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Abstract

The primary goal of our work is to establish a method to relate simple measures to

a given set of moments. We calculate the moments of squares via linear polynomial

weight measures and straight line cuts and use this to calculate the centre of mass

of the square. The one-to-one correspondence that is found is needed to represent

surfaces with gaps, which can estimate arbitrary measures on squares. From this, a

subdivision scheme is developed, which successively quadrisects squares and uses the

relation to estimate the new measures in order to provide a good representation of

the original surface. One application of this work is for processing point clouds and

their related surfaces.
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Chapter 1

Preliminaries

1.1 Introduction

Given a square of constant density, it is straightforward to calculate its centre of

mass. For a square represented by R∗ = [−1, 1]2, the centre of mass is (0, 0). Given

a straight line cut through the square, two distinct regions are produced. Given a

region, any calculus textbook [4] will tell you that its centre of mass is given by

x = My

m
and y = Mx

m
, where m is the mass of the object, Mx is the moment about

the x-axis and My is the moment about the y-axis.

m =
∫

R∗
1 dζ (1.1)

My =
∫

R∗
x dζ (1.2)

Mx =
∫

R∗
y dζ (1.3)

In these equations, dζ = χcutdA.

Given these equations, one can calculate the centre of mass on one side of an

arbitrary cut. In Chapter 2, we will be calculating the centre of mass of both parts of

the square, and using the centre of mass to find the unique equation of the correspon-

ding cut. In Chapter 3, we will be using this one-to-one correspondence to develop a

subdivision scheme to estimate the measures of the successively smaller squares.
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1.2 Subdivision

Subdivision schemes are used nearly universally in the field of computer graphics.

Computer-animated movies, 3D modelling, and video games all use subdivision sche-

mes to create smoother objects from more jagged ones. Various subdivision schemes

can be both easy to implement and computationally efficient [6], without requiring a

significant increase in data or computation time.

Common subdivision schemes use Bézier curves or B-splines to generate smoother

curves in one dimension. In higher dimensions, the same principles are applied, to

create notable subdivision schemes [2] as Catmull-Clark, Doo-Sabin, Loop, and 4-8

subdivision.

Our goal is to establish a method to create a one-to-one correspondence between

simple measures and a given set of moments. Specifically, a relation is found between

parameters of a cut in a square and the moments, which can be used to find the

related centre of mass. This is needed in subdivision to represent surfaces with holes

or gaps. Ignoring the fact that the data does not cover the entire region can result in

bad approximation, while directly identifying the missing area is difficult and would

eventually lead to a more complicated representation. By using a subdivision scheme

based on the partial measures, we can resolve these issues and have an effective

strategy. Since the moments of smaller sets can be defined by the moments of bigger

ones, we can take a square with known moments, then cut it in quadrants and use

techniques developed in Chapter 2 to calculate the new moments. By repeating this

process, the squares become finer and finer. This subdivision scheme will be explained

in Chapter 3. One particular application of this scheme is for processing point clouds

and relating surfaces to them.
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Chapter 2

Basic Calculations

2.1 Moments

The points in a region R can be difficult to work with. By calculating aggregate

values of these points, we can simplify calculations, while retaining important data

about the set. These aggregate quantities of a region R will be called Q(R). The

moments are useful quantities, because they enable us to calculate values such as

average values, variance, and covariance [2]. Additionally, the moments are additive,

while the averages and variance are not, which enables fewer computations later on.

Definition 2.1. The i-th moments of a region R are given by:

Mi(R) =
∫

R
xi dA. (2.1)

Definition 2.2. The moments for x = (x, y) over a region R is given by:

Mij(R) =
∫

R
xiyj dA. (2.2)

Given the moments of an unknown measure ρ, we wish to find a known measure

µ such that Q(R, ρ) = Q(R, µ), and we say that µ represents ρ. Then we approxi-

mate the quantities of the children with respect to ρ by the direct calculation of the

quantities with respect to the known measure µ.

Our quantities will be defined as follows:

Q(R, µ) = (M00(R), M10(R), M01(R)) (2.3)
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with

M00(R) =
∫

R
1 dµ

M10(R) =
∫

R
x dµ

M01(R) =
∫

R
y dµ.

(2.4)

If the region is not a lamina of constant density, but rather a collection of points

{(xi, yi)}m
i=1, then we can approximate the moments by summing over the points as

follows:

Q(R, µ) = (m,
m∑

i=1
xi,

m∑
i=1

yi). (2.5)

Given a measure µ over R∗, we can see that M00(R∗, µ) gives us the mass of the

region.

2.2 Approximation of Quantities

Our standard region will be R∗ = [−1, 1]2. We chose this so that we can easily

subdivide into four smaller squares later on. One reason to calculate the moments is

so they can be used in this scheme to approximate the moments of subdivided regions

of our squares.

Definition 2.3. Define for a measure µ over R∗,

u(µ) = M10(R∗, µ)
M00(R∗, µ)

v(µ) = M01(R∗, µ)
M00(R∗, µ)

q(µ) = (u(µ), v(µ)).

(2.6)

From equations (1.1) to (1.3), we can see that u and v represent the average x and

y values respectively, and q represents the centre of mass of the region. Naturally, it

will lie within the convex hull of R∗.
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We develop two methods based on the types of measures we wish to reproduce in

order to calculate the quantities Q(R) of a region. The measures we consider are of

the form dµ = ω(x) dx with:

• Linear Polynomial Weight Measures:

ω(x, y) = αx+ βy + γ (2.7)

The parameters are α and β, which we will optimize so that ω(x) ≥ 0 on R.

