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ABSTRACT

A Newman polynomial is a polynomial with coefficients in {0,1} and with constant

term 1. It is known that the roots of a Newman polynomial must lie in the slit annulus

{z∈C : φ−1 < |z|< φ}\R+ where φ denotes the golden ratio; however, it is not guaranteed

that all polynomials whose roots lie in this slit annulus divide a Newman polynomial. The

Mahler measure of a monic polynomial is defined to be the product of the absolute values of

those roots of the polynomial which are greater than 1. K. Hare and M. Mossinghoff have

asked whether there is a σ > 1 such that if a polynomial f (z) ∈ Z[z] has Mahler measure

less than σ and has no nonnegative real roots, then it must divide a Newman polynomial.

In this thesis, we present a new upper bound on such a σ if it exists. We also show that

there are infinitely many monic polynomials that have distinct Mahler measures which all

lie below φ , have no nonnegative real roots, and have no Newman multiples. Finally, we

consider a more general notion in which multiples of polynomials are considered in R[z]

instead of Z[z].
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CHAPTER 1

INTRODUCTION

A 0,1-polynomial is a monic, polynomial with all its coefficients in {0,1}. A Newman

polynomial is a univariate 0,1-polynomial with constant term 1. We will denote the set of

all Newman polynomials by N . Odlyzko and Poonen (1993) showed that if α ∈ C is a

root of a polynomial F ∈N , then α lies in the slit annulus

Aφ \R+ = {z ∈ C : φ
−1 < |z|< φ}\R+

where φ = (1+
√

5)/2 denotes the golden ratio.

In this text, we will explore the cases when a given polynomial has or, more appropri-

ately, does not have a multiple that is Newman. It is important to note that a polynomial

with a root outside the annulus Aφ cannot have a Newman multiple. Moreover, we note

that no polynomial with a positive real root can have a Newman multiple.

The following result, due to K. Hare and M. J. Mossinghoff (2014), answers a question

about a particular class of polynomials which satisfy the above conditions.

Theorem 1.1. If a real number β ∈ (−φ ,−1) is the only root of a monic polynomial f (z)∈

Z[z] which lies outside the open unit disk D = {z∈C : |z|< 1} and f (z) has no nonnegative

real roots, then there exists a Newman polynomial F(z) with F(β ) = 0.

Before giving their proof, we will first make a few more observations. In the theorem

above, β represents a real algebraic integer with |β | > 1 whose other conjugates all lie

in D (that is, having modulus less than 1). A β > 0 with this property is called a Pisot

number. Bertin, Decomps-Guilloux, Grandet-Hugot, Pathiaux-Delefosse, and Schreiber

1



(1992) show that every Pisot number less than φ may be expressed as a root of one of the

following polynomials for some positive integer n:

p2n(z) = z2n+1− z2n−1− z2n−2−·· ·− z−1,

q2n+1(z) = z2n+1− z2n− z2n−2−·· ·− z2−1,

rn(z) = zn(z2− z−1)+ z2−1,

g(z) = z6−2z5 + z4− z2 + z−1.

Because a Newman polynomial cannot have positive real roots, no Pisot number will

be a root of a Newman polynomial. We say β is a negative Pisot number if −β is a Pisot

number and consider instead such numbers. Observe that Theorem 1.1 is a statement about

negative Pisot numbers.

With the above in mind, we consider similar families of polynomials with negative Pisot

numbers as roots. Specifically, we consider the monic polynomials−p2n(−z),−q2n+1(−z),

r2n(−z), −r2n+1(−z), and g(−z). From the above, it follows that any negative Pisot num-

ber β > −φ occurs as a root of one of these monic polynomials for some n. We proceed

now to a proof of Theorem 1.1 based on the work of Hare and Mossinghoff (2014).

Lemma 1.2. For every positive integer n, the polynomial rn(z) has exactly one root β

outside of D with β ∈ R and β > 1. Furthermore, the polynomial rn(z) is irreducible over

Q.

Proof. For z ∈ C = {z ∈C : |z|= 1}, we first observe that by a direct computation we have

|z2− z−1|2 = (z2− z−1)(z2− z−1) = 3− z2− z2

and

|z2−1|2 = (z2−1)(z2−1) = 2− z2− z2,

where z denote the complex conjugate of z. In particular, we obtain

|z2− z−1|> |z2−1| for all z ∈ C . (1.1)
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Let ρn(z) = zn(z2− z−1). From the above, we deduce that for z ∈ C , we have

|rn(z)−ρn(z)|= |z2−1|< |z2− z−1|= |ρn(z)|.

By Rouché’s Theorem, we see that rn(z) and ρn(z) have the same number of roots, counted

to their multiplicity, inside C . As z2− z− 1 has exactly one root in C , we deduce rn(z)

has exactly n+ 1 roots inside C and exactly one root outside C . Call this root β . As

rn(1) = −1 and rn(2) = 2n +3 > 0, we obtain β is a real root in the interval (1,2). Thus,

the first statement of the lemma follows.

Observe that rn(z) is monic. Assume rn(z) = u(z)v(z) for some monic u(z) and v(z) in

Z[z] each of degree ≥ 1 with u(β ) = 0. Since β is the only root of rn(z) outside of D , the

roots of v(z) each have absolute value < 1. Since |v(0)| is the absolute value of the product

of the roots of v(z), we obtain |v(0)|< 1. Note that rn(0) =−1 implies v(0) 6= 0. We obtain

a contradiction as |v(0)| is a non-zero integer < 1, which is impossible. We deduce that

rn(z) is irreducible, completing the proof.

Proof of Theorem 1.1. Let β be a real number in (−φ ,−1), and let f (z) ∈ Z[z] be as in the

theorem so that f (β ) = 0. This immediately implies that f (z) is the minimal polynomial of

β . Otherwise, there would exist monic g(z) and h(z)∈Z[z] of degrees≥ 1 satisfying f (z)=

g(z)h(z), g(β ) = 0 and all of the roots of h(z) lie inside D . But this is a contradiction, as

it implies |h(0)|, which is the absolute value of the product of the roots of h(z), is not an

integer.

Now, since β ∈ (−φ ,−1), we have that β is a root of one of the polynomials−p2n(−z),

−q2n+1(−z), r2n(−z), −r2n+1(−z), and g(−z) for some positive integer n. Hence, the

minimal polynomial for β , namely f (z), must divide one of these polynomials for some

positive integer n. Fix such an n. As a consequence of Lemma 1.2, the polynomial r2n(−z)

is irreducible. Thus, if f (z) divides r2n(−z), then f (z) = r2n(−z). Assume this is the

case. Then f (0) = r2n(0) = −1 and f (1) = r2n(−1) = 1. By the Intermediate Value

Theorem, f (z) has a positive real root, contradicting the conditions of f (z) in the statement
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of Theorem 1.1. Hence, f (z) does not divide r2n(−z). Similarly, one checks that g(−z) is

irreducible, g(0) =−1, and g(−1) = 1, so an analogous argument gives that f (z) does not

divide g(−z). Therefore, f (z) divides one of the polynomials −p2n(−z), −q2n+1(−z), and

−r2n+1(−z).

To finish the proof, it suffices now to show that each of the polynomials −p2n(−z),

−q2n+1(−z), and −r2n+1(−z) divides a Newman polynomial. Observe that

−p2n(−z)
(
z2n + z2n−1 + · · ·+ z+1

)
=
(
z2n+1− z2n−1 + z2n−2−·· ·− z+1

)(
z2n + z2n−1 + · · ·+ z+1

)
= z4n+1 + z4n + z4n−2 + · · ·+ z2n+4 + z2n+2 + z2n−2 + z2n−4 + · · ·+ z2 +1,

which is a Newman polynomial. Also, we see immediately that

−q2n+1(−z) = z2n+1 + z2n + z2n−2 + · · ·+ z2 +1,

so −q2n+1(−z) is a Newman polynomial. Next, we use that

−r2n+1(−z)
(
z2n + z2n−2 + · · ·+ z2 +1

)
=
((

z2n+1−1
)(

z2−1
)
+ z2n+2)(z2n + z2n−2 + · · ·+ z2 +1

)
=
(
z2n+1−1

)(
z2n+2−1

)
+ z2n+2(z2n + z2n−2 + · · ·+ z2 +1

)
= z4n+3− z2n+1 + z2n+2(z2n + z2n−2 + · · ·+ z2)+1.

From this, we see that

−r2n+1(−z)
(
z2n + z2n−2 + · · ·+ z2 +1

)
·
(
z2n+1 +1

)
is a Newman polynomial. Therefore, in any case, we see that f (z) | F(z) for some F(z) ∈

N , completing the proof.

The Mahler measure of a polynomial

f (z) =
n

∑
j=0

a jz j = an

n

∏
k=1

(z−βk),
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for f (z) ∈ Z[z], is defined to be

M( f ) = |an|
n

∏
i=1

max{1, |βi|}.

If α is an algebraic integer, then M(α) is the Mahler measure of the minimal polynomial of

α . If f (z) is monic, then M( f ) is simply the product of the absolute values of all the roots

of f (z) which lie outside the unit circle C = {z ∈ C : |z| = 1} in the complex plane. We

also note that the Mahler measure of any cyclotomic polynomial or product of cyclotomic

polynomials and a power of z is exactly 1. Furthermore, if f (z) is the minimal polynomial

of a Pisot number β , then M( f ) = |β |.

In 1933, D. H. Lehmer posited that a lower bound greater than 1 for the Mahler measure

of a polynomial f (z) ∈ Z[z] with M( f ) 6= 1 exists, but this remains an open problem. The

smallest measure greater than 1 he found is 1.17628. . . , occurring for the polynomial

L (z) = z10 + z9− z7− z6− z5− z4− z3 + z+1.

This is still the smallest known Mahler measure larger than 1 of a polynomial in Z[z].

Hare and Mossinghoff (2014) point out that some interesting results follow when one

attempts to bound the Mahler measure of a polynomial. For instance, Pathiaux (1973)

and Mignotte (1975) showed that if α is an algebraic number and M(α) < 2, then there

exists a polynomial F(z) with coefficients from {−1,0,1} such that F(α) = 0. Thus, F(z)

has height 1. Moreover, Siegel’s lemma, as referenced by Hare and Mossinghoff (2014),

implies that if f (z) ∈ Z[z] has M( f ) < 2, then there exists a polynomial F(z) with height

1 such that f (z) | F(z), even if f (z) is not irreducible. Given their particular interest in the

set of Newman polynomials, Hare and Mossinghoff pose the next natural question (which

would follow if Lehmer’s conjecture is true):

Problem 1. Does there exist a real number σ > 1 such that if f (z) ∈ Z[z] has no nonnega-

tive real roots and M( f )< σ , then f (z) | F(z) for some F(z) ∈N ?

Note that we consider only σ > 1. A polynomial which has Mahler measure 1 is nec-

essarily a product of cyclotomic polynomials times a power of z. For any such polynomial
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with f (0) 6= 0 and f (1) 6= 0, it can be shown that f (z) has a multiple that is Newman.

Given Theorem 1.1, one might like to immediately take σ to be φ , but Hare and Moss-

inghoff (2014) show that if such a σ exists, then σ < φ . The polynomials enumerated in

Table 1.1 are among the polynomials they encountered, each having no nonnegative real

roots with Mahler measure less than φ and which do not divide a Newman polynomial. The

polynomial of smallest measure they discovered like this is z6− z5− z3 + z2 +1, giving as

an upper bound for σ (assuming σ exists), the value 1.556014485 . . ..

Table 1.1 Some polynomials from Hare and
Mossinghoff (2014) with small measure and no
Newman multiple

Polynomial Mahler measure
z6− z5− z3 + z2 +1 1.556014485 . . .

z7− z6− z5 + z4 + z3− z2 +1 1.558378942 . . .

z8− z7 + z2 +1 1.604364647 . . .

z9− z8− z6 + z2 +1 1.615829244 . . .

z8− z7− z5 + z2 +1 1.617538308 . . .

z8 + z7 +2z6 + z5 + z4 + z3 +2z2 + z+1 1.618530599 . . .

z9− z8 + z7 + z5 + z4 + z2 +1 1.621082531 . . .

z8− z7 + z5 + z3− z+1 1.624147966 . . .

z7 + z5− z4− z+1 1.646642716 . . .

z8 + z7 +2z6 +2z5 + z4 + z3 + z2 + z+1 1.652235034 . . .

P. Drungilas, J. Jankauskas, and J. Šiurys (2016) have improved upon this bound. They

found 16 polynomials all of Mahler measure less than 1.55601 . . . which do not divide

a Newman polynomial, with the ones of smallest Mahler measure listed in Table 1.2.

The one with smallest Mahler measure is z9 + z8 + z7 − z5 − z4 − z3 + 1 with measure

1.436632261 . . .. This now gives that if such a σ exists, then σ ≤ 1.436632261 . . ..

In this thesis, we show that if σ exists, then σ ≤ 1.263095875 . . .. Some of the resulting

polynomials of small Mahler measure we found are listed in Table 1.3. Note, we also
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Table 1.2 Some polynomials from
Drungilas, Jankauskas, and Šiurys (2016) of
small measure with with no Newman
multiple

Polynomial Mahler measure
z9 + z8 + z7− z5− z4− z3 +1 1.436632261 . . .

z9 + z8− z3− z2 +1 1.483444878 . . .

z9− z7− z5 + z3 + z+1 1.489581321 . . .

z8− z7− z4 + z3 +1 1.489581321 . . .

z8 + z7− z3− z2 +1 1.518690904 . . .

z8 + z7 + z6− z4− z3− z2 +1 1.536566472 . . .

z9− z8− z6 + z5 +1 1.536913983 . . .

z9 + z5− z3− z2 +1 1.550687063 . . .

found several more polynomials with no Newman multiple with Mahler measure less than

1.436632261 . . . as given by Drungilas, Jankauskas, and Šiurys (2016), but we do not list

those here.

We also show that there are infinitely many monic, irreducible polynomials f (z) having

exactly 2 roots outside C = {z ∈ C : |z| = 1} and no nonnegative real roots for which

M( f ) < φ and for which f (z) has no Newman multiples. We use the example given by

Hare and Mossinghoff (2014),

f (z) = z6− z5− z3 + z2 +1

with M( f ) = 1.556014485 . . . to construct our infinite list. We define

f̃ (z) = zdeg f f (1/z) (1.2)

to be the reciprocal of f (z) and construct the polynomial Fn(z) = f (z)zn+ f̃ (z). A polyno-

mial f (z) ∈ Z[z] is said to be reciprocal if f (z) =± f̃ (z) and non-reciprocal otherwise. The

existence of our infinite list of polynomials as described above is a result of the following

theorem.
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Theorem 1.3. Let f (z) ∈ Z[z] be monic and such that f (z) has no roots on the unit circle

C . Suppose that f (z) has no positive real roots and exactly two roots outside C , both

non-real and with multiplicity one. Suppose further that gcd( f (z), f̃ (z)) = 1. For n a

positive integer, define hn(z) as the largest degree monic factor of f (z)zn+ f̃ (z) not divisible

by a cyclotomic polynomial. Then the polynomials hn(z) include infinitely many distinct

irreducible polynomials with distinct Mahler measures approaching the Mahler measure

of f (z) as n tends to infinity. Furthermore, these irreducible hn(z) have no positive real

roots and each has exactly two roots outside C . Also, if β is a root of f (z) with |β | > 1

and if β is not a root of a Newman polynomial, then for n sufficiently large, no multiple of

hn(z) in Z[z] is a Newman polynomial.

