2017

Functional Data Smoothing Methods and Their Applications

Songqiao Huang
University of South Carolina

Follow this and additional works at: https://scholarcommons.sc.edu/etd

Part of the Statistics and Probability Commons

Recommended Citation

This Open Access Dissertation is brought to you for free and open access by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact dillarda@mailbox.sc.edu.
Functional Data Smoothing Methods and Their Applications

by

Songqiao Huang

Bachelor of Science
Binghamton University, State University of New York, 2011

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy in
Statistics
College of Arts and Sciences
University of South Carolina
2017

Accepted by:
David B. Hitchcock, Major Professor
Paramita Chakraborty, Committee Member
Xiaoyan Lin, Committee Member
Susan E. Steck, Committee Member
Cheryl L. Addy, Vice Provost and Dean of the Graduate School
DEDICATION

To my parents Jingmin Huang and Chunhua Xu, grandparents Xishen Xu and Caiyun Jiao, Yanshan Huang and Youlian Gao, and husband Peijie Hou, you are always there with me whenever and wherever I am.
ACKNOWLEDGMENTS

I want to express my greatest gratitude to my academic advisor, Dr. David B. Hitchcock, who has encouraged, inspired, motivated me, and guided me through all the obstacles in my Ph.D. study with great patience. Dr. Hitchcock is not only my academic advisor, but is also a very good life mentor and friend. His knowledge, patience and carefulness toward research, and his great advice and encouragements for other aspects of life during my years at the University of South Carolina, Columbia have helped me grow and become stronger both academically and personally.

I also want to thank all of my committee members, Dr. Susan Steck, Dr. Paramita Chakraborty and Dr. Xiaoyan Lin for carefully reviewing my dissertation, and for their insightful suggestions and comments on my dissertation.

Above all, I want to thank the most important persons in my life: My parents Jingmin Huang and Chunhua Xu, my grandparents Xishen Xu, Caiyun Jiao, and Yanshan Huang, and my husband Peijie Hou. Without their unconditional love, consistent support and encouragements, I couldn’t have grown to be the person I am today.
Abstract

In many subjects such as psychology, geography, physiology or behavioral science, researchers collect and analyze non-traditional data, i.e., data that do not consist of a set of scalar or vector observations, but rather a set of sequential observations measured over a fine grid on a continuous domain, such as time, space, etc. Because the underlying functional structure of the individual datum is of interest, Ramsay and Dalzell (1991) named the collection of topics involving analyzing these functional observations functional data analysis (FDA). Topics in functional data analysis include data smoothing, data registration, regression analysis with functional responses, cluster analysis on functional data, etc. Among these topics, data smoothing and data registration serve as preliminary steps that allow for more reliable statistical inference afterwards. In this dissertation, we include three research projects on functional data smoothing and its effects on functional data applications. In particular, Chapter 2 mainly presents a unified Bayesian approach that borrows the idea of time warping to represent functional curves of various shapes. Based on a comparison with the method of B-splines developed by de Boor (2001) and some other methods that are well known for its broad applications in curve fitting, our method is proved to adapt more flexibly to highly irregular curves. Then, Chapter 3 discusses subsequent regression and clustering methods for functional data, and investigates the accuracy of functional regression prediction as well as clustering results as measured by either traditional in-sample and out-of-sample sum of squares or the Rand index. It is showed that using our Bayesian smoothing method on the raw curves prior to carrying out the corresponding applications provides very competitive statistical inference and an-
alytic results in most scenarios compared to using other standard smoothing methods prior to the applications. Lastly, notice that one restriction for our method in Chapter 2 is that it can only be applied to functional curves that are observed on a fine grid of time points. Hence, in Chapter 4, we extend the idea of our transformed basis smoothing method in Chapter 2 to the sparse functional data scenario. We show via simulations and analysis that the proposed method gives a very good approximation of the overall pattern as well as the individual trends for the data with the cluster of sparsely observed curves.
Table of Contents

Dedication ... iii

Acknowledgments .. iv

Abstract ... v

List of Tables .. ix

List of Figures ... xi

Chapter 1 **Introduction** ... 1

 1.1 Literature Review .. 1

 1.2 Outline .. 7

Chapter 2 **Bayesian functional data fitting with transformed B-splines** ... 9

 2.1 Introduction .. 10

 2.2 Review of Concepts .. 12

 2.3 Bayesian Model Fitting for Functional Curves 16

 2.4 Knot Selection with Reversible Jump MCMC 27

 2.5 Simulation Studies .. 31

 2.6 Real Data Application ... 38

 2.7 Discussion ... 41
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>MSE comparison table for five smoothing methods. Top: MSE values calculated with respect to the observed curve. Bottom: MSE values calculated with respect to the true signal curve.</td>
<td>37</td>
</tr>
<tr>
<td>2.2</td>
<td>MSE comparison table for six smoothing methods. Digits in the Weights column represent the weighting of the simulated periodic curve, smooth curve and spiky curve, respectively. Top row in each cell: MSE value calculated with respect to the observed curve. Bottom row in each cell: MSE value calculated with respect to the true signal curve.</td>
<td>38</td>
</tr>
<tr>
<td>3.1</td>
<td>Rand index values for five smoothing methods based on regular distance matrix</td>
<td>47</td>
</tr>
<tr>
<td>3.2</td>
<td>Rand index values for five smoothing methods based on standardized distance matrix</td>
<td>47</td>
</tr>
<tr>
<td>3.3</td>
<td>In-sample SSE comparison for functional regression predictions based on simulated curves</td>
<td>50</td>
</tr>
<tr>
<td>3.4</td>
<td>Out-of-sample SSE comparison for functional regression predictions based on simulated curves</td>
<td>55</td>
</tr>
<tr>
<td>3.5</td>
<td>SSE comparison table: Model 1: both dew point and humidity are predictors. Top: SSE for predicted response curves with respect to the true observed curve, no further smoothing on $\alpha_1(t)$, $\beta_{11}(t)$ and $\beta_{12}(t)$. Bottom: SSE for predicted response curves with respect to the true signal curve, with further smoothing on $\alpha_1(t)$, $\beta_{11}(t)$ and $\beta_{12}(t)$ using regular B-spline basis functions.</td>
<td>58</td>
</tr>
<tr>
<td>3.6</td>
<td>In-sample SSE comparison: Model 2: dew point is the only predictor. Top: SSE for predicted response curves with respect to the true signal curve, no further smoothing on $\alpha_2(t)$ and $\beta_1(t)$. Bottom: SSE for predicted response curves with respect to the true observed curve, with further smoothing on $\alpha_2(t)$ and $\beta_1(t)$ using regular B-splines basis functions.</td>
<td>58</td>
</tr>
</tbody>
</table>
Table 3.7 In-sample SSE comparison: Model 3: humidity is the only predictor. Top: SSE for predicted response curves with respect to the true signal curve, no further smoothing on $\alpha_3(t)$ and $\beta_2(t)$. Bottom: SSE for predicted response curves with respect to the true observed curve, with further smoothing on $\alpha_3(t)$ and $\beta_2(t)$ using regular B-splines basis functions.

Table 3.8 SSE comparison for seven flood events. Top: SSE values based on functional regression without any smoothing. Bottom: SSE values based on functional regression with raw data curves and estimated intercept and slope curves smoothed via smoothing splines.

Table 3.9 SSE comparison for seven flood events. SSE values based on functional regression without any pre-smoothing on the observation curves. “Cross-validation” idea is utilized to obtain out-of-sample predictions. Top: SSE values based on functional regression without any smoothing. Bottom: SSE values based on functional regression with raw data curves and estimated intercept and slope curves smoothed via smoothing splines.

Table 3.10 SSE comparison for seven flood events. SSE values based on functional regression with Bayesian transformed B-splines method on the observed curves.

Table 3.11 SSE comparison for seven flood events. SSE values based on functional regression with Bayesian transformed B-splines method on the observation curves. Top: No further smoothing on $\hat{\alpha}(t)$ and $\hat{\beta}(t)$ curves. Middle: $\hat{\alpha}(t)$ and $\hat{\beta}(t)$ curves further smoothed using smoothed splines with roughness parameter = 0.9. Bottom: $\hat{\alpha}(t)$ and $\hat{\beta}(t)$ curves further smoothed using smoothed splines with roughness parameter = 0.5.

Table 3.12 SSE comparison for seven flood events. SSE values based on functional regression with Bayesian transformed B-splines method on the observation curves. “Cross-validation” idea is utilized to obtain out-of-sample predictions. Top: No further smoothing on $\hat{\alpha}(t)$ and $\hat{\beta}(t)$ curves. Bottom: $\hat{\alpha}(t)$ and $\hat{\beta}(t)$ curves further smoothed using smoothed splines with roughness parameter = 0.9.
LIST OF FIGURES

Figure 2.1 Comparison plot of two normal density curves. Dashed curve: density of $N(0, \sigma_{d_i}^2 + c_i^2 \zeta_i^2)$. Solid curve: density of $N(0, \sigma_{d_i}^2 + \zeta_i^2)$. $(c_i, \sigma_{d_i}/\zeta_i) = (5, 1)$. .. 20

Figure 2.2 Comparison plot of two normal density curves. Dashed curve: density of $N(0, \sigma_{d_i}^2 + c_i^2 \zeta_i^2)$. Solid curve: density of $N(0, \sigma_{d_i}^2 + \zeta_i^2)$. $(c_i, \sigma_{d_i}/\zeta_i) = (100, 10)$. .. 20

Figure 2.3 True versus fitted simulated curves. Dashed spiky curve: simulated true signal curve. Solid wiggly curve: corresponding observed curve. .. 33

Figure 2.4 Mean squared error trace plot of 1000 MCMC iterations 34

Figure 2.5 Example of set of 15 transformed B-splines obtained from one MCMC iteration ... 34

Figure 2.6 True signal curve versus fitted curves from three competing methods. Black solid curve: true signal curve. Red dashed curve: fitted curve obtained from Bayesian transformed B-splines method. Blue dotted curve: fitted curve obtained from B-splines basis functions. Dashed green curve: fitted curve obtained from B-splines basis functions with selected knots. 35

Figure 2.7 True signal curve versus fitted curves from three competing methods. Black solid curve: true signal curve. Red dashed curve: fitted curve obtained from Bayesian transformed B-splines method. Blue dotted curve: fitted curve obtained from the wavelet basis functions. Dashed green curve: fitted curve obtained from the Fourier basis functions. 36

Figure 2.8 Observed versus smoothed wind speed curves. Top: four observed wind speed curves. Bottom: four corresponding wind speed curves smoothed with Bayesian transformed B-splines basis functions. .. 39
Figure 2.9 Side by side boxplots of MSE values for five smoothing methods. From left to right: boxplot of MSE values for 18 ocean wind curves smoothed with the selected knots B-splines (SKB); the B-splines with equally selected knots (B); the Wavelet basis (Wave); the Fourier basis (Fourier) and the Bayesian transformed B-splines (TB).

Figure 3.1 Simulated curves from four clusters.

Figure 3.2 Boxplots of SSE values for the first 9 predicted response curves with no presmoothing or presmoothing using the transformed B-splines, the Fourier basis, the Wavelet basis and regular B-splines basis functions on the curves. Red line: SSE value for the predicted response curves with presmoothing on the curves using the transformed B-splines.

Figure 3.3 The first 9 predicted response curves. Black spiky curves: true signal response curves. Red long dashed curves: predicted curves with presmoothing using the transformed B-splines. Purple wiggly curves: predicted response curves with no presmoothing on the curves. Green dashed curve: predicted response curves with presmoothing using the Fourier basis functions.

Figure 3.4 The first 9 predicted response curves. Black spiky curves: true signal response curves. Red long dashed curves: predicted curves with presmoothing using the transformed B-splines. Blue wiggly curves: predicted response curves with with presmoothing using the Wavelet basis functions. Green dashed curve: predicted response curves with presmoothing using the regular B-spline basis functions.

Figure 3.5 True Orlando temperature curves and predicted response curves without data smoothing, or with data presmoothed using the transformed B-spline basis and the Fourier basis functions. Black solid curve: true Orlando weather curves. Green solid curve: predicted curves without any data smoothing. Red solid curve: predicted curves with data presmoothed using the transformed B-spline basis functions. Purple dashed curve: predicted curves with data presmoothed using the Fourier basis functions.
Figure 3.6 True Orlando temperature curves and predicted response curves with data presmoothed using the transformed B-spline basis, regular B-spline basis functions and the wavelet basis functions. Black solid curve: true Orlando weather curves. Green solid curve: predicted curves presmoothed using the wavelet basis functions. Red solid curve: predicted curves with data presmoothed using the transformed B-spline basis functions. Purple dashed curve: predicted curves with data presmoothed using regular B-spline basis functions.

Figure 3.7 Upstream (Congaree gage) water level measures for flood event of October 2015.

Figure 3.8 Downstream (Cedar Creek gage) water level measures for flood event of October 2015.

Figure 3.9 Downstream (Cedar Creek gage) and upstream (Congaree gage) water level measures for six flood events.

Figure 3.10 Functional regression based on raw data curves. Top: intercept function $\hat{\alpha}(t)$. Bottom: slope function $\hat{\beta}(t)$.

Figure 3.11 Functional regression based on raw data curves. Blue dashed curve: observed Congaree curve. Green solid curve: observed Cedar Creek curve. Red dashed curve: predicted Cedar Creek curve.

Figure 3.12 Functional regression based on pre-smoothed data curves. Top: smoothed intercept $\tilde{\alpha}(t)$. Bottom: smoothed slope $\tilde{\beta}(t)$.

Figure 3.13 Functional regression based on pre-smoothed data curves, obtained intercept and slope curves are further smoothed for prediction. Blue dashed curve: smoothed Congaree curve. Green solid curve: smoothed Cedar Creek curve. Red dashed curve: predicted Cedar Creek curve.

Figure 3.14 Functional regression based on pre-smoothed data curves, obtained intercept and slope curves are further smoothed for prediction. Blue dashed curve: smoothed Congaree curve for October 2015 event. Green solid curve: smoothed Cedar Creek curve for October 2015 event. Red dashed curve: predicted Cedar Creek curve for October 2015 event.

Figure 3.15 Obtained slopes for seven flood events using functional regression based on raw data curves using “Cross-validation” idea.
Figure 3.16 Obtained slopes for seven flood events using functional regression based on pre-smoothed data curves using “Cross-validation” idea. 72

Figure 3.17 Functional regression based on pre-smoothed data curves using Bayesian transformed B-splines method. Blue dashed curve: smoothed Congaree curve. Green solid curve: smoothed Cedar Creek curve. Red dashed curve: predicted Cedar Creek curve. 74

Figure 3.18 Functional regression based on pre-smoothed data curves using Bayesian transformed B-splines method. Obtained $\hat{\alpha}(t)$ and $\hat{\beta}(t)$ curves are further smoothed using the same procedure. Blue dashed curve: smoothed Congaree curve. Green solid curve: smoothed Cedar Creek curve. Red dashed curve: predicted Cedar Creek curve. 75

Figure 3.19 Functional regression based on pre-smoothed data curves using Bayesian transformed B-splines method. Obtained $\hat{\alpha}(t)$ and $\hat{\beta}(t)$ curves are further smoothed using smoothing splines with roughness penalty parameter = 0.9. Blue dashed curve: smoothed Congaree curve. Green solid curve: smoothed Cedar Creek curve. Red dashed curve: predicted Cedar Creek curve. 76

Figure 3.20 Estimated $\alpha(t)$ and $\beta(t)$ curves smoothed using Bayesian transformed B-splines method. Top: estimated (black) and smoothed (red) $\alpha(t)$ curve. Bottom: estimated (black) and smoothed (red) $\beta(t)$ curve. 78

Figure 3.21 Estimated $\alpha(t)$ and $\beta(t)$ curves smoothed using smoothing splines method with roughness penalty parameter = 0.9. Top: estimated (black) and smoothed (red) $\hat{\alpha}(t)$ curve. Bottom: estimated (black) and smoothed (red) $\hat{\beta}(t)$ curve. 79

Figure 3.22 Functional regression based on pre-smoothed data curves using the Bayesian transformed B-splines method. Obtained $\hat{\alpha}(t)$ and $\hat{\beta}(t)$ curves are further smoothed using smoothing splines with roughness penalty parameters = 0.9 ($\hat{\alpha}(t)$) and 0.5 ($\hat{\beta}(t)$). Blue dashed curve: smoothed Congaree curve. Green solid curve: smoothed Cedar Creek curve. Red dashed curve: predicted Cedar Creek curve. 80
Figure 3.23 Estimated $\alpha(t)$ and $\beta(t)$ curves smoothed using smoothing splines method with roughness penalty parameter $= 0.9$ ($\hat{\alpha}(t)$) and 0.5 ($\hat{\beta}(t)$). Top: estimated (black) and smoothed (red) $\alpha(t)$ curve. Bottom: estimated (black) and smoothed (red) $\beta(t)$ curve.

Figure 3.24 Functional regression based on pre-smoothed data curves using the Bayesian transformed B-splines method. “Cross-validation” idea is utilized to obtain out-of-sample predictions. Blue dashed curve: smoothed Congaree curve. Green solid curve: smoothed Cedar Creek curve. Red dashed curve: predicted Cedar Creek curve.

Figure 3.25 Functional regression based on pre-smoothed data curves using the Bayesian transformed B-splines method. Obtained $\hat{\alpha}(t)$ and $\hat{\beta}(t)$ curves are further smoothed using smoothing splines method with roughness penalty parameter $= 0.9$. “Cross-validation” is utilized to obtain out-of-sample predictions. Blue dashed curve: smoothed Congaree curve. Green solid curve: smoothed Cedar Creek curve. Red dashed curve: predicted Cedar Creek curve.

Figure 4.1 Observed points versus smooth fitted curves. Left: colored curves: observed values for ten curves connected with linear interpolations for each curve. Right: colored curves: smooth fitted curves for all ten observations in the cluster; black dashed curve: estimated common mean curve for the cluster.

Figure 4.2 Estimated common mean curve and mean trajectories from multiple iterations. Black solid curve: estimated mean curve obtained from 1500 iterations after 500-iteration burn-in. Grey dashed curves: estimated common mean trajectories from 100 iterations.

Figure 4.3 95 percent credible intervals, the estimated curves, and the estimated common mean curve for five observations. Orange dotted curves: pointwise 95 percent credible intervals for the curves. Red solid curves: median fits of the raw curves from the posterior distribution. Gray dashed curves: median of the estimated common mean curve obtained from the entire chain after a 500-iteration burn-in. Blue triangles: true observed values for the curves.
Figure 4.4 95 percent credible intervals, the estimated curves, and the estimated common mean curve for five observations. Orange dotted curves: pointwise 95 percent credible intervals for the curves. Red solid curves: median fits of the raw curves from the posterior distribution. Gray dashed curves: median of the estimated common mean curve obtained from the entire chain after a 500-iteration burn-in. Blue triangles: true observed values for the curves.
CHAPTER 1

INTRODUCTION

1.1 LITERATURE REVIEW

This section offers a brief literature review of functional data analysis (FDA) and some functional data applications. We start with a brief introduction of the origin of functional data analysis, and then discuss the development of the subject relating to our research.

ORIGIN

The idea of viewing sequences of time series data that show some autocorrelated structure, either in the curve itself or in the error terms, was first proposed by Ramsay (1982), in his paper titled “When the Data are Functions”. Prior to that, researchers may have encountered data in the form of curves frequently, such as children’s growth curves in biomedical studies, for example. However, they were mostly treated with multivariate data analysis methods by viewing the measurements as separate variables across time. However, when data are intrinsically continuous and the covariance between response values must be considered, employing classical multivariate methods requires dealing with the covariance matrix, which would result in models with huge dimensions for a moderate number of variables. To avoid this issue, other researchers explored using groups of functions to represent the curves, yet their approaches were limited by the lack of flexibility of parametric functions. Following Ramsay and Dalzell (1991), the term “functional data analysis” was coined and began to be widely used. Ramsay and Dalzell (1991) provided a new perspective for
perceiving continuous data curves. Instead of selecting a limited number of variables to represent the data, Ramsay and Dalzell viewed the curves themselves as individual observations, where each one is perceived as a function or mapping that takes values from a certain domain (usually a time interval) to some range that lies within the scope of interest for the response in the study, where the functions vary across the data set. Thus, the information about correlation across any time interval is contained in the function itself. In addition, it also enables the exploitation of information hidden in higher-order derivatives of the original functional datum. Such information is often considered vital for understanding the behavior of the curves in practice. In sum, the main difference between classical multivariate analysis and FDA is that not only are the measured points perceived as variables on a continuous domain, but the functional itself is varying too (Ramsay 1982). On the other hand, similarly to classical multivariate data analysis, researchers can still analyze data by viewing a group of curves as a set of data. Straightforward statistical analysis of functional data include but are not limited to: classification and clustering, regression analysis, noise reduction and prediction.

Development

Over the last three decades, functional data analysis has been given more attention by researchers in biomedical fields. It has become common to analyze or interpret curves, or even images and their patterns from this new perspective. With the development of high-throughput technology, data can be measured over a very dense grid of points on a continuous domain, which makes functional data more prevalent.

One useful preliminary step for analyzing functional data is data smoothing. Researchers may choose to do smoothing before carrying out further analysis, or could use raw curves for inference directly. However, smoothing will often result in an improvement in the accuracy of further statistical analyses, such as data classification.
For instance, Hitchcock, Casella and Booth (2006) proved that a shrinkage smoother effectively improves the accuracy of a dissimilarity measure between pairs of curves. Hitchcock, Booth and Casella (2007) showed that smoothing usually produces a more accurate clustering result, especially when a James-Stein-type shrinkage adjustment is applied to linear smoothers.

Popular data smoothing methods include basis fitting, regression splines, roughness penalty-related smooths, kernel-based smoothers, and smoothing splines. Among these categories, the regression spline is the most widely used method for data smoothing. The regression spline method refers to the functional data fitting approach employing basis functions called splines to form a “design matrix” as in classical regression. The fitted curve is obtained via the usual least squares (or weighted least squares) method, where the weight matrix usually involves the reciprocal of the correlation structure of the error terms. Knots sometimes split the domain into pieces in order to fit data piece by piece via usual regression methods. Hence determining the appropriate number and locations of the knots is a problem to be solved prior to or along with the data smoothing procedure. Polynomial splines and B-splines (de Boor 2001) are two examples that require selection of knots prior to data smoothing. Currently existing knot selection methods include Bayesian adaptive regression splines (BARS) (DiMatteo, Genovese and Kass 2001), which uses a Bayesian model to select an appropriate knot sequence using the data themselves. This approach employed the reversible jump Markov chain Monte Carlo (RJMCMC) Bayesian modeling scheme that is capable of determining the number of knots and their locations simultaneously (Green 1995). Another method with a similar aim is knot selection via penalized splines (Spiriti, Eubank, Smith and Young 2008). Other basis systems include but are not limited to the Fourier basis and the wavelet basis, for which least squares or weighted least squares fitting may also be employed.

It should be noted that for different functional data, the chosen basis systems
must individually reflect the characteristics of the various functional observations. Currently there is no such unified basis system that can be applied automatically to a large collection of curves for accurate data fitting (Ramsay and Silverman 2005).

Roughness penalty-based data smoothers are smoothing methods that use a basis system, along with a penalty term which usually consists of a tuning parameter and a measure of roughness of the fitted curves, to obtain fits that balance bias and sample variance. The roughness penalty term is usually measured by the squared derivative of some order of the curve integrated over some continuum. Often the fourth-order derivative of the fitted curve is sufficient, as it penalizes the fitted curve and its corresponding first and second derivative for not being smooth. The tuning parameter is often chosen with some data-driven method prior to the fitting procedure. Some of the most popular approaches are the cross-validation (CV) method or generalized cross-validation (GCV) method (Craven and Wahba 1979). Detailed comparisons of the two aforementioned methods are given in Gu (2013). Among different roughness penalty methods, the smoothing spline approach is most often used. It uses a sum of weighted squared residuals, plus a second-order penalty term as the objective function. The weight function is the inverse of the covariance matrix of the residuals. In reality, an estimate of the inverse of that matrix is obtained to replace the weight matrix in the objective function. de Boor (2001) presented a theorem which states that the aforementioned objective function is minimized if a cubic spline is applied with knots located on each of the measured points. Such a method is called cubic smoothing spline. This method avoids the problem of locating the knot sequence and also ensures sufficient knots in dense areas of the curves, but would result in an outrageously huge model dimension when the data are measured over a fine grid on the domain. Besides, when the data structure is simple, such a method leads to severe over-fitting. Due to such a drawback, Ramsay and Silverman (2005) argued that fewer knots could be appropriate when the B-spline basis is employed in
the smoothing spline framework, with the penalty term controlling the smoothness of the fitted curves. Methods like these are called penalized spline methods.

