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ABSTRACT

A Newman polynomial is a polynomial with coefficients in {0, 1} and with constant
term 1. It is known that the roots of a Newman polynomial must lie in the slit annulus
{zeC:¢7" < |z| < ¢} \RT where ¢ denotes the golden ratio; however, it is not guaranteed
that all polynomials whose roots lie in this slit annulus divide a Newman polynomial. The
Mahler measure of a monic polynomial is defined to be the product of the absolute values of
those roots of the polynomial which are greater than 1. K. Hare and M. Mossinghoff have
asked whether there is a ¢ > 1 such that if a polynomial f(z) € Z[z] has Mahler measure
less than o and has no nonnegative real roots, then it must divide a Newman polynomial.
In this thesis, we present a new upper bound on such a o if it exists. We also show that
there are infinitely many monic polynomials that have distinct Mahler measures which all
lie below ¢, have no nonnegative real roots, and have no Newman multiples. Finally, we
consider a more general notion in which multiples of polynomials are considered in R[z]

instead of Z[z].
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CHAPTER 1

INTRODUCTION

A 0, 1-polynomial is a monic, polynomial with all its coefficients in {0,1}. A Newman
polynomial is a univariate 0, 1-polynomial with constant term 1. We will denote the set of
all Newman polynomials by .#". Odlyzko and Poonen (1993) showed that if o € C is a

root of a polynomial F' € .4/, then « lies in the slit annulus
Ap\RT={z€C: ¢ <[z] < ¢}\RT

where ¢ = (1++/5)/2 denotes the golden ratio.

In this text, we will explore the cases when a given polynomial has or, more appropri-
ately, does not have a multiple that is Newman. It is important to note that a polynomial
with a root outside the annulus Ay cannot have a Newman multiple. Moreover, we note
that no polynomial with a positive real root can have a Newman multiple.

The following result, due to K. Hare and M. J. Mossinghoff (2014), answers a question

about a particular class of polynomials which satisfy the above conditions.

Theorem 1.1. If a real number 3 € (—@,—1) is the only root of a monic polynomial f(z) €
Z|z] which lies outside the open unit disk 9 ={z € C: |z| < 1} and f(z) has no nonnegative

real roots, then there exists a Newman polynomial F (z) with F() = 0.

Before giving their proof, we will first make a few more observations. In the theorem
above, B represents a real algebraic integer with || > 1 whose other conjugates all lie
in & (that is, having modulus less than 1). A B > 0 with this property is called a Pisot

number. Bertin, Decomps-Guilloux, Grandet-Hugot, Pathiaux-Delefosse, and Schreiber



(1992) show that every Pisot number less than ¢ may be expressed as a root of one of the

following polynomials for some positive integer n:

p2n(Z) _ Z2n—i—1 _Z2n—1 _ 2n=2

Goni1(2) = 2l _ 20 an-2
@) =P -z 1)+ -1,
g(z) = B2+ P41

Because a Newman polynomial cannot have positive real roots, no Pisot number will
be a root of a Newman polynomial. We say B is a negative Pisot number if —f3 is a Pisot
number and consider instead such numbers. Observe that Theorem 1.1 is a statement about
negative Pisot numbers.

With the above in mind, we consider similar families of polynomials with negative Pisot
numbers as roots. Specifically, we consider the monic polynomials —p,(—2z), —g2n+1(—2),
ran(—z2), —ran+1(—2), and g(—z). From the above, it follows that any negative Pisot num-
ber B > —¢ occurs as a root of one of these monic polynomials for some n. We proceed

now to a proof of Theorem 1.1 based on the work of Hare and Mossinghoff (2014).

Lemma 1.2. For every positive integer n, the polynomial r,(z) has exactly one root 3

outside of 2 with B € R and B > 1. Furthermore, the polynomial r,(z) is irreducible over

Q.
Proof. Forz€ € ={z¢€ C:|z] =1}, we first observe that by a direct computation we have
12 —z— 1P =P —-z-1)(F-7-1)=3-2>-7

and

1= -1 -1)=2-2 -7,

where 7 denote the complex conjugate of z. In particular, we obtain

1Z2—z—1|>|2—1| forallze¥. (1.1)



Let p,(z) = *(z> — z— 1). From the above, we deduce that for z € %, we have

(@) = Pa(@)| = |22 = 1] < |22 = 2= 1| = |pa(2).

By Rouché’s Theorem, we see that r,(z) and p,(z) have the same number of roots, counted
to their multiplicity, inside . As zZ —z — 1 has exactly one root in €, we deduce r,(z)
has exactly n + 1 roots inside ¢ and exactly one root outside %. Call this root . As
ra(1) = —1 and r,(2) = 2" 43 > 0, we obtain 3 is a real root in the interval (1,2). Thus,
the first statement of the lemma follows.

Observe that r,,(z) is monic. Assume r,(z) = u(z)v(z) for some monic u(z) and v(z) in
Z[z] each of degree > 1 with u(8) = 0. Since B is the only root of r,(z) outside of 2, the
roots of v(z) each have absolute value < 1. Since |v(0)] is the absolute value of the product
of the roots of v(z), we obtain |v(0)| < 1. Note that r,,(0) = —1 implies v(0) # 0. We obtain
a contradiction as |v(0)| is a non-zero integer < 1, which is impossible. We deduce that

rn(2) is irreducible, completing the proof. O

Proof of Theorem 1.1. Let 3 be areal number in (—¢,—1), and let f(z) € Z|z] be as in the
theorem so that f(f8) = 0. This immediately implies that f(z) is the minimal polynomial of
B. Otherwise, there would exist monic g(z) and h(z) € Z][z] of degrees > 1 satisfying f(z) =
g(2)h(z), g(B) = 0 and all of the roots of h(z) lie inside Z. But this is a contradiction, as
it implies |2(0)|, which is the absolute value of the product of the roots of %(z), is not an
integer.

Now, since 3 € (—¢,—1), we have that f3 is a root of one of the polynomials — p;,(—z),
—qon+1(—2)s ron(—2), —rans+1(—2), and g(—z) for some positive integer n. Hence, the
minimal polynomial for 8, namely f(z), must divide one of these polynomials for some
positive integer n. Fix such an n. As a consequence of Lemma 1.2, the polynomial rp,(—z)
is irreducible. Thus, if f(z) divides rp,(—z), then f(z) = ra,(—z). Assume this is the
case. Then f(0) = rp,(0) = —1 and f(1) = rp,(—1) = 1. By the Intermediate Value

Theorem, f(z) has a positive real root, contradicting the conditions of f(z) in the statement



of Theorem 1.1. Hence, f(z) does not divide r,(—z). Similarly, one checks that g(—z) is
irreducible, g(0) = —1, and g(—1) = 1, so an analogous argument gives that f(z) does not
divide g(—z). Therefore, f(z) divides one of the polynomials — p,(—2z), —q2n+1(—2), and
—r2n+1(—2).

To finish the proof, it suffices now to show that each of the polynomials —py,(—z),

—qon+1(—2), and —rp,+1(—z) divides a Newman polynomial. Observe that
—pon(—2) (" + 2"z 1)

2n—2

— (ZZnJrl _Z2n71 4z

ce—z 1) (T 24 D)
Al Ay A2 e 2 an2  nd 2
which is a Newman polynomial. Also, we see immediately that
i (—2) =2 2 2 2
SO —@an+1(—2) is a Newman polynomial. Next, we use that
o1 (=2) (4221
_ ((Z2n+1 1) (Zz 1) +Z2n+2) (Z2n+z2n72+ a2 1)
_ (Z2n+1 —1) (Z2n+2 —1) _|_Z2n+2(Z2n+Z2n72+ - 1)
_ A3 ekl ong2 (Z2n -V +z2) ey
From this, we see that
o1 (=2) (" + T+ ) (M D)

is a Newman polynomial. Therefore, in any case, we see that f(z) | F(z) for some F(z) €

A, completing the proof. ]

The Mahler measure of a polynomial

n

f(z) = Zn‘z)ajzj =an [J(z—Be).
=

k=1



for f(z) € Z[z], is defined to be

M(f) = lan| Hlmax{h |Bil}-
i

If « is an algebraic integer, then M () is the Mahler measure of the minimal polynomial of
o. If f(z) is monic, then M(f) is simply the product of the absolute values of all the roots
of f(z) which lie outside the unit circle ¥ = {z € C: |z| = 1} in the complex plane. We
also note that the Mahler measure of any cyclotomic polynomial or product of cyclotomic
polynomials and a power of z is exactly 1. Furthermore, if f(z) is the minimal polynomial
of a Pisot number f3, then M(f) = |B|.

In 1933, D. H. Lehmer posited that a lower bound greater than 1 for the Mahler measure
of a polynomial f(z) € Z[z] with M(f) # 1 exists, but this remains an open problem. The

smallest measure greater than 1 he found is 1.17628. .., occurring for the polynomial
L) =042 - - AP+ 1

This is still the smallest known Mahler measure larger than 1 of a polynomial in Z|z].
Hare and Mossinghoff (2014) point out that some interesting results follow when one
attempts to bound the Mahler measure of a polynomial. For instance, Pathiaux (1973)
and Mignotte (1975) showed that if a is an algebraic number and M(a) < 2, then there
exists a polynomial F(z) with coefficients from {—1,0, 1} such that F(a) = 0. Thus, F(z)
has height 1. Moreover, Siegel’s lemma, as referenced by Hare and Mossinghoff (2014),
implies that if f(z) € Z[z] has M(f) < 2, then there exists a polynomial F(z) with height
1 such that f(z) | F(z), even if f(z) is not irreducible. Given their particular interest in the
set of Newman polynomials, Hare and Mossinghoff pose the next natural question (which

would follow if Lehmer’s conjecture is true):

Problem 1. Does there exist a real number ¢ > 1 such that if f(z) € Z[z] has no nonnega-

tive real roots and M(f) < o, then f(2) | F(z) for some F(z) € N?

Note that we consider only o > 1. A polynomial which has Mahler measure 1 is nec-

essarily a product of cyclotomic polynomials times a power of z. For any such polynomial



with f(0) # 0 and f(1) # 0, it can be shown that f(z) has a multiple that is Newman.
Given Theorem 1.1, one might like to immediately take ¢ to be ¢, but Hare and Moss-
inghoff (2014) show that if such a ¢ exists, then ¢ < ¢. The polynomials enumerated in
Table 1.1 are among the polynomials they encountered, each having no nonnegative real
roots with Mahler measure less than ¢ and which do not divide a Newman polynomial. The

6

polynomial of smallest measure they discovered like this is z® — z°> — z> 4+ 22 + 1, giving as

an upper bound for o (assuming o exists), the value 1.556014485.. ..

Table 1.1 Some polynomials from Hare and
Mossinghoff (2014) with small measure and no
Newman multiple

Polynomial Mahler measure
S-P-2+2+1 1.556014485...

-2 -2+ 2 -2 +1 1.558378942...
B+ +1 1.604364647 ...
-2+ +1 1.615829244. ..

B -2+2+1 1.617538308...

B 120+ + A+ 2 +222 +z+1 | 1.618530599...
DB+ + A+ 2+ 1.621082531...
B+ +7—z+1 1.624147966. ..
42—z —z+1 1.646642716...

B+ 4285422 + A+ 2+ 2 +z+1 | 1.652235034. ..

P. Drungilas, J. Jankauskas, and J. Siurys (2016) have improved upon this bound. They
found 16 polynomials all of Mahler measure less than 1.55601 ... which do not divide
a Newman polynomial, with the ones of smallest Mahler measure listed in Table 1.2.
The one with smallest Mahler measure is z° + 28 +z/ — 2> — z* — 22 + 1 with measure
1.436632261 .... This now gives that if such a o exists, then ¢ < 1.436632261 ....

In this thesis, we show that if o exists, then o < 1.263095875.... Some of the resulting

polynomials of small Mahler measure we found are listed in Table 1.3. Note, we also



Table 1.2 Some polynomials from

Drungilas, Jankauskas, and §iurys (2016) of
small measure with with no Newman

multiple
Polynomial Mahler measure
P+B8+ - -2 -2 +1 | 1.436632261 ...
P2+B8-2-2+1 1.483444878...
P2+ +z+1 1.489581321...
B -2+ +1 1.489581321...

B+ -2 -2+1 1.518690904 . ..
B+ -2 -2 +1 | 1.536566472...
-2+ +1 1.536913983...
D42 -2 -2+1 1.550687063...

found several more polynomials with no Newman multiple with Mahler measure less than
1.436632261 ... as given by Drungilas, Jankauskas, and Siurys (2016), but we do not list
those here.

We also show that there are infinitely many monic, irreducible polynomials f(z) having
exactly 2 roots outside 4 = {z € C: |z| = 1} and no nonnegative real roots for which
M(f) < ¢ and for which f(z) has no Newman multiples. We use the example given by

Hare and Mossinghoff (2014),
f)=L-2 -2+ +1
with M(f) = 1.556014485 ... to construct our infinite list. We define

fz) =2/ f(1/2) (1.2)

to be the reciprocal of f(z) and construct the polynomial F,(z) = f(z)z" + f(z). A polyno-
mial f(z) € Z[z] is said to be reciprocal if f(z) = £f(z) and non-reciprocal otherwise. The
existence of our infinite list of polynomials as described above is a result of the following

theorem.