Table 1.3 Some polynomials of small measure with no Newman multiple

Polynomial Mahler measure
z44− z42 + z40− z38− z33− z32 + z31 + z30−2z29− z28

+2z27 + z26− z25 + z23 + z22 + z21− z19 + z18 +2z17− z16

−2z15 + z14 + z13− z12− z11− z6 + z4− z2 +1
1.263095875 . . .

z26− z23− z21 + z15 + z13 + z11− z5− z3 +1 1.272019269 . . .

z50− z49 + z48− z47− z40 + z39− z38 + z37− z36 + z35

−z34 + z33 + z30− z29 + z28− z27 + z26− z25 + z24− z23

+z22− z21 + z20 + z17− z16 + z15− z14 + z13− z12 + z11

−z10− z3 + z2− z+1

1.273464959 . . .

z48− z47 + z46− z45− z38 + z37− z36 + z35− z34 + z33

−z32 + z31 + z28− z27 + z26− z25 + z24− z23 + z22− z21

+z20 + z17− z16 + z15− z14 + z13− z12 + z11− z10− z3

+z2− z+1

1.279464310 . . .

z48− z47 + z46− z45 + z44− z43− z40 + z39−2z38 +2z37

−2z36 +2z35− z34 + z33 + z30− z29 + z28− z27 + z26− z25

+z24− z23 + z22− z21 + z20− z19 + z18 + z15− z14 +2z13

−2z12 +2z11−2z10 + z9− z8− z5 + z4− z3 + z2− z+1

1.279702474 . . .

z30− z29− z23 + z22 + z16− z15 + z14 + z8− z7− z+1 1.299764321 . . .

z28− z26− z25 + z22 + z21− z19 + z14− z9 + z7 + z6− z3− z2 +1 1.309200435 . . .

We end the thesis by showing that one can strengthen the notion of polynomials not

having a Newman multiple by giving an explicit result for the case that f (z) is equal to the
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first polynomial entry in Table 1.3. We show that not only is there no multiple of f (z) in

Z[z] that is Newman, but further there is no multiple of f (z) in R[z] having all nonnegative

coefficients bounded above by 1.5713809 . . .. We actually show more, namely that there

is a root β of f (z) which cannot be a root of a polynomial having all nonnegative real

coefficients bounded by 1.5713809 . . ..
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CHAPTER 2

ALGORITHMS

2.1 DETERMINING WHEN A POLYNOMIAL DOES NOT HAVE A NEWMAN MULTIPLE

Hare and Mossinghoff (2014) outline an algorithm for determining whether a real negative

Pisot number β ∈ (−φ ,−1) is a root of a Newman polynomial. Let f (z) be the minimal

polynomial of β . Then f (z) divides a Newman polynomial F(z) if and only if F(β ) = 0.

If such a Newman polynomial exists, we can construct it by adding powers of β to 1 and

checking when this value is 0. Let N0 denote the set of non-zero 0,1-polynomials. For a

nonnegative integer d, set

N ′(β ,d) = {F(β ) : F ∈N0 and degF(z)≤ d}.

Note that N ′(β ,0) = {1}, and note that with each iteration of d, we have

N ′(β ,d +1) = N ′(β ,d)∪{βα : α ∈N ′(β ,d)}

∪{βα +1 : α ∈N ′(β ,d)}.

Our goal is either to find an element of N ′(β ,d + 1) that is equal to 0 or to prove that

β is not a root of any Newman polynomial. Unfortunately, after d iterations, the size of

N ′(β ,d) can be as large as 2d which becomes cumbersome to compute. We describe a

method next that Hare and Mossinghoff (2014) use to cut down the search space.

Suppose β ∈ (−φ ,−1) is root of a Newman polynomial

F(z) =
n

∑
j=0

ε jz j,

10



with ε0 = εn = 1. Then F(β ) = 0, and 0 ∈N ′(β ,n). For d ∈ {0, . . . ,n}, define

Fd(z) =

(
n

∑
j=n−d

ε jz j

)
/zn−d.

Note that F0(z) = 1, Fn(z) = F(z), and Fd(z) ∈N ′(β ,d). Evaluating these polynomials at

β , we see that for d ∈ {0, . . . ,n−1}, we have Fd+1(β ) = βFd(β ) or Fd+1(β ) = βFd(β )+1.

Since F(β ) = 0, we deduce

β
n−dFd(β ) =

n

∑
j=n−d

ε jβ
j =−

n−d−1

∑
j=0

ε jβ
j.

Dividing by β n−d and recalling that β < 0, we obtain

Fd(β ) =−
n−d−1

∑
j=0

ε jβ
j−n+d =−εn−d−1

1
β
− εn−d−2

1
β 2 −·· ·− ε0

1
β n−d

>− 1
β 2 −

1
β 4 −·· ·=−

1
β 2

∞

∑
j=0

(
1

β 2

) j

=
−1

β 2−1
.

Similarly,

Fd(β ) =−εn−d−1
1
β
− εn−d−2

1
β 2 −·· ·− ε0

1
β n−d

<− 1
β
− 1

β 3 −
1

β 5 −·· ·=−
1
β

∞

∑
j=0

(
1

β 2

) j

=
−β

β 2−1
.

Hence, if β is a root of a Newman polynomial F(z), then for 0≤ d ≤ n, the value Fd(β ) ∈

N ′(β ,d) must lie in the interval

I (β ) =

(
−1

β 2−1
,
−β

β 2−1

)
.

For each integer d ≥ 0, we define the smaller set

N (β ,d) = N ′(β ,d)∩I (β ).

Thus, for 0≤ d ≤ n, we have Fd(β ) ∈N (β ,d). We also note that the recursive formula

N (β ,d +1) = N (β ,d)∪ ({βα : α ∈N (β ,d)}∩I (β ))

∪ ({βα +1 : α ∈N (β ,d)}∩I (β ))

11



holds for d ≥ 0 and provides a means to construct N (β ,d + 1) from N (β ,d). Observe

that N (β ,0)⊆N (β ,1)⊆N (β ,2)⊆ ·· · .

The algorithm of Hare and Mossinghoff (2014) is to construct N (β ,0), N (β ,1),

N (β ,2), . . . using the recursive formula above until we find the first positive integer d

for which N (β ,d) satisfies one of two possibilities: (i) 0 ∈N (β ,d), or (ii) N (β ,d) =

N (β ,d−1). Note that N (β ,d) is the set of all 0,1-polynomials of degree d, evaluated at

β , restricted to values which lie in I (β ). Thus, in the case of (i), we have that β is a root

of a Newman polynomial. In the case of (ii), each βα or βα +1, with α ∈N (β ,d−1),

used in constructing N (β ,d) either does not lie in I (β ) or is in N (β ,d− 1). Observe

that if we have for some d that N (β ,d−1) = N (β ,d), then

N (β ,d−1) = N (β ,d) = N (β ,d +1) = · · ·=
⋃

d′≥0

N (β ,d′).

Thus, in the case of (ii) above, where 0 6∈N (β ,d− 1), we see that 0 6∈N (β ,d) for all

positive integers d. Hence, in this case, β is not a root of a Newman polynomial. We

address next why this algorithm must terminate.

Define

N (β ) =
⋃
d≥0

N (β ,d).

One can see that N (β ,d) = N (β ,d + 1) for some d ≥ 0 by a result of A.M. Garsia

(1962). Garsia showed that there exists a constant C := C(β ), independent of d, such

that for any two values x,y ∈N (β ), either x = y or |x− y| > C > 0. Since the elements

are inside a bounded set I (β ), the number of distinct elements of N (β ) is finite. As

N (β ,0)⊆N (β ,1)⊆ ·· · , we deduce that N (β ,d) = N (β ,d+1) for some d ≥ 0. This

justifies then that the algorithm of Hare and Mossinghoff (2014) terminates for β a negative

Pisot number. This algorithm can also be generalized for any negative algebraic integer β ,

but as Hare and Mossinghoff (2014) note the algorithm is only known to terminate when β

is a negative Pisot number.
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We introduce now a variation of the previous algorithm for a complex number β . Sup-

pose β ∈ Aφ \R and let |β |> 1. Then, we define

IC(β ) =

{
z ∈ C : |z|< |β |

|β |−1

}
and

NC(β ,d) = {F(β ) : F ∈N0 and deg(F)≤ d}∩IC(β ).

If F ∈N0 and |F(β )| ≥ |β |
|β |−1

, then

|βF(β )| ≥ |β |2

|β |−1
≥ |β |
|β |−1

,

and

|βF(β )+1| ≥ |βF(β )|−1≥ |β |2

|β |−1
−1 =

|β |2−|β |+1
|β |−1

=
|β |2−2|β |+1+ |β |

|β |−1
=

(|β |−1)2 + |β |
|β |−1

≥ |β |
|β |−1

.

Hence,if F(β ) /∈IC(β ), then βF(β ) /∈IC(β ), and βF(β )+1 /∈IC(β ).

As before, we begin with d = 0 and N ′
C(β ,0) = {1}, and with each iteration of d,

we generate all 0,1-polynomials of degree d evaluated at β . This is done by taking each

element α ∈NC(β ,d− 1) and applying a simple construction to obtain the new values,

βα and βα +1. For example, the first three iterations of d may appear as follows:

d = 0: 1

d = 1: β , β +1

d = 2: β 2, β 2 +β , β 2 +1, β 2 +β +1.

Note that doing this for every α ∈N ′
C(β ,d− 1) will yield all possible values F(β ) for

all F ∈N0 of degree ≤ d. The values generated which lie in the interval IC(β ) we denote

by NC(β ,d). Recalling that if F(β ) /∈ IC(β ), then βF(β ) /∈ IC(β ) and βF(β )+ 1 /∈

IC(β ), we deduce

NC(β ,d) = NC(β ,d−1)∪ ({βα : α ∈NC(β ,d−1)}∩IC(β ))

∪ ({βα +1 : α ∈NC(β ,d−1)}∩IC(β )) .
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We use the above to obtain now an algorithm as before that recursively constructs NC(β ,d).

The algorithm terminates if either (i′) 0 ∈ NC(β ,d), or (ii′) NC(β ,d) = NC(β ,d− 1).

Observe that in the case of (i′), we have F(β ) = 0 for some F ∈N of degree d. In other

words, in this case, β is the root of some Newman polynomial of degree d. If (ii′) occurs,

then NC(β ,d− 1) = NC(β ,d) = NC(β ,d + 1) = · · · , and β is not a root of a Newman

polynomial.

The above algorithm for complex β is also described in Hare and Mossinghoff (2014).

Unlike the first algorithm for negative real β , it is unknown whether this algorithm will

always terminate with (i′) or (ii′) occurring. On the other hand, for both algorithms, one

must handle the situation where the sets N (β ,d) or NC(β ,d) grow in size to a point

where computationally it becomes infeasible to continue constructing these sets for larger

d. One can set up bounds for the size of these sets or degree bounds to force the algo-

rithms to terminate, but one then is left without resolving whether or not β is a root of a

Newman polynomial. This situation led us to search for other methods for determining

whether a given β is a root of a Newman polynomial. One method is to check for Newman

multiples by multiplying the minimal polynomial for β by various products of cyclotomic

polynomials. This often led to a quick determination that the minimal polynomials we were

considering had Newman multiples. Yet another approach we used is described in Chapter

5 of this thesis.

2.2 A NEW CLASS OF POLYNOMIALS

In regards to Problem 1, Theorem 1.1 suggests the possibility that σ exists and that perhaps

one can take σ = φ . Having considered the problem restricted to the class of polynomials

with negative real Pisot numbers as roots, we will introduce a new related class of polyno-

mials.

Let f (z)∈Z[z] be a monic, irreducible polynomial with roots {β1,β2, ...,βn} ∈ Aφ with

β1 = β and β2 = β . Suppose that β1 6= β2, |β | = |β | > 1, and |βk| < 1 for 3 ≤ k ≤ n.
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Then we call β and β complex Pisot numbers. Note that if f (z) is the minimal polynomial

of any negative Pisot number β , then f (z2) is the minimal polynomial of ±
√
|β | i. The

fact that f (z2) is irreducible in this situation is due to the observations that ±
√
|β | i are

two imaginary conjugates which must be roots of the same minimal polynomial and the

product of the remaining roots of f (z2) has absolute value < 1. Since f (z2) is the minimal

polynomial of ±
√
|β | i in this case, we see that if β is a negative Pisot number, then

±
√
|β | i are two complex Pisot numbers.

One would hope that we are able to classify a number of complex Pisot numbers as was

done for negative real Pisot numbers in the work of Bertin, Decomps-Guilloux, Grandet-

Hugot, Pathiaux-Delefosse, and Schreiber (1992). As a result of an ICERM summer project

by Z. Blumenstein, A. Lamarche, Mossinghoff, and S. Saunders (2014), a few such poly-

nomial families were found, and we discuss these next.

Using the families of polynomials from the work of Bertin, Decomps-Guilloux, Grandet-

Hugot, Pathiaux-Delefosse, and Schreiber (1992) (see the discussion before Lemma 1.2 in

this thesis), we replace z with z2 to obtain

−p2n(−z2) = z4n+2− z4n−2 + z4n−4−·· ·− z2 +1,

−q2n+1(−z2) = z4n+2 + z4n + z4n−4 + · · ·+ z4 +1,

r2n(−z2) = z4n(z4 + z2−1)+ z4−1,

−r2n+1(−z2) = z4n+2(z4 + z2−1)− z4 +1,

g(−z2) = z12 +2z10 + z8− z4− z2−1.

Defining

Pn(z) = zn(z4 + z2−1)+1,

Qn(z) = zn(z4 + z2−1)−1,

Rn(z) = zn(z4 + z2−1)+ z4−1,

Sn(z) = zn(z4 + z2−1)− z4 +1,

G(z) = z12 +2z10 + z8− z4− z2−1,

(2.1)
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one can check that

−p2n(−z2) =
P4n(z)
z2 +1

,

−q2n+1(−z2) =
Q4n+2(z)

z4−1
,

r2n(−z2) = R4n(z),

−r2n+1(−z2) = S4n+2(z),

g(−z2) = G(z).

As each negative Pisot number in (−φ ,−1) is a root of one of −p2n(−z), −q2n+1(−z),

r2n(−z), −r2n+1(−z), and g(−z), the above discussion leads to complex Pisot numbers β

among the roots of P4n(z), Q4n+2(z), R4n(z), S4n+2(z), and G(z) which satisfy 1 < |β | <
√

φ . The idea is to consider instead the larger families Pn(z), Qn(z), Rn(z), Sn(z), and Gn(z)

and to show that these generate even more complex Pisot numbers. There is no reason to

believe that these larger families represent all complex Pisot numbers with modulus less

than φ or
√

φ , but the discussion above implies that every complex Pisot number of the

form ±
√
|β | i where β is a negative real Pisot number in (−φ ,−1) is a root of one of the

polynomials Pn(z), Qn(z), Rn(z), Sn(z), and Gn(z) for some n.

We make another observation. Recall that each negative real Pisot number in (−φ ,−1),

having no positive real conjugates, is a root of some F(z) ∈N by Theorem 1.1. Hence,

the complex Pisot numbers arising as roots of the polynomials −p2n(−z2), −q2n+1(−z2),

r2n(−z2), −r2n+1(−z2), and g(−z2) discussed above, provided they have no positive real

conjugates, will also be roots of F(z2) for some F(z) ∈ N . Thus, these complex Pisot

numbers are roots of Newman polynomials. We do not however yet know if the same is

true of all complex Pisot numbers that are roots of the larger families Pn(z), Qn(z), Rn(z),

Sn(z), and Gn(z).