Then, however, the knot location problem returns. The most common solution is equal spacing of the knots (e.g., Ramsay and Silverman 2002), so that the only problem is to determine the number of knots to be placed on the domain. Obviously, such a method is only good for relatively simple structured curves with homogeneous behavior. For the general roughness penalty approach, the penalty term is not restricted to be the aforementioned derivative measure of the original curves; other forms of penalties such as the squared harmonic acceleration penalty may also be plausible.

Finally, the kernel-based fitting approaches are commonly used nonparametric data smoothing methods. The estimated curve evaluated at each individual point is still represented by a weighted average of the observed response values measured at different points on the domain. The main difference is that the weights are now determined by pre-specified kernel functions. The bandwidths of the kernels control the value of the weight at different points. Popular kernel functions include the uniform, the quadratic and variations of Gaussian kernels that are positive only over parts of the domain. This method falls into the category of localized least squares smoothing methods, since at each measured point, only some (not all) of the observed values are used for estimation of the curve. Nadaraya and Watson (Nadaraya 1964; Watson, 1964) proposed a way to standardize the specified kernel function, resulting in a unit sum weight function. Gasser and Müller (1979, 1984) further proposed a kernel-integral based weighting function that possesses good asymptotic properties and computational efficiency.

When the functional data is sparse in nature, so that the traditional functional data smoothing methods are incapable of providing desirable results, methods based on mixed effects models in longitudinal analysis have been developed for smoothing
sparse functional data, see, e.g, Staniswalis and Lee (1998), Rice and Wu (2001), Yao, M"uller and Wang (2005). Fitting methods based only on mixed effects models usually employ the EM algorithm to estimate important parameters of interest. However, as pointed out by James, Hastie and Sugar (2000), this approach could make the parameter estimates highly variable when the data is very sparse. Hence, they proposed a reduced rank mixed effects model, which combines functional principal components with the mixed effects model by imposing several orthogonality constraints on the design matrices. An alternative approach incorporates the mixed effects models with the Bayesian technique, see Thompson and Rosen (2008) for details.

Researchers are often interested in exploring the patterns of a group of curves instead of one individual curve. One popular sub-area in functional data analysis for modeling patterns among groups of curves is functional regression. Functional regression is an extension of the classical regression model with vector-valued response and vector-valued covariates. It allows for either the response or the predictor(s) or both to be continuous functions. Some reviews of functional regression can be found in Wang, Chiou and M"uller (2016). The case of both the response variable and predictor variable(s) being functions is the most straightforward extension of classical linear regression. Functional regression models in this category include the concurrent model, in which the response value relates to the functional covariate value at the current time only, and the functional linear model (FLM), in which the response value at any time point is related to the entire covariate curve. The former model is usually estimated with a two-step procedure where in the first step, an initial estimate of the parameter functions are obtained pointwise via ordinary least squares, and then the estimated parameter functions are further smoothed via either basis expansion, smoothing-splines, or other fitting methods (Fan and Zhang 1999). Other researchers (Eggermont, Eubank and LaRiccia 2010; Huang, Wu and Zhou 2002) have proposed one-step methods to fit the model using basis approximations. The FLM model, on
the other hand, was first introduced in Ramsay and Dalzell (1991), in which estimation of the parameter surface was obtained via a penalized least squares approach. A review of functional linear models can be found in Morris (2015). On the other hand, substantial studies of functional regression models have focused on the case of a scalar response and functional covariate. For this case, an easy approach is to smooth both the functional covariate and its corresponding coefficient with the same set of basis functions, say, B-splines, the Fourier basis or even smoothing splines (Cardot, Ferraty and Sarda 2003). By doing that, the smoothed functional linear model reduces to a classical linear regression. There are also numerous extensions of functional regression to functional generalized linear models. Both the cases in which the link function is known or is unknown have been substantially studied, e.g., (James 2002; Chen, Hall and Müllér 2011). Functional regression has also been extended to the nonlinear case, where nonparametric smoothing is applied to functional predictors, see, e.g., Ferraty and Vieu (2006).

Another popular functional data application area that deals with groups of curves is functional cluster analysis. Similar to traditional cluster analysis, functional clustering typically involves traditional hierarchical, partitioning or model-based clustering methods on the raw or standard distance matrices calculated based on the set of observed curves, the estimated basis function coefficients, or the principal component scores. See Abraham et al. (2003), James and Sugar (2003), Chiou and Li (2007) and Jacques and Preda (2014) for some studies in this area. A brief summary of current approaches for functional data clustering can be found at Wang et al. (2016).

1.2 Outline

The main focus of this dissertation is on functional data smoothing methods and corresponding applications such as functional regression and clustering. With the development of technology, it is now becoming more prevalent to collect data that are
intrinsically continuous, and data smoothing as a preliminary data analysis step has attracted considerable attention. It is reported in Ullah and Finch (2013) that more than 80 percent of functional data application papers under consideration utilized some kind of data smoothing prior to further analysis. However, data smoothing methods being considered still apply the classical ones to different types of observations: regression splines, B-splines, smoothing splines, model-based methods, kernel-based approaches, etc. There is a lack of a more flexible method that could be adapted automatically to a broader range of curve forms. We therefore aim to fill this gap by proposing related methods that could be implemented more flexibly, and to examine subsequent impacts on other functional data inferences.

In Chapter 2, we propose an alternative to the traditional scheme for data fitting, by generalizing the concepts of time warping beyond data alignment to curve fitting. We utilize Bayesian modeling of the time warping function to obtain a set of transformed splines that can flexibly model different shapes of observed curves. We show via simulations and an application to a real data set that our proposed approach can achieve greater fitting accuracy when compared with other popular fitting methods. In Chapter 3, we discuss the impact of applying our proposed smoothing method on the set of raw functional curves, the functional response or the functional covariates as a pre-smoothing operation prior to functional regression or clustering and compare the impact of our method on clustering and prediction accuracies with other popular fitting and smoothing approaches. Chapter 4 extends the data smoothing approach in Chapter 2 to the sparse data scenario. We incorporate our time warping scheme within the Bayesian framework, and we utilize a popular random mixed effects model to fit sparse data, and we propose an add-on step during each iteration of the Bayesian simulation to obtain smooth fits of the sparse curves using our approach.
Chapter 2

Bayesian functional data fitting with transformed B-splines

Summary: Data fitting is of great significance in functional data analysis, since the properties of the fitted curves directly affect any potential statistical analysis that follows. Among many currently popular basis systems, the system of B-spline functions developed by de Boor (2001) is frequently used to fit non-periodic data, due to its flexibility introduced by the knots and the iterative relationship between basis functions of different orders. Yet often the B-splines approach requires a huge number of basis functions to produce an accurate fit. Besides, when the intrinsic structure of the individual functional datum is not apparent, it could be difficult to determine the appropriate basis system for data fitting. Motivated by these facts, we develop an approach that fits well without requiring inspection of the raw curve, while also controlling model dimensionality. In this paper, we propose a Bayesian method that uses transformed basis functions obtained via a “domain-warping” process based on the existing B-spline functions. Our method often achieves a better fit for the functional data (compared with ordinary B-splines) while maintaining small to moderate model size. To sample from the posterior distribution, the Gibbs sampling method augmented by the Metropolis-Hastings (MH) algorithm is employed. The simulation and real data studies in this article provide compelling evidence that our approach better fits the functional data than an equivalent number of B-spline functions, especially when the data are irregular in nature.
2.1 Introduction

Functional data analysis refers to the class of statistical analyses involving data that are collected on a set of points drawn from a continuum. The points at which data are collected are usually densely located over the continuum so that the curvature shape is captured properly. Functional data fitting then refers to some representation of the functional observations. Considering time-varying curves on 2-dimensional space, the model representation could refer to either: a linear combination of basis functions, fit, for example, via the least squares approach (e.g., de Boor 2001; Schumaker 2007); a linear combination of basis functions, augmented with terms consisting of a tuning parameter that controls the smoothness of the fitted curves and an integral of the functional outer products, such as the roughness penalty smoothing splines approach (de Boor 2001); or a moving average weighted by some kernel-based weight function, as in kernel smoothing of functional data.

Research in functional curve fitting mostly follows the three aforementioned paths that aim to determine adequate representation of the functional curves. With parametric fitting methods, most existing approaches are tailored to the researcher’s observation of the data curves. In other words, one has to visually examine the curves prior to data smoothing in order to more accurately fit the data. For instance, to determine which basis to use in the least squares fitting approach, the researchers must know the smoothness and differentiability of the original curves or underlying true curves as well as their derivatives. Sufficiently smooth and well behaved curves can usually be represented well with a polynomial basis or regular splines with knots evenly distributed on the time axis. Curves that are periodic would be better off fitted with the Fourier basis system. Smooth yet more irregular curves may be described with the more popular and commonly used B-spline basis. With highly spiky or irregular curves, the wavelet basis is a suitable choice. If the B-spline basis system is chosen in order to depict some local features of the curves, either via the least
squares approach or the roughness penalty approach, preliminary knowledge about the curves’ appearances is also essential to determine whether multiple knots should be placed at certain locations. When the data curve is intrinsically continuous yet changes rapidly in multiple locations, a B-spline basis might not be a wise choice. This is because multiple knots must be placed at several locations to depict those dramatic changes accurately, or else it may result in severe under-fitting. This would induce another potential issue: The total number of basis functions used to represent the data may become undesirably large and the model may become much more complex than desired. In short, the accuracy of the model fit is achieved only by sacrificing model simplicity. Triggered by these findings, we want to solve the following problems of interest simultaneously:

- To propose a method that would be appropriate for both well-behaved and irregular data curves.
- To improve data fitting with a fixed number of basis functions.

In the statistical literature on data smoothing, one notices that successful methods have been developed that construct new basis systems or adaptive splines to adjust for different shapes of the curves (e.g., Hastie, Tibshirani and Friedman 2009), yet there has been little focus on improving or transforming existing basis functions for greater flexibility. In this chapter, we propose a Bayesian fitting method that adjusts B-spline basis functions to accommodate data of a different nature. This approach avoids data inspection prior to smoothing and fits uniformly well for smooth, spiky, periodic or irregular data curves. To be more specific, we propose an “inverse-warping” transformation on our pre-specified basis functions that lets the data determine the shape of the basis functions as well as their corresponding coefficients.

The rest of chapter 2 is organized as follows: In section 2.2, we briefly review the concepts of B-spline basis and time warping. In section 2.3, we discuss our
Bayesian model that generalizes the usage of basis functions to more than one shape of data curves. Section 2.4 describes the reversible jump Markov Chain Monte Carlo procedure we use in the simulations to optimally determine the number and locations of the knots that connect piecewise polynomials in B-splines for comparison purpose. Section 2.5 compares simulation results of our proposed method with four competing methods: B-splines with fixed knots; B-splines with optimally selected knots; the wavelet basis; and the Fourier basis. In section 2.6, we carry out our analysis on real data and compare our fitting results with other popular methods. Finally, section 2.7 includes some conclusion and discussion of our method.

2.2 Review of Concepts

B-splines

The popular B-spline basis function system was developed by de Boor (2001). These functions are a specific set of spline functions that share the property with regular splines of being piecewise polynomials connected via some knots on the time axis. The main difference is that there is a certain type of recursive relationship between B-spline basis functions of different orders, making it possible to derive higher-order functions once some lower-order basis functions are known. Furthermore, one can represent any spline function as a linear combination of these B-spline basis functions. We begin with assuming the following relationship between the data and the true signal:

\[y(t_i) = x(t_i) + \epsilon_i, \forall i \in 0, \ldots, M - 1 \]

where \(t_i \) is the \(i \)th time point, \(y(t) \) is the curve observed at \(t \in T \), hence \(y(t_i) \) is the observed value at time \(t_i \), \(x(t_i) \) is the true underlying function \(x \) evaluated at time \(t_i \), \(\epsilon_i \) is the error term caused by measurement error or other unexplained variation, and \(M \) is the total number of measured points. With a set of specified basis functions, it is common to estimate \(x(t) \) by representing it as a weighted sum of these basis
functions ϕ evaluated at t:

$$x(t) = \sum_{j=1}^{n_b} \phi_j(t)c_j, \forall i \in 0, \ldots, M - 1$$

where $\phi_j(t)$ is the jth basis function evaluated at time t, c_j is the coefficient corresponding to the jth basis function, and n_b is the total number of basis functions used. To obtain an estimate for $x(t)$, one only needs to determine the basis functions and then estimate the coefficient values c_j via either the least squares approach, weighted least squares approach, roughness penalty approach, etc. In particular, the $\phi_j(t)$’s in the B-spline basis system are piecewise spline functions of order r, connected smoothly at the time points where the knots are located, and defined over the entire region from t_0 to t_{M-1}. Denote the kth order piecewise spline in the interval $[t_i, t_{i+1})$ as $B_{i,k}$. Then the B-spline basis functions are constructed as follows:

$$B_{i,0}(t) = \begin{cases} 1, & \text{if } t_i \leq t < t_{i+1}, \\ 0, & \text{otherwise}. \end{cases}$$

and

$$B_{i,k}(t) = \frac{t - t_i}{t_{i+k-1} - t_i} B_{i,k-1}(t) + \frac{t_{i+k} - t}{t_{i+k} - t_{i+1}} B_{i+1,k-1}(t)$$

As we can see from the recursive relationship above, each basis function evaluated at time t, $B_{i,k}(t)$, could be obtained given the knowledge of the values of its “neighbors”, $B_{i,k-1}(t)$ and $B_{i+1,k-1}(t)$. With such a construction method defined, each $\phi_j(\cdot)$ is restricted to be positive only on the minimal number of subintervals divided by the knots. To be more specific, B-spline basis functions have the so-called compact support property, which means that each $\phi_j(\cdot)$ can be positive only over no more than k subintervals. This property guarantees the computational speed of the fitting algorithm to be $O(n_b)$ due to the $M \times n_b$ band-structured model matrix $\Phi(t)$ (having entries being the B-spline functions evaluated at different time points $t = (t_0, t_1, \ldots, t_{M-1})'$) no matter how many knots are included in the interval (t_0, t_{M-1}) (Ramsay and Silverman 2005).
One may determine the order of the spline functions based on the number of
derivatives of the original curves that we require to be smooth. In practice, order-four
polynomials are usually adequate to fit curves that are intrinsically smooth. Note that
the placement of the knots on the time axis plays a vital role in the fitting performance
of B-spline basis. If the number of knots is too small, the B-spline basis does not
gain much flexibility in fitting curves beyond what a polynomial basis would have.
However, increasing n_b via using a greater number of knots might not always enhance
the fit of the B-spline approximation to the data. In fact, Ramsay and Silverman
(2005) imply that an improved fit would be achieved when n_b is increased only by
adding a new knot to the existing sequence of knots, or by increasing the order of the
spline functions while leaving the positions of the knots unchanged. Knots that are
poorly located may influence the fit badly by emphasizing mild curvatures too much,
and neglecting local areas that change rapidly in the curves. Ramsay and Silverman
(2005) suggest that one may locate an equally spaced sequence of knots on the time
axis if the data points are roughly balanced over the interval (t_0, t_{M-1}). However, if
the data curve is irregular in the sense that local features are apparent across some
otherwise smooth overall baseline curves, issues such as local over-fitting or under-
fitting may appear. Several ways have been proposed to deal with the problem.
For instance, Bayesian approaches that utilize reversible jump Markov Chain Monte
Carlo (RJMCMC) to determine the number and locations of knots were developed by
Denison, Mallick and Smith (1998) and DiMatteo et al. (2001). A two-stage procedure
that determines the number of knots first, then selects the locations of the knots, was
proposed by Razdan (1999). An adaptive knot selection method based on a multi-
resolution basis was developed by Yuan, Chen and Zhou (2013). For comparison
purposes, we adopt a slightly adjusted version of the RJMCMC procedure described
in DiMatteo et al. (2001) in our simulation to locate the knots, in order for the
B-splines to fit optimally.
The traditional use of a warping function is to transform the time axis in order to align a group of functional curves. Typically such curves are measured at the same time points, yet important landmarks may occur at different positions in chronological time. In order to subsequently carry out cluster analysis or some other type of statistical analysis, one may determine \(g \) landmark time points \(\{t^*_1, t^*_2, \ldots, t^*_g\} \) that are viewed as standard times when certain events occur. Then the time axis for each individual observation is distorted so that the occurrence times of those landmark events are standardized. In other words, for the \(s \)th individual among a total of \(S \) member curves, a time transformation \(W_s \) is imposed. Assume that the time points at which those landmark events occur for curve \(s \) are \(\{t^*_1, t^*_2, \ldots, t^*_g\} \). Then we have \(W_s(\cdot) \) that satisfies:

\[
W_s(t_0) = t_0, \quad W_s(t_{M-1}) = t_{M-1}, \quad \forall s,
\]

and

\[
W_s(t^*_i) = t^*_i, \quad \forall i, \forall s.
\]

Also, \(W_s \) is a monotonic transformation that maintains the order of the transformed time sequence. These \(W_s \) functions are called time-warping functions. Applying the warping functions to the measured time points produces the warped \(s \)th curve:

\[
x^*_s(t) = x_s(W_s(t)), \quad \forall t \in T
\]

which has the same occurrence times for those landmarked events as does the standard time sequence. Given such properties of the warping functions, we can then obtain their inverse functions \(W_s^{-1}(t) \) by simple interpolation with \(W_s^{-1}(t) \) on the horizontal axis and \(x_s(t) \) on the vertical axis.
Motivated by the idea of time warping to register curves, in order to improve the performance of curve fitting based on the set of pre-specified basis functions, we impose some transformation of the time axis for each of the basis functions to obtain a set of “inversely-warped” basis functions. This is done not to align the basis functions, but to provide some flexibility for them to improve the ultimate fit to the functional data. The transformation function, which is denoted as $W(\cdot)$, has to be monotone to preserve the order of the transformed time points. We will employ ideas from the Bayesian method of Cheng, Dryden and Huang (2016) to obtain the warping functions.

Assume that all the functional data are standardized so that their domains are $[0,1]$ prior to carrying out further analysis. We use the notation $t = \{t_0, t_1, t_2, \ldots, t_{M-1}\}$ to denote the parameterized time span; thus $t_0 = 0 < t_1 < \cdots < t_{M-1} = 1$. Then the transformation function $W(\cdot)$ or warping from the original time sequence t to a mapped new time sequence t_w could be obtained as follows: first we generate a sequence of $M-1$ numbers $p = \{p_1, p_2, \ldots, p_{M-1}\}$ between 0 and 1, such that $\sum_{i=1}^{M-1} p_i = 1$. Then calculate the cumulative sum of the generated sequence p, we obtain $\{p_1, p_1 + p_2, \ldots, p_1 + p_2 + \cdots + p_{M-2}, 1\}$ which is a monotone sequence from p_1 to 1. Finally, we define $W(\cdot)$ to be the mapping $W(t) = \{0, p_1, p_1 + p_2, \ldots, \sum_{i=1}^{M-2} p_i, 1\}$.

Following Cheng et al. (2016), to model the prior distribution of such a transformation on time, we view $\{0, p_1, p_1 + p_2, \ldots, p_1 + p_2 + \cdots + p_{M-2}, 1\}$ as a stepwise cumulative distribution function (CDF) in the sense that the height of the ith “jump” in the CDF graph corresponds to the value of p_i in p. Therefore we could use the Dirichlet distribution as the prior distribution to model the heights of all $M-1$ “jumps” in the step function. That is:

$$p = (p_1, p_2, \ldots, p_{M-1})' \sim Dir(a),$$
where \(\mathbf{a} = (a_1, a_2, \ldots, a_{M-1})' \) is the vector of hyperparameters in the Dirichlet distribution that controls the amount of warping of the time points. Great discrepancies in the \(\mathbf{a} \) values lead to significantly different means for the heights of the jumps in the cdf. When all the elements in \(\mathbf{a} \) are equal, the elements’ magnitude controls the deviation of the transformed time points from the original time points. Smaller values in \(\mathbf{a} \) correspond to greater deviation between the original time span and the warped time span. Therefore, \(\mathbf{a} \) serves as a tuning parameter that influences the amount of warping of the time axis. In practice, due to computational concerns, one may choose to generate \(M_t \leq M \) “jumps” via the Dirichlet distribution. One could label

\[
\mathbf{t}_w = \{t_{w_0}, t_{w_1}, \ldots, t_{w_{M_t-1}}\} = \{0, p_1, p_1 + p_2, \ldots, p_1 + p_2 + \ldots + p_{M_t-2}, 1\}.
\]

If \(M_t = M \), one could define a different mapping \(W_j : \mathbf{t} \mapsto \mathbf{t}_{w_j} \) for the \(j \)th basis functions as described above. Let \(\Phi(\mathbf{t}) \) be the \(M \times n_b \) matrix with the columns being a set of \(n_b \) pre-determined basis functions evaluated at \(\mathbf{t} \), and \(\Phi^*(\mathbf{t}) \) be a matrix of the same dimensions with the columns being the set of \(n_b \) “inversely warped” basis functions measured at \(\mathbf{t} \). Note that we “inversely warp” each basis function differently, hence from now on, we use \(\mathbf{W}, \mathbf{T}_w \) and \(\mathbf{P} \) to denote the “vector of mappings”, the “vector of transformed time sequences” and the “vector of increment vectors” for all basis functions, i.e., \(\mathbf{W} = \{W_1, W_2, \ldots, W_{n_b}\}, \mathbf{T}_w = \{t_{w_1}, t_{w_2}, \ldots, t_{w_{n_b}}\} \) and \(\mathbf{P} = \{p_1, \ldots, p_{n_b}\} \). To obtain \(\Phi^*(\mathbf{t}) \) once \(\Phi(\mathbf{t}) \) is given, we assume the following relationship:

\[
\Phi(\mathbf{t}) = \Phi^*(\mathbf{W}(\mathbf{t})) = \Phi^*(\mathbf{T}_w).
\]

Then if we regard \(\Phi(\cdot) \) and \(\Phi^*(\cdot) \) as functions that are applied on the same time vector \(\mathbf{t} \), we have \(\Phi = \Phi^* \circ \mathbf{W} \). In what follows, we have:

\[
\Phi^*(\mathbf{t}) = \Phi^*(W_1^{-1}(\mathbf{T}_w)) = \Phi^*(W_1^{-1}(\mathbf{W}(\mathbf{t}))) = \Phi^*(\mathbf{W}(W_1^{-1}(\mathbf{t}))) = \Phi(W_1^{-1}(\mathbf{t})).
\]

Note that each \(W_j^{-1}(\mathbf{t}) \), for \(j = 1, \ldots, n_b \), can be evaluated by drawing the curve of
$W_j(t)$ on the x-axis and t on the y-axis, then doing linear interpolation to obtain the estimated values of the curve at vector t. Hence, $\Phi^*(t)$ can be estimated.

In the case that $M_t < M$, one could define a new time vector t_{new} with a smaller length M_t that mimics the behavior of t. One could then apply the transformation described above to obtain $\Phi^*(t_{new})$, and approximate the $M \times n_b$ dimensional matrix $\Phi^*(t)$ based on $\Phi^*(t_{new})$.

Now we are able to give the model for the data. We start with functional data $y(t)$, where t is the aforementioned standardized time vector. We assume a parametric model for our data:

$$y(t)|\Phi(t), P, \sigma^2 \sim MVN(\Phi(W^{-1}(t))d, \sigma^2I),$$

where d is the vector of coefficients corresponding to those “inversely-warped” basis functions, and σ^2 is the variance of the error terms.

