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ABSTRACT

Two algorithms for fast and accurate evaluation of high degree trigonometric poly-
nomials at many scattered points are presented. Both methods rely on highly local-
ized kernels and the Fast Fourier Transform. The first algorithm uses the function
values at uniformly distributed grid points and kernels that reproduce trigonometric
polynomials, while the second method uses kernels that approximate well the func-
tion on the frequency side. Both algorithm are termed Nonequispaced Fast Fourier
Transform. The first algorithm is coded in MATLAB and shown to approximate well

the function to be evaluated.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 INTRODUCTION

The Fast Fourier Transform (FFT) is one of the most important and frequently
used algorithms in Signal Processing. This algorithm allows to compute rapidly the
values f[j], 7 =0,1,..., N — 1, of a discrete signal given its Fourier coefficients f 7],
7=0,1,..., N — 1. That is, to compute

2mi

N-1
il =Y fve™ ™, j=0,1,...,N—1. (1.1)
v=0

The inversion of (??) has a similar form and is also amenable to the FF'T. The number
of operations required by the FFT is O(NN log N). For details on FFT, see §77 below.

In this thesis the focus is on the Nonequispaced Fast Fourier Transform (NFFT).
The problem is: Given the Fourier coefficients {f;,}__ of a trigonometric polyno-

mial, f, compute its values

N
fla)y =3 fre? (1.2)
k=—N

at many scattered points {z;}7_;. Observe that the direct computation of f(x;),
j=1,2,...,J, requires O(NJ) operations. The problem is to develop algorithms
for stable and accurate solution of this problem that use O(N log N + J) operations.
This problem can be viewed as a generalization of FFT.

We consider two algorithms for solution of this problem.

Algorithm 1 employs highly localized kernels of the form

(14+7)N ] N
K= X p(d) e

j=—(+7)N



where the cutoff function ¢ is smooth, ¢ =1 on [—1, 1], and supp ¢ C [-1—7,14 7],
for some 7 > 0. Clearly, the above kernel Ky reproduces the set Tl all trigonometric
polynomials, i.e. Ky * f = f for f € Ty. Let X be a set of M (sufficiently large)
equally spaced grid points on T = R/27N. Then the approximating operator takes

the form

fl@)= Y. M Ky(z—§f(E),

EEX:p(E,0)<5

where ¢ > 0 is a small parameter and p(z,y) is the distance on T. Here the superb
localization of the kernel Ky (x) plays a critical role. In developing Algorithm 1 we
adapt some ideas from [?] and [?].

Algorithm 2 also uses approximation from shifts of a very well localized kernel,
but it approximates well f on the frequency side. Our presentation of Algorithm 2 is
based on [?], [?], and [?].

Both algorithms heavily depend on the application of FFT.

This thesis is organized as follows. Subsection 7?7 contains a description of FFT
and highly localized trigonometric kernels which are main ingredients for our algo-
rithms. In Chapter 2 we develop Algorithm 1 for fast and accurate evaluation of
trigonometric polynomials. Chapter 3 contains a detailed description of Algorithm 2.

In Appendix A we place a description of our MATLAB code that realizes Algorithm 1.

1.2 BACKGROUND

In this subsection we collect some basic well known facts that will be needed in

developing algorithms in Chapters 2 and 3.

Fourier Analysis Definitions

Here we establish some definitions from Fourier Analysis.



Definition 1.1. The Fourier Transform of a function f € L'(R) is defined by

FNO = (€)= [ o),

Definition 1.2. The Inverse Fourier Transform of a function g € L*(R) is defined
by
F @) = dla) = [ gl@emde.

Definition 1.3. Convolution is defined for 1-periodic functions as follows,

fro@) = [ f@ote ) dy= [ fwote —y) dy

(67

for any o € R.