• Subdomain Measures:

ω(x) = χcut or ω(x) = 1− χcut (2.8)

The parameters are two of a, b, c and d, representing the coordinates of the

intersection of our cut with our standard region R∗.

We describe our schemes over the standard region R∗ = [−1, 1]2 as there is an

affine transformation to and from a general square (or rectangle) and R∗ [1][3]. Thus,

the parent region can be divided into four children, representing the top left, top

right, bottom left, and bottom right quadrants, numbered 1, 2, 3, and 4, respectively.

Any element from a general square with bottom left coordinate (x1, y1) and top

right coordinate (x2, y2) can be transformed to the standard region R∗ by the affine

transformation T , described as follows:

T =



2
x2 − x1

0 0

0 2
y2 − y1

0

0 0 1





1 0 x1 + x2

−2

0 1 y1 + y2

−2

0 0 1


. (2.9)

Then

T =



2
x2 − x1

0 x1 + x2

x1 − x2

0 2
y2 − y1

y1 + y2

y1 − y2

0 0 1


(2.10)
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so that any point (x, y) in a square can be transformed to (x∗, y∗) in the reference

square via the transformation

T


x

y

1

 =


x∗

y∗

1

 . (2.11)

Similarly, any point (x∗, y∗) in the reference square R∗ can be transformed to

(x, y) in a general square by the affine transformation

T−1


x∗

y∗

1

 =


x

y

1

 . (2.12)

2.3 Linear Polynomial Weight Measures

Consider the probability measures µ over the reference square R∗ such that dµ =

Cω(x) dx where ω(x) = αx+ βy + γ. We define the weight functions so that:∫
R∗
ω(x) dx = 1 (2.13)

ω(x) ≥ 0 for x ∈ R∗. (2.14)

Equation (2.13) implies∫
R∗
ω(x) dx =

∫ 1

−1

∫ 1

−1
αx+ βy + γ dy dx = 4γ (2.15)

so that γ = 1
4 .

Equation (2.14) implies ω(x) will be minimized when x = (±1,±1), resulting in

four equations:
1
4 + α + β ≥ 0
1
4 − α + β ≥ 0
1
4 − α− β ≥ 0
1
4 + α− β ≥ 0

(2.16)
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or equivalently

−1
4 ≤ α + β ≤ 1

4
−1

4 ≤ α− β ≤ 1
4 .

(2.17)

This is a rhombus in the αβ-plane with vertices at (1/4, 0), (0, 1/4), (−1/4, 0),

and (0,−1/4). Let S =
{

(α, β) : −1
4 ≤ α + β ≤ 1

4 and − 1
4 ≤ α− β ≤ 1

4

}
.

Then the moments are:

M00(R∗, µ) =
∫

R∗
ω(x) dx =

∫ 1

−1

∫ 1

−1
αx+ βy + 1

4 dy dx = 1 (2.18)

M10(R∗, µ) =
∫

R∗
xω(x) dx =

∫ 1

−1

∫ 1

−1
x
(
αx+ βy + 1

4

)
dy dx = 4α

3 (2.19)

M01(R∗, µ) =
∫

R∗
yω(x) dx =

∫ 1

−1

∫ 1

−1
y
(
αx+ βy + 1

4

)
dy dx = 4β

3 . (2.20)

In the uv-plane, we have that

u = M10(R∗, µ)
M00(R∗, µ) = 4α

3 and v = M01(R∗, µ)
M00(R∗, µ) = 4β

3 . (2.21)

By plugging in extreme values of α and β, we can determine that the image of S

in the uv-plane is also a rhombus T with vertices at (1/3, 0), (0, 1/3), (−1/3, 0), and

(0,−1/3). Then T =
{

(u, v) : −1
3 ≤ u+ v ≤ 1

3 and − 1
3 ≤ u− v ≤ 1

3

}
.

The correspondence between (α, β) and (u, v) is one-to-one and the inverse is

given by

α = 3u
4 and β = 3v

4 . (2.22)

Lemma 2.4. Let ρ be a measure on R∗. If q(ρ) is in T , then we construct a polyno-

mial weight measure η of the form dη = Cω(x) dx such that Q(R∗, ρ) = Q(R∗, η).

7



Figure 2.1: On the left we have the set S in the αβ-plane. On the right is the
corresponding region T in the uv-plane.

Proof. The formulas in (2.22) give us values of α and β. Then we have

u(ρ) =
∫

R∗ x dρ∫
R∗ 1 dρ =

∫
R∗
xω(x) dx (2.23)

v(ρ) =
∫

R∗ y dρ∫
R∗ 1 dρ =

∫
R∗
yω(x) dx (2.24)

Therefore, we let C =
∫

R∗ 1 dρ, so that

M00(R∗, ρ) = C =
∫

R∗
1 dη = C

∫
R∗
ω(x) dx = M00(R∗, η). (2.25)

Additionally,

M10(R∗, ρ) = u(ρ)M00(R∗, ρ) = Cu(ρ) = C
∫

R∗
xω(x) dx = M10(R∗, η). (2.26)

Finally,

M01(R∗, ρ) = v(ρ)M00(R∗, ρ) = Cv(ρ) = C
∫

R∗
yω(x) dx = M01(R∗, η). (2.27)

Therefore, Q(R∗, ρ) = Q(R∗, η).

