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Abstract

In this paper we describe and survey the field of deep learning, a type of machine

learning that has seen tremendous growth and popularity over the past decade for its

ability to substantially outperform other learning methods at important tasks. We

focus on the problem of supervised learning with feedforward neural networks. After

describing what these are we give an overview of the essential algorithms of deep

learning, backpropagation and stochastic gradient descent. We then survey some of

the issues that occur when applying deep learning in practice. Last, we conclude

with an important application of deep learning to the problem of handwriting recog-

nition.
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Chapter 1

Preliminaries

1.1 Introduction

Machine learning is often defined as the field of study that gives computers the ability

to learn without being explicitly programmed [7]. While this informal definition

suggests that machine learning is a subfield of artificial intelligence, it has found

applications in many other fields over the past few decades, e.g. finance, medicine,

particle physics, linguistics, and neuroscience. In fact, machine learning is one of the

main drivers of the so called big data revolution currently ongoing.

The basic premise of machine learning is the use of a set of observations to uncover

an underlying process [1]. One can abstractly view this process as a form of function

(or more generally probability distribution) estimation: Given some initial data, find

a function that best describes the data while still predicting the values of new, unseen

data really well. In this setting, one assumes there is a set of input features that can

be used to predict the desired output with reasonable accuracy. Depending on how

the initial data is specified there are several machine learning paradigms in current

use, the most important of which are the following:

• Supervised Learning: Both inputs and outputs are given.

• Unsupervised Learning: Only inputs are given.

• Reinforcement Learning: Inputs are given with only a few graded outputs.

In this paper we will be focused on supervised learning, which is the most commonly
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used form of learning in practice. Supervised learning can be further subdivided into

regression and classification problems depending on whether the outputs allowed are

discrete (classification) or continuous (regression).

There are many supervised learning methods available. Examples include lin-

ear regression, ANOVA, logistic regression, nearest neighbors, naive Bayes, support

vector machines (SVMs), and neural networks. Neural networks turn out to be the

foundation of deep learning. Neural networks are a learning method based loosely on

how the human brain is believed to operate. They were first developed in the early

1950s by Frank Rosenblatt, the founder of artificial intelligence, and as such were one

of the earliest learning methods used in machine learning [7].

As the name suggests, a neural network is a network of objects that are roughly

modeled on the biological neuron (Figure 1.1). A neuron functions by accepting a

series of electrical impulses and deciding whether or not to fire those impulses along

to other neurons. This process can roughly be modeled as follows: accept a sequence

of inputs, weigh and sum those inputs and add a threshold value, and pass this sum

through an activation function that determines whether the neuron will fire. It is this

model that forms the basis of the artificial neuron used to define a neural network.

Figure 1.1 Illustration of a biological neuron [9].

Deep learning is a type of neural network learning that has gained substantial

popularity over the past decade for its ability to learn difficult tasks in computer

2



vision, speech, natural language processing, video games, particle physics, and other

fields [11]. Deep learning is based loosely on the idea that representations of data

should be hierarchical. Deep learning algorithms should learn multiple levels of rep-

resentations corresponding to different levels of abstraction, forming a hierarchy of

concepts. Moreover, such algorithms should consist of cascades of many layers of

nonlinear processing, both for feature extraction and transformation. In the frame-

work of neural networks deep learning typically refers to networks with many hidden

layers, where each successive layer operates on higher level features [7].

Though deep learning can be used for many types of learning and can involve

various types of neural networks, we will focus on the most widely used version

that involves supervised learning with feedforward neural networks (or multilayer

perceptrons). After introducing these ideas we will examine the workhorse algorithms

of deep supervised learning, backpropagation and stochastic gradient descent. Once

these have been examined we will look at some, but by no means all, of the issues

that can arise from applying deep learning in real life.