It is well known that the B-spline basis system is a powerful tool to fit a variety of types of curves. One can always achieve greater flexibility in data fitting by adding more knots on the time axis when the order of the basis functions is fixed, or by increasing the order of the basis functions while the number and the locations of the knots are fixed. Either approach requires an increase in the total number of basis functions to achieve better accuracy. But models that are overly complicated are not always desirable. We want to reduce the dimensionality of our model without sacrificing much accuracy, when our model dimensionality is not small. Hence we use an optional add-on indicator vector $\gamma = \{\gamma_1, \gamma_2, \ldots, \gamma_{n_b}\}$ in our procedure, such that each of the γ_i follows a Bernoulli distribution with success probability α_i, and $\gamma_i = 1$ denotes the presence of variable i. To incorporate this variable selection indicator γ into the Bayesian structure, one must determine some prior for the conditional distribution of $d|\gamma$. Some of the priors proposed by other researchers on $d|\gamma$ include yet are not limited to the “spike and slab” prior in Kuo and Mallick (1998) or the mixture normal prior in Dellaportas, Forster and Ntzoufras (1997) and George and
McCulloch (1993). O’Hara and Sillanpaa (2009) compared different Bayesian variable selection methods with respect to their program running speed, ability to jump back and forth between different stochastic stages and effectiveness of distinguishing truly significant variables from redundant variables. Based on the discussion of O’Hara and Sillanpaa (2009), we adopt the conditional prior structure for \(d|\gamma \) and \(\sigma^2|\gamma \) described in the stochastic search variable selection of George and McCulloch (1993), due to its relatively fast program running speed, ease of \(\gamma \) jumping from stage to stage, and great power of separating important variables from trivial ones. The model is as follows:

\[
d|\gamma \sim MVN_{n_b}(0_{n_b \times 1}, D_\gamma R D_\gamma),
\]

\[
\sigma^2|\gamma \sim IG(\nu_\gamma/2, \nu_\gamma \lambda_\gamma/2).
\]

Here \(R \) can be viewed as the correlation matrix of \(d|\gamma \); Therefore, George and McCulloch (1993) suggest choosing \(R \) based on one’s prior knowledge of the correlations between each pair of coefficients given the information in \(\gamma \). \(D_\gamma \) is a diagonal matrix that determines the scale of variances of different coefficients. The model information for each MCMC iteration is stored in \(D_\gamma \). In other words, the \((i, i)\) element in \(D_\gamma \) equals \(s_i \zeta_i \), where \(\zeta_i \) is some fixed value and is usually determined by some data-driven method prior to the MCMC iterations. On the other hand, \(s_i \) depends on model information via some pre-specified value \(c_i \) in the following way: \(s_i = c_i^{I(\gamma_i = 1)} \). To be more specific, the marginal distribution of \(d_i|\gamma_i \) is given by the following mixture of normal distributions:

\[
d_i|\gamma_i \sim (1 - \gamma_i)N(0, \zeta_i^2) + \gamma_i N(0, c_i^2 \zeta_i^2).
\]

Notice that each \(d_i \), given \(\gamma_i \), follows either \(N(0, \zeta_i^2) \) or \(N(0, c_i^2 \zeta_i^2) \). Then the estimate \(\hat{d}_i \) of \(d_i \) given \(\gamma_i \), follows \(N(0, \sigma_{\hat{d}_i}^2 + c_i^2 \zeta_i^2) \) for \(\gamma_i = 1 \) and \(N(0, \sigma_{\hat{d}_i}^2 + \zeta_i^2) \) for \(\gamma_i = 0 \). Here the \(\sigma_{\hat{d}_i}^2 \) is the variance of the coefficient \(d_i \). Therefore, the graph of one of the density
functions superimposed on another shows, for each iteration, how the probability of including the ith basis function changes with different values of d_i.

Via observation of the separation of the two density curves, one also gets an idea of whether the prior of $d_i|\gamma_i$ favors a parsimonious model or a more saturated model. It is easily derived that when \hat{d}_i is 0, the probability of including the ith basis function
in the model is given by:

\[\gamma_i = \sqrt{\frac{\sigma_{d_i}^2 / \zeta_i^2 + c_i^2}{\sigma_{d_i}^2 / \zeta_i^2 + 1}}. \]

Notice that the formula above depends only on \(\sigma_{d_i}^2 / \zeta_i^2 \) and \(c_i^2 \), and as a result, one may treat the combination of \(\sigma_{d_i}^2 / \zeta_i^2 \) and \(c_i^2 \) as tuning parameters that determine model complexity. Therefore, the values of \(c_i \) and \(\zeta_i \) to be adopted in the simulations can be determined by choosing different combinations of \(\hat{\sigma}_{d_i} / \zeta_i \) and \(c_i \) as needed, where \(\hat{\sigma}_{d_i} / \zeta_i \) is the estimated variance of \(d_i \). Figures 2.1 and 2.2 are two examples of such density curves superimposed on another, with \((c_i, \sigma_{d_i} / \zeta_i) \) chosen to be \((5, 1)\) and \((100, 10)\).

The \(\nu_{\gamma} \) and \(\lambda_{\gamma} \) that appear in the inverse gamma prior of \(\sigma^2 | \gamma \) can depend on \(\gamma \) via the size of \(\gamma \). When \(\nu_{\gamma} \) is set to be zero, it reduces to the improper prior \(\sigma^2 | \gamma \sim 1/\sigma^2 \).

Lastly, since the measurement errors induced in the data collection process could be correlated in a systematic way instead of being independent across all time points, we also consider the possibility of using a more general correlation matrix \(\mathbf{C} \) to model the association among the error terms. We will specifically consider the case when the error terms are correlated according to a \(AR(1) \) model. That is:

\[y(t) | \Phi(t), \mathbf{P}, \sigma^2 \sim MVN(\Phi(W^{-1}(t))d, \sigma^2 \mathbf{C}), \]

where

\[\mathbf{C} = \begin{bmatrix} 1 & \rho & \rho^2 & \ldots & \rho^{(M-1)} \\ \rho & 1 & \rho & \ldots & \rho^{(M-2)} \\ \vdots & \rho & 1 & \ldots & \vdots \\ \rho^{(M-1)} & \ldots & \rho & 1 \end{bmatrix}. \]

In this case, we will need a prior for \(\rho \). We propose to use:

\[\rho \sim U[-1, 1] \]
to declare ignorance of the structure of the correlation between adjacent error terms. Assuming that P, σ^2, ρ, d are independent given γ, and then we are able to derive the posterior distribution when the error terms are correlated according to a $AR(1)$ model:

$$
\pi(P, d, \sigma^2, \rho, \gamma | y(t)) = \frac{f(P, \sigma^2, \rho, d, \gamma, y(t))}{f(y(t))}
\propto f(y(t) | P, \sigma^2, \rho, d, \gamma) \cdot f(P, \sigma^2, \rho, d | \gamma) \cdot f(\gamma)
= f(y(t) | P, \sigma^2, \rho, d, \gamma) \cdot f(P) \cdot f(\sigma^2 | \gamma) \cdot f(\rho) \cdot f(d | \gamma) \cdot P(\gamma)
\propto (\det(\sigma^2 C))^{-0.5} \sigma^{-\nu-2} \exp \left\{ \frac{-\nu \lambda \gamma}{2\sigma^2} \right\}
\times \exp \{-0.5d'(D_\gamma R D_\gamma)^{-1}d\} I\{-1 \leq \rho \leq 1\}
\times \exp \{-0.5(y(t) - \Phi(W^{-1}(t))d)'L'LL(y(t) - \Phi(W^{-1}(t))d)\}
\times (\det(D_\gamma R D_\gamma))^{-0.5} \prod_{k=1}^{n_b} \prod_{i=1}^{k-1} p^{(\alpha_{ik} - 1)} \prod_{j=1}^{n_b} \alpha_j^{\gamma_j} (1 - \alpha_j)^{1-\gamma_j}.
$$

Here

$$
L = \frac{1}{\sigma \sqrt{(1 - \rho^2)}} \begin{bmatrix}
\sqrt{(1 - \rho^2)} & 0 & 0 & \cdots & 0 & 0 \\
-\rho & 1 & 0 & \cdots & 0 & 0 \\
0 & -\rho & 1 & \cdots & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & \cdots & 0 & -\rho & 1
\end{bmatrix},
$$

where $L' L$ is the Cholesky decomposition of $\frac{1}{\sigma^2} C^{-1}$ (Jones 2011), p_{ik} denotes the height of the ith “jump” in the time span of the kth basis function p_k, a_{ik} is the ith parameter in the vector a of the Dirichlet distribution for the kth basis function, and α_j is the probability that the jth basis function is truly important (so that $\gamma_j = 1$) in the model. Note that we use the subscript k to emphasize the fact that a could vary across basis functions.

We also must rewrite $\det(C)$. Letting $L^* = \sigma L$, then:

$$
\det(C) = \det((L^* L^*)^{-1}) = (\det(L^* L^*))^{-1} = (\det(L^{-1}))^2
$$
After some matrix manipulations and mathematical induction, we obtain:

\[
L^{-1} = \begin{bmatrix}
1 & 0 & \cdots & 0 \\
\rho & \sqrt{1-\rho^2} & 0 & \cdots & 0 \\
\rho^2 & \rho\sqrt{1-\rho^2} & \sqrt{1-\rho^2} & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots \\
\rho^{M-1} & \cdots & \rho\sqrt{1-\rho^2} & \sqrt{1-\rho^2}
\end{bmatrix},
\]

Therefore, the full posterior distribution is:

\[
\pi(P, d, \sigma^2, \rho, \gamma | y(t)) \propto \sigma^{-M-\nu \gamma - 2} \exp\left\{ -\nu \gamma \lambda \gamma \right\} \exp\{ -0.5d'(D_\gamma RD_\gamma)^{-1}d \}
\times \exp\{ -0.5(y(t) - \Phi(W^{-1}(t))d)'L'L(y(t) - \Phi(W^{-1}(t))d) \}
\times (1 - \rho^2)^{-0.5(M-1)}I\{ -1 \leq \rho \leq 1 \}(\det(D_\gamma RD_\gamma))^{-0.5}
\times \prod_{k=1}^{n_b} \prod_{i=1}^{M-1} p_{ik}^{(n_k-1)} \prod_{j=1}^{n_b} \alpha_j\gamma_j (1 - \alpha_j)(1-\gamma_j).
\]

Note that when one assumes that there is no apparent autocorrelation relationship in the error terms, \(L\) is replaced by the identity matrix, and \(\rho\) by 0 in the expression above. Then the posterior distribution of the \(j\)th element of \(\gamma\), given the other information, could be obtained from:

\[
f(\gamma_j | y(t), P, \sigma^2, \rho, d, \gamma_{(j)}) = f(\gamma_j | \sigma^2, d, \gamma_{(j)})
\]

where \(\gamma_{(j)}\) denotes the current vector of \(\gamma\), excluding the \(j\)th element. It is obvious that the posterior distribution of \((\gamma_j|\text{other information})\) is still a Bernoulli distribution, and the probability of success is given by:

\[
P(\gamma_j = 1|\sigma^2, d, \gamma_{(j)}) = \frac{f(\sigma^2|\gamma_j = 1, \gamma_{(j)})f(d|\gamma_j = 1, \gamma_{(j)})P(\gamma_j = 1, \gamma_{(j)})}{f(\sigma^2, d, \gamma_{(j)})} = \frac{u}{u + v},
\]

and similarly, the probability of failure is:

\[
P(\gamma_j = 0|\sigma^2, d, \gamma_{(j)}) = \frac{f(\sigma^2|\gamma_j = 0, \gamma_{(j)})f(d|\gamma_j = 0, \gamma_{(j)})P(\gamma_j = 0, \gamma_{(j)})}{f(\sigma^2, d, \gamma_{(j)})} = \frac{v}{u + v},
\]

where \(u\) is the numerator of the probability of success, and \(v\) is the numerator of the probability of failure.
The conditional posterior distribution of \((d|\text{other parameters}) \) is given by:

\[
f(d|y(t), \rho, \sigma^2, \gamma) \\
\propto \exp \{-0.5(y(t) - \Phi(W^{-1}(t))d)'L'L(y(t) - \Phi(W^{-1}(t))d)\} \\
\times \exp \{-0.5d'(D_\gamma RD_\gamma)^{-1}d\} \\
\propto \exp \left\{-0.5d'(\Phi(W^{-1}(t))'L'L\Phi(W^{-1}(t)) + (D_\gamma RD_\gamma)^{-1})d \\
- 2y(t)'L'L\Phi(W^{-1}(t)) \right\}.
\]

It is obvious that:

\[
d|y(t), p, \sigma^2, \rho, \gamma \sim MVN(\mu_F, \Sigma),
\]

where

\[
\mu_F = \Sigma[\Phi(W^{-1}(t))'L'Ly(t)],
\]

and

\[
\Sigma = [\Phi(W^{-1}(t))'L'L\Phi(W^{-1}(t)) + (D_\gamma RD_\gamma)^{-1}]^{-1}.
\]

The posterior conditional distribution of \(\sigma^2 \) is:

\[
f(\sigma^2|y(t), P, \rho, d, \gamma) = f(\sigma^2|y(t), \rho, d, \gamma) \\
\propto \sigma^{-M-\nu_\gamma-2}\exp\left\{-\frac{1}{2\sigma^2}\left(\nu_\gamma \lambda_\gamma + (y(t) - \Phi(W^{-1}(t))d)' \\
\times L^*L^*(y(t) - \Phi(W^{-1}(t))d)\right)\right\}.
\]

Thus,

\[
\sigma^2|y(t), P, \rho, d, \gamma \sim IG(\alpha^*, \beta^*),
\]

where

\[
\alpha^* = \frac{M + \nu_\gamma}{2},
\]

and

\[
\beta^* = \frac{1}{2}\left(\nu_\gamma \lambda_\gamma + (y(t) - \Phi(W^{-1}(t))d)'L^*L^*(y(t) - \Phi(W^{-1}(t))d)\right).
\]
Note that the information about basis function selection is contained in the posterior distribution of γ. We employ the posterior mode of γ as defining the most desirable potential model, as described in George and McCulloch (1993). That is, we sample from the joint posterior distribution in the following order: $p_1, p_2, \ldots, p_{n_b}, \sigma^2, d, \gamma, p_1, p_2, \ldots, p_{n_b}, \sigma^2, \ldots$. We utilize the Gibbs sampler to sample γ, σ^2 and d, since their conditional posterior distributions are known and easy to sample from, and we use Metropolis-Hastings method within the Gibbs sampler to sample P and ρ, since their conditional posterior distributions are not in closed form. Due to the restrictions on each p_k vector, we use a truncated normal distribution as the instrumental distribution. Let superscript (i) represents parameter values sampled at the ith iteration.

For the kth basis function, one first generates an initial $p_k^{(0)} = (p_{1k}^{(0)}, p_{2k}^{(0)}, \ldots, p_{M_t-1k}^{(0)})'$ from a Dirichlet prior. Then at iteration i, one samples the elements of $p_k^{(i)}$ one by one in the following way:

1. Sample the first element in $p_k^{(i)}$, $p_{1k}^{(i)}$, by drawing a random observation from $N(p_{1k}^{(i-1)}, \sigma_2^2)I(0, L_{1u})$. And then adjust the last element in $p_k^{(i-1)}$, i.e., $p_{M_t-1k}^{(i-1)}$, to make the following holds:

$$p_{1k}^{(i)} + \sum_{j=2}^{M_t-2} p_{jk}^{(i-1)} + p_{M_t-1k}^{(i-1)} = 1.$$

Denote the adjusted $p_{M_t-1k}^{(i-1)}$ as $p_{M_t-1k}^{*(i)}$. Here $L_{1u} = p_{1k}^{(i-1)} + p_{M_t-1k}^{(i-1)}$. If the proposed $p_{1k}^{(i)}$, denoted as $p_{1k}^{*(i)}$, is accepted by the Metropolis-Hastings algorithm, then the first and the last elements in $p_k^{(i)}$ are updated as $p_{1k}^{*(i)}$ and $p_{M_t-1k}^{*(i)}$, respectively, other elements are the same as those in $p^{(i-1)}$. Otherwise, the entire vector $p_k^{(i)}$ remains the same as $p_k^{(i-1)}$.

2. For $j = 2, 3, \ldots, (M_t - 2)$, sample the jth element $p_{jk}^{(i)}$ by drawing a random observation from $N(p_{jk}^{(i-1)}, \sigma_2^2)I(0, L_{ju})$, and adjust $p_{M_t-1k}^{(i)}$ to make the following holds:

$$\sum_{j=1}^{M_t-2} p_{jk}^{(i)} + p_{M_t-1k}^{*(i)} = 1.$$

Still denote the adjusted $p_{M_t-1k}^{*(i)}$ as $p_{M_t-1k}^{*(i)}$. Here $L_{ju} = p_{jk}^{(i-1)} + p_{M_t-1k}^{*(i)}$. If the proposed
\(p_{jk}^{(i)} \), denoted as \(p_{jk}^{*^{(i)}} \), is accepted by the Metropolis-Hastings algorithm, then the \(j \)th and the last elements in \(p_k^{(i)} \) are updated as \(p_{jk}^{(i)} \) and \(p_{M-1,k}^{(i)} \), respectively, other elements are kept unchanged. Otherwise, the entire vector \(p_k^{(i)} \) remains unchanged.

Note that for any arbitrary iteration \(i \), each time we sample, say, the \(j \)th element, the upper bound of the truncated normal distribution is adjusted based on the fact that it has to be less than \(p_{jk}^{(i-1)} + p_{M-1,k}^{(i-1)} \) or \(p_{jk}^{(i-1)} + p_{M-1,k}^{*^{(i)}} \), in order to obtain a non-negative adjusted \(p_{M-1,k}^{\prime^{(i)}} \) in the vector.

For iteration \(i \), with the proposed \(p_{jk} \) in \(p_k^{(i)} \) denoted as \(p_{jk}^{*^{(i)}} \), the acceptance ratio is given by:

\[
a(p_{jk}^{*^{(i)}}, p_{jk}^{(i-1)}) = \frac{\pi(p_{jk}^{*^{(i)}}) q(p_{jk}^{(i-1)}|p_{jk}^{*^{(i)}})}{\pi(p_{jk}^{(i-1)}) q(p_{jk}^{*^{(i)}}|p_{jk}^{(i-1)})},
\]

where \(q(\cdot|\cdot) \) represents the truncated normal distribution \(N(\cdot, \sigma^2)I(0, L_u) \).

Hence:

\[
\frac{q(p_{jk}^{(i-1)}|p_{jk}^{*^{(i)}})}{q(p_{jk}^{*^{(i)}}|p_{jk}^{(i-1)})} = \frac{\Phi\left(\frac{L_u - p_{jk}^{(i-1)}}{\sigma_2}\right) - \Phi\left(\frac{-p_{jk}^{(i-1)}}{\sigma_2}\right)}{\Phi\left(\frac{L_u - p_{jk}^{*^{(i)}}}{\sigma_2}\right) - \Phi\left(\frac{-p_{jk}^{*^{(i)}}}{\sigma_2}\right)}.
\]

Here \(\Phi \) denotes the cumulative distribution function of the standard normal distribution. Then it follows that:

\[
\log(a(p_{jk}^{*^{(i)}}, p_{jk}^{(i-1)})) =
\]

\[
\log(\pi(p_{jk}^{*^{(i)}})) + \log\left(\Phi\left(\frac{L_u - p_{jk}^{(i-1)}}{\sigma_2}\right) - \Phi\left(\frac{-p_{jk}^{(i-1)}}{\sigma_2}\right)\right)
\]

\[
- \left(\log(\pi(p_{jk}^{(i-1)})) + \log\left(\Phi\left(\frac{L_u - p_{jk}^{*^{(i)}}}{\sigma_2}\right) - \Phi\left(\frac{-p_{jk}^{*^{(i)}}}{\sigma_2}\right)\right)\right)
\]

\[
= -0.5(y(t) - \Phi^{*^{(i)}}(W^{-1}(t))d)'L'L(y(t) - \Phi^{*^{(i)}}(W^{-1}(t))d)
\]

\[
+ \sum_{r=1}^{n_k} \sum_{i=1}^{M-1} \log(p_{ir}^{*^{(i)}}(a_{ir}^{(i-1)})) + \log\left(\Phi\left(\frac{L_u - p_{jk}^{(i-1)}}{\sigma_2}\right) - \Phi\left(\frac{-p_{jk}^{(i-1)}}{\sigma_2}\right)\right)
\]

\[
+ 0.5(y(t) - \Phi^{(i-1)}(W^{-1}(t))d)'L'L(y(t) - \Phi^{(i-1)}(W^{-1}(t))d)
\]

\[
- \sum_{r=1}^{n_k} \sum_{i=1}^{M-1} \log(p_{ir}^{(i-1)}(a_{ir}^{(i-1)})) - \log\left(\Phi\left(\frac{L_u - p_{jk}^{*^{(i)}}}{\sigma_2}\right) - \Phi\left(\frac{-p_{jk}^{*^{(i)}}}{\sigma_2}\right)\right),
\]

26
where $\Phi^{*i}(W^{-1}(t))$ represents the adjusted “design matrix” in the ith step according to p_{jk}^{*i}.

2.4 Knot Selection with Reversible Jump MCMC

The flexibility of B-splines for fitting functional data is based on the knots on the time axis. Appropriately chosen knots could result in an extremely good fit, while naively chosen knots that do not reflect the nature of the functional curve could produce a poorly fitted curve. Hence, we will consider both cases of fixed knots and optimally selected knots in the simulation section.

Many methods have been developed that focus on selecting knots to improve the performance of B-splines. We will discuss two approaches proposed by Denison et al. (1998) and DiMatteo et al. (2001) that utilize Reversible Jump Markov Chain Monte Carlo (RJMCMC) (Green 1995) to simulate the posterior distribution of (k, ξ), where k denotes the number of interior knots used to connect B-splines, and ξ refers to the locations of the k interior knots on the time axis in ascending order. RJMCMC is an extension to the Metropolis-Hastings method that uses some proposal distribution to propose candidate values for the parameters of interest. However it includes a “birth jumping probability,” and a “death jumping probability” to allow for the possibility of dimension change. It is particularly useful in cases when the “true” dimension of the parameters is unknown and simultaneous estimation of the parameter values is needed along with a dimension update; common settings for RJMCMC include variable selection or step function estimation. The method requires having the detailed balance property satisfied for each update to ensure the existence of a steady state distribution. In the general scheme of both Denison et al. (1998) and DiMatteo et al. (2001), when selecting the number and locations of the knots in functional curve fitting, the necessary steps involved in RJMCMC are the “birth step,” “death step” and “relocation step.” In the first two steps, the chain either accepts an increase in
the dimension of the parameters by having an additional proposed knot inserted into
the existing knot sequence, accepts having one of the knots deleted from the sequence,
or rejects the proposed state and stays at the current state. In the “relocation step,”
the chain determines whether to relocate one of the existing knots or not.

Because the underlying true model is not unique, we assume that with appropri-
ately chosen knots, the observed data could be adequately described with a group
of order \(r\) B-splines. The data and the “design matrix” formed by the B-splines
evaluated at those measured time points are connected via the following relationship:

\[
y(t) | \Phi_{k, \xi}(t), \sigma_B^2 \sim MVN_{r+k}(\Phi_{k, \xi}(t)c, \sigma_B^2 I),
\]

where \(c\) is the true underlying vector of coefficients corresponding to the B-splines
in the model, and \(\sigma_B^2\) is the variance of the error terms. Here the subscripts in the
notation \(\Phi_{k, \xi}(t)\) are used to emphasize how both the dimension and the values of the
B-spline functions depend on the number and locations of the knots. Note that while
independent errors are assumed here, one may certainly include some autocorrelation
structure to allow for the possibility of correlated error terms. However, in a two-
stage procedure, where one first selects knots on the time axis for optimal B-splines
performance, and then uses our Bayesian model described in section 2.3 to further
improve the fit, the structure of error terms for both stages should coincide with
each other. We use the scheme given by DiMatteo et al. (2001). The prior for \(k\) is
Poisson, and \(\xi|k\) follows Dir(1,1,\ldots,1). The prior for \(\sigma_B^2\) could be chosen as inverse
gamma or the improper prior \(\pi(\sigma_B^2) \sim 1/\sigma_B^2\). The coefficient vector has the following
conditional prior:

\[
c|k, \xi, \sigma_B^2 \sim MVN(0, \sigma_B^2 M\{\Phi_{k, \xi}(t)^T \Phi_{k, \xi}(t)\}^{-1}).
\]

In each iteration, the three aforementioned probabilities are given by:

\[
b_k = g \cdot \min\{1, P(k + 1)/P(k)\},
\]

\[
e_k = g \cdot \min\{1, P(k - 1)/P(k)\},
\]

\[
h_k = 1 - b_k - e_k
\]
where b_k is the probability of jumping from k interior knots to $k + 1$ interior knots. Whether the chain at the next iteration moves to the state with an additional interior knot depends on the acceptance ratio. Similarly, e_k is the probability of jumping from k interior knots to the state with $k - 1$ interior knots. Such a move may or may not be made based on the acceptance ratio. h_k is the probability of relocating one of the existing knots.

