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ABSTRACT

This work presents a systematic approach for 3-D mapping and reconstruction of under-

water caves. Exploration of underwater caves is very important for furthering our under-

standing of hydrogeology, managing efficiently water resources, and advancing our knowl-

edge in marine archaeology. Underwater cave exploration by human divers however, is a

tedious, labor intensive, extremely dangerous operation, and requires highly skilled peo-

ple. As such, it is an excellent fit for robotic technology. The proposed solution employs

a stereo camera and a video-light. The approach utilizes the intersection of the cone of

video-light with the cave boundaries resulting in the construction of a wire frame outline

of the cave. Successive frames produce a scalable accurate point cloud which, through the

use of adapted 3-D geometry reconstruction techniques, creates a fully replicated model of

the cave system.
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INTRODUCTION

The importance of underwater cave mapping spans several fields. First, it is crucial in

monitoring and tracking groundwater flows in karstic aquifers. According to Ford and

Williams [22] 25% of the world’s population relays on karst water resources. Our work

is motivated from the Woodville Karst Plain (WKP) which is a geomorphic region that

extends from Central Leon County around the “Big Bend” of Florida [47]. Due to the sig-

nificance of WKP, the Woodville Karst Plain Project (WKPP) has explored more than 34

miles of cave systems in Florida since 1987 [10], proving the cave system to be the longest

in USA [29]. This region is an important source of drinking water and is also a sensitive

and vulnerable ecosystem. There is much to learn from studying the dynamics of the water

flowing through these caves. Volumetric modeling of these caves will give researchers a

better perspective about their size, structure, and connectivity. These models have even

greater importance than simply enhancing the mapping. Understanding the volume of the

conduits and how that volume increases and decreases over space is a critical component to

characterizing the volume of flow through the conduit system. Current measurements are

limited to point-flow velocities of the cave metering system and a cross-sectional volume

at that particular point. My thesis work introduces a fist step towards robotic mapping of

an underwater cave. The proposed approach results in 3-D reconstructions which will give

researchers the above described capabilities. Furthermore, volumetric models will be in-

credibly helpful for those involved with environmental and agricultural studies throughout

the area, and once perfected this technology could help map other subterranean water sys-

tems, as well as any 3-D environment that is difficult to map. The Woodville Karst Plain

area is sensitive to seawater intrusions which threaten the agriculture and the availability
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of drinking water; for more details see the recent work by Zexuan et al. [84]. Second, de-

tailed 3-D representations of underwater caves will provide insights to the hydrogeological

processes that formed the caves. Finally, because several cave systems contain historical

records dating to the prehistoric times, producing accurate maps will be valuable to under-

water archaeologists.

(a)

(b)

Figure 0.1: 0.1a Typical Scene from an underwater cave. 0.1b A cave diver attaching a
branch line to the main line of a cave.

Operations in underwater caves can be grouped under three categories: motion inside

the known part of the cave; exploration of new territory; and surveying of newly explored

areas. Most transportation in the explored part of caves is performed using diver propulsion
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vehicles (DPVs). All explored areas are marked by permanently attached cave line, which

provides a direct route to the exit; see Fig. 0.1b where a diver is inspecting the line. When

divers explore uncharted territory, they proceed without the DPVs, laying out line and tying

it to projections on the floor, walls, or ceiling. The third phase, surveying, consists of two

divers measuring distances, using a cave-line with knots every 3 m between attachment

points. Simultaneously, the divers also measure the water depth at each attachment point,

as well as the azimuth of the line leading to the next attachment point. All the information

is recorded on a slate or waterproof paper. Estimates of the height and width of the passage

can also be recorded, if time permits. The above described process is error-prone and time

consuming, and at greater depths results in significant decompression times, where total

dive time can reach between 15 to 28 hours per dive. My thesis presents a first step of

utilizing robotic technology to assist in cave exploration via the use of a stereo camera and

a video-light. In many cases, during DPV rides, the divers attach cameras to their DPV

and/or to themselves in order to document the exploration. Consequently, introducing a

stereo camera does not complicate the standard operating procedures and will not increase

the cognitive load of the divers.

The work of this thesis aims to achieve 3 goals.

1. Study the implementation of camera calibration in a physical setting.

2. Produce a point cloud of the underwater cave using stereo shape estimation and uti-

lizing the presence of artificial light.

3. Reconstruct the surface of the cave out of the generated point cloud.

Combined, these pieces will come together to form a sufficient pipeline for reading image

data and outputting a mapping of the cave system. This work can be easily adapted to a

physical robot setting for later field use as described earlier.

The next chapter will discuss a study of camera calibration along with effective methods

for minimizing error in results. Chapter 3 covers the topic of scene reconstruction from
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stereo vision, and introduces a novel approach to generating point clouds of underwater

cave systems1. The last component, point cloud surface reconstruction, will be addressed

in chapter 4. Finally, chapter 5 will conclude the work with a discussion of the overall

contributions.

1This chapter is joint work with Sharmin Rahman, Alberto Quattrini Li, and Ioannis Rekleitis and has
appeared in the proceedings of the International Conference for Robotics and Automation (ICRA) 2017 [81].
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CHAPTER 1

CAMERA CALIBRATION

1.1 OVERVIEW

Camera calibration of the data acquisition cameras is a fundamental first step in achieving

accurately scaled reconstructions. It is a highly studied and in common setups a solved

problem. While much of the research of the community has passed the calibration phase,

it is still the fundamental first step in a number of vision based research topics. Accurate

calibration models and properly undistorted images are a necessity for any kind of accurate

depth measurements, 3D reconstructions, or robotic navigation through a physical space

via imaging. Good calibration relies on good input image data and sometimes this can be

difficult to obtain. Cameras without digital screens make it impossible to view images or

video until connected to a computer. This can make it difficult to validate the calibration

set up while gathering input. In the underwater domain, cameras that lack this feature make

data validation much more tedious and time consuming as the cameras must be removed

from the water and connected to an external machine. If the data is being recorded in the

field without additional equipment, it may be impossible to view the images or footage

until data collection is complete. This can be even more problematic for stereo calibra-

tion systems where it is important that both cameras record the required information. As

such, identifying the subset of collected data that results in the best calibration model is an

important step in the calibration process.