1.2 Supervised Learning

The problem of supervised learning can be formulated abstractly in the following

way: Let f : X → Y be a function from a feature space X to a target space Y , let H

be a hypothesis class of functions h : X → Y , and let

D = {(x1, y1), . . . , (xn, yn)} ⊂ X × Y

be the training data. The goal is to use a learning algorithm A to find a function

g ∈ H that best approximates f on X in some pre-defined sense, given D.

Suppose the hypothesis class H is parametrized by θ, i.e. H = {hθ : θ ∈ Θ}. The

most common way to find g ∈ H is by first defining a loss function L = L(y, hθ(x)).

The goal is then to find the value θ∗ ∈ Θ that minimizes the risk R(θ) ≡ E(L). As
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Figure 1.2 A schematic of the supervised learning
process [1].

onlyD is given, however, we instead must minimize an estimator of the risk functional

and establish conditions under which minimizing this estimator will asymptotically

result in minimizing the risk as well. The estimator used is the empirical risk

Remp(θ) ≡
1
n

n∑
i=1

L(yi, hθ(xi)),

The process described is known as the empirical risk minimization (ERM) principle

[14].

That one can find θ∗, and hence g, by minimizing the empirical risk follows from

the following theorem from statistical learning theory. First, we say that ERM is

consistent provided Remp(θn) and R(θn) each converge in probability to the minimum

risk R(θ∗) for some sequence of parameters θn ∈ Θ.

Theorem 1.1. Suppose D is iid with joint distribution P (x, y). Let {L(y, hθ(x))}θ∈Θ

be a collection of loss functions whose expectations with respect to P (x, y) are uni-

formly bounded. Then the ERM principle is consistent if and only if the empirical
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risk Remp(θ) converges uniformly to the actual risk R(θ) in the following sense: For

any ε > 0,

lim
n→∞

P{supθ(R(θ)−Remp(θ)) > ε} = 0.

That is, ERM is consistent if and only if Remp converges uniformly in probability

to R in the one-sided sense. For a proof of this result see [15]. Under stronger

conditions we can also say something about the rate of this convergence. Define the

growth function G by G(n) ≡ log supDND, where ND is the number of different ways

to separate D using a set of indicator functions [14].

Theorem 1.2. If limn→∞
1
n
G(n) = 0, then the ERM is consistent and convergence

is fast in the following sense: For any ε > 0, there is some constant c > 0 such that

P{R(θn)−R(θ∗) > ε} < e−cnε
2
.

When convergence takes place the supervised learning problem is said to gener-

alize, and R is referred to as the generalization error while Remp is referred to as the

training error.

Once the loss function and hypothesis class have been specified and ERM has been

applied, the learning algorithm simply becomes the optimization problem of finding

θ∗. Thus, learning algorithms become optimization algorithms. A popular class of

optimization algorithms used in machine learning are based on gradient descent.

Gradient descent is a simple algorithm used to find a (local) minimum for L.

First, a value θ0 is initialized, often randomly, and a learning rate η > 0 is specified.

Assuming the gradient ∂L
∂θ

has been found, the algorithm then updates θ via

θn+1 = θn − η
∂L

∂θn
.

Provided η is sufficiently small, θn will converge to a local minimum θ∗ [8]. Note

which minimum the algorithm converges to depends on the initialization. If L is

convex this won’t be a problem, but convexity rarely occurs in deep learning.
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Since the ultimate choice of g depends on the loss function, one must specify which

loss function is being used before applying the learning algorithm. Such a choice in

practice depends mainly on the hypothesis class chosen. Below are some examples of

common learning models. Note that neural networks will be addressed in the next

chapter.

• Linear Regression: The hypothesis class consists of functions of the form

hθ(x) = θ · x = ∑k
j=0 θkxk where θ, x ∈ Rk+1 and x0 ≡ 1. The typical loss

function is the mean square loss L = 1
2(y− θ ·x)2. Note that in this case θ∗ can

be found exactly via the normal equations.