As an indication of the work achieved by Blumenstein, Lamarche, Mossinghoff, and

Saunders (2014), we state and prove the following result obtained by them.

16



Theorem 2.1. For every odd n≥ 3, each of Pn(z), Qn(z), Rn(z), Sn(z), and G(z) has exactly

two roots outside C = {z ∈ C : |z|= 1} with both roots non-real.

Proof. We begin with Pn(z). The reciprocal of Pn(z) is P̃n(z) = 1+z2−z4+zn+4. It suffices

to show that P̃n(z) contains exactly two non-real roots inside of C , that is with absolute

value < 1, for every odd n ≥ 3. To show this, we will apply Rouché’s theorem. For odd

n ≥ 3, observe that Pn(z) has a root at z = −1. Thus, we will not be able to use C as the

boundary of our region when applying Rouché’s theorem. We will instead use Rouché’s

theorem over a contour which contains part of the unit circle not including z =−1. To help

motivate the contour we use, we show first that Pn(z) has no roots on C besides z = −1.

We do this by showing that z+1 is the only irreducible reciprocal factor of Pn(z).

Suppose, by way of contradiction, that Pn(z) has an irreducible reciprocal factor w(z)

with w(z) 6= z+1. Then, we must have that w(z) | P̃n(z), and hence, w(z) |
(
P̃n(z)−Pn(z)

)
.

Observe that

P̃n(z)−Pn(z) = z2− z4 + zn− zn+2 = z2(1− z2 + zn−2− zn) = z2(1− z2)(1+ zn−2).

We discard the z2 factor since z - Pn(z). Hence, w(z) | (1−z2)(1+zn−2). Again, we discard

the factor 1− z2 since w(z) 6= z+ 1 and Pn(1) 6= 0. Thus, w(z) | (1+ zn−2). This implies

that w(z) divides

P̃n(z)− z6(1+ zn−2) = 1+ z2− z4− z6 = (1+ z2)(1− z4).

As w(z) - (1− z2), we have that w(z) = 1+ z2. One checks that Pn(i) 6= 0 since n is odd,

so we obtain a contradiction. Hence, Pn(z) has no irreducible reciprocal factors other than

z+1.

We apply Rouché’s theorem to the contour C ′, an arc C and chord ` as shown in Figure

2.2. Here, we view ε > 0 as some sufficiently small number. First, consider the arc C. Let

f (z) = −1− z2 + z4, and note that f (z) has exactly two roots inside of the unit circle C .

On the arc C, we have that

| f (z)+ P̃n(z)|= |zn+4|= 1.
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Figure 2.1 Contour C ′

A direct computation shows that f (eiθ ) = u+ iv, where

u = 8cos4(θ)−10cos2(θ)+1 and v = 8cos3(θ)sin(θ)−6cos(θ)sin(θ).

Another direct computation gives

| f (eiθ )|2 = u2 + v2 =−16cos4(θ)+16cos2(θ)+1.

Since |cosθ | ≤ 1 for all θ , we have that cos2(θ) ≥ cos4(θ). We deduce that for z on the

arc C, we have | f (z)| ≥ 1. Since Pn(z), and hence P̃n(z), has no root on C besides z =−1,

we further see that for z on the arc C, we have |P̃n(z)|> 0. We deduce that

| f (z)+ P̃n(z)|= 1 < | f (z)|+ |P̃n(z)|.

Now, consider the chord ` where again ε > 0 is sufficiently small. For z on `, we have

| f (z)+ P̃n(z)|= |zn+4| ≤ 1.

We wish to show that | f (z)| > 1 for such z. For z on `, we see that the real part of z is

−cosε and the imaginary part is t sinε for some t ∈ [−1,1]. We therefore write

z =−cos(ε)+ it sin(ε) with −1≤ t ≤ 1.

A computation here, shows that the derivative of f (z) f (z) with respect to t can be expressed

in the form 4t(cos(ε)−1)(cos(ε)+1)g(ε, t), where g(ε, t) is a polynomial of degree 6 in t
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with the property that the coefficients of t j for j ∈ {1,2, . . . ,6} approach 0 as ε approaches

0 and g(ε,0) approaches−7 as ε approaches 0. As |t| ≤ 1, we see that since ε is sufficiently

small, we have g(ε, t) 6= 0 for |t| ≤ 1. Furthermore, for such t, the derivative of f (z) f (z)

with respect to t equals 0 only when t = 0 and is negative for t < 0 and positive for t > 0.

Thus, | f (z)|2 = f (z) f (z) has a minimum at t = 0. At t = 0, we obtain

f (z) f (z) = f (−cosε)2 = (cos4
ε− cos2

ε−1)2.

Since ε > 0 is small, we have 0 < cosε < 1 so that cos4 ε−cos2 ε < 0. Hence, we see that

| f (z)|> 1. Thus, for z on `, we obtain

| f (z)+ P̃n(z)| ≤ 1 < | f (z)| ≤ | f (z)|+ |P̃n(z)|.

We now have that | f (z)+ P̃n(z)| < | f (z)|+ |P̃n(z)| for all z ∈ C ′. Therefore, by Rouché’s

theorem, we deduce that P̃n(z) has two roots inside C ′. As we let ε tend to 0, we obtain

that P̃n(z) has exactly two roots inside the unit circle C .

Finally, we must show that these two roots are non-real. For z ∈ (−1,1), we have

z2 ≥ z4 so that P̃n(z) = 1+ z2− z4 + zn+4 ≥ 1+ zn+4 > 0. We deduce that P̃n(z) has no

roots in the interval (−1,1). In other words, the two roots of P̃n(z) inside C cannot be real.

Hence, we can now deduce that Pn(z) has exactly two roots outside C , both of which are

non-real.

Next, we consider Qn(z). Since we are interested in odd n, we observe that for such n,

we have

Pn(−z) =−zn(z4 + z2−1)+1 =−Qn(z).

Thus, the roots of Qn(z) are precisely −β where β runs through the roots of Pn(z). We

deduce from the above then that Qn(z) has exactly two roots outside C , both of which are

non-real.

Next, we consider the family Rn(z). Here, we can proceed like we did in Lemma 1.2.

Replacing z with −z in (1.1), we obtain that

|z2 + z−1|> |z2−1| for all z ∈ C .
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Now, replacing z with z2 gives

|z4 + z2−1|> |z4−1| for all z ∈ C .

Taking here ρn(z) = zn(z4 + z2−1), we see that for z ∈ C , we have

|Rn(z)−ρn(z)|= |z4−1|< |z4 + z2−1|= |ρn(z)|.

From Rouché’s Theorem, we see that Rn(z) and ρn(z) have the same number of roots,

counted to their multiplicity, inside C . As z4 + z2− 1 has exactly two roots in C , we

deduce Rn(z) has exactly n+2 roots inside C and exactly two roots outside C . To see that

Rn(z) does not have real roots outside of C , suppose that z ∈ R and |z|> 1. Then

|Rn(z)|=
∣∣zn(z4 + z2−1)+ z4−1

∣∣≥ |z|n+4 + |z|n+2−|z|n−
∣∣z4−1

∣∣
= |z|n+4 + |z|n+2−|z|n− z4 +1 =

(
|z|n+2−|z|n

)
+
(
|z|n+4− z4)+1 > 1 > 0.

Thus, Rn(z) has no real roots outside of C . Hence, Rn(z) has exactly two roots outside C ,

both of which are non-real.

Next, we consider Sn(z). Since we are interested in odd n, we observe that for such n,

we have

Rn(−z) =−zn(z4 + z2−1)+ z4−1 =−Sn(z).

Thus, the roots of Sn(z) are precisely −β where β runs through the roots of Rn(z). We

deduce that Sn(z) has exactly two roots outside C , both of which are non-real.

To finish the proof of the theorem, it remains to note that with a simple computation

one can deduce that G(z) has exactly two complex roots lying outside the unit circle C ,

both of which are not only non-real but are in fact purely imaginary.

Now we show how these polynomials factor for all odd n.

Theorem 2.2. For odd n≥ 3, the polynomial Pn(z) is z+1 times an irreducible polynomial,

the polynomial Qn(z) is z−1 times an irreducible polynomial, and each of the polynomials

Rn(z), Sn(z), and G(z) is irreducible.
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Proof. One checks directly that G(z) is irreducible. So we need now only consider the

polynomials Pn(z), Qn(z), Rn(z), and Sn(z).

In the proof of Theroem 2.1, we showed that the only root of Pn(z) on the unit circle C

is −1. In fact, with n odd, we have Pn(−1) = 0 and

P′n(−1) = (n+4)(−1)n+3 +(n+2)(−1)n+1−n(−1)n−1 = n+6 6= 0.

Thus, Pn(z)/(z+1) is a monic polynomial with no roots on C . In the proof of Theroem 2.1,

we also showed that |Rn(z)− ρn(z)| < |ρn(z)| for all z ∈ C . Observe that this implies

Rn(z) 6= 0 for all z ∈ C . Thus, Rn(z) is a monic polynomial with no roots on C . Further,

we showed in the proof of Theroem 2.1 that Pn(−z) =−Qn(z) and Rn(−z) =−Sn(z) from

which we deduce that Qn(z)/(z−1) and Sn(z) are monic polynomials with no roots on C .

Let f (z) be one of the polynomials Pn(z)/(z+1), Qn(z)/(z−1), Rn(z), and Sn(z), where

n ≥ 3 is odd. Then f (z) is monic in Z[x] and has exactly two roots outside the unit circle

C , both of which are non-real and hence they are complex conjugates. Also, as seen above,

f (z) has no roots on the unit circle C . Now, assume f (z) is reducible. Then f (z) = u(z)v(z)

for some monic u(z) and v(z) in Z[x] with positive degrees and non-zero constant terms.

As the two roots of f (z) outside C are non-real complex conjugate roots, they must both

be roots of u(z) or both be roots of v(z). Without loss of generality, we may suppose they

are roots of u(z). As the remaining roots of f (z) all have modulus less than 1, the roots of

v(z) all have modulus less than 1. But this is a contradiction since the absolute value of the

product of the roots of v(z) is |v(0)| ≥ 1. Therefore, f (z) is irreducible, establishing the

theorem.
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2.3 GENERATING INFINITELY MANY POLYNOMIALS OF SMALL MEASURE

The polynomials considered in Theorem 2.1 motivated the direction taken in the next chap-

ter. Taking φ(z) = z4 + z2−1, we see that

Pn(z) = zn
φ(z)+1,

Qn(z) = zn
φ(z)−1,

Rn(z) = zn
φ(z)+ z4−1,

Sn(z) = zn
φ(z)− z4 +1.

Computationally, these polynomials appear to have Mahler measure very close to the

golden ratio φ as n tends to infinity. In fact, we have

φ = 1.61803398874989 . . .

M(P100(z)) = 1.61803398873400 . . .

M(Q100(z)) = 1.61803398876578 . . .

M(R100(z)) = 1.61803398872418 . . .

M(S100(z)) = 1.61803398877560 . . . .

This observation suggests that maybe by considering more general polynomials of the form

u(z)zn+v(z), one might be able to find some interesting limiting values of Mahler measures

and relate them to our investigations of polynomials which have small Mahler measure and

no Newman multiples.

Let f (z) be a monic irreducible polynomial in Z[z] such that f (z) 6= f̃ (z), where f̃ (z)

denotes the reciprocal of f (z) defined in (1.2). In the next chapter, we consider

Fn(z) = zn f (z)+ f̃ (z), (2.2)

and show that it yields an infinite number of distinct polynomials with Mahler measures

that approach M( f ) as n becomes large. By choosing f (z) appropriately, we are led then to
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finding an infinite number of complex Pisot numbers which have distinct Mahler measures

< 1.56 < φ and which are not roots of any Newman polynomial.

We are also able to obtain some computational results by testing other variations of this

construction. For instance, we also consider Fn(z) = zn f (z)− f̃ (z), Fn(z) = zn f (zk)± f̃ (zk)

for integers k ≥ 2, Fn(z) = zn f (−z)± f̃ (−z), and Fn(z) = zn f̃ (z)± f (z). We will explore

these computational results in Chapter 4. In Chapter 5, we use a polynomial discovered

in the investigations in Chapter 4 to explain another approach to showing that a given

polynomial does not have a Newman multiple.
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CHAPTER 3

GENERATING INFINITELY MANY POLYNOMIALS WITHOUT

NEWMAN MULTIPLES

In this chapter, we expound on the construction Fn(z) = zn f (z)+ f̃ (z), outlined in the last

chapter. Many of the results here were provided by M. Filaseta.

Lemma 3.1. Let k and ` be nonnegative integers. Let u(z) be a polynomial in R[z] having

exactly k distinct roots which lie outside the circle C = {z ∈ C : |z| = 1}, and let v(z) be

a polynomial in R[z] having exactly ` distinct roots which lie inside C . Let these roots be

denoted α1, . . . ,αk and β1, . . . ,β`, respectively. Let e j denote the multiplicity of the roots

α j in u(z), and let e′j denote the multiplicity of the roots β j in v(z). Thus,

u(z) = (z−α1)
e1 · · ·(z−αk)

ekw1(z) and v(z) = (z−β1)
e′1 · · ·(z−βk)

e′`w2(z),

where w1(z) and w2(z) necessarily have real coefficients, with the roots of w1(z) on or

inside C , and with the roots of w2(z) on or outside C . For n a positive integer, define

fn(z) = u(z)zn + v(z). Then for every ε > 0 sufficiently small and every n sufficiently large

(n≥ N0(ε,u(z),v(z))), each of the following holds:

(i) For each j ∈ {1,2, . . . ,k}, the disk {z∈C : |z−α j|< ε} has exactly e j roots of fn(z).

(ii) For each j ∈ {1,2, . . . , `}, the disk {z∈C : |z−β j|< ε} has exactly e′j roots of fn(z).

(iii) The remaining roots of fn(z) all lie in the annulus {z ∈ C : 1− ε < |z|< 1+ ε}.

Proof. If v(0) = 0, then it is not difficult to see that, for n sufficiently large, 0 is a root of

fn(z) and with multiplicity equal to the multiplicity of 0 as a root of v(z). By factoring out
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the appropriate power of z, we may therefore consider now only the case that v(0) 6= 0 and

do so.

Fix ε > 0 sufficiently small, in particular so that each closed disk centered at a root of

u(z) of radius ε contains only that root of u(z), so that each closed disk centered at a root of

v(z) of radius ε contains only that root of v(z), and so that each such disk centered at one

of α1, . . . ,αk or one of β1, . . . ,β` does not intersect the annulus in (iii). Let n be sufficiently

large. For j ∈ {1,2, . . . ,k}, set

C j = {z ∈ C : |z−α j|= ε} and D j = {z ∈ C : |z−α j| ≤ ε}.

Observe that there is a t1 > 0 such that |v(z)| ≤ t1 for every z in each D j. Recall that

u(z) = 0 for z ∈ D j if and only if z = α j. Hence, there is a t2 > 0 such that |u(z)| ≥ t2 for

every z on each circle C j. Since each D j lies outside C , there is also a t3 > 0 such that

if z ∈ D = D1 ∪ ·· · ∪Dk, then |z| > 1+ t3. We deduce that, for n sufficiently large and

z ∈ C1∪·· ·∪Ck, we have

|v(z)| ≤ t1 < t2(1+ t3)n ≤ |u(z)zn|.