Theorem 1.3. Let f(z) € Z[z] be monic and such that f(z) has no roots on the unit circle
€. Suppose that f(z) has no positive real roots and exactly two roots outside €, both
non-real and with multiplicity one. Suppose further that ged(f(z),f(z)) = 1. Forn a
positive integer, define hy,(z) as the largest degree monic factor of f(z)7" +f(z) not divisible
by a cyclotomic polynomial. Then the polynomials hy(z) include infinitely many distinct
irreducible polynomials with distinct Mahler measures approaching the Mahler measure
of f(2) as n tends to infinity. Furthermore, these irreducible h,(z) have no positive real
roots and each has exactly two roots outside €. Also, if B is a root of f(z) with |B| > 1

and if B is not a root of a Newman polynomial, then for n sufficiently large, no multiple of

hn(z) in Z[z] is a Newman polynomial.

Table 1.3 Some polynomials of small measure with no Newman multiple

Polynomial Mahler measure

A2 4038 33 32 31 .30 929 28
40727 426 25 23 20 21 19y I8 4 o 1T 6 1.263095875 . ..
IS 4 I3 2 Il 6 4 2

20— B BB P4 1.272019269...
P50 A9 A8 4T 40y 39 384 37 364 35
34, .33,.30 .29, .28 .27, 26_ 25, 24 23
7+ 4z 7 +z 7 +z 7 +z Z 1.273464959 . .

42221 204 1T 16 IS 14y 13 12 ]
-0+ —z+1

Z48 _ Z47 +Z46 _ Z45 _ Z38 + Z37 _ Z36 +Z35 _ Z34 + Z33

3
;zzjoiz;;—tzjﬁ 12;75 —tzjﬁ;z; tz;“ 2 1?2131 J:Z:o__z; 1.279464310...
+22—z+1
A8 AT A6 45 44 43 40 4 39 538 4 937
07364935 34, 33, 30 29, 28 27 .26 _ 25 | 279700474,

LA 20 21 20 19 4 I8 | 15 14 o 13
271242711 - 27104+ 2 B P+ -+ —z+1

029 23 016 ISy 148 T 1.299764321 . ..
B0 P A O P52 241 | 1.309200435...

We end the thesis by showing that one can strengthen the notion of polynomials not

having a Newman multiple by giving an explicit result for the case that f(z) is equal to the



first polynomial entry in Table 1.3. We show that not only is there no multiple of f(z) in
Z|z] that is Newman, but further there is no multiple of f(z) in R[z] having all nonnegative
coefficients bounded above by 1.5713809.... We actually show more, namely that there
is a root B of f(z) which cannot be a root of a polynomial having all nonnegative real

coefficients bounded by 1.5713809.. ..



CHAPTER 2

ALGORITHMS

2.1 DETERMINING WHEN A POLYNOMIAL DOES NOT HAVE A NEWMAN MULTIPLE

Hare and Mossinghoff (2014) outline an algorithm for determining whether a real negative
Pisot number f3 € (—¢,—1) is a root of a Newman polynomial. Let f(z) be the minimal
polynomial of B. Then f(z) divides a Newman polynomial F(z) if and only if F(f3) = 0.
If such a Newman polynomial exists, we can construct it by adding powers of 8 to 1 and
checking when this value is 0. Let .4 denote the set of non-zero 0, 1-polynomials. For a

nonnegative integer d, set
N (B,d)={F(B):F € A and degF(z) <d}.
Note that .4”/(f,0) = {1}, and note that with each iteration of d, we have

N'(B,d+1)=A"(B,d)U{Ba:ac ' (B,d)}

U{Ba+1:ae.A'(B,d)}.

Our goal is either to find an element of .4”(f,d + 1) that is equal to 0 or to prove that
B is not a root of any Newman polynomial. Unfortunately, after d iterations, the size of
A"(B,d) can be as large as 2¢ which becomes cumbersome to compute. We describe a
method next that Hare and Mossinghoff (2014) use to cut down the search space.

Suppose B € (—¢,—1) is root of a Newman polynomial

n
F(z)=Y &7,
=0

10



with gy =€, = 1. Then F() =0, and 0 € A" (B,n). Ford € {0,...,n}, define
n .
Fa)=( Y & |/
j=n—d
Note that Fy(z) = 1, F,(z) = F(z), and Fy(z) € A4”(B,d). Evaluating these polynomials at
B, we see that ford € {0,...,n— 1}, we have F;(B) = BF;(B) or Fy.1(B) =BFs(B)+ 1.
Since F(f3) = 0, we deduce

n n—d—1
B iFB)="Y eB/=— ) &p’.
j=n—d Jj=0

Dividing by "~ and recalling that B < 0, we obtain

n—d—1 - ntd 1 1 1
Fy(B)=— & &;p’ :_gn—d—lﬁ_gn—d—ZE_”'_gOW
=
1 1 1 & 1Y)’ —1
TR B BZ,O(W) Bl
Similarly,
Fy(B) 8nd1% —&1—d-2 B2 20 Bnl_d
LU N I & e B
STBTBB B,-_Zo(ﬁz) BT

Hence, if B is a root of a Newman polynomial F'(z), then for 0 < d < n, the value F;(f8) €

A"(B,d) must lie in the interval

For each integer d > 0, we define the smaller set
N (B,d) =A"(B,d)n.(B).
Thus, for 0 < d < n, we have F;(B) € A4 (B,d). We also note that the recursive formula
N (B, d+1)=A(B,d)U({fa:aec A (B,d)}NI(B))

U{Boa+1:ae 4 (B,d)}NI(B))

11



holds for d > 0 and provides a means to construct .4 (f3,d + 1) from .4 (B,d). Observe
that A4 (B,0) C A (B,1) C A (B,2) C---.

The algorithm of Hare and Mossinghoff (2014) is to construct 4 (f,0), 4 (B,1),
A (B,2),... using the recursive formula above until we find the first positive integer d
for which ./"(B,d) satisfies one of two possibilities: (i) 0 € A" (B,d), or (ii)) A (B,d) =
A (B,d—1). Note that 4 (B,d) is the set of all 0, 1-polynomials of degree d, evaluated at
B, restricted to values which lie in .# (). Thus, in the case of (i), we have that 3 is a root
of a Newman polynomial. In the case of (ii), each Bo or Boc+ 1, with o« € A (B,d — 1),
used in constructing .4 (f,d) either does not lie in .#(B) or is in .4 (3,d — 1). Observe
that if we have for some d that A4 (B,d —1) = .4 (B,d), then

N (Bod—1)= N (B,d) = N (B,d+1) = = | N(B,d).
d'>0
Thus, in the case of (ii) above, where 0 & .4 (B,d — 1), we see that 0 ¢ .4 (3,d) for all
positive integers d. Hence, in this case, 3 is not a root of a Newman polynomial. We
address next why this algorithm must terminate.

Define
A (B)=J A (B,d).

d>0
One can see that A (B,d) = A (B,d+ 1) for some d > 0 by a result of A.M. Garsia

(1962). Garsia showed that there exists a constant C := C(f3), independent of d, such
that for any two values x,y € 4 (), either x =y or |x —y| > C > 0. Since the elements
are inside a bounded set .#(f3), the number of distinct elements of .4 (B) is finite. As
A (B,0) C A (B,1)C---, we deduce that A (B,d) = A (B,d+ 1) for some d > 0. This
justifies then that the algorithm of Hare and Mossinghoff (2014) terminates for 3 a negative
Pisot number. This algorithm can also be generalized for any negative algebraic integer f3,
but as Hare and Mossinghoff (2014) note the algorithm is only known to terminate when f3

is a negative Pisot number.

12



We introduce now a variation of the previous algorithm for a complex number 3. Sup-

pose B € Ay \R and let || > 1. Then, we define

_ . B
f@(ﬁ)—{zec.!z|< |/3|—1}

and

Ne(B,d) = {F(B) : F € A and deg(F) < d} .7 (B).

If F € A and |F(B)| > ’ﬁ"ﬁll,then

pr(p) > P> P!

“BI-1- -1

and

2 )
BF(B)+11> BF(B)| —1> Py - PP+

Bl-1 B[
_BR-20pl+1+ 1Bl _ (BI-1°+IBl _ 1]
Bl-1 Bl-1 “Bl-T

Hence,if F(B) ¢ 7c(B), then BF(B) ¢ Fc(B), and BF(B)+1 ¢ I (B).

As before, we begin with d = 0 and .4”¢(f,0) = {1}, and with each iteration of d,
we generate all 0, 1-polynomials of degree d evaluated at B. This is done by taking each
element @ € A¢(B,d — 1) and applying a simple construction to obtain the new values,

Bo and Ba + 1. For example, the first three iterations of d may appear as follows:

d=0: 1
d=1: B, B+1
d=2: B?% PB*+B, B*+1, B*+B+1.

Note that doing this for every a € A4"¢(f,d — 1) will yield all possible values F(f3) for

all F € A of degree < d. The values generated which lie in the interval .#c(3) we denote

by A¢(B,d). Recalling that if F(B) ¢ #c(B), then BF(B) ¢ Fc(B) and BF(B) +1 ¢
Jc(B), we deduce

Ac(B,d) = Ac(B,d—1)U({Ba:aeAc(B,d—1);NIc(B))

U({Ba+1:ae Me(B.d—1)}N 5 (B)).
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We use the above to obtain now an algorithm as before that recursively constructs A¢(B,d).
The algorithm terminates if either (i) 0 € A¢(B,d), or (ii') A¢(B,d) = A(B,d —1).
Observe that in the case of (i'), we have F(f3) = 0 for some F € .4 of degree d. In other
words, in this case, 3 is the root of some Newman polynomial of degree d. If (ii’) occurs,
then ¢ (B,d—1) = Ac(B,d) = Ac(B,d+1)=---, and B is not a root of a Newman
polynomial.

The above algorithm for complex f3 is also described in Hare and Mossinghoff (2014).
Unlike the first algorithm for negative real f3, it is unknown whether this algorithm will
always terminate with (i') or (ii’) occurring. On the other hand, for both algorithms, one
must handle the situation where the sets .4/ (B,d) or A¢(B,d) grow in size to a point
where computationally it becomes infeasible to continue constructing these sets for larger
d. One can set up bounds for the size of these sets or degree bounds to force the algo-
rithms to terminate, but one then is left without resolving whether or not 3 is a root of a
Newman polynomial. This situation led us to search for other methods for determining
whether a given f3 is a root of a Newman polynomial. One method is to check for Newman
multiples by multiplying the minimal polynomial for 8 by various products of cyclotomic
polynomials. This often led to a quick determination that the minimal polynomials we were
considering had Newman multiples. Yet another approach we used is described in Chapter

5 of this thesis.

2.2 A NEW CLASS OF POLYNOMIALS

In regards to Problem 1, Theorem 1.1 suggests the possibility that ¢ exists and that perhaps
one can take o = ¢. Having considered the problem restricted to the class of polynomials
with negative real Pisot numbers as roots, we will introduce a new related class of polyno-
mials.

Let f(z) € Z[z] be a monic, irreducible polynomial with roots {1, B2, ..., Ba} € Ap with

Bi =B and B, = B. Suppose that By # Ba, |B| = |B| > 1, and |B| < 1 for 3 < k < n.

14



Then we call B and B complex Pisot numbers. Note that if f(z) is the minimal polynomial
of any negative Pisot number f3, then f(z?) is the minimal polynomial of 4+/[B]i. The
fact that f(z?) is irreducible in this situation is due to the observations that :I:\/W i are
two imaginary conjugates which must be roots of the same minimal polynomial and the
product of the remaining roots of f(z?) has absolute value < 1. Since f(z?) is the minimal
polynomial of im i in this case, we see that if B is a negative Pisot number, then
:I:\/W i are two complex Pisot numbers.

One would hope that we are able to classify a number of complex Pisot numbers as was
done for negative real Pisot numbers in the work of Bertin, Decomps-Guilloux, Grandet-
Hugot, Pathiaux-Delefosse, and Schreiber (1992). As aresult of an ICERM summer project
by Z. Blumenstein, A. Lamarche, Mossinghoff, and S. Saunders (2014), a few such poly-
nomial families were found, and we discuss these next.

Using the families of polynomials from the work of Bertin, Decomps-Guilloux, Grandet-
Hugot, Pathiaux-Delefosse, and Schreiber (1992) (see the discussion before Lemma 1.2 in

this thesis), we replace z with z to obtain
_pZn(—Zz) — Z4n+2 —Z4n_2 —I—Z4n_4 . _Z2_|_ 1,
g (—R) = A A A
ron(—28) =P+ - D)+ -1,
11 (=) =" 2 )
g(-) =" +20+ 8- -2 1.
Defining
P(z) ="+ 2 - 1)+1,
On(z) =7"(*+22—1)—1,
R,(2) =2"(*+22 - 1)+ —1, 2.1)
Su(z) = (42— 1) =7 +1,

G(x) =22 +20+8 -7 -2 -1,
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one can check that

Pan(2)
2y _ Té4n
_p2n(_z ) T 241

2 Oania(z)
—qan+1(=2") = 24——1’

r2n<_Z2) = R4n(Z)7

1o 1(—2%) = Sani2(2),

As each negative Pisot number in (—¢,—1) is a root of one of —p2,(—z), —qan+1(—2),
rn(—2), —ram+1(—z), and g(—z), the above discussion leads to complex Pisot numbers 3
among the roots of Py, (z), Qant2(2), Ran(2), San+2(z), and G(z) which satisfy 1 < [B| <
V0. The idea is to consider instead the larger families P,(z), Qn(z), Ru(2), Su(z), and G,(z)
and to show that these generate even more complex Pisot numbers. There is no reason to
believe that these larger families represent all complex Pisot numbers with modulus less
than ¢ or /@, but the discussion above implies that every complex Pisot number of the
form j:\/m i where f3 is a negative real Pisot number in (—¢,—1) is a root of one of the
polynomials P,(z), Qn(z), Ru(2), Sn(z), and G,(z) for some n.