8



Given a measure ρ with q(ρ) in T , we determine the representative measure η.

With the representative measure η known, in order to subdivide the square, we can

simply calculate the quantities for the children.

However, because the acceptable region T is not equal to R∗, some measures will

not have a linear polynomial weight representation. Thus we need to develop an

additional scheme.

2.4 Subdomain Measures

In this section, we consider the probability measures µ over the reference square R∗

such that dµ = Cω(x) dx where ω(x) = χcut or ω(x) = 1 − χcut. We will refer to

measures of the first form as primary measures, and the second as complementary

measures. Here, cut represents the area on the smaller side of a single straight cut

dividing the reference square into two disjoint sets, whose union is R∗. Specifically,

the primary measure represents the area which does not contain the origin (0, 0).

There are several types of cuts that we have to account for, but this reduces to

only two due to symmetry. Define four points on the boundary of R∗ as follows:

• a = (a,−1) where − 1 ≤ a ≤ 1,

• b = (−1, b) where − 1 ≤ b ≤ 1,

• c = (c, 1) where − 1 ≤ c ≤ 1,

• d = (1, d) where − 1 ≤ d ≤ 1.

From here, we can envision eight different cuts, falling into two general categories:

• Type 1: Corner (Figure 2.2)

Cuts of Type 1 isolate a single corner of R∗. They may be triangles consisting

of (a,b, (−1,−1)), (b, c, (−1, 1)), (c,d, (1, 1)), or (d, a, (1,−1)).

9



• Type 2: Edge (Figure 2.3)

Cuts of Type 2 isolate a two corners of R∗. They may be trapezoids consis-

ting of (b,d, (1,−1), (−1,−1), (c, a, (−1,−1), (−1, 1), (d,b, (−1, 1), (1, 1)), or

(a, c, (1, 1), (1,−1)).

Figure 2.2: Four possible representations of cuts of Type 1, that isolate a single
corner.

Figure 2.3: Four possible representations of cuts of Type 2, that isolate a single edge.

We will only calculate the moments for one measure each of Type 1 and Type 2,

and use symmetry to derive the rest.

2.4.1 Primary Measures

For measures of Type 1, the cut itself can have several different forms, depending

on which representation is being used. That is, if points a and b are connected

with a straight line, the general form of the line will be different than if c and d are

10



connected, although both can still be considered Type 1 measures. Due to symmetry,

we only need to calculate one of these.

For this example, we will connect b and c, as in the second image of Figure 2.2.

This is a line with slope 1− b
c+ 1 and equation y = 1− b

c+ 1(x+ 1) + b, called Lbc.

Then the moments are:

M00(R∗, µ) =
∫

R∗
1 dµ =

∫
cut
C dx =

∫ c

−1

∫ 1

Lbc

C dy dx

= C
(c+ 1)(1− b)

2

(2.28)

M10(R∗, µ) =
∫

R∗
x dµ =

∫
cut
Cxdx =

∫ c

−1

∫ 1

Lbc

Cxdy dx

= C
(c− 2)(c+ 1)(1− b)

6

(2.29)

M01(R∗, µ) =
∫

R∗
y dµ =

∫
cut
Cy dx =

∫ c

−1

∫ 1

Lbc

Cy dy dx

= C
(b+ 2)(c+ 1)(1− b)

6 .
(2.30)

Therefore, the transformation from (b, c) to (u, v) is

u = M10(R∗, µ)
M00(R∗, µ) = c− 2

3 and v = M01(R∗, µ)
M00(R∗, µ) = b+ 2

3 . (2.31)

Since the transformation is linear, the inverse is easily calculated as

c = 3u+ 2 and b = 3v − 2. (2.32)

Since −1 ≤ b ≤ 1 and −1 ≤ c ≤ 1, one can see that all the points q =

(u(b, c), v(b, c)) will fall in a square A with vertices (−1, 1/3), (−1, 1), (−1/3, 1),

and (−1/3, 1/3) (Figure 2.4).

Similar computations for the other Type 1 Primary Measures result in Table 2.1.

Therefore, measures corresponding to a vector q ∈ {A, C, E, or G} can be

modeled by a primary measure of Type 1.

For measures of Type 2, the cut can have also several different forms, depending

on which representation is being used. That is, if points a and c are connected with

11



Figure 2.4: Each labeled region corresponds
to a Primary Measure of Type 1 (ACEG) or
Type 2 (BDFH).

Table 2.1: Transformation and Inverses of Type 1 Primary Measures

Region Line Transformation Inverse

A Lbc u = c− 2
3 , v = b+ 2

3 c = 3u+ 2, b = 3v − 2

C Lcd u = c+ 2
3 , v = d+ 2

3 c = 3u− 2, d = 3v − 2

E Lad u = a+ 2
3 , v = d− 2

3 a = 3u− 2, d = 3v + 2

G Lab u = a− 2
3 , v = b− 2

3 a = 3u+ 2, b = 3v + 2

a straight line, the general form of the line will be different than if b and d are

connected, although both can still be considered Type 2 measures. Due to symmetry,

we only need to calculate one of these.

For this example, we will connect a and c, as in the second image of Figure 2.3.