Set gn(z) =−u(z)zn. For z ∈ C1∪·· ·∪Ck and n sufficiently large, we have

| fn(z)+g(z)|= |v(z)|< |g(z)|.

Thus, by Rouché’s Theorem, we deduce fn(z) has exactly e j roots in D j for each j ∈

{1,2, . . . ,k}, establishing (i).

By applying (i) to the reciprocal polynomial f̃n(z) = ṽ(z)zn+degu−degv + ũ(z), one can

see that (ii) holds as well.

Now, suppose n is sufficiently large and fn(z0) = 0 and z0 is not within ε of one of the

α j or β j. We show first that |z0| is bounded above by

B = 2+ max
1≤ j≤k

{|α j|}+max{|β | : β ∈ C,v(β ) = 0}.
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Let a denote the leading coefficient of u(z) and b denote the leading coefficient of v(z). If

|z0|> B, then the distance from z0 to each root of u(z) or v(z) is at least 2 and no more than

2|z0|. Hence,

|u(z0)| ≥ 2degua and |v(z0)| ≤ (2|z0|)degvb.

For n sufficiently large, we have

| fn(z0)|= |u(z0)zn
0 + v(z0)| ≥ 2degua|z0|n− (2|z0|)degvb

≥ |z0|degv(2n+degu−degva−2degvb)> 0,

contradicting that fn(z0) = 0. Thus, |z0| ≤ B.

Assume now that |z0| ≥ 1+ ε . Since z0 6∈ D and all the roots of u(z) other than the α j

are on or inside C , there is a t4 > 0, not depending on z0, such that |u(z0)| > t4. Since

|z0| ≤ B, there is a t5 > 0 such that |v(z0)| ≤ t5. Therefore,

| fn(z0)|= |u(z0)zn
0 + v(z0)| ≥ t4(1+ ε)n− t5.

Since n is sufficiently large, we obtain a contradiction. Hence, we must have |z0|< 1+ ε .

By again considering the reciprocal polynomial f̃n(z) = ṽ(z)zn+degu−degv+ ũ(z), we deduce

that for n sufficiently large, we must also have |z0|> 1− ε .

We will want to have some idea of how close the roots of fn(z) are to the roots of u(z)

in Lemma 3.1. Observe that in the argument for Lemma 3.1, if we decrease the size of ε ,

the values of t1 and t3 can remain constant. Given the factorization of u(z) in the statement

of Lemma 3.1, we have for z ∈ C j that

|u(z)| ≥ t6|z−α j|e j = t6ε
e j ,

where t6 is a constant depending only on u(z) and ε > 0 being sufficiently small. The

inequality |v(z)|< |u(z)zn| then follows provided that

t6(1+ t3)n
ε

e j > t1.

26



Therefore, for the purposes of (i), we can take

ε = t7/(1+ t3)n/e j ,

for some t7 depending only on u(z) and v(z). Rouché’s Theorem applies, and we deduce

that fn(z) has a root within t7/(1+t3)n/e j of each root α j in Lemma 3.1. A similar argument

applies to the roots β j and (ii). Thus, we have the following.

Corollary 3.2. In the set-up of Lemma 3.1, let

E = max{e1, . . . ,ek,e′1, . . . ,e
′
`}.

For n ∈ Z+, z0 ∈ C and positive real numbers A and B, set

Dn(z0) = Dn(z0,A,B) = {z ∈ C : |z− z0|< A/(1+B)n/E}.

Then there exist positive constants A = A(u(z),v(z)) and B = B(u(z),v(z)) such that each

of the following holds for n sufficiently large:

(i) For each j ∈ {1,2, . . . ,k}, the disk Dn(α j) has exactly e j roots of fn(z).

(ii) For each j ∈ {1,2, . . . , `}, the disk Dn(β j) has exactly e′j roots of fn(z).

Next, we turn to obtaining a result for the case where v(z) is the reciprocal of u(z).

Our next lemma will help us to show that, in this case, for n sufficiently large, the roots

described by (iii) of Lemma 3.1 are not only close to C = {z ∈ C : |z|= 1} but actually all

lie on C .

Lemma 3.3. Fix c ∈ R with c ≥ 1. Let I be an open interval containing c, and let J be

a closed interval. Suppose H(z, t) is a real valued function having continuous first order

partial derivatives for z ∈ I and t ∈ J. Suppose further that H(c, t) > 0 for all t ∈ J. For

n ∈ Z+, define Fn(z, t) = z2nH(z, t). Then there exists an n0(H,c) such that

∂Fn(z, t)
∂ z

∣∣∣∣
z=c
≥ 1 for all n≥ n0(H,c) and all t ∈ J.
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Proof. First, observe that since J is compact and H(c, t) is a continuous function of t in J,

the function H(c, t) obtains its minimum in J. As H(c, t)> 0 for all t ∈ J, there is an ε > 0

such that H(c, t)> ε for all t ∈ J. Similarly, there is an M > 0 such that∣∣∣∣∣∂H(z, t)
∂ z

∣∣∣∣
z=c

∣∣∣∣∣≤M for all t ∈ J. (3.1)

Since

∂Fn(z, t)
∂ z

∣∣∣∣
z=c

= 2nc2n−1H(c, t)+ c2n ∂H(z, t)
∂ z

∣∣∣∣
z=c

= c2n−1
(

2nH(c, t)+ c
∂H(z, t)

∂ z

∣∣∣∣
z=c

)
,

the conditions c≥ 1, H(c, t)> ε for all t ∈ J and (3.1) imply

∂Fn(z, t)
∂ z

∣∣∣∣
z=c
≥ 2n0 ε− cM ≥ 1

for n≥ n0 and n0 = n0(H,c) sufficiently large. Hence, the lemma follows.

Lemma 3.4. Let f (z) be a polynomial in R[z] which has exactly k roots outside the unit

circle C = {z ∈ C : |z| = 1} and no roots on C . For n sufficiently large, the polynomial

f (z)zn + f̃ (z) has exactly k roots outside C .

Proof. Observe that f (z) having no roots on C implies f̃ (z) has no roots on C . Let z ∈ C .

Then zk and z−k are complex conjugates for every positive integer k. Therefore, f (z) and

f (1/z) are complex conjugates and, hence, have the same absolute value. We deduce that∣∣∣∣ f (z)
f̃ (z)

∣∣∣∣= ∣∣∣∣ f (z)
zdeg f f (1/z)

∣∣∣∣= | f (z)|
|z|deg f | f (1/z)|

= 1 for all z ∈ C . (3.2)

Now, set z = reiθ , where r ≥ 0 and θ ∈ [0,2π). Define

H(r,θ)=
| f (z)|2

| f̃ (z)|2
=

f (r cosθ + ir sinθ) f (r cosθ − ir sinθ)

f̃ (r cosθ + ir sinθ) f̃ (r cosθ − ir sinθ)
and Fn(r,θ)= r2nH(r,θ).

Then H(r,θ) and Fn(r,θ) are real-valued rational functions in r with coefficients that are

polynomials in cosθ and sinθ . These functions are continuous in r and θ away from

points where the denominator is 0; in particular, since f (z) and f̃ (z) do not have zeroes on

C , there is an open annulus A containing C such that H(r,θ) and Fn(r,θ) are continuous

in r and θ for reiθ in A .
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From (3.2), we deduce

H(1,θ) = 1 for all θ ∈ [0,2π].

From Lemma 3.3, there is an N such that n≥ N implies

∂Fn(r, t)
∂ r

∣∣∣∣
r=1
≥ 1 for all θ ∈ [0,2π].

Fix θ0 ∈ [0,2π) and n ≥ N. By the continuity of ∂Fn(r,θ)/∂ r in r and θ around (r,θ) =

(1,θ0), there is an ε(θ0) > 0 such that for z = reiθ in the open disk D(θ0) = {z ∈ C :

|z− eiθ0|< ε(θ0)}, we have ∂Fn(r,θ)/∂ r ≥ 1/2.

With n ≥ N still fixed, we observe that the open disks D(θ) for all θ ∈ [0,2π) form

an open covering of the compact unit circle C . Hence, there is a finite subcovering of the

unit circle using say D(θ1), . . . ,D(θs) for some s ∈ Z+ and θ j ∈ [0,2π). By considering

the intersection points of the boundaries of overlapping disks and the minimum distance of

these intersection points to the unit circle, we deduce that there is an ε > 0 such that

∂Fn(r,θ)
∂ r

≥ 1/2 for all reiθ ∈ |{z ∈ C : 1− ε ≤ |z| ≤ 1+ ε}|. (3.3)

The significance of (3.3) is the following. For a fixed θ ∈ [0,2π), we have that the

function Fn(r,θ) is strictly increasing as a function of r ∈ [1,1+ ε]. Further, Fn(1,θ) = 1

from (3.2). Hence, Fn(1+ ε,θ)> 1. We deduce that

|z|n| f (z)|> | f̃ (z)| for all z ∈ Cε = {z ∈ C : |z|= 1+ ε}.

Let g(z) =− f (z)zn. Then

∣∣( f (z)zn + f̃ (z))+g(z)
∣∣= | f̃ (z)|< |z|n| f (z)|= |g(z)| for all z ∈ Cε . (3.4)

Observe that (3.4) holds for each n ≥ N where ε = ε(n). However, in the above, one

may take ε > 0 arbitrarily small. We obtain from Rouché’s Theorem and (3.4) that, for

n ≥ N, the polynomials f (z)zn + f̃ (z) and g(z) have the same number of roots, counted to

their multiplicity, on the closed unit disk D = {z ∈ C : |z| ≤ 1}. As g(z) = − f (z)zn has

n+deg f − k such roots, the same is true of f (z)zn + f̃ (z). The lemma now follows.
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Corollary 3.5. Let f (z) be a polynomial in R[z] which has exactly k roots outside the unit

circle C = {z ∈ C : |z| = 1} and no roots on C . For n sufficiently large, the polynomial

f (z)zn + f̃ (z) has exactly n+deg f −2k roots on C .

Proof. Apply Lemma 3.4 to see that, for n large, f (z)zn + f̃ (z) has exactly k roots outside

of C . Since f (z)zn + f̃ (z) is reciprocal, we deduce f (z)zn + f̃ (z) has exactly k roots inside

C . The corollary follows.

The next lemma follows, for example, from Proposition 11.2.4 in Rahman and Sch-

meisser (2002). We give a proof here.

Lemma 3.6. Let f (z) = ∑
r
j=0 a jzd j ∈ Z[z] with r ≥ 1, a0 6= 0, and d0 = 0. Then each root

of f (z) has multiplicity at most r.

Proof. Assume α is a root of f (z) with multiplicity k ≥ r + 1. Then f (u)(α) = 0 for

0≤ u≤ r so that

r

∑
j=0

a jd j(d j−1) · · ·(d j−u+1)αd j−u = 0 for 0≤ u≤ r.

We claim that this is only possible if each a j equals 0, contradicting a0 6= 0. As the above

r+1 equations in the r+1 numbers a j form linear equations in the a j’s, it suffices to show

that detM 6= 0, where M = (mi j) is the (r+1)× (r+1) matrix with

mi j =


αd j if i = 0,

d j(d j−1) · · ·(d j− i+1)αd j−i if 0 < i≤ r,

where for convenience we use subscripts for i and j from {0,1, . . . ,r} so that the first row

corresponds to i= 0 and the first column corresponds to j = 0. Note that α 6= 0 since a0 6= 0

and d0 = 0. We can remove a factor of αd j from the ( j+1)st column and then a factor of

α−i from the (i+1)st row to obtain a new (r+1)× (r+1) matrix M′ = (m′i j) where

m′i j =


1 if i = 0,

d j(d j−1) · · ·(d j− i+1) if 0 < i≤ r.
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The matrix M′ has the property that detM 6= 0 if and only if detM′ 6= 0. We can further

multiply the (i+1)st row by 1/i! to obtain an (r+1)× (r+1) matrix M′′ = (m′′i j) where

m′′i j =

(
d j

i

)
.

The matrix M′′ similarly satisfies the property that detM 6= 0 if and only if detM′′ 6= 0. The

matrix M′′ (or the matrix M′) can be computed by connecting it to a Vandermonde matrix

Pólya and Szegő (1976) (see Part V, Problem 96 Solution). We obtain

detM′′ =
∏0≤i< j≤r(d j−di)

∏0≤i< j≤r( j− i)
6= 0.

The lemma follows.

For the results that follow, we will require f (z) ∈ Z[z] have degree ≥ 1 and satisfy

gcd( f (z), f̃ (z)) = 1. We note that for such f (z) ∈ Z[z], we have as a consequence that f (z)

has no roots on the unit circle C = {z ∈ C : |z| = 1}, as any such root would be a root of

both f (z) and f̃ (z).

Lemma 3.7. Let f (z)=∑
r
j=0 a jz j ∈Z[z] with r≥ 1, ar = 1, a0 6= 0 and gcd( f (z), f̃ (z))= 1.

Then there exists a positive integer M such that for all positive integers n and m satisfying

Φm(z) divides f (z)zn + f̃ (z), we have m≤M.

Proof. For n a positive integer, set Fn(z) = f (z)zn + f̃ (z). Suppose m and n are positive

integers for which Φm(z) divides Fn(z). Let ζ = ζm = e2πi/m. Then Fn(ζ ) = 0, and we

obtain

0 = f (ζ )ζ n + f̃ (ζ ) = f (ζ )ζ n +ζ
r f (1/ζ ) =⇒ ζ

n−r =− f (1/ζ )

f (ζ )
. (3.5)

Since ζ and 1/ζ are complex conjugates, we deduce f (ζ ) and f (1/ζ ) are complex con-

jugates. Hence, | f (1/ζ )/ f (ζ )| = 1. The basic idea now is to use that ζ is very close to 1

for large m so that the right-hand side of the last equality in (3.5) is close to −1 and then to

show that the left-hand side of this equation can only be close to −1 for m from a finite list

of possibilities.
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The right-hand side of the last equality in (3.5) is

− f (1/ζ )

f (ζ )
=−1+η , where η =

f (ζ )− f (1/ζ )

f (ζ )
.

Denote the roots of f (z), up to their multiplicities, by α1, . . . ,αr. By the conditions in the

statement of the lemma,

τ = min
{∣∣z−α j

∣∣ : 1≤ j ≤ r,z ∈ C
}
= min

1≤ j≤r

{∣∣1−|α j|
∣∣}> 0.

We deduce the inequalities

| f (ζ )− f (1/ζ )|=
∣∣∣∣ r

∑
j=0

a j(ζ
j−ζ

j
)

∣∣∣∣≤ |ζ −ζ |
r

∑
j=0
|a j|
∣∣∣∣ j−1

∑
k=0

ζ
k(ζ ) j−1−k

∣∣∣∣≤ |ζ −ζ |
r

∑
j=0

j|a j|,

|ζ −ζ |= 2|sin(2π/m)| ≤ 4π

m
,

and

| f (ζ )|= |ar|
r

∏
j=1
|ζ −α j| ≥ |ar|τr.

Thus,

|η | ≤ C1

m
, where C1 =

4π

|ar|τr

r

∑
j=0

j|a j|.