• Logistic Regression: Here the hypothesis class consists of functions of the

form hθ(x) = 1
1+eθ·x where again θ, x ∈ Rk, and y ∈ {0, 1}. A typical loss

function is the log loss L = −y log(hθ(x))− (1− y) log(1− hθ(x)).

• Nearest Neighbors: The hypothesis class in this case consists of functions

of the form hθ(x) = ym, where (xm, ym) ∈ D and xm is the point closest to

x with respect to the metric defined on X. The loss function is the 0-1 loss

L = I(hθ(x) 6= y). Note in this case R(θ) = P{hθ(x) 6= y}, i.e. the expected

loss is just the probability of classification error.

We conclude this chapter by noting that the size of the target space Y determines

what type of problem is being addressed. Specifically, if Y is discrete the supervised

learning problem is a classification problem. If Y is continuous it is a regression

problem. If Y is neither discrete nor continuous the problem is said to be a mixture

problem. The type of deep learning we will study focuses primarily on the classifi-

cation problem, which is the most commonly occurring situation in applied machine

learning settings.
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Chapter 2

Deep Learning

2.1 Feedforward Neural Networks

We now give a formal introduction to the feedforward neural network, the simplest

and most widely used form of deep learning. Here are a few essential definitions to

get started.

An activation function is any function σ : R→ R that is non-constant, bounded,

increasing, and continuous everywhere (except possibly a finite number of points).

Abusing notation slightly, we will also use σ to denote the vectorized activation

function, i.e. σ(x)i ≡ σ(xi) for all xi ∈ R.

A neuron is a collection (X, Y, s, σ) where X ⊂ Rm is the input space, Y ⊂ R

is the output space, s : X → R is an input map, and σ : R → Y is an activation

function.

Most commonly, we take Y = {0, 1} and s(x) ≡ w ·x+b where w ∈ Rm is a vector

of input weights, and b ∈ R is the bias. In this situation, a neuron is represented by

a function σ(w · x+ b), where σ is an activation function. We will assume from here

on that our neurons are of this form.

Some examples of common activation functions are the following:

• Perceptron: σ(z) = sgn(z)

• Sigmoid: σ(z) = 1
1+ez

• Hyperbolic tangent: σ(z) = tanh(z)
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Figure 2.1 A neuron receiving inputs x1, · · · , xm, which are
weighted and summed with weights w1, · · · , wm and added to a
bias w0 before being passed through a nonlinear activation
function to produce an output [4].

• Rectified linear unit (ReLU): σ(z) = max{0, z}

A feedforward neural network is a directed, acyclic graph where each node is a

neuron and each edge is labeled the neuron’s inputs and weights. For simplicity we

will assume each neuron has the same activation function, though this need not be the

case in practice. The initial layer is called the input layer, the terminal layer is called

the output layer, and the remaining internal layers are called hidden layers (Figure

2.2). Note there are other types of neural networks, e.g. recurrent neural networks,

that have many important applications as well, but those won’t be discussed here.

Let us first consider the simplest case of a feedforward neural network with no

hidden layers. When σ(z) = sgn(z) we get the original perceptron model. Such a

model is only able to classify data with a linear decision boundary, which consider-

ably weakens the versatility of the model. In particular, it is well known that the

perceptron model cannot correctly classify the XOR function [7].

The other common activation functions mentioned above lead to the same prob-

lem. Even though these are each valid neural networks, they are quite weak since
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Figure 2.2 A feedforward neural network with two hidden
layers. Each node represents a neuron receiving inputs from
the previous layer [13].

they are unable to take advantage of the hierarchical structure of nonlinear transfor-

mations afforded by a neural network model. Note that we can allow these networks

to learn nonlinear decision boundaries by using kernels, but in general such models

still won’t be as powerful as neural networks with hidden layers.

Next, consider the case of a feedforward neural network with exactly one hidden

layer. Such neural networks are incredibly versatile, and as such are the most com-

monly used in practice. In fact, these networks can learn pretty much any decision

boundary if given enough neurons. This result, known as the Universal Approxima-

tion Theorem, is stated formally below. For a proof, see [6].