With such factors as affordability, durability, and quality becoming commonplace for

the camera market, the use of cameras in research has grown. One popular brand is GoPro
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Figure 1.1: An underwater image of a waterproof calibration checkerboard pattern used for
camera calibration.

which develops small, durable, high resolution action cameras. GoPro cameras can be used

in a number of domains including above and below water and on a number of different ap-

plications such as building reconstruction or ocean floor mapping. While the popularity of

these cameras has increased, they are susceptible to some of the challenges in collecting

good calibration data. Most GoPro models lack a screen for viewing images and footage

during and after capture making it hard to position the camera in the scene. Part of this

problem has been fixed with the introduction of new Bluetooth and smart phone features,

but wireless communication is severely limited in the underwater domain. In the case of

this work, there was a need to accurately undistort footage obtained using GoPro’s Super-

View capture mode. This mode causes severe distortion along the edge of the frame which

some calibration tools have trouble overcoming.

1.2 RELATED WORK

Camera calibration is a well established method originating back to as early as the 1900s

with lens research by Conrady [13]. This developed into the Brown distortion model which

forms the foundation for modern day camera calibration techniques [9, 8, 24]. One of

the first openly available camera calibration tools was the Camera Calibration Toolbox for
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MATLAB. This tool, developed by Jean-Yves Bouguet, could calibrate a camera and return

the intrinsic and extrinsic parameters. The toolbox was built on the foundation of work

done by Tsai [80] for introducing off the shelf technologies to camera calibration, Heikkila

and Silven [30] for presenting an intrinsic calibration model, and most prominently Zhang

for developing many of the techniques used in the toolbox [85]. This work was later ported

to OpenCV and used to develop the more powerful Computer Vision System Toolbox for

MATLAB. These two tools are widely used in the field today.

More complex calibration models have been developed to handle more complicated

camera lenses taking into account different types of distortion. Specific methods to deal

with extreme fisheye and barrel distortion have arose both in OpenCV and in independently

released packages. Both the Camera Calibration toolbox for MATLAB and OpenCV have

a fisheye calibration model based on the work of Kannala and Brandt [39]. Scaramuzza

have worked extensively with omnidirectional camera calibration and has developed his

own MATLAB toolbox [69, 70, 68, 66]. Currently these are the state of the art readily

available tools for rapid prototyping and used by the general public, each with its own

advantages and disadvantages.

In recent years, there has been a push for the calibration of low cost and easily portable

camera systems. With the development and continued advancement of products such as the

GoPro, research has gone into the calibration and use of these cameras to solve imaging

problems. Balletti et al. [4] explained many of the advantages of lightweight cameras

including their ease to handle, capability of performing under extreme conditions, and pro-

viding high quality stills and video. They also explained methods for calibrating the cam-

eras for reconstruction purposes. In the realm of underwater camera calibration, Schmidt

and Rzhanov [71], and Shortis [77] compared the results and techniques for calibrating

GoPro systems with the added distortion of water. These studies all fail to touch on the

calibration of the GoPro camera when it is set to SuperView mode.

Calibration can be much more complicated and tedious if the camera is not the only
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Figure 1.2: Diver calibrating an underwater rig consisting of stereo cameras and an IMU.

sensor needing calibration. Many robotic systems take advantage of multiple propriocep-

tive and exteroceptive sensors in combination with visual input. A common proprioceptive

sensor is the inertial measurement unit (IMU) which measures linear accelerations and an-

gular velocities. Fig. 1.2 shows an example of the calibration process for a visual and

interior sensor system. Significant efforts has been in order to calibrate these systems as

accurately as possible including the use of a Kalman Filter to determine the unknown co-

ordinate transformations between sensors [56, 52, 41]. Because these calibrations rely

heavily on the camera input, it is important that the camera calibration output is as accurate

as possible so it will not skew the calibration of the other sensors.

A system for assisting novice users to collect images for calibration through a Graphical

User Interface is proposed by Richardson et al. [63].

Hu and Kantor [36] presented a greedy approach for selecting images so that they are

uniformly distributed over different camera poses. Such a method considers a budget that

encodes the maximum processing time allowed. A quality metric could be considered to

improve the performance.
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1.3 THEORY

The pin hole camera model is the simplest model for how a camera works and is used as

the basis for modern implementations of camera calibration. With this model, intrinsic and

extrinsic camera parameters define the transformation between 3D world coordinates and

2D image coordinates. The intrinsic parameters disregard the position and orientation of

the camera and define such parameters as the focal length, principal point, and aspect ratio.

Extrinsic parameters define the pose between object frame and camera frame in terms of

rotation and translation. The full model to get the pixel coordinates (u, v) of a point in the

world (X, Y, Z), including intrinsic and extrinsic parameters, is

λ


u

v

1

 =


fx 0 cx

0 fy cy

0 0 1




r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3





X

Y

Z

1


(1.1)

where λ defines the scale, u and v describe the coordinates of the newly projected image

pixel point, fx and fy describe the focal length values in pixels over width and height of the

camera sensor, cx and cy describe the principal point coordinates in pixels, rij represent the

elements of the extrinsic rotation matrix, ti represent the elements of the extrinsic transla-

tion matrix, and X , Y , and Z are the 3D coordinates in the world reference frame. The

extrinsic matrix is what translates 3D coordinates X , Y , and Z to new coordinates Xnew,

Ynew, and Znew in the camera reference frame. This transformation equates to
Xnew

Ynew

Znew

 = R


X

Y

Z

 + t (1.2)

Then, using triangle equivalence, assuming a unit distance between the Center of Projection

where all the ray lights project in the camera and the image plane, the pixel X ′new and Y ′new
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in normalized image coordinates can be determined as follows, :

X ′new = Xnew/Znew (1.3)

Y ′new = Ynew/Znew (1.4)

Taking into account the intrinsics parameters of the camera, we can then find the projected

u and v pixel coordinates on the actual image plane:

u = fx ∗X ′new + cx (1.5)

v = fy ∗ Y ′new + cy (1.6)

When actual cameras are examined, calibration must take into account the distortion

resulting from the lens. Distortion is separated between radial and tangential distortion.

