inion clusters.  The GSN and 

HGSN electrodes used to make these clusters and the corresponding 10-10 positions are 

described in Table 2. 

The current project used weighted adjacency matrices instead of binary 

(unweighted) matrices. The weighted matrices keep the original functional connectivity 

values in the matrices without dividing them into 0s and 1s using a threshold. A weighted 

matrix incorporates additional information on the strength of the functional connectivity 

and enables more comprehensive understanding of network organizations (Miskovic et 

al., 2015; Stam et al., 2009; Wang et al., 2011).  

A range of sparsity thresholds was applied to the adjacency matrices to take the 

noise and spurious connectivity into account. A sparsity (cost) threshold was defined as a 

ratio of the number of actual connections or edges in a network to the maximum number 

of possible connections in a network. For example, a cost threshold of 0.1 means only 

10% of the maximum potential number of the connections are regarded as real functional 

connectivity and kept in the matrix, and thus the rest of the connections are set to 0. 

There is currently no consensus regarding the standard of the threshold for an adjacency 

matrix created with brain functional data (Zhang et al., 2011). Therefore, a range of 

cost/sparsity thresholds (0.1 ≤ threshold ≤ 0.4, step = 0.05) was selected in the current 

study so that the findings would be less likely to be biased by the arbitrary selection of a 

threshold (Rubinov & Sporns, 2010; Wang et al., 2011).  

Seed-based Functional Connectivity Analysis 

 Seed-based functional connectivity analysis was conducted in the source space.  

The wPLI value between each pair of the 20 ROIs was extracted from the adjacency  
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Table 4.2 Virtual clusters and corresponding 10 – 10 positions and GSN (HGSN) electrodes. 

 

Clusters 10-10 Positions GSN electrodes HGSN electrodes 

Frontal Pole Nz FPz N1 N2 FP1 FP2 

AF9 AF10 

 

8 9 14 15 17 18 22 23 26 

125 126 

8 9 14 15 17 21 22 25 125 

126 

 

Left Frontal AFZ AF3 AF7 F1 F3 F5 
F7 F9 

 

16 19 20 24 25 27 28 33 34 
 

16 18 19 23 24 26 27 32 
 

Right Frontal Fz AF4 AF8 F2 F4 F6 

F8 F10 

 

1 2 3 4 5 10 11 12 119 122 

123 124 

 

1 2 3 4 5 10 11 12 118 123 

124 

Left Temporal 

 
 

Right Temporal 
 

 

 
Left Central 

 

 
Right Central 

FT7 T7 TP7 P7 FT9 T9 

TP9 P9 
 

FT8 T8 TP8 P8 FT10 T10 
TP10 P10 

 

 
FCz FC1 FC3 FC5 C1 C3 

C5 

 
Cz FC2 FC4 FC6 C2 C4 

C6 

 

39 40 44 45 46 47 49 50 51 

56 57 58 63 
 

96 97 98 100 101 102 103 
108 109 114 115 116 120 

121 

 
6 13 21 29 30 31 35 36 37 

41 42 

 
7 32 81 104 105 106 107 

110 111 112 113 117 118 

 

33 38 39 43 44 45 48 49 50 

56 57 58 63 64 
 

96 99 100 101 107 108 113 
114 115 119 120 121 122 

 

 
6 13 2028 29 30 34 35 36 

40 41 

 
7 31 80 103 104 105 106 

109 110 111 112 116 117 

 
Left Parietal CPz CP1 CP3 CP5 P1 P3 

P5 PO7 PO9 

 

38 43 48 52 53 54 55 59 60 

61 65 66 70 

37 42 46 47 51 52 53 54 55 

59 60 61 65 69 

 
Right Parietal Pz CP2 CP4 CP6 P2 P4 P6 

PO8 PO10 

62 79 80 87 88 90 91 92 93 

94 99  

62 78 79 85 86 87 89 90 91 

92 93 95 97 98 102 

 
Occipital-Inion 

 
POz Oz Iz PO3 PO4 O1 

O2 I1 I2 

 
67 68 69 71 72 73 74 75 76 

77 78 82 83 84 85 86 89 95 

 
66 67 68 70 71 72 73 74 75 

76 77 81 82 83 84 88 94 
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matrices. This allowed us to compare the connectivity between certain pairs of ROIs and 

to compare the averaged connectivity within a network (e.g., the DMN) between different 

conditions (e.g., sustained attention vs inattention).    

Seed-based functional connectivity analysis also was conducted on the sensor 

level. The wPLI value between the 126 electrodes (seeds) was extracted from the 

adjacency matrices and grouped into the 10 visual clusters.  The wPLI value between the 

electrodes in a virtual cluster was calculated.  

Graph Theory Measurements 

The brain network topology was estimated with graph theory measures. Graph 

theory measurements of the properties (e.g., path length, clustering coefficient) of 

functional networks were applied with the Brain Connectivity Toolbox (BCT; Rubinov & 

Sporns, 2010) and the GRETNA toolbox (Wang et al., 2015) in MATLAB (R2016a, the 

Mathworks, Inc.).   

Graph theory measurements were examined in the source space and on the 

channel level. The nodes of a network were defined as the 126 electrodes or the 48 LPBA 

cortical ROIs.  The edges were defined as the functional connections (wPLI values) 

between all pairs of the nodes.  The clustering coefficient for a node was calculated as the 

proportion of its neighboring nodes that were connected to each other. The averaged 

clustering coefficient (Cp) that reflects the average level of local organization of a 

network was then calculated. The path length was defined as the inverse of the wPLI 

value. The shortest path length between two nodes was calculated as the lowest value 

among the sums of different path lengths between them.  The averaged shortest path 
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length (Lp) of the entire network was then calculated to reflect the average level of global 

organization of the network.    

A normalization process of the Lp and Cp was conducted to calculate the small-

worldness (sigma). Two hundred randomized networks were generated with the same 

number of nodes and distribution of edges as the real functional networks (Maslov & 

Sneppen, 2002; Sporns & Zwi, 2004). The averaged path length (Lp-r) and clustering 

coefficient (Cp-r) of these randomized networks were calculated. The normalized path 

length (lambda) was defined as the ratio of Lp to Lp-r. The normalized clustering 

coefficient (gamma) was defined as the ratio of Cp to Cp-r.  The sigma of a network was 

defined as the ratio of gamma to lambda, which represented the ratio of local 

organization efficiency to global organization efficiency for a network (Stam et al., 

2009).  A sigma value greater than 1 indicates a network having the property of small-

worldness (Watts & Strogatz, 1998). 

The area under the curve (AUC) was calculated for these graph theory measures 

given that a range of network intensities was employed.  This was because a range of 

sparsity thresholds was applied to the adjacency matrices to obtain networks with 

different intensity.  Each threshold ended up with a set of graph theory measures (the Lp, 

Cp, and sigma). The usage of the AUC value provided a summarized scalar for the graph 

theory measures in regardless of the network intensity (Zhang et al., 2011).  