The main discrepancy between Denison et al. (1998) and DiMatteo et al. (2001) is that the first utilizes a not entirely Bayesian approach, but rather a quasi-Bayesian approach to generate the chain by using least squares to calculate c values for each proposed update of (k, ξ). According to DiMatteo et al. (2001), this would tend to over-fit the curve to some extent. As a result, the latter proposed deriving the distribution of $c|k, \xi, Y(t)$ by integrating out σ_B^2 from the joint posterior distribution of $c, \sigma_B^2|k, \xi, Y(t)$. Based on our investigation, it appears that even for a parametric model, the posterior distribution of $c|k, \xi, Y(t)$ is unlikely to be in closed form. For the improper prior on σ_B^2 adopted by DiMatteo et al. (2001), the corresponding distribution is not recognizable. The aforementioned posterior distribution becomes a multivariate non-central t distribution only when an inverse gamma prior with equivalent shape and scale parameter values is employed for σ_B^2. In fact, based on our limited simulation studies, even for irregular shaped data curves, with the maximum number of knots set large enough, both of the aforementioned approaches are capable of giving plausible fitting results in the sense that the mean squared error is negligible compared with the data information. However, our primary goal is to improve the original B-spline fit of the curves, and to compare the improved fit with the result obtained from our method. A model with B-splines could achieve a perfect fit by using an outrageously large number of knots, but this would produce a model too complicated to be of any practical advantage. We want to limit the maximum number of knots used in the procedure, and show in our simulation studies that even with
a limited number of knots, the performance of our approach is competitive with using B-splines with a relatively large number of optimally selected knots. We use least squares to estimate c in each step for computational ease and also to avoid a distribution identifiability issue. With a limited number of knots and relatively complicated functional data, the over-fitting concern of this quasi-Bayesian approach noted by DiMatteo et al. (2001) would no longer be a problem.

The proposal probability for the jump from k knots to $k + 1$ knots is defined by:

$$q(k + 1|k) = \frac{b_k}{k} \sum_{i=1}^{k} P_B(\xi^*_i|\xi_i).$$

Here ξ_i is the location of the ith knot, ξ^*_i is the proposed new knot, which is centered around ξ_i, and $P_B(\cdot|\cdot)$ is the proposal distribution. DiMatteo et al. (2001) claimed that the simulation results are relatively robust to the choice of proposal distribution; therefore, we use their proposed Beta distribution with parameters $\xi_i\nu$ and $(1 - \xi_i)\nu$. For each existing knot, one first randomly generates a realization from the proposal distribution that is centered at that knot. Pick at random one knot, say, ξ^*_p; calculate the aforementioned probability; calculate the acceptance ratio; and compare the acceptance ratio with a randomly generated uniformly distributed realization to determine whether the proposed knot centered at ξ^*_p is accepted or not.

The proposal probability for jumping from k to $k - 1$ knots is given by:

$$q(k - 1|k) = c_k/k.$$

Similarly to the “birth step,” one randomly picks an existing knot and uses the acceptance ratio to determine whether or not the selected knot should be deleted from the sequence. The proposal probability for relocating one of the existing knot is:

$$q(\xi^*_p|\xi_p) = h_k \frac{1}{k} P_R(\xi^*_p|\xi_p).$$

We set $P_R(\cdot|\cdot)$ to be the same as $P_B(\cdot|\cdot)$. If such a move is accepted, ξ_p will be replaced by the proposed ξ^*_p. Therefore, in each step, the transition probabilities of moving
from k to $k - 1$ knots or from k to $k + 1$ knots are just the aforementioned proposal probabilities times the corresponding acceptance ratios. See DiMatteo et al. (2001) for detailed expression of acceptance ratios.

Note that when calculating the acceptance ratios in each step, c needs to be updated along with the proposed (k, ξ) to match the dimensions.

2.5 Simulation Studies

In this section, we simulate some irregularly shaped functional data. We carry out our approach and compare our approach to several alternative fitting methods: (1) the original B-splines with fixed equally spaced knots; (2) B-splines with optimally selected knots; (3) the Fourier basis system; and (4) the orthonormal set of wavelet basis which include the Haar father wavelet and shifted and scaled mother wavelets.

We consider simulating a group of observations that come from a mixture of a periodic signal, a smooth signal, and a spiky signal. In order to do that, we determine a number of Fourier basis functions to be employed, randomly generate normal coefficients for these, and add independent Gaussian errors to form the periodic signal. We use a similar approach to generate a signal based on B-splines. The spiky data is generated by first randomly partitioning the time domain into several intervals, and evaluating the values of a baseline curve at the boundaries of those intervals. The baseline curve is obtained from linear combinations of B-splines plus error terms. The width of each interval represents either the width of a spike in the curve, or the spacing between a pair of spikes. We therefore use two exponential distributions with different means to model the spacings. The means of the exponential distributions are chosen so that the simulated curve has a moderate number of spikes, with appropriate spacings between them. The height of each spike is determined via the baseline value at the center of each spike plus a randomly generated $U(0, 30)$ observation. Then our mixed functional data is obtained by taking a weighted average of the three curve types.
Some examples are described below.

Example 2.1. In this example we employ 11 Fourier basis functions and 20 order-5 B-spline basis functions with equally spaced knots to generate our simulated data. The B-splines are measured over 500 equally spaced points in the domain $[1, 5]$. Their corresponding coefficients are generated independently as Gaussian with mean 0 and standard deviation 2. Random errors from the same distribution are added to both curve types. The baseline curve for the spiky data is the true signal curve generated by B-splines, plus independent $N(0, 4)$ errors. The widths of the spikes and the spacings between each pair of spikes are exponential with respective means 0.4 and $2/15$. The weights for the three types of curves are 0.1, 0.1 and 0.8. Figure 2.3 shows the simulated noisy observed curve (solid) superimposed on the true signal curve (dashed). We measure the signal to noise ratio by calculating the ratio of the standard deviation of the true signal versus the standard deviation of the error function. From investigation, it appears that roughly 2.5 to 4.5 are appropriate values of the aforementioned ratio, so that the true signals are not overwhelmed by noise.

After standardization of the simulated data curves to scale them to exist within the domain $[0, 1]$, we start with order-5 B-splines, with 12 equally spaced knots on $[0, 1]$, and carry out our procedure to fit the data with transformed B-splines. Figure 2.4 is the trace plot of mean squared error over 1000 iterations; we see that the chain converges rapidly after a few iterations even though the simulated curve is irregular with several spikes. Therefore, we employ 1000 iterations for most of our settings, since it is sufficient for us to sample from the posterior distribution. Figure 2.5 shows a set of 15 transformed B-splines based on the 15 order-5 B-splines with a sequence of 12 equally spaced knots over $[0, 1]$. Each spline is twisted somewhat to accommodate the irregular shape of the curve, yet the domains over which the transformed splines and the original ones are positive are roughly the same. In order to obtain smooth transformed splines while also keeping flexibility to fit irregularly shaped curves, one
Figure 2.3: True versus fitted simulated curves. Dashed spiky curve: simulated true signal curve. Solid wiggly curve: corresponding observed curve.

may want to choose the values of the elements in parameter a to be relatively small, yet not so small that the wiggles in the splines look like step functions with sudden jumps.

In order to smooth our fitted curve, we average the obtained curves from MCMC iterations 200 to 1000, roughly after the area where the MSE begins to level off on the graph. This implied a burn-in period of 200 iterations.

Figure 2.6 and 2.7 are comparison plots that superimposes several fitted curves obtained via different methods on the true signal curve (black solid). We use “TB” to denote our approach for functional data fitting, “B” to denote the B-splines approach
Figure 2.4: Mean squared error trace plot of 1000 MCMC iterations

Figure 2.5: Example of set of 15 transformed B-splines obtained from one MCMC iteration with equally spaced knots, “SKB” to denote the B-splines approach with knots selected via RJMCMC, and “Wave” and “Fourier” represent fitting via the wavelet basis or the Fourier basis. Here we are using 16 instead of 15 wavelet basis functions, since the number of wavelet basis functions employed in a fitting procedure must be 2^{res}, where res is the resolution value. “STB” denotes our approach with reduced dimension. More specifically, to obtain the STB fit for the observed curves, we do the following: For each iteration, we obtain a sequence of basis functions selected along with other parameter values. We then calculate the frequencies of different sequences.
Figure 2.6: True signal curve versus fitted curves from three competing methods. Black solid curve: true signal curve. Red dashed curve: fitted curve obtained from Bayesian transformed B-splines method. Blue dotted curve: fitted curve obtained from B-splines basis functions. Dashed green curve: fitted curve obtained from B-splines basis functions with selected knots.

of basis functions being selected. Usually there is one or two sets of basis functions that are selected with overwhelming frequency. These are the potential sets of basis functions to be included in the model. Next we select the iterations in the chain that have the same set of basis functions appearing most frequently. Following that, we obtain least squares estimates for the coefficients of the basis for each iteration in the subset, and hence obtain estimates for the original curves. Finally we average those fitted curves and take that as our STB fit. Note that even though the basis function shapes change from iteration to iteration, after a certain point (i.e., after the MSE values level off), such change is negligible and only represents randomness.
Figure 2.7: True signal curve versus fitted curves from three competing methods. Black solid curve: true signal curve. Red dashed curve: fitted curve obtained from Bayesian transformed B-splines method. Blue dotted curve: fitted curve obtained from the wavelet basis functions. Dashed green curve: fitted curve obtained from the Fourier basis functions.

of the Markov chain. Similarly, the SKB fit is obtained by first checking the MSE plot to determine the number of iterations \(i \) after which the MSE values become stabilized, obtaining the number of knots \(k_{sel} \) that appear with the greatest frequency in the chain, then selecting all iterations with \(k_{sel} \) knots selected, and averaging the estimated curves from the set of chosen iterations after the \(i \)th. Again, even with the same number of knots selected, the locations of the knots vary for different iterations in the set. Yet still, the estimated curves stabilize after the \(i \)th iteration, as the MSE values stabilize. We set the maximum possible number of knots, \(k_{max} \), to be 12 in this setting, making the greatest possible dimension of the B-spline model 15. In practice, for these irregular simulated data, the RJMCMC procedure for knot
Table 2.1: MSE comparison table for five smoothing methods. Top: MSE values calculated with respect to the observed curve. Bottom: MSE values calculated with respect to the true signal curve.

<table>
<thead>
<tr>
<th></th>
<th>TB</th>
<th>STB</th>
<th>B</th>
<th>SKB</th>
<th>Wave</th>
<th>Fourier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs</td>
<td>0.88</td>
<td>3.61</td>
<td>13.06</td>
<td>9.10</td>
<td>13.05</td>
<td>12.43</td>
</tr>
<tr>
<td>Truth</td>
<td>0.86</td>
<td>2.84</td>
<td>11.70</td>
<td>8.15</td>
<td>12.17</td>
<td>11.05</td>
</tr>
</tbody>
</table>

selection always leads to the maximum number of knots appearing with the greatest frequency, making the dimension of the SKB model exactly 15. SKB does a better job than B in capturing the peaks and troughs of the curves, yet with its limited dimension, it cannot achieve a desirable fit, either. Among the several fitted curves in the comparison plots, ours (red) performs the best. Table 2.1 compares the MSE values (with respect to the true signal curve and to the observed curve) obtained via the aforementioned fitting approaches.

Example 2.2. Using the same simulation setting, with different weightings of the three curve types, we now compare the performances of different fitting methods. Table 2.2 summarizes the MSE values resulting from the comparative approaches.

The three numbers in the first cell of each row represent the weighting of respectively: the periodic curve generated from the Fourier basis, the smooth curve generated from B-splines and the spiky curve obtained from the method described previously. The number in each upper sub-cell in the interior of the table is the MSE of the fitted curve obtained via the corresponding method with respect to the observed curve, and the value in the bottom sub-cell is the MSE with respect to the true signal curve. For different weightings, the error terms added for each curve type might be different, in order to maintain the signal-to-noise ratio. The value in bold in each row is the row minimum, and the value in italics is the second smallest MSE value in the row. Our approach almost always achieves a much smaller MSE compared with other fitting methods.
Table 2.2: MSE comparison table for six smoothing methods. Digits in the Weights column represent the weighting of the simulated periodic curve, smooth curve and spiky curve, respectively. Top row in each cell: MSE value calculated with respect to the observed curve. Bottom row in each cell: MSE value calculated with respect to the true signal curve.

<table>
<thead>
<tr>
<th>Weights</th>
<th>B</th>
<th>SKB</th>
<th>Wave</th>
<th>Fourier</th>
<th>TB</th>
<th>STB</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>2.621</td>
<td>2.415</td>
<td>6.385</td>
<td>2.562</td>
<td>1.800</td>
<td>1.803</td>
</tr>
<tr>
<td></td>
<td>0.325</td>
<td>0.323</td>
<td>3.895</td>
<td>0.268</td>
<td>0.372</td>
<td>0.448</td>
</tr>
<tr>
<td>010</td>
<td>0.216</td>
<td>0.173</td>
<td>0.381</td>
<td>0.224</td>
<td>0.158</td>
<td>0.153</td>
</tr>
<tr>
<td></td>
<td>0.039</td>
<td>0.023</td>
<td>0.189</td>
<td>0.082</td>
<td>0.018</td>
<td>0.019</td>
</tr>
<tr>
<td>001</td>
<td>20.880</td>
<td>6.252</td>
<td>22.818</td>
<td>26.151</td>
<td>2.470</td>
<td>3.904</td>
</tr>
<tr>
<td>1/33 3</td>
<td>2.250</td>
<td>1.263</td>
<td>2.150</td>
<td>1.749</td>
<td>0.439</td>
<td>0.465</td>
</tr>
<tr>
<td></td>
<td>1.770</td>
<td>0.754</td>
<td>1.730</td>
<td>1.237</td>
<td>0.180</td>
<td>0.199</td>
</tr>
<tr>
<td></td>
<td>5.437</td>
<td>2.515</td>
<td>5.375</td>
<td>6.442</td>
<td>0.700</td>
<td>1.355</td>
</tr>
<tr>
<td>1/3 2</td>
<td>3.188</td>
<td>3.102</td>
<td>3.307</td>
<td>3.354</td>
<td>0.563</td>
<td>0.609</td>
</tr>
<tr>
<td>1/4 0</td>
<td>0.295</td>
<td>0.223</td>
<td>0.991</td>
<td>0.315</td>
<td>0.191</td>
<td>0.192</td>
</tr>
<tr>
<td></td>
<td>0.069</td>
<td>0.032</td>
<td>0.800</td>
<td>0.099</td>
<td>0.030</td>
<td>0.029</td>
</tr>
<tr>
<td>1/2 4</td>
<td>0.907</td>
<td>0.504</td>
<td>1.821</td>
<td>0.912</td>
<td>0.108</td>
<td>0.114</td>
</tr>
<tr>
<td></td>
<td>0.773</td>
<td>0.378</td>
<td>1.650</td>
<td>0.708</td>
<td>0.075</td>
<td>0.077</td>
</tr>
<tr>
<td>1/4 2</td>
<td>4.738</td>
<td>3.767</td>
<td>5.890</td>
<td>5.077</td>
<td>0.760</td>
<td>1.299</td>
</tr>
<tr>
<td></td>
<td>3.552</td>
<td>2.419</td>
<td>4.450</td>
<td>3.571</td>
<td>0.360</td>
<td>0.896</td>
</tr>
<tr>
<td>1/4 4</td>
<td>1.023</td>
<td>0.662</td>
<td>1.091</td>
<td>0.768</td>
<td>0.303</td>
<td>0.306</td>
</tr>
<tr>
<td></td>
<td>0.707</td>
<td>0.418</td>
<td>0.792</td>
<td>0.509</td>
<td>0.154</td>
<td>0.164</td>
</tr>
</tbody>
</table>

2.6 Real Data Application

In this section we include some results for fitting an ocean wind data set taken from the National Oceanic and Atmospheric Administration (NOAA). This data set is analyzed in Hitchcock, Booth and Casella (2007) for exploring the effects of data smoothing on data clustering. The entire data set is accessible via the historical data page of National Buoy Data Center: http://www.ndbc.noaa.gov/hmd.shtml (Hitchcock et al. 2007). At each of four regional locations (Northeast, Southeast, Eastern Gulf and Western Gulf), average hourly wind speeds are collected. The data observations could be viewed as functional data since wind speed is intrinsically continuous and that each data point is calculated based on a continuous measure of wind speed during hourly periods. For our analysis, we fit the same subset of 18
curves analyzed in Hitchcock et al. (2007), where only the measurements from the first 7 days of 2005 are used.

The first graph in Figure 2.8 shows four observed sample wind speed curves. The original patterns of the curves are somewhat masked by measurement error. The second graph in Figure 2.8 exhibits four corresponding fitted curves obtained via our approach. Each pair of observed and smoothed curves are drawn with the same color. Figure 2.9 shows side-by-side boxplots of MSE values for fitted curves, corresponding to 18 functional ocean wind speed observations, obtained via different methods (i.e.,
Figure 2.9: Side by side boxplots of MSE values for five smoothing methods. From left to right: boxplot of MSE values for 18 ocean wind curves smoothed with the selected knots B-splines (SKB); the B-splines with equally selected knots (B); the Wavelet basis (Wave); the Fourier basis (Fourier) and the Bayesian transformed B-splines (TB).

B, SKB, Wave, Fourier, TB).

For this data set, we start with order-6 B-splines with 8 knots to carry out our analysis. Note that one should only choose an odd number of Fourier basis functions so that the same number of sine and cosine terms are used when fitting functional data; thus we use 13 Fourier basis functions. Since the wavelet basis requires the number of knots to be a power of 2, we use 16 basis functions. For the SKB method, for each of the 18 observations, the RJMCMC procedure inevitably chose the number of knots to be k_{max} (i.e., 8) most frequently, due to the several oscillations and spikes in the curves, and the small value of k_{max}. Therefore, for all the observations analyzed, the SKB method in fact used 12 basis functions for data fitting. Thus the comparison for MSE is relatively unprejudiced in terms of model dimension, except that the wavelet basis and the Fourier basis have slightly higher dimensions. The
boxplots show that our method has an obvious advantage, in terms of MSE values, in fitting the wind data set.

2.7 Discussion

We have proposed a Bayesian approach for functional data fitting via basis systems. Our method surpasses the shape-dependent limitations of currently popular basis systems, e.g., polynomial splines, B-Splines, Fourier Bases, wavelet bases, in functional data fitting. It adapts splines flexibly in accordance with a variety of shapes of curves. Using a data-dependent transformation of individual splines, fit accuracy is improved compared to existing basis systems, with model dimension remaining small to moderate.

In our approach, time distortion is no longer applied to the entire observation to align data, but rather on each individual spline function. The application of the time warping function to the splines allows the domain of the transformed splines to be roughly the same as the original splines, making the design matrix band-structured for computational efficiency. In fact, as long as the time grid on which transformation is applied is sufficiently fine relative to the measured time sequence, the posterior splines remain smooth, and shifts on the domains of the splines, if any, are negligible. In this article, our approach is based on B-splines, i.e., we impose time transformations on individual B-splines to obtain posterior splines, and we compare the fitting results with the optimal performance of B-splines. Certainly the method is not restricted to B-splines as the starting basis functions; one may also consider other possible transformation options.

The combination of time transformation on individual basis functions and Bayesian modeling is a novel approach to functional data fitting. It achieves similar goals as employing multiple resolution basis systems and carrying out a basis selection, yet avoids the heavy computational workload.
CHAPTER 3

FUNCTIONAL REGRESSION AND CLUSTERING WITH

FUNCTIONAL DATA SMOOTHING

Summary: This chapter includes some investigation of functional data regression and clustering, in order to evaluate the effects of our fitting method introduced in chapter 2 in functional data-related applications.

3.1 INTRODUCTION

FUNCTIONAL REGRESSION

As with individual random variables whose variability can be analyzed by studying their relationships with other variables, functional data lend themselves to similar methods like regression or ANOVA in a functional setting. Usually, linear models involve functional variables in one of the following three ways: either the response variable is functional and the predictor(s) scalar, or some or all of the predictors are functions and the response is scalar, or both the response and one or more of the predictor variables are functions. The main difference between regression or ANOVA in the functional setting and in the traditional sense is that the intercept term and all the coefficients relating to functional predictors are also functions. Typically, how the functional regression model is built must depend on one’s insight about how the response variable is related to the predictors, whether functional or scalar.

The concurrent model is frequently employed when both the response variable and some of the predictor variables are functional, and when one believes that the
response variable value measured at any point t in the time interval T is only related to the value at the equivalent time within the functional predictor. The concurrent model at time t with only one functional predictor is as follows:

$$y(t) = \alpha(t) + x(t)\beta(t) + \epsilon(t)$$

Here the response variable is measured at a fine grid of time points in T. $\beta(t)$ quantifies the impact of predictor x at time t on the value of $y(t)$. By carrying out pointwise regression at each time point t, we get estimates of $\alpha(t)$ and $\beta(t)$. And combining $\hat{\alpha}(t)$ and $\hat{\beta}(t)$ for all the measured time points t in t, we obtain estimated curves for the true intercept function $\alpha(\cdot)$, and for the coefficient function $\beta(\cdot)$.

When one believes that the response variable is related to the derivative of one or more predictors, or there are some interactions between the predictors, or between the derivative of some predictor and some other predictors, the interaction model or derivative model is implemented.

There are many other models in the realm of functional regression, but we will be mostly focusing on the models discussed above as our simulations and real data examples suit the aforementioned model well.

FUNCTIONAL CLUSTERING

Another mostly used application in the realm of functional analysis is functional clustering. Functional clustering methods are very similar to traditional cluster analysis methods. One starts by calculating distances between all pairs of curves to be clustered to form a distance matrix. One most commonly used distance measure is the Euclidean distance, or the L_2 norm:

$$d_{L_2}[y_i(t), y_j(t)] = \sqrt{\int [y_i(t) - y_j(t)]^2 dt} = d_{ij}$$

Popular functional clustering methods can be directly applied to the distance matrix obtained from the original set of curves.
Currently, popular clustering methods include but are not limited to hierarchical based methods with different types of linkages, partitioning methods such as the K-means and the K-medoids methods, and a hybrid method, Ward’s method.

The hierarchical methods typically start with each observation being an individual cluster, and joining the two closest clusters in each step. Here, the closeness between two clusters is measured differently depending on the linkage employed. The single linkage method joins the two clusters C_1 and C_2 with the smallest distance d_s as measured by:

$$d_s = \min_{i \in C_1, j \in C_2} (d_{ij}).$$

Since it only depends on the minimal distance between any pair of curves, the single linkage based hierarchical clustering results can be unreliable. As opposed to single linkage, complete linkage is based on the maximal distance d_c for all pair of curves, which is given by:

$$d_c = \max_{i \in C_1, j \in C_2} (d_{ij}).$$

The complete linkage is better than single linkage, since it depends on the farthest distances for all pairs of curves. Another linkage option is called the average linkage, which joins the two clusters based on the minimal of the following distance d_a:

$$d_a = \frac{1}{n_1 n_2} \sum_{i \in C_1} \sum_{j \in C_2} (d_{ij}).$$

Here n_1 and n_2 are the total number of items in clusters C_1 and C_2, respectively. This linkage utilizes the most information possible from all the observations to determine distance between clusters.

Another category of clustering methods is the partitioning methods, and the most popular clustering methods in this category include K-means and K-medoids clustering. Unlike hierarchical methods, which form tree type results as part of the clustering procedure, the partitioning methods typically try to search for an optimal partition of the original observations into K clusters by minimization of some “summed distance
measure”. Such methods start from randomly partitioned \(K \) clusters, or \(K \) “centers”, called centroids, and repeatedly switch the clustering membership for each item in the pool until no new partition could result in a smaller summed distance measure defined for the corresponding approach.

Ward’s clustering method, on the other hand, falls in a third category, which is in fact a hybrid of the hierarchical method and the partitioning method, in the sense that it starts from each observation being its own cluster, and joins the two clusters that will lead to the smallest “summed distance measure” at each step, until all observations are joined into one big cluster. Tree cutting techniques can be used to obtain clusters of desirable size.

The fitting method we proposed in Chapter 2 provides an alternative to commonly used smoothing methods such as the B-splines, the Fourier basis, the wavelet basis, etc. We are specifically interested in the applications of our fitting method, to see whether it leads to improvements in statistical analyses and how such improvements compete with those resulting from employing other fitting methods before carrying out functional data applications. Our investigation focused on functional regression and functional clustering. In sections 3.2 and 3.3, we discuss simulated data examples for functional clustering and functional regression, respectively. And in sections 3.4 and 3.5, we give two real data functional regression examples.

3.2 Simulation Studies: Functional Clustering

This section includes some investigation of the influence of our functional data smoothing method on functional data clustering, to see whether our method gives competitive results in terms of accurately clustering the curves. We have simulated a total of four clusters of 23 curves, each of length 200, where three of the clusters each have 6 curves, and one cluster has 5. Figure 3.1 shows the 23 raw data curves, where curves coming from the same cluster are plotted with the same color and line
Figure 3.1: Simulated curves from four clusters.