Theorem 2.1. Let σ be a vectorized activation function, w(1) ∈ Rm×n, w(2) ∈ R1×m,

b(1) ∈ Rm, b(2) ∈ R, and x ∈ Rn. Let H be a hypothesis class of functions of the form

h(x) = w(2)σ(w(1)x + b(1)) + b(2). Let f : [a, b]n → R be continuous. Then for any

ε > 0, there exists g ∈ H such that

max
a≤x≤b

|f(x)− g(x)| < ε.
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That is, H is dense in C[a, b]n, the space of continuous functions h : [a, b]n → R.

Corollary 2.2. Under the conditions above, H is dense in Lp(Rn) for any 1 ≤ p <∞.

Proof. Observe the above theorem trivially implies that H is dense in the space

Cc(Rn) of compactly supported functions on Rn. Since Cc(Rn) is known to be dense

in Lp(Rn) the result easily follows.

Note that the Universal Approximation Theorem does not specify how many

neurons are needed to ensure max |f(x) − g(x)| < ε for each given ε. Also note

that if neural networks with one hidden layer can learn any reasonable function, so

can neural networks with more hidden layers since H only becomes larger.

2.2 Neural Network Learning

Neural network learning is performed much the same way as other supervised learning

methods. A loss function is first specified for the network, which is then minimized

with respect to both the weights and biases. The principle difference in between

neural networks and simpler supervised learning methods is that the structure and

size of neural networks makes it necessary to have special algorithms to compute the

gradients of the loss function and then to minimize the loss function. The standard al-

gorithms for doing these two things are, respectively, backpropagation and stochastic

gradient descent.

2.2.1 Backpropagation

Backpropagation is an algorithm designed to efficiently compute the gradient of the

loss function on a neural network. It is conceptually simple, computationally efficient,

and almost always works [10]. Conceptually, backpropagation is based on the chain

rule from multivariate calculus.
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Suppose anN layer feed-forward neural network has weight matrices w(1), . . . , w(m)

and bias vectors b(1), . . . , b(N). Suppose the lth layer has activations given by a(l) =

σ(z(l)), where z(l) = w(l−1)a(l−1) for l ≥ 2 and a(1) = x, where x ∈ Rd is a single input

of d features. Suppose a loss function L = L(w, b) has been specified for the network.

Define the error associated with the jth neuron in layer l by

δ
(l)
j ≡

∂L

∂z
(l)
j

.

Define the Hadamard product operation on two vectors componentwise by

(v ◦ w)i ≡ viwi.

Also, define ∂L
∂a

and ∂L
∂w

componentwise, i.e.(
∂L

∂a

)
j

≡ ∂L

∂aj
and

(
∂L

∂w

)
jk

≡ ∂L

∂wjk
.

This allows us to state the algorithm in vectorized form, which along with the

Hadamard product yields a more computationally efficient implementation [13].

Algorithm 2.3. Backpropagation on a single training example with a feedforward

neural network.

• Input: Initialize w(l) and b(l) for all l = 1, · · · , N − 1 and set a(1) = x.

• Feedforward to compute activations: z(l) = w(l−1)a(l−1) + b(l−1) and al = σ(zl),

for l = 2, . . . , N .

• Compute output error: δN = ∂L
∂a(N) ◦ σ′(z(N)).

• Backpropagate to compute errors: δ(l) = (w(l))T δ(l+1) ◦ σ′(z(l)), for l = N −

1, . . . , 2.