Figure 4.3 summarizes the procedures for the data analysis in the current study.  It 

includes the major steps form the preprocessed EEG data to the seed-based connectivity 

and graph theory analysis. The procedures for the analyses on the sensor level and in the 

source space were covered in this figure.  
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Design for Statistical Analysis 

Statistical analysis was performed with mixed-design ANOVAs using the Proc 

GLM function in SAS (SAS institute Inc, Cary, NC). The averaged wPLI value within a 

network was analyzed as the dependent variable in the seed-based connectivity analyses 

for the five brain networks. Post hoc tests (e.g., multiple comparisons) for the wPLI value 

between individual pair of ROIs were conducted with false discovery control (FDR, p < 

0.05). The AUC values for the path length (Lp), clustering coefficient (Cp), and small-

worldness (sigma) were analyzed as the dependent variables in the graph theory analyses. 

 

 

 

 

 

 

Preprocessed	EEG	time	series

Frequency	analysis

Sensor-level	FC	analysis Source-level	FC	analysis

FC	Analysis

Graph	theory	Analysis

Source	analysis	of	the	
EEG	time	series

Decrease	the	dimensions	of	the	
dipole	moments	from	3	to	1

Source	parcellation	to	ROIs	

Seed-based	Connectivity	Analysis

Figure 4.3. Summary of the procedures for data analysis in the current study. 
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The seed-based connectivity and graph theory analyses both included attention phase (2: 

attention and inattention) and frequency band (3: theta, alpha, and beta) as within-subject 

independent variables, and age (2: 9 and 12 months) as a between-subject independent 

variable.  All significant tests were reported at p < 0.05. 

It should be noted that the age was analyzed as a categorical variable in the 

ANOVAs. This was because the data were collected from participants at specific ages 

(e.g., 6, 8, 10, 12 months) instead of being collected continuously with a broader age 

range.  Regression analysis with age as a continuous variable should be superior to the 

current ANOVAs in examining the linear or non-linear changes that might occur between 

different ages.  However, the validity of this type of regression analysis relies on the 

number of data points over the age range (e.g., 6 to 12 months). It means that more data 

needs to be collected to cover the entire age range in order to obtain sufficient power for 

the analysis. In contrast, 10 – 12 subjects per age group should provide sufficient power 

to examine the difference between two ages according to previous infant EEG/ERPs 

studies (e.g., Xie & Richards, 2016a, b; Xie et al., 2017).    

Results 

Sufficient numbers of trials were obtained for the conditions of sustained attention 

and inattention. The number of trials obtained for sustained attention (M = 174.49, 95% 

CI [140.15 196.26]) was not significantly different than that for inattention (M = 151.78, 

95% CI [117.39 186.17]). The numbers of trials for both conditions were much greater 

than the recommended minimum number of trials (10 ~ 20) per condition for infant EEG 

studies (DeBoer et al, 2007).  
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Graph Theory Analysis  

Statistical analyses were performed to determine the effects of infant sustained 

attention and age on brain network topology in different frequency bands.  The graph 

theory measures, path length (Lp), clustering coefficient (Cp), and small-worldness 

(sigma) were analyzed as a function of attention phase, age, and frequency bands. These 

analyses were conducted in the source space with 48 cortical ROIs, as well as on the 

channel level with 126 electrodes.  

Sensor level analysis 

This section includes the results from analyses for the path length, clustering 

coefficient, and small-worldness. They are reported separately in this section. A summary 

of the results for these measures is given at the end of the section. 

Path length (Lp) on sensor level An analysis was conducted to determine the 

effect of attention and age on the global network efficiency in different frequency bands. 

The AUC value for Lp was analyzed as a function of attention phase, age, and frequency 

band with a mixed-design ANOVA.  The analysis for the Lp showed a main effect of 

attention phase, F (1, 55) = 7.95, p = 0.0067. The AUC value for Lp was greater during 

sustained attention than inattention. There was no age or interaction between the three 

factors. Figure 4.4A shows the AUC value for Lp as a function of attention phase and 

age, separately for the three frequency bands. The AUC value for Lp appears to be 

greater during sustained attention than inattention in all three frequency bands.  Figure 

4.4B depicts the changes in the Lp value as a function of network intensity from 10% to 

100%, separately for the attention phases, ages, and frequency bands.  This figure shows 

that the  



 

55 

 

Figure 4.4 The changes of the path length (Lp) on the sensor level as a function of 

attention phase, and age, and frequency band. (A) Individual bars for the mean value of 

the Lp across conditions. Overall the AUC value for Lp appears to be greater during 

sustained attention than inattention. (B). The changes of Lp as a function of network 

intensity (i.e., threshold) from 10% to 100%, separately for different attention phases, 

ages, and frequency bands. In specific, there are 10 different intensities: 10%, 15%, 20%, 

25%, 30%, 35%, 40%, 45%, 50%, and 100%. 
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difference between sustained attention and inattention was consistent across different 

network intensities.   

Clustering coefficient (Cp) on sensor level The analysis for the Cp showed a 

main effect of attention phase, F (1, 55) = 7.29, p = 0.0092. The AUC value for Cp was 

greater during inattention than sustained attention. The interaction between age and 

frequency band was not significant, F (6, 110) = 2.16, p = 0.0525. Follow-up analyses 

showed that the age effect was significant for the alpha, F (6, 110) = 9.79, p = 0.0010 and 

beta, F (6, 110) = 6.43, p = 0.0144, bands. The AUC value for Cp was greater for the 12 

months compared to the other three ages for the alpha and beta bands. Figure 4.5A shows 

the individual bars for the AUC value of Cp, separately for different attention phases, 

ages, and frequency bands. It can be seen that the Cp value increased with age in the 

alpha and beta bands, and it was greater during inattention than sustained attention. This 

information is also shown in Figure 4.5B that depicts the changes of Cp as a function of 

network intensity.  