Radial distortion is caused by the light bending near the edges of the lens. MATLAB

defines the distortion along the x (columns) and y (rows) coordinates of the camera as:

xrdistortion = X ′new(1 + k1r
2 + k2r

4 + k3r
6) (1.7)

yrdistortion = Y ′new(1 + k1r
2 + k2r

4 + k3r
6) (1.8)

where ki are the radial distortion coefficients and r2 = X ′2new + Y ′2new. Tangential distortion

is the result of the lens unparallel to the camera sensor plane. MATLAB defines the x and

y of this distortion as

xtdistortion = [2 ∗ p1 ∗Xnew ∗ Ynew + p2 ∗ (r2 + 2 ∗X ′2new)] (1.9)

ytdistortion = [p1 ∗ (r2 + 2 ∗ Y ′2new) + 2 ∗ p2 ∗X ′new ∗ Y ′new] (1.10)

where the pj are the tangential distortion coefficients and r2 = X ′2new + Y ′2new. These distor-

tions can be introduced into the perspective projection as

u = fx ∗X ′new ∗ (xrdistortion + xtdistortion) + cx (1.11)
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v = fy ∗ Y ′new ∗ (yrdistortion + ytdistortion) + cy (1.12)

resulting in the pixel coordinates u and v in the image plane.

Using known world coordinates and identifying how the camera transforms points in

a 2D image, the intrinsic [fx, fy, cx, cy] and extrinsic [R|t] parameters can be calculated,

where R and t are the matrix and vector that represents the rotation with elements rij and

the translation with elements ti. Testing the accuracy of the resulting model is done by

reprojecting the points backwards through the model and identifying how close the points

lie to where they were originally. The average distance these points are off from where

they should be is the reprojection error and is used to identify how good the model is.

Reprojection error measures pixel units and ideal models should minimize reprojection

error as much as possible.

Once the error is as an acceptable level—typically below 1 pixel—the images can be

undistorted using the calibration parameters. Because the intrinsic parameters have nothing

to do with the image scene, they can be used to undistort any collection of images taken

with the same camera. If the domain changes, for example the camera is moved from

above water to underwater, the distortion coefficients will no longer accurately represent

the image distortion. Because of this, the camera needs to be calibrated for both underwater

and on above water undistortion. While theoretically the introduction of a water distortion

model could eliminate the need for calibrating directly underwater, practically this was

found unnecessary.

While this describes the process of monocular camera calibration, in a stereo system

there is also the step of rectification. Rectified images are undistorted images with an

additional rotation applied in order to make the epipolar lines of the image parallel. They

also use an altered projection matrix that shifts the images apart by a distance described

by the baseline of the cameras. The baseline is the distance between the optical centers of

each camera. In a horizontal stereo setting, matching epipolar lines in each camera would

have identical y coordinates. The new rectified projection matrices in a horizontal stereo
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system are

P1 =


fx 0 cx1 0

0 fy cy 0

0 0 1 0

 (1.13)

P2 =


fx 0 cx2 Tx ∗ fx

0 fy cy 0

0 0 1 0

 (1.14)

where Tx is the horizontal shift amount. The rectified u′ and v′ coordinates can again be

defined as

u′ = P1 ∗R ∗ P1−1 ∗ u (1.15)

v′ = P2 ∗R ∗ P2−1 ∗ v (1.16)

and the rotation matrix R is defined so the epipolar lines along both images are now par-

allel. This is a vital step in any kind of reconstruction work, because it allows a matching

algorithm to reduce the search space to find the distance between matching features in

stereo image sets; the output can then be used for the triangulation of 3D world points

using such a distance, also called disparity.

1.4 CALIBRATION DATA COLLECTION

The common approach among calibration techniques is to use a set of points with known

relationships, for example points in a grid pattern. The points are usually extracted from

a set of input images as the corners, or centers of blobs. On these input images distinct

features are needed so that it is possible to easily identify the spatial relationship of points

in space compared to how the camera perceives them. Common approaches use calibration

targets with black and white squares or circles with known dimensions. The checkerboard

pattern is one of the standardized approaches, see Fig. 1.1. The intersection of white and

black squares creates distinct points in space, all the points exit on the same plane along
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parallel lines, and the square size provides accurate measures physical distance between

the points. Thus, the undistorted (rectified) images can be checked if they preserve the

linear relations between points.

Figure 1.3: A collection of good viewing angles and distances for a calibration board

When collecting images using a calibration target there are a number of important fac-

tors to consider. The input images should show the calibration board at a variety of loca-

tions, depths, and angles. Fig. 1.3 shows a collection of images taken when calibrating

the stereo rig shown in Fig. 1.2. The calibration was performed using the OpenCV fisheye

camera calibration functions. This set of images highlights the important lessons learned.

First there are views of the board from different distances, from far to near as seen left

to right respectively. Second, the board is skewed with respect to the image plane; this

is achieved by tilting the target to be non parallel to the camera. Third, the board should

never be rotated past 90 degrees otherwise the images can be flipped; it is worth noting that

using an odd by even dimension calibration pattern makes the board robust to orientation

changes. The pattern should be visible in the field of view in its entirety, although this is an

obvious point, when there are no preview capabilities it can be challenging. In particular,

when calibrating a stereo system the pattern should be fully visible in both the left and the

right camera.
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(a) (b)

Figure 1.4: From the same camera pose, (a) 1080p GoPro footage without the SuperView
feature. (b) 1080p GoPro footage with the SuperView feature.

1.5 SUPERVIEW

The GoPro cameras starting with Hero 3+ are employing a video capture mode termed

SuperView. According to GoPro, SuperView works by dynamically stretching the 4:3 as-

pect ratio of the original image into a 16:9 aspect ratio. This keeps the center of the frame

unchanged, but severely distorts the edges. The outcome is an image that captures more of

the standard 1080p resolution mode. The exact image transform GoPro uses to fit the new

aspect ratio is undisclosed so removing the distortion in post processing is not an option.

As can be seen in Fig. 1.4, there is a drastic difference in images collected in GoPro’s Su-

perView mode and their scene vertically and adjusts the aspect ratio to fit a standard wide

screen. Many standard video editing software packages such as Adobe Premier, Adobe

After Effects, or GoPro’s own GoPro Studio have undistortion features, but these apply a

stylistic look which does not help to calibrate the camera properly.