Definition 1.4. The Schwarz Space, S(R) is defined to be
SR)={f € C*R) : [[Fllap <00V a,peZ}

where

d°f
)l

[ llop = supa®

The Fourier inversion theorem asserts that if f € S(R), then f € S(R) and

f(x) = F 1 (f)(@). (1.3)

Observe that the assumption f € S(R) above can be considerably weakened. For
instance, (??) holds if |f(z)| < (1 + |z])~'¢ and [f(€)] < ¢(1 + |€])"~¢ for some

e > 0.

Definition 1.5. The Discrete Fourier Transform is given by

)

1 = —
= Z (1.4)



It is easy to see that the inversion of the Discrete Fourier Transform takes the
form
N . omi
flil = > flvle . (1.5)
v=0
This can be seen in the description of the FFT below.

We will also need the Poisson Summation Formula: If as above, f is measur-

able, |f(z)] < c¢(1+ |z]))~'¢, and | f(€)| < e(1 4 |€])~1¢ for some € > 0, then

> fn) =3 fn). (1.6)

neL nez

We refer the reader to [?] and [?] as general references for Fourier Analysis.

Fast Fourier Transform

The Discrete Fourier Transform (DFT) is commonly used in Computational mathe-
matics and Engineering, and in particular, Signal Processing. Consider the inverse

Discrete Fourier Transform
1= flve*, j=0,1,...,N—1. (1.7)

Here f[j], j = 0,1,...,N — 1, are the values of a discrete signal f and f[j], j =
0,1,..., N—1, are its Fourier coefficients. The problem is for given Fourier coefficients
{fI7]} to compute {f[j]} or vice versa given {f[j]} compute {f[j]}.

Clearly, direct computation using (??) requires O(N?) operations. This becomes
quite expensive when repeated many times.

The Fast Fourier Transform is an algorithm that computes {f[j]}}_, for given
{ f [j]}évzo using only O(N log N) operations. This method was discovered by Gauss
in 1805 and then rediscovered thanks to Cooley and Tukey (1965). The Fast Fourier
Transform is one of the most influential algorithms in history. In this section, we
describe the Fast Fourier Transform for discrete signals of N = 2% k € N, points.
This algorithm plays a critical role in both methods examined by this thesis.

We next describe FFT and prove the following



Theorem 1.6. The Fast Fourier Transform applied to a discrete function of length
N =2% k € N, uses O(N log N) operations.

To begin, we introduce the compact notation w := e~ in (7?), leading to

N-1 T
=Y flvle" ¥ = Zf Jw? 0,1,...,N—1. (1.8)
v=0 v=0

We now define the vectors e; := (L,w*, ..., w* NN for k = 0,...,N — 1. Then
(??) can be rewritten as

£[0] 1 1 1

] 1 w w1

f20 | =00+ FI | w2 [ fIN =] 2D

FIN = 1] 1 w1 (VDN

= fl0)eo + f[l]ex + -+ + FIN — 1]en_1.
Note that, if j # k, then

N-1 j—k)N
. 1 — =k
GJ, ek Z w]u —kv __ Z w(]*k)u _ w

— =0, since w" =1,
1 —wi=Fk
and
N-1
(eje5) = 1=N.

Therefore, the vectors eg, ey,

.,en—1 are orthogonal. We now take inner product

with E; on both sides of (??) and use the above identities to obrain

(f,e;5) = flillej. e5) = Nfl3).

This implies

which confirms (77).



We next describe the Fast Fourier Transform. Assume N = 2F for some k € N.

Then, from (?7?)