We make another observation. Recall that each negative real Pisot number in (—¢, —1),
having no positive real conjugates, is a root of some F(z) € .4 by Theorem 1.1. Hence,
the complex Pisot numbers arising as roots of the polynomials — pa,(—22), —g2.11(—2%),
ran(=2%), —rams1(—2z%), and g(—z?) discussed above, provided they have no positive real
conjugates, will also be roots of F(z?) for some F(z) € .#". Thus, these complex Pisot
numbers are roots of Newman polynomials. We do not however yet know if the same is
true of all complex Pisot numbers that are roots of the larger families P,(z), Qn(z), Rn(2),
Sn(z), and Gy (z).

As an indication of the work achieved by Blumenstein, Lamarche, Mossinghoff, and

Saunders (2014), we state and prove the following result obtained by them.
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Theorem 2.1. For every odd n > 3, each of P,(z), On(2), Rn(z), Sn(z), and G(z) has exactly

two roots outside € = {z € C: |z| = 1} with both roots non-real.

Proof. 'We begin with P, (z). The reciprocal of P,(z) is P,(z) = 1 +22 —z* +2"t*. It suffices
to show that ﬁn(z) contains exactly two non-real roots inside of ¢, that is with absolute
value < 1, for every odd n > 3. To show this, we will apply Rouché’s theorem. For odd
n > 3, observe that P,(z) has a root at z = —1. Thus, we will not be able to use ¢ as the
boundary of our region when applying Rouché’s theorem. We will instead use Rouché’s
theorem over a contour which contains part of the unit circle not including z = —1. To help
motivate the contour we use, we show first that P,(z) has no roots on % besides z = —1.
We do this by showing that z+ 1 is the only irreducible reciprocal factor of B,(z).
Suppose, by way of contradiction, that P,(z) has an irreducible reciprocal factor w(z)
with w(z) # z+ 1. Then, we must have that w(z) | B,(z), and hence, w(z) | (13,1 (z) — Pu(2)).

Observe that

P(2)—P(x) =2~ 4+ =" =21 -2+ 2= =21 -1 +7"72).
We discard the z? factor since z1 P,(z). Hence, w(z) | (1 —2z2)(1+2""2). Again, we discard

the factor 1 — 72 since w(z) # z+ 1 and P,(1) # 0. Thus, w(z) | (1 4z""2). This implies

that w(z) divides
Bu(2) =21+ ) =1+ 2= =P = (1+22)(1-2*).

As w(z) 1 (1 —z?), we have that w(z) = 1 +z2. One checks that P,(i) # 0 since n is odd,
so we obtain a contradiction. Hence, P,(z) has no irreducible reciprocal factors other than
z+1.

We apply Rouché’s theorem to the contour %, an arc C and chord £ as shown in Figure
2.2. Here, we view € > 0 as some sufficiently small number. First, consider the arc C. Let
f(z) = =1 =72 4 7*, and note that f(z) has exactly two roots inside of the unit circle .

On the arc C, we have that

1f(2) +Pu(z)| = |74 = 1.
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Figure 2.1 Contour ¢’

A direct computation shows that f(e®) = u+ iv, where
u=8cos*(0) —10cos*(8)+1 and v==8cos*(6)sin(6)—6cos(6)sin(H).
Another direct computation gives
1£(€9)]? = u? +1* = —16cos*(0) + 16cos?(0) + 1.

Since |cos 6| < 1 for all 8, we have that cos?(6) > cos*(6). We deduce that for z on the
arc C, we have | f(z)| > 1. Since P,(z), and hence F,(z), has no root on ¢ besides z = —1,

we further see that for z on the arc C, we have |P,(z)| > 0. We deduce that
@) +P@ =1 <@+ P
Now, consider the chord ¢ where again € > 0 is sufficiently small. For z on ¢, we have
f@)+RE| = <L

We wish to show that |f(z)| > 1 for such z. For z on ¢, we see that the real part of z is

— cos € and the imaginary part is ¢ sin € for some 7 € [—1, 1]. We therefore write
z=—cos(€)+irsin(e) with —1<r<1.

A computation here, shows that the derivative of f(z) f(z) with respect to z can be expressed

in the form 47(cos(€) —1)(cos(€) + 1)g(&,t), where g(&,t) is a polynomial of degree 6 in ¢
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with the property that the coefficients of ¢/ for j € {1,2,...,6} approach 0 as & approaches
0 and g(€,0) approaches —7 as € approaches 0. As |¢| < 1, we see that since € is sufficiently
small, we have g(€,7) # 0 for |¢| < 1. Furthermore, for such 7, the derivative of f(z)f(z)
with respect to ¢ equals 0 only when # = 0 and is negative for ¢+ < 0 and positive for z > 0.

Thus, |f(z)|? = f(z)f(z) has a minimum at 7 = 0. At ¢ = 0, we obtain
f(2)f(z) = f(—cos€)? = (cos* & —cos®e — 1)°.

Since € > 0 is small, we have 0 < cos€ < 1 so that cos* € — cos? € < 0. Hence, we see that

|£(z)| > 1. Thus, for z on ¢, we obtain

f@+B@| <1< @] < If@)]+ [P

We now have that |f(z) + F,(z)| < |f(z)| 4 |P.(z)| for all z € €’. Therefore, by Rouché’s
theorem, we deduce that E(z) has two roots inside €”’. As we let € tend to 0, we obtain
that B, (z) has exactly two roots inside the unit circle %.

Finally, we must show that these two roots are non-real. For z € (—1,1), we have
2>z sothat Py(z) = 1+22 — 24 +2"7* > 14 2"t* > 0. We deduce that P,(z) has no
roots in the interval (—1,1). In other words, the two roots of P, (z) inside € cannot be real.
Hence, we can now deduce that P,(z) has exactly two roots outside ¢, both of which are
non-real.

Next, we consider Q,(z). Since we are interested in odd n, we observe that for such n,
we have

Pi(—2) = 2" +22—1)+1=—-04(2).
Thus, the roots of Q,(z) are precisely —f where B runs through the roots of B,(z). We
deduce from the above then that Q,(z) has exactly two roots outside &, both of which are
non-real.

Next, we consider the family R, (z). Here, we can proceed like we did in Lemma 1.2.

Replacing z with —z in (1.1), we obtain that

|2 +z—1]>|>—1| forallze €.
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Now, replacing z with z? gives
I+ —1]>|*—1| forallze%.
Taking here p,(z) = z"(z* + 7% — 1), we see that for z € €, we have
[Ra(2) = pu(2)] = | = 1] < [ +22 = 1] = |pa(2) .

From Rouché’s Theorem, we see that R,(z) and p,(z) have the same number of roots,
counted to their multiplicity, inside €. As z*+z> — 1 has exactly two roots in €, we
deduce R, (z) has exactly n+ 2 roots inside % and exactly two roots outside €. To see that

R, (z) does not have real roots outside of &, suppose that z € R and |z| > 1. Then
Ra(@)| = |&" (& 42 = 1) 28 = 1 Z [l 4 22 = f2l" = [ 1]
="M |2 = 2 =2 = (j T = ) + (2 =) 1> 1> 0.

Thus, R,(z) has no real roots outside of ¢". Hence, R,(z) has exactly two roots outside %,
both of which are non-real.

Next, we consider S,(z). Since we are interested in odd n, we observe that for such n,
we have

Ri(—2) = —"( 4+ - 1)+ —1==8,(2).

Thus, the roots of S,(z) are precisely —f where B runs through the roots of R,(z). We
deduce that S,(z) has exactly two roots outside €', both of which are non-real.

To finish the proof of the theorem, it remains to note that with a simple computation
one can deduce that G(z) has exactly two complex roots lying outside the unit circle ¢,

both of which are not only non-real but are in fact purely imaginary. 0
Now we show how these polynomials factor for all odd n.

Theorem 2.2. For odd n > 3, the polynomial P,(z) is z-+ 1 times an irreducible polynomial,

the polynomial Q,(z) is z— 1 times an irreducible polynomial, and each of the polynomials

R,(2), Su(z), and G(z) is irreducible.
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Proof. One checks directly that G(z) is irreducible. So we need now only consider the
polynomials P,(z), On(z), Ry(z), and S, (z).
In the proof of Theroem 2.1, we showed that the only root of P,(z) on the unit circle €

is —1. In fact, with n odd, we have P,(—1) = 0 and
PU(=1) = (n+4)(—1)"™ + (n+2) (1) —n(=1)"" = n+6 0.

Thus, P,(z)/(z+ 1) is a monic polynomial with no roots on % . In the proof of Theroem 2.1,
we also showed that |R,(z) — pn(z)| < |pn(z)| for all z € €. Observe that this implies
R,(z) # 0 for all z € €. Thus, R,(z) is a monic polynomial with no roots on %". Further,
we showed in the proof of Theroem 2.1 that P,(—z) = —Q,(z) and R,(—z) = —Sy(z) from
which we deduce that Q,,(z)/(z— 1) and S,(z) are monic polynomials with no roots on %

Let f(z) be one of the polynomials P,(z)/(z+1), Ou(z)/(z—1), Ry(z), and S,,(z), where
n >3 is odd. Then f(z) is monic in Z[x| and has exactly two roots outside the unit circle
%, both of which are non-real and hence they are complex conjugates. Also, as seen above,
f(z) has no roots on the unit circle €. Now, assume f(z) is reducible. Then f(z) = u(z)v(z)
for some monic u(z) and v(z) in Z[x] with positive degrees and non-zero constant terms.
As the two roots of f(z) outside % are non-real complex conjugate roots, they must both
be roots of u(z) or both be roots of v(z). Without loss of generality, we may suppose they
are roots of u(z). As the remaining roots of f(z) all have modulus less than 1, the roots of
v(z) all have modulus less than 1. But this is a contradiction since the absolute value of the
product of the roots of v(z) is [v(0)| > 1. Therefore, f(z) is irreducible, establishing the

theorem. L]

21



2.3  GENERATING INFINITELY MANY POLYNOMIALS OF SMALL MEASURE

The polynomials considered in Theorem 2.1 motivated the direction taken in the next chap-

ter. Taking ¢ (z) = z* + 2> — 1, we see that

Pu(z) =7"9(2) + 1,
Qn(Z) = Zn¢(Z) - 17
R,(z) ="¢(z) +2* —1,

Su(z) =2"0(z) — 2+ 1.

Computationally, these polynomials appear to have Mahler measure very close to the

golden ratio ¢ as n tends to infinity. In fact, we have

¢ = 1.61803398874989 . ..
M(Pioo(2)) = 1.61803398873400. ..
M(Q100(z)) = 1.61803398876578.....
M(Ry00(z)) = 1.61803398872418.. ..

M(S100(z)) = 1.61803398877560. ..

This observation suggests that maybe by considering more general polynomials of the form
u(z)z" +v(z), one might be able to find some interesting limiting values of Mahler measures
and relate them to our investigations of polynomials which have small Mahler measure and
no Newman multiples.

Let f(z) be a monic irreducible polynomial in Z[z] such that f(z) # f(z), where f(z)

denotes the reciprocal of f(z) defined in (1.2). In the next chapter, we consider

Fa(z) = 2" (2) + f(2), (2.2)

and show that it yields an infinite number of distinct polynomials with Mahler measures

that approach M(f) as n becomes large. By choosing f(z) appropriately, we are led then to
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finding an infinite number of complex Pisot numbers which have distinct Mahler measures
< 1.56 < ¢ and which are not roots of any Newman polynomial.

We are also able to obtain some computational results by testing other variations of this
construction. For instance, we also consider Fy(z) = 2" f(z) — f(2), Fa(z) = 2*f(2X) £ f (")
for integers k > 2, Fy(z) = 2'f(—z) + f(—z), and F,(z) = 2" f(z) £ f(z). We will explore
these computational results in Chapter 4. In Chapter 5, we use a polynomial discovered

in the investigations in Chapter 4 to explain another approach to showing that a given

polynomial does not have a Newman multiple.
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CHAPTER 3
GENERATING INFINITELY MANY POLYNOMIALS WITHOUT

NEWMAN MULTIPLES

In this chapter, we expound on the construction Fy(z) = z"f(z) + f(z), outlined in the last

chapter. Many of the results here were provided by M. Filaseta.

Lemma 3.1. Let k and { be nonnegative integers. Let u(z) be a polynomial in R|z| having
exactly k distinct roots which lie outside the circle € = {z € C: |z| = 1}, and let v(z) be
a polynomial in R[z] having exactly ¢ distinct roots which lie inside €. Let these roots be
denoted oy, ...,04 and By, ..., By, respectively. Let ej denote the multiplicity of the roots

@ in u(z), and let €’; denote the multiplicity of the roots B; in v(z). Thus,

u(z) = (z—0n) - (z— g)%wi(z)  and  v(z) = (z—B1) - (2~ Be)wa(2),

where wi(z) and wy(z) necessarily have real coefficients, with the roots of wi(z) on or
inside €, and with the roots of wy(z) on or outside €. For n a positive integer, define
fn(2) = u(2)?" +v(2). Then for every € > 0 sufficiently small and every n sufficiently large
(n > No(€,u(z),v(z))), each of the following holds:

(i) Foreach j€ {1,2,...,k}, the disk {z € C: |z— ;| < €} has exactly e roots of f(2).
(ii) Foreach j€ {1,2,...,0}, thedisk {z € C: |z— ;| < €} has exactly e’j roots of fu(z).
(iii) The remaining roots of f,(z) all lie in the annulus {z € C:1—¢€ < |z] < 1+€}.

Proof. 1f v(0) = 0, then it is not difficult to see that, for n sufficiently large, O is a root of

fn(z) and with multiplicity equal to the multiplicity of 0 as a root of v(z). By factoring out
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the appropriate power of z, we may therefore consider now only the case that v(0) # 0 and
do so.