1.6 CALIBRATION WITH MATLAB

As mentioned earlier, there are two standard, widely used, packages for camera calibration,

one in MATLAB and one in OpenCV; both based on the same theoretical formulation. The

MATLAB Computer Vision system Toolbox calibration implementation includes a feature

for visualizing the reprojection error across input images as a graph; see Fig. 1.5. This
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graph also plots a mean reprojection error line which can help to identify which input im-

ages caused the most problems with the calibration. There is also an adjustable threshold

line to set a maximum acceptable reprojection error, resulting in removing outlier images

with reprojection error above the set threshold. In other words, by setting this threshold

level after calibration, the system can reject the images above the line and rerun the cali-

bration on only those images below. If the input data set is large (several tens to hundred of

images), this can help cut down the input images to a more manageable number between

twenty and fifty. Furthermore, when calibrating, there is an option to use two or three dis-

tortion coefficients. The GoPro cameras we experimented with, calibrate best using two

coefficients, but cameras with severe radial distortion work better with three.

While adjusting such features as the number of coefficients or the reprojection error

threshold can result in a better camera model, it is important to avoid false positive repro-

jection error results. Using too many distortion coefficients can minimize the reprojection

error, but rectified images generated with those parameters can be dramatically distorted. It

is also important when removing outliers to avoid fitting the model to a non diverse image

set. When removing outliers, try to keep images from distinct calibration pattern positions

with lowest reprojection error. Also viewing the rectified images and scene reconstructions

can validate if the parameters were accurate or not. Careful examination of the outliers

images captured in SuperView mode indicated that points detected near the boundary of

the image were badly misplaced due to the extreme distortion.

1.7 EXPERIMENTAL RESULTS

Experimental Setup In our results we used a 8x6 calibration board with 25mm squares

when underwater, and a 7x6 calibration board with 29mm squares when on air. We found

the use of an odd by even size calibration board avoided the possible problem of upside

down corner detection. In our underwater footage this did not interfere with our underwater

results so our old set up still used. The board was printed on waterproof paper and glued
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onto an acrylic board as smoothly as possible to avoid any extra noise.

Calibration Procedure and Results Using the left and right frames extracted from our

calibration video, the images were run through the MATLAB Computer Vision system

Toolbox Stereo Camera Calibrator upon which a result was determined. The reprojection

error graph was examined in order to identify image pairs that exceeded the average image

pair mean. These pairs were then removed from the input image list and the process was

rerun. This happened repeatedly until either the total reprojection error fell within a speci-

fied reasonable range, or the image pair set became to small for meaningful calculations to

be done.

Using this method, we were able to calibrate a GoPro camera recording in SuperView

mode with reprojection error of 0.9 on air and 0.51 underwater, compared to an error of 2.5

on air and 1.5 underwater without any outlier removal, as seen in Fig. 1.6.

Fig. 1.6 compares the reprojection error results of image sets both with and without

SuperView and both above and below water. In each case, calibration parameters were

determined using a subset of full input data set—training phase—where the outliers had

Figure 1.5: MATLAB Stereo Calibrator App GUI.
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been removed. These parameters were then used to calculate the reprojection error of

the full set once again—validation phase. Note that, in MATLAB, the function provided

that recovers the extrinsics given the set of 2D-3D points of the checkerboard is based

on a closed form formulation, while the one used inside the function for estimating the

camera parameters is using a numerical optimization algorithm. As such, reprojection

errors calculated on the same images from the training phase and the validation phase could

be slightly different. In our experiments it was around 1-2 pixels. As such, we formulated

the recovery of the extrinsics as a numerical optimization problem and we compute the

error using a numerical optimization algorithm. It can be observed that the mean pixel

error is lower on the full set when the parameters from the image subset are used. Many

plots still have outlier cases which result from a few possibilities. One cause is that while

the corners were all detected by the corner detector, there was motion blur that skewed the

actual location of the points. A second cause is the SuperView dynamic stretching that

pulls the corner points outward near the edges. This effect is not completely eliminated

after calibration which signifies features very close to the edge of the scene are not usable

in any future processes. A future study might evaluate the region for which undistorted

SuperView images remain undetected by the dynamic stretching. Comparing the results

of image sets above and below water, underwater sets had a number of more sharp outlier

cases. This is most likely the results of the difficulty in actually acquiring underwater

calibration footage. The two domains did both had success in producing low reprojection

error. In our case we even got slightly better error results from using SuperView underwater

compared to above water, possibly because of the additional water distortion effect.
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(a) Non-filtered underwater dataset without Super-
View

(b) Filtered underwater dataset without SuperView

(c) Non-filtered underwater dataset with SuperView (d) Filtered underwater dataset with SuperView

Figure 1.6: Calibration results using MATLAB on underwater datasets. On the left column,
results by using all the images, on the right column, results by filtering the dataset using
the outlier removal method.
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(a) Non-filtered above water dataset without Super-
View

(b) Filtered above water dataset without SuperView

(c) Non-filtered above water dataset with SuperView (d) filtered above water dataset with SuperView

Figure 1.7: Calibration results using MATLAB on above water datasets. On the left col-
umn, results by using all the images, on the right column, results by filtering the dataset
using the outlier removal method.
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CHAPTER 2

STEREO SHAPE ESTIMATION

2.1 OVERVIEW

Camera calibration was an important step in our overall pipeline of underwater cave re-

construction, because without it we could not accurately project 2-D image points into 3-D

space. The footage for all of our tests were taken using a GoPro in SuperView mode, so

this calibration problem needed to be addressed. With calibration out of the way, we now

shift focus to the generation of a geometrically accurate point cloud using stereo footage

collected in an underwater cave. The presented approach utilizes the presence of the artifi-

cial lighting to produce a rough model of the traversed area. In particular, the video-light

cone is used to identify the walls of the cave from a single stereo pair. Furthermore, mo-

tion between consecutive stereo pairs is estimated and the 3-D reconstruction is utilized to

produce an approximate volumetric map of the cave.

2.2 RELATED WORK

The majority of underwater mapping up to now consists of fly-overs with downward point-

ing sensors mapping the floor surface. The resulting representation consists of 2.5 di-

mensional mesh-maps or image mosaics with minimal structure in the third dimension.

In addition to underwater caves, several other underwater environments exhibit prominent

three dimensional structure. Shipwrecks, are significant historical sites. Producing accurate

photorealistic 3-D models of these wrecks will assist in historical studies and also monitor

their deterioration over time. During maritime disasters, it is important to produce accurate
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maps of the sunken vessel, especially the interior, in order to assist with rescue efforts.