. N/2—-1 A N/2—1 .
Nflnl= 3 fl2ilw™" + 37 fl2j+ Juw &Y
J=0 j=0
N/2-1 ' N/2-1 '
= 3 f2iw w0 S 125+ w
Jj=0 J=0
forn:O,l,...,%, and
. N/2—-1 N N2 N '
Nf[N/2+n] = Z f[Qj]wa(ern)J + Z fl27 + 1]w*(5+n)(2]+1)
J=0 j=0
N/2—-1 ‘ N/2-1 ‘
= > flle™ —w™ Y0 2+
J=0 j=0
forn=0,1,..., %, using that
N —2ni N
w2 —=e N 2 = ™ =_-1

Thus we need only compute the odds and evens a total of N multiplications,

N/2—1 _ N/2—-1 ‘
S fl2flw™ and > f[25 + Lw (1.9)
j=0 j=0

to find the discrete Fourier coefficients. We now note that these are of the same form
as the Discrete Fourier Transform. Thus we break each of these two sums into their

odds and evens, that is,

N/2—1 N/4—1 N/4—1

oo fRiw = flAlw 4wt Y fA) + 2w
=0 =0 =0

and
N/2-1 . N/4-1 ' N/4—1 '
S ofl2j+w = > A+ 1wt Fw > fAg + 3w
=0 =0 =0

and so forth. We repeat this k times since N = 2*.

Note that if £ = 1 the discrete Fourier Transform (??) takes the form

fl0] = fl0]+ 111, f12] = f10] = f11): (1.10)

The final step in the FFT algorithm is to reverse the above process.



Proof of Theorem ?7. We will only count the number of multiplications required by
FFT. Denote by P(N) the minimum number of multiplications needed to compute

the discrete Fourier coefficients { f[;] HE We claim that
P2F) <28k —1), Vk>1. (1.11)
This estimate follows from the following lemma.
Lemma 1.7. For any k > 1
P(2F) < 2P(25 1) + 2k, (1.12)

Proof. By the description of FF'T above it is clear that the computation of the discrete
Fourier coefficients { f[] " reduces to the computation of the sums in (??), which
requires 2P(2571) multiplications. Also, one needs 2% additional multiplications for

total of 2P(2%~1) 4 2% multiplications. O

To prove (??) we proceed inductively. From (??) we have P(1) = 0, i.e. (77)
holds for k = 1. Assume that (??) holds for some k£ > 1. Then by (?7?) it follows

that P(281) < 2P(2F) + 281 < 2.2k (k — 1) 4 2k+1 = 281k which implies (??). O

Highly Localized Trigonometric Kernels

In this section we develop the concept of highly localized trigonometric kernels. These
kinds of kernels will be our main vehicle in developing our Algorithm 1 in Chapter 2.

Let ¢ € C*°(R) with supp ¢ C [—a,a] for some a > 0. Now define the kernel

Ky(z) = fi (ﬁ(%é)e%ﬂnw. (1.13)

n=—oo

Clearly, Kx(x) is a trigonometric polynomial with deg Kn(x) < [aN].

Theorem 1.8 (Localization of the Kernels). Let Kx(x) be the kernel from (77).

Then for any o > 0 there exists a constant c,o > 0 such that
CoaN

Ky(2)| < —2——,
(@)l (1+N@D

Vael[-1/2,1/2. (1.14)



Proof. With ¢ from the definition of Ky in (??) define, f(f) = gb(%)e%"&, which
is the Fourier transform of some function f. Then by the Fourier inversion formula

(twice),

F) = [ o(5)emssemes g = [ o(S)emse g

=N /R gzs(fv)e?“ﬁ(“y)fv d: = N&(N(x +)).

Here QVS stands for the inverse Fourier transform of ®. Now, applying the Poisson
Summation Formula we obtain

S ) = X fln) = X 6 )t = Kin(a),

ne” nel neL

Further, by the previous work,

> f(n) NZ(b (x+n))

nel ne”

Therefore,
=NY ¢(N(z+n) (1.15)

ne”

As ¢ € C(R) with compact support, then ¢(z) = [ ¢(€)e?™%d¢ is in the Schwartz

Class S(R). Hence, for any o > 0 there exists a constant ¢,, > 0 such that

v c
0(2)] <~y TER
(1 + [2])7
Using this and (?7),
. c
|[Kn(z)] <N (N(x+n))| <N 22
72’ ‘ 72 (14 |N(x+n)|)°
Co.alN c
_ o,a + N o,a '
(14 Nlz|)” neZZ\{O} (14 |N(z+n)|)®

We now estimate >,.ez\(0y imiermye - Note that [N(z+n)| > N(|n| - ) if Jz| < 1.