Small-worldness (sigma) on sensor level The analysis for the sigma value 

showed a significant interaction between age and frequency band, F (6, 110) = 2.58, p = 

0.0223.  A simple effect test showed that the AUC value for sigma decreased with age 

only for the alpha band, F (3, 110) = 11.27, p < 0.00010. Figure 4.6A shows the bars for 

the AUC value of sigma as a function of attention phase, age, and frequency band.  It can 

be seen that this value decreased with age in the alpha band. Figure 4.6B also shows this 

decrease of sigma from 6 to 12 months of age. In addition, it shows that when the 

network intensity was low (e.g., 10%, 15%, and 20%) the sigma value was greater than 1 

at 6 and 8 months in the alpha and beta bands.   
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Figure 4.5 The changes of the clustering coefficient (Cp) on the sensor level as a 

function of attention phase, and age, and frequency band. (A) Individual bars for the 

mean value of the Cp across conditions. Overall the AUC value for Cp appears to be 

smaller during sustained attention than inattention and increases with age in the alpha 

and beta bands. (B) The changes of Cp as a function of network intensity (i.e., threshold) 

from 10% to 100%, separately for different attention phases, ages, and frequency bands. 
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Figure 4.6 The changes of the small-worldness (Sigma) on the source level as a function 

of attention phase, and age, and frequency band. (A) Individual bars for the mean value 

of sigma across conditions.  (B) The changes of sigma as a function of network intensity 

(i.e., threshold) from 10% to 100%, separately for different attention phases, ages, and 

frequency bands. The sigma appears to be greater than one at 6 months for the alpha 

band and at 6 and 8 months for the beta band when the intensity is low. 
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Summary of the results for the graph theory measures on the sensor level 

The graph theory analyses with the adjacency matrices of the 126 electrodes showed that 

the network topology on the scalp changed with age and attention phase. The Lp was 

found to be greater and the Cp was found to be smaller during sustained attention than 

inattention. The Cp was found to increase with age in the alpha and beta bands.  The 

small-worldness (sigma > 1) was shown for infants at 6 and 8 months with low network 

intensity. However, there was no sustained attention effect on the sigma value for all the 

ages. The details of the results are summarized in Table 3.  

Source space analysis 

 The section includes the results from the analyses of the graph theory measures in 

the source space. The results for the path length, clustering coefficient, and small-

worldness are reported separately in this section. They are followed by a summary of 

these results at the end of the section.  

Path length (Lp) in source space An analysis was conducted to determine the 

effect of attention and age on the global network efficiency in different frequency bands. 

The AUC value for Lp was analyzed as a function of attention phase, age, and frequency 

band with a mixed-design ANOVA. There was a main effect of attention phase on the 

AUC value for Lp, F (1, 55) = 8.96, p = 0.0041. The AUC value was greater for 

sustained attention than inattention. The analysis on Lp also revealed an interaction 

between age and frequency band, F (6, 110) = 3.39, p = 0.0042. A simple effect test 

showed that the AUC value for Lp significantly decreased with age for the alpha, F (3, 

110) = 6.10, p = 0.00070, and theta, F (3, 110) = 7.45, p = 0.00010 bands.  Figure 4.7A  
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Table 4.3 Summary of the major results from the graph theory analyses on the sensor level. 

 

Variables Results Figures 

Sensor level 

Path length 

(Lp) 

 
Clustering 

Coeffcient 

(Cp)   

 

 
Small-

worldness 

(Sigma)       

 

i). The Lp was smaller during inattention than sustained 

attention. 

 
i). The Cp was greater during inattention than sustained 

attention in the alpha band. 

 

ii). The Cp increased with age in the alpha and beta bands. 

 
i). The sigma decreased with age in the alpha band. 

 

ii). When the network intensity is low the sigma was greater 

than 1 in the alpha and beta bands for the 6- and 8-month-

olds. 

Figure 6 

 

 
Figure 7 

 

 

Figure 7 

 
Figure 8 

 

Figure 8B 
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shows the AUC value for Lp as a function of attention phase and age, separately for the 

three frequency bands. Overall the AUC value for Lp appears to be greater during 

sustained attention than inattention and decreases with age in the theta and alpha bands.  

Figure 4.7B depicts the changes in the Lp value as a function of network intensity (i.e., 

threshold) from 10% to 100%, separately for the attention phases, ages, and frequency 

bands.  It can be that the difference between sustained attention and inattention was 

consistent across different network intensities.   

Clustering coefficient (Cp) in source space Another mixed-design ANOVA was 

conducted to determine the effect of attention and age on the local network efficiency in 

different frequency bands. The AUC value for Cp was analyzed as a function of the three 

variables. There was an interaction between attention phase and frequency band, F (2, 

110) = 3.83, p = 0.025. This interaction was driven by the greater AUC value for Cp 

during inattention than sustained attention for the alpha, F (1, 110) = 28.78, p < 0.0001, 

but not for the theta and beta bands. There was also an interaction between age and 

frequency band, F (6, 110) = 4.61, p = 0.00030. A simple effect test showed that the 

AUC value for Cp increased with age for theta, F (3, 110) = 6.43, p = 0.00050, and 

alpha, F (3, 110) = 5.68, p = 0.0012, bands.  Figure 4.8A shows the AUC value for Cp as 

a function of attention phase and age, separately for the three frequency bands. The AUC 

value for Cp appears to be smaller during sustained attention than inattention in the alpha 

band and increases with age in the theta and alpha bands.  Figure 4.8B depicts the 

changes in the Cp value as a function of network intensity, separately for different 

attention phases, ages, and frequency bands.  This figure also shows the difference 

between sustained attention and inattention primarily in the alpha band, as well as 
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Figure 4.7 The changes of the path length (Lp) in the source space as a function of 

attention phase, age, and frequency band. (A) Individual bars for the mean value of the 

Lp across conditions.  The error bars stand for the standard errors. Overall the AUC 

value for Lp appears to be greater during sustained attention than inattention and 

decreases with age. (B) The changes of Lp as a function of network intensity (i.e., 

threshold) from 10% to 100%, separately for different attention phases, ages, and 

frequency bands.   
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Figure 4.8 The changes of the clustering coefficient (Cp) in the source space as a 

function of attention phase, and age, and frequency band. (A) Individual bars for the 

mean value of the Cp across conditions. Overall the AUC value for Cp appears to be 

smaller during sustained attention than inattention and increases with age. (B) The 

changes of Cp as a function of network intensity (i.e., threshold) from 10% to 100%, 

separately for different attention phases, ages, and frequency bands. 
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changes of Cp with age in the alpha and theta bands. 

Small-worldness (sigma) in source space The sigma value was analyzed to 

determine the effect of attention and age on the small-worldness in different frequency 

bands. The AUC value for sigma was analyzed as a function of attention phase, age, and 

frequency band. This analysis did not show a main effect of attention phase or age, or an 

interaction between them.  Figure 4.9A shows individual bars representing the AUC 

value for sigma across different attention phases, ages, and frequency bands. It can be 

seen that there was no clear change in the AUC value for sigma with age or any 

difference between the two attention phases. Figure 4.6B depicts the changes in the sigma 

value across network intensities. There is no clear change of sigma value shown in the 

figure across ages. However, when the network intensity is low (10%, 15%, 20%, and 

25%) the sigma value appears to be greater than 1 in the alpha (during inattention) and 

beta bands for the 6-month-olds (Figure 4.9B). The sigma value greater than 1 is a sign of 

showing small-worldness as mentioned earlier in the paper. 