Multiple cases existed where survivors have been rescued from submerged vessels [26]

hours, or even days after the event. Finally, underwater infrastructure inspection [62] is

another dangerous and tedious task that is required to be performed at regular intervals.

Such infrastructure includes bridges, hydroelectric dams [64], water supply systems [82],

and oil rigs. For more information please refer to the Massot-Campos and Oliver-Codina

survey [55] for an overview of 3-D sensing underwater.

Most of the underwater navigation algorithms [48, 78, 37, 65] are based on acoustic

sensors such as Doppler Velocity Log (DVL), ultra-short baseline (USBL) and sonar. Gary

et. al. [25] presented a 3D model of a cenote using LIDAR and sonar data collected by

DEPTHX (DEep Phreatic THermal eXplorer) vehicle having DVL, IMU and depth sensor

for underwater navigation. Corke et. al. [14] compared acoustic and visual methods for

underwater localization. However, collecting data using DVL, sonar, and USBL while

diving is expensive and sometimes not suitable in cave environments.

Using stereo vision underwater has been proposed by several groups, however, most

of the work has focused on open areas with natural lighting, or artificial light that com-

pletely illuminates the field of view. Small area dense reconstruction of a lit area was

proposed by Brandou et al. [7]. Mahon et. al. [54] proposed a SLAM algorithm based on

the viewpoint augmented navigation (VAN) using stereo vision and DVL in underwater en-

vironment. A framework proposed by Leone et al. [49] operated over mainly flat surfaces.

Several research groups have investigated the mapping and/or inspection of a ship’s hull

using different techniques [32, 35, 20, 43], the most famous shipwreck visual survey being

that of the Titanic [21]. Error analysis was performed recently by Sedlazeck and Koch

[73]. The problem of varying illumination was addressed by Nalpantidis et al. [59] for

above-ground scenes in stereo reconstruction. More recently, Servos, Smart and Waslan-

der [74] presented a stereo SLAM algorithm with refraction correction in order to address

the transitions between water, plastic, and air that exist in the underwater domain.
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2.3 CHALLENGES

As can be seen in Fig. 2.1, the complete absence of natural illumination in combination

with the presence of several sources of artificial illumination, such as: each diver’s primary

light and also one or more video-lights, results in huge lighting variations in the scene. In

particular each diver’s primary light generates a tightly focused beam which is constantly

moving with the motion of the diver. In Fig. 2.2a, there are three divers present: one

holding the video light, his tanks visible at the bottom of the image; one traveling with the

camera, not visible; and a third one whose DPV is visible at the top of the image. The

primary light of the third diver can be seen as a blue beam pointing downwards, starting at

the left of the DPV.

The lighting variations make the success of traditional visual odometry [60] algorithms

near impossible. The main assumption of Brightness Constancy Constraint underlying

most visual odometry algorithms is violated by the constantly moving light-sources. Ta-

ble 2.1 presents tests of five open source packages of vision based SLAM on underwater

cave vision datasets; as expected most of them failed on the longer sequence and the rest

were not able to extract the scale of the environment. It is worth noting that several of the

packages are expecting specific motions in order to initialize [44]. Complete results are

not presented due to space constraints; interested readers should refer to the work of Quat-

trini Li et al. [51] for a detailed analysis of more packages and a variety of datasets. The

selection of the algorithms presented here was motivated of testing a variety of methods;

feature based [57, 45], semi-direct [23], direct [19], and global [72]. The main challenge

these algorithms face is the constant change of the field of view and the dramatic lighting

variations resulting from occlusions and from light absorption over distance. Among the

most successful was the ORB-SLAM [57] with its latest incarnation as ORB-SLAM 2, still

in beta version, working with stereo images. While some of these packages, produced an

acceptable trajectory, their shape reconstruction was plagued by noise.
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(a)

(b)

(c)

Figure 2.1: Left camera images of an underwater cave with different illuminations. Illumi-
nation in the cave is provided by the lights individual divers have and also from a strong
video-light. 2.1a Diver in front holds a strong video-light; see how the cone of light out-
lines the boundaries of the cave. 2.1b Diver with video-light follows behind the camera.
2.1c The diver with the camera also holds the light.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.2: 2.2a Left camera image of an underwater cave. 2.2b The rectified image. 2.2c
The rectified image thresholded based on light intensity. 2.2d An edge map of the bound-
aries of the thresholded image. 2.2e The boundaries filtered to eliminate small contours.
2.2f The longer contours superimposed on the rectified image.

2.4 WIREFRAME RECONSTRUCITON

Using light variations to infer shape has been used extensively in the past [42, 18, 46]. The

3-D reconstruction consists of several steps. First the images have to be rectified; a process

achieved through a process called camera calibration.
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Table 2.1: Performance of different open source vision based SLAM packages on under-
water data; for a detailed analysis please refer to Quattrini Li et al. [51]

[57] [45] [23] [19] [72]
ORB-SLAM PTAM SVO LSD-SLAM Colmap

10 sec noisy no initialization partial trajectories/no scale loss of track partial trajectories/no scale
448 sec noisy no initialization partial trajectories/no scale loss of track partial trajectories/no scale

Contour Tracking Adaptive thresholding is used in order to identify the areas with dif-

ferent illumination; see Fig. 2.2c for the thresholded image where the cone of the video-

light meets the cave walls. Selecting the right value for thresholding the image required

some domain knowledge, and currently was perform per video sequence, by a human. Cur-

rent experiments consider adjusting the threshold based on keeping a balance between the

amount of light and dark areas, but that work is outside the scope of this paper.

During the next step, edge detection marks the boundaries between light and dark areas;

see Fig. 2.2d for the boundaries of Fig. 2.2b. The OpenCV Canny edge detector [12] is

used to identify the edges marking the lighter area boundaries. As can be seen, the edge

map is very noisy and thus not suitable for estimating the walls of the cave. A filter is

applied to the contour list, eliminating short contours. More specifically, for every contour,

its bounding box is calculated and then only the highest fifth percentile is kept. While this

method can eliminate elongated contours, experiments with the actual underwater cave

video footage proved to not affect the main boundaries. The filtered contours can be seen

in Fig. 2.2e. Figure 2.2f superimposes the filtered contours on the rectified image; the areas

where the cone of light meets the cave walls are clearly identifiable. In addition, the area

with acceptable lighting is extracted for use at the motion estimation. The edge map of the

boundaries is used then as input to a stereo reconstruction algorithm.