We fit all 23 curves using our transformed B-spline approach, the regular B-spline approach, B-splines with selected knots, the wavelet basis functions and the Fourier basis functions. Then we calculate, for each pair of curves, the Euclidean distances between them, to form a distance matrix. And linkage based hierarchical clustering method with single linkage, average linkage or complete linkage, Ward’s method, k-medoids and the k-means clustering methods are implemented based on the distance matrix, and lastly the Rand index for using each clustering method with each smoothing method is calculated. Here, the Rand index is originally introduced in Rand (1971), it measures the similarity between two clusterings C_{p1} and C_{p2} of a set of objects S_c. It’s value is calculated via the following formula:

$$R_c = \frac{n_1 + n_2}{n_1 + n_2 + n_3 + n_4},$$
Table 3.1: Rand index values for five smoothing methods based on regular distance matrix

<table>
<thead>
<tr>
<th></th>
<th>TB</th>
<th>B</th>
<th>SKB</th>
<th>Fourier</th>
<th>Wave</th>
</tr>
</thead>
<tbody>
<tr>
<td>single</td>
<td>0.826</td>
<td>0.862</td>
<td>0.613</td>
<td>0.672</td>
<td>0.862</td>
</tr>
<tr>
<td>average</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>complete</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ward</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.957</td>
<td>0.921</td>
</tr>
<tr>
<td>k-medoids</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>k-means</td>
<td>0.957</td>
<td>0.957</td>
<td>0.957</td>
<td>0.957</td>
<td>0.957</td>
</tr>
</tbody>
</table>

Table 3.2: Rand index values for five smoothing methods based on standardized distance matrix

<table>
<thead>
<tr>
<th></th>
<th>TB</th>
<th>B</th>
<th>SKB</th>
<th>Fourier</th>
<th>Wave</th>
</tr>
</thead>
<tbody>
<tr>
<td>single</td>
<td>0.632</td>
<td>0.625</td>
<td>0.625</td>
<td>0.632</td>
<td>0.842</td>
</tr>
<tr>
<td>average</td>
<td>0.957</td>
<td>0.957</td>
<td>0.957</td>
<td>0.838</td>
<td>0.957</td>
</tr>
<tr>
<td>complete</td>
<td>0.957</td>
<td>0.814</td>
<td>0.957</td>
<td>0.802</td>
<td>0.957</td>
</tr>
<tr>
<td>ward</td>
<td>0.957</td>
<td>0.957</td>
<td>0.957</td>
<td>0.866</td>
<td>0.957</td>
</tr>
<tr>
<td>k-medoids</td>
<td>1</td>
<td>0.957</td>
<td>1</td>
<td>0.960</td>
<td>1</td>
</tr>
<tr>
<td>k-means</td>
<td>1</td>
<td>0.822</td>
<td>0.866</td>
<td>1</td>
<td>0.957</td>
</tr>
</tbody>
</table>

where \(n_1, n_2, n_3 \) and \(n_4 \) are the numbers of pairs of objects from the sample \(S_c \) that are: assigned to the same cluster in \(C_{p1} \) and the same cluster in \(C_{p2} \), assigned to different clusters in \(C_{p1} \) and different clusters in \(C_{p2} \), assigned to the same cluster in \(C_{p1} \) but different clusters in \(C_{p2} \) and assigned to different clusters in \(C_{p1} \) but the same cluster in \(C_{p2} \), respectively. Hence, Rand index values close to 1 implies great similarity of the two clusterings \(C_{p1} \) and \(C_{p2} \) of the curves, otherwise, Rand index values close to 0 suggests great discrepancies between \(C_{p1} \) and \(C_{p2} \).

Table 3.1 gives the Rand index values based on the regular distance matrix, with each of the aforementioned smoothing methods applied to the data prior to data clustering. And Table 3.2 gives the Rand index values based on the standardized distance matrix, in which each measured point in each curve has the mean value for all 23 curves measured at the same time point subtracted from it, and is divided by its standard deviation across the 23 curves. For both tables, except for the hierarchi-
cal clustering method with single linkage (in which case the wavelet basis smoothing seems to give the best clustering accuracy) for all other clustering methods implemented, our transformed B-spline basis smoothing produces clusters whose accuracy is no worse than all other competing methods. Hence, from the functional clustering perspective, our smoothing method does produce competitive results as measured by Rand index.

3.3 Simulation Studies: Functional Regression

We are specifically interested in exploring whether smoothing functional data prior to functional regression will lead to improvement in parameter estimation and prediction accuracy, and if so, which of the currently popular methods would lead to comparatively greater improvement. This may depend on what criterion we use to judge what “better” means.

In this study, the smoothing methods under comparison are the same as those used in Chapter 2, i.e., a B-splines fitting method with equally spaced knots, a B-spline basis with optimally chosen knots, the Fourier basis, the wavelet basis, and our Bayesian approach. Intuitively, we may conjecture that not applying pre-smoothing techniques on functional data prior to carrying out regression analysis, i.e., the naive approach, would lead to the worst regression prediction and estimation, since error terms in the data may mask the true signal, and good smoothing methods tend to separate error from data. However, based on our simulation investigations, the results do not necessarily match those intuitive expectations.

In the following simulation studies, we focus on the one predictor scenario, in which both the response and the predictor variables are functions of the same time interval T. Our true predictor variable signal is simulated to be a linear combination of periodic parts, a smooth part and a spiky part. The periodic part consists of several sine and cosine functions, the smooth part is simply a polynomial function, and the
spiky part is generated via a random Poisson realization to determine the number of spikes in each curve, exponential realizations to determine the heights of those spikes in each curve, and uniform realizations to determine the width of each spike. The intercept $\alpha(\cdot)$ and coefficient function $\beta(\cdot)$ are specified as smooth functions. We generated 16 response and predictor curves using the same $\alpha(\cdot)$ and $\beta(\cdot)$. Since for regression analysis, the spread of the values of the predictor influences the accuracy of estimation, we adjusted the ranges for the predictor curves to be somewhat different, by adding constant shifts to the original generated predictor curves if necessary.

Assuming that both the response and the predictor are observed over a relatively fine grid of time points in T, realizations of the Ornstein-Uhlenbeck process are applied to generate the discretized error vectors, which are added to the signal response and predictor vectors to obtain the observed vectors. The Ornstein-Uhlenbeck (O-U) process is a stochastic process that used to model a continuous random noise process. The O-U process is realized via the following differential equations:

$$dX_t = -\theta X_t dt + dW_t,$$

with $X_0 = x_0$, and W_t is the Wiener process. For the O-U process, both the time t and the distances δ_t between X_t and $X_{t+\delta_t}$ play a role in determining the structure between them. After the data are generated, the smoothing methods mentioned above are applied on both the response and predictor discretized functions.

For each measured time point t, we carry out a pointwise functional regression analysis, where we concatenate the response values (either smoothed or non-smoothed) of all 16 response curves evaluated at t to form the response vector, and do the same for the predictor curves (either smoothed or non-smoothed) to obtain a vector of predictor values evaluated at t. Then we use OLS to obtain the fitted values of $\alpha(t)$ and $\beta(t)$. After carrying out the pointwise regression for all t, by concatenating the estimated $\alpha(t)$ and $\beta(t)$ for all t values, we obtain the entire estimated α and
\textbf{Table 3.3:} In-sample SSE comparison for functional regression predictions based on simulated curves

<table>
<thead>
<tr>
<th></th>
<th>NS</th>
<th>TB</th>
<th>Fourier</th>
<th>Wave</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truth</td>
<td>445621.7</td>
<td>298331</td>
<td>1696082.2</td>
<td>2356412.1</td>
<td>832983.6</td>
</tr>
<tr>
<td>Obs</td>
<td>503622.3</td>
<td>447916.5</td>
<td>1809552.5</td>
<td>2508167.1</td>
<td>977643.3</td>
</tr>
</tbody>
</table>

β functions. Model fit is assessed by:

$$SSE = \sum_i \sum_t (y_i^*(t) - \hat{\alpha}(t) - \tilde{x}_i(t)\hat{\beta}(t))^2,$$

where $y_i^*(t)$ is the ith true signal response, $\tilde{x}_i(t)$ is the smoothed predictor evaluated at point t, $\hat{\beta}(t)$ is the estimated coefficient curve and $\hat{\alpha}(t)$ is the estimated intercept curve, where some smoothing method is applied to $\hat{\alpha}(t)$ to correct for apparent roughness.

In our comparison, we fix the number of basis functions across different smoothing methods under comparison. It turns out that naive regression (i.e., with no presmoothing on the curves) does well in estimating β, and the SSE value is even smaller than most competing methods that apply pre-smoothing on the data (as will be shown in Table 3.3). The reason could be that the number of basis functions employed for different smoothing methods is relatively small and is insufficient to capture the structure of the simulated data; therefore, they tend to underfit the curves. On the other hand, a closer look at the naive regression reveals that it tends to overfit the data, and thus may do poorly if one extrapolates the measured time points into an out-of-sample set of points t^* in T.

The results comparing the “SSE” values defined above for the predicted response curves with respect to either the true signal curves or the observed response curves, without smoothing versus with presmoothing on both the response and the predictor variables via different smoothing methods are shown in Table 3.3. Here, “NS” denotes no smoothing on either the response or the functional predictor. Other notations are
the same as in Chapter 2.

We can see that the SSE values with respect to the observed curve and the true curve are both smallest if the response and the predictor curves are fitted using our method. Note that the SSE values are on a very large scale. This is because the values are calculated as the sum of SSE's for 16 curves accumulated over a total of 100 time points. The SSE values for the individual fitted curves are shown in Figure 3.2. This graph includes 9 boxplots of SSE values for 9 predicted response curves with respect to the true signal curves, with presmoothing of the curves based on the five competing methods shown in Table 3.3. The red reference line on each boxplot gives the SSE value of the predicted response curves with our presmoothing approach. Apparently, for the majority of the cases, using our smoothing method prior to carrying out the functional regression model produces the predicted response curves with relatively small SSE values, compared to other competing methods such as “NS” (no smoothing), “Fourier”, “Wave” and “B”.

Figures 3.3 and 3.4 give 9 true signal response curves versus predicted response curves in scenarios when the response and predictor curves are used directly in functional regression, or when they are presmoothed using “TB”, “Fourier”, “Wave” or “B”. On each individual plot of Figure 3.3, the black spiky curve represents the true signal response curve, the purple wiggly curve represents the predicted response with no presmoothing of the curves, the red and green dashed curves represent the scenario when the response and the predicted curves are presmoothed using the transformed B-splines method or the Fourier basis functions, respectively. On each individual plot of Figure 3.4, the black spiky curve and red dashed curve are the same from those in Figure 3.3, and the green and blue dashed curves represent the predicted response with presmoothing using the B-spline or the Wavelet basis functions, respectively. In all of these individual plots, it is shown that our approach in Chapter 2 tends to give the best predictions in the sense that those predicted curves not only are smooth in
Figure 3.2: Boxplots of SSE values for the first 9 predicted response curves with no presmoothing or presmoothing using the transformed B-splines, the Fourier basis, the Wavelet basis and regular B-splines basis functions on the curves. Red line: SSE value for the predicted response curves with presmoothing on the curves using the transformed B-splines.

nature, but they are capable of capturing the spikes on the curves that other competing methods tend to miss. The method employing the unsmoothed curves tends to overfit, although it has smaller SSE than the Fourier smoother, which tends to miss the peaks.

We also check out-of-sample prediction SSE for the five different methods. We
Figure 3.4: The first 9 predicted response curves. Black spiky curves: true signal response curves. Red long dashed curves: predicted curves with presmoothing using the transformed B-splines. Blue wiggly curves: predicted response curves with with presmoothing using the Wavelet basis functions. Green dashed curve: predicted response curves with presmoothing using the regular B-spline basis functions.
Table 3.4: Out-of-sample SSE comparison for functional regression predictions based on simulated curves

<table>
<thead>
<tr>
<th></th>
<th>NS</th>
<th>TB</th>
<th>Fourier</th>
<th>Wave</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truth</td>
<td>221460</td>
<td>171169.2</td>
<td>871350.5</td>
<td>851409.2</td>
<td>538283.3</td>
</tr>
</tbody>
</table>

have generated a random sample of 100 time points across [0, 1], and have our true and predicted response curves extrapolated to those time points, and calculated the SSE values as defined earlier for the aforementioned set of competing methods. See Table 3.4. Again our method gives the smallest SSE as compared with others.

Note that similarly to Chapter 2, we are utilizing roughly the same number of basis functions for the different smoothing procedures prior to functional regression. In fact, one may get nearly perfect fit of functional data via most fitting methods such as the wavelet basis, as long as one allows a sufficiently large number of basis functions to be employed. However, in practice, one does not want a model that utilizes a number of basis functions that is too large, due to computational speed and model parsimony concerns. That is the reason that we are restrict all competing methods to employ the same number of basis functions for comparison purposes. For some other currently popular B-splines related methods, such as the traditional B-spline basis or the selected knots B-spline basis methods, smooth and accurate fits could only be obtained as long as one chooses the order of the basis functions, the number and locations of the knots wisely. However, knot selection remains a difficult problem even today. In most cases the “optimal” knots selected in practice are not truly optimal. Hence one common problem of these fitting methods is that when given functional curves that are complicated in structure, especially those that are locally highly irregular in some regions while smooth in other areas, it is hard to determine the appropriate number of basis functions to use to obtain a desirable fit. One may choose a relatively large number of basis functions, hoping to achieve an
accurate fit, yet an accurate fit in local irregular areas may lead to over-fitting in other smooth areas. On the other hand, if one chooses a small to moderate number of basis functions to begin with, the true curve may be poorly fitted. However, our approach does not encounter problems like these. A balance between accuracy and smoothness can always be achieved even without tools like the roughness penalty term. Relative accuracy is achieved due to the flexibility attained brought by adding time distortion to each of the basis functions, even if one starts with few basis functions, and smoothness is obtained by taking the average of the fitted curves from these stabilized MCMC iterations once convergence is attained, since the randomness in the time-warping from iteration to iteration is smoothed out by this simple step. This is one vital difference between traditional fitting methods and our approach, i.e., the basis functions contain subtle changes from iteration to iteration, and convergence of their individual shapes is achieved when the number of iterations is large enough.

In this simulation studies, we have smoothed the estimated $\alpha(t)$ functions obtained via different smoothing methods using a moderate number of B-spline basis functions, since they were all oscillating and lacked smoothness. The estimated $\alpha(t)$ functions seem to play the role of an offset since the $\hat{\beta}(t)$ functions are all relatively smooth. This step is not necessarily vital, due to the fact that the $\hat{\alpha}(t)$'s have relatively small range compared with that of the simulated curves themselves.

In sum, this simulation study gives us evidence of improvement in prediction accuracy in functional regression, when our approach is utilized to presmooth the curves, and such improvement is competitive with many other currently popular smoothing methods. However, one may be aware that more accurate fitting of the curves are not always linked with better prediction accuracies. In fact, in some examples shown later, at times consistently underfitting or overfitting the curves may lead to good prediction accuracy as well. Hence, if the goal is solely to study the patterns of the true underlying functional form of the curves, then our approach is
a wise choice. But when the objective is performing functional applications such as functional regression or clustering, then our method serves as an alternative fitting approach in the realm of functional data fitting methods, which are expected to improve the statistical inference results to some extent. But depending on the specific situation, there still might be circumstances when, surprisingly, no smoothing or some other smoothing methods (even though they may not give smooth and accurate fits of the curves) may lead to the best performance; hence one must not make sweeping conclusions.

3.4 Real Data Application: Functional Regression Example 1

In the following two sections, we explore the performance and potential of our functional data smoothing method on real functional regression applications. Our data comes from the website http://www.wunderground.com/history/, where the historical weather data on any given city can be found. We take one year of weather data for Orlando, FL. In our data set, there are daily temperature, dew point, humidity, sea level pressure, visibility, etc. We carry out a functional regression using this data set. We employ daily temperature as the response variable, and since temperature is intuitively mostly related to dew point and(or) humidity, we include both dew point and humidity in the model, and we explore the effect of our and other fitting methods on the predictions of multiple functional regression. We denote the temperature function as $T(\cdot)$, dew point as $D(\cdot)$, and humidity as $H(\cdot)$. Our one year data set is split into four 3-month sections, and each of the 3-month daily temperature function serves as a response curve. Hence we have four pairs of 3-month dew point and humidity functions as predictor curves, accordingly. To test whether our smoothing method leads to improvement on this real data set, we smooth all of the raw response and predictor curves, and for each method, we fit three competing models:

$$T(t) = \alpha_1(t) + D(t)\beta_{11}(t) + H(t)\beta_{12}(t) + \epsilon(t),$$
Table 3.5: SSE comparison table: Model 1: both dew point and humidity are predictors. Top: SSE for predicted response curves with respect to the true observed curve, no further smoothing on $\alpha_1(t)$, $\beta_{11}(t)$ and $\beta_{12}(t)$. Bottom: SSE for predicted response curves with respect to the true signal curve, with further smoothing on $\alpha_1(t)$, $\beta_{11}(t)$ and $\beta_{12}(t)$ using regular B-spline basis functions.

<table>
<thead>
<tr>
<th></th>
<th>NS</th>
<th>TB</th>
<th>Fourier</th>
<th>Wave</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoothed</td>
<td>10851.7</td>
<td>5426.0</td>
<td>7273.0</td>
<td>25843.0</td>
<td>6953.7</td>
</tr>
<tr>
<td>Unsmoothed</td>
<td>6267.6</td>
<td>4280.1</td>
<td>7216.2</td>
<td>25883.0</td>
<td>6964.1</td>
</tr>
</tbody>
</table>

Table 3.6: In-sample SSE comparison: Model 2: dew point is the only predictor. Top: SSE for predicted response curves with respect to the true signal curve, no further smoothing on $\alpha_2(t)$ and $\beta_1(t)$. Bottom: SSE for predicted response curves with respect to the true observed curve, with further smoothing on $\alpha_2(t)$ and $\beta_1(t)$ using regular B-splines basis functions.

<table>
<thead>
<tr>
<th></th>
<th>NS</th>
<th>TB</th>
<th>Fourier</th>
<th>Wave</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoothed</td>
<td>25697.8</td>
<td>21421.8</td>
<td>22899.3</td>
<td>42929.8</td>
<td>21375.0</td>
</tr>
<tr>
<td>Unsmoothed</td>
<td>17771.0</td>
<td>17751.5</td>
<td>20898.6</td>
<td>38577.0</td>
<td>20397.6</td>
</tr>
</tbody>
</table>

Each of these three models is fitted after five competing smoothing methods are performed on the raw response and predictor curves, i.e., “NS”, “TB”, “B”, “Wave” and “Fourier” as defined earlier. Once the coefficient curves are obtained, they are either further smoothed using regular B-spline basis functions with a sequence of equally spaced knots (order 10 basis functions with 15 knots located evenly across (0, 1)), or left unsmoothed, and the estimated coefficient functions are used to produce predictions for all 4 response curves. Lastly, SSE values for all the predicted curves are calculated for each competing smoothing method, with or without further smoothing on the estimated coefficient curves.

The SSE values are given in Tables 3.5, 3.6 and 3.7. For all three models, our method tends to give the smallest SSE, or better predictions for the response curves.
Figure 3.5: True Orlando temperature curves and predicted response curves without data smoothing, or with data presmoothed using the transformed B-spline basis and the Fourier basis functions. Black solid curve: true Orlando weather curves. Green solid curve: predicted curves without any data smoothing. Red solid curve: predicted curves with data presmoothed using the transformed B-spline basis functions. Purple dashed curve: predicted curves with data presmoothed using the Fourier basis functions.
Figure 3.6: True Orlando temperature curves and predicted response curves with data presmoothed using the transformed B-spline basis, regular B-spline basis functions and the wavelet basis functions. Black solid curve: true Orlando weather curves. Green solid curve: predicted curves presmoothed using the wavelet basis functions. Red solid curve: predicted curves with data presmoothed using the transformed B-spline basis functions. Purple dashed curve: predicted curves with data presmoothed using regular B-spline basis functions.
Table 3.7: In-sample SSE comparison: Model 3: humidity is the only predictor. Top: SSE for predicted response curves with respect to the true signal curve, no further smoothing on $\alpha_3(t)$ and $\beta_2(t)$. Bottom: SSE for predicted response curves with respect to the true observed curve, with further smoothing on $\alpha_3(t)$ and $\beta_2(t)$ using regular B-splines basis functions.

<table>
<thead>
<tr>
<th></th>
<th>NS</th>
<th>TB</th>
<th>Fourier</th>
<th>Wave</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoothed</td>
<td>8284.7</td>
<td>5779.6</td>
<td>7870.9</td>
<td>26580.0</td>
<td>7594.9</td>
</tr>
<tr>
<td>Unsmoothed</td>
<td>7123.6</td>
<td>5149.8</td>
<td>7882.8</td>
<td>26783.6</td>
<td>7567.9</td>
</tr>
</tbody>
</table>

Intuitively, further smoothing on the estimated intercept and slope curves could get rid of their “unwanted” local behaviors, making the predicted curves look better and smoother. However, this is not always the case, as can be seen from these tables: For either model and any competing smoothing method, doing no further smoothing on the estimated coefficient curves tends to give a smaller SSE. Besides, simply from the SSE point of view, certainly the model with both predictors gives the smallest SSE values, but using the principle of model parsimony, one could argue for the third model, with only humidity as the predictor. Figures 3.5 and 3.6 give the predicted response curves versus true Orlando weather temperature curves for the model with only humidity as a predictor, and without smoothing on the estimated coefficient curves. The black curves on the individual plots of both figures are the true Orlando temperature curves, and the red solid curves on both figures are the predicted curves with data presmoothed using our approach in Chapter 2. The green curves on Figure 3.5 are the predictions without any data smoothing before the functional regression step, and purple dashed curves are predicted curves with data presmoothed using the Fourier basis functions. On Figure 3.6, the green solid curves are the predicted responses with data presmoothed using the wavelet basis functions, and the purple dashed curves are those obtained with data presmoothed using regular B-spline basis functions. In all four curves, our approach produces smooth fits that mostly capture the main patterns of the curves, while other predictions without presmoothing or
with other smoothing methods on the data are more wiggly, or a little bit overfitted or underfitted.

In this Orlando weather example, we have showed that presmoothing on the data using our approach in Chapter 2 gives promising prediction results. However, further smoothing on the estimated coefficient curves may not improve the prediction accuracy as desired. We discuss this more in another real data example that follows.

3.5 Real Data Application: Functional Regression Example 2

In this section, the data set we examine consists of records of the water levels during flood events in Columbia, SC, occurring across several years. More specifically, two functional records of river stage levels measured by water gages are collected at both the upstream and the downstream areas of the Congaree River during each of eight
flood events between August 1995 and October 2015. Note that the “stage” is a measurement of the height of the river’s water level at the location of the gage. We call the upstream gage the Congaree gage (“Cong”), and downstream gage the Cedar Creek gage (“Cedar”). For each flood event, the Congaree stage and the Cedar Creek stage are measured at the same sequence of time points except for the last flood event, which occurred in October 2015. As can be seen from Figure 3.7, the Congaree curve corresponding to the October 2015 flood event has 648 stage readings from the start of the measurements. The water level smoothly increases during the flood and gradually drops to normal with a few wiggles after the event. The Cedar Creek curve for this event is given in Figure 3.8; the response function (i.e., the water level) increases gradually at the start of the flood event, yet takes a few rapid and almost straight dips after the peak. And the gage readings were all missing afterwards.
We would like to estimate the whole curve of stage readings at the downstream gage. It is suspected that the gage lost readings due to being suddenly broken in the flood, and the peak of the function seems to be the breaking point. Therefore we keep only that portion of the curve up to the observed peak, and the rest of the measurements will be considered missing.

If we standardize each curve to make each flood event of standard length, so that each curve has the same number of time points, we obtain Figure 3.9 as follows. Six pairs of Congaree and Cedar Creek water level curves for six flood events are drawn in figure 3.9. And for each flood event, the Congaree curve and the Cedar Creek curve are shown in the same color, and drawn with the same symbol type, with the upper and lower ones representing the upstream and downstream water levels, respectively. The number of time points in the time sequences for all flood events are standardized.
to be 500 to make each curve have the same time vector. This implies that each time interval \([t_i, t_{i+1})\) represents 1/500 of the total length of the time event.

Apparently for each flood event, the two observed functional curves seem to follow roughly the same pattern. Thus we propose functional regression model between the downstream and upstream water levels, with the former being the response of interest and the latter being the predictor of the model, to see whether such a functional relationship helps to predict the incomplete Cedar Creek water level curve of the October 2015 flood event. We will also see whether our smoothing method provides any improvement in the prediction accuracy when predicting the response curves.

The first model explored is the concurrent model as discussed earlier in the chapter, since it is believed that the water levels at the Cedar Creek and Congaree areas at the same time point should be related. Functional regression is initially carried out on the set of seven pairs of raw observed data curves and the in-sample prediction error is calculated. The \(\hat{\alpha}(t)\) and \(\hat{\beta}(t)\) obtained are shown in Figure 3.10. The \(\hat{\alpha}(t)\) and \(\hat{\beta}(t)\) curves, up to a scale, seem to be mirroring effects of each other.