This is a line with slope 2
c− a

and equation y = 2
c− a

(x−c)+1, called Lac. However,

12



there are now two different areas we must consider: the region to the left and to the

right of this line. The one that contains the origin will be the complementary measure;

in this section we will examine the primary measure. We will assume a + c < 0 so

that the primary measure is to the left of the line.

Then the moments are:

M00(R∗, µ) =
∫

R∗
1 dµ =

∫
cut
C dx =

∫ 1

−1

∫ Lac

−1
C dy dx

= C(a+ c+ 2)
(2.33)

M10(R∗, µ) =
∫

R∗
x dµ =

∫
cut
Cxdx =

∫ 1

−1

∫ 1

Lac

Cxdy dx

= C

3 (a2 + ac+ c2 − 3)
(2.34)

M01(R∗, µ) =
∫

R∗
y dµ =

∫
cut
Cy dx =

∫ 1

−1

∫ 1

Lac

Cy dy dx

= C

3 (c− a).
(2.35)

Therefore, the transformation from (a, c) to (u, v) is

u = M10(R∗, µ)
M00(R∗, µ) = a2 + ac+ c2 − 3

3a+ 3c+ 6 and v = M01(R∗, µ)
M00(R∗, µ) = c− a

3a+ 3c+ 6 . (2.36)

This transformation is not linear, however the inverse can still be calculated as

a = −3v2 − 6uv + 2u− 6y + 1
3v2 + 1 and c = −3v2 + 6uv + 2u+ 6v + 1

3v2 + 1 . (2.37)

Since −1 ≤ a ≤ 1 and −1 ≤ c ≤ 1, one can see that all the points q =

(u(a, c), v(a, c)) will fall in a region H defined by −1/3 ≤ v ≤ 1/3, −1 ≤ u ≤

3/2 v2 − 1/2 (Figure 2.4).

Exploiting the properties of symmetry, computations for the other Type 2 Primary

measures result in Table 2.2.

Therefore, measures corresponding to a vector q ∈ {B, D, F , or H} can be

modeled by a primary measure of Type 2.

For each type of primary measure, we can calculate the parameters of the measure

given q = (u, v) of the measure over the parent square. These parameters uniquely

13



Table 2.2: Transformation and Inverses of Type 2 Primary Measures

Region Line Transformation Inverse

B Lbd u = d− b
3b+ 3d− 6

v = b2 + bd+ d2 − 3
3b+ 3d− 6

b = 3u2 − 6uv + 6u+ 2v − 1
3u2 + 1

d = 3u2 + 6uv − 6u+ 2v − 1
3u2 + 1

D Lca u = a2 + ac+ c2 − 3
3a+ 3c− 6

v = c− a
3a+ 3c− 6

a = 3v2 − 6uv + 2u+ 6v − 1
3v2 + 1

c = 3v2 + 6uv + 2u− 6v − 1
3v2 + 1

F Ldb u = d− b
3b+ 3d+ 6

v = b2 + bd+ d2 − 3
3b+ 3d+ 6

b = −3u2 − 6uv − 6u+ 2v + 1
3u2 + 1

d = −3u2 + 6uv + 6u+ 2v + 1
3u2 + 1

H Lac u = a2 + ac+ c2 − 3
3a+ 3c+ 6

v = c− a
3a+ 3c+ 6

a = −3v2 − 6uv + 2u− 6v + 1
3v2 + 1

c = −3v2 + 6uv + 2u+ 6v + 1
3v2 + 1

determine the measure. In the case of polynomial weight measure, the constant C

was simply the zeroth moment of the parent. In the case of subdomain measures, it

is not as simple.

Lemma 2.5. Let ρ be a measure on R∗. If q(ρ) is in A, then there exists a unique

subdomain measure µ of the form dµ = Cχcut dx where the cut is of the form Lbc,

such that Q(R∗, ρ) = Q(R∗, µ).

Proof. The formulas in (2.31) give us values of

u = c− 2
3 and v = b+ 2

3 . (2.38)

Then we let

C = 2M00(R∗, ρ)
(c+ 1)(1− b) . (2.39)

Define the cut to be the line Lbc, so that the cut is the triangle with vertices

(b, c, (−1, 1)) and µ to be the measure such that dµ = Cχcut dx. Then equations
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(2.28) to (2.30) give us that

M00(R∗, µ) = C
(c+ 1)(1− b)

2 = M00(R∗, ρ)(c+ 1)(1− b)
(c+ 1)(b− 1)

= M00(R∗, ρ)
(2.40)

M10(R∗, µ) = C
(c− 2)(c+ 1)(1− b)

6 = M00(R∗, ρ)(c− 2)
3 = u(ρ)M00(R∗, ρ)

= M10(R∗, ρ)
(2.41)

M01(R∗, µ) = C
(b+ 2)(c+ 1)(1− b)

6 = M00(R∗, ρ)(b+ 2)
3 = v(ρ)M00(R∗, ρ)

= M01(R∗, ρ).
(2.42)

Therefore, Q(R∗, µ) = Q(R∗, ρ).

Lemma 2.6. As above, let ρ be a measure on R∗. If q(ρ) is in H, then there exists a

unique subdomain measure µ of the form dµ = Cχcut dx where the cut is of the form

Lac, such that Q(R∗, ρ) = Q(R∗, µ).