Fix € > 0O sufficiently small, in particular so that each closed disk centered at a root of
u(z) of radius € contains only that root of u(z), so that each closed disk centered at a root of
v(z) of radius € contains only that root of v(z), and so that each such disk centered at one
of a,...,04 orone of Bi,..., By does not intersect the annulus in (iii). Let n be sufficiently

large. For j € {1,2,...,k}, set
¢i={z€C:|z—aj|=€¢} and Z;j={z€C:|z— o] <e&}.

Observe that there is a #; > 0 such that |v(z)| <1 for every z in each Z;. Recall that
u(z) =0 for z € 9; if and only if z = ;. Hence, there is a , > 0 such that |u(z)| > 1, for
every z on each circle %J Since each i lies outside %, there is also a t3 > 0 such that
ifzeD=2,U---U%, then |z] > 1+13. We deduce that, for n sufficiently large and

ZEBIU---U%, we have
V@) <t <n(l+53)" <|u(2)"|.
Set g,(z) = —u(z)Z". For z € €, U---U%; and n sufficiently large, we have

fn(2) +8(2) = [v(2)] < lg(2)]:

Thus, by Rouché’s Theorem, we deduce f,(z) has exactly e; roots in &; for each j €
{1,2,...,k}, establishing (i).

By applying (i) to the reciprocal polynomial f,(z) = ¥(z)z 48442V 1 ji(7), one can
see that (i) holds as well.

Now, suppose 7 is sufficiently large and f,(z0) = 0 and z is not within € of one of the

o or B;. We show first that |zo| is bounded above by

B=2+ lrél?gk{|aj|}+ma)({|ﬁ| :B e C,v(B)=0}.
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Let a denote the leading coefficient of u(z) and b denote the leading coefficient of v(z). If
|z0| > B, then the distance from z( to each root of u(z) or v(z) is at least 2 and no more than
2|zo|. Hence,

lu(zo)| > 2deguy  and [v(zo)| < (2|ZO‘)deng'

For n sufficiently large, we have

| fu(z0)| = lu(z0)2 +v(z0)| > 2% alzo|" — (2]z0])***"D
> |Z0|degv<2n+degufdegva o Zdegvb) > O,
contradicting that f,,(z0) = 0. Thus, |z| < B.
Assume now that |z9| > 1+ €. Since zo ¢ D and all the roots of u(z) other than the «;

are on or inside %, there is a #4 > 0, not depending on zp, such that |u(zg)| > #4. Since

|z0| < B, there is a s > 0 such that |v(zg)| < ts. Therefore,
|/n(z0)] = |u(z0)20 +v(20)| > ta(1 + €)" — 15.

Since n is sufficiently large, we obtain a contradiction. Hence, we must have |zp| < 1+ €.
By again considering the reciprocal polynomial f;,(z) = #(z)z" 98 ~deev 1 jj(z), we deduce

that for n sufficiently large, we must also have |z9| > 1 — €. O

We will want to have some idea of how close the roots of f;(z) are to the roots of u(z)
in Lemma 3.1. Observe that in the argument for Lemma 3.1, if we decrease the size of €,
the values of 7; and #3 can remain constant. Given the factorization of u(z) in the statement

of Lemma 3.1, we have for z € ¢; that
u(z)| > to|lz— 0| = t6€/,

where f¢ is a constant depending only on u(z) and € > 0 being sufficiently small. The

inequality |v(z)| < |u(z)z"| then follows provided that
te(14+13)"€% > 11.
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Therefore, for the purposes of (i), we can take
&= t7/(1 _|_t3)”/‘?j7

for some 7 depending only on u(z) and v(z). Rouché’s Theorem applies, and we deduce
that £, (z) has a root within #7/(1+4-3)"/¢ of each root @; in Lemma 3.1. A similar argument

applies to the roots f3; and (ii). Thus, we have the following.

Corollary 3.2. In the set-up of Lemma 3.1, let
E =max{ey,... e, €},...,e)}.
Forn € 7", zo € C and positive real numbers A and B, set
In(20) = Dn(20,A,B) = {z € C: |z—z0| <A/(1+B)"F}.

Then there exist positive constants A = A(u(z),v(z)) and B = B(u(z),v(z)) such that each

of the following holds for n sufficiently large:
(i) Foreach j€ {1,2,...,k}, the disk Z,(aj) has exactly e; roots of fu(z).
(ii) Foreach j € {1,2,...,L}, the disk 9,(B;) has exactly €’; roots of fu(2).

Next, we turn to obtaining a result for the case where v(z) is the reciprocal of u(z).
Our next lemma will help us to show that, in this case, for n sufficiently large, the roots
described by (iii) of Lemma 3.1 are not only close to © = {z € C : |z| = 1} but actually all

lie on % .

Lemma 3.3. Fix c € R with ¢ > 1. Let I be an open interval containing c, and let J be
a closed interval. Suppose H(z,t) is a real valued function having continuous first order
partial derivatives for z € I and t € J. Suppose further that H(c,t) > 0 for all t € J. For

n € 7%, define Fy(z,t) = z"H(z,t). Then there exists an no(H ,c) such that

dF,(z,t)

9z z=c

>1 foralln>no(H,c)andallt €J.
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Proof. First, observe that since J is compact and H(c,t) is a continuous function of # in J,
the function H(c,) obtains its minimum in J. As H(c,t) > 0 for all7 € J, there isan € > 0

such that H(c,t) > € for all t € J. Similarly, there is an M > 0 such that

J0H (z,t
‘M <M foralltel. 3.1)
8Z 7=cC
Since
o0F,(z,t 0H (z,t dH(z,t
Iz _ 2nc® 'H(c,t) + 2 HED | e (2nH(c,t) LG ) :
9z 7=c 9z z=c dz =c
the conditions ¢ > 1, H(c,t) > € for all t € J and (3.1) imply
0F,(z,t
@Ol S e —em > 1
27 |._.
for n > ngy and ng = no(H, ¢) sufficiently large. Hence, the lemma follows. ]

Lemma 3.4. Let f(z) be a polynomial in R|z| which has exactly k roots outside the unit
circle € = {z € C: |z| = 1} and no roots on €. For n sufficiently large, the polynomial

f(2)Z"+ f(z) has exactly k roots outside €.

Proof. Observe that f(z) having no roots on % implies f(z) has no roots on ¢. Let z € €.
Then zF and 77 are complex conjugates for every positive integer k. Therefore, f(z) and

f(1/z) are complex conjugates and, hence, have the same absolute value. We deduce that

f@) | 1@
el f(1/2)| |zl |f(1/2)|

Now, set z = re'®, where r > 0 and 6 € [0,27). Define

=1 forallze%. (3.2)

‘{(Z)
f@)

<

_|f@))* _ f(rcos®+irsin®)f(rcos6 —irsin6)
Cf @)1 f(rcos@+irsin®@)f(rcos® —irsin@)

H(r,0) and  F,(r,0)=r*"H(r,0).

Then H(r,0) and F,(r,0) are real-valued rational functions in r with coefficients that are
polynomials in cos@ and sin6. These functions are continuous in r and 6 away from
points where the denominator is 0; in particular, since f(z) and f(z) do not have zeroes on
%, there is an open annulus .2/ containing % such that H(r,0) and F,(r, 0) are continuous

in  and O for re'® in .«
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From (3.2), we deduce
H(1,60)=1 forall 0 € [0,2x7].

From Lemma 3.3, there is an N such that n > N implies

dF,(r,t)

5, >1 forall 8 € [0,27].

r=1

Fix 6y € [0,27) and n > N. By the continuity of dF,(r,0)/dr in r and 6 around (r,0) =
(1,6p), there is an &(6y) > 0 such that for z = re’® in the open disk 2(6y) = {z € C :
Iz—e'%| < €(6)}, we have dF,(r,0)/dr > 1/2.

With n > N still fixed, we observe that the open disks Z(0) for all 6 € [0,27) form
an open covering of the compact unit circle 4. Hence, there is a finite subcovering of the
unit circle using say 2(0),...,2(6;) for some s € Z* and 6; € [0,27). By considering
the intersection points of the boundaries of overlapping disks and the minimum distance of
these intersection points to the unit circle, we deduce that there is an € > 0 such that

dF,(r,0 .

#21/2 forall re®® € |{z € C:1—e < |z < 1+¢}| (3.3)
.

The significance of (3.3) is the following. For a fixed 6 € [0,27), we have that the

function F,(r, ) is strictly increasing as a function of r € [1,1+ €]. Further, F,(1,0) =1

from (3.2). Hence, F,(1 +¢€,0) > 1. We deduce that
2" f(2)] > [f(z)] forallze e ={z€C:|z|=1+e}.

Let g(z) = —f(z)Z". Then

[(f)"+ F(2) +8@)| = @) <|o"lf(@) = lg(z)] forallzeCe.  (3.4)

Observe that (3.4) holds for each n > N where € = £(n). However, in the above, one
may take € > 0 arbitrarily small. We obtain from Rouché’s Theorem and (3.4) that, for
n > N, the polynomials f(z)z" + f(z) and g(z) have the same number of roots, counted to
their multiplicity, on the closed unit disk 7 = {z € C: |z] < 1}. As g(z) = —f(z)Z" has

n+ deg f — k such roots, the same is true of f(z)z" + f(z). The lemma now follows. O
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Corollary 3.5. Let f(z) be a polynomial in R[z] which has exactly k roots outside the unit
circle € = {z € C: |z| = 1} and no roots on €. For n sufficiently large, the polynomial

f(2)7"+ f(2) has exactly n+ deg f — 2k roots on €.

Proof. Apply Lemma 3.4 to see that, for n large, f(z)z" + f(z) has exactly k roots outside
of €. Since f(z)z" + f(z) is reciprocal, we deduce f(z)z" + f(z) has exactly k roots inside
% . The corollary follows. ]

The next lemma follows, for example, from Proposition 11.2.4 in Rahman and Sch-

meisser (2002). We give a proof here.

Lemma 3.6. Let f(z) = ;-:0 a jzdf € Zlz) with r > 1, ag # 0, and dy = 0. Then each root

of f(z) has multiplicity at most r.

Proof. Assume « is a root of f(z) with multiplicity k > r+ 1. Then f®)(a) = 0 for

0 <u <rsothat
Zajdj(dj—1)---(dj—u+1)adf’”:O forO0<u<r
=0

We claim that this is only possible if each a; equals 0, contradicting ap # 0. As the above
r+ 1 equations in the r+ 1 numbers a; form linear equations in the a;’s, it suffices to show

that detM # 0, where M = (m;;) is the (r+1) x (r+ 1) matrix with

adi ifi =0,
m,'j =
di(dj—1)---(dj—i+ Do~ ifo<i<r
where for convenience we use subscripts for i and j from {0, 1,...,r} so that the first row

corresponds to i = 0 and the first column corresponds to j = 0. Note that & 7 0 since ag # 0
and dy = 0. We can remove a factor of % from the (j+ 1)st column and then a factor of

o~ from the (i + 1)st row to obtain a new (r+1) x (r+ 1) matrix M’ = (mj;) where
1 ifi=0,

di(dj—1)---(dj—i+1) if0<i<r
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The matrix M’ has the property that detM # 0 if and only if detM’ % 0. We can further

multiply the (i + 1)st row by 1/i! to obtain an (r+1) x (r+ 1) matrix M” = (m!;) where

ij
d;
1 ]
mj; = (i )

The matrix M” similarly satisfies the property that det M # 0 if and only if detM” # 0. The
matrix M” (or the matrix M’) can be computed by connecting it to a Vandermonde matrix
Pdlya and Szeg6 (1976) (see Part V, Problem 96 Solution). We obtain

[To<i< j</(dj —d)

detM” = P—
[To<i<j<r(j—1)

#0.
The lemma follows. [

For the results that follow, we will require f(z) € Z[z] have degree > 1 and satisfy
gcd(f(z), f(z)) = 1. We note that for such f(z) € Z[z], we have as a consequence that f(z)
has no roots on the unit circle € = {z € C: |z| = 1}, as any such root would be a root of

both f(z) and f(z).

Lemma3.7. Let f(z) = Y_ga;z! € Zlz withr > 1, a, =1, ag # 0 and ged(f(2), f(z)) = 1.
Then there exists a positive integer M such that for all positive integers n and m satisfying

®,,(z) divides f(2)7"+ f(z), we have m < M.

Proof. For n a positive integer, set F,(z) = f(z)z" + f(z). Suppose m and n are positive
integers for which ®,,(z) divides F,(z). Let { = &, = ¢*™/™. Then F,({) = 0, and we

obtain

0=f(E)C"+F(5)=F(OT"+ L f(1/8) = "' =— (3.5)

Since § and 1/¢ are complex conjugates, we deduce f(&) and f(1/) are complex con-

jugates. Hence,

f(1/8)/f(&)| = 1. The basic idea now is to use that § is very close to 1
for large m so that the right-hand side of the last equality in (3.5) is close to —1 and then to
show that the left-hand side of this equation can only be close to —1 for m from a finite list

of possibilities.
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The right-hand side of the last equality in (3.5) is

_fa/%) f(6)=rf(1/9)
f(6) (SN

Denote the roots of f(z), up to their multiplicities, by ay, ..., . By the conditions in the

=—-14+mn, where n=

statement of the lemma,

T=min{|z— ;| : 1<]<rz6(5}—lr<nll<lr{’1—’%|‘} > 0.