In Figure 3.11, the blue, red and green curve give the observed Congaree stage values, the observed Cedar Creek stage values, and predicted Cedar Creek stage values, respectively. The functional relationship seems fine for our data set based on Figure 3.11. As can be seen from the predicted curves, the majority of the predicted curves mimic the behavior of the truly observed Cedar Creek curves, with some noticeable deviations observed for the first and the seventh flood events.

We wonder whether some of the local behavior shown in the predicted curves in Figure 3.11 is extraneous, and thus the same procedure is carried out on the smoothed functional curves. The curves are smoothed using smoothing splines, with the smoothing parameter selected as 0.7. This was implemented using the R function `smooth.spline`. The \(\hat{\alpha}(t)\) and \(\hat{\beta}(t)\) obtained using the smoothed response and predictor curves are smoothed further using smoothing splines, with the smoothing
Figure 3.10: Functional regression based on raw data curves. Top: intercept function $\hat{\alpha}(t)$. Bottom: slope function $\hat{\beta}(t)$

parameter value being 0.2, in order to capture only the major effects between the response and the predictor curves. The smoothed $\alpha(t)$ and $\beta(t)$ curves are given in Figure 3.12. The smoothed $\hat{\alpha}(t)$ and $\hat{\beta}(t)$, i.e., $\tilde{\alpha}(t)$ and $\tilde{\beta}(t)$, obtained using smoothing splines, are not perfect, since some of the major effects are dampened, yet it gives the approximate overall effects of the intercept and the slope curves.

The predicted Cedar Creek stage levels based on the smoothed version of the concurrent model are given in Figure 3.13. The curves look cleaner compared to the unsmoothed version, yet the deviations in the predicted and the smoothed data curves of the Cedar Creek area during the first, the sixth and the seventh flood events are still apparent. SSE is also calculated for both settings. Table 3.8 gives detailed
Figure 3.11: Functional regression based on raw data curves. Blue dashed curve: observed Congaree curve. Green solid curve: observed Cedar Creek curve. Red dashed curve: predicted Cedar Creek curve.

comparison, it suggests that smoothing does provide improvement for functional regression prediction accuracy.

Notice that we are doing in-sample predictions, and smoothing apparently provides some improvement in terms of the total sum of squared errors. Figure 3.14 shows the observed Cedar Creek and Congaree curves, along with the predicted Cedar Creek curve for the flood event of October 2015. It is obvious that the predicted curve roughly mimics the behavior of the observed Congaree curve, as does other flood events. The predicted curve seems fine in the sense that it roughly follows the
Figure 3.12: Functional regression based on pre-smoothed data curves. Top: smoothed intercept $\tilde{\alpha}(t)$. Bottom: smoothed slope $\tilde{\beta}(t)$

Table 3.8: SSE comparison for seven flood events. Top: SSE values based on functional regression without any smoothing. Bottom: SSE values based on functional regression with raw data curves and estimated intercept and slope curves smoothed via smoothing splines.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsmoothed</td>
<td>1763.5</td>
<td>268.4</td>
<td>371.4</td>
<td>588.6</td>
<td>510.0</td>
<td>229.0</td>
<td>622.9</td>
</tr>
<tr>
<td>Smoothed</td>
<td>1632.1</td>
<td>221.2</td>
<td>261.4</td>
<td>532.9</td>
<td>314.3</td>
<td>174.4</td>
<td>491.3</td>
</tr>
</tbody>
</table>
Figure 3.13: Functional regression based on pre-smoothed data curves, obtained intercept and slope curves are further smoothed for prediction. Blue dashed curve: smoothed Congaree curve. Green solid curve: smoothed Cedar Creek curve. Red dashed curve: predicted Cedar Creek curve.

observed Cedar Creek curve prior to the peak.

To assess whether the model predicted well for curves outside the sample, like the October 2015 curve, we performed out-of-sample predictions by iteratively dropping the pair of curves for one flood event at a time when carrying out the functional regression. In other words, for each flood event, we excluded the pair of observed curves for that specific event from our functional regression fitting, and predicted the corresponding Cedar Creek curve of the flood event. Thus, we would have a slightly different pair of \(\hat{\alpha}(t) \) and \(\hat{\beta}(t) \) after deleting each event. See Figure 3.15 and Figure...
Figure 3.14: Functional regression based on pre-smoothed data curves, obtained intercept and slope curves are further smoothed for prediction. Blue dashed curve: smoothed Congaree curve for October 2015 event. Green solid curve: smoothed Cedar Creek curve for October 2015 event. Red dashed curve: predicted Cedar Creek curve for October 2015 event.
Figure 3.15: Obtained slopes for seven flood events using functional regression based on raw data curves using “Cross-validation” idea.

3.16 for the estimated slope curves based on cross-validated data sets. In particular, Figure 3.15 gives slope curves for the functional regression based on unsmoothed response and predictor curves, and Figure 3.16 gives those based on curves presmoothed via smoothing splines. Further smoothing is applied to the obtained $\hat{\alpha}(t)$ and $\hat{\beta}(t)$ curves in the smoothed version to capture only the major patterns for prediction purposes. The SSE comparisons are given in Table 3.9. It provides evidence that smoothing enhances accuracy for both in-sample and out-of-sample predictions most of the time.

Now we employ the same model, but all the curve fitting procedures are carried
Figure 3.16: Obtained slopes for seven flood events using functional regression based on pre-smoothed data curves using “Cross-validation” idea.

Table 3.9: SSE comparison for seven flood events. SSE values based on functional regression without any pre-smoothing on the observation curves. “Cross-validation” idea is utilized to obtain out-of-sample predictions. Top: SSE values based on functional regression without any smoothing. Bottom: SSE values based on functional regression with raw data curves and estimated intercept and slope curves smoothed via smoothing splines.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsmoothed</td>
<td>2986.1</td>
<td>452.9</td>
<td>924.6</td>
<td>1010.6</td>
<td>1020.7</td>
<td>2850.33</td>
<td>1294.1</td>
</tr>
<tr>
<td>Smoothed</td>
<td>2654.5</td>
<td>359.8</td>
<td>776.3</td>
<td>874.3</td>
<td>518.8</td>
<td>2908.0</td>
<td>1011.3</td>
</tr>
</tbody>
</table>
Table 3.10: SSE comparison for seven flood events. SSE values based on functional regression with Bayesian transformed B-splines method on the observed curves.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SSE</td>
<td>1953.8</td>
<td>333.4</td>
<td>780.5</td>
<td>507.7</td>
<td>569.3</td>
<td>404.2</td>
<td>471.9</td>
</tr>
</tbody>
</table>

out via our smoothing method proposed in Chapter 2. Note that in the following discussions, we all have deleted a certain number of points on the two edges of each of the observed curves, hoping to obtain better predictions with more magnified flood event behaviors on the curves.

Firstly, considering the smoothed nature of the observed curves, especially the Congaree curves, we choose to smooth them initially using order 4 basis functions with 3 equally-spaced interior knots in our Bayesian transformed B-splines method. The comparison plot of smoothed predictor curves, smoothed response curves and predicted response curves is shown in Figure 3.17. In this scenario, we simply smoothed the observed curves using our method proposed in Chapter 2, but did no further smoothing on the obtained \(\hat{\alpha}(t) \) and \(\hat{\beta}(t) \) curves.

The predicted curves seem to mimic the smoothed response very well except for some local areas for the first flood event. And the SSE measures for the seven flood events using this approach are given in Table 3.10. Comparison of the magnitudes of SSE obtained using this approach with those SSE values obtained from using roughness penalty based smoothing methods (Table 3.8) shows that the former is superior to the latter in only two out of seven curves (i.e., the March 2007 event, and the September 2004 event). But since the true signal curves are unknown, and thus the SSE values in Tables 3.8 and 3.10 are calculated based on the predicted curves with respect to the smoothed response curves using different methods of eliminating noise in the observed curves, we would agree that these SSE values serve only as a rough reference of the performances of competing approaches.
When we repeat this procedure, and have the obtained \(\hat{\alpha}(t) \) and \(\hat{\beta}(t) \) further smoothed via the same procedure, i.e., the Bayesian transformed B-splines method, the predicted curves oscillate drastically for almost all seven flood events. As can be seen from Figure 3.18, this phenomenon again suggests that further smoothing of functional parameter estimates in functional regression may not always be a good idea.

We also tried a similar approach, but with the estimated \(\alpha(t) \) and \(\beta(t) \) smoothed with roughness penalty-based smoothing splines. The predicted results are shown in Figure 3.19; in this case, the roughness parameter equals 0.9. Intuitively, the pre-
Figure 3.18: Functional regression based on pre-smoothed data curves using Bayesian transformed B-splines method. Obtained $\hat{\alpha}(t)$ and $\hat{\beta}(t)$ curves are further smoothed using the same procedure. Blue dashed curve: smoothed Congaree curve. Green solid curve: smoothed Cedar Creek curve. Red dashed curve: predicted Cedar Creek curve.

diction accuracy would be expected to be higher when using the same smoothing method on both the original observed curves and the estimated functional regression coefficient curves. However, apparently the predicted curves are smoother and more accurate with this approach. As can be seen from Figure 3.19, the prediction performances are superior to those obtained by using our method for smoothing on $\hat{\alpha}(t)$ and $\hat{\beta}(t)$ (Figure 3.18).

We showed in Chapter 2 that our proposed method tends to be more flexible than several currently popular regression spline fitting methods. We thus wonder
Figure 3.19: Functional regression based on pre-smoothed data curves using Bayesian transformed B-splines method. Obtained $\hat{\alpha}(t)$ and $\hat{\beta}(t)$ curves are further smoothed using smoothing splines with roughness penalty parameter = 0.9. Blue dashed curve: smoothed Congaree curve. Green solid curve: smoothed Cedar Creek curve. Red dashed curve: predicted Cedar Creek curve.
Table 3.11: SSE comparison for seven flood events. SSE values based on functional regression with Bayesian transformed B-splines method on the observation curves. Top: No further smoothing on $\hat{\alpha}(t)$ and $\hat{\beta}(t)$ curves. Middle: $\hat{\alpha}(t)$ and $\hat{\beta}(t)$ curves further smoothed using smooth splines with roughness parameter = 0.9. Bottom: $\hat{\alpha}(t)$ and $\hat{\beta}(t)$ curves further smoothed using smooth splines with roughness parameter = 0.5.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsmoothed</td>
<td>1953.8</td>
<td>333.4</td>
<td>780.5</td>
<td>507.7</td>
<td>569.3</td>
<td>404.2</td>
<td>471.9</td>
</tr>
<tr>
<td>Smoothed (0.9)</td>
<td>2139.1</td>
<td>585.8</td>
<td>762.0</td>
<td>514.4</td>
<td>642.6</td>
<td>556.1</td>
<td>496.6</td>
</tr>
<tr>
<td>Smoothed (0.5)</td>
<td>1966.4</td>
<td>341.6</td>
<td>780.6</td>
<td>508.0</td>
<td>569.4</td>
<td>418.4</td>
<td>473.9</td>
</tr>
</tbody>
</table>

whether a roughness-penalty-based smoothing method is performing better than our proposed approach, and whether this has resulted in its superior prediction accuracies and smoothness.

The plots that compare the original estimated $\alpha(t)$ and $\beta(t)$ curves with the ones smoothed with our method from Chapter 2 and with smoothing splines are given in Figures 3.20 and 3.21. The smoothed intercept and slope curves obtained with our method seem fine in terms of curve fitting. Some minor local noise-type behaviors are successfully removed, while a relatively accurate fit is maintained. On the other hand, the other curves are severely under-fitted. Thus we conclude the prediction accuracy for functional regression models may not be directly related to the smoothing accuracy of the estimated intercept and slope curves.

Table 3.11 gives the calculated SSE values for $\hat{\alpha}(t)$ and $\hat{\beta}(t)$ smoothed using smoothing splines with roughness penalty parameter being 0.9 and 0.5, versus no further smoothing on them. Notice that for roughness penalty values of 0.9 and 0.5, the SSE values do not differ too much for four out of seven flood events. In other words, no matter which roughness penalty value is utilized, the predicted curves are always relatively stable. The reason for the wiggly nature of the predicted curves via our method and the stability in those obtained via smoothing splines is somewhat uncertain. Note that in Figure 3.18, several minor oscillations exist across the entire time axis for all seven flood events, and more specifically, there appear to be sharp
valleys at around time point 100 in the predicted curves for each of them. On the other hand, a close look at Figure 3.20 reveals that both $\hat{\alpha}(t)$ and $\hat{\beta}(t)$ have an obvious local event at exactly the same location of around the 100th time point. And that this local event is described well for the $\hat{\alpha}(t)$ curve, yet the same procedure underestimates the peak at the same location for $\hat{\beta}(t)$. Therefore the conjecture is that the estimated $\hat{\alpha}(t)$ and $\hat{\beta}(t)$ curves are intrinsically of different smoothness levels, and our method adapts well to fitting the overall shapes of the original curves. Thus with curves of vastly different intrinsic roughness, our method fits the two curves to different smoothness levels, even with the same number of basis functions. And even though some of these discrepancies may seem unnoticeable from a smoothing point of view, their effects are
Figure 3.21: Estimated $\alpha(t)$ and $\beta(t)$ curves smoothed using smoothing splines method with roughness penalty parameter = 0.9. Top: estimated (black) and smoothed (red) $\hat{\alpha}(t)$ curve. Bottom: estimated (black) and smoothed (red) $\hat{\beta}(t)$ curve.

magnified in applications such as regression predictions. On the other hand, when using traditional smoothing methods, such as regression splines or smoothing splines, as long as one utilizes the same number of basis functions, same knot locations, and chooses the same roughness penalty parameter values when smoothing those curves, the set of resulting curves would always have the same smoothness level, no matter how rough or smooth the original curves might be. In fact, a close look at Figure 3.21 reveals that even though the $\hat{\alpha}(t)$ and $\hat{\beta}(t)$ curves are both severely under-fitted, they are under-fitted to the same extent, and thus when doing predictions, the under-fitting effect evened out, leaving the predicted curve unaffected by the inaccuracy of the smoothing of the intercept and slope. This can be verified by looking at the
Figure 3.22: Functional regression based on pre-smoothed data curves using the Bayesian transformed B-splines method. Obtained $\hat{\alpha}(t)$ and $\hat{\beta}(t)$ curves are further smoothed using smoothing splines with roughness penalty parameters = 0.9 ($\hat{\alpha}(t)$) and 0.5 ($\hat{\beta}(t)$). Blue dashed curve: smoothed Congaree curve. Green solid curve: smoothed Cedar Creek curve. Red dashed curve: predicted Cedar Creek curve.

prediction performance when using traditional smoothing splines to smooth $\hat{\alpha}(t)$ and $\hat{\beta}(t)$, with different roughness penalty values.

Figure 3.22 gives predicted “Cedar” and smoothed “Cedar” and “Cong” curves when data are pre-smoothed using the Bayesian transformed basis functions approach, and the obtained $\alpha(t)$ curve further smoothed with smoothing splines using roughness penalty parameter = 0.9, and $\beta(t)$ curve smoothed with the same procedure, but with roughness penalty parameter = 0.5. In this figure, all predicted Cedar Creek curves
Figure 3.23: Estimated $\alpha(t)$ and $\beta(t)$ curves smoothed using smoothing splines method with roughness penalty parameter = 0.9 ($\hat{\alpha}(t)$) and 0.5 ($\hat{\beta}(t)$). Top: estimated (black) and smoothed (red) $\alpha(t)$ curve. Bottom: estimated (black) and smoothed (red) $\beta(t)$ curve.

look poor and follow similar patterns, no matter what the shapes of the original curves might be. In particular, there are spikes at around the 100th, the 280th, the 320th time points in all of them. Apparently, the intercept and slope curves are fitted to different smoothness levels at those corresponding areas, which implies that the patterns in the predicted curves are dominated by the shapes of the smoothed $\hat{\alpha}(t)$ and $\hat{\beta}(t)$ curves. Whenever these are not smoothed to the same amount, unwanted behaviors at those corresponding local areas is seen.

Table 3.11 seems to have suggested that no further smoothing on $\hat{\alpha}(t)$ and $\hat{\beta}(t)$ would give the optimal prediction result, no matter what method we use (i.e., transformed B-splines, or smoothing splines) to smooth the original observed curves. Yet
Table 3.12: SSE comparison for seven flood events. SSE values based on functional regression with Bayesian transformed B-splines method on the observation curves. “Cross-validation” idea is utilized to obtain out-of-sample predictions. Top: No further smoothing on $\hat{\alpha}(t)$ and $\hat{\beta}(t)$ curves. Bottom: $\hat{\alpha}(t)$ and $\hat{\beta}(t)$ curves further smoothed using smoothed splines with roughness parameter $= 0.9$.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsmoothed</td>
<td>2892.6</td>
<td>764.8</td>
<td>1592.8</td>
<td>925.2</td>
<td>977.4</td>
<td>3411.7</td>
<td>1122.3</td>
</tr>
<tr>
<td>Smoothed</td>
<td>2870.1</td>
<td>833.6</td>
<td>1377.6</td>
<td>770.0</td>
<td>910.8</td>
<td>1918.3</td>
<td>808.1</td>
</tr>
</tbody>
</table>

if we carry out the same functional regression procedure by using cross-validated data sets as described above, we can see that for out-of-sample prediction, smoothing does help with prediction accuracy. Since the prediction performances are more stable when using the smoothing splines method to further smooth $\hat{\alpha}(t)$ and $\hat{\beta}(t)$, we compare its performance with the case when no further smoothing is applied in Figures 3.24 and 3.25. Apparently, without further smoothing, the predicted curves are more prone to local oscillations, whereas the curves are smoother and lack unnecessary fluctuations when smoothing is performed on $\hat{\alpha}(t)$ and $\hat{\beta}(t)$. Table 3.12 gives detailed SSE values for the two competing methods.

We have also investigated an interaction model which includes the first derivative function of the predictor and the interaction of the derivative function and the predictor function as two extra functional covariates. Since the model’s prediction performance is instable due to extreme values in the derivative curves, we omit any further discussion here.

In sum, we conclude that using smoothing splines as the major fitting method on the observed curves before functional regression, and further smoothing the obtained $\hat{\alpha}(t)$ and $\hat{\beta}(t)$ afterwards using smoothing splines, gives the most stable and accurate prediction result. In particular, the roughness parameter values selected to smooth the estimated intercept and slope curves must be the same to produce a desirable result. See Figure 3.14 for a sample prediction of the “Cedar” stage for the October
Figure 3.24: Functional regression based on pre-smoothed data curves using the Bayesian transformed B-splines method. “Cross-validation” idea is utilized to obtain out-of-sample predictions. Blue dashed curve: smoothed Congaree curve. Green solid curve: smoothed Cedar Creek curve. Red dashed curve: predicted Cedar Creek curve 2015 flood event using the aforementioned approach. Some more investigations may be carried out to determine the best roughness penalty parameter value to use in the procedure based on graphic illustrations and in-sample and out-of-sample SSE comparisons.

3.6 DISCUSSION

In this chapter, we have introduced functional regression and functional clustering, and our data smoothing method proposed in Chapter 2 is implemented on several
Figure 3.25: Functional regression based on pre-smoothed data curves using the Bayesian transformed B-splines method. Obtained $\hat{\alpha}(t)$ and $\hat{\beta}(t)$ curves are further smoothed using smoothing splines method with roughness penalty parameter = 0.9. “Cross-validation” is utilized to obtain out-of-sample predictions. Blue dashed curve: smoothed Congaree curve. Green solid curve: smoothed Cedar Creek curve. Red dashed curve: predicted Cedar Creek curve.
simulated data or real data examples. We have showed from our analysis results that in most scenarios, our smoothing method is useful in improving statistical estimation quality such as prediction or clustering accuracies. And our approach leads to greater improvement in several of the scenarios compared to some other smoothing methods such as the regular B-spline basis approach, the spline approach with specified knots, the wavelet basis, or the Fourier basis smoothing methods. However, it is also seen from previous examples that in certain circumstances, unexpected results may occur, since functional data smoothing accuracy and prediction or clustering accuracies are different objectives. Hence it is not guaranteed that better data smoothing will always lead to better prediction performance. In particular, in some cases, too much smoothing (i.e., presmoothing the raw data, then smoothing the estimated coefficient curves after functional regression) may not always lead to improvement. Hence, it is important that one does enough in-sample and out-of-sample analysis to compare smoothing versus no smoothing, and to compare different smoothing methods, before determining the appropriate approach for the specific problem at hand.
Chapter 4

Sparse Functional Data Fitting with Transformed Spline Basis

Summary: In this Chapter, we will extend our functional data smoothing method proposed in Chapter 2 to the sparse data scenario. Our warping function is applied to the joint time interval for a cluster of curves that are similar in nature, and the Bayesian framework is imposed on the fitting method to have the algorithm learn from data to produce the "optimal" transformation of time.

4.1 Introduction

Recall that in chapter 2, we proposed an automatic functional data fitting method that can be applied to a group of data curves of various shapes without pre-screening the curves and selecting the appropriate basis functions for fitting them one by one. We then showed via various simulations and real data analysis results that our proposed method gives competitive fitting accuracy when compared with the pool of currently popular regression spline smoothing methods.

However, one assumption we made in order to have our proposed method produce desirable fitting results is that we require all the raw data curves to be originally observed over a fine grid of time points on the continuous domain T, say, roughly 100 time points for a time interval of [0,1]. In other words, we have to have a sufficient amount of observed information within each unit time interval to be able to perform the proposed method in Chapter 2 and obtain good smoothing results in terms of
fitted curve smoothness and accuracy (as measured by both SSE with respect to the raw curve and SSE with respect to the true signal curve). This assumption is vital because it allows us to use simple linear interpolation between each pair of adjacent fitted values, which are obtained from the Bayesian model we built, to achieve a fitted curve that reveals a relatively accurate depiction of the true shape of the curve itself. In this sense, we essentially treat a group of curves as independent from each other, and the fitting procedure is carried out on the curves one by one. Thus if the original curves are truly spiky, then our method proposed in Chapter 2 suffices to fit the spikes well. On the other hand, if the original curves are intrinsically smooth, then using our method will also produce a relatively smooth fitted curve. Hence, under such an assumption, we can confidently claim that our method performs competitively in terms of producing accurate fitted functional curves, and that it is especially useful for fitting irregularly shaped and spiky curves.

When this assumption is relaxed, or in other words, when functional data are observed only at a set of sparsely located time points, then our proposed method may result in undesirable behavior, such as unwanted spikes and loss of smoothness. That is again due to the use of linear interpolation between each pair of adjacent fitted values in the final step. Blindly using linear interpolation when there is not sufficient information contained within each unit length of time produces undesirable and extreme spikes when the true underlying functional form may be smooth. As a result, we would need some other method to accommodate the lack of information in circumstances when the data are only observed at a sparse set of time points.

In sum, our goal for this chapter is to extend our method proposed in Chapter 2 to the sparse data scenario, and we must overcome the following obstacles:

- Fitting curves one by one may no longer be feasible, since each curve itself carries information that is too limited with respect to its true underlying functional form, and hence fitting results could be poor.
• We want the resulting fitted curves to be smooth and to accurately depict the nature of the true underlying functional form of the curves even when the data is only measured sparsely. As a result, either linear interpolation should be abandoned in the final step of the procedure, or some other accommodations need to be made to ensure fitting smoothness and accuracy.

Our approach proposed here is inspired by Thompson and Rosen (2008), in which the authors have discussed a Bayesian approach for fitting sparse functional data. Note that one vital assumption for this approach to succeed is that there has to be a cluster of curves that share the same true underlying baseline function, so that the information from the entire set of curves could be utilized jointly in some way in order to achieve a better estimate. Hence, curves vary from each other as a direct result of each curve’s individualized variation plus noise, where the former source of variation is similar to the variation among factor effects in an ANOVA model. An example for such a scenario would be a group of girls’ growth velocity curves. In general, all girls should follow the same growing pattern, thus intuitively, there should be a common trend of growth for all of them, yet each individual girl may have her own timings in terms of growth “peaks” and “valleys”, due to factors such as nutrition level, general environment, financial situations of their families, etc. Hence a common baseline mean curve, and a individualized “factor effect” curve should both be included in the mean function of an individual. Note that even though the cluster of curves need to share the same baseline mean function, each individual curve does not need to be measured on the same set of time points, they may not even need to share the same minimal and maximal measured time points. That is due to the nature of the study in practice. For instance, some girls’ growth curves might be recorded starting from infancy, while some others may enter the study when they are already 6 or 7 years old.