Summary of the results for the graph theory measures in the source space 

The same kinds of analyses were performed for the graph theory measures in the source 

level with the 48 brain ROIs.  Overall, the results from the analyses on the sensor level 

were comparable to those with cortical ROIs. The Lp value was greater and the Cp value 

was smaller during sustained attention than during inattention. There was a decrease of 

Lp and an increase of Cp with age in the theta and alpha bands. The small-worldness was 

found at 6 and 8 months with low network intensity. There were also inconsistent results 
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Figure 4.9 The changes of the small-worldness (Sigma) in the source space as a function 

of attention phase, and age, and frequency band. (A) Individual bars for the mean value 

of sigma across conditions. (B) The changes of sigma as a function of network intensity 

(i.e., threshold) from 10% to 100%, separately for different attention phases, ages, and 

frequency bands. The sigma appears to be greater than one at 6 months for the alpha 

(inattention) and beta bands when the intensity is low. 
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between the source space and sensor level analyses. There was a change of Lp with age 

found in the source space, but the age effect was not found by the analyses on the sensor 

level. There was no age effect on the sigma value according to the analyses in the source 

space, but it was found to decrease with age in the alpha band. The details of the results 

are summarized in Table 4. 

Connectivity Analysis 

 The connectivity analysis was conducted for the 20 ROIs (seeds) in the five brain 

networks and the 126 electrodes on the scalp.  Statistical analyses were performed for the 

seed-based connectivity analysis to determine the effects of infant sustained attention and 

age on the connectivity in the brain for different frequency bands.  The averaged 

functional connectivity within a network was analyzed as a function of attention phase, 

age, and frequency band. This kind of analysis was conducted separately for the five 

brain networks that included the visual, somatomotor, dorsal attention, ventral attention, 

and the default model networks. The overall pattern for the connectivity between the 20 

ROIs also was demonstrated following the analyses for the brain networks with circular 

maps and adjacency matrices. The connectivity analysis on the sensor level included the 

illustration of the adjacency matrices for the 126 electrodes grouped into the 10 virtual 

clusters. No statistical analysis was conducted, and no circular maps were made for the 

sensor level connectivity analysis.  It was because the primary goal of the connectivity 

analysis in the current study was to examine the functional connectivity in brain networks 

as a function of attention and age.  In addition, the number of electrodes (126) is much 

greater than the number of ROIs (20) in the seed-based connectivity analysis. Thus, the 

connections between the electrodes are displayed in a different fashion (i.e., in the raw 
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adjacency matrices) rather than the circular maps for the differences in the source space 

connectivity.   

Seed-based Connectivity Analysis for Brain Networks in the Source Space 

The seed-based functional connectivity between the ROIs in brain networks was 

analyzed to determine the effects of attention and age on brain functional connectivity 

and how these effects might differ with the frequency band. The mean wPLI value 

between ROIs within a network was analyzed as a function of age, attention phase, and 

frequency band with a mixed-design ANOVA for each network.  When a significant 

effect of attention was found for a network post-hoc multiple comparisons between 

sustained attention and inattention were conducted for individual pairs of connections in a 

network with FDR control.   

The results for the five brain networks are reported separately in this section.  

These are followed by a section for the connectivity between the 20 ROIs. A summary of 

the findings is given at the end of the section. 

Visual network The mean wPLI value for the connections within the visual 

network was analyzed to determine whether there was difference between attention 

phases and ages in different frequency bands. The mean wPLI value was analyzed as a 

function of attention phase, age, and frequency band with a mixed-design ANOVA. This 

analysis revealed a significant interaction between age, attention phase, and frequency 

band, F (6, 110) = 2.72, p = 0.017.  Following analyses showed that the interaction 

between age and attention phase was not significant for the alpha band, F (3, 55) = 2.75, 

p = 0.051. A simple effect test showed the mean wPLI value increased with age only 

during inattention, F (3, 55) = 2.91, p = 0.042.  Figure 4.10A shows individual bars 
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Table 4.4 Summary of the major results from the graph theory analyses in the source space. 

 

Variables Results Figures 

Source space 

Path length 
(Lp) 

 

 

 

Clustering 
Coeffcient 

(Cp)   

 

 

Small-
worldness 

(Sigma)  

     

i). The Lp was smaller during inattention than sustained 
attention. 

 

ii). The Lp decreased with age in the theta and alpha bands. 

 

i). The Cp was greater during inattention than sustained 
attention in the alpha band. 

 

ii). The Cp increased with age in the theta and alpha bands. 

 

i). The Sigma did not change with age or attention phase. 
 

ii). When the network intensity is low the sigma was greater 

than 1 in the alpha and beta bands for the 6-month-olds.  

Figure 9 
 

 

Figure 9 

 

Figure 10 
 

 

Figure 10 

 

Figure 11 
 

Figure 11B 
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that represent the mean wPLI value within the visual network for different attention 

phases and ages, separately for the three frequency bands. The mean wPLI value was 

greater for 12 months than the other ages during inattention in the alpha band (Figure 

4.10A). 

The ANOVA for the visual network also revealed a significant main effect of 

attention phase, F (1, 55) = 6.57, p = 0.0131.  The mean wPLI value was greater during 

inattention than sustained attention.  Figure 4.10A shows that the mean wPLI value was 

overall greater during inattention than sustained attention. This effect appeared to be 

bigger with age in the alpha and beta bands. Post-hoc comparisons (p < 0.05, corrected by 

FDR) were then conducted to analyze the attention effect for the connectivity between 

individual pairs of ROIs within the visual network (e.g., left central and left peripheral 

visual areas) in the three frequency bands.  There was no significant difference found 

between sustained attention and inattention for any pair of the ROIs.  

Somatomotor network The mean wPLI value within the somatomotor network 

also was analyzed as a function of attention phase, age, and frequency band with a 

mixed-design ANOVA. This analysis showed that the age effect differed with frequency 

band. There was a significant interaction between age and frequency band, F (6, 110) = 

2.28, p = 0.041. A simple effect test showed that the age effect was significant only for 

the alpha band, F (3, 55) = 4.88, p = 0.0032. The mean wPLI value increased with age. 

Figure 4.10B shows the changes in the mean wPLI value within the somatomotor 

network across attention phases, ages and frequency bands.  It can be seen that the mean 

wPLI value network increases with age in the alpha band. 
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Figure 4.10 Individual bars that represent the mean connectivity (wPLI value) within the 

five brain networks for different attention phases, ages, and frequency bands. 
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Dorsal attention network The analysis for the dorsal attention network showed 

that the attention effect on functional connections varied across the three frequency 

bands. There was a significant interaction between attention phase and frequency band, F 

(2, 110) = 5.78, p = 0.0041. Following analyses showed that the mean wPLI value was 

greater during inattention than sustained attention for the alpha band only. Figure 4.10C 

shows the changes in the mean wPLI value within the dorsal attention network as a 

function of attention phase, age, and frequency band. It can be seen that the mean wPLI 

value was overall greater during inattention than sustained attention in the alpha band. 