Proof. The formulas in (2.36) give us values of

u = a2 + ac+ c2 − 3
3a+ 3c+ 6 and v = c− a

3a+ 3c+ 6 . (2.43)

Then we let

C = M00(R∗, ρ)
a+ c+ 2 . (2.44)

Define the cut to be the line Lac, so that the cut is the trapezoid with vertices

(a, c, (−1, 1), (−1,−1)) and µ to be the measure such that dµ = Cχcut dx. Then

equations (2.33) to (2.35) give us that

M00(R∗, µ) = C(a+ c+ 2) = M00(R∗, ρ)(a+ c+ 2)
(a+ c+ 2)

= M00(R∗, ρ)
(2.45)
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M10(R∗, µ) = C
a2 + ac+ c2 − 3

3 = M00(R∗, ρ)(a2 + ac+ c2 − 3)
3a+ 3c+ 6 = u(ρ)M00(R∗, ρ)

= M10(R∗, ρ)
(2.46)

M01(R∗, µ) = C
(c− a)

3 = M00(R∗, ρ)(c− a)
3a+ 3c+ 6 = v(ρ)M00(R∗, ρ)

= M01(R∗, ρ).
(2.47)

Therefore, Q(R∗, µ) = Q(R∗, ρ).

By using the properties of reflection or rotation, we can use the same method

for the remaining regions B, C, D, E, F , and G by considering q′(ρ) = (±u,±v)

and letting µ be the measure such that dµ = Cχcut d(±x) d(±y), so that Q(R∗, µ) =

Q(R∗, ρ) for all q(ρ) of primary measures. However, from Figure 2.4, we can see that

this does not cover all of R∗. To deal with the area that remains, we have to deal

with complementary measures.

2.4.2 Complementary Measures

Complementary measures are measures µ of the form dµ = C(1 − χcut) dx, where

the cut is the same as the previous section: the smaller side of a single straight line

dividing the reference square into two disjoint sets, whose union is R∗. As before, the

primary measure represents the area which does not contain the origin (0, 0). Since

this is a complementary measure, the measure represents the larger of the two sides;

the one containing the origin.

Again, there are two types of cuts, Type 1 and Type 2, which are identical to

the previous definition. The only difference is the values of a, b, c, and d are such

that the pentagon (Type 1) or trapezoid (Type 2) contains the origin. Again, due to

symmetry, we only need to calculate one of each.
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For this example, we will connect b and d. This is a line with slope d− b2 and

equation y = d− b
2 (x− 1) + d, called Lbd.

Then the moments are:

M00(R∗, µ) =
∫

R∗
1 dµ =

∫ 1

−1

∫ 1

Lbd

C dy dx

= C(−b− d+ 2)
(2.48)

M10(R∗, µ) =
∫

R∗
x dµ =

∫ 1

−1

∫ 1

Lbd

Cxdy dx

= C
b− d

3

(2.49)

M01(R∗, µ) =
∫

R∗
y dµ =

∫ c

−1

∫ 1

Lbc

Cy dy dx

= C
−b2 − bd− d2 + 3

3 .
(2.50)

Therefore, the transformation from (b, d) to (u, v) is

u = M10(R∗, µ)
M00(R∗, µ) = d− b

3b+ 3d− 6 and v = M01(R∗, µ)
M00(R∗, µ) = b2 + bd+ d2 − 3

3b+ 3d− 6 . (2.51)

This transformation is not linear, however the inverse can still be calculated as

b = 3x2 − 6xy + 6x+ 2y − 1
3x2 + 1 and d = 3x2 + 6xy − 6x+ 2y − 1

2x2 + 1 . (2.52)

Since −1 ≤ b ≤ 1 and −1 ≤ d ≤ 1, when b+d < 0, one can see that all the points

q = (u(b, d), v(b, d)) will fall in region f bounded by v = −3
2u

2 + 1
2 , v = −3u(u− 1)

3u+ 1
and v = 3u(u+ 1)

3u− 1 , with vertices at (1/3, 1/3), (−1/3, 1/3), and (0, 0) (Figure 2.5).

A sharp-eyed reader may notice that these formulas are the same as for region

B of the primary measures. Indeed, they are derived the exact same way. The only

difference is that the measure for B does not include the origin, while for f it does.

Similar computations for the other Type 2 complementary measures result in the

familiar Table 2.3.

Therefore, measures corresponding to a vector q ∈ {b, d, f , or h} can be modeled

by a complementary measure of Type 2. Interestingly, this is not the only way to
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Figure 2.5: Each labeled region corresponds
to a Complementary Measure of Type 1
(aceg) or Type 2 (bdfh).

calculate these parameters. Using the fact that moments are additive, we can deduce

that the sum of the moments of χcut and 1−χcut are the same as the moments of R∗.

That is, as long as disjoint regions J ∪K = R∗,

M00(J) +M00(K) = M00(R∗)

M10(J) +M10(K) = M10(R∗)

M01(J) +M01(K) = M01(R∗).

(2.53)

Then, the moments of Lebesgue measure of the entire reference square are

M00(R∗, µ) =
∫ 1

−1

∫ 1

−1
C dy dx = 4C

M10(R∗, µ) =
∫ 1

−1

∫ 1

−1
Cxdy dx = 0

M01(R∗, µ) =
∫ 1

−1

∫ 1

−1
Cy dy dx = 0.