Sparse Stereo Reconstruction The 3-D structure of the cave boundaries is estimated for

each stereo pair. For every point on the contour of the left image a SURF feature descrip-

tor [5] is calculated using the left rectified image. Consequently, the same descriptor is

matched on the right rectified image. Outlier rejection is facilitated by searching only loca-
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Figure 2.3: Select features matched at the boundary between left and right image of a stereo
pair.

tions at the same row and to the right of the left-image feature’s coordinates. As the camera

calibration error is 0.8 pixels, it justifies the assumption above. Previous work on feature

quality [75, 76, 83] for underwater images indicated SURF [5] to be the most appropriate

feature descriptor. Furthermore, the OpenCV Canny edge detector groups the edges in a

list of continuous contours, as such consecutive points belonging to the same contour can

be filtered for consistency. Figure 2.3 presents select feature matches corresponding to the

contours between the left and right image of a stereo pair.

Figure 2.4 presents a comparison of the performance of dense stereo reconstruction us-

ing OpenCV’s semi-global block matching (SGBM) stereo algorithm [31] and the contour

calculation. The standard output of dense stereo algorithms is a depth map, a normalized

image where depth is quantified between 0 and 255; as such the values are discretized; see

Figs. 2.4a,2.4d for the 3-D reconstruction using the SGBM stereo algorithm on Fig. 2.2b.

The noise is quite noticeable, Figs. 2.4b,2.4e present the same reconstruction using only the

lighted areas. Finally, Figs. 2.4c, 2.4f present only the contours of high intensity variation

extracted from Fig. 2.2b projected in 3-D using SURF feature matching between left and

right image. The noise is largely reduced, and the cave boundaries are clearly identifiable.

While the first row of Fig. 2.4 presents a frontal view, and the error is not noticeable, the

second row, presents a side view and the outliers are obvious. Currently, the corresponding

points are calculated with pixel accuracy which results in disparity estimates that are inte-

gers. Consequently, the depth estimation is discretized and as it is inversely proportional
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(a) (b) (c)

(d) (e) (f)

Figure 2.4: Three different reconstructions from two different angles are presented. (a-c)
Present a frontal view; (d-f) present a side view. 2.4a, 2.4d Disparity map of the Fig. 2.2b
using the the OpenCV’s semi-global block matching (SGBM) stereo algorithm. 2.4b, 2.4e
Applying the SGBM algorithm only to the lighted part. 2.4c, 2.4f The contour in 3-D using
feature matches; see Fig. 2.3. It is worth noting elimination of outliers makes the contours
much more distinct.

to the distance of the camera there is a scattering effect. While this effect is strong during

dense reconstructions, see Fig. 2.4c, it is also present on the contour estimation; see Fig.

2.4d

2.5 VISUAL ODOMETRY

Brute force application of VO algorithms [17, 15] is quite challenging in the underwater

cave domain, due to the lighting variations and the sharp contrasts existing in the image, as

discussed earlier. However, by thresholding the image, the areas of adequate illumination

in the left and right camera feed can be used to apply one of the latest VO algorithms,

ORB-SLAM 2, a variant of ORB-SLAM [57, 58] for stereo vision. Figure 2.5 presents

tracked features in the areas with higher illumination. It is worth noting that during some
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Figure 2.5: ORB features tracked by ORB-SLAM 2.

segments of the video the third diver swimming below the camera exhaled sending a cloud

of bubbles in the field of view, however, the VO algorithm was robust enough to handle

these dynamic features. This event highlighted one of the challenges of underwater vision.

Figure 2.6 presents the trajectory of the stereo camera and the 3-D position of stable

features as extracted from ORB-SLAM 2 from a trajectory of seven minutes, twenty eight

seconds. While there was no ground truth, observing the video one gets a qualitative ver-

ification for the estimated trajectory. The estimated trajectory is then used as an input to

produce a volumetric map by transforming the boundaries calculated above through space

using the estimated pose of the stereo camera at each instant. It is clear that the contour

based reconstruction; see Fig. 2.6a, has eliminated several outliers which were present in

the ORB-SLAM reconstruction; see Fig. 2.6b. The next section presents results from an

actual cave.

2.6 EXPERIMENTAL RESULTS

In January 2015, the authors requested from a cave exploration team in Mexico to acquire

sample footage using a Dual Hero stereo camera from GoPro during a dive at an already

explored cave. The selected cave is part of the Sistema Camilo, the 11th longest submerged
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(a) (b)

Figure 2.6: 2.6a The trajectory calculated by ORB-SLAM 2 of a 7 min 28 sec traversal and
the 3-D points estimated from ORB features. 2.6b The wireframe reconstructed from the
proposed stereo algorithm. Please note, the reduced number of outliers compared to 2.6a.

cave system in the world, located at Quintana Roo, Yucatan peninsula, Mexico. The camera

was mounted on a DPV and the video-light was carried in different configurations in order

to demonstrate alternative lighting schemes.

Camera Calibration As mentioned above, the stereo camera used utilizes a recording

mode termed superview, which stretches the image in order to produce more aestheti-

cally pleasing videos. Post-processing all the calibration footage collected, error analysis

showed, as expected, the error to slightly increase with distance; see Fig. 2.7.