Post-hoc comparisons (p < 0.05, corrected by FDR) were conducted to analyze the 

attention effect for individual pairs of connections between the ROIs within the dorsal 

attention network in the alpha band.  It was found that the wPLI value between the left 

SPG/IPS and left FEF was significantly greater during inattention than sustained 

attention.  Figure 4.11A includes individual bars that represent the wPLI value in the 

alpha band between the left SPG/IPS and the FEF across attention phases and ages. It 

shows that the connectivity between these two ROIs increased with age and becomes 

greater during inattention than sustained attention.  Figure 4.11B depicts the difference in 

the wPLI value between sustained attention and inattention (inattention – sustained 

attention) for the connections between the ROIs within the dorsal attention network and 

the DMN in a 3D brain surface.  The thickness of the lines between the ROIs represents 

how big the  

difference is between the two attention phases, with thicker lines meaning greater 

difference. It can be seen that the greater connectivity in the alpha band is clearly shown 

between the left FEF and the left SPG/IPS. The attention effect is also shown between the  
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Figure 4.11 Functional connectivity in the alpha band for the dorsal attention and default mode networks.  (A) The wPLI 

value for the three pairs of connections that showed significant difference between sustained attention and inattention in the 

alpha band.  (B) The difference in the wPLI value between sustained attention and inattention in the alpha band.  The 

spheres represent the nodes (ROIs) within the dorsal attention network (green) and the DMN (red). The lines represent the 

difference in the wPLI value between sustained attention and inattention (inattention – sustained attention) for the 

connections between the nodes. A threshold of 0.01 was used for the display of the connections. The thickness of the lines 

represents the value of the difference, with thicker lines represent greater values.  Note: only the difference between the 

three pairs of connections shown in A. reached the significance level (p < 0.05) after FDR control.   
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left FEF and the right SPG/IPS, but this difference did not reach the significance level 

after FDR control.   

The ANOVA for the dorsal attention network also revealed an interaction 

between age and frequency band, F (6, 110) = 4.34, p = 0.00060.  This interaction was 

driven by an age effect found in the alpha band only, F (3, 55) = 11.73, p < 0.0001. The 

mean wPLI value was found to increase with age for the alpha band. Figure 4.10C shows 

the increase in the mean wPLI value from 6 to 12 months in the alpha band.  

Ventral attention network The analysis for the ventral attention network showed 

marginal main effects for attention phase, F (1, 55) = 3.84, p = 0.055, and age F (3, 55) = 

2.48, p = 0.070.  The individual bars for the mean wPLI value within the ventral attention 

network are plotted in Figure 4.10D.  The mean wPLI value appears to increase with age 

in the theta and alpha bands, although it did not reach the significance level.  

Default model network The analysis for the DMN showed a significant main 

effect for attention phase, F (1, 55) = 6.08, p = 0.0168. The mean wPLI value was greater 

during inattention than sustained attention. This attention effect was not found to interact 

with frequency band (Figure 4.10E).  Post hoc comparisons (p < 0.05, corrected by FDR) 

were conducted to analyze the attention effect for individual pairs of connections between 

the ROIs within the DMN. It was found that the wPLI values in the alpha band between 

the medial prefrontal cortex and the PCC/Precuneus and between the right inferior 

parietal lobule and the PCC/Precuneus were significantly greater during inattention than 

sustained attention. The comparisons for the connections in the theta and beta bands did 

not show any significance result after the FDR control.  Figure 4.11A shows individual 

bars that represent the wPLI values for the two pairs of ROIs showing significance 
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attention effect in the alpha band.  The wPLI values appear to be greater during 

inattention than sustained attention.  The difference between attention and inattention in 

these connections also are depicted in a 3D brain surface in Figure 4.11B.  

Connections between the 20 ROIs The difference between sustained attention 

and inattention also appeared to exist in the functional connectivity between the five 

brain networks.  Figure 4.12 shows the difference in the wPLI value between sustained 

attention and inattention for all the 20 ROIs in the five networks with a network intensity 

of 10%. Both circular maps (top panel) and adjacency matrices are displayed in the 

figure.  Figure 4.12A shows the difference for the theta band. It can be seen that the 

overall functional connectivity during inattention was greater than that during sustained 

attention. There was no specific pattern observed for the theta band.  Figure 4.12B shows 

the difference for the alpha band. The circular maps demonstrate that about half of the 

connections that were greater for inattention involved the ROIs in the DMN, especially 

the PCC/Precuneus. This information also is shown by the adjacency matrix.  Figure 

4.12C shows the difference for the beta band.  It can be seen from the circular maps and 

the adjacency matrices that most of the connections that were greater during inattention 

involved the ROIs in the visual network.  No statistical analysis was conducted for these 

connections between networks.  

Summary of the seed-based connectivity analysis for the brain networks 

Functional connectivity between brain ROIs were found to change with age and attention 

phase. Infant sustained attention was found to have an impact on the averaged functional 

connectivity within the DMN and the dorsal attention network in the alpha band. In 

addition, the averaged functional connectivity in the alpha band within the visual,  
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Figure 4.12 Circular maps and adjacency matrices for the difference in the connectivity 

between sustained attention and inattention for the 20 ROIs composing the five brain 

networks, separately for the theta (A), alpha (B), and beta (C) frequency bands.
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Figure 4.12 Circular maps and adjacency matrices for the difference in the connectivity 

between sustained attention and inattention for the 20 ROIs composing the five brain 

networks, separately for the theta (A), alpha (B), and beta (C) frequency bands.  
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somatosensory, dorsal attention, and ventral attention networks were found to increase 

with age. The illustration of the connections between the 20 seeds (ROIs) in circular 

maps and adjacency matrices indicate that the difference between sustained attention and 

inattention may also exist in the functional connectivity between the five networks. The 

detailed results are summarized in Table 5. 

Connectivity Analysis for the Virtual Channel Clusters on the Sensor Level 

 The adjacency matrices obtained from the functional connectivity analysis for the 

EEG electrodes were reorganized in the order of the 10 virtual clusters.  Figure 4.13A 

shows the reorganized adjacency matrices for the connectivity in the theta band during 

inattention and sustained attention (top panel). Figure 4.13A also shows the difference in 

connectivity between the two attention phases (bottom panel) with a network intensity of 

10%.  The connectivity during inattention appears to be greater than that during sustained 

attention in the theta band. This difference is shown in most of the clusters, except for the 

left temporal and frontal pole clusters.  Figure 4.13B shows the adjacency matrices for 

the alpha band. The difference between sustained attention and inattention is mostly 

shown in the central and parietal clusters. There are also patterns of frontoparietal and 

frontocentral connections shown for the difference between sustained attention and 

inattention. The connectivity between the frontal clusters and the central and parietal 

clusters in the alpha band appears to be greater during inattention than sustained attention 

(Figure 4.13B).   Figure 4.13C shows this kind of adjacency matrices for the beta band.  