(2.54)

Therefore, the Lebesgue measure over the entire reference square gives

u = M10(R∗)
M00(R∗)

= 0 and v = M01(R∗)
M00(R∗)

= 0. (2.55)
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Table 2.3: Transformation and Inverses of Type 2 Complementary Measures

Region Line Transformation Inverse

b Lbd u = d− b
3b+ 3d+ 6

v = b2 + bd+ d2 − 3
3b+ 3d+ 6

b = −3u2 − 6uv − 6u+ 2v + 1
3u2 + 1

d = −3u2 + 6uv + 6u+ 2v + 1
3u2 + 1

d Lca u = a2 + ac+ c2 − 3
3a+ 3c+ 6

v = c− a
3a+ 3c+ 6

a = −3v2 − 6uv + 2u− 6v + 1
3v2 + 1

c = −3v2 + 6uv + 2u+ 6v + 1
3v2 + 1

f Ldb u = d− b
3b+ 3d− 6

v = b2 + bd+ d2 − 3
3b+ 3d− 6

b = 3u2 − 6uv + 6u+ 2v − 1
3u2 + 1

d = 3u2 + 6uv − 6u+ 2v − 1
3u2 + 1

h Lac u = a2 + ac+ c2 − 3
3a+ 3c− 6

v = c− a
3a+ 3c− 6

a = 3v2 − 6uv + 2u+ 6v − 1
3v2 + 1

c = 3v2 + 6uv + 2u− 6v − 1
3v2 + 1

For cuts of Type 1, using the traditional methods of integrating in order to find

the moments can lead to a number of problems. While you can find the moments,

it is difficult to find the inverse. Thus, a new technique is used: using additivity

of the moments, as above. Given a cut of Type 1, instead of directly computing

the moments, we will calculate them based on the known moments of the primary

measure given by the cut, and develop a new scheme to find the inverse. Due to

symmetry, we only need to calculate one of these.

Given the moments of a primary measure, you can calculate the moments of the

complementary measure, and vice versa. Specifically,

M00(R∗, µ{) = 4C −M00(R∗, µ)

M10(R∗, µ{) = −M10(R∗, µ)

M01(R∗, µ{) = −M01(R∗, µ).

(2.56)

For example, if we were to find the moments of the complementary measure of the
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cut connecting b and c, we would get the same line with slope 1− b
c+ 1 and equation

y = 1− b
c+ 1(x+ 1) + b, again called Lbc.

This time, the moments are:

M00(R∗, µ{) =
∫

R∗
1 dµ{ =

∫
R∗
C dx−

∫
cut
C dx

= 4C − C (c+ 1)(1− b)
2 = C

2 (7 + b− c+ bc)
(2.57)

M10(R∗, µ{) =
∫

R∗
x dµ{ =

∫
R∗
Cxdx−

∫
cut
Cxdx

= −C6 (c− 2)(c+ 1)(1− b)
(2.58)

M01(R∗, µ{) =
∫

R∗
y dµ{ =

∫
R∗
Cy dx−

∫
cut
Cy dx

= −C6 (b+ 2)(c+ 1)(1− b)
(2.59)

Therefore, the transformation from (b, c) to (u, v) is

u = M10(R∗, µ{)
M00(R∗, µ{)

= (c− 2)(c+ 1)(b− 1)
3(bc+ b− c+ 7) (2.60)

v = M01(R∗, µ{)
M00(R∗, µ{)

= (b+ 2)(c+ 1)(b− 1)
3(bc+ b− c+ 7) . (2.61)

In order to determine the shape of the region in the uv-plane, we analyze the

extrema of b and c. Since −1 ≤ b ≤ 1 and −1 ≤ c ≤ 1, one can see that all the points

q = (u(b, c), v(b, c)) will fall in region a bounded by v = 3u(u− 1)
3u+ 1 and its reflection

over v = −u, u = 3v(v + 1)
3v − 1 , with vertices at (1/3,−1/3), and (0, 0) (Figure 2.5).

Of course, we have not yet found the inverse transformation over this region, due

to the difficulty in making this calculation. Even computational algebra systems such

as WolframAlpha struggle here [5]. Thus, we find a new method.

Since we already have a way to transform and invert primary measures, we can

develop a method to find primary parameters from their complementary counterparts.

That is, given a complementary measure, we can find the corresponding primary

measure, and use the formulas from Tables 2.1 and 2.2.
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From equation (2.28) and Table 2.1, we have

M00(R∗, µ) = C
(c+ 1)(1− b)

2 (2.62)

c = 3u+ 2 and b = 3v − 2. (2.63)

Substituting the values for (2.63) into (2.62), we get

M00(R∗, µ) = C
(3u+ 3)(3− 3v)

2 = 9C
2 (u+ 1)(1− v). (2.64)

Now, from equations (2.56), we have

M10(R∗, µ) = −M10(R∗, µ{) and M01(R∗, µ) = −M01(R∗, µ{) (2.65)

or by equations (2.41) and (2.42)

M00(R∗, µ)u(µ) = −M00(R∗, µ{)u(µ{)

M00(R∗, µ)v(µ) = −M00(R∗, µ{)v(µ{).
(2.66)

Define

γ = −M00(R∗, µ{)
M00(R∗, µ) (2.67)

so that

u(µ) = γu(µ{) and v(µ) = γv(µ{). (2.68)

By (2.56),

γ = M00(R∗, µ)− 4C
M00(R∗, µ) = 1− 4C

M00(R∗, µ) (2.69)

so that

M00(R∗, µ) = 4C
1− γ . (2.70)

Finally, from equation (2.64), we have

4C
1− γ = C

(3u+ 3)(3− 3v)
2 = 9C

2 (u+1)(1−v) = 9C
2 (γu(µ{)+1)(1−γv(µ{)) (2.71)

from equation (2.68).
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Rearranging gives

8
9 = (γu(µ{) + 1)(1− γv(µ{))(1− γ) (2.72)

so that

P3(γ) = (γu(µ{) + 1)(1− γv(µ{))(1− γ)− 8
9 (2.73)

which is a polynomial of degree 3 in terms of γ. Solving P3(γ) = 0 for γ either exactly

or numerically lets us apply equation (2.68) to solve for u and v, where we can use

Table 2.1 to solve for b and c. P3(γ) is guaranteed to have at least one real solution,

although it may have up to 3. In that case, we reject the solutions that would imply

b or c are outside of their bounds, and take the smallest negative root.