We now turn to the left-hand side of the last equality in (3.5). Let t be an integer in

[0,m− 1] such that n− r ≡ t (mod m). Then ζ n−r = ζ t . We treat t ∈ (m/4,3m/4) sepa-

rately from other t. For t ∈ (m/4,3m/4), we set t ′ = t− (m/2) ∈ (−m/4,m/4). Observe

that

ζ
t = ζ

2t
2m = ζ

m
2mζ

2t ′
2m =−ζ

2t ′
2m and |2πt ′/m|< π/2.

Hence,

∣∣1+ζ
t∣∣= ∣∣1−ζ

2t ′
2m
∣∣≥ ∣∣Im(1−ζ

2t ′
2m)
∣∣= |sin(2πt ′/m)| ≥ 2

π
· 2π|t ′|

m
=

4|t ′|
m

.

We deduce that

ζ
n−r = ζ

t =−1+η
′, where |η ′| ≥ (4|t ′|)/m.
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From (3.5), we obtain

4|t ′|
m
≤ C1

m
=⇒ |t ′| ≤C2 =

π

|ar|τr

r

∑
j=0

j|a j|.

Note that t ′ is not necessarily an integer, but the definition of t ′ implies that 2t ′ = t ′′ for

some t ′′ ∈ Z. Thus,

ζ
n−r = ζ

t =−ζ
2t ′
2m =−ζ

t ′′
2m,

where |t ′′| ≤ 2C2. Fix t ′′ ∈Z satisfying |t ′′| ≤ 2C2. Since Fn(ζ ) = 0 and ζ = ζ 2
2m, we obtain

f (ζ )ζ n + f̃ (ζ ) = 0 =⇒ f (ζ )ζ n−r + f (1/ζ ) = 0 =⇒ − f (ζ 2
2m)ζ

t ′′
2m + f (1/ζ

2
2m) = 0.

Clearing denominators in this last equation by multiplying through by ζ
2r+max{−t ′′,0}
2m , we

obtain a polynomial in ζ2m with a non-zero leading coefficient. More precisely, the poly-

nomial

− f (z2)zt ′′+2r+max{−t ′′,0}+ zmax{−t ′′,0} f̃ (z2) (3.6)

has ζ2m as a root and has leading coefficient c, where

c =


−ar if t ′′ >−2r

a0 if t ′′ <−2r

ar−k−ak if t ′′ =−2r, where k = max{ j : 0≤ j ≤ r/2,a j 6= ar− j}.

Note that such a k exists since gcd( f (z), f̃ (z)) = 1. As the polynomial in (3.6) only de-

pends on f (z) and t ′′ and |t ′′| ≤ 2C2, we see that as t ′′ varies, there are only finitely many

possibilities for the roots of these polynomials and, hence, for the value of 2m. Thus, if

t ∈ (m/4,3m/4), the lemma follows.

In the case that t ∈ [0,m−1] with n− r ≡ t (mod m) and t 6∈ (m/4,3m/4), we proceed

as follows. First, we observe here that ζ t = e2πit/m = eθmi for some θm ∈ [−π/2,π/2].

Hence, ∣∣1+ζ
t∣∣≥ Re(1+ζ

t) = 1+ cos(θm)≥ 1.
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In other words, ζ t =−1+η ′, where |η ′| ≥ 1. From (3.5), we obtain

1≤ |η ′|= |η | ≤ C1

m
=⇒ m≤C1 =

4π

|ar|τr

r

∑
j=0

j|a j|.

Thus, in this case, we also get that m is bounded as in the lemma, finishing the proof.

For computational purposes, we made the constants C1 and C2 explicit above. The

proof can therefore be used then to obtain an explicit M as in the statement of the lemma.

We comment, however, that the expression |ar|τr in C1 and C2 creates a less than optimal

bound for |η | and |t ′|, and one can replace it with a value closer to | f (1)|.

For the next result, we recall the notation M( f ) for the Mahler measure of the polyno-

mial f (z).

Theorem 3.8. Let f (z) = ∑
r
j=0 a jz j ∈Z[z] with r≥ 1, ar = 1, a0 6= 0 and gcd( f (z), f̃ (z)) =

1. Suppose f (z) has no positive real roots. Then for every ε > 0, there exist infinitely many

polynomials h(z) having no positive real roots and no cyclotomic factors such that

∣∣M( f )−M(h)
∣∣< ε. (3.7)

Furthermore, these h(z) can be chosen so that the number of roots of h(z) outside C = {z∈

C : |z|= 1} is equal to the number of roots of f (z) outside C .

Proof. For n a positive integer, set Fn(z) = f (z)zn + f̃ (z). We take n sufficiently large so

that the following arguments hold.

Let k denote the number of roots of f (z), counted to their multiplicity, outside of C . By

Lemma 3.4, the polynomial Fn(z) has exactly k roots, counted to their multiplicity, outside

of C . Furthermore, since n is sufficiently large, Lemma 3.1 implies that these k roots are

close to the k roots of f (z) outside of C in such a way that (3.7) holds with h(z) = Fn(z).

Let hn(z) denote the product of the monic irreducible factors of Fn(z) having roots

outside C . The polynomial Fn(z)/hn(z) has only roots on or inside C . The product of

the roots of Fn(z)/hn(z) must be a non-zero integer since a0 6= 0. We deduce, therefore,
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that Fn(z)/hn(z) has only roots on C . As cyclotomic polynomials are the only monic irre-

ducible polynomials containing every root on C , we deduce that Fn(z)/hn(z) is a product

of cyclotomic polynomials.

From Lemma 3.6 and Lemma 3.7, there are positive integers R and M independent of

n such that Fn(z)/hn(z) divides

∏
m≤M

Φm(z)R.

As n tends to infinity, this expression is a polynomial of bounded degree and degFn tends to

infinity, so we deduce that deghn tends to infinity. As M(hn) =M(Fn), we deduce that there

are infinitely many h as in (3.7). Furthermore, since f (z) and hence f̃ (z) has no positive

real roots, Lemma 3.1 and Corollary 3.5 imply hn(z) has no positive real roots off of C .

Since hn(z) has no cyclotomic factors, we also have hn(1) 6= 0, so hn(z) has no positive real

roots, completing the proof.

There is a much simpler proof that polynomial h(z) as in (3.7) exist by making use

of f (zn) instead of hn(z). However, we will want to take advantage of the fact that, for

n large, the polynomials hn(z) in the proof of Theorem 3.8 each has the same number of

roots outside C as f (z) and that these roots of hn(z) are close to the roots of f (z).

We briefly review and partially revise the algorithms discussed in the previous chapter.

Let β be an algebraic integer in (−τ,−1) where τ = (1+
√

5)/2. Let

I(β ) =
[
−1

β 2−1
,
−β

β 2−1

]
.

Observe that this differs from I (β ) only in that we have made this a closed interval for

our purposes here. Set N (β ,0) = {1} and, for d a positive integer, define

N (β ,d) =
(
{βω : ω ∈N (β ,d−1)}∪{βω +1 : ω ∈N (β ,d−1)}

)
∩ I(β ).

This differs from our previous definitions discussed earlier in that we do not necessarily

include the elements of N (β ,d−1) in N (β ,d). However, it is not difficult to check that

the arguments in the previous chapter imply that β is not a root of a Newman polynomial
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if and only if there is a positive integer d0 = d0(β ) such that either N (β ,d0) = /0 or both

N (β ,d0) = N (β ,d0−d) for some positive integer d ≤ d0 and 0 6∈N (β ,d0). Note that,

in the case N (β ,d0) = /0, one necessarily has 0 6∈N (β ,d) for all d ≤ d0.

Similarly, for β an algebraic integer in C with |β |> 1, we define

I′(β ) =
{

z ∈ C : |z| ≤ |β |
|β |−1

}
,

N ′(β ,0) = {1},

and

N ′(β ,d) =
(
{βω : ω ∈N ′(β ,d)}∪{βω +1 : ω ∈N ′(β ,d)}

)
∩ I′(β ), for d ≥ 1.

We have here that if there is a positive integer d′0 = d′0(β ) such that N (β ,d′0) = /0, then

β is not a root of a Newman polynomial. As above, in this case, one necessarily has

0 6∈N (β ,d) for all d ≤ d′0. Note that the existence of d′0(β ) is not a necessary condition

for a β ∈ C with |β |> 1 to avoid being a root of a Newman polynomial.

Theorem 3.9. Let f (z) = ∑
r
j=0 a jz j ∈Z[z] with r≥ 1, ar = 1, a0 6= 0 and gcd( f (z), f̃ (z)) =

1. Suppose f (z) has no positive real roots. Suppose that f (z) has a root β ∈C with |β |> 1

and that the second algorithm described above establishes that β is not a root of a Newman

polynomial. Then for every ε > 0, there exist infinitely many polynomials h(z) having no

positive real roots and no cyclotomic factors such that both

∣∣M( f )−M(h)
∣∣< ε (3.8)

and no multiple of h(z) in Z[z] is a Newman polynomial. Furthermore, these h(z) can be

chosen so that the number of roots of h(z) outside C = {z ∈ C : |z| = 1} is equal to the

number of roots of f (z) outside C .

Before turning to the proof, we note that one can take f (z) in Theorem 3.9 to be f1(z) =

z6− z5− z3 + z2 + 1 and to be f2(z) = z10− z8− z5 + z+ 1. Here, M( f1) = 1.556 . . . and
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M( f2) = 1.419 . . .. Thus, there are infinitely many polynomials with no Newman multiples

and Mahler measure as close as we want to the Mahler measure of f1(z), and similarly for

f2(z).

Proof. Recall that taking h = hn(z), where hn(z) is described in the proof of Theorem 3.8,

and n sufficiently large, one obtains (3.8). Further, the set of such hn(z) is infinite and the

number of roots of hn(z) outside C = {z ∈ C : |z| = 1} is equal to the number of roots of

f (z) outside C . To establish the theorem, we need only now show that for n sufficiently

large, the polynomial hn(z) has no Newman multiple.

Let β ′n be a root of hn(z) that is as close to β as possible. As shown in the proof of

Lemma 3.1, the difference |β ′n−β | tends to 0 as n tends to infinity. Let d′0 = d′0(β ) be as

defined before the statement of the theorem. Define

N ′(β ) =
⋃

0≤d≤d0

N ′(β ,d).

One may view N ′(β ) as the expressions

εd0β
d0 + εd0−1β

d0−1 + · · ·+ ε2β
2 + ε1β + ε0, with each ε j ∈ {0,1}, (3.9)

which lie in I′(β ). Let N ′(β ) denote the expressions in (3.9) which do not lie in I′(β ).

As this is a finite set disjoint from the closed set I′(β ), there is an ε > 0 such that each

element of N ′(β ) is a distance of at least ε/2 from I′(β ). As β is not a root of a Newman

polynomial, we may also choose ε so that each expression in (3.9) is a distance of at least

ε/2 from 0. Observe that the endpoints of I′(s) are continuous functions of s ∈ C in a

neighborhood of β . Thus, there is a δ > 0 such that

I′(γ) =
{

z ∈ C : |z| ≤ |γ|
|γ|−1

}
⊆
{

z ∈ C : |z| ≤ |β |
|β |−1

+
ε

4

}
for |γ−β |< δ .

In addition, we may take δ so that |γ−β |< δ implies∣∣∣∣ d0

∑
j=0

ε jγ
j−

d0

∑
j=0

ε jβ
j
∣∣∣∣< ε

4
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and, consequently, ∣∣∣∣ d0

∑
j=0

ε jγ
j
∣∣∣∣> ε

4
,

for every choice of ε j ∈ {0,1}.

Observe that, still with |γ−β |< δ , if the ε j’s are chosen so that

z1 = εd0γ
d0 + εd0−1γ

d0−1 + · · ·+ ε2γ
2 + ε1γ + ε0 ∈ I′(γ),

then

z2 = εd0β
d0 + εd0−1β

d0−1 + · · ·+ ε2β
2 + ε1β + ε0

satisfies

|z2| ≤ |z2− z1|+ |z1|<
ε

4
+
|β |
|β |−1

+
ε

4
=
|β |
|β |−1

+
ε

2
.

Thus, |z2| is a distance < ε/2 from I′(β ). By our choice of ε , we deduce z2 ∈ I′(β ). Thus,

if

εd0γ
d0 + εd0−1γ

d0−1 + · · ·+ ε2γ
2 + ε1γ + ε0

is in I′(γ) for some choice of ε j ∈ {0,1}, then it is non-zero and the corresponding element

from (3.9) is in I′(β ). As a consequence,{
(ε0,ε1, . . . ,εd) :

d

∑
j=0

ε jγ
j ∈N ′(γ,d),ε j ∈ {0,1}∀ j

}

⊆
{
(ε0,ε1, . . . ,εd) :

d

∑
j=0

ε jβ
j ∈N ′(β ,d),ε j ∈ {0,1}∀ j

}
for each positive integer d ≤ d0. In particular, N′(γ,d0) = /0 for such γ .

Recall the definition of β ′n. For n sufficiently large, we obtain |β ′n−β | < δ . Thus, for

n sufficiently large, the second algorithm described earlier establishes that hn(z) does not

have a Newman multiple, completing the proof of the theorem.

Theorem 3.10. Let f (z) ∈ Z[z] be monic and non-reciprocal. Suppose that f (z) has no

positive real roots and exactly two roots outside C , both non-real and with multiplicity one.

Suppose further that gcd( f (z), f̃ (z)) = 1. For n a positive integer, define hn(z) ∈ Z[z] as
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the largest degree monic factor of f (z)zn + f̃ (z) not divisible by a cyclotomic polynomial.

Then the polynomials hn(z) include infinitely many distinct irreducible polynomials with

distinct Mahler measures approaching the Mahler measure of f (z) as n tends to infinity

and such that hn(z) has exactly two roots outside C . Furthermore, under the conditions of

a root β of f (z) in Theorem 3.9, we may deduce that for n sufficiently large, no multiple of

hn(z) in Z[z] is a Newman polynomial.

To illustrate Theorem 3.10, we consider again f1(z) = z6− z5− z3 + z2 +1 and f2(z) =

z10− z8− z5 + z+ 1. The condition of having exactly two non-real roots outside the unit

circle C is satisfied by f1(z) but not by f2(z). We can conclude that M( f1) = 1.556 . . . is

a limiting value for the Mahler measures of polynomials with no Newman multiples. On

the other hand, Theorem 3.9 implies that there are infinitely many polynomials h(z) with

no Newman multiples and with Mahler measure arbitrarily close M( f2) = 1.419 . . .. The

distinction here, however, is that we have not established that the Mahler measures of these

h(z) differ from M( f2) = 1.419 . . ., so we have not eliminated the possibility that all of the

polynomials h(z) given by Theorem 3.9 have the same Mahler measure, though it is likely

they do not. It is certainly reasonable to conjecture, therefore, that M( f2) = 1.419 . . . is a

limiting value for Mahler measures of polynomials with no Newman multiples, though we

have not established this.

Proof of Theorem 3.10. From Theorem 3.8 and the proof of Theorem 3.9, it suffices to

show that there are infinitely many n for which hn(z) is irreducible and has Mahler mea-

sure different from M( f ). Indeed, since M(hn) approaches M( f ) as n tends to infinity, an

infinite sequence of n for which M(hn) 6= M( f ) must have a subsequence of distinct M(hn)

approaching M( f ).