The connectivity during inattention appears to be greater than that during sustained 

attention. However, there is no clear pattern shown in this figure.  
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Table 4.5 Summary of the major results from the seed-based connectivity analyses. 
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DMN     

i). The mean wPLI value was greater during inattention 

than sustained attention. No individual pair of ROIs showed 

significant greater connectivity during inattention than 
attention.   

 

ii). The mean wPLI value increased with age during 

inattention in the alpha band. 

 
i). The mean wPLI value increased with age in the alpha 

band. 

 

i). The mean wPLI value was greater during inattention 

than sustained attention in the alpha band.  
The wPLI value in the alpha band between left SPG/IPS 

and left FEF was significantly greater during inattention 

than sustained attention.   

 

ii). The mean wPLI value increased with age in the alpha 
band.  

 

i). Marginal age effect in the theta and alpha bands.  

 

 
i). The mean wPLI value was greater during inattention than 

sustained attention in the three frequency bands.  

The wPLI values in the alpha band between MPFC and     

PCC/Precuneus and between right IPL and PCC/Precuneus 

were greater during inattention than sustained attention.            
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Figure 4.13 Adjacency matrices for the connectivity (wPLI value) between EEG 

electrodes for infant sustained attention, inattention, and the difference between them, 

separately for the theta (A), alpha (B), and beta (C) frequency bands. 
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Figure 4.13 Adjacency matrices for the connectivity (wPLI value) between EEG 

electrodes for infant sustained attention, inattention, and the difference between them, 

separately for the theta (A), alpha (B), and beta (C) frequency bands. 
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Figure 4.13 Adjacency matrices for the connectivity (wPLI value) between EEG 

electrodes for infant sustained attention, inattention, and the difference between them, 

separately for the theta (A), alpha (B), and beta (C) frequency bands. 
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Discussion 

The present study investigated the relation between infant sustained attention and 

infant brain functional connectivity and its development in the second half of the first 

year of age. The effects of sustained attention and age were examined in three frequently 

studied infant EEG rhythms that were the theta (2 – 6 Hz), alpha (6 – 9 Hz), and beta (9 – 

13 Hz) rhythms. The primary goal of the dissertation project was to investigate the 

functional connectivity during infant sustained attention. It was hypothesized that infants 

would show distinct patterns of brain network topology during sustained attention 

reflected by graph theory measures, such as the path length, clustering coefficient, and 

small-worldness. It was also expected to find weaker functional connectivity within the 

five brain networks in the alpha band and stronger connectivity in the theta band during 

sustained attention. Our results lent support to part of these hypotheses. Distinct patterns 

of brain network topology were found with graph theory measures for sustained attention. 

The path length was longer and the clustering coefficient was lower during sustained 

attention than inattention. However, there was no difference in the small-worldness 

between the two attention phases.  Seed-based connectivity analysis showed that the 

connectivity within the DMN and the dorsal attention network was weaker in the alpha 

band during sustained attention than inattention. The connectivity between the networks 

also appeared to be weaker during sustained attention in the alpha band.  However, no 

theta effect was found in terms of the connectivity within the networks. The overall 

connectivity between the networks appeared to be weaker in the theta and beta bands 

during sustained attention.  
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The second goal of this study was to investigate the development of brain 

functional connectivity from 6 to 12 months of age using EEG measures. The path length 

was expected to decrease with age, while the clustering coefficient and small-worldness 

were expected to increase with age. The functional connectivity between ROIs within the 

five brain networks was hypothesized to increase with age. The current results supported 

the majority of these hypotheses. The path length was found to decrease with age and the 

clustering coefficient was found to increase with age in the theta and alpha bands. These 

results were shown in both source space and sensor level analyses. Infants at 6 and 8 

months showed the feature of small-worldness in their brain networks with low network 

intensity. However, the feature of small-worldness was not found at the two older ages. 

The functional connectivity within the visual, somatosensory, and dorsal attention 

networks were found to increase with age in the alpha band. However, no change of 

connectivity within the networks with age was found for the theta and beta bands.  

Functional Connectivity in Major Brain Networks during Infant Sustained 

Attention 

 The finding of the weaker functional connectivity in the alpha band during 

sustained attention in the DMN indicates the important role that the DMN plays in infant 

attention. Attenuated alpha power during infant sustained attention has been shown by 

previous EEG research (Orekhova, Stroganova, & Posikera, 2001; Xie et al., 2017).  Xie 

and colleagues localized the attenuated alpha activity to the brain regions composing the 

DMN using the technique of EEG source analysis. It should be noted that the current 

project and Xie et al. (2017) used the same data but for different analyses and research 

goals.   The finding in the current study suggests that the functional connectivity in the 
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alpha band between the components of the DMN also is attenuated during sustained 

attention (Figure 4.10E, 13).  This finding supports the idea that enhanced brain alertness 

and attention allocation during infant sustained attention might be caused by attenuated 

activity in the DMN.  The attention effect on the connectivity within the DMN was 

primarily shown at 12 months (Figure 4.10E). This is consistent with the finding from the 

power analysis that the attention effect on the alpha power within the DMN did not 

appear until 12 months of age (Xie et al., 2017).   

The changes in functional connectivity observed here should not be simply caused 

by the changes in EEG power. The wPLI technique used in the current study was 

designed to diminish the effect of the amplitude on the connectivity between two 

electrodes or ROIs.  In addition, many impacts of attention on EEG power found by Xie 

et al. (2017) were not shown here for the functional brain connectivity.   

 Infant sustained attention is also associated with a decrease of functional 

connectivity in the alpha band in the dorsal attention network.  The current study uses a 

paradigm including dancing Sesame Street characters presented in different locations. 

The areas included in the dorsal attention network (e.g., the FEF and SPG/IPS) are 

crucial for spatial attention orienting, goal-directed selection for stimuli, and planning for 

eye-movements (Corbetta & Shulman, 2002; Peterson & Posner, 2012). Therefore, this 

network is very likely to be active during the presentation in this experiment, although 

the trials with eye movements have been excluded from the analyses. The finding of the 

decreased connectivity in the alpha band might suggest the releasing of the dorsal 

attention system (i.e., task-relevant areas) from inhibition (Klimesch, Sauseng, & 

Hanslmayr, 2007).   
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 An alternative explanation of the findings in the two attention-related networks is 

that the connectivity over the entire brain decreased during infant sustained attention. The 

connections between ROIs within the other three networks did not reach the significance 

level when they were analyzed individually with control for multiple comparisons.  