• Output: Set ∂L
∂w(l−1) = δ(l)(a(l−1))T and ∂L

∂b(l−1) = δ(l), for l = 2, · · · , N .
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The correctness of the algorithm follows from the chain rule. We have

δ(l) = ∂L

∂z(l+1)

(
∂z(l+1)

∂z(l)

)T
= (w(l))T δ(l+1) ◦ σ′(z(l)),

∂L

∂w(l−1) = ∂L

∂z(l)

(
∂z(l)

∂w(l−1)

)T
= δ(l)(a(l−1))T ,

∂L

∂b(l−1) = ∂L

∂z(l)

(
∂z(l)

∂b(l−1)

)T
= δ(l).

Notice that as specified, backpropagation only computes the gradients of the loss

with respect to a single input x. In order to train the neural network, however, we

require the gradients of the empirical risk,

∂Remp

∂w
= 1
n

∑
x

∂L

∂w
and ∂Remp

∂b
= 1
n

∑
x

∂L

∂b
.

This naively suggests that in order to apply gradient descent to update the weights

and biases, we must first compute the loss gradients for each training example and

sum them up. Unfortunately, such an approach, called batch gradient descent, would

cause the network to train very slowly. We remedy this by changing how we apply

gradient descent.

2.2.2 Stochastic Gradient Descent

The most widely used learning algorithm for neural networks is stochastic gradient

descent (SGD) [11]. Rather than perform backpropagation on the entire data set

before updating the weights via gradient descent, i.e. batch gradient descent, one

instead performs backpropagation on a smaller mini-batch of data chosen from the set

at random and updates the weights only using that batch. This introduces uncertainty

into the gradient calculation since we are estimating the gradient for the entire data

set using the gradient for the mini-batch. Because this estimate is noisy the weights

and biases may not move precisely down the gradient at each iteration of gradient

descent. This noise can be advantageous, however [10].
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Suppose we randomly draw a mini-batch M of size m from the training set D.

Then unbiased estimators for the gradients of Remp are

∂Remp

∂w
≈ 1
m

∑
x∈M

∂L

∂w
and ∂Remp

∂b
≈ 1
m

∑
x∈M

∂L

∂b
.

This suggests that we can apply gradient descent with these estimators instead to get

the update rules

wn+1 = wn − η
1
m

∑
x∈M

∂L

∂w
,

bn+1 = bn − η
1
m

∑
x∈M

∂L

∂b
.

This process is the gist of the SGD algorithm given below, based on [7].

Algorithm 2.4. Stochastic gradient descent update for a single epoch.

• Input the training set D, minibatch size m, and learning rate η.

• Randomly initialize the weights w and biases b.

• While elements in D have not been sampled do the following:

• Randomly sample, without replacement, a minibatch of m examples from the

training set D.

• Use backpropagation to compute the weight and bias gradients of the empirical

risk over the entire mini-batch.

• Update weights and biases using gradient descent with learning rate η.

When using SGD in practice it is useful to run SGD several times. Each run of

SGD is called an epoch. The goal is to run SGD over enough epochs that the loss

function starts to stabilize around a minimum. In practice, the number of epochs

needed to get convergence can range from just a handful to several hundred. Such

convergence, however, depends on specifying the learning rate to be just small enough
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to move down the gradient on each step. Since the loss functions used with neural

networks are usually highly non-convex we can rarely guarantee that such a minimum

is in fact the global minimum sought after. Interestingly enough, however, this is

rarely a problem in practice [10].

SGD is the preferred learning algorithm for neural networks because it is usually

much faster than batch gradient descent, especially when dealing with very large

data sets. Also, SGD often results in better solutions due to the random noise of

the algorithm, which prevent the algorithm from getting stuck in the closest local

minimum to the initialized values of weights and biases [10].

Before concluding this section, we mention that in practice the loss function chosen

for a neural network is usually either the mean square loss

L = 1
2(y − a(N))2,

or the log loss (or cross entropy)

L = −y log(a(N))− (1− y) log(1− a(N)).

While the mean square loss is perhaps the simplest of the two, the log loss prevents

saturation of activation functions in the output layer. We will discuss saturation in

the next section.