Stereo Reconstruction Figure 2.6b presents the 3-D reconstruction of a long video of 7

min 28 sec. The structure corresponds with the cave morphology, however it is difficult

to discern in the still image. Figure 2.8 presents the 3-D reconstruction of a cave segment
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(a) (b)

Figure 2.7: 2.7a Average error of the inter-point distance of the target; 2.7b Average error
of the reconstructed points from the best plane fitting 3-D points of the checkerboard. The
results were from 4,000 images of the calibration target presented to the stereo camera
underwater.

from a short ten seconds traversal. The left and right walls are clearly identifiable, while

the floor and ceiling are occluded from the two divers that swam in the field of view.
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(a)

(b)

Figure 2.8: 2.8a The 3-D walls of the cave extracted from a short ten second traversal. 2.8b
A second view more inside the reconstruction.
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CHAPTER 3

SURFACE RECONSTRUCTION

3.1 OVERVIEW

A geometrically sound point cloud gives a lot of information about the 3-D structure of

cave. The shape can be easily inferred, and features of the cave such as stalagmites take

shape. It is also easy to see how the cave system is shaped on a large scale when longer

segments are constructed such as in 2.6. What a point cloud lacks though is information

between all of the points. This space can be either large or small depending on the how

many image frames were used to build the model. These empty spaces can cause visual

problems if shapes loose their definition due to lack of information. If these models were

to be used for robot integration as discussed earlier, the area of these holes cannot be used

for any kind of sensing information. Due to this need for additional information in our

reconstructed model, surface reconstruction is used in order to fill the empty spaces. Our

reconstruction problem is not unique enough to warrant a brand new surface reconstruction

technique. As will be explained in section 3.2, a lot of work has gone into the problem of

surface reconstruction. We hope to identify the best method out there for our particular

problem, and build upon those results to refine our final output even more.

3.2 RELATED WORK

Surface reconstruction is a problem that expands well beyond scene reconstruction from a

camera. Many methods have developed for data collected with range scan datasets. Luckily

these methods can often be applied generically to any kind of data set, but there are key
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components and limiting factors that make some better than others. Such data sets as those

collected with underwater stereo images often fail under the constraints of popularized

techniques.

A subcategory of surface reconstruction techniques is that of point interpolation. In

this category, the input data points would all represent points exactly on the surface of the

reconstruction object. Because this is in practice impossible without at least some minimal

error, applications take measurement error into account, but assume it to be small. These

methods are thus popular on range scan data sets where the volume of the data points is

high, the surface is usually smooth, and the degree of error is often small. Popular meth-

ods include the cocone method [3] and the power crust method [2] which use a piecewise

linear approximation of the surface based on a Delaunay triangulation of the input points.

Alternatively there is the ball-pivoting algorithm [6] which incrementally builds a surface

based on the idea of a ball rolling across and intersecting points. These methods are also

incredibly susceptible to noise due to their assumption that the points exactly lie on the ob-

ject surface. This can mitigated by noise smoothing or popular point sampling techniques

such as Poisson disk sampling [16], but the loss of data can result in an output to abstract

from the true reconstruction.

Alternative to point interpolation, there is also the category of algorithms that deal with

point approximation. This removes the restriction that points must lie on the on the recon-

struction object, and the methods are much more varied. Many of these techniques require

knowledge of the point normals, which is absent information when generating input points

from images. Thus methods have developed for determining and orienting the normals of

points based on estimating the normal of a plane tangent to the surface [67]. Known point

normal information now introduces the use of approximation reconstruction techniques.

Signed distance function approaches such as those developed by Hoppe et al. [34, 33] de-

fine a surface in implicit form and then allow for the extraction of a final triangulated mesh

using popular approaches such as marching cubes [53]. Instead of using a distance func-
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tion, methods such as Poisson reconstruction [40] use indicator functions to define a water

tight model. Lastly there are approaches using moving least-squares(MLS) which were in-

troduced by Levin [50] and soon popularized through point set surfaces by Alexa et al. [1]

All together these form a vast library of surface reconstruction techniques to use between

the interpolation and approximation subcategories.

With such a large volume of available solutions to the surface reconstruction prob-

lem, it is important to identify the best approach given a specific data set. In our case we

need to identify a method that can deal with the sparsity of our point cloud volume while

also not falling susceptible to noise. Other works have done similar data collection and

reconstruction of underwater systems using cameras as their primary means of data collec-

tion. Johnson-Roberson et al. [38] used Delaunay triangulation to reconstruct individual

top down stereo images of the sea floor. These individual reconstructions are then aggre-

gated together using a Volumetric Range Image Processing (VRIP) technique developed by

Curless and Levoy. Campos et al. [11] introduced a method for 3D surface reconstruction

with an emphasis on underwater optical mapping. This method is inspired by restricted

Delaunay triangulation and is robust to noise and outliers often attributed with underwater

data collection. Unfortunately these two methods have clear advantages. The former only

scans directly below at the more or less flat ocean floor, while the latter builds a point set

from a large collection of camera angles and locations. Another study by Tischenko [79]

used a range scan and collected data out of water, but compared the best approaches to re-

constructing a hollow cylindrical point cloud shape. This is similar to the shape of our cave

system and can thus prove useful. This study found the marching cubes implementation

mentioned earlier by Hoppe to produce the most accurate reconstruction results.
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3.3 ALGORITHM COMPARISON

From a surface reconstruction perspective, the point clouds generated from our light ring

model have a number of important characteristics. The only data outputted by stereo match-

ing is the (x,y,z) coordinates of the image points in space with respect to their relative cam-

era poses. These points can additionally coincide with RGB values from the image, but

due to the nature of our data collected the colors are always some of the highest intensity

pixel values and thus much of the texture detail is lost. Because no other data is currently

saved with the point data, we lack information about the point normals. At the same time,

there are often outlier points that make it to the stereo matching phase. One advantage of

our method is that since we only project points on the ring of light which should be in a

different location every frame, theoretically our points should have limited overlap. With

these problem specifics and constraints defined, the task now becomes identifying a proper

surface reconstruction technique to form our initial base mesh.

For the sake of rapid prototyping different reconstruction methods on our data set, tests

were run using the application Meshlab. Meshalb has a number of the techniques discussed

in 3.2 built in making it a quick option for comparing the outputs. Tests run in Meshlab

could not be integrated into our pipeline, but they helped identify the proper procedure.

Our pipeline renders our point cloud using the Point Cloud Library(PCL). PCL has a

number of additional functionalities that can help in the reconstruction phase. First off,

statistical outlier removal can be applied to our points. Mean distances are computer for

each point in regards to its neighboring points. Points whose mean distances exceed that

of the global mean and standard deviation are labeled outliers and removed from the set.

This eliminates points that were picked up by the feature detector in the image processing

stage, but whos spacial position would only distort the final reconstruction. Second, we

can apply the normal calculation and orientation described in 3.2. The points we projected

from the image are all on the inside of the cave, so all of the normals should be oriented
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inwards. PCL makes the assumption that normals are oriented towards the camera, which

is exactly what we want since our camera moves through the inside of the cave. A subset

of the resulting normals can be seen in 3.1.