In the sections that follow, we will start with discussion of the general structure
of the method proposed in Thompson and Rosen (2008), along with our innovations to the method that incorporate the transformed B-spline basis functions. We then describe how we adapt our approach to the sparse functional data scenario to make our method capable of producing a fit that balances smoothness and accuracy.

4.2 Bayesian Model Fitting for Sparse Functional Curves

Assume that a cluster of \(n \) individual functional curves, \(y_j(t), j = 1, \ldots, n \), are each observed at a set of sparsely located time points \(t_j \), where \(t_j \) is the vector of sparse time points measured for curve \(j \), with length \(l_j \); thus the vector \(t_j \) and its length are allowed to vary from curve to curve. Note that all \(y_j(t) \)'s are generated from the same underlying grand mean function \(\mu(t) \), and each curve has its own individual effect function \(f_j(t) \), for \(j = 1, 2, \ldots, n \). In other words, each observed curve is related to its mean function via the following equation:

\[
y_j(t) = \mu(t) + f_j(t) + \epsilon_j(t),
\]

for \(t \in t_j \). Here \(\epsilon_j(t) \) is the error term for curve \(j \) evaluated at time \(t \), for \(j = 1, 2, \ldots, n \). Our goal for sparse functional data fitting is to study the common mean function \(\mu(t) \) and the individual signal function \(f_j(t) \).

One way of fitting \(y_j(t) \) is by using the B-spline basis functions. Thompson and Rosen (2008) assumed that a common set of B-spline basis functions of the same order and dimension can be used to describe both \(\mu(t) \) and \(f_j(t) \). That is, for a given set of B-spline basis functions \(\{B_1(\cdot), \ldots, B_{n_b}(\cdot)\} \) of dimension \(n_b \) spanned on time interval \([0, T_M] \), where \(T_M \) is the maximal measured time point among all curves, the model assumed is:

\[
y_j(t) = \sum_{k=1}^{n_b} \beta_k B_k(t) + \sum_{k=1}^{n_b} b_j B_k(t) + \epsilon_j(t),
\]

here \(\beta = (\beta_1, \ldots, \beta_{n_b})' \) is the vector of coefficients related to the grand mean portion of each curve, and \(b_j = (b_{1j}, \ldots, b_{nj})' \) is the vector of coefficients related to
the mean contribution of the jth curve effect. However, even though B-spline basis functions are most commonly used for fitting functional data, and have proved to be flexible in their adaption to various shapes of functional curves, it is also well known that the flexibility comes from the knots, which are used as joining points in the set of B-splines. The fitting performance of using B-spline basis functions may not be desirable unless the number and the locations of the knots are wisely selected. As expected, Thompson and Rosen (2008) incorporated the knot selection of B-spline basis functions along with the parameter estimation in their Bayesian model. However, it is shown in the simulation section of Chapter 2 that even with optimally selected knots, sometimes the performance of B-splines may not improve on the transformed B-splines we proposed. That is because the flexibility of the time transformation has exempted us from the trouble of knot selection, and furthermore, the additional flexibility we have gained from transforming the time interval has enabled our method to produce an even more accurate fit than those obtained by using competing methods. Hence, for the sparse data scenario, we once again assume that there exists some underlying transformed B-spline basis functions, rather than a given set of B-spline basis functions with flexible knot placement, as being the “true” basis functions for curve fitting. Here “true” basis functions refer to “optimally” transformed basis functions that are capable of producing a desirable fit with respect to smoothness and accuracy. Hence, our goal is to somehow find the optimal transformation of time, in order to produce the set of true basis functions.

To illustrate the idea, we again define $\Phi(t_j)$ to be the design matrix we could obtain by evaluating the aforementioned set of traditional B-spline basis functions $B_k(\cdot)$’s at time vector t_j, where each column in the matrix is $B_k(t_j)$, for $j \in \{1, 2, \ldots, n\}$ and $k \in \{1, 2, \ldots, n_b\}$, and define the target, i.e., “optimally transformed design matrix”, as $\Phi^*(t_j)$, similarly as we did in Chapter 2. In other words, the model proposed
in Thompson and Rosen (2008) is:

\[y_j(t_j) = \Phi(t_j)\beta + \Phi(t_j)b_j + \epsilon_j(t_j), \]

and the “true” model we assume is as follows:

\[y_j(t_j) = \Phi^*(t_j)\beta + \Phi^*(t_j)b_j + \epsilon_j(t_j), \]

where \(j = 1, 2, \ldots, n \).

Now, our goal has been reduced to studying the nature of \(\Phi^*(\cdot) \), or more specifically, the quantification of the transformation on \(\Phi(\cdot) \), along with estimation of the corresponding coefficient vectors \(\beta \) and \(b_j \). In order to achieve some transformation of time and to transform \(\Phi(\cdot) \), we may employ the same technique utilized in Chapter 2, i.e., the time warping idea. And in order to obtain the “optimal” transformation on time to produce \(\Phi^*(\cdot) \), and estimate the corresponding coefficients vectors \(\beta \) and \(b_j \), we again use a Bayesian method.

For the purpose of illustration, we keep most of the notation used in Chapter 2. Note that even though we might not know how to “optimally” transform the time interval at first, we might easily obtain some transformation of time by using the warping idea. Similarly as we did in Chapter 2, before carrying out the fitting procedure on the group of curves, we standardize the time interval of the curves. Note that in Chapter 2, we standardize the observed time sequence for each curve, so that each curve has a minimum measured time point 0 and a maximum time point 1, and hence the standard method introduced in Chapter 2 can be applied to the curves one by one. Here we want to utilize the information contained in the cluster of curves as a whole, since each individual functional observation contains too little information about the shape of itself. As a result, instead of standardization for each curve, we view the set of time points for all curves as a whole, and standardize the whole set of time points, so that after standardization, the entire set of time points measured, \(\{t_1, t_2, \ldots, t_n\} \), has a minimum value of 0 and a maximum value of 1. Hence now,
when we transform the time interval $[0, 1]$, multiple curves are simultaneously affected. Instead of defining some parametric continuous warping function on time, we may simulate some “warped” time sequence t_w first, and regard it as a transformation of some monotone time vector T on $[0, 1]$, and hence the transformation $\Phi(\cdot) \mapsto \Phi^*(\cdot)$ could be defined based on the relationship between the warped time sequence t_w and the original time vector T. To recap the idea, each curve in the cluster is measured on a sequence of time points between 0 and 1 (that may not include 0 or 1). Assume that we want to apply warping on a time sequence T, whose elements are $(M + 1)$ equally spaced points on the time interval $[0, 1]$, including 0 and 1. We may obtain some warped time sequence t_w by generating a vector of length M, $p = (p_1, \ldots, p_M)'$ from the Dirichlet distribution, where each element in p can be viewed as the “jumps” in a stepwise CDF function, since each element in p is positive, and the vector sums to 1. In this sense, $t_w = \{0, p_1, \sum_{i=1}^2 p_i, \ldots, \sum_{i=1}^{M-1} p_i, 1\}$ is a warped time sequence, due to the facts that each element in the sequence is nonnegative, and they are in monotone order. We have a given set of B-spline basis functions of dimension n_b, and so one may generate n_b Dirichlet realizations of length M, denoted as $T_W = \{t_{w1}, \ldots, t_{wn_b}\}$, so that the original time sequence T for each of the n_b basis functions is transformed differently into $\{t_{w1}, \ldots, t_{wn_b}\}$. In order to define the transformation from $\Phi(\cdot)$ to $\Phi^*(\cdot)$, we again make the same assumption as in Chapter 2, i.e.,

$$\Phi(T) = \Phi^*(T_W),$$

where on the left hand side, all n_b basis functions are evaluated at the same original time vector T, and on the right hand side, the k^{th} basis function is evaluated on the k^{th} transformed time vector t_{wk}, for $k = 1, 2, \ldots, n_b$. As a result, back interpolation can be applied directly to obtain $\Phi^*(T)$. But note that in the discussion above, we have only described one way to transform the time sequence. We have not claimed, however, that it is the “optimal” transformation we want. In fact, similarly as in Chapter 2, a Bayesian model can be applied to the time transformation scheme, so
that the system can learn from the data and update the transformations of the time sequences for each basis function from each iteration to the next, until it reaches some balance, i.e., relatively stable shapes of the set of transformed basis functions. We assume normal errors across different curves in the Bayesian framework. In other words, our model is in fact:

\[y_j(t_j) = \Phi^*(t_j)\beta + \Phi^*(t_j)b_j + \epsilon_j(t_j), \]

where

\[\epsilon_j(t_j) \sim N(0, \sigma^2_{\epsilon}I). \]

This model can also be interpreted as a mixed model as commonly used in longitudinal studies, as pointed out by Thompson and Rosen (2008). The \(\Phi^*(t_j)\beta \) part plays the role of the fixed effect in a mixed model, whereas \(\Phi^*(t_j)b_j \) can be interpreted as the random effects portion of the \(j \)th curve. In other words, the random coefficient terms \(b_j \) are centered at 0, and have a variance-covariance matrix of \(\Sigma_b \), describing the within curve correlation between different measurement points. Here the subscript \(b \) refers to the fact that \(\Sigma_b \) is the common variance-covariance matrix for \(b_j, \forall j = 1, 2, \ldots, n. \)

Now we have the following list of parameters of interest: \(\beta, b_1, b_2, \ldots, b_n, \sigma^2_{\epsilon}, p_1, p_2, \ldots, p_{nb}, \) and \(\Sigma_b \), where \(nb \) denotes the number of basis functions utilized in the procedure. Our prior specifications are very similar to those employed in Thompson and Rosen (2008), except that their method requires selection of knots in order to achieve enough flexibility for the set of pre-specified B-spline basis functions. As we have discussed in Chapter 2, one way to select knots is to incorporate the number and locations of the knots into the Bayesian model, and have the data select those values for us, since both the size and the placement of the pool of knots play important roles in the shape of the B-spline basis functions. Thompson and Rosen (2008) took a slightly simpler approach by starting from a large pool of pre-specified knots located
across the time axis, and they selected the knots from the initial pool by adding an indicator variable to each of the knots. The total number of B-spline basis functions, however, is also updated in each iteration in the MCMC. As we have discussed earlier, the use of the time warping concept in our approach has played a similar role as knot selection, and thus no dimension variation in the simulation step is needed.

Similar to Thompson and Rosen (2008), we combine b_j and β in our model, by assigning $b_j^* = b_j + \beta$ a priori with a mean of β. That is,

$$b_j^*|\Sigma_{b^*}, \beta \sim MVN(\beta, \Sigma_{b^*})$$

and

$$\beta \sim MVN(0, \sigma I)$$

for $j \in 1, 2, \ldots, n$. Note that here we use b_j^* to refer the sum of the common mean coefficients β and individual coefficients for the jth curve, b_j, for $j = 1, 2, \ldots, n$. And we use b^* to denote the joint information of $\{b_1^*, b_2^*, \ldots, b_n^*\}$. We also change all the corresponding subscripts in our notations. Hence our model can be rewritten as

$$y_j(t_j) = \Phi^*(t_j)b_j^* + \epsilon_j(t_j),$$

where the hyperparameter c is chosen via some data-driven method, which we will discuss later. Each vector p_j of length M used to create a warped time sequence is assigned a Dirichlet prior with hyperparameters a_1, a_2, \ldots, a_M. And lastly,

$$\Sigma_{b^*} \sim IW(\eta, S),$$

$$\sigma_{\epsilon}^2 \sim IG(c_\epsilon, d_\epsilon),$$

where $IW(\cdot, \cdot)$ and $IG(\cdot, \cdot)$ denote the inverse Wishart and Inverse Gaussian distributions, respectively. ηS is the scale matrix, and η is the degree of freedom for the inverse Wishart distribution, and c_ϵ and d_ϵ are the shape and rate parameters for the
inverse gamma distribution, respectively. Again, the selection of values for hyperparameters \(S, \eta, c, \) and \(d \) will be discussed later. Now we have specified the priors for all parameters of interest.

We now consider the joint posterior distribution. For notational convenience when we write the posterior, for now on, suppose that \(Y \) denotes the joint information in all \(n \) curves, i.e., \(\{y_1(t_1), y_2(t_2), \ldots, y_n(t_n)\} \), and \(P \) denotes the joint information of \(\{p_1, p_2, \ldots, p_{nb}\} \). Let \(L = \sum_{j=1}^{n} l_j \), where \(l_j \) is the length of discretized curve \(j \).

Note also that each curve is measured on a possibly different time vector \(t_j \), so that the transformed design matrix \(\Phi^*(\cdot) \) is only measured on \(t_j \) for curve \(j \), resulting in \(\Phi^*(t_j) \). Then the joint posterior distribution for all parameters of interest is:

\[
\pi(\beta, b^*, \sigma_{\epsilon}^2, \Sigma_{b^*}, P|Y)
\propto f(Y|b^*, \sigma_{\epsilon}^2, P) \cdot f(b^*|\Sigma_{b^*}, \beta) \cdot f(\beta) \cdot f(\Sigma_{b^*}) \cdot f(\sigma_{\epsilon}^2) \cdot f(P)
\]

\[
\propto \sigma_{\epsilon}^{-L} \exp \left\{ -\frac{1}{2\sigma_{\epsilon}^2} \sum_{j=1}^{n} (y_j(t_j) - \Phi^*(t_j) b_j)(y_j(t_j) - \Phi^*(t_j) b_j^*) \right\}
\]

\[
\times |\Sigma_{b^*}|^{-\frac{n}{2}} \exp \left\{ -\frac{1}{2} \sum_{j=1}^{n} (b_j^* - \beta)' \Sigma_{b^*}^{-1} (b_j^* - \beta) \right\}
\]

\[
\times c^{-\frac{nb}{2}} \exp \left\{ -\frac{1}{2c} \beta' \Sigma_{b^*}^{-1} \beta \right\} \exp \left\{ -\frac{d}{\sigma_{\epsilon}^2} \right\}
\]

\[
\times |\Sigma_{b^*}|^{-\frac{(\eta+nb+1)}{2}} \exp \left\{ -\frac{\eta}{2} \text{trace}\left(s \Sigma_{b^*}^{-1} \right) \right\} \prod_{j=1}^{nb} \prod_{i=1}^{M} p_{ij}^{a_{ij}-1}.
\]

Here \(p_{ij} \) is the \(i^{th} \) element in the vector \(p_j \). To use MCMC to simulate from the joint posterior distribution, we follow the sampling scheme described below. Note that we use superscripts \([r]\) to denote parameter values generated for the \(r \)th iteration.

Step 0: Obtain initial values \(p_1^{[0]}, p_2^{[0]}, \ldots, p_{nb}^{[0]}, \sigma_{\epsilon}^{2[0]}, \Sigma_{b^*}^{[0]} \) by generating from their prior distributions, with specified hyperparameter values. Obtain \(\beta^{[0]} \) from a random realization of \(f(\beta) \), and obtain \(b_j^{[0]} \) for all \(j \) by generating from the prior distribution \(f(b_j^*|\beta^{[0]}, \Sigma_{b^*}^{[0]}) \).

Then for iteration \(r \):
Step 1: Generate $\sigma_{\epsilon}^2[r]$ from its conditional posterior distribution

$$f(\sigma_{\epsilon}^2|\Sigma_{b^*}, b^{[r-1]}, \beta^{[r-1]}, P^{[r-1]}, Y).$$

Step 2: Generate $\Sigma_{b^*}[r]$ from its conditional posterior distribution

$$f(\Sigma_{b^*}|\sigma_{\epsilon}^2[r], b^{[r-1]}, \beta^{[r-1]}, P^{[r-1]}, Y).$$

Step 3: Generate $b^*[r]$ and $\beta^*[r]$ jointly by sampling from $f(b^*_j, \beta|\Sigma_{b^*}, \sigma_{\epsilon}^2[r], P^{[r-1]}, Y)$ for all j using the following factorization:

$$f(b^*_j, \beta|\Sigma_{b^*}, \sigma_{\epsilon}^2, P, Y) \propto f(b^*_j|\beta, \sigma_{\epsilon}^2, \Sigma_{b^*}, P, Y) \cdot f(\beta|\sigma_{\epsilon}^2, \Sigma_{b^*}, P, Y).$$

Step 4: Generate $P[r]$ by using the Metropolis-Hastings algorithm with a truncated normal proposal distribution (similar to the technique used in Chapter 2).

The conditional distribution of (σ_{ϵ}^2| other parameters) is:

$$f(\sigma_{\epsilon}^2|\Sigma_{b^*}, b^*, P, Y) \propto \sigma_{\epsilon}^{-L-2(c_{\epsilon}+1)} \exp\left\{ -\frac{d_{\epsilon}}{\sigma_{\epsilon}^2} \right\} \times \exp\left\{ -\frac{1}{2\sigma_{\epsilon}^2} \sum_{j=1}^{n} (y_j(t_j) - \Phi^*(t_j)b^*_j)'(y_j(t_j) - \Phi^*(t_j)b^*_j) \right\}.$$

It is not hard to see that

$$\sigma_{\epsilon}^2|\Sigma_{b^*}, b^*, \beta, P, Y \sim IG\left(c_{\epsilon} + \frac{d_{\epsilon}}{2}, \frac{d_{\epsilon}}{2} + \frac{1}{2} \sum_{j=1}^{n} (y_j(t_j) - \Phi^*(t_j)b^*_j)'(y_j(t_j) - \Phi^*(t_j)b^*_j) \right).$$

Next, the conditional posterior distribution of (Σ_{b^*}| other parameters) is:

$$P(\Sigma_{b^*}|\sigma_{\epsilon}^2, b^*, \beta, P, Y) \propto |\Sigma_{b^*}|^{-\frac{n+n_b+1}{2}} \exp\left\{ -\frac{1}{2} \sum_{j=1}^{n} (b^*_j - \beta)'\Sigma_{b^*}^{-1}(b^*_j - \beta) \right\} \times \exp\left\{ -\frac{1}{2} trace(S\Sigma_{b^*}^{-1}) \right\}.$$

Hence,

$$\Sigma_{b^*}|\sigma_{\epsilon}^2, b^*, \beta, P, Y \sim IW(\eta^*, S^*),$$

where

$$\eta^* = \eta + n_b.$$
and

\[S^* = \frac{1}{\eta^*} \left(\eta S + \sum_{j=1}^{n} (b_j^* - \beta)(b_j^* - \beta)^\prime \right). \]

Here \(\eta^* \) is the degrees of freedom, and \(\eta^* S \) is the scale matrix of the inverse Wishart distribution. In order to sample \(b^*(r) \) and \(\beta^*(r) \) jointly, we first sample \(\beta^*(r) \) from its conditional distribution \(f(\beta|\sigma^2_\epsilon, \Sigma_{b*}, P, Y) \), then \(b^*(r) \) could be obtained one by one from the conditional posterior distribution \(f(b_j^*|\beta, \sigma^2_\epsilon, \Sigma_{b*}, P, Y) \).

To obtain the posterior distribution of \(\beta|\sigma^2_\epsilon, \Sigma_{b*}, P, Y \), we have:

\[
f(\beta|\sigma^2_\epsilon, \Sigma_{b*}, P, Y) \propto f(\beta, Y|\sigma^2_\epsilon, \Sigma_{b*}, P) \times f(Y|b^*, \sigma^2_\epsilon, P) \times f(b^*|\beta, \Sigma_{b*}) \times f(\beta)dB^*
\]

\[
\propto \int_{b^*} \cdots \int_{b^*} f(Y|b^*, \sigma^2_\epsilon, P) \cdot f(b^*|\beta, \Sigma_{b*}) \cdot f(\beta)dB^*
\]

\[
= c^{-2n_b} \exp \left\{ -\frac{1}{2c} \beta^\prime \beta \right\} dB_1^* dB_2^* \cdots dB_n^*
\]

\[
= c^{-2n_b} \exp \left\{ -\frac{1}{2c} \beta^\prime \beta \right\} \int_{b^*_1} \cdots \int_{b^*_1} \sigma^{-L+1}_{\epsilon} |\Sigma_{b*}|^{-\frac{n}{2}} \exp \left\{ -\frac{1}{2\sigma^2_\epsilon} y_1(t_1)'y_1(t_1) \right\}
\]

\[
+ \frac{1}{\sigma^2_\epsilon} b^*_1 \Phi^*'(t_1) y_1(t_1) - \frac{1}{2\sigma^2_\epsilon} b^*_1 \Phi^* \Phi^*(t_1) b^*_1 - \frac{1}{2} b^*_1 \Sigma_{b*}^{-1} b^*_1 + b^*_1 \Sigma_{b*}^{-1} \beta
\]

\[
\times \frac{1}{\sigma^2_\epsilon} \left(y_j(t_j) - \Phi^*(t_j) b_j^* \right) + \left(b_j^* - \beta \right) \Sigma_{b*}^{-1} \left(b_j^* - \beta \right) \right) \right\} dB_2^* \cdots dB_n^*
\]

\[
\times \exp \left\{ -\frac{1}{2} \beta^\prime \left(\Sigma_{b*}^{-1} \frac{1}{\sigma^2_\epsilon} + I \right) \beta \right\} \int_{b^*_1} \cdots \int_{b^*_1} \exp \left\{ -\frac{1}{2} \left(b^*_1 \frac{\Phi^*(t_1) \Phi^*(t_1)}{\sigma^2_\epsilon} \right) \right\}
\]

\[
+ \frac{\Sigma_{b*}^{-1} b^*_1}{\sigma^2_\epsilon} + \frac{1}{\sigma^2_\epsilon} y_1(t_1)' \Phi^*(t_1) + \beta' \Sigma_{b*}^{-1} b^*_1 \right\} dB_1^*
\]

\[
\times \sigma^{-L+1}_{\epsilon} |\Sigma_{b*}|^{-\frac{n}{2}} \exp \left\{ -\frac{1}{2} \sum_{j=2}^{n} \left(y_j(t_j) - \Phi^*(t_j) b_j^* \right) \right\}
\]

\[
\times \frac{1}{\sigma^2_\epsilon} \left(y_j(t_j) - \Phi^*(t_j) b_j^* \right) + \left(b_j^* - \beta \right) \Sigma_{b*}^{-1} \left(b_j^* - \beta \right) \right) \right\} dB_2^* \cdots dB_n^*.\]
Now it could be immediately recognized that within the integration of \(\mathbf{b}_1^* \) above, the expression mimics the kernel of a normal distribution with mean \(\mu_{\mathbf{b}_1^*} \) and variance-covariance matrix \(\Sigma_{\mathbf{b}_1^*} \), where

\[
\Sigma_{\mathbf{b}_1^*} = \left(\frac{1}{\sigma^2} \Phi^\prime(t_1) \Phi(t_1) + \Sigma_{\mathbf{b}_1^*}^{-1} \right)^{-1},
\]

and

\[
\mu_{\mathbf{b}_1^*} = \Sigma_{\mathbf{b}_1^*} \left(\frac{1}{\sigma^2} \Phi^\prime(t_1) \mathbf{y}_1(t_1) + \Sigma_{\mathbf{b}_1^*}^{-1} \beta \right).
\]

Hence, after integrating out \(\mathbf{b}_1^* \), we have

\[
f(\beta|\sigma^2, \Sigma^*_b, P, Y) \propto \exp \left\{ -\frac{1}{2} \beta' \left(\Sigma_{\mathbf{b}_1^*}^{-1} + \frac{1}{c} I \right) \beta \right\} \exp \left\{ \frac{1}{2} \mu_{\mathbf{b}_1^*}' \Sigma_{\mathbf{b}_1^*}^{-1} \mu_{\mathbf{b}_1^*} \right\} \times f_{\mathbf{b}_2^*} \cdots f_{\mathbf{b}_n^*} \exp \left\{ -\frac{1}{2} \sum_{j=2}^{n} (y_j(t_j) - \Phi^*(t_j) \mathbf{b}_j^*)' \left(\frac{1}{\sigma^2} \Phi^*(t_j) \mathbf{b}_j^* \right) + (\mathbf{b}_j^* - \beta)' \Sigma_{\mathbf{b}_j^*}^{-1} (\mathbf{b}_j^* - \beta) \right\} d\mathbf{b}_2^* \cdots d\mathbf{b}_n^*
\]

Then using mathematical induction, we have

\[
f(\beta|\sigma^2, \Sigma^*_b, P, Y) \propto \exp \left\{ \frac{1}{2} \sum_{j=1}^{n} \mu_{\mathbf{b}_j^*}' \Sigma_{\mathbf{b}_j^*}^{-1} \mu_{\mathbf{b}_j^*} \right\} \exp \left\{ -\frac{1}{2} \beta' \left(\Sigma_{\mathbf{b}_1^*}^{-1} + \frac{1}{c} I \right) \beta \right\}.
\]