We begin by showing that hn(z) is irreducible for all sufficiently large n. By Lemma 3.1

and Lemma 3.4, for n large, the polynomial hn(z) has exactly two non-real complex con-

jugate roots outside of C . There is a monic irreducible factor wn(z) of hn(z) that has these
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two complex conjugate numbers as roots. Since any remaining monic irreducible factor

will have all its roots on the unit circle and since hn(z) has no cyclotomic factors, we de-

duce that hn(z)/wn(z) = 1. Thus, hn(z) = wn(z) is irreducible.

Assume that for all n sufficiently large, we have M(hn) = M( f ). By our above remarks,

the proof of the theorem will be complete if we can obtain a contradiction to this assump-

tion. With this in mind, we take n sufficiently large now so that M(hn) = M( f ). Observe

that the conditions in the theorem imply that f (z) has a root β = reiθ where 0 < θ < π and

r > 1. Also, hn(z) has a root βn = rneiθn where 0 < θn < π and rn > 1. Furthermore, the

only roots of f (z) outside C are β and β , and the only roots of hn(z) outside C are βn and

βn. Also, βn approaches β as n tends to infinity.

We claim that βn 6= βm for any distinct positive integers n and m. Assume βn = βm for

some n > m. Since h j(z) is a factor of f (z)z j + f̃ (z) for each j, we have

f (βn)β
n
n + f̃ (βn) = f (βn)β

m
n + f̃ (βn) = 0,

where in the second expression we have used that βm = βn. Taking a difference, we obtain

f (βn)β
m
n (β n−m

n − 1) = 0. Since |βn| > 1, we deduce f (βn) = 0. But then f (βn)β
n
n +

f̃ (βn) = 0 implies f̃ (βn) = 0, contradicting that gcd( f (z), f̃ (z)) = 1. Hence, the βn are

distinct as n varies.

Viewing n again as sufficiently large, we have

r2 = ββ = M( f ) = M(hn) = βnβn = r2
n,

and we can conclude rn = r. Since the βn are distinct, we necessarily have distinct θn for

distinct n. Also, θn approaches θ as n tends to infinity.

Since hn(z) is a factor of f (z)zn + f̃ (z), we deduce that

f (reiθn)rneinθn + f̃ (reiθn) = 0. (3.10)

Let s = deg f . Then

f (z+h) = f (z)+ f ′(z)h+
f ′′(z)

2!
h2 + · · ·+ f (s)(z)

s!
hs,
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so that

f (βn) = f (β )+(βn−β ) f ′(β )+
f ′′(β )

2!
(βn−β )2 + · · ·+ f (s)(β )

s!
(βn−β )s.

As f (z) has β as a root with multiplicity one, we deduce that f ′(β ) 6= 0 and

∣∣ f (βn)− (βn−β ) f ′(β )
∣∣≤C f

∣∣βn−β
∣∣2,

where C f is a constant depending only on f (z). Similarly, we have

βn−β = r
(
eiθn− eiθ)= (θn−θ)τn, (3.11)

where τn approaches ireiθ as n tends to infinity. From (3.10), we deduce that

einθn =− f̃ (reiθn)

f (reiθn)rn =− f̃ (reiθn)

rn
(
(θn−θ)τn f ′(β )+µn

) , (3.12)

where

|µn| ≤C f (βn−β )2 ≤C f τ
2
n (θn−θ)2.

As n tends to infinity, the value of f̃ (reiθn) approaches f̃ (reiθ ) which is non-zero since

f (reiθ ) = 0 and gcd( f (z), f̃ (z)) = 1. Also, the expression τn f ′(β ) approaches ireiθ f ′(β ) 6=

0. We deduce that

lim
n→∞

∣∣µn
∣∣∣∣(θn−θ)τn f ′(β )

∣∣ = 0.

We let arg(z) denote the argument of a complex number z, with 0≤ arg(z)< 2π and equate

the endpoints by referring to arg(z) mod 2π . We write the right-hand side of (3.12) in the

form ρneiφn with ρn > 0 and 0 ≤ φn < 2π . As n tends to infinity through values of n for

which θn > θ , assuming infinitely many such n exist, we obtain

φn mod 2π → arg
(
− f̃ (reiθ )/(ieiθ f ′(reiθ ))

)
mod 2π.

If instead n tends to infinity through values of n for which θn < θ , assuming infinitely many

such n exist, we obtain

φn mod 2π → arg
(

f̃ (reiθ )/(ieiθ f ′(reiθ ))
)

mod 2π.
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We deduce then that φn mod 2π approaches (has as a limit point) at most two distinct values

in [0,2π).

The left-hand side of (3.12) has argument nθn mod 2π . In order to examine the left-

hand side further, we will want information on how close θn is to θ . Observe that in (3.11),

we have |τn| approaches r as n increases so that |τn| ≥ r/2 for n large. We make use of

Corollary 3.2 with u(z) = f (z) and v(z) = f̃ (z). Since f (z) only has two roots outside

C , both with multiplicity one, we deduce f̃ (z) only has two roots inside C , both with

multiplicity one. Hence, in Corollary 3.2, we have E = 1. Letting A = A( f , f̃ ) > 0 and

B = B( f , f̃ )> 0 be as defined there, we deduce from Corollary 3.2 and (3.11) that

|βn−β |< A
(1+B)n =⇒ |θn−θ |< 2A

r(1+B)n .

In particular, for n sufficiently large, we have

|nθn−nθ |< 2nA
r(1+B)n <

θ

n
. (3.13)

We consider the two cases θ/π ∈ Q and θ/π 6∈ Q separately. In the case that θ/π ∈ Q,

since θ ∈ (0,π), we have that θ 6∈ {0,π} so that θ = aπ/b where b≥ 2 and gcd(a,b) = 1.

Taking an appropriate m ∈ Z+ relatively prime to b, we see that mθ mod 2π takes on

the value π/b. Letting n now be multiples of m, we obtain that nθ mod 2π takes on 2b

distinct values, each infinitely often, as n tends to infinity. In the case that θ/π 6∈ Q, a

classical result of H. Weyl (1916) implies that nθ/(2π) is equidistributed modulo 1 so that

nθ mod 2π is arbitrarily close to each number in [0,2π) for infinitely many n. In either

case, whether θ/π ∈ Q or not, we see that nθn mod 2π is arbitrarily close to at least 4

different numbers in [0,2π). As we have just seen that the corresponding argument of the

right-hand side of (3.12) approaches at most two different values as n tends to infinity, we

obtain a contradiction, completing the proof.

For some f (z) as in Theorem 3.10, it is possible to obtain a little more information on

the polynomials hn(z). We illustrate this with f (z) = f1(z) = z6− z5− z3 + z2 + 1 used
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for previous examples here. Our goal is to show that there is a sequence of irreducible

polynomials having each coefficient in {−1,0,1} and with Mahler measures approaching

the Mahler measure of f1(z), that is

M( f1) = 1.556014485 . . . .

Given Theorem 3.10, the main idea is to show that hn(z) = f (z)zn + f̃ (z) for many n. This

requires having then more information on the cyclotomic factors of f (z)zn + f̃ (z), which

we explore next.

The next lemma is a consequence of Corollary 1 in Filaseta and Schinzel (2004).

Lemma 3.11. Let f (z) be a polynomial with r terms. If f (z) is divisible by a cyclotomic

polynomial, then there is an m ∈ Z+ such that every prime divisor of m is ≤ r and Φm(z)

divides f (z).

We set

f1(z) = z6− z5− z3 + z2 +1 so that f̃1(z) = ũ(z) = z6 + z4− z3− z+1.

We show that often f1(z)zn + f̃1(z) does not have cyclotomic roots.

Lemma 3.12. The lower asymptotic density of positive integers n for which f1(z)zn+ f̃1(z)

has no cyclotomic factors is at least 1/20. In other words, if

S = {n ∈ Z+ : f1(z)zn + f̃1(z) is not divisible by a cyclotomic polynomial},

then

liminf
z→∞

|{n ∈S : n≤ z}|
z

≥ 1
20

.

Proof. Let m be a positive integer. The polynomial f1(z) itself is easily checked to have no

roots on C and, hence, no cyclotomic factors. We deduce that Φm(z) divides f1(z)zn+ f̃1(z)

if and only if Φm(z) divides f1(z)zn+m + f̃1(z), and further that there is at most one n ∈

[0,m− 1] such that Φm(z) divides f1(z)zn + f̃1(z). It follows that for a fixed m ∈ Z+, we
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can determine the n for which Φm(z) divides f1(z)zn + f̃1(z) by a direct computation using

n ∈ [0,m−1]. In particular, one checks that

Φ2(z) divides f1(z)zn + f̃1(z) ⇐⇒ n≡ 1 (mod 2)

Φ4(z) divides f1(z)zn + f̃1(z) ⇐⇒ n≡ 0 (mod 4)

Φ8(z) divides f1(z)zn + f̃1(z) ⇐⇒ n≡ 2 (mod 8)

Φ10(z) divides f1(z)zn + f̃1(z) ⇐⇒ n≡ 2 (mod 10)

Φ14(z) divides f1(z)zn + f̃1(z) ⇐⇒ n≡ 1 (mod 14)

Φ18(z) divides f1(z)zn + f̃1(z) ⇐⇒ n≡ 17 (mod 18)

Φ30(z) divides f1(z)zn + f̃1(z) ⇐⇒ n≡ 22 (mod 30),

and that, for all positive integers n, Φm(z) does not divide f1(z)zn + f̃1(z) for any other

positive integers m ≤ 2050. One checks that the positive integers n that do not satisfy any

of the congruences on the right above are the n which are 6 (mod 8) and not 2 (mod 5).

The density of such positive integers is

1
8
− 1

40
=

1
10

.

Next, we apply Lemma 3.11. As f1(z)zn + f̃1(z) has at most 10 terms, Lemma 3.11

implies that f1(z)zn + f̃1(z) will not be divisible by a cyclotomic polynomial if it is not

divisible by Φm(z) for every m ∈ Z+ with all its prime factors < 10. Observe that we have

verified asymptotically 1/10 of the positive integers n satisfy that Φm(z) does not divide

f1(z)zn + f̃1(z) for every m ≤ 2050. On the other hand, for each m > 2050, we have that

Φm(z) divides f1(z)zn + f̃1(z) for at most a density of 1/m positive integers n. As we need

only consider those m having each prime factor < 10, we obtain that the density of positive

integers n which are not divisible by Φm(z) for m ∈ {2,4,8,10,14,18,30} and which are

divisible by some Φm(z) for some m > 2050 is at most(
1− 1

2

)−1(
1− 1

3

)−1(
1− 1

5

)−1(
1− 1

7

)−1

−
2050

∑
m=1

∗ 1
m
,
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where the ∗ indicates that the sum is over those m having largest prime factor ≤ 7. A

computation gives that the difference above is

35
8
− 461502875167

106686720000
<

1
20

.

It follows that the asymptotic density of the positive integers m for which f1(z)zn+ f̃1(z) is

divisible by some Φm(z) is

>
1

10
− 1

20
=

1
20

,

completing the proof.

Theorem 3.13. There is a set T ⊆ S such that the sequence Fn(z) with n ∈ T con-

sists of monic irreducible polynomials which have distinct Mahler measures that approach

M( f1) = 1.556014485 . . .. Furthermore, T can be chosen in such a way that each Fn(z)

with n ∈T does not have a Newman multiple.

Proof. Most of the result is a direct consequence of Theorem 3.10 and the definition of S .

However, Theorem 3.10 involves a subsequence of hn(z) which we want to show includes

Fn(z) with n from a subset of S .

We refer to the proof of Theorem 3.10 using the notation in the statement of Theo-

rem 3.13. In the proof of Theorem 3.10, we considered n sufficiently large and chose a root

β = reiθ of f1(z) and a root βn = rneiθn of Fn(z) with both β and βn outside C and with

both θ and θn in (0,π). If M(Fn) = M( f1), then r2
n = r2 so that rn = r. Further, as seen

there, θn 6= θ . We showed then that (3.12) holds, and that the argument of the right-hand

side of (3.12) has two limit points, say L1 and L2. We then analyzed the argument nθn of

the left-hand side of (3.12), taking advantage of (3.13). Here, we want to analyze the use

of (3.13) with more precision.

As β = reiθ is the root of f1(z) = z6− z5− z3 + z2 + 1 which has absolute value > 1

and lies in the upper half-plane, we can compute that

θ

π
= 0.096121462959647989211571 . . . .
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A direct computation gives

min
{∣∣∣∣θπ − a

b

∣∣∣∣ : 1≤ b≤ 100,0≤ a≤ b
}
> 0.00003.

In particular, as θ/π ∈ (0,1), we can deduce that if θ/π ∈ Q, then θ/π = a/b for some

positive relatively prime integers a and b with b > 100.

We now follow the approach at the end of the proof of Theorem 3.10. In the case that

θ/π ∈ Q, we deduce that as n varies, nθ mod 2π takes on over 200 distinct values, each

for the same positive density of integers. This positive density is < 1/200, and hence the

density of n for which nθ is in a small neighborhood of either L1 or L2 modulo 2π is

< 1/100. In this case, since the lower asymptotic density of n in S is at least 1/20, we

see that there are infinitely many n ∈S for which (3.12) fails to hold. For such n, we must

have M(Fn) 6= M( f1). As M(Fn) approaches M( f1) as n tends to infinity, we deduce that

some infinite subsequence n ∈S gives distinct values for M(Fn) which approach M( f1).

The case that θ/π 6∈ Q is handled similarly. Here, the theorem of H. Weyl (1916)

implies that the positive integers n for which nθ is within 1/400 modulo 2π of either

L1 or L2 is ≤ 1/100 (where equality can be shown to hold since L1 mod 2π equals L2 +

π mod 2π). As in the case θ/π ∈ Q above, we deduce that some infinite subsequence

n ∈S gives distinct values for M(Fn) which approach M( f1). This completes the proof of

the theorem.
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CHAPTER 4

MINIMIZING MAHLER MEASURE

In this chapter, we explore the results given by the methods described in the previous chap-

ter. So far, in the search for an upper bound for σ in Problem 1, the smallest upper bound to

date was given by Drungilas, Jankauskas, and Šiurys (2016) as 1.4366322261 . . . given by

showing the polynomial z9+z8+z7−z5−z4−z3+1 has Mahler measure 1.4366322261 . . .,

no positive real roots, and no Newman multiple. Before this, Hare and Mossinghoff (2014)

showed that the polynomial z6− z5− z3+ z2+1, has Mahler measure 1.55601 . . ., no posi-

tive real roots, and no Newman multiple. We recall in Table 4.1 the data from Table 1.3 in

Chapter 1. In this chapter, we explain some background associated with the discovery of

the polynomials in these tables.

4.1 PRODUCING POLYNOMIALS WITH SMALL MEASURES HAVING NO NEWMAN

MULTIPLES

Our goal in this section is to use the construction Fn(z) = zn f (z) + f̃ (z) with a monic

irreducible non-reciprocal polynomial f (z) in Z[z] with small Mahler measure, no positive

real roots, and no Newman multiple, to generate other polynomials with small Mahler

measure, no positive real roots, and no Newman multiple. Our main examples elaborated

on in Table 1.3 and Table 4.1 involve polynomials with Mahler measure < 1.31, and so it is

worth noting that a result of Smyth (1971) implies that any polynomial in Z[z] with Mahler

measure < 1.324717957 . . . is necessarily reciprocal.