We deduce the inequalities

7(0)~ £(1/0)| = |<1e- cwzwkgo c>“’<s|c—2|;)j|aj|,
£=Tl=2lsinm/m)] < T,
and
£(0) = ‘“"jljl oyl > a7
Thus,

C1 4 " .
In| < — where C| = W};)]]aj\.
We now turn to the left-hand side of the last equality in (3.5). Let ¢ be an integer in
[0,m — 1] such that n —r =t (mod m). Then {"~" = {'. We treatr € (m/4,3m/4) sepa-

rately from other ¢. Fort € (m/4,3m/4), we sett’ =t — (m/2) € (—m/4,m/4). Observe

that
t_#2% _ pm o2 2¢ ,
§' =8 =CmGn=—C, and |27t'/m|<m/2.
Hence,
' ! . 2 2zl 4l
|14+ ¢'| = |1 =G| > |Im(1 - &52)| = |sin(2nt’ /m)| > — n|1 | _ 4l
We deduce that

= == where ] = (4] /m.
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From (3.5), we obtain

Note that #’ is not necessarily an integer, but the definition of ¢ implies that 2t' = ¢” for
some t” € 7. Thus,
- t 2t/ "’
=0 =—Gm="Com

where || < 2C;. Fix t" € Z satisfying |t"'| < 2C;. Since F,({) =0and { = {3, , we obtain

FEE+T(@) =0 = ()" "+ F(1/E) =0 = —f(85,) G+ F(1/E5,) = 0.

2r+max{—t",0} we

Clearing denominators in this last equation by multiplying through by {;
obtain a polynomial in {y,, with a non-zero leading coefficient. More precisely, the poly-

nomial

_f(z2)Zt”+2r+max{—t”70} +ZmaX{—t”,0}f(Z2) 3.6)

has {y,, as a root and has leading coefficient ¢, where

(

—a, ift” > -2r

C=19ap ift" < —2r

ar_—ax ift" = —2r, where k =max{j:0 < j<r/2,a; # a,_;}.
\

Note that such a k exists since ged(f(z), f(z)) = 1. As the polynomial in (3.6) only de-
pends on f(z) and ¢ and |t"| < 2C,, we see that as t” varies, there are only finitely many
possibilities for the roots of these polynomials and, hence, for the value of 2m. Thus, if
t € (m/4,3m/4), the lemma follows.

In the case thatr € [0,m — 1] withn—r =t (mod m) and ¢ & (m/4,3m/4), we proceed
as follows. First, we observe here that ' = e2™/™ = ¢%i for some 6,, € [-1/2,7/2].
Hence,

|1+ >Re(1+¢") =1+cos(6,) > 1.
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In other words, { = —1+n’, where |n’| > 1. From (3.5), we obtain

C] 4w "
1< ! = < — <C = j 1B
<In'l=nl < = m<i= 0 Y

Thus, in this case, we also get that m is bounded as in the lemma, finishing the proof. [

For computational purposes, we made the constants C; and C, explicit above. The
proof can therefore be used then to obtain an explicit M as in the statement of the lemma.
We comment, however, that the expression |a,|7" in C} and C, creates a less than optimal
bound for || and |¢'|, and one can replace it with a value closer to | f(1)].

For the next result, we recall the notation M(f) for the Mahler measure of the polyno-

mial f(z).

Theorem 3.8. Let f(z) =Y"_ya;z/ € Zlz] withr > 1, a, = 1, ap # 0 and ged(f(z), f(z)) =
1. Suppose f(z) has no positive real roots. Then for every € > 0, there exist infinitely many

polynomials h(z) having no positive real roots and no cyclotomic factors such that
\M(f)—M(h)| <. (3.7)

Furthermore, these h(z) can be chosen so that the number of roots of h(z) outside € = {z €

C: |z| = 1} is equal to the number of roots of f(z) outside €.

Proof. For n a positive integer, set F,(z) = f(z)2" + f(z). We take n sufficiently large so
that the following arguments hold.

Let k denote the number of roots of f(z), counted to their multiplicity, outside of ©. By
Lemma 3.4, the polynomial F,(z) has exactly k roots, counted to their multiplicity, outside
of . Furthermore, since n is sufficiently large, Lemma 3.1 implies that these k roots are
close to the k roots of f(z) outside of ¥ in such a way that (3.7) holds with (z) = F,(z).

Let hy(z) denote the product of the monic irreducible factors of F,(z) having roots
outside 4. The polynomial F,(z)/h,(z) has only roots on or inside ¥’. The product of

the roots of Fy(z)/hy(z) must be a non-zero integer since ag # 0. We deduce, therefore,
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that F,(z)/h,(z) has only roots on €. As cyclotomic polynomials are the only monic irre-
ducible polynomials containing every root on ¢, we deduce that F,(z)/h,(z) is a product
of cyclotomic polynomials.

From Lemma 3.6 and Lemma 3.7, there are positive integers R and M independent of

n such that F,(z)/h,(z) divides

H Cbm(z)R.

m<M

As n tends to infinity, this expression is a polynomial of bounded degree and deg F;, tends to
infinity, so we deduce that deg 4, tends to infinity. As M(h,) = M(F,), we deduce that there
are infinitely many % as in (3.7). Furthermore, since f(z) and hence f(z) has no positive
real roots, Lemma 3.1 and Corollary 3.5 imply 4,(z) has no positive real roots off of €.
Since h,(z) has no cyclotomic factors, we also have A, (1) # 0, so h,(z) has no positive real

roots, completing the proof. [

There is a much simpler proof that polynomial A(z) as in (3.7) exist by making use
of f(z") instead of h,(z). However, we will want to take advantage of the fact that, for
n large, the polynomials /,(z) in the proof of Theorem 3.8 each has the same number of
roots outside € as f(z) and that these roots of £,(z) are close to the roots of f(z).

We briefly review and partially revise the algorithms discussed in the previous chapter.
Let 3 be an algebraic integer in (—7,—1) where T = (1 ++/5)/2. Let

Observe that this differs from .# () only in that we have made this a closed interval for

our purposes here. Set .4 (3,0) = {1} and, for d a positive integer, define
N (B,d)=({Bo:wec AV (B,d-1)}U{Bo+1:0c 4 (B,d—1)})NIP).

This differs from our previous definitions discussed earlier in that we do not necessarily
include the elements of 4 (B,d — 1) in A" (B,d). However, it is not difficult to check that

the arguments in the previous chapter imply that 8 is not a root of a Newman polynomial
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if and only if there is a positive integer dy = do(f3) such that either .4 (f,dy) = @ or both
N (B,do) = N (B,do— d) for some positive integer d < dy and 0 & A (B,dp). Note that,
in the case A4 (B,dy) = 0, one necessarily has 0 & 4 (B,d) for all d < d.

Similarly, for B an algebraic integer in C with |B| > 1, we define

= feeciz )

A(B,0) = {1},
and
JV’(ﬁ,d) = ({Ba) W E JV'(ﬁ,d)}U{ﬁ(D—l—l W E JV’(ﬁ,d)}) ﬂI’(B), ford > 1.

We have here that if there is a positive integer d{, = dyy(f) such that 4" (B,d;) = 0, then
B is not a root of a Newman polynomial. As above, in this case, one necessarily has
0¢ A (B,d) for all d < d|,. Note that the existence of d{,(3) is not a necessary condition

for a B € C with |B] > 1 to avoid being a root of a Newman polynomial.

Theorem 3.9. Let f(z) =Y"_a;z/ € Z[z] withr > 1, a, =1, ap # 0 and ged(f(z), f(z)) =
1. Suppose f(z) has no positive real roots. Suppose that f(z) has a root B € C with |B| > 1
and that the second algorithm described above establishes that B is not a root of a Newman
polynomial. Then for every € > O, there exist infinitely many polynomials h(z) having no

positive real roots and no cyclotomic factors such that both
\M(f)-M(h)| <e (3.8)

and no multiple of h(z) in Z[z] is a Newman polynomial. Furthermore, these h(z) can be
chosen so that the number of roots of h(z) outside € = {z € C: |z| = 1} is equal to the

number of roots of f(z) outside €.

Before turning to the proof, we note that one can take f(z) in Theorem 3.9 to be f;(z) =

P-2 -2+ +1andtobe fr(z) =z~ 28 22 +z+ 1. Here, M(f;) = 1.556... and
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M(f>) =1.419.... Thus, there are infinitely many polynomials with no Newman multiples

and Mahler measure as close as we want to the Mahler measure of fj(z), and similarly for

f2(2).

Proof. Recall that taking h = h,(z), where h,(z) is described in the proof of Theorem 3.8,
and n sufficiently large, one obtains (3.8). Further, the set of such 4,(z) is infinite and the
number of roots of A,(z) outside ¥’ = {z € C: |z| = 1} is equal to the number of roots of
f(z) outside €. To establish the theorem, we need only now show that for n sufficiently
large, the polynomial /,(z) has no Newman multiple.

Let ) be a root of h,(z) that is as close to 3 as possible. As shown in the proof of
Lemma 3.1, the difference |, — B| tends to 0 as n tends to infinity. Let d, = d{,(B) be as
defined before the statement of the theorem. Define

A'B)= U AB.a).
0<d<dj

One may view /() as the expressions
ei,BY +eg 1BY 4+ eaB e+, witheache; €{0,1}, (3.9

which lie in I’(8). Let .#”7(B) denote the expressions in (3.9) which do not lie in I'(8).
As this is a finite set disjoint from the closed set I’(f), there is an € > 0 such that each
element of .#”(B) is a distance of at least £/2 from I’(). As B is not a root of a Newman
polynomial, we may also choose € so that each expression in (3.9) is a distance of at least
€/2 from 0. Observe that the endpoints of I’(s) are continuous functions of s € C in a

neighborhood of 8. Thus, there is a § > 0 such that

Il(Y)Z{Z€@5|Z|§|y:L_|1}Q{ZEC1|Z|§ |ﬁ||ﬁ_|1+§} for |y—pB| < 8.

In addition, we may take & so that |y — | < & implies
do

do ) )
Y v —) B’
=0

j=0

<e
4
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and, consequently,

E
>Z,

do )
) &Y
=0

for every choice of €; € {0,1}.

Observe that, still with |y— B| < J, if the €;’s are chosen so that

21 = €Y ey T e eyt e € T(y),

then
22 = €4, BY + &4 1Y+ + &%+ &S+ &
satisfies
€ B € 1B €
2| <lz—z|+|al <=+ +E= .
4 |B|-1 4 |B|—-1 2

Thus, |z2] is a distance < €/2 from I’(). By our choice of €, we deduce z, € I'(B). Thus,
if

€Y +Eqy 1V ey eyt e
is in I'(y) for some choice of €; € {0, 1}, then it is non-zero and the corresponding element
from (3.9) is in I’(B). As a consequence,

d
@%aww%wquew%wmqemeﬁ
j=0

d
Q&%@ww%%Z%W€ﬂﬂﬂﬂﬁemJW&
Jj=0
for each positive integer d < dy. In particular, N'(y,dy) = @ for such 7.
Recall the definition of f,. For n sufficiently large, we obtain |f, — 8| < 8. Thus, for

n sufficiently large, the second algorithm described earlier establishes that /,(z) does not

have a Newman multiple, completing the proof of the theorem. [

Theorem 3.10. Let f(z) € Z|[z] be monic and non-reciprocal. Suppose that f(z) has no
positive real roots and exactly two roots outside €, both non-real and with multiplicity one.

Suppose further that ged(f(2),f(z)) = 1. For n a positive integer, define h,(z) € Z[z] as
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the largest degree monic factor of f(z)Z" + f(z) not divisible by a cyclotomic polynomial.
Then the polynomials hy(z) include infinitely many distinct irreducible polynomials with
distinct Mahler measures approaching the Mahler measure of f(z) as n tends to infinity
and such that hy,(z) has exactly two roots outside €. Furthermore, under the conditions of
a root B of f(z) in Theorem 3.9, we may deduce that for n sufficiently large, no multiple of

hn(z) in Z[z] is a Newman polynomial.

To illustrate Theorem 3.10, we consider again f1(z) =2° — 2> -z +z>+ 1 and f»(z) =
710 — 28 — 22 4+ z+ 1. The condition of having exactly two non-real roots outside the unit
circle ¢ is satisfied by f1(z) but not by f>(z). We can conclude that M(f1) = 1.556... is
a limiting value for the Mahler measures of polynomials with no Newman multiples. On
the other hand, Theorem 3.9 implies that there are infinitely many polynomials 4(z) with
no Newman multiples and with Mahler measure arbitrarily close M(f,) = 1.419.... The
distinction here, however, is that we have not established that the Mahler measures of these
h(z) differ from M(f,) = 1.419..., so we have not eliminated the possibility that all of the
polynomials /(z) given by Theorem 3.9 have the same Mahler measure, though it is likely
they do not. It is certainly reasonable to conjecture, therefore, that M(f,) = 1.419...1is a

limiting value for Mahler measures of polynomials with no Newman multiples, though we

have not established this.

Proof of Theorem 3.10. From Theorem 3.8 and the proof of Theorem 3.9, it suffices to
show that there are infinitely many n for which h,(z) is irreducible and has Mahler mea-
sure different from M(f). Indeed, since M (h,,) approaches M(f) as n tends to infinity, an
infinite sequence of n for which M(h,) # M(f) must have a subsequence of distinct M (h;,)
approaching M(f).

We begin by showing that ,(z) is irreducible for all sufficiently large n. By Lemma 3.1
and Lemma 3.4, for n large, the polynomial 4, (z) has exactly two non-real complex con-

jugate roots outside of €. There is a monic irreducible factor w,(z) of &,(z) that has these
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two complex conjugate numbers as roots. Since any remaining monic irreducible factor
will have all its roots on the unit circle and since £,(z) has no cyclotomic factors, we de-
duce that £, (z) /wy,(z) = 1. Thus, hy,(z) = wy(z) is irreducible.