Hence,

2 T+ N =, 2 (Ml =)

n€eZ\{0}

2Co.q 1 2¢ 1 oo 1
S < "’a( +/ —_— d:r;).
Ne nz::l (n—3) = N°\(3)° S (z—3)




Assuming o > 1 we get

> Coa < 2600 <2g n ) < Coa o Coa
nerqoy L+ IN(@+n)))e = N (3)7 4o —1)) = No = (L+ Nlz|)”
Putting the above together we obtain

CoalV Co,a
K@) < ool N ’

(1+ N|z|)° ne;\;{o} (14 |N(z+n)|)°

< CO’,CLN + éo,aN < C;',aN
T (L4 Nz (L4 Nzl)7 — (14 Nz|)7

which confirms (?77).



CHAPTER 2
THE ALGORITHM FOR EVALUATION OF BAND LIMITED

FUNCTIONS

We begin with a top down description of the algorithm. After the mathematical
idea has been seated, we will work our way from bottom up to show how the algorithm

can be implemented.
2.1 THE IDEA OF THE ALGORITHM

The Function to be Approximated

To start things off, we let f € Ty(R). This means that f is a trigonometric

polynomial of degree N. More specifically,

N n
. pf 2minT
fa)y= 3 f(5) e
n=—N
This is the function we are interested in approximating at a large number of scattered

points.

Reproducing Kernel

To achieve this, we begin by describing a kernel Ky(z), and defining M := |(1+

rN,
lagnNy L N
Kv@)i= 3 p(y) ™= X oe(y) @

j==(1+7)N] j=—M

In otherwords, Kx(z) is a trignomentric polynomial of degree M and has a Fourier

Transform of p(§). We now make the requirement that ¢(§) = 1, V £ € [—-1,1].

10



With this requirement in place, we examine the convolution,

f(&) if =N<j<N

R () = Kn( ) i) =
0 if |j| > N.

This in turn implies that convolution by Ky preserves polynomials of degree N due
to the requirement ¢(§) = 1V £ € [—1, 1]; convolution in time domain is equivalent

to multiplication in frequency domain. Thus we arrive at this statement,

Ko @)= [ Knte—u) 1) dy= [* Knlo) o =) dy = @)

Exact Quadrature Formula for Trigonometric Polynomials

Theorem 2.1. Let f € Ty_1. Then, the quadrature formula

18 exact.

Proof. We begin with definition of the Fourier Transform for band-limited one-periodic

functions,
~ 1 )
f©) = | fla) e dr,

Thus

We now examine,

1 L=t J e 12 on 22l min
*Zf(*):* f(=)e _*Zf(f) e L
L j=0 L L 7=0 n=0 L L n=0 L =0
Looking at the sum,
L=l 1 — e2min 0 ifn=12,...,L—1
j=0 1—ez L ifn=o0

11



Thus only the n = 0 term is non-trivial so

1 L—1

j R 1
Y f) =10 = | f@) da.

J=0

Convolution as a Quadrature Formula

We now examine Ky (z—vy) f(y). This new function is a trigonometric polynomial
of degree M + N with respect to y. Thus, the following quadrature formula holds

with no error:

This means that if we are interested in calculating f at any x we need only M + N
samples of f and a suitable Ky that is easy to calculate at any value. Infact, if we
impose the localization principle from the introduction, we may cut off terms where

’K N (x — ﬁ)‘ < € where € is chosen to meet our error requirement. This brings us

into defining Ky explicitly.