2.3 Practical Considerations

When implementing a deep learning algorithm in practice there are other factors that

can substantially affect how well the algorithm performs. We survey a few of those

factors here along with some of the current thinking on how to deal with them.

2.3.1 Model Selection

Model selection is the process of choosing which model setup to use in the learning

process. Examples of model selection include choosing between neural networks or

14



linear regression, which features to use, which loss function to use, the learning rate

or mini-batch size in SGD, how many hidden layers a neural network should have,

and which activation functions to use in a network.

The specific parameters chosen in the model selection and learning process are

called hyperparameters. Examples of hyperparameters include the regularization pa-

rameter in a loss function, the learning rate in gradient descent, the batch size and

number of epochs in SGD, and any other parameter that affects the performance of

the learning algorithm. Several heuristics have been developed to choose the hyper-

parameters that give the best overall performance.

To perform model selection it is recommended to analyze the collection of models

on a separate data set from the training set. Doing so makes it less likely that we will

overfit the data with too complex a model that will fail to generalize well to unseen

data. This separate data set is called the validation set.

A common, though laborious, technique is to select the hyperparameters through

trial and error [13]. In using this technique it is recommended to start by deciding

first which network architecture to use. Once an architecture has been specified one

modifies the other hyperparameters in the problem one by one while holding the others

fixed. Suppose those hyperparameters are the regularization parameter, learning rate,

mini-batch size, and the number of epochs to run SGD. One approach then might

be to first modify the learning rate while holding the others fixed, then modify the

regularization parameter, then the mini-batch size, and finally the number of epochs.

The goal is to find the combination that minimizes the number of misclassifications

on the validation set.

A slightly modified approach to trial and error is to use a grid search to find the

optimal combination of hyperparameters. In this method one specifies a grid of possi-

ble values for each hyperparameter and then goes linearly through each combination

of values to select the optimal choice of hyperparameters. This method is usually
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quicker than trial and error, but requires specifying a grid of appropriate values for

each hyperparameter.

In recent years more elaborate, but generally more efficient, techniques have been

proposed for finding hyperparameters. One such technique is to use a random search

in place of grid search [3]. Another technique uses Bayesian optimization techniques

that model a learning algorithm’s generalization error performance as a Gaussian

process. The search for automated techniques for choosing hyperparameters is an

active area of machine learning research [13].

2.3.2 Overfitting

Overfitting occurs when a learning algorithm performs very well on the training data

but poorly on unseen data. This often occurs when the hypothesis class chosen is in

some sense too large, in which case the hypothesis class is said to have high variance.

Because the Universal Approximation Theorem states that neural networks can learn

pretty much any decision boundary, they are highly susceptible to overfitting.

To deal with overfitting several techniques are used. The first and perhaps most

obvious thing to try is to just collect more data. By collecting more training data,

Theorem 1.2 guarantees that, with probability one, the empirical risk will better

estimate the actual risk provided the ERM principle is consistent, i.e. that the neural

network will generalize better. While this is a perfectly valid thing to try, collecting

new data is often very labor intensive and expensive to do, and hence not usually

ideal.

Another technique to try is to use a simpler hypothesis class. In the case of neural

networks this means choosing a simpler network with fewer hidden layers or fewer

neurons. Doing so would just amount to performing a model selection where the

models are neural networks with varying numbers of neurons or hidden layers.

Generally, the preferred technique to deal with overfitting is regularization. Reg-
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ularization typically involves modifying the loss function by adding a penalty term,

which acts to penalize weights that are too large or too skewed. Usually the penalty

term chosen has the form λ
n
‖w‖2, where the norm is usually (but not always) the L2

norm, w is a column vector containing all weights in the network (but not the biases),

and λ > 0 is some regularization parameter. In the log loss case, the regularized loss

function then becomes (in vectorized form)

L = −y log(a(N))− (1− y) log(1− a(N)) + λ

n
‖w‖2.