Assume that for all n sufficiently large, we have M (h,) = M(f). By our above remarks,
the proof of the theorem will be complete if we can obtain a contradiction to this assump-
tion. With this in mind, we take n sufficiently large now so that M(h,) = M(f). Observe
that the conditions in the theorem imply that f(z) has a root B = re’® where 0 < 6 < 7 and
r > 1. Also, h,(z) has a root B, = r,e % where 0 < 6, < 7 and r, > 1. Furthermore, the
only roots of f(z) outside % are B and f3, and the only roots of 4, (z) outside ¢ are f3, and
By Also, B, approaches B as n tends to infinity.

We claim that f3, # f,, for any distinct positive integers n and m. Assume f3, = f3,, for

some n > m. Since h;(z) is a factor of f(z)z/ + f(z) for each j, we have

F(Ba)By + F(Bn) = f(Bu)B + F(Bn) =0,

where in the second expression we have used that f3,, = f3,. Taking a difference, we obtain

FB)B(BY™—1) =0. Since |B,| > 1, we deduce f(B,) = 0. But then f(B,)B" +
f(B,) = 0 implies f(B,) = 0, contradicting that gcd(f(z), f(z)) = 1. Hence, the B, are
distinct as n varies.

Viewing n again as sufficiently large, we have

= BB =M(f) =M(hy) = BBy = 1y,

and we can conclude r,, = r. Since the f3, are distinct, we necessarily have distinct 6, for
distinct n. Also, 6, approaches 0 as n tends to infinity.

Since h,(z) is a factor of f(z)z" + f(z), we deduce that
fre®)re®n + F(re'®n) = 0. (3.10)

Let s =deg f. Then
A

s!

Fath) = F@) + f(h+ L "< )h2+ AP
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so that

FY(B)

s!

f"(B)
2!

f(Bn)=F(B)+(Ba—B)f'(B)+ (Bu—B)2+-+

As f(z) has B as a root with multiplicity one, we deduce that /() # 0 and

1£(B) — (B —B)f'(B)| < Cr|B.— B

where Cy is a constant depending only on f(z). Similarly, we have

Bu—B =r(e —e®) = (6,—0), (3.11)
where 7, approaches ire'® as n tends to infinity. From (3.10), we deduce that
(re'r) f(re'®)

7
Sl , 3.12
Fre®)rm = (60— 0) T (B) + ) .

einen .

where
|tnl < Cr(Bu—B)* < Crrr(6,— 0)>.
As n tends to infinity, the value of f(re'®) approaches f(re'®) which is non-zero since

f(re’®) =0and ged(f(z), f(z)) = 1. Also, the expression 7, f'(B) approaches ire’® f'(B) #

0. We deduce that
lim [ =
n=e |(6, — 0)T.f"(B)]

We let arg(z) denote the argument of a complex number z, with 0 < arg(z) < 27 and equate

the endpoints by referring to arg(z) mod 2. We write the right-hand side of (3.12) in the
form p,e'® with p, > 0 and 0 < ¢, < 27. As n tends to infinity through values of n for

which 6, > 0, assuming infinitely many such n exist, we obtain
¢, mod 27 — arg (—f(re'®)/(ie”® f'(re®))) mod 27.

If instead n tends to infinity through values of n for which 6,, < 6, assuming infinitely many

such n exist, we obtain
¢p mod 27t — arg (f(re®)/(ie’® f'(re'®))) mod 2.
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We deduce then that ¢,, mod 27 approaches (has as a limit point) at most two distinct values
in [0,27).

The left-hand side of (3.12) has argument n6, mod 27. In order to examine the left-
hand side further, we will want information on how close 8, is to 8. Observe that in (3.11),
we have |1,| approaches r as n increases so that |7,| > r/2 for n large. We make use of
Corollary 3.2 with u(z) = f(z) and v(z) = f(z). Since f(z) only has two roots outside
%, both with multiplicity one, we deduce f(z) only has two roots inside €, both with
multiplicity one. Hence, in Corollary 3.2, we have E = 1. Letting A = A(f, f) > 0 and
B = B(f, f) > 0 be as defined there, we deduce from Corollary 3.2 and (3.11) that

A 2A
— — = 6, - 0| < ——.
PPl < (1+B)" 18 =81 < r(1+B)"
In particular, for n sufficiently large, we have
2nA 0
0,—nb|l < —— < —. 3.13
n6, n|<r(1+B)”<n (3.13)

We consider the two cases 6/ € Q and 6/ & Q separately. In the case that 6/7 € Q,
since 0 € (0,7), we have that 8 ¢ {0, 7} so that & = ar/b where b > 2 and ged(a,b) = 1.
Taking an appropriate m € Z* relatively prime to b, we see that m6 mod 27 takes on
the value 7/b. Letting n now be multiples of m, we obtain that n6 mod 27 takes on 2b
distinct values, each infinitely often, as n tends to infinity. In the case that 6/ ¢ Q, a
classical result of H. Weyl (1916) implies that n6 /(27) is equidistributed modulo 1 so that
n6 mod 27 is arbitrarily close to each number in [0,27) for infinitely many n. In either
case, whether 8 /7 € QQ or not, we see that n6, mod 27 is arbitrarily close to at least 4
different numbers in [0,27). As we have just seen that the corresponding argument of the
right-hand side of (3.12) approaches at most two different values as n tends to infinity, we

obtain a contradiction, completing the proof. [

For some f(z) as in Theorem 3.10, it is possible to obtain a little more information on

the polynomials &,(z). We illustrate this with f(z) = fi(z) =28 —2° — 2% + 2% + 1 used
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for previous examples here. Our goal is to show that there is a sequence of irreducible
polynomials having each coefficient in {—1,0, 1} and with Mahler measures approaching

the Mahler measure of fi(z), that is
M(f1)=1.556014485....

Given Theorem 3.10, the main idea is to show that &, (z) = f(z)z" + f(z) for many n. This
requires having then more information on the cyclotomic factors of f(z)z" 4 f(z), which
we explore next.

The next lemma is a consequence of Corollary 1 in Filaseta and Schinzel (2004).

Lemma 3.11. Let f(z) be a polynomial with r terms. If f(z) is divisible by a cyclotomic
polynomial, then there is an m € Z such that every prime divisor of m is < r and @, (z)

divides f(z).
We set
fir) =L =22 —2+2+1 sothat fiz)=ii(z) =L +* -2 —z+1.
We show that often fi(z)z" + fi(z) does not have cyclotomic roots.

Lemma 3.12. The lower asymptotic density of positive integers n for which fi(z)z" + f1(z)

has no cyclotomic factors is at least 1/20. In other words, if
S ={neZ": fi(2)7"+ fi(z) is not divisible by a cyclotomic polynomial},
then

n< 1
liming V1ET S S T
Z—¥00 z 20

Proof. Let m be a positive integer. The polynomial f(z) itself is easily checked to have no
roots on ¢ and, hence, no cyclotomic factors. We deduce that ®,,(z) divides f;(z)z" + f1(z)
if and only if ®,,(z) divides f;(z)2""™ + fi(z), and further that there is at most one n €

[0,m — 1] such that ®,,(z) divides f}(z)z" 4 /i (z). It follows that for a fixed m € Z*, we
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can determine the n for which ®,,(z) divides f;(z)z" + f1(z) by a direct computation using

n € [0,m — 1]. In particular, one checks that

D (z) divides f1(z)7" + fi(z) <= n=1 (mod 2)
Dy (z) divides f1(z)7"+ fi(z) <= n=0 (mod 4)
g(z) divides f1(z)7" + fi(z) <= n=2 (mod 8)
®0(z) divides fi(2)7"+ fi(z) <= n=2 (mod 10)
®@14(z) divides f1(2)" + fi(z) <= n=1 (mod 14)
®3(z) divides f1(z)7"+ fi(z) <= n=17 (mod 18)
®30(2) divides f1(2)7" + fi(z) <= n=22 (mod 30),

and that, for all positive integers n, ®,,(z) does not divide f|(z)z" + fi(z) for any other
positive integers m < 2050. One checks that the positive integers n that do not satisfy any
of the congruences on the right above are the n which are 6 (mod 8) and not 2 (mod 5).

The density of such positive integers is

1 1 1

8 40 10’

Next, we apply Lemma 3.11. As fi(z)z" + fi(z) has at most 10 terms, Lemma 3.11
implies that fi(z)z" + f1(z) will not be divisible by a cyclotomic polynomial if it is not
divisible by ®,,(z) for every m € Z™* with all its prime factors < 10. Observe that we have
verified asymptotically 1/10 of the positive integers n satisfy that ®,,(z) does not divide
f1(2)z" + fi(z) for every m < 2050. On the other hand, for each m > 2050, we have that
®,,(z) divides fi(z)z" + fi(z) for at most a density of 1/m positive integers n. As we need
only consider those m having each prime factor < 10, we obtain that the density of positive
integers n which are not divisible by ®,,(z) for m € {2,4,8,10,14, 18,30} and which are

divisible by some ®,,(z) for some m > 2050 is at most
1! 1! I 120,
1—= 1—= 1—— 1—=] =) =,
2 3 5 7 —m

44



where the * indicates that the sum is over those m having largest prime factor < 7. A

computation gives that the difference above is

35 461502875167 1

8 106686720000 < 20°

It follows that the asymptotic density of the positive integers m for which f1(z)z" + fi(z) is

divisible by some ®,,(z) is

completing the proof. 0

Theorem 3.13. There is a set 7 C . such that the sequence F,(z) with n € J con-
sists of monic irreducible polynomials which have distinct Mahler measures that approach
M(f1) = 1.556014485.... Furthermore,  can be chosen in such a way that each F,(z)

with n € 7 does not have a Newman multiple.

Proof. Most of the result is a direct consequence of Theorem 3.10 and the definition of .7
However, Theorem 3.10 involves a subsequence of /,(z) which we want to show includes
F,(z) with n from a subset of ..

We refer to the proof of Theorem 3.10 using the notation in the statement of Theo-
rem 3.13. In the proof of Theorem 3.10, we considered n sufficiently large and chose a root
B = re® of f(z) and a root B, = r,e’% of F,(z) with both B and 3, outside ¢ and with
both 6 and 6, in (0,7). If M(F,) = M(f,), then r2 = r? so that r, = r. Further, as seen
there, 6, # 6. We showed then that (3.12) holds, and that the argument of the right-hand
side of (3.12) has two limit points, say L; and L,. We then analyzed the argument n6, of
the left-hand side of (3.12), taking advantage of (3.13). Here, we want to analyze the use
of (3.13) with more precision.

As B = re'® is the root of fi(z) = 2% —z° — 2> + 72 4 1 which has absolute value > 1

and lies in the upper half-plane, we can compute that

% = 0.096121462959647989211571....
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A direct computation gives

min {

In particular, as 0 /x € (0,1), we can deduce that if /7 € Q, then 6 /7 = a/b for some

o
T

Z 1<bh< 100,0§a§b} > 0.00003.

positive relatively prime integers a and b with b > 100.

We now follow the approach at the end of the proof of Theorem 3.10. In the case that
0/m € Q, we deduce that as n varies, n6 mod 27 takes on over 200 distinct values, each
for the same positive density of integers. This positive density is < 1,/200, and hence the
density of n for which n0 is in a small neighborhood of either L or L, modulo 27 is
< 1/100. In this case, since the lower asymptotic density of n in . is at least 1/20, we
see that there are infinitely many n € .% for which (3.12) fails to hold. For such n, we must
have M(F,) # M(f1). As M(F,) approaches M(f) as n tends to infinity, we deduce that
some infinite subsequence n € .¥ gives distinct values for M (F,) which approach M(f}).

The case that 0/ ¢ Q is handled similarly. Here, the theorem of H. Weyl (1916)
implies that the positive integers n for which n6 is within 1/400 modulo 27 of either
Ly or Ly is < 1/100 (where equality can be shown to hold since L; mod 27 equals L, +
w mod 27). As in the case /7 € Q above, we deduce that some infinite subsequence
n € . gives distinct values for M (F,) which approach M(f}). This completes the proof of

the theorem. ]
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CHAPTER 4

MINIMIZING MAHLER MEASURE

In this chapter, we explore the results given by the methods described in the previous chap-
ter. So far, in the search for an upper bound for ¢ in Problem 1, the smallest upper bound to
date was given by Drungilas, Jankauskas, and Siurys (2016) as 1.4366322261 ... given by
showing the polynomial z° 4 z8 +z7 — 27 — z* —z° + 1 has Mahler measure 1.4366322261 ...,
no positive real roots, and no Newman multiple. Before this, Hare and Mossinghoff (2014)
showed that the polynomial z8 — z> — z3 4 z% + 1, has Mahler measure 1.55601 ..., no posi-
tive real roots, and no Newman multiple. We recall in Table 4.1 the data from Table 1.3 in
Chapter 1. In this chapter, we explain some background associated with the discovery of

the polynomials in these tables.

4.1 PRODUCING POLYNOMIALS WITH SMALL MEASURES HAVING NO NEWMAN

MULTIPLES

Our goal in this section is to use the construction Fy,(z) = z"f(z) + f(z) with a monic
irreducible non-reciprocal polynomial f(z) in Z[z] with small Mahler measure, no positive
real roots, and no Newman multiple, to generate other polynomials with small Mahler
measure, no positive real roots, and no Newman multiple. Our main examples elaborated
on in Table 1.3 and Table 4.1 involve polynomials with Mahler measure < 1.31, and so it is
worth noting that a result of Smyth (1971) implies that any polynomial in Z[z] with Mahler
measure < 1.324717957 ... is necessarily reciprocal.