As in the last chapter, we set

f1(z) = z6− z5− z3 + z2 +1 and f2(z) = z10− z8− z5 + z+1.
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Table 4.1 Some polynomials of small measure with no Newman multiple

Polynomial Mahler measure
z44− z42 + z40− z38− z33− z32 + z31 + z30−2z29− z28

+2z27 + z26− z25 + z23 + z22 + z21− z19 + z18 +2z17− z16

−2z15 + z14 + z13− z12− z11− z6 + z4− z2 +1
1.263095875 . . .

z26− z23− z21 + z15 + z13 + z11− z5− z3 +1 1.272019269 . . .

z50− z49 + z48− z47− z40 + z39− z38 + z37− z36 + z35

−z34 + z33 + z30− z29 + z28− z27 + z26− z25 + z24− z23

+z22− z21 + z20 + z17− z16 + z15− z14 + z13− z12 + z11

−z10− z3 + z2− z+1

1.273464959 . . .

z48− z47 + z46− z45− z38 + z37− z36 + z35− z34 + z33

−z32 + z31 + z28− z27 + z26− z25 + z24− z23 + z22− z21

+z20 + z17− z16 + z15− z14 + z13− z12 + z11− z10− z3

+z2− z+1

1.279464310 . . .

z48− z47 + z46− z45 + z44− z43− z40 + z39−2z38 +2z37

−2z36 +2z35− z34 + z33 + z30− z29 + z28− z27 + z26− z25

+z24− z23 + z22− z21 + z20− z19 + z18 + z15− z14 +2z13

−2z12 +2z11−2z10 + z9− z8− z5 + z4− z3 + z2− z+1

1.279702474 . . .

z30− z29− z23 + z22 + z16− z15 + z14 + z8− z7− z+1 1.299764321 . . .

z28− z26− z25 + z22 + z21− z19 + z14− z9 + z7 + z6− z3− z2 +1 1.309200435 . . .

We also let

f3(z) = z9 + z8 + z7− z5− z4− z3 +1.

The polynomial f1(z) is the polynomial given by Hare and Mossinghoff (2014) mentioned

above, f2(z) was found by experimentation in Maple 2015, and f3(z) is the polynomial

found by Drungilas, Jankauskas, and Šiurys (2016) stated above. The polynomial f1(z) is

a non-reciprocal polynomial f (z) satisfying (i) f (z) has exactly two roots outside C = {z∈

C : |z| = 1}, (ii) f (z) has no positive real roots, (iii) f (z) has no Newman multiple. Of all

polynomials f (z) ∈ Z[z], the polynomial f1(z) is one of smallest Mahler measure which

has been found to date. The polynomial f2(z) is a non-reciprocal polynomial f (z) ∈ Z[z]

satisfying (ii) and (iii) of smallest Mahler measure which has been found to date. The

polynomial f3(z) was prior to this work a non-reciprocal f (z) ∈ Z[z] satisfying (ii) and (iii)

of smallest Mahler measure which has been found to date. Note that f1(z) and f2(z) were
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used for our examples in the last chapter. Their Mahler measures of the fk(x) are

1.556014485 . . . , 1.419404632 . . . , and 1.436632260 . . . ,

for k = 1, 2, and 3, respectively. The number of roots outside C are 2, 4, and 5, respectively.

For a fixed k ∈ {1,2,3}, define Fn(z) = Fn,k(z) = fk(z)zn+ f̃k(z), and let hn(z) = hn,k(z)

denote the largest degree monic factor of Fn(z) in Z[z] that is not divisible by a cyclotomic

polynomial. We note that each of the polynomials f1(z) and f2(z) can be shown to have

no Newman multiples by making use of the algorithm described in Chapter 2 taken from

Hare and Mossinghoff (2014) for complex β . Here, f2(z) was found by experimentation

in Maple 2015. The polynomial f3(z) was shown not to have a Newman multiple by

Drungilas, Jankauskas, and Šiurys (2016).

Based on the material from the last chapter, we know that for each k ∈ {1,2,3}, the

polynomial Fn,k(z) will have Mahler measure approaching M( fk) as n tends to infinity,

and furthermore Fn,k(z) and the corresponding hn,k(z) will have no Newman multiple for n

sufficiently large. Experimentally, the Mahler measures of the polynomials Fn,k(z) varied a

bit for smaller values of n, as did the property of whether Fn,k(z) or hn,k(z) has a Newman

multiple. We tabulate here some of the data we obtained, the data that led to our more

interesting examples.

All of the tables below list the leading digits (with no rounding) of the Mahler measure

of hn(z) = hn,k(z), the number of roots of hn(z) outside the unit circle C , the number of

those roots outside C which are real, the number of positive real roots of the factor hn(z),

and whether or not hn(z) has a Newman multiple for n ≤ 35. Each table records only the

data from polynomials satisfying M(hn(z))< M( fk(z)) for each k.

We note that each polynomial represented in Table 4.2 has a smaller Mahler measure

than f1(z), the same number of roots outside of C , and no Newman multiple. Table 4.2

also illustrates the content of Theorem 3.13, where we know that the Mahler measure of

Fn(z) approaches M( f1) = 1.556014485 . . . as n tends to infinity, hn(z) = Fn(z) for positive
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integers n from some infinite set T , and the Mahler measures of Fn(z) as n varies in T are

distinct.

There are 8 polynomials represented in Table 4.3 that have no Newman multiple, some

of which are of small measure, the smallest being the non-cyclotomic factor of F31(z) =

f2(z)z31 + f̃2(z) with Mahler measure 1.29976 . . ..

For Tables 4.5 and 4.6, we revise the definition of hn(z) so that it is the product of

the largest degree monic factor of Fn(z) = fk(z2)zn + f̃k(z2) in Z[z] that is not divisible by

a cyclotomic polynomial. Similarly, for each of the remaining tables given, the value of

Fn(z) is indicated and hn(z) denotes the product of the largest degree monic factor of Fn(z)

in Z[z] that is not divisible by a cyclotomic polynomial.

We observe that Table 4.6 gives F29(z) = f2(z2)z29 + f̃2(z2), which produces a polyno-

mial h29(z) of Mahler measure 1.27946431096 . . ., and F31(z) = f2(z2)z31 + f̃2(z2), which

produces a polynomial h31(z) of Mahler measure 1.27346495964 . . .. Neither of these poly-

nomials has a positive real root or a Newman multiple. Another interesting example is

given in Table 4.8 where the value of h31(z) for F31(z) = f̃3(z2)z31 + f3(z2) has Mahler

measure 1.27970247401 . . ., no positive real root, and no Newman multiple. Also, the ex-

ample F28(z) = f2(z)z28− f̃2(z) from Table 4.9 produces an h28(z) with Mahler measure

1.30920043575 . . ., no positive real root, and no Newman multiple. The polynomial giving

the second entry listed in Table 1.3 and again here in Table 4.1 is not listed in the other

tables in this chapter. This polynomial is the factor h19(z) of f4(z2)z19 + f̃4(z2) having

Mahler measure 1.27201926934 . . ., where f4(z) = z9− z7− z5 + z3 + z+ 1. The polyno-

mial f4(z) is an example from Drungilas, Jankauskas, and Šiurys (2016) with no Newman

multiple, no positive real roots, and Mahler measure 1.48958132144 . . .. The polynomial

producing the first entry in Table 1.3 and Table 4.1 is discussed in the next section.

The notations Xand 7 in the last column serve as a “yes" and “no," respectively, to

the question of whether hn(z) has a Newman multiple. The notation — indicates that we

were not able to determine the answer to this question. We tested many more polynomials
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than those listed in these tables, and it should be noted that we could not successfully

use our methods to determine whether or not Newman multiples existed for a number of

them. The situation with the number of — indicated in Table 4.4 was not uncommon. A

superscript ∗ next to an entry on the right-most column of a table means that some approach

other than searching for cyclotomic multipliers to find a Newman multiple or using a direct

application of the algorithms of Hare and Mossinghoff (2014) was used to verify the entry.

We comment on these next.

For Table 4.5, the entries for n ∈ {30,32,34}, were dealt with as follows. In each case,

the polynomial hn(z) is of the form wn(z2) where wn(z) is the monic polynomial dividing

f1(z)zn + f̃1(z) of largest possible degree which has no cyclotomic factors. Observe that if

hn(z)u(z) is in N for some u(z)∈Z[z], then we can write u(z) = a(z2)+zb(z2) where a(z)

and b(z) are in Z[z]. Then

hn(z)u(z) = wn(z2)a(z2)+ zwn(z2)b(z2) ∈N ,

where wn(z2)a(z2) corresponds to the terms in hn(z)u(z) of even degree. In particular,

this means that wn(z2)a(z2) ∈N so that wn(z)a(z) ∈N . On the other hand, we already

observed in Table 4.2 that wn(z) does not have a Newman multiple. Hence, hn(z) cannot

have a Newman multiple.

For Table 4.8 with n = 15, taking the root

β1 = (1.0928857359 . . .)+ i(0.1254857623 . . .)

of h15(z), the method of Chapter 5 was used to verify that if β1 is a root of an F(z) ∈N

of degree m, then m > 15 and

F(z) = zm + ε15zm−15 + ε16zm−16 + . . .+ εm, where each ε j ∈ {0,1}.

Taking the real root β2 = −1.1248126357 . . . of h15(z), then the approach of Hare and

Mossinghoff (2014) for real roots can be used. In this case, this amounts to the observation∣∣∣∣F(β2)

β m
2

∣∣∣∣> 1− 1
|β2|15 −

1
|β2|17 −·· ·= 1− 1

|β2|15−|β2|13 > 0,
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so it is impossible for F(β2) to be 0. We note that β2 is the root of h15(z) with maximum

absolute value. For Table 4.8 with n = 15, the method of Hare and Mossinghoff (2014)

was used with the root

β = (1.0949971342 . . .)+ i(0.1042054033 . . .)

of h19(z). What made this worth noting is that β is not the root of h19(z) with largest

absolute value. The root with largest absolute value is the real root −1.1009452505 . . ..

Table 4.2 Data for Fn(z) = f1(z)zn + f̃1(z) with M(Fn) < M( f1) =
1.556 . . .

n M(hn(z))
Number
of roots

outside C

Number of
real roots
outside C

Number of
positive

real roots

hn(z) has
a Newman
multiple?

15 1.5369179477682034 2 0 0 7

16 1.5229957493128481 2 0 0 7

17 1.5180589114389942 2 0 0 7

18 1.5216200155288215 2 0 0 7

19 1.5296307833019841 2 0 0 7

20 1.5381835217766994 2 0 0 7

21 1.5454469961759745 2 0 0 7

22 1.5509638159120815 2 0 0 7

23 1.5548344890951955 2 0 0 7

35 1.5558158008316200 2 0 0 7
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Table 4.3 Data for Fn(z) = f2(z)zn + f̃2(z) with M(Fn) < M( f2) =
1.419 . . .

n M(hn(z))
Number
of roots

outside C

Number of
real roots
outside C

Number of
positive

real roots

hn(z) has
a Newman
multiple?

3 1.3019549434966640 2 0 0 X
5 1.3001931433967972 2 0 0 X
6 1.3993912890938539 2 0 0 X

13 1.4155418842084992 2 0 0 7

18 1.3696117008585243 2 0 0 7

19 1.3615292809044729 2 0 0 7

24 1.3275068021121254 2 0 0 7

25 1.3220077539604978 2 0 0 7

30 1.4031648828031895 4 0 0 7

31 1.2997643210059706 2 0 0 7

32 1.4095325205272812 4 0 0 7

Table 4.4 Data for Fn(z) = f3(z)zn + f̃3(z) with M(Fn) < M( f3) =
1.436 . . .

n M(hn(z))
Number
of roots

outside C

Number of
real roots
outside C

Number of
positive

real roots

hn(z) has
a Newman
multiple?

3 1.3509803377162373 1 1 0 X
4 1.2728183650834955 2 0 0 X
6 1.3979993139693446 2 0 0 X
7 1.4052124163112895 3 1 0 X
8 1.2528286630316362 2 0 0 X

10 1.2277855586945986 2 0 0 X
11 1.2800820372203617 3 1 0 X
16 1.2868840708651366 2 0 0 X
18 1.3030748928169405 5 1 0 —
21 1.2194468759409303 3 1 0 X
24 1.3195081637317398 3 1 0 —
27 1.3916311259038360 3 1 0 —
28 1.4297660580707468 5 1 0 —
29 1.3960141705798196 3 1 0 —
32 1.3593194660549923 3 1 0 —
34 1.4365773212651716 5 1 0 —
35 1.4067905794817218 5 1 0 —
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Table 4.5 Data for Fn(z) = f1(z2)zn + f̃1(z2) with M(Fn) < M( f1) =
1.556 . . .

n M(hn(z))
Number
of roots

outside C

Number of
real roots
outside C

Number of
positive

real roots

hn(z) has
a Newman
multiple?

3 1.3776747893793782 1 1 0 X
11 1.4681273540397895 3 1 0 7

13 1.3510990619153372 2 0 0 7

15 1.3349325020779348 2 0 0 7

17 1.4628464414409443 4 0 0 7

19 1.5442402396411085 4 0 0 7

30 1.5369179477682034 4 0 0 7∗

32 1.5229957493128481 4 0 0 7∗

33 1.5531039916596791 4 0 0 —
34 1.5180589114389942 4 0 0 7∗

35 1.5512910936184789 4 0 0 —

Table 4.6 Data for Fn(z) = f2(z2)zn + f̃2(z2) with M(Fn) < M( f2) =
1.419 . . .

n M(hn(z))
Number
of roots

outside C

Number of
real roots
outside C

Number of
positive

real roots

hn(z) has
a Newman
multiple?

3 1.3320736964915977 1 1 0 X
6 1.3019549434966640 4 0 0 X
7 1.2000265239873915 1 1 0 X
9 1.3736135811120419 5 1 0 X

10 1.3001931433967972 4 0 0 X
12 1.3993912890938539 4 0 0 X
21 1.3767579101491908 5 1 0 7

23 1.3913427635879796 5 1 0 7

25 1.3592808747592152 5 1 0 7

26 1.4155418842084992 4 0 0 7

27 1.3584604307655911 7 1 0 7

29 1.2794643109583782 4 0 0 7

31 1.2734649596362572 4 0 0 7

33 1.3646840825337791 8 0 0 7

35 1.3580771338262559 6 0 0 7
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Table 4.7 Data for Fn(z) = f̃3(z)zn + f3(z) with M(Fn) < M( f3) =
1.436 . . .

n M(hn(z))
Number
of roots

outside C

Number of
real roots
outside C

Number of
positive

real roots

hn(z) has
a Newman
multiple?

2 1.3984561816152523 2 0 0 X
5 1.3434948980986468 2 0 0 X

13 1.4331345249485368 2 0 0 7

14 1.4234311159715063 2 0 0 7

18 1.3878827700420173 2 0 0 7

23 1.3534163551018263 2 0 0 7

27 1.3339979896237377 2 0 0 7

28 1.4269214465986548 4 0 0 7

32 1.3205703863583893 2 0 0 7

Table 4.8 Data for Fn(z) = f̃3(z2)zn + f3(z2) with M(Fn) < M( f3) =
1.436 . . .

n M(hn(z))
Number
of roots

outside C

Number of
real roots
outside C

Number of
positive

real roots

hn(z) has
a Newman
multiple?