The strength of regularization depends on the value λ. Taking λ ≈ 0 gives a loss

function that is more prone to overfitting but less biased, while taking λ to be large

gives a loss function less prone to overfitting but with high bias. Note that λ is an

example of a hyperparameter, so choosing lambda is done using the usual methods

of model selection.

Note that in principle the opposite of overfitting can occur as well. This is called

underfitting, and occurs when a learning algorithm performs poorly on both the train-

ing data and on unseen data. Due to the Universal Approximation Theorem this is

rarely a problem with neural networks. In any case, this occurs when the hypothesis

class chosen is in some sense too small. Its then said to have high bias. Underfit-

ting can be corrected simply by extending the hypothesis class (e.g. by adding more

hidden layers), or by adding extra features.

2.3.3 Saturation

Saturation occurs when a neuron with a sigmoid-like activation function receives an

input that is large in absolute value. Consider the sigmoid function σ(z) = 1
1+e−z .

When |z| is large, |σ(z)| ≈ 1, hence its derivative σ′(z) ≈ 0. This means when

backpropagation computes the error associated with this neuron we get δ ≈ 0, hence
∂L
∂w
≈ 0 and ∂L

∂b
≈ 0. This implies that SGD will learn the weights and bias of this

neuron very slowly.
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Perhaps the most obvious remedy for saturation is to simply choose a different,

non-sigmoid activation function. One popular example of such a function is the

ReLU σ(z) = max{0, z}. Such a function has the property that its derivative is

a step function, which means positive inputs can never cause saturation no matter

how large the inputs are. Other advantageous properties of the ReLU include sparse

activation (only about 50% of neurons in a network are activated at any one time),

scale invariance, and efficient computation [10]. Another popular choice is the softplus

function σ(z) = log(1 + ez), a smooth approximation to the ReLU.

Another way to mitigate the learning slowdown caused by saturation is to choose

a nice loss function whose gradient doesn’t depend on σ′(z). One can show that

the log loss has this property. This then prevents neurons in the output layer from

saturating since the gradient will only near zero when y ≈ σ(z), which is ideal.

2.3.4 Initialization

The first step of backpropagation requires initializing the weights and biases. It turns

out that how this initialization is performed can strongly affect how the network

learns. To see an example of this, suppose we initialize all the weights and biases

to zero. Then each neuron will pass on the same constant value, which implies that

the weights will repeatedly update to the same values and thus learning will not take

place.

It is generally preferred in practice to initialize the weights and biases randomly

from some small interval [−ε, ε]. The interval should be small especially if the neurons

in the first layer are sigmoids, since initializing with weights and biases too large in

absolute value will cause those neurons to saturate. One practical scheme for assuring

this is to sample randomly from a uniform (0, 1) distribution and rescale the values

to be in the interval. Another scheme is to sample values randomly from a Gaussian

distribution with mean 0 and variance 1
min

, where min is the number of input weights
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into each neuron in the first hidden layer [2]. This assures that the chosen values are

localized around 0 just enough to prevent saturation.

2.3.5 Network Architecture

Since the complexity of a neural network is governed in part by how many hidden

layers and neurons it has it makes sense that the architecture of a neural network

can affect how well it learns. An example of this was shown with the Universal

Approximation Theorem. Neural networks with no hidden layers are rather weak,

while those with at least one hidden layer are capable of learning any function (given

enough neurons). It is thus usually preferable to choose a neural network with at least

one hidden layer. Moreover, it is often the case that an architecture with more hidden

layers and fewer neurons per layer can outperform an architecture with few hidden

layers with many neurons per layer [7]. These deep neural networks naturally reflect

what it means to perform deep learning since they are composed of large cascades of

nonlinear transformations.
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Chapter 3

Application: Handwriting Recognition

We conclude with an application of deep learning to the historically significant prob-

lem of handwriting recognition. As the name suggests, handwriting recognition is the

problem of training a computer to recognize handwritten input from paper documents

or other devices. This has important applications in document imaging, signature

verification, bank check processing, and other areas. As it happens, attempting to

perform handwriting recognition without machine learning turns out to be a nigh

on impossible task due to all the variations present in human handwriting. With

machine learning, however, the problem can be solved easily with just a few lines of

code.