Doing the same calculations for the complementary regions of C, E, and G results

in Table 2.4.

Table 2.4: Transformation and Inverses of Type 1 Complementary Measures

Region Transformation P3(γ)

a

Lbc

u = (c− 2)(c+ 1)(b− 1)
3(bc+ b− c+ 7)

v = (b+ 2)(c+ 1)(b− 1)
3(bc+ b− c+ 7)

(γu(µ{) + 1)(1− γv(µ{))(1− γ)− 8
9

c

Lcd

u = (c+ 2)(c− 1)(d− 1)
3(c+ d− cd+ 7)

v = (d+ 2)(c− 1)(d− 1)
3(c+ d− cd+ 7)

(γu(µ{)− 1)(γv(µ{)− 1)(1− γ)− 8
9

e

Lad

u = (a+ 2)(1− a)(d+ 1)
3(ad+ a− d+ 7)

v = (d− 2)(1− a)(d+ 1)
3(ad+ a− d+ 7)

(1− γu(µ{))(γv(µ{) + 1)(1− γ)− 8
9

g

Lab

u = (2− a)(a+ 1)(b+ 1)
3(ab+ a+ b− 7)

v = (2− b)(a+ 1)(b+ 1)
3(ab+ a+ b− 7)

(γu(µ{) + 1)(γv(µ{) + 1)(1− γ)− 8
9

Based on the information in Tables 2.1 – 2.4, we are successfully able to represent

every point q = (u, v) in R∗ as a primary or complementary measure of Type 1 or
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Type 2, with the exception of (0, 0), which was already established in equation (2.55).

In fact, there are many points along the boundaries of multiple regions. For example

(1/3, 1/3) lies on the boundary of B, C, D, f , g, and h. Interestingly enough, for a

point exactly on the boundary of two or more regions, the calculations corresponding

to either region will work (and be identical). The only issue arises at (0, 0), which is

on the boundary of 8 different regions, but has already been addressed.
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Chapter 3

The Algorithm

3.1 Blending

Let ρ be a measure with quantities Q(R∗, ρ). Then we use the methods from the

previous chapter to find an approximation for the quantities of the subdivided regions

using either the linear polynomial weight measure or subdomain measure schemes.

Unfortunately, the linear polynomial weight measures only work on a rhombus

T with vertices (1/3, 0), (0, 1/3), (−1/3, 0), and (0,−1/3), which does not cover all

of R∗. On the other hand, subdomain measures work everywhere except for (0, 0),

but they are highly unstable near the origin. A small change in the moments with

q = (u, v) near (0, 0) could result in very large changes in the parameters. In fact, a

small perturbation could change the region of q = (u, v), and thus completely change

the type of the corresponding cut.

Therefore, we choose to blend the schemes. The quantities of the subdivided

regions (hereafter referred to as children) will be calculated as a linear combination

of the quantities calculated by each measure scheme.

Define

ϕ(u, v) = cos2
(3π

2 (u+ v)
)

cos2
(3π

2 (u− v)
)

(3.1)

so that 0 ≤ ϕ(T ) ≤ 1. Then ϕ(u, v) = 0 for (u, v) on the boundary of T , increasing

to ϕ(0, 0) = 1. Extend ϕ(u, v) to R∗ by setting it equal to 0 everywhere outside of T .

Then let Q(R∗i , η) be the quantities calculated from the linear polynomial measure

scheme and Q(R∗i , µ) be the quantities from the subdomain measure scheme, both
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for i = 1, 2, 3, 4. Then we blend the quantities of the children as follows:

Q̃(R∗i ) = ϕ(u, v)Q(R∗i , η) + (1− ϕ(u, v))Q(R∗i , µ) (3.2)

for i = 1, 2, 3, 4.

3.2 Subdivision Algorithm

We take this section to present the results of the subdivision algorithm with blen-

ding over squares. Theoretically, the algorithm should perform very well for linear

functions and regular distributions with gaps similar to the forms above. We begin

with a domain X = [−4, 4]2. After 2 levels of quadrisecting, we are left with 16

congruent two-unit squares Ri. At this stage, we use given data to directly calculate

the quantities Q(Ri) for each of the squares. This is the only stage in the algorithm

that has access to the original data.

The data can be presented in one of two ways. We could define arbitrary uni-

form regions of the plane by algebraic equations, then calculate the moments either

directly, or numerically. For example, we could populate X with three non-parallel

lines, and find the quantities for the region of uniform density bounded by all three.

Alternatively, we could present the data as a point cloud: a finite set of d+ 1 dimen-

sional data points that correspond to a coordinate (x, y) with a value p at that point

[2]. Again, the moments could be calculated directly, from equation (2.5).