4 1.3984561816154015 4 0 0 X
5 1.2527759374101137 1 1 0 X
7 1.3484400894061053 3 1 0 X

10 1.3434948980986485 4 0 0 X
15 1.3916821984841463 5 1 0 7∗

19 1.4322043293234774 5 1 0 7∗

21 1.4288045592816294 5 1 0 7

23 1.4074563000697322 5 1 0 7

25 1.369606470305066 5 1 0 7

26 1.4331345249485399 4 0 0 7

27 1.3628156629302184 5 1 0 7

28 1.4234311159714992 4 0 0 7

29 1.3636483746277421 7 1 0 7

31 1.2797024740084288 4 0 0 7

33 1.3351370446158135 8 0 0 7

35 1.3616825994601507 6 0 0 7
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Table 4.9 Data for Fn(z) = f2(z)zn − f̃2(z) with M(Fn) < M( f2) =
1.419 . . .

n M(hn(z))
Number
of roots

outside C

Number of
real roots
outside C

Number of
positive

real roots

hn(z) has
a Newman
multiple?

4 1.4012683679398549 1 2 2 7

7 1.2612309611371388 1 2 2 7

8 1.2303914344072247 1 2 2 7

9 1.2026167436886042 1 2 2 7

10 1.1762808182599175 1 2 2 7

11 1.3516891084166915 3 2 2 7

12 1.3357332210166238 3 2 2 7

13 1.2486111656859293 3 2 2 7

17 1.2883596645367590 4 0 0 X
18 1.3765014052915571 4 0 0 X
19 1.4014602019654860 4 0 0 X
20 1.3730577151000097 4 0 0 X
21 1.2648330803003662 2 0 0 X
22 1.2775721230452175 2 0 0 X
27 1.3854250650019093 4 0 0 7

28 1.3092004357501738 2 0 0 7

34 1.3123232555392172 2 0 0 7

35 1.4151721596850971 4 0 0 7
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4.2 ANOTHER EXAMPLE OF A POLYNOMIAL WITH SMALL MEASURE HAVING NO

NEWMAN MULTIPLE

The computations demonstrated in part in the previous section motivated a search of known

examples of polynomials with small Mahler measure using the data listed by Mossinghoff

(2011). In particular, based on the success of showing no Newman multiples existed for

polynomials which had a root with large positive real part and a relatively small imaginary

part (i.e., polynomials with a root close to the positive real axis), we looked for such poly-

nomials among those given by this data. We found only one new and interesting one to

report, namely

f (z) = z44− z42 + z40− z38− z33− z32 + z31 + z30−2z29− z28 +2z27

+ z26− z25 + z23 + z22 + z21− z19 + z18 +2z17− z16

−2z15 + z14 + z13− z12− z11− z6 + z4− z2 +1.

(4.1)

This polynomial has Mahler measure M( f ) = 1.263095875 . . ., has no positive real root

and has no Newman multiple. Thus, f (z) provides us with the best upper bound thus far

on σ (assuming it exists) in Problem 1, and we can report

σ ≤ 1.263095875 . . . .

The value

β = (1.079315910 . . .)+ i(0.752389188 . . .)

is a root of f (z) with the largest absolute value, and the algorithm for complex roots given

by Hare and Mossinghoff (2014) provides a proof that f (z) has no Newman multiple. In

the next chapter, we show an alternative way of showing this polynomial has no New-

man multiple that also allows us to obtain some additional information in the case that the

multiplier is in R[z].
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CHAPTER 5

BOUNDING THE COEFFICIENTS OF A MULTIPLE OVER THE

REALS

5.1 INTRODUCTION

The polynomial (4.1) is the polynomial with smallest Mahler measure which we found

having the property that there is no multiple of f (z) in Z[z] which is a Newman polyno-

mial. We have here that M( f ) = 1.263095875 . . ., and f (z) has no positive real root and has

exactly 4 complex roots outside C = {z ∈ C : |z| = 1}. In this chapter, we show an alter-

native approach to establishing that there is no Newman multiple of f (z) which can easily

be turned into an algorithm as well. Like the previous algorithm, we cannot show that the

algorithm will successfully show that an arbitrary polynomial with no Newman multiple

does not have a Newman multiple. So our emphasis in this chapter will be different. We

focus on using the algorithm to establish a bit more about f (z), which we describe next.

As noted above, there is no Newman multiple for f (z) in Z[z]. But is there a Newman

multiple for f (z) in R[z]? The answer is that there is not, and we show more, namely the

following.

Theorem 5.1. Let f (z) be as in (4.1). Let g(z) ∈ R[z] for which f (z)g(z) has non-negative

coefficients. Then at least one of the coefficients is greater than 1.5713809 . . ..

As one would expect, we give a general method that would give a similar result for the other

polynomials we have found earlier in this thesis which do not have Newman multiples,

though 1.5713809 . . . would need to be replaced by a different value > 1 depending on
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the polynomial being considered. We also note that we actually show a bit more, that

any polynomial with non-negative real coefficients, which has the root 1.0793159 . . .+

i0.0752389 . . . in common with f (z), has a coefficient greater than 1.5713809 . . ..

The argument will be based on numeric approximations for complex roots of f (z), and

we do not concern ourselves (though we should) on whether these approximations suffice

to justify the arguments given. We use Maple 2015 set at 50 digits of precision but do not

indicate all the digits below in our argument for Theorem 5.1.

5.2 PROOF OF THEOREM 5.1

Proof. One computationally checks that f (z) has no real roots. Furthermore, two of its

roots are

α1 = 1.0793159 . . .+ i0.0752389 . . . and α2 = 1.0793159 . . .− i0.0752389 . . . .

Both α1 and α2 are outside the unit circle C . There are 2 additional roots of f (z) outside

of C which will not play a role in this argument.

The idea is to take advantage of an approach from Cole, Dunn, and Filaseta (2016)

and Filaseta and Gross (2014) that allowed the authors to show that multiples of certain

quadratics of the form z2−Az+B cannot have non-negative coefficients unless the max-

imum coefficient of the multiple exceeds an explicit bound. In Cole, Dunn, and Filaseta

(2016) and Filaseta and Gross (2014), A and B are integers, but as we shall see here, the

same approach works with real coefficients. For our purposes, we take A and B to be real

numbers defined by

z2−Az+B = (z−α1)(z−α2) = z2− (2.1586318 . . .)z+1.1705837 . . . . (5.1)

So that the approach can apply to other polynomials besides f (z), we use variables

below and, in particular, refer to the quadratic above as g(z) = z2−Az+B and allow for

the possibility that A and B are not as indicated in (5.1). We require however that A and B
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are positive real numbers. Define b0, . . . ,bs ∈ R with b0 = 1 and with the product

(b0zs +b1zs−1 + · · ·+bs−1z+bs)(z2−Az+B) (5.2)

equal to a polynomial of degree s+2 with non-negative coefficients. Set

h(z) = b0zs +b1zs−1 + · · ·+bs−1z+bs = zs +b1zs−1 + · · ·+bs−1z+bs

and F(z) = g(z)h(z) as given in (5.2). We let M denote the maximal coefficient of F(z) so

that the coefficients of F(z) are all in the interval [0,M]. In the context of f (z) as in (4.1),

among other things, we want to show that F(z) cannot be a Newman polynomial, and we

will establish this by showing that necessarily M > 1. For the theorem, we want to show

M ≥ 1.5713809 . . . (still in the case of f (z) as in (4.1)).

We define b j = 0 for j < 0 and j > s. Since the coefficients of F(z) are ≥ 0, we deduce

that

b j ≥ Ab j−1−Bb j−2 for all j ∈ Z. (5.3)

Since b0 = 1, we deduce b1 ≥ A. For each integer j, define

β j =


0 if j < 0

1 if j = 0

Aβ j−1−Bβ j−2 if j ≥ 1,

so the β j satisfy a recursive relation for j ≥ 0. In particular, β1 = A and β2 = A2−B. For

A and B as in (5.1), we have

β0 = 1, β1 = 2.1586318 . . . , β2 = 3.4891076 . . . , β3 = 5.0048394 . . . ,

β4 = 6.7193130 . . . , β5 = 8.6459393 . . . , β6 = 10.7978812 . . . ,

β7 = 13.1878541 . . . , β8 = 15.8278975 . . . , β9 = 18.7291158 . . . ,

β10 = 21.9013860 . . . , β11 = 25.3530305 . . . , β12 = 29.0904523 . . . ,

β13 = 33.1177310 . . . , and β14 = 37.4361779 . . . .
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Let J be minimal such that βJ+1 < βJ . With A and B as in (5.1), we get J = 34, with

β33 = 135.3470045 . . . , β34 = 135.6907665 . . . ,

and

β35 = 134.4714052 . . . .

Note that, in general, β j ≥ 0 for j ≤ J. Also, for 1 ≤ j ≤ J +1, we obtain from (5.3) and

A≥ 0 that

b j ≥ Ab j−1−Bb j−2 ≥ A
(
Ab j−2−Bb j−3

)
−Bb j−2

≥ β2b j−2−Bβ1b j−3 ≥ β2
(
Ab j−3−Bb j−4

)
−Bβ1b j−3

≥ β3b j−3−Bβ2b j−4 ≥ β3
(
Ab j−4−Bb j−5

)
−Bβ2b j−4

≥ β4b j−4−Bβ3b j−5 ≥ ·· · ≥ β j−1b1−Bβ j−2b0 ≥ β j.

(5.4)

We deduce that

b j ≥ β j for all integers j ≤ J+1. (5.5)

Now, we define

U = max
j≥0
{b j} and L = min

j≥0
{b j}.

Since b j = 0 for j > s, we have L ≤ 0. In the case of (5.1), we also see that U ≥ b34 ≥

β34 = 135.6907665 . . .. Let k ≥ 0 and ` ≥ 1 be integers. We will want some flexibility

on choosing precise values of k and `, and in general some experimentation is helpful in

selecting them depending on the choice of A and B.

The idea is to take advantage of a weighted average of ` consecutive coefficients of

F(z). Define a j = b j −Ab j−1 +Bb j−2 for all integers j so that a j is the coefficient of

zs+2− j in F(z) for 0≤ j ≤ s+2. Suppose bk 6= 0, and let t j be given by

bk+ j = t jbk for j ∈ Z. (5.6)

Then

ak+ j+2 = bk+ j+2−Abk+ j+1 +Bbk+ j = (t j+2−At j+1 +Bt j)bk for j ∈ Z.
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We will be interested in the weighted average of the ` numbers ak+2, ak+3, . . . ,ak+`+1 given

by

W (k, `) =
`−1

∑
j=0

µ jak+ j+2, where 0≤ µ j ≤ 1 for 0≤ j ≤ `−1 and
`−1

∑
j=0

µ j = 1.

Observe that W (k, `) =W0(k, `)bk, where

W0(k, `) =
`−1

∑
j=0

µ j
(
t j+2−At j+1 +Bt j

)
= µ0Bt0 +

(
−µ0A+µ1B

)
t1 +

`−1

∑
j=2

(
µ j−2−µ j−1A+µ jB

)
t j

+
(
µ`−2−µ`−1A

)
t`+µ`−1t`+1.

(5.7)

We choose the µ j so that the coefficients of t1, t2, . . . , t`−1 above are all zero. Keeping in

mind that we want the µ j to sum to 1, the above corresponds to choosing the µ j so that the

matrix equation

1 1 1 1 1 · · · 1 1 1 1

−A B 0 0 0 · · · 0 0 0 0

1 −A B 0 0 · · · 0 0 0 0

0 1 −A B 0 · · · 0 0 0 0

0 0 1 −A B · · · 0 0 0 0
...

...
...

...
... . . . ...

...
...

...

0 0 0 0 0 · · · B 0 0 0

0 0 0 0 0 · · · −A B 0 0

0 0 0 0 0 · · · 1 −A B 0

0 0 0 0 0 · · · 0 1 −A B





µ0

µ1

µ2

µ3

µ4

...

µ`−4

µ`−3

µ`−2

µ`−1



=



1

0

0

0

0
...

0

0

0

0


is satisfied. Of some interest to us is that the matrix equation depends only on A, B and `,

and not on k. The first row corresponds to the equation µ0 + µ1 + · · ·+ µ`−1 = 1. Recall

that we also want 0≤ µ j ≤ 1 for every j ∈ {0,1, . . . , `−1}. Part of the process of choosing

` appropriately for given A and B is to ensure that the condition 0≤ µ j ≤ 1 holds. In other
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words, the verification that 0 ≤ µ j ≤ 1 will be established by solving the matrix equation

above and checking directly if the condition holds. If it does not, then a different choice of

` needs to be selected.

Suppose now that µ j is a fixed solution to the above matrix equation. The matrix

equation guarantees that the coefficients of t1, t2, . . . , t`−1 in (5.7) are all zero. Hence, taking

a = µ0B, b = µ`−2−µ`−1A and c = µ`−1,

we obtain

W0(k, `) = at0 +bt`+ ct`+1.

The values of a, b and c depend on A, B and `. From (5.6), the values of t j depend on k.

We consider first taking k to satisfy bk =U , which is possible by the definition of U . At

this point, we will want knowledge about the signs of a, b and c. For our specific choice in

(5.1), we will have that a, b and c are positive. This was also the case in Cole, Dunn, and

Filaseta (2016) and Filaseta and Gross (2014). As this is the case of interest to us now as

well, we suppose that

a > 0, b > 0 and c > 0

but note that modifications can be made to the arguments that follow if for example a > 0,

b < 0 and c > 0. Since the maximum coefficient of F(z) is M, we have that (5.6) implies

M ≥W (k, `) =W0(k, `)bk = at0bk +bt`bk + ct`+1bk

= abk +bbk+`+ cbk+`+1 ≥ aU +bL+ cL.
(5.8)

Next, take k so that bk = L. Since each coefficient of F(z) is ≥ 0, we deduce here that

0≤W (k, `) =W0(k, `)bk = abk +bbk+`+ cbk+`+1 ≤ aL+bU + cU. (5.9)

Multiplying through (5.8) by a and through (5.9) by −(b+ c) and adding, we obtain

aM ≥ (a2− (b+ c)2)U. (5.10)
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Multiplying through (5.8) by b+ c and through (5.9) by −a and adding, we have

(b+ c)M ≥ (a2− (b+ c)2)(−L), (5.11)

where −L is used here to emphasize that L ≤ 0. We will not make use of (5.11) here, but

note that if F(z) is a Newman polynomial, then M = 1 and (5.11) can be used to give a

lower bound on the coefficients of h(z).

Of particular interest to us is (5.10) as it provides a lower bound for M. We return to

the case of A and B given by (5.1). We take ` = 45 (arrived at through experimentation).

The solution to the matrix equation is given in part by

µ0 = 0.0099262 . . . , µ1 = 0.0183046 . . . , µ2 = 0.0252752 . . . ,

µ3 = 0.0309719 . . . , µ4 = 0.0355222 . . . , µ5 = 0.0390468 . . . ,

µ6 = 0.0416590 . . . , µ7 = 0.0434652 . . . ,µ8 = 0.0445645 . . . , . . . ,

µ42 = 0.0007752 . . . , µ43 = 0.0003826 . . . , and µ44 = 0.0000433 . . . .

One checks that µ j ∈ [0,1] for each j ∈ {0,1, . . . ,44}. We obtain

a = µ0B = 0.0116195 . . . , b = µ`−2−µ`−1A = 0.0002890 . . .

and c = µ`−1 = 0.0000433 . . . .

Recall that

U ≥ b34 ≥ β34 = 135.6907665 . . . .

From (5.10), we now obtain that

M ≥ 1.5713809 . . . .

Thus, the maximum coefficient of F(z) must exceed 1.5713809 . . ., establishing the theo-

rem.
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