(a)

(b)

Figure 3.1: 3.1a A point cloud segment of the ten second traversal. 3.1b The same segment
with white normal lines protruding inwards
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Moving this normal oriented point cloud over to Meshlab allows us to now experiment

with the different reconstruction techniques. These tests were run on the points generated

from the first 100 frames of the ten second traversal video. Ultimately our reconstruction

would never run on the full frame data set due to processing power constraints, so instead

the cave would be generated in subsets and stitched together. 100 frames was enough to

define the shape of the walls, and adding in more had minimal effect on the local outputs.

Textures were generated using the RGB values of the input points. This looses a lot of the

texture detail present in the images themselves, but a base model needed to be established

first before creating a proper texture projection.

An initial test was done using only Delaunay triangulation. This was the procedure

that had been used on ocean floor mosaicking were the overall shape of the points was

flatter. Unfortunately for our point cloud, Delaunay triangulation creates a completely

incomprehensible mass.

Figure 3.2: Results of running Delaunay triangulation.

If we try an interpolative method such as ball-pivoting, we see in 3.3a that the results

don’t look much better than Delaunay triangulation. If we take sampling into account,
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though, dropping the total point count down from 100,000 points to 10,000 or 1,000 pro-

duces fast low res versions of the cave mesh as seen in 3.3b and 3.3c respectively. These

can be useful in quickly generating surfaces that have at least some resemblance of the

shape.

Meshlab includes two marching-cubes based reconstruction approaches using MLS,

algebraic point set surfaces (APSS) [28, 27] and robust implicit MLS (RIMLS) [61]. After

adjusting the MLS filter scale, these methods generate the best reconstructions achieved.

Both produce similar outputs, but the RIMLS method appears to create smoother surfaces

in a more locations. These results are shown in 3.4.

It is clear the shape of the cave is still not perfect. It is expected most of problems

arise from our camera set up and lack of input data detail. Due to our small baseline, We

loose a lot of accuracy as we move away from the camera. This is likely a cause for the

misalignment occurring along the walls. These kinds of errors in our reprojection can cause

reconstruction problems when points fall to closely to other points they shouldn’t be near.

Testing with other camera systems should shed light on areas of our reconstruction pipeline

that can benefit from finer tuning.
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(a)

(b)

(c)

Figure 3.3: 3.3a Ball-pivoting applied to the entire point set. 3.3b Applied to a 10,000
sampling. 3.3c Applied to 1,000 point sampling.

39



Figure 3.4: RIMLS marching cubes surface reconstruction
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CONCLUSION

This thesis presented contributions to the topics of camera calibration, stereo shape es-

timation, and surface reconstruction for the application of reconstructing 3-D models of

underwater cave systems. In order to help calibrate camera systems with extreme distor-

tion such as the GoPro in SuperView mode, we studied calibration techniques that took into

account the removal of outlier images. MATLAB’s computer vision system toolbox was

found the be the most effective way to handle the problems of high distortion systems, and

a simplified OpenCV version of their outlier removal was ported over. With a successfully

calibrated camera we presented the first ever reconstruction results from an underwater

cave using a novel approach utilizing the artificial lighting of the scene as a tool to map

the boundaries. This approach was applied on actual collected cave dive footage, and was

effective in both producing a reconstruction and not interfering with the standard proce-

dure the cave divers follow. Lastly the point cloud underwent a series of tests for surface

reconstruction using a number of the most prominent techniques in the field.

We identified a number of areas for which future work can expand upon through the

study of our tests and results. Different camera systems with a larger baseline and even

more reduced calibration error will hopefully create more accurate reconstructions that in

turn lead to more accurate surfaces. The inclusion of additional non obtrusive sensors such

as sonar can also increase the accuracy of our results.

Cave mapping is a problem with significant impact across a wide range of fields. Steps

made towards increasing the accuracy and efficiency of these mappings, especially at a low

cost and non-cumbersome level, is vital. This work introduces a pivotal first step towards

achieving complete mappings..
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APPENDIX A: OPENCV PORT

While the MATLAB Computer Vision system Toolbox is highly powerful and produced

good results for our setup, there are drawbacks. Namely MATLAB is closed source soft-

ware that requires payment to use. At the same time, MATLAB can be tedious to integrate

with external applications and thus might not be ideal if camera calibration is only a part

of a larger pipeline. OpenCV on the other hand is both widely used for a variety of image

and computer visions applications, and is both open source and easy integrate. As noted

earlier, OpenCV has implementations of camera calibration already and they are simple to

use. Unfortunately they lack the user interface and built in outlier removal to make cal-

ibrating something like SuperView efficient. A similar implementation of the MATLAB

outlier removal system was thus developed as an easy to use tool in OpenCV.

Because data visualization plays such a crucial role in identifying bad calibration input

images, there needed to be a good way to generate interactive graphs of the OpenCV cal-

ibration results. This can be time consuming in C++, so alternatively python’s Matplotlib

library was used to recreate as similar output as possible to MATLAB’s. OpenCV has both

a C++ and a python library, but python was found to quite slow in calibrating large data

sets. Due to this, a hybrid C++ and python application was created. The finalized control

flow is as follows.

1. The C++ application reads in a set of input image pairs for calibration

2. The calibration board corner points are detected and stored in an external file
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3. The first calibration run takes place and the reprojection error of every input image

is stored in an external file along with the average reprojection error

4. A python script reads the reprojection errors and plots them along with an average

reprojection error line

5. The user adjusts the average reprojection error line, selects outlier removal button,

and the file of corner points is edited down to the new smaller set

6. The C++ application reads in the corner points, avoiding time spent calculating the

corner points again, and recalculates the reprojection errors with the new set

7. The output is again used in the python script and the process is repeated

Fig. A.1 shows the plot generated by the OpenCV port, and the reprojection error for

the image set of 1.5. After iterative outlier removals, the error is brought down from the

original 2.83 to 1.02. This compares to MATLAB’s error output of .51. Because MATLAB

is a closed source application, the exact method for calibration can not be ported over di-

rectly. This means MATLAB’s calibration probably involves a slightly refined calculation

and optimization. OpenCV has trouble matching MATLAB’s results and its speed, but

compared, but this method still provides an open source alternative. These results match or

are even better than hand picking input images and saves time eliminating bad options.
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Figure A.1: Initial reprojection errors plotted in python
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