Localization of the Kernel

Earlier we defined Ky(x) as,

Kn(z) = ﬁ/[: gp(i) e,
e N

Using this, we see that we need only define ¢(§) to define Ky(x). Earlier ¢ was

already restricted to be 1,V ¢ € [—1,1]. So the only thing left is to define p(§) on

12



[-1—7,—1] and [1,1 + 7]. If we let ¢ be symmetric about 0 then we see that
: M :
Ky(x) = _2: gp(%) eFmIT =1 4 22 gp(%) cos 2mjx.
j=—M J=1
This provides us with a means to directly compute Ky (x) from the sampled points
of (&) in half as many computations.

We then use the localization principle from the introduction to make Ky(z) well
localized. To this end ¢ must be contained in C*°(R) with supp ¢ C [-1 — 7,1+ 7].
Thus we need to smoothly go from 1 to 0 on [1,1+ 7] and [-1 — 7,—1]. Since ¢
is symmetric, we only examine the part of ¢ on the interval [1,1 + 7]. We call this
restricted function h(§). To create h(§), a smooth transition from 1 to 0, we begin

by integrating bump functions.

Integrating Bump Functions for Smooth Transitions

We arrive at h(€) by integrating smooth bump functions, ¢g(y) with supp g C [0, 7]

and then flipping them. Specifically,

and
1 ¢
h(f) = h*(T —§) = fOTg(y)dy/O g(y) dy.

13



n.a | -

I -

0.3+ o

04+ -

0.3 4

0.2 -

01k -

Figure 2.1 A Smooth Transition from 0 to 1 with 7 =1

This creates our smooth transition from 1 to 0. We then attach this on both sides
of our block of values 1 on [—1, 1] to extend the support to [—1 — 7,1+ 7] and arrive
at our (&) that satisfies our algorithm all the way up to approximating f at any z.

Finally we arrive at

R E+147) ze€[-1—-7,-1)
1 € [—1,1]
p(§) ==
h(§ —1) r e (1,1+7]
0 otherwise.

14



14 T T T T T

12 F 4

0.4

0.6

04+

n.2r

1

Figure 2.2 Example of ¢ with 7 = 3

Thus we have ¢ defined and therefore,

M .
Ky =1+2) (%) cos2mjz.

j=1

15
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Figure 2.3 Example of K3y with 7 =1

We now work our way back up in the next section, implementation.

2.2 IMPLEMENTATION

Example Bump Functions

We begin our implementation of the algorithm by a few choices of g(y), the bump

functions to be integrated to obtain h(§):

16



g(y) = (y(r —y))"

92(y) = (Sin yjﬂ)b

gs3 (y) = ev(t—y)

ay) = VI

for some b’s.

Example Smooth Transitions

We then calculate the respective h*’s and h’s:

3
B = oy @ =) dy
€ T
B = gy J, ) dy
hs(&) = fr(ll)dy/; e dy
o €viy
1 3
= Vu(T=y) g
4(5) f(;_ eb\/m dy/o Y
and . e
hl(f) = f(;r (y(T _ y))b dy/o (y(T - y))b dy

™

B 1 Ty
h2<£> - fOT (SiIl %)b dy/o (Slﬂ*)b dy

T

1 T—¢ -1
hg(f) —_— /0 ev=v) dy

fOT @y(flly) dy
PV y(T—y) dy.

ha(€) = ! o

Note that hy(§) does not necessarily end at 0. This means it is not an ideal
transition. However, it still serves as a valid function since we may assume the next
sample to take value 0, and any continuous function with compact support can be

approximated by elements from the Schwarz Class.

17



Trapezoidal Quadrature Formula

We begin by letting M € N be large. Then for ¢, := T k1. we approximate by,

/Otkh( dm~~<2h ——h —;h(t,f))

Approximating the Smooth Transition

The first step in is evaluating the smooth transitions. To this end, we either
calculate the integral directly (in the case of hi(£)) or use a quadrature formula. For
instance, the trapezoidal with a high number of sample points, M, from above.

From here we calculate h(%) forj =0,1,2,...|7N|; these are equispaced samples.
We attach these onto an array of size N where the values are all 1. This makes an
array of samples of the positive side of ¢. Since ¢ is symmetric this is all we need.