Here

\[
\Sigma_{\mathbf{b}_j^*} = \left(\frac{1}{\sigma^2} \Phi^\prime(t_j) \Phi(t_j) + \Sigma_{\mathbf{b}_j^*}^{-1} \right)^{-1},
\]

and

\[
\mu_{\mathbf{b}_j^*} = \Sigma_{\mathbf{b}_j^*} \left(\frac{1}{\sigma^2} \Phi^\prime(t_j) \mathbf{y}_j(t_j) + \Sigma_{\mathbf{b}_j^*}^{-1} \beta \right),
\]

for \(j = 1, 2, \ldots, n \). Following the derivation above,

\[
f(\beta|\sigma^2, \Sigma^*_b, P, Y) \propto \exp \left\{ -\frac{1}{2} \beta' \left(-\sum_{j=1}^{n} \Sigma_{\mathbf{b}_j^*}^{-1} \left(\frac{1}{\sigma^2} \Phi^\prime(t_j) \Phi(t_j) + \Sigma_{\mathbf{b}_j^*}^{-1} \right) + n \Sigma_{\mathbf{b}_1^*}^{-1} \right) \right\} \beta + \sum_{j=1}^{n} \frac{1}{\sigma^2} y_j(t_j)' \Phi^*(t_j) \left(\frac{1}{\sigma^2} \Phi^\prime(t_j) \Phi(t_j) + \Sigma_{\mathbf{b}_j^*}^{-1} \right)^{-1} \Sigma_{\mathbf{b}_j^*} \beta.
\]
Now it is clear that

$$\beta | \sigma^2, \Sigma^*, P, Y \sim MVN(\mu_{\beta|}, \Sigma_{\beta|})$$

where

$$\mu_{\beta|} = \Sigma_{\beta|} \sum_{j=1}^{n} \Sigma_{b*}^{-1} \left(\frac{1}{\sigma^2} \Phi'(t_j) \Phi(t_j) + \Sigma_{b*}^{-1} \right)^{-1} \frac{1}{\sigma^2} \Phi'(t_j)y_j(t_j),$$

and

$$\Sigma_{\beta|} = \left\{ n\Sigma_{b*}^{-1} + \frac{1}{c} I - \sum_{j=1}^{n} \Sigma_{b*}^{-1} \left(\frac{1}{\sigma^2} \Phi'(t_j) \Phi(t_j) + \Sigma_{b*}^{-1} \right)^{-1} \Sigma_{b*}^{-1} \right\}^{-1}.$$

Next, the conditional posterior distribution of $$(b^*_j | \beta, \sigma^2, \Sigma^*, P, Y)$$ is given by:

$$f(b^*_j | \beta, \sigma^2, \Sigma^*, P, Y) \propto \exp \left\{ -\frac{1}{2\sigma^2} (y_j(t_j) - \Phi'(t_j)b^*_j)'(y_j(t_j) - \Phi'(t_j)b^*_j) \right\}$$

$$\times \exp \left\{ -\frac{1}{2} (b^*_j - \beta)' \Sigma_{b*}^{-1} (b^*_j - \beta) \right\}$$

$$\propto \exp \left\{ \frac{1}{\sigma^2} y_j(t_j)' \Phi(t_j) b^*_j - \frac{1}{2\sigma^2} b^*_j \Phi'(t_j) \Phi(t_j) b^*_j + \beta' \Sigma_{b*}^{-1} b^*_j - \frac{1}{2} b^*_j \Sigma_{b*}^{-1} b^*_j \right\}$$

$$= \exp \left\{ -\frac{1}{2} b^*_j \left(\frac{1}{\sigma^2} \Phi'(t_j) \Phi(t_j) + \Sigma_{b*}^{-1} \right)^{-1} \right\}$$

$$\times \exp \left\{ \left(\frac{1}{\sigma^2} y_j(t_j)' \Phi'(t_j) \Phi(t_j) b^*_j + \beta' \Sigma_{b*}^{-1} b^*_j \right) \right\}.$$}

We can now recognize that

$$b^*_j | \beta, \sigma^2, \Sigma^*, P, Y \sim MVN(\mu_{b^*_j|}, \Sigma_{b^*_j|})$$

where

$$\mu_{b^*_j|} = \Sigma_{b^*_j|} \left(\frac{1}{\sigma^2} \Phi'(t_j)y_j(t_j) + \Sigma_{b*}^{-1} \beta \right)$$

and

$$\Sigma_{b^*_j|} = \left(\frac{1}{\sigma^2} \Phi'(t_j) \Phi(t_j) + \Sigma_{b*}^{-1} \right)^{-1}.$$
distribution, with the mean, variance, and upper and lower bounds the same as those described in Chapter 2.

One thing to mention is that in Chapter 2, we assume that the curves are measured over a fine grid of time points on the time axis, say, 150 points measured between time points 0 and 1. And the procedure is carried out on the curves one by one. Hence one may choose to warp the time axis by transforming the entire set of time points measured for each curve, or one may choose to warp a subset of the time points measured. Here for the sparse data scenario, each curve may be measured only on a limited set of time points, say, 4 or 6 points over [0, 1]. Thus transforming only the limited set of measured time points is not sufficient. On the other hand, if we transform the sets of measured time points \(\{t_1, t_2, \ldots, t_n\} \) for all \(n \) curves, the total number of time points may not be very small, and the procedure could be time consuming, since a cluster of curves is fitted simultaneously. Besides, if most of the curves are measured only on some local areas within [0, 1], then even if one transforms the sets of measured time points for all curves, those areas with sparse information may still not be fitted well. Hence, we choose to transform a set of \(M - 1 \) time points, denote as \(O = \{o_1, o_2, \ldots, o_{M-1}\} \), located evenly across (0, 1), where \(0 < o_1 < o_2 < \ldots < o_{M-1} < 1 \). We also define two boundary points as \(o_0 = 0 \) and \(o_M = 1 \). Here the boundary points \(o_0 \) and \(o_M \) are not transformed. This number \(M \) is chosen subjectively; however, it should not be too large, to ensure a good computational speed. Neither should it be too small, since we want each proposed update of the time axis to affect at least one curve in the cluster, so that the joint likelihood value of all curves is influenced, and hence the acceptance ratio in the Metropolis-Hastings algorithm would be updated (i.e., not equaling 1) along with the transformation of time. We typically update roughly 10 data points for a group of 10 curves, each of length 3 to 10.

However, if one transforms \(M - 1 \) time points across (0, 1), with \(M \) being ap-
appropriately moderate, and then the Bayesian method is employed to get the fitted values of the $M - 1$ points from their posterior distribution, one still should not use linear interpolation between each adjacent pair of fitted values to obtain the final fitted curve, since the $M - 1$ points are still too sparse to obtain a smooth fitted curve. Notice that such an issue does not exist if one chooses to employ traditional B-spline basis functions to fit the curves, since the B-spline basis functions are essentially piecewise polynomials, and no matter how many data points are fitted across the time axis, the resulting fitted curves are always smooth. As a result, in order to obtain a smooth fitted curve when using our transformed B-splines method, in each step, when a transformation on each of the $M - 1$ time points is accepted, we evaluate a number of $N > (M - 1)$ time points on $(0, 1)$, denoted as $E = \{e_1, e_2, \ldots, e_N\}$, so that even though we are only updating $M - 1$ time points within $(0, 1)$, the total number of “fitted values” evaluated is N. The number N is chosen subjectively to be much greater than $M - 1$, so that in each iteration, we are obtaining a set of N “fitted values” that are fine enough across the time axis, and hence linear interpolation suffices to give us a smooth fitted curve. Yet the number N should not be too large neither, again due to computational concerns. The evaluation of time points in E is carried out in the following way: Initially, we choose E to be a set of time points of size N located evenly across $(0, 1)$. Then, for a given basis function, when the jth value o_j in set O is transformed, the time interval (o_{j-1}, o_j) either shrinks or stretches, and we stretch or shrink the last subinterval $(o_{M-1}, 1)$ in $(0, 1)$ to make all the subintervals $(0, o_1), (o_1, o_2), \ldots, (o_{M-1}, 1)$ have lengths that sum up to 1. We need to reevaluate the locations of the set of breakpoints E that are influenced by the aforementioned update.

To explain this idea more clearly, we interpret the change in the time interval (o_{j-1}, o_j) in another way. Recall the p vector described earlier, which denotes the increments or the ”jumps” in a stepwise CDF function. In other words, for the
kth basis function, if the locations of the $M - 1$ time points within $(0, 1)$ in the current iteration is \(\{o_1, o_2, \ldots, o_{M-1}\}\), then the corresponding p_k vector should be $(o_1, (o_2 - o_1), (o_3 - o_2), \ldots, (o_{M-1} - o_{M-2}), (1 - o_{M-1}))'$. Consider an update on the jth increment in p_k, i.e., an update of the increment $(o_j - o_{j-1})$ is proposed.Fixing the change points $o_1, o_2, \ldots, o_{j-1}$ at their current locations, updating the increment $(o_j - o_{j-1})$ is equivalent to updating the location of the time point o_j to o_j^*, i.e., updating the upper bound of the subinterval (o_{j-1}, o_j) to o_j^*. Correspondingly, the last interval $(o_{M-1}, 1)$ must be updated too, with its lower bound changing from o_{M-1} to o_{M-1}^*. Note that in order to keep the lengths of all the subintervals sum to 1, the amount of change in the length of (o_{j-1}, o_j) must match the amount of change in the length of $(o_{M-1}, 1)$. In other words, we always have the following relationship:

$$o_j^* - o_j = o_{M-1}^* - o_{M-1}$$

No matter how we update the increments and alter the locations of the change points, the length of the interval (o_j, o_{M-1}) would not change.

Knowing this property of our updating method, we now introduce how we evaluate the locations of the set of breakpoints E when an update on the length of the subinterval (o_{j-1}, o_j) is proposed. When the time interval (o_{j-1}, o_j) shrinks or stretches, the locations in the points in E are influenced, but they are affected differently based on their original locations. We discuss the evaluations of their locations for the following scenarios:

- Some points $\{e_{j1}, e_{j2}, \ldots, e_{js}\}$ in E originally fall within the interval (o_{j-1}, o_j), while others fall outside the interval.

- No point in E originally falls within (o_{j-1}, o_j).

For the first scenario, if the interval (o_{j-1}, o_j) is not the first subinterval on $(0, 1)$, we keep unchanged the locations of the breakpoints that are less than o_{j-1}, and then
evaluate the locations of the points in \(E_j = \{e_{j1}, e_{j2}, \ldots, e_{js}\} \). Specifically, we evaluate the locations of the points in \(E \) that originally fall within the interval \((o_j, o_{M-1})\), followed by the relocation of the time points in \(E \) that were originally in the last subinterval \((o_{M-1}, 1)\). For points in \(E_j \), we first identify the original location of each point inside the interval \((o_{j-1}, o_j)\), and calculate a new location within the interval \((o_{j-1}, o_j^*)\) that falls exactly at the same relative location within the new interval. For example, for point \(e_{j1} \), we get its new location \(e_{j1}^* \) using the following equation:

\[
\frac{o_j - e_{j1}}{e_{j1} - o_{j-1}} = \frac{o_j^* - e_{j1}^*}{e_{j1}^* - o_{j-1}^*}
\]

After relocating the points \(\{e_{j1}, e_{j2}, \ldots, e_{js}\} \) to their new locations \(\{e_{j1}^*, e_{j2}^*, \ldots, e_{js}^*\} \), we evaluate those time points in \(E \) whose locations are influenced due to the corresponding adjustment of \((o_{M-1}, 1)\). Similarly, any point \(e_{jM} \) originally located within the interval \((o_{M-1}, 1)\) is relocated to the new location \(e_{jM}^* \) via the following relationship:

\[
\frac{1 - e_{jM}}{e_{jM} - o_{M-1}} = \frac{1 - e_{jM}^*}{e_{jM}^* - o_{M-1}^*}
\]

Lastly, we evaluate the locations of the time points that were originally outside of the intervals \((o_{j-1}, o_j)\) and \((o_{M-1}, 1)\). As explained previously, when updating the interval \((o_{j-1}, o_j)\), the interval \((o_j, o_{M-1})\) is updated to \((o_j^*, o_{M-1}^*)\), but the length of the interval is always:

\[
o_{M-1} - o_j = o_{M-1}^* - o_{j}^*
\]

before or after such an update. Thus we may view an update on \((o_{j-1}, o_j)\) as an parallel shift of the interval by the amount \(o_j^* - o_j\). Hence, we want to keep the relative locations of the breakpoints that fall within the interval \((o_j, o_{M-1})\) by shifting each of those breakpoints by the same amount \(o_j^* - o_j\). By doing that, we have successfully altered the locations of the entire set of time points in \(E \) after an proposed update, while still keeping their relative locations on the time axis \([0, 1]\).
For the second scenario, again if there are some points in E that originally are less than o_{j-1}, we keep unchanged their original locations. And, if there are some points in E that originally fall within the interval $(o_{M-1}, 1)$, we calculate their new locations based on the same idea as described above. And lastly, for all the points within the interval (o_j, o_{M-1}), each of them is shifted by the same amount, namely $o_j^* - o_j$.

We have described how we add additional breakpoints to our transformation of time for smoother fitted curves and have completed the discussion of the general approach for fitting sparse functional data. In the next section, we discuss some simulation results to investigate the performance of our proposed method.

4.3 Simulation Studies

To test the performance of our proposed method, we have utilized the sparse functional curves simulated by James and Sugar (2003). The data were originally generated in order to simulate the scenario of clusters of sparse functional data to test their proposed clustering method on sparse data. The data set includes a total of 100 sparse functional curves coming from 10 clusters, with each cluster having 10 curves. All curves are measured at 10 time points locate across the set \{1, 2, \ldots, 100\}. Note that the sequence of time points on which the curves are measured might be different from curve to curve.

Due to the nature and the assumption made for our proposed method, i.e., the sparse functional curves are coming from the same population, with intrinsically similar overall patterns, and since the purpose of our simulation is sparse functional data fitting, rather than clustering, we use simulated curves coming from the same cluster. Since our method allows for curves measured at different sets of time points, with each curve having possibly different lengths, hence we generate a sequence of measured time points of random length for each curve coming from the same cluster.
by sampling a subset of the simulated observed points from James and Sugar (2003), so that our “raw” curves have a variety of lengths typically ranging from 3 to 10.

Since the raw data curves have lengths less than 10, and no apparent shape of the curves can be learned from a few observations, we choose to start with B-spline basis functions of order 3, and transform nine time points within [0, 1]. To make the final fitted curve more smooth, we employ 50 break points across (0, 1), and each time an update of the B-spline basis functions is accepted, the values of the entire set of transformed B-spline functions at the 50 break points are evaluated. The number of break points is chosen subjectively in order that our fitted curve be relatively smooth across the standardized time interval [0, 1], but it should not be too large, due to computational concerns. Note that this evaluation step serves only as an add-on step in our Bayesian modeling. It does not affect the performance of our proposed method, nor does it influence the direction of our Monte Carlo chain, since the values of the curves at those break points are originally unknown.

We also need to choose the values of some other constants for our simulation, i.e., the a_j’s, c, c_{ϵ}, s, η and d_{ϵ}. Recall that the a_j’s are the parameters for the Dirichlet prior: They control the amount of deviation from the identity function of the transformation of time. In particular, each a_j controls how much variation each jump could have from iteration to iteration. Since we have no prior knowledge of which jump may be more drastic than others, we assign all a_j’s to be 2. Recall that we assign a normal prior with mean 0 and variance elements proportional to c for the common mean coefficient vector β. Here c is chosen to be 2 for all basis functions, since we want our prior on β to have a moderate amount of vagueness. c_{ϵ} and d_{ϵ} are the shape and rate parameters respectively for the inverse gamma prior for σ^2_{ϵ}, i.e., the error variance. Due to the scale of our raw curves, we choose c_{ϵ} to be 3 and d_{ϵ} to be 0.5, so that the prior mean and variance are both set as moderate values. Lastly, η and ηS are the degrees of freedom and the scale matrix for the inverse Wishart prior.
on Σ_{b^*}, respectively. We mimic the choice of these two parameters in Thompson and Rosen (2008), to set η as the number of basis functions in our fitting algorithm, and set S as a matrix that carries very vague information for Σ_{b^*}. Kass and Nataraajan (2006) mentioned that $\sigma^2_t\{\Phi'(t_j)\Phi(t_j)\}^{-1}$ carries vague information about Σ_b in their setting. Hence they let S be $n\sigma^2_t\{\sum_{j=1}^n \Phi'(t_j)\Phi(t_j)\}^{-1}$, and since the value of σ^2_t enters into the model as a parameter in the MCMC chain, Thompson and Rosen (2008) suggest using $\hat{\sigma}^2_t$, which is estimated using REML, to replace σ^2_t. Note that their $\Phi(t_j)$ depends not only on curve j, but also on the initial knots selection. For our case, our design matrix does not require any knot selection, but it does depend on the transformation we impose on time. For simplicity, we use a random realization denoted as $\tilde{\sigma}^2_t$ from its inverse gamma prior to replace σ^2_t in the expression, and our S is thus chosen as $n\tilde{\sigma}^2_t\{\sum_{j=1}^n \Phi^*(t_j)\Phi^*(t_j)\}^{-1}$.

We run 2000 iterations in total, but note that in fact even fewer iterations are reasonable, since the entire procedure converges very fast. Figure 4.1 gives an example of the fitted curves from the last iteration, where the left plot gives the observed values for all ten curves in the cluster, with each pair of adjacent values connected with linear interpolations. Each color represents one curve. On the right are the smooth fitted curves obtained from our method, with evaluation of the locations of 50 break points in the iteration. The black dashed curve in the center of the cluster is the estimated common mean curve for all observations in the cluster, obtained from the last iteration of the MCMC chain. Our fitted curves are mostly smooth, and if desired, a slightly larger number of break points can be utilized, in order to achieve even smoother results. The estimated common mean curve is very smooth, and captures the overall pattern of the cluster of curves. However, individual fits may not exactly match the behavior of the raw observations. Note in particular that for the plot on the right, the smooth estimated curves are measured on the sequence of break points on $[0, 1]$, and hence certain amount of extrapolations are applied.
Figure 4.1: Observed points versus smooth fitted curves. Left: colored curves: observed values for ten curves connected with linear interpolations for each curve. Right: colored curves: smooth fitted curves for all ten observations in the cluster; black dashed curve: estimated common mean curve for the cluster.
Figure 4.2: Estimated common mean curve and mean trajectories from multiple iterations. Black solid curve: estimated mean curve obtained from 1500 iterations after 500-iteration burn-in. Grey dashed curves: estimated common mean trajectories from 100 iterations.

for each curve to make all the curves measured at the same time sequence. Note that our example here only comes from one single iteration, and next we give more detailed results obtained from multiple iterations. Figure 4.2 gives the estimated common mean curve (black solid curve) versus mean trajectories from 100 iterations (gray dashed curves). Here, the common mean curve is obtained by extracting the pointwise mean of estimated common mean curve from all iterations after a burn-in
period of 500 iterations. The estimated mean trajectories mostly follow the estimated common mean pattern. Figures 4.3 and 4.4 give the pointwise 95 percent credible intervals for each of the ten curves in the cluster (i.e., orange dotted curves), where the gray dashed curve in the center of each plot is the pointwise median of estimated common mean curves from the entire chain, after a burn-in period of 500 iterations. The red solid curve on each plot is the median of the posterior fit of the corresponding curve. And the blue triangles on each individual plot of both figures are the true observed values for the corresponding curves. Apparently, for all ten observations, our 95 percent credible intervals successfully cover all of the observed values, and our estimated fits obtained from multiple iterations are very close to the observed patterns. In particular, in some areas the pointwise credible intervals are wider than in other regions. This is due to the sparse nature of our data or lack of information in the corresponding region. But note that except for the two boundaries (i.e., areas with time measured close to 0 or 1), the posterior credible intervals are not too wide, even though there might be no observed values in some local areas. This is the result of “borrowing information” across curves.

4.4 Discussion

In sum, our limited investigations of the proposed Bayesian transformed spline functions fitting method for sparse functional data suggest that it is a plausible smoothing method in the sense of accurately capturing the trends of both the individual observations and the common mean function of the population. It also provides pointwise posterior credible intervals that give reasonable coverage of the true curves, when the data curves are originally observed at some sparse time points and are intrinsically coming from the same population. In particular, the smoothness of the obtained fitted curves depends on the number of break points utilized in the procedure. One may want to tune its value to obtain curves with a desirable amount of smoothness.
Figure 4.3: 95 percent credible intervals, the estimated curves, and the estimated common mean curve for five observations. Orange dotted curves: pointwise 95 percent credible intervals for the curves. Red solid curves: median fits of the raw curves from the posterior distribution. Gray dashed curves: median of the estimated common mean curve obtained from the entire chain after a 500-iteration burn-in. Blue triangles: true observed values for the curves.
Figure 4.4: 95 percent credible intervals, the estimated curves, and the estimated common mean curve for five observations. Orange dotted curves: pointwise 95 percent credible intervals for the curves. Red solid curves: median fits of the raw curves from the posterior distribution. Gray dashed curves: median of the estimated common mean curve obtained from the entire chain after a 500-iteration burn-in. Blue triangles: true observed values for the curves.
On the other hand, however, due to the sparse nature of the observed functional curves and the inevitable and abundant usage of interpolation and extrapolation when learning the curves, it is possible that, although the SSE measures quickly shrink after only a few iterations, the procedure is still not be able to achieve fits that are as accurate as those obtained with regular functional curves, even after thousands of iterations.
CHAPTER 5

CONCLUSION

This dissertation mainly focuses on functional data smoothing methods and functional data applications.

We start from the introduction of functional data analysis and its recent research developments, and discussions of the importance of data smoothing in the FDA realm and of the need for some renovated functional data smoothing method. We then proceed to the development of our data smoothing method in Chapter 2. The smoothing method proposed infuses the time warping concept into the development of basis functions. The transformed basis functions are then utilized in regression splines for functional curve fitting. We built a Bayesian model to study the optimal shape of basis functions to accurately and smoothly fit the data. The model is implemented with MCMC, where the posterior distributions are studied via the Gibbs sampling procedure augmented with the Metropolis-Hastings algorithm. Both simulated and real data sets are analyzed using our proposed approach, and the results as judged by MSE are compared for our method and several other currently popular curve fitting methods. Both graphical displays of fitted curves obtained and MSE’s show that our smoothing method outperforms several other competing methods in terms of fitted curve smoothness and accuracies, and the advantage of our method is especially obvious when the functional data curves are spiky or irregular in nature.

To see the influence of our smoothing method on functional applications, we have simulated several scenarios in which curves either originally follow some regression relationship or come from several intrinsic clusters. Then different analyses are per-
formed to see whether smoothing leads to improvement in functional regression or clustering, as measured by in-sample and out-of-sample prediction SSE’s or the Rand index (Rand 1971), respectively. In particular, we investigate whether our smoothing method provides a greater improvement in the analyses’ accuracies compared to other popular alternative methods. Two real data exploratory studies are also included to test the effects of different smoothing methods on functional regression. In sum, the simulated and real data examples give us ample evidence that our method not only provides superior curve fits, but it also leads to competitive analysis results if data curves are presmoothed using our approach in most scenarios we have investigated.

Acknowledging a limitation of our curve fitting method proposed in Chapter 2, we have then extended our proposed functional data smoothing method to the scenario when the data curves are only observed at some sparse sets of time points. Our model is motivated by Thompson and Rosen (2008), in which the random effects model structure is utilized to combine information from multiple sparse curves within the same population, and to estimate the individual curves and the population baseline mean curve simultaneously. Similarly to Chapter 2, the time distortion framework is kept in Chapter 4, and a Bayesian model that incorporates the random effects modeling idea with basis function transformation is developed. Simulation techniques are the same as those in Chapter 2. To achieve smooth fits of the originally sparse curves, an add-on interpolation step that evaluates the shapes of the basis functions at a finer grid of time points is used along each iteration of the MCMC chain. Simulated sparse functional data curves from James and Sugar (2003) are utilized to test the performance of our proposed smoothing technique tailored for sparsely observed data curves. Pointwise 95 percent posterior credible intervals and median curves suggest that our method is plausible for sparse curve fitting since it captures well the trends of both the individual curves and the baseline population mean function.

One possible prospective research area in the field is to extend the current idea
of time transformation-based functional data smoothing methods to geospatial data. Similar to the model structure for fitting sparse functional data, the geospatial data usually include clusters of curves coming from different geological regions. And the shapes of the curves are assumed to be correlated among different geological locations.

One may also think about smoothing images instead of curves. For instance, a Bayesian model is proposed for the purpose of image smoothing in Li and Ghosal (2014). Similarly to time warping in curve fitting setting, the image warping concept may be incorporated in a Bayesian procedure to smooth noisy images.
Bibliography