As in the last chapter, we set

fi) =L =2 =2 +2+1 and fr2) =70-B -2 +z+1.
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Table 4.1 Some polynomials of small measure with no Newman multiple

Polynomial Mahler measure
M2 038 33 324 31 30 .29 28
42727 4720 P 4 B 2 A 0 18 017 6 1.263095875...
L0 IS 3 12 Il 6, 4 2
R N Ly ey | 1.272019269...
S0 A9 48 4T 40 39 38 37 36 4 35
433,30 094 08 27, %6 05y 24 23 1 973464959

42221 20 4 1T 16y IS 14 13 12y o]
—0—2+2—z+1

Z48 _ Z47 +Z46 _ Z45 _ Z38 + Z37 _ Z36 +135 _ Z34 + Z33

32, 314,28 27 26_ .25 24_ 23 22 21

A A S I S A o R A e A 4

+Z20+Z17—Zl6+zls—zl4+zl3—le—i—Z” _ZIO_Z3 1.279464310...
+22—z+1

A8 ATy 46 45 44 43 404 39 538 4 o 37
0736 4035 344 33 30 29, 28 27 26 _ 25

G124 23422 214 20 194 I8y IS 14 13 1.279702474...
27124270 27104 P B PP+ —z+1

A I LIy Ly R | 1.299764321 ...
B2 P2 O P2 -2 +1 | 1.309200435...

We also let

)=+ 4+ -2 - -2+ 1

The polynomial f;(z) is the polynomial given by Hare and Mossinghoff (2014) mentioned
above, f>(z) was found by experimentation in Maple 2015, and f3(z) is the polynomial
found by Drungilas, Jankauskas, and Siurys (2016) stated above. The polynomial f;(z) is
a non-reciprocal polynomial f(z) satisfying (i) f(z) has exactly two roots outside ¢ = {z €
C: |z] = 1}, (ii) f(z) has no positive real roots, (iii) f(z) has no Newman multiple. Of all
polynomials f(z) € Z[z], the polynomial fi(z) is one of smallest Mahler measure which
has been found to date. The polynomial f>(z) is a non-reciprocal polynomial f(z) € Z]z]
satisfying (i1) and (ii1) of smallest Mahler measure which has been found to date. The
polynomial f3(z) was prior to this work a non-reciprocal f(z) € Z[z] satisfying (ii) and (iii)

of smallest Mahler measure which has been found to date. Note that f|(z) and f»(z) were
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used for our examples in the last chapter. Their Mahler measures of the fi(x) are
1.556014485..., 1.419404632..., and 1.436632260...,

for k=1, 2, and 3, respectively. The number of roots outside % are 2, 4, and 5, respectively.

For a fixed k € {1,2,3}, define F,(z) = F, 1(z) = fi(2)2" + fi(2), and let i, (2) = hy 1 (2)
denote the largest degree monic factor of F;,(z) in Z[z] that is not divisible by a cyclotomic
polynomial. We note that each of the polynomials f(z) and f>(z) can be shown to have
no Newman multiples by making use of the algorithm described in Chapter 2 taken from
Hare and Mossinghoff (2014) for complex 3. Here, f>(z) was found by experimentation
in Maple 2015. The polynomial f3(z) was shown not to have a Newman multiple by
Drungilas, Jankauskas, and giurys (2016).

Based on the material from the last chapter, we know that for each k € {1,2,3}, the
polynomial F, x(z) will have Mahler measure approaching M(f) as n tends to infinity,
and furthermore F, x(z) and the corresponding £, x(z) will have no Newman multiple for n
sufficiently large. Experimentally, the Mahler measures of the polynomials F;, x(z) varied a
bit for smaller values of n, as did the property of whether F,, x(z) or A, x(z) has a Newman
multiple. We tabulate here some of the data we obtained, the data that led to our more
interesting examples.

All of the tables below list the leading digits (with no rounding) of the Mahler measure
of hy(z) = hy, x(z), the number of roots of 4,(z) outside the unit circle ¢, the number of
those roots outside 4" which are real, the number of positive real roots of the factor &,(z),
and whether or not %,(z) has a Newman multiple for n < 35. Each table records only the
data from polynomials satisfying M (h,(z)) < M(fi(z)) for each k.

We note that each polynomial represented in Table 4.2 has a smaller Mahler measure
than fj(z), the same number of roots outside of %, and no Newman multiple. Table 4.2
also illustrates the content of Theorem 3.13, where we know that the Mahler measure of

F,(z) approaches M(f;) = 1.556014485 ... as n tends to infinity, /,(z) = F,(z) for positive
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integers n from some infinite set .7, and the Mahler measures of F,(z) as n varies in .7 are
distinct.

There are 8 polynomials represented in Table 4.3 that have no Newman multiple, some
of which are of small measure, the smallest being the non-cyclotomic factor of F3;(z) =
f2(2)2' + f>(z) with Mahler measure 1.29976. . ..

For Tables 4.5 and 4.6, we revise the definition of /,(z) so that it is the product of
the largest degree monic factor of F,(z) = fi(z2)2" + fi(z%) in Z[Z] that is not divisible by
a cyclotomic polynomial. Similarly, for each of the remaining tables given, the value of
F,(z) is indicated and h,(z) denotes the product of the largest degree monic factor of F,(z)
in Zz| that is not divisible by a cyclotomic polynomial.

We observe that Table 4.6 gives Fao(z) = f2(z2)22° 4 f(z%), which produces a polyno-
mial /29(z) of Mahler measure 1.27946431096. .., and F3|(z) = f2(z2)z>! + f2(z%), which
produces a polynomial /3 (z) of Mahler measure 1.27346495964 . . .. Neither of these poly-
nomials has a positive real root or a Newman multiple. Another interesting example is
given in Table 4.8 where the value of A3 (z) for F31(z) = f3(z2)z>" + f3(z2) has Mahler
measure 1.27970247401 ..., no positive real root, and no Newman multiple. Also, the ex-
ample Fyg(z) = f2(z)2% — f2(z) from Table 4.9 produces an h)g(z) with Mahler measure
1.30920043575 .. ., no positive real root, and no Newman multiple. The polynomial giving
the second entry listed in Table 1.3 and again here in Table 4.1 is not listed in the other
tables in this chapter. This polynomial is the factor hio(z) of f3(z2)z'® + f4(z%) having
Mahler measure 1.27201926934..., where f4(z) = z° — 7’ — 2> +2° +z+ 1. The polyno-
mial f4(z) is an example from Drungilas, Jankauskas, and Siurys (2016) with no Newman
multiple, no positive real roots, and Mahler measure 1.48958132144.... The polynomial
producing the first entry in Table 1.3 and Table 4.1 is discussed in the next section.

The notations v'and X in the last column serve as a “yes" and “no," respectively, to
the question of whether /,(z) has a Newman multiple. The notation — indicates that we

were not able to determine the answer to this question. We tested many more polynomials
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than those listed in these tables, and it should be noted that we could not successfully
use our methods to determine whether or not Newman multiples existed for a number of
them. The situation with the number of — indicated in Table 4.4 was not uncommon. A
superscript * next to an entry on the right-most column of a table means that some approach
other than searching for cyclotomic multipliers to find a Newman multiple or using a direct
application of the algorithms of Hare and Mossinghoff (2014) was used to verify the entry.
We comment on these next.

For Table 4.5, the entries for n € {30,32,34}, were dealt with as follows. In each case,
the polynomial /,(z) is of the form w,(z?) where w,(z) is the monic polynomial dividing
fiz)z" + fl (z) of largest possible degree which has no cyclotomic factors. Observe that if
h(2)u(z) is in A for some u(z) € Z[z], then we can write u(z) = a(z?) +zb(z*) where a(z)

and b(z) are in Z[z]. Then
ha(2)u(z) = wa(22)a(z) + wa(2%)b(2%) € A,

where w,(z%)a(z?) corresponds to the terms in /,(z)u(z) of even degree. In particular,
this means that w,(z%)a(z?) € 4" so that w,(z)a(z) € .#". On the other hand, we already
observed in Table 4.2 that w,(z) does not have a Newman multiple. Hence, %,(z) cannot
have a Newman multiple.

For Table 4.8 with n = 15, taking the root
B1 = (1.0928857359...) +i(0.1254857623...)

of h15(z), the method of Chapter 5 was used to verify that if ; is a root of an F(z) € A

of degree m, then m > 15 and
F(z) = "5 P 416" 10+ .. +6,, whereeach g;€{0,1}.

Taking the real root $, = —1.1248126357... of hy5(z), then the approach of Hare and

Mossinghoft (2014) for real roots can be used. In this case, this amounts to the observation

‘F(Bz)
By

1 1 1
Sl =]

——— >0,
Bl [BafV B2 |15 — | Bo|13
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so it is impossible for F(B,) to be 0. We note that 3, is the root of /15(z) with maximum
absolute value. For Table 4.8 with n = 15, the method of Hare and Mossinghoff (2014)

was used with the root
B = (1.0949971342...) +i(0.1042054033...)

of hi9(z). What made this worth noting is that 8 is not the root of /j9(z) with largest

absolute value. The root with largest absolute value is the real root —1.1009452505... ..

Table 4.2 Data for Fo(z) = fi(2)2" + fi(z) with M(F,) < M(f) =

1.556...

Number | Number of | Number of | #,(z) has

n M (hn (Z)) of roots real roots positive a Newman

outside ¥ | outside ¥ | realroots | multiple?
15 | 1.5369179477682034 2 0 0 X
16 | 1.5229957493128481 2 0 0 X
17 | 1.5180589114389942 2 0 0 X
18 | 1.5216200155288215 2 0 0 X
19 | 1.5296307833019841 2 0 0 X
20 | 1.5381835217766994 2 0 0 X
21 | 1.5454469961759745 2 0 0 X
22 | 1.5509638159120815 2 0 0 X
23 | 1.5548344890951955 2 0 0 X
35 | 1.5558158008316200 2 0 0 X
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Table 4.3 Data for F,(z) = f2(2)7" + fo(z) with M(F,) < M(f,) =

1.419...

M(hy(z))

Number
of roots
outside ¢

Number of
real roots
outside €

Number of
positive
real roots

hn(z) has
a Newman
multiple?

1.3019549434966640

\S]

)

-

1.3001931433967972

1.3993912890938539

13

1.4155418842084992

18

1.3696117008585243

19

1.3615292809044729

24

1.3275068021121254

25

1.3220077539604978

30

1.4031648828031895

31

1.2997643210059706

32

1.4095325205272812

EEA NSRS NS (O \SJ \OJ I (S I ST \S]

(o] el o] el Heo] Neo) fev] Neo) Rev) N}

(=) el el el o] o] Rl fe] o] Re)

R IR AR IR IR IR IR IR NN N

Table 44 Data for F,(z) = f3(2)2" + f3(z) with M(F,) < M(f3) =

1.436...

M(hy(z))

Number
of roots
outside ¢

Number of
real roots
outside ¢

Number of
positive
real roots

hu(z) has
a Newman
multiple?

1.3509803377162373

[

p—

)

1.2728183650834955

1.3979993139693446

1.4052124163112895

1.2528286630316362

1.2277855586945986

1.2800820372203617

1.2868840708651366

1.3030748928169405

1.2194468759409303

1.3195081637317398

1.3916311259038360

1.4297660580707468

1.3960141705798196

1.3593194660549923

1.4365773212651716

1.4067905794817218

N N W[ W N[ W] W W W W NN W NN

= | | | | | | = | = O = OO = O O

(] feol Heo] Rl Heo] Heo] feo) Feo) feo) Heo] o) He) Heo) Heo) Heo) Hen)
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Table 4.5 Data for Fy(z) = f1(z2)2" + f1(2?) with M(F,) < M(f;) =

1.556...

M (hn(2))

Number
of roots
outside ¢

Number of
real roots
outside ¢

Number of
positive
real roots

hy(2) has
a Newman
multiple?

1.3776747893793782

[a——

[

)

11

1.4681273540397895

13

1.3510990619153372

15

1.3349325020779348

17

1.4628464414409443

19

1.5442402396411085

30

1.5369179477682034

32

1.5229957493128481

33

1.5531039916596791

34

1.5180589114389942

I E N R RN E N E SR SIS

35

1.5512910936184789
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Table 4.6 Data for F,(z) = f2(22)2" + f2(z2) with M(F,) < M(f>) =

1.419...

M (ha(2))

Number
of roots
outside ¢

Number of
real roots
outside €

Number of
positive
real roots

hu(z) has
a Newman
multiple?

1.3320736964915977

[

p—

-

1.3019549434966640

1.2000265239873915

1.3736135811120419

1.3001931433967972

1.3993912890938539

1.3767579101491908

1.3913427635879796

1.3592808747592152

1.4155418842084992

1.3584604307655911

1.2794643109583782

1.2734649596362572

1.3646840825337791

1.3580771338262559

L IS ENE I ENETIEVI RTINS EN T N N

OO OO O~ OO~ O

(=] Rl el feo] Heo] feo) Heo) o) Heo) Hev) Heo) Heo) He) N o)

R IR IR AR IR IR IR IR IR I NN NN NN
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Table 47 Data for F,(z) = f3(2)2" + f3(z) with M(F,) < M(f3) =

1.436...

M(hy(z))

Number
of roots
outside ¢

Number of
real roots
outside ¢

Number of
positive
real roots

hy(z) has
a Newman
multiple?

1.3984561816152523

\S]

)

)

1.3434948980986468

13

1.4331345249485368

14

1.4234311159715063

18

1.3878827700420173

23

1.3534163551018263

27

1.3339979896237377

28

1.4269214465986548

32

1.3205703863583893

\STRE SN SIS S O (O 1 )
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Table 4.8 Data for F,(z) = f3(22)2" + f3(z2) with M(F,) < M(f3) =

1.436...