With ¢ in hand, we now compute the sampled points of Ky(z). To do this we
either tack on an array of 0’s to our ( array and compute the inverse fourier transform
(preferably using the inverse fast fourier transform) or we compute the points directly

using the formula:

Ky(z)=1+ 2]-%:4:1 go(%) cos 2mjx.

We now have a large number of sampled points of Ky(z) to work with, let this
number be W many points. Ky(z) should be well localized thanks to our selection of
¢. Thus we may cut off the tails of Ky(z). L.e., we restrict the support of Ky(z) to
[—0, 0] when ‘KN(x)’ <eVaxe|-1 -8)U(4, 1] for § dependent on € and € is chosen

to meet our error requirement.

Approximation of the Kernel Using Lagrange Interpolation

From here we approximate Ky(z) at any x using Lagrange Interpolation on the

remaining points. Let (K N(V’{,)) be the sampled points of Ky(z) after trun-

n=—a

18



cation. Then our approximating function of Ky (x) using Lagrange Interpolation is

given by

Finalizing the Kernel

Now that we have an approximate Ky at any x, we may apply our original
quadrature formula for approximation of f at any = using only the sampled points of

f. Let z; = then:

J
M+N’
| MiN-1

TN > Kn(x—x;) flz).

Jj=0

fx) ~

And since we have supp Ky (x) C [—4,d], we further restrict this sum:

1 MaN-1__
K - ] j.
M+N jz_(:) N(T —x5) f(zy)

lz—z;]<d

fz) =

19



CHAPTER 3
NONEQUISPACED FAST FOURIER TRANSFORM:

ALGORITHM 2

In the chapter, we examine another algorithm for fast and accurate evaluation of
high degree trigonometric polynomials at many scattered points. This algorithm was
proposed by A. Dutt and V. Rokhlin in [?] and further developed by other authors,
see e.g. [?7]. Our goal is to compare the performance of the algorithm of Dutt and
Rokhlin with the algorithm we developed in Chapter 2. For convenience we shall use
the notation from [?].

Similarly as before we are interested in the following

-1

AN
Problem. Given the Fourier coefficients {f;}’ ~, N even, compute the values of
- 2

the trigonometric polynomial
fla)y= 3 fre (3.1)

at many scattered points {z;}}%,.

3.1 THE IDEA OF THE ALGORITHM

Start by defining Iy := {k : =% <k < Z}. Then f(z) = Zpesy fre™2mke  The idea
is to approximate f(z) using a linear combination of the shifts of very well localized

1-periodic function @, that is,

f(z) =~ si(x) := Z gjgb(x - iz)’ (3.2)

J€ln

where n = o N with o > 1.

20



An important component of this method is to define the function ¢ by one-

periodization of a very well localized smooth window function ¢, i.e.

=3 e +1) = X exlg)e

re€Z reZ

serving a similar role as ¢ in Chapter 2 and having a similar localization. We will
assume that ¢ is in the Schwartz class S(R), i.e. ¢ € C*(R) and for any k,¢ > 1
there exists a constant c(k,£) > 0 such that |o® (z)| < c(k, £)(1 + |z|)~¢ for = € R.
Above ¢ (@) is the kth Fourier coefficients of the 1-periodic function ¢. Thus

cx(Q) = /Tgb(x)e%“”dx / (ng x+r) ) ™k

reZ

We now interchange summation and integration and apply a change of variables

u = x + r after multiplying by e?™*" =1 to obtain
Z/ $+’I" 27rzk(x+r d$ _ Z/ 27rik’udu _ / (p(U)GQWikud’u _ @(k)
rez rEL R
Therefore,
— Z gjgb(l‘ . 7) Z i Z —2mk(m— )
jeln ]eln keZ
_ Z ( Z gj€2m7’jj>ck(@)6—2mka;.
keZ ~jely
We define
N ik
gk ‘= Z 9j€2 n, (3.3)
jel,