The first step in handwriting recognition is preprocessing, which uses algorithms

to binarize, normalize, sample, smooth, and denoise the input sample. The next

step is segmentation, which involves separating words in the sample into individual

characters [13]. Once the sample has been broken into simple characters, the last

step is to classify what those characters are. It is this type of classification problem

for which deep learning is well-suited.

The training set we will use for this problem is the one from the MNIST , or

modified NIST, database. This set is a preprocessed and segmented set of 70,000

labeled training examples of numerical characters that were collected at the National

Institute of Science and Technology (NIST) in the 1990s [12]. Following standard

practice, we take 60,000 samples for the training set and the remaining 10,000 samples

as a test set used to evaluate how well the learning algorithm is generalizing.
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Figure 3.1 Examples from the MNIST
dataset. Each block represents a distinct
example. [7].

Now, each training example is a 28 × 28 pixel grayscale image, where each of

these pixels is represented numerically by a value between 0, representing white, and

1, representing black, with the values in between representing various shades of gray.

Each such pixel value will be used to represent a feature, so in total the training set

will have 28 × 28 = 784 distinct features. This will correspond to an input layer of

784 neurons. Each training example is pre-labeled with its correct digit classification,

i.e. with values from 0 to 9. Since there are 10 digits for classification, the output

layer will consist of 10 neurons.

In performing digit classification we first note that a completely random classifier

would have a 1 in 10 chance of classifying any inputted digit correctly, yielding a

classification accuracy of 10%. We also note that a human would be expected to

classify about 99% or more digits correctly (albeit a whole lot slower than a computer).
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All computation will be performed on a standard 1.3 GHz Intel Core i5 processor

using the Python scikit-learn library. For each scenario we use the log loss with no

regularization unless specified, and we use sigmoid activations for each neuron.

To begin, we attempt a neural network with no hidden layers, in this case a neural

network with a 784-10 architecture. We use SGD with a learning rate of 0.1, a mini-

batch size of 10, and train for 30 epochs. Running SGD with these inputs yields a

test classification accuracy of 92.13%. Note that the accuracy on the training set

is similar, so overfitting is not a problem here. This is certainly much better than

random, but still nowhere near as well as a human would be expected to do.

Next, we attempt a neural network with one hidden layer containing 30 neurons,

i.e. a 784-30-10 architecture. We again run SGD using the same inputs over 30

epochs. Running SGD then yields an accuracy of 96.31%. The accuracy on the

training set suggests some overfitting may be happening. We can get slightly better

performance out of this algorithm by shrinking the learning rate to 0.01 (it may be

stuck oscillating about a minimum), and setting the regularization parameter to 5.0.

Doing this yields 96.84%, accuracy, roughly a half-percent improvement.

Keeping in mind the regularization problem above, we now attempt a slightly

larger neural network with a 784-100-10 architecture. We run SGD this time with a

learning rate of 0.5, regularization parameter of 5.0, mini-batch size of 10, and train

for 60 epochs. Doing so yields an accuracy of 97.46%. We can improve this result

further by shrinking the learning rate to 0.1 and running SGD for another 30 epochs

to get an accuracy of 98.27%.

At this point it is tempting to ask whether we can significantly improve accuracy

further by simply adding more neurons, or by adding more hidden layers. This prob-

lem has, in fact, been extensively studied, and it turns out that accuracy can indeed

be improved quite a bit. The current record accuracy for MNIST digit recognition

is 99.77%, and was obtained in 2012 using a convolutional neural network, a special
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type of deep neural network that is particularly well-suited to image classification

problems [5]. For a more detailed list of historical records set with MNIST see [12].
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