With each of M00, M10, and M01 calculated, we proceed as follows: First, we

transform each region Ri to the standard region R∗, through the affine transformation

in equation (2.11), and calculate its centre of mass. This tells us what type of cut

the representative measure will have (if any). Second, use the formulas from Chapter

2 to find the corresponding parameters of the cut (two of a, b, c, or d) as well as

α and β, if necessary. Third, we calculate the moments the unknown measure ρ,

by constructing the known representative measure η such that Q(R∗, ρ) = Q(R∗, η).
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Fourth, we directly calculate the quantities of the children R1, R2, R3, and R4 so

that Q(Ri, ρ) ≈ Q(Ri, η) for i = 1, 2, 3, 4. Since some measures can be represented as

both a linear polynomial weight measure and as a subdomain measure, we have to

blend those measures using the formula in equation (3.2). Finally, we continue the

subdivision by repeating the whole process from the first step with the new quantities

for each subregion. We can continue this subdivision scheme as many levels as we

want, until we reach the limits of the machine, but usually until a satisfactory limit

surface is reached. Under ideal circumstances, this will be indistinguishable from the

original, but can be stored and calculated more efficiently.

We will present an example of the Lebesgue measure over X with a gap between

the curves

y1(x) = 3
8x+ 5

2 and y2(x) = −3
8x−

3
2 . (3.3)

Figure 3.1: The initial x-values (cyan-magenta) and y-values (red-yellow) on the
initial grid on X.

The figures in this section are plots of the average x and y-values over the squares.

The cyan-magenta figures represent the x-values, which range from -4 to 4. Similarly,

the red-yellow figures represent the y-values, which also range from -4 to 4. Note:

the colours are only used to better understand the performance of the algorithm;
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the shapes are all we care about. Figure 3.1 displays the data being used for the

subdivision scheme, which was used to calculate the initial moments. Note that the

measures over each square can be approximated well by either the subdomain or

complementary measures from Chapter 2.

From the initial data, we will calculate the average x and y-values over their

respective regions Ri. In Figure 3.2 we see the initial calculation of the quantities for

each of the 16 regions in X. These quantities are represented by the average x-values

(u = M10/M00) and average y-values (v = M01/M00) in all the remaining figures.

From there, each square undergoes the subdivision algorithm described earlier, being

split into four parts. The moments of each of the children are calculated based on the

moments of the parent squares. The first two levels of subdivision of X are shown

in Figure 3.2, in which the quantities are calculated from the previous level. After

each layer of subdivision, the gap between y1 and y2 becomes more apparent. By

continuing this subdivision, we can get a better idea of the limiting surface.

Note that for each of the x-value figures (left column), there appear to be vertical

bands of colour that become more apparent with each layer of subdivision. For each

of the y-value figures (right column), horizontal bands appear. The only place this

changes is along edges of the gap, where the squares are a slightly different colour.

This indicates that the square is only a partial measure, instead of a full measure.

Additionally, in the final picture, a few full measures appear to be very slightly

miscoloured. This is a product of the blending scheme from Section 3.1 that provides

a weighted average for some complementary measures that are mostly full.

After several rounds of subdivision, a limiting surface is achieved. When com-

paring the algorithm results from Figure 3.3 with Figure 3.1 we see that the limit

surface is very close to the initial data in both colour and shape. However, we only

care about how close the shape represents the original. As expected, the majority of

the error is concentrated along the edge of the gap.
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Figure 3.2: The initial average x-values (cyan-magenta) and y-values (red-yellow)
over the squares in X, followed by the first two layers of subdivision.
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The approximation would be slightly worse had the edges not been straight. Had

any measures deviated significantly from the measures described in Chapter 2, the

approximation could be made significantly worse, leading to more visible errors.

Figure 3.3: The limit surface of successive subdivision steps closely approximates
the initial data.

The initial level of subdivision greatly impacts the limiting surface of the subdi-

vision. Since the gap was observed with the initial data, we could even have started

the subdivision process one level higher. If the measure of the initial level can be

represented well by the subdomain and complementary measures in Chapter 2, then

the limiting surface of the algorithm will also be good. On the other hand if the

measure is poorly approximated initially, then that error will propagate through the

refinement, and be visible in the limit surface. Higher order subdivision schemes

could potentially represent more diverse measures.
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Chapter 4

Conclusions

In this paper, we have shown that it is possible to represent characteristics of a

reference square R∗ by just the moments. We developed a one-to-one correspondence

between points (u, v) on the square that represent the centre of mass, and parameters

α and β or a, b, c, and d that represent coefficients of a linear polynomial or points

of a cut. We used these parameters to develop a subdivision algorithm that can

successively subdivide a square into quadrants, each of which can be transformed to

the reference square.

While standard subdivision schemes are developed to apply for regular distribu-

tions, we suggest a new approach based on previous work by Diefenthaler [2] that

gives the opportunity to extend this visualization to practically important areas. The

algorithms analyze the aggregate quantities from the coarser level, to calculate their

counterparts at a finer level. In the future, new subdivision schemes of a higher order

could be explored which could contain more diverse representative measures. For ex-

ample, by extending the main idea of this thesis to calculate higher order moments, a

more complex subdivison scheme could be modelled, with better recovery of more di-

verse measures than the ones presented here. Along those lines, a more sophisticated

blending scheme could be implemented in order to minimize errors.
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