and note that {gx} is n-periodic. We split the above sum into two

= > gkc(@)e T = 37 grep(@)e I 4 T grer(@)e P,
ket kel KEZN I,

where similarly as above I, := {k: =% < k < §}. Using the n-periodicity of {gx} we

obtain

—2mikxr __ —2mi(k+nr)x
Z gkck - Z Z gnr+kck+nr ) ( )
keZ\I, reZ\{0} kel

Z Z gk Cker“ 2m(k+nr)x

reZ\{0} k€I,
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Hence

Z gka —2mikx __ Z gkck —2mikx + Z Z gkck+nr —27rz(k+m")3:
kez kel reZ\{0} k€l
As ¢ € S(R) the coefficients ¢,(p) = @(k) are small for |k| > n and hence

Z Z gkck.HW e~ 2mi(k+nr)z

reZ\{0} k€I,

<e

for some ”"small” constant € > 0. Thus
Z gkck 27rzk::p
kel
We also assume that cx(@) # 0 for k € Iy. Now, comparing the above with (77)

suggests to set fi = Jrcr(@). More precisely, we set

f
o c;c(lzb) for k € Iy,

gk =

0 for k € I,\In.

Then the values {g;} can be obtained from (?7) by
Z g 6—27” J
kEIN
applying FFT of size n, see §77.
The next step is truncate the “long® sum in (??). The good localization of ¢(x)

motivates its approximation by

where 1j-m m () is the characteristic function of [, ], and " < 1. The 1-periodic

n ’'n

version ¢ of ¢ is defined by
=Y Yz +r)

reZ

and we observe that

U(z) = ¢(z) = p(z)lm = (z) for [z]<1/2.
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Thus we arrive at the following approximation
7 J J
f(@) = si(z) ms(x) = > gjw(x — > = > gjg0<x - ), (3.4)
J€Lnm (@) " jelum(x) n

where
k m
Iym(x) = {ke[n:‘x—n’§n}:{kEIn:m:—mgkgnx—l—m}.

One uses the “short“ sum on the right in (?7) to approximate f(z) at arbitrary

scattered points {x;}7,.

3.2 DESCRIPTION OF THE ALGORITHM

Here we describe the algorithm for evaluation of f(x) from (??) and arbitrary scat-
tered points {x;}}1, C R.

Input: N, M €N, {fi}rery C C, {z;}}L, CR.

One first precomputes the coefficients ¢ (@) = @(k) for k € Iy and then proceeds
as follows:

(1) For k € Iy compute

kJEIN
(3) For j =1,2,..., M compute

fi= > 9j%0<33j - j)-

J€Inm(a;) "
Output: Approximate values {f;};.

Remark. The above algorithm requires the development of an algorithm and code

for fast and accurate evaluation of ¢(x) at an arbitrary point x € [— o m} and ¢(k)

‘'n

for k € Iy.
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3.3 WINDOW FUNCTIONS AND ERROR BOUND

Several window functions with good localization in space and frequency domain have

been proposed:

(a) The Gaussian

= (wb)~1/? -5 (b =
pla) = ()7 =
1 wk
k) = —e 0%
pk) = e

(b) B-splines

o(x) = My, (nz),

1
o(k) = ;Sinsz(ﬂ'k/n),

20m )
20— 1))’

where My, is the centered cardinal B-spline, i.e. Ms,,(x) := INESRIE D TSI SRR VY

with the convolution applied 2m times and sinc £ = Sigg.
(¢) Sinc function
_ N(20-1) . 2m(7mx(20 - 1))
o(x) = 5 Sine 5 :

ﬂmzﬂu4@jT$N)

(d) Kaiser-Bessel functions

sinh (b/m? =727
( ) V2 —n2g2
x)=—
7 | sin (b7 =2? ) -
— = for [z >,
1 [o(m b2—(27rk/n)2) for —n(
¢(k) = n
0 otherwise ,

where I is the modified zero-order Bessel function.