However, the connections between these ROIs still appeared to be attenuated during 

infant sustained attention (Figure 4.12). The overall decreased functional connectivity in 

the brain also was shown by the graph theory measures, which will be discussed in the 

next section. Therefore, the weaker connectivity within the dorsal attention and the DMN 

might also be due to the overall decreased connectivity during sustained attention.  

 The weakened connectivity in the alpha band found for the frontal, central, and 

parietal sensor clusters might be underlain by the decreased connectivity in the DMN and 

the dorsal attention network.  The connectivity between the frontal cluster and the central 

and parietal clusters appeared to be weakened for the alpha band during infant sustained 

attention (Figure 4.13B). This finding suggests the changes occurred in underlying neural 

mechanisms during infant sustained attention. The cortical source analysis conducted in 

the current study provides a link between the finding on the scalp and the changes in the 

brain. The attenuated frontoparietal connectivity between the components in the DMN 

(the MPFC and PCC/Precuneus) and the dorsal attention network (the FEF and the 

SPG/IPS) might cause the distinct patterns observed on the sensor level.   

 The effect of sustained attention on the functional connectivity in the beta band 

indicates a delayed development of the beta rhythm during infancy. Differentiated 

functional connectivity was found within the visual network and the DMN for the beta 

band during sustained attention. However, this pattern was only shown at 12 months. 
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This finding suggests that it might be difficult to identify the functional role of the beta 

rhythm in infant cognition until the end of the first year. A previous study did not find 

difference in beta power between sustained attention and inattention at 12 months with 

the same experimental design (Xie et al., 2017).  These findings suggest a much delayed 

development of the beta rhythm. Future studies need to be conducted to determine the 

developmental trajectory of the beta rhythm and its relation to infant cognition.  

Distinct Network Topology during Infant Sustained Attention 

 Infant sustained attention is accompanied by an attenuation of brain network 

integration and segregation. The finding of shorter path length and higher clustering 

coefficient during inattention than sustained attention suggests that the long-distance 

(integration) and local (segregation) communications between cortical regions are 

weakened during sustained attention (Figure 4.7, 4.8, 4.10, and 4.11). This distinct 

pattern of brain network topology was revealed by the analyses in the source space and 

those on the sensor level.  This finding is inconsistent with my hypothesis that was made 

based on the improved information processing found during sustained attention by 

previous research (e.g., Richards, 2008, Xie et al., 2017, Xie & Richards, 2016a).   

One explanation of this finding is that infant brain networks become more 

randomized with higher cost for local and global communications during inattention.  

This explanation is consistent with the findings by studies on the attention deficit 

hyperactivity disorder (ADHD). Decreased path length and increased clustering 

coefficient have been found in children with ADHD using EEG measures (Ahmadlou, 

Adeli, & Adeli, 2012), although fMRI research has shown a different pattern of increased 

clustering coefficient and path length in ADHD children (Cao, Shu, Cao, Wang, & He, 
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2014).  The atypical network topology found in these studies with ADHD children has 

been seen as a reflection of a more random network organization with higher cost for 

connections. Therefore, it is plausible that the brain network topology during infant 

inattention is comparable to that shown in ADHD children with stronger but high-cost 

connections between brain regions. 

The distinct patterns of network topology found during infant inattention might 

also be analogous to the compensation effect after sleep deprivation. Decreased path 

length and increased clustering coefficient have been found in participants after sleep 

deprivation (Liu, Li, Wang, & Lei, 2014). This pattern of enhanced network integration 

and segregation could be a reflection of the adaptive mechanisms in the brain under 

conditions of diminished attention resources due to insufficient sleep (Liu et al., 2014).  

Similar adaptive mechanisms might occur during infant inattention when the attention 

resources are limited and the information processing is less efficient compared to 

sustained attention.  

The current study suggests novel neural correlates of infant sustained attention 

with respect to graph theory measures. Infant sustained attention has been associated with 

amplified ERP responses (Guy et al., 2016; Xie & Richards, 2016a, b) and attenuated 

alpha power (Xie et al., 2017). The current study suggests that infant sustained attention 

is also associated with longer path length and lower clustering coefficient. These features 

of network topology indicate a less randomized and overall more cost-effective 

organization of brain networks during sustained attention. Infant sustained inattention is 

characterized by a deceleration of HR caused by an increase of the function of the 

parasympathetic system (Richards, 2008). This is accompanied by an increase of the 
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function of the tonic alerting system (Richards, 2008; Xie et al., 2017).  The changes in 

the neurotransmitter system and the alerting network should have an impact on the 

communication between subcortical (e.g., the thalamus) and cortical regions. This in turn 

might result in the distinct patterns of brain network topology found during infant 

sustained attention in different frequency bands. This possibility needs to be further 

investigated with different functional connectivity and graph theory measures, such as 

measuring the correlation between hemodynamic signals and using binary brain 

networks.  

The Functional Connectivity in Major Brain Networks Increases with Age 

 The current study suggests a rapid change in the strength of functional 

connectivity within the major brain networks during the first year of age. An increase of 

the strength of functional connectivity was found in the alpha band for the visual, 

somatosensory, dorsal attention, and ventral attention networks (Figure 4.10). This 

dramatic development from 6 to 12 months is consistent with the increase of the overall 

brain functional connectivity shown by the graph theory measures discussed in the next 

section. Only the DMN did not show an increase of functional connectivity within the 

network.  The absence of the age effect for the DMN is in line with previous fMRI 

research showing that the functional connectivity in the DMN is not exhibited until 12 

months of age (Gao et al., 2009; 2011).   

 The development of brain functional connectivity in these networks varies across 

the frequency bands.  The age effect was predominately found in the alpha band with 

only a marginal effect shown for the theta band and no effect shown for the beta band. 

The finding of no change in the beta band connectivity is consistent with a previous study 



 

91 

showing no age effect on the beta power from 6 to 12 months (Xie et al., 2017). 

However, the finding of no change in the theta band connectivity is inconsistent with my 

hypothesis nor with the graph theory findings discussed later. Previous studies have 

shown that the relation between the theta rhythm and infant attention is well established 

by 8 months of age (Orekhova et al., 1999; Xie et al., 2017). It is possible that the theta 

band connectivity in these brain networks develops dramatically in the first few months 

of life but with a much slower pace in the second half of the first year.  Studies have 

shown that the peak of the infant theta and alpha rhythms changes over infancy (Marshall 

et al., 2002; Xie et al., 2017). The choice of the range of the frequency bands in the 

current study was based on past infant research (e.g., Marshall et al., 2002; Orekhova et 

al., 1999).  Another possibility for finding no age effect in the theta rhythm could be that 

the band (2 – 6 Hz) used to define the theta rhythm may not cover the most dramatic 

connectivity changes for some subjects. Future research may identify the peak frequency 

for each infant rhythm sot that the connectivity changes can be better examined.  