M(hn(2))

Number
of roots
outside ¢

Number of
real roots
outside ¢

Number of
positive
real roots

hu(2) has
a Newman
multiple?

1.3984561816154015

N

(]

)

o)1

1.2527759374101137

1.3484400894061053

10

1.3434948980986485

15

1.3916821984841463

19

1.4322043293234774

21

1.4288045592816294

23

1.4074563000697322

25

1.369606470305066

26

1.4331345249485399

27

1.3628156629302184

28

1.4234311159714992

29

1.3636483746277421

31

1.2797024740084288

33

1.3351370446158135

35

1.3616825994601507
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Table 4.9 Data for F,(z) = f2(2)2" — f2(z) with M(F,) < M(f;) =

1.419...

M(hy(z))

Number
of roots
outside ¢

Number of
real roots
outside ¢

Number of
positive
real roots

hn(z) has
a Newman
multiple?

1.4012683679398549

[

\®)

\S]

1.2612309611371388

1.2303914344072247

1.2026167436886042

1.1762808182599175

1.3516891084166915

1.3357332210166238

1.2486111656859293

1.2883596645367590

1.3765014052915571

1.4014602019654860

1.3730577151000097

1.2648330803003662

1.2775721230452175

1.3854250650019093

1.3092004357501738

1.3123232555392172

1.4151721596850971
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4.2 ANOTHER EXAMPLE OF A POLYNOMIAL WITH SMALL MEASURE HAVING NO

NEWMAN MULTIPLE

The computations demonstrated in part in the previous section motivated a search of known
examples of polynomials with small Mahler measure using the data listed by Mossinghoff
(2011). In particular, based on the success of showing no Newman multiples existed for
polynomials which had a root with large positive real part and a relatively small imaginary
part (i.e., polynomials with a root close to the positive real axis), we looked for such poly-
nomials among those given by this data. We found only one new and interesting one to

report, namely
F) =M 038 B2 3130 509 28 507
e S S I By L S S SR A 4.1
o Sy A I3 02 6 4 2

This polynomial has Mahler measure M(f) = 1.263095875..., has no positive real root
and has no Newman multiple. Thus, f(z) provides us with the best upper bound thus far

on o (assuming it exists) in Problem 1, and we can report
o < 1.263095875....

The value

B = (1.079315910...) +i(0.752389188. ..)

is a root of f(z) with the largest absolute value, and the algorithm for complex roots given
by Hare and Mossinghoff (2014) provides a proof that f(z) has no Newman multiple. In
the next chapter, we show an alternative way of showing this polynomial has no New-
man multiple that also allows us to obtain some additional information in the case that the

multiplier is in R[z].
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CHAPTER 5

BOUNDING THE COEFFICIENTS OF A MULTIPLE OVER THE

REALS

5.1 INTRODUCTION

The polynomial (4.1) is the polynomial with smallest Mahler measure which we found
having the property that there is no multiple of f(z) in Z[z] which is a Newman polyno-
mial. We have here that M(f) = 1.263095875..., and f(z) has no positive real root and has
exactly 4 complex roots outside ¢ = {z € C : |z| = 1}. In this chapter, we show an alter-
native approach to establishing that there is no Newman multiple of f(z) which can easily
be turned into an algorithm as well. Like the previous algorithm, we cannot show that the
algorithm will successfully show that an arbitrary polynomial with no Newman multiple
does not have a Newman multiple. So our emphasis in this chapter will be different. We
focus on using the algorithm to establish a bit more about f(z), which we describe next.
As noted above, there is no Newman multiple for f(z) in Z[z]. But is there a Newman
multiple for f(z) in R[z]? The answer is that there is not, and we show more, namely the

following.

Theorem 5.1. Let f(z) be as in (4.1). Let g(z) € Rz] for which f(z)g(z) has non-negative

coefficients. Then at least one of the coefficients is greater than 1.5713809.. ..

As one would expect, we give a general method that would give a similar result for the other
polynomials we have found earlier in this thesis which do not have Newman multiples,

though 1.5713809... would need to be replaced by a different value > 1 depending on
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the polynomial being considered. We also note that we actually show a bit more, that
any polynomial with non-negative real coefficients, which has the root 1.0793159... +
10.0752389... in common with f(z), has a coefficient greater than 1.5713809....

The argument will be based on numeric approximations for complex roots of f(z), and
we do not concern ourselves (though we should) on whether these approximations suffice
to justify the arguments given. We use Maple 2015 set at 50 digits of precision but do not

indicate all the digits below in our argument for Theorem 5.1.

5.2 PROOF OF THEOREM 5.1

Proof. One computationally checks that f(z) has no real roots. Furthermore, two of its

roots are
o = 1.0793159...41i0.0752389... and on =1.0793159...—i0.0752389....

Both o and oy are outside the unit circle €. There are 2 additional roots of f(z) outside
of ¢ which will not play a role in this argument.

The idea is to take advantage of an approach from Cole, Dunn, and Filaseta (2016)
and Filaseta and Gross (2014) that allowed the authors to show that multiples of certain
quadratics of the form 7> — Az + B cannot have non-negative coefficients unless the max-
imum coefficient of the multiple exceeds an explicit bound. In Cole, Dunn, and Filaseta
(2016) and Filaseta and Gross (2014), A and B are integers, but as we shall see here, the
same approach works with real coefficients. For our purposes, we take A and B to be real

numbers defined by
P —Az+B=(z—0y)(z— ) = 7> — (2.1586318...)z+ 1.1705837 ... (5.1)

So that the approach can apply to other polynomials besides f(z), we use variables
below and, in particular, refer to the quadratic above as g(z) = z> — Az + B and allow for

the possibility that A and B are not as indicated in (5.1). We require however that A and B
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are positive real numbers. Define by, ...,b; € R with bg = 1 and with the product
(o2 +b12 "+ -+ by 12+ by) (2> — Az +B) (5.2)
equal to a polynomial of degree s 4 2 with non-negative coefficients. Set
h(z) =boz’ +b125 '+ 4 by_124+by =2+ b1+ 4 by 12+ by

and F(z) = g(z)h(z) as given in (5.2). We let M denote the maximal coefficient of F(z) so
that the coefficients of F(z) are all in the interval [0, M]. In the context of f(z) as in (4.1),
among other things, we want to show that F(z) cannot be a Newman polynomial, and we
will establish this by showing that necessarily M > 1. For the theorem, we want to show
M > 1.5713809... (still in the case of f(z) as in (4.1)).
We define b; = 0 for j <0 and j > s. Since the coefficients of F (z) are > 0, we deduce
that
bj>Abj_1—Bbj_, forall jcZ. (5.3)

Since by = 1, we deduce b; > A. For each integer j, define

(

0 if j <0

Bi=41 if j=0

\Aﬁjfl —BBj, ifj>1,
so the B; satisfy a recursive relation for j > 0. In particular, $; = A and 3, = A> — B. For

A and B as in (5.1), we have

Bo=1, PBi1=2.1586318..., B»=23.4891076..., [3=>5.0048394...,
Bs=6.7193130..., Bs=8.6459393..., Ps=10.7978812...,
B; =13.1878541..., B3 =15.8278975..., Py =18.7291158...,
Bio =21.9013860..., Pi1 =25.3530305..., Pi2=29.0904523...,

Bi3=33.1177310..., and PB4 =37.4361779....
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Let J be minimal such that B < ;. With A and B as in (5.1), we get J = 34, with
B3 = 135.3470045 ..., Psy = 135.6907665 ...,

and

Bss = 134.4714052.. ..

Note that, in general, ﬁj >0 for j <J. Also, for 1 < j <J+ 1, we obtain from (5.3) and

A > 0 that
bj>Ab; 1 —Bbj_» > A(Abj_»—Bb; 3) —Bb;_,
> Babj—o —BPibj_3 > Pr(Abj_3—Bbj_4) —BPibj_3
5.4
> Bsbj_3—BPrbj_4 > B3(Abj_4 —Bbj_s) —BPabj_4
> Babj_s—BB3bj_5>---> B;_1b1 — BBj_2by > ;.
We deduce that
b; > B; forallintegers j <J+1. (5.5)

Now, we define
U= I?Zag)({bj} and L= rjnzig{bj}.

Since b; = 0 for j > s, we have L < 0. In the case of (5.1), we also see that U > b34 >
B3a = 135.6907665.... Let k >0 and ¢ > 1 be integers. We will want some flexibility
on choosing precise values of k£ and ¢, and in general some experimentation is helpful in
selecting them depending on the choice of A and B.

The idea is to take advantage of a weighted average of ¢ consecutive coefficients of
F(z). Define a;j = b; —Abj_1 + Bb;_, for all integers j so that a; is the coefficient of

#1277 in F(z) for 0 < j < s+ 2. Suppose by # 0, and let tj be given by
biyj=tjb, for jeZ. (5.6)
Then
At j+2 = bit jp2 —Abpy ji1 + Bbpy j = (tj42 — Atji1 + Btj)by - for j € Z.

61



We will be interested in the weighted average of the ¢ numbers a2, agi3, ...,a; 111 given

by
/—1 /—1
W(k,l) = Zujak+j+27 where 0 < p; <1for0<j</—1and Z uj=1.
=0 j=0

Observe that W (k,¢) = Wy(k, £)by, where

-1
Wo(k,0) = ) pj(tjs2 — Atjs1 +Bty)
j=0
-1 5.7)
= oBrto+ (— oA+ wiB)ty + Y (Mj—2 — uj— 1A+ 1;B)t; '
j=2
+ (Mp—2 — Po—1A) o+ 18041
We choose the p; so that the coefficients of 1,1, ...,t,_1 above are all zero. Keeping in

mind that we want the ; to sum to 1, the above corresponds to choosing the (; so that the

matrix equation

11 1 1 1 11 1 1) [ 1
“A B 0 0 0 0 0 0 off m 0
1 -A B 0 0 o0 0 0 of| m 0
0 I —-A B 0 0 0 0 O0f[ us 0
0 0 1| -AB 0 0 0 Of[ 0
0O 0 0 0 0 B 0 0 Of]|mas 0
0O 0 0 0 0 A B 0 0] |pes 0
0O 0 0 0 0 1 A B 0| wos 0
0 0 0 0 0 0 1 -A B) \u_, 0

is satisfied. Of some interest to us is that the matrix equation depends only on A, B and /,
and not on k. The first row corresponds to the equation yy + ty +--- 4+ ty—; = 1. Recall
that we also want 0 < u; < 1 forevery j € {0,1,...,£— 1}. Part of the process of choosing

¢ appropriately for given A and B is to ensure that the condition O < p; < 1 holds. In other
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words, the verification that 0 < u; < 1 will be established by solving the matrix equation
above and checking directly if the condition holds. If it does not, then a different choice of
¢ needs to be selected.

Suppose now that p; is a fixed solution to the above matrix equation. The matrix

equation guarantees that the coefficients of #1,1,...,#,_1 in (5.7) are all zero. Hence, taking

a=WB, b=Ww - 1A and c= Ly,

we obtain

W()(k, f) =aty+bty+ctyi .

The values of a, b and ¢ depend on A, B and £. From (5.6), the values of ¢; depend on k.

We consider first taking k to satisfy by = U, which is possible by the definition of U. At
this point, we will want knowledge about the signs of a, b and c. For our specific choice in
(5.1), we will have that a, b and ¢ are positive. This was also the case in Cole, Dunn, and
Filaseta (2016) and Filaseta and Gross (2014). As this is the case of interest to us now as
well, we suppose that

a>0, b>0 and ¢>0

but note that modifications can be made to the arguments that follow if for example a > 0,

b < 0 and ¢ > 0. Since the maximum coefficient of F(z) is M, we have that (5.6) implies

M > W (k,l) = Wy(k,0)by = atoby + btyby + cty by
(5.8)

= aby +bby ¢+ cbyyp41 > aU +bL+cL.

Next, take & so that b, = L. Since each coefficient of F(z) is > 0, we deduce here that
0 < W(k,l) =Wy(k,£)by = aby + bbby ¢+ cbiipy1 < aL+bU +cU. 5.9
Multiplying through (5.8) by @ and through (5.9) by — (b + ¢) and adding, we obtain

aM > (a®> — (b+¢c))U. (5.10)
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Multiplying through (5.8) by b + ¢ and through (5.9) by —a and adding, we have
(b+c)M > (a® — (b+¢)*)(~L), (5.11)

where —L is used here to emphasize that L < 0. We will not make use of (5.11) here, but
note that if F(z) is a Newman polynomial, then M = 1 and (5.11) can be used to give a
lower bound on the coefficients of /(z).

Of particular interest to us is (5.10) as it provides a lower bound for M. We return to
the case of A and B given by (5.1). We take ¢ = 45 (arrived at through experimentation).

The solution to the matrix equation is given in part by

Lo = 0.0099262..., p; =0.0183046..., i =0.0252752...,
(3 =0.0309719..., s =0.0355222..., us=0.0390468...,
Lig = 0.0416590..., w7 =0.0434652..., g = 0.0445645 ...,

ey

1y = 0.0007752..., g3 = 0.0003826..., and pus = 0.0000433 ...
One checks that u; € [0,1] for each j € {0,1,...,44}. We obtain

a=uoB=0.0116195..., b= y_»— 1A =0.0002890...

and ¢ = y_; =0.0000433....

Recall that

U > b3yq > B3g = 135.6907665 ...

From (5.10), we now obtain that
M >1.5713809....

Thus, the maximum coefficient of F(z) must exceed 1.5713809.. ., establishing the theo-

rem. ]
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