For more details, see [?].
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The following error estimate has been proved in [?] in the case (a) of the Gaussian:
[f () = fi] < demmm OG0 37 f(R)).
keln
Similar error estimates are established in cases (b) - (d), see [?]. The above esti-
mate shows the Nonequispaced Fast Fourier Transform presented above is a viable

algorithm for evaluation of high degree trigonometric polynomials.

3.4 COMPLEXITY

As was shown in §7? the Fast Fourier Transform requires O(nlogn) operations.
On the other hand, the parameter m is a “small* constant. Therefore, the complexity
of the above described algorithm is O(N log N + M).

It should be pointed out that the direct computation of the values f(z;), j =
1,2,..., M, of the trigonometric polynomial from (?7?) requires O(M N) operations,

which is considerably larger than O(N log N + M) for large N and M.
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APPENDIX A

CODE

Here we include some MATLAB code for the method discussed in Chapter 2.
Using this code to test the four Kernels with a exponent (where applicable) of 7, a 7
of 1, oversampling 30 times, a cut-off of 107 (decimation of the Kernel), and with f of
degree 50: the Square Root Exponential (hy) had an average error of 5.3 x 10713, the
Gaussian (h3) had an average error of 9.0 x 107!, the Power Sine (hs) had an average
error of 1.3 x 107!°, and the Polynomial (h;) had an average error of 1.7 x 10710,
These values were found after computing 1000 random points per randomly generated

f, 200 times.

A.1 ALGORITHM 1

function [ out ] = Algorithml( in, hatf, tau, epsilon,
oversamp, p, b )

YAPPROX1 Realization of Algorithm 1

% in . points of approximation

% hatf . fourier coefficients of the approximated
function

% tau : choice of tau (length of extension in fourier
domain)

% epsilon : cutoff amplitude for the kernel

% oversamp : degree of oversampling (pick >1)
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% p : choice of phi (1 SqrtExpo, 2 Expo, 3 Sine, 4

% b : for phi where there is a selectable b

MN = floor ((24+tau)=*size (hatf ,2));
nodes = 0:1/MN:(MN-1)/MN;

%These are the sampled points of f
%Can use FFT hereor already have the samples precomputed/
sampled

f = DirectEval(nodes, hatf);

switch p

case 2

phi = ExpoFourierKernel((14+tau)=*size (hatf,2)  tau);
case 3

phi = SineFourierKernel((14+tau)xsize (hatf,2) b, tau);
case 4

phi = PolyFourierKernel ((1+tau)xsize (hatf,2) ,b,tau);
otherwise

phi = SqrtExpoFourierKernel((1+tau)=*size (hatf ,2) b,

tau) ;

end

%setting up for the oversampled kernel
snodes = 0:1/(oversamp=*MN) : (oversamp+MN — 1) /(oversamp=MN) ;

K = snodes *0;
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%calculation of the oversampled kernel

for j = 1l:oversampxMN,

temp = 0;

for k = 1:size(phi,2),

temp = temp + phi(k)*cos(2xpixkksnodes(j));

end

K(j) = 1 4+ 2xtemp;

end

%Decimation of K when strictly under epsilon (from the tails)
for i = 1:floor (size(K,2)/2),
if abs(K(floor(size(K,2)/2)—i+1)) > epsilon
|| abs(K(floor (size(K,2)/2)+i—1)) > epsilon,
break;
end
K(floor (size(K,2)/2)—i+1) = 0;
K(floor (size(K,2)/2)+i—1) = 0;

end

%calculation of outputs
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out = inx0;

for i = 1l:size(out,2),

tempK = nodes*0;

for j = 1:MN,

tempK(j) = Lagrange(nodes(j)—in (i) ,K,4);

end

for j = 1:MN,

out (i) = out (i) + tempK(j)xf(j);

end
end
out = out/MN;
end
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