Development of Brain Network Topology in the Second Half of the First Year 

 There is an increase of functional integration and segregation of information 

processing over the development from 6 to 12 months of life from a graph theory 

perspective. The finding of the decrease of path length and increase of clustering 

coefficient in the theta and alpha bands indicates the changes in the global and local 

efficiency of information processing in brain networks. This finding is parallel to the 

existing EEG literature that has shown the development of functional integration and 

segregation of brain networks from early childhood (e.g., 2 to 4 years) to adolescence 

(Bathelt et al., 2013; Boersma et al., 2011; Miskovic et al., 2015; Smit et al., 2012). The 
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current study extends our understanding of the development of functional networks in 

different frequency rhythms from childhood (over 2 years of age) to infancy.  

 The changes in these graph theory measures primarily occur in the theta and alpha 

frequency bands during infancy. No dramatic change in path length, clustering 

coefficient, or small-worldness was found for the beta band in the source space analysis. 

This finding suggests that the communication of information between brain regions might 

rely more on the oscillatory signals in the infant theta and alpha bands than the 

oscillations in the beta band. The delayed development of functional connectivity in the 

beta band is compatible with the fact that the functional significance of the beta band 

oscillations is still not clear during infancy (Cuevas et al., 2014; Xie et al., 2017).  Prior 

EEG studies have shown changes in brain network topology in the beta band during 

childhood and adolescence (e.g., Bathelt et al., 2013; Boersma et al., 2011). Future 

research may examine the brain functional connectivity in the beta band with infants 

older than a year of age.  

It should be noted that there were also inconsistent findings among these EEG 

studies. For example, some studies have found an increase of path length in the alpha 

band over childhood and adolescence (Boersma et al., 2011; Smit et al., 2012), while the 

current study and others have shown a decrease of path length in the alpha band with age 

(Bathelt et al., 2013; Miskovic et al., 2015).  The different techniques (e.g., Pearson 

correlation, imaginary part of the coherency, wPLI, and SL) used to measure the 

functional connectivity between EEG signals might have contributed to these inconsistent 

findings (Bastos & Schoffelen, 2016; Vinck et al., 2011).  A recent study has shown that 

the choice of the inverse solution (e.g., beamformer solutions vs. eLORETA distributed 
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solutions) and the software package (e.g., Fieldtrip vs. Brainstorm) also has an impact on 

the connectivity results (Mahjoory et al., 2017).  Future research should be conducted to 

investigate the potential difference caused by using different connectivity measures and 

techniques in the study of brain networks with pediatric populations.  

The current study provides convergent evidence for the development of brain 

network topology during infancy that has been shown by resting-state fMRI research. A 

prior fMRI study has found rapid changes in the global and local reconfigurations in 

brain networks during the first year of life (Gao et al., 2011). The findings in the current 

study also indicate rapid changes in the efficiency of global and local communication of 

information between brain regions. The small-world connectional architecture for brain 

networks was observed in the alpha and beta bands at 6 and 8 months with low network 

intensities. This finding is consistent with previous fMRI studies showing an early 

presence of the small-worldness for brain networks in newborn (Fransson et al., 2011) 

and preterm infants (Cao et al., 2017; van den Heuvel et al., 2015).  However, the 

absence of the small-worldness at 10 and 12 months is inconsistent with the fMRI 

literature that has suggested a continued development of the small-worldness throughout 

the first few years of life (Cao et al., 2016; Fair et al., 2009; Power et al., 2010).  The 

experimental paradigm used by the current study was not resting-state because infants 

were watching Sesame Street videos.  This kind of dynamic stimuli becomes more 

attractive with age from 6 to 12 months (Courage et al., 2006). The enhanced engagement 

in the “task” among the older infants might result in the finding of no small-worldness for 

brain networks at 10 and 12 months.  Future study should consider testing the 
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development of brain network topology using graph theory measures and EEG recordings 

with a resting-state paradigm.  

The Study of Functional Connectivity in the Source Space and on the Sensor Level 

 The study of the network topology with graph theory measures in the source 

space and on the sensor level might show both similar and inconsistent findings.  The 

sustained attention effect was found for infants across ages using graph theory measures 

with the 48 LPBA cortical ROIs, as well as the 126 GSN/HGSN electrodes.  In addition, 

both types of analyses showed the development of clustering coefficient in the alpha band 

and the small-worldness at younger ages with low network intensities. However, there 

were also inconsistent findings of the graph theory measures between the analyses in the 

source space and those on the sensor level. For example, the development of path length 

across ages was only found in the source space. The development of path length and 

clustering coefficient in the theta and alpha bands was consistently shown by the analyses 

in the source space, while the sensor level analyses only showed changes of the clustering 

coefficient in the alpha and beta bands. The difference in the number of nodes (48 vs. 

126) and the spurious connections between EEG electrodes caused by the volume 

conduction issue may contribute to the inconsistent findings between the analyses in the 

source space and those on the sensor level.        

The information about the seed-based functional connectivity between brain ROIs 

might only be obtained by conducting the analyses in the source space. The measurement 

of the connectivity between EEG electrodes suggests that the communication between the 

underlying neural networks varies with infant attention state and develops with age.  

However, it is difficult to link the changes in the electrodes to the changes in specific 
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brain ROIs.  The current study solves this issue by measuring the connectivity between 

reconstructed source activities in brain ROIs.  

Conclusion 

 The current study advances our understanding of infant sustained attention and its 

development.  The current findings extend the Richards’ heart rate model of infant 

sustained attention (Richards & Casey, 1992) by establishing a connection between 

sustained attention and brain functional connectivity. The work here also sheds light on 

the development of infant sustained attention.  The attenuated within network 

connectivity in the alpha band was observed at 6 months for the dorsal attention network. 

The attention effect on the overall network topology in a graph theory perspective also 

was found from 6 months of age. However, the attention effect for the DMN was not 

observed until 12 months of age. The interaction between sustained attention, age, and 

brain networks suggests that changes in infant sustained attention still occur from 6 to 12 

months and the relation between attention and age might vary across brain networks.     

The current study also suggests that cortical source analysis with EEG data can be 

used with infant participants to study the functional connectivity in brain networks.  The 

usage of age-appropriate average MRI templates for source analysis should minimize the 

errors that would be caused by using an adult MRI given the differences in the 

anatomical features between infants’ and adults’ brain. The method used in the current 

study suggests an alternative way to examine the development of brain networks. This 

method should be particularly useful for infant studies because of the easy application of 

EEG and its tolerance to movement compared to fMRI with infants.  Similar findings on 

the development of brain networks have been shown by the current study in comparison 
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to previous infant MRI research. These findings might serve as a reference that allows us 

to identify the disruptions in the brain networks of children with neurodevelopmental 

disorders (e.g., ASD and ADHD). 
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