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ABSTRACT 

Exposure to pesticide residues continues to be a threat to both human and 

environmental health despite increased efforts in the agricultural industry to control end-

product levels. Multiple government agencies routinely sample and screen common 

agricultural commodities (fruits and vegetables) for pesticide residues, albeit to do so 

they use different commodity sampling methods and satisfy different program objectives. 

Often, results of such screening programs are used in a supplementary fashion in human 

and environmental health studies, but rarely are the results studied against one another. 

Six years of archived data (narrowed down from 14) of two separate pesticide monitoring 

programs were isolated and matching quantitative data were compared against one 

another. Of particular interest are historical detections of various organochlorines, 

organophosphates, and organonitrates in common fruits and vegetables as well as 

detected concentrations of these compounds across both surveys. Historical outcomes 

were compared using linear regression models and t-tests of the matching detections to 

investigate trends in the pooled data over the various commodities sampled, chemical 

compounds detected, detection frequencies, and any effects potentially related to inherent 

characteristics of both the commodities or compounds. Nearly all t-tests indicated that 

mean detections of the surveys do not significantly differ at the 5% level; however, t-tests 

were more likely to detect significant differences as the number of observations grew. 

Roughly 25% of matrix-specific regression models could explain the variance of one 

survey’s outcome on another with r2 > 0.90, while nearly half of models had r2 > 0.50.
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Regressions of compound and matrix structural property effects against differences in 

survey outcomes were generally less reliable, but did show some trends in the models’ 

slopes. While not conclusive, the results lay a foundation for future concentrated research 

and demonstrate the need for increased data sharing and cooperation between all State 

and Federal agencies, as much of their annual data can be very useful beyond its intended 

scope when examined conjunctively. 
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CHAPTER 1 

INTRODUCTION 

Over the past several decades, populations in the developed world have become 

increasingly conscientious about the foods that they put into their bodies with respect to 

not only intake quantity but also the foods’ inherent quality. This is reflected in surges in 

organic food production and revenue (Sahota 2008) and the increase in frequency and 

popularity of small urban markets where artisan type foods and general produce from 

surrounding rural communities and small urban farms can be purchased (Gillespie et al. 

2007). Through direct communication with vendors in these types of environments, 

consumers can learn a great deal about the processes involved with generating the various 

foodstuffs, as well as specific ingredients and any growth-control mechanisms involved. 

What may be of little concern to ‘non-organic’ consumers is the application of numerous 

pesticides involved in the harvest of their produce (i.e. fruits and vegetables) and the 

subsequent processes used to cleanse the food of any residues before it is brought for 

sale, whether at an urban farmers’ market or a traditional grocery retail store. The 

consumer may take a proactive approach and ensure their food is washed and prepared to 

subjective standards prior to eating. However, on the other hand, perhaps “ignorance is 

bliss” and consumers would either rather not know or do not care to put forth the effort 

into discovery of exactly how their produce is harvested. The middle of the road 

approach might be rather to assume that one or more government agencies are using 

taxpayer monies to survey the food supply so as to adequately ensure that food available 
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for sale contains only trace levels of pesticide residues, if any at all. This study is a 

comparison of the historical outcomes of two different pesticide survey methods to gauge 

the efficacy of State pesticide monitoring procedures as well as to make inferences on the 

nation’s food supply regarding levels of pesticide residues to which the average person is 

being exposed. The study is intended to test the hypothesis that the outcomes of these 

pesticide monitoring programs produce similar results with respect to the individual 

chemicals detected in various commodities, the frequency with which they are detected, 

and their average detected concentrations. One survey uses a robust statistical model to 

create a statistically defensible depiction of the nation’s food supply. For the purposes of 

this study, such a designed survey is considered the “national standard.” Therefore, 

detections made by any other survey (which does not employ a robust statistical model) 

should fall within the national standard’s estimates more often than they do not. 

Significant deviations from the national standard may offer insights into shift effects 

caused by the differences in the surveys’ sampling procedures. If another survey differs 

significantly from the national standard, the two outcomes may still be correlated so that 

the outcome of one could be used to predict the outcome of the other.
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CHAPTER 2 

LITERATURE REVIEW 

Market Basket Survey 

One of the sampling methods of interest to this study is known as the market 

basket survey. The South Carolina Department of Agriculture (SCDA) and analogous 

State agencies nationwide employ the market-basket survey in efforts to randomly screen 

produce for the presence of pesticide residues. In a typical market basket survey, a 

sample collector is given the liberty to choose from any of the available produce for sale 

at a retail store as if he/she were a regular consumer. Fresh commodities are most often 

collected for analysis, however, frozen commodities as well as canned goods may 

occasionally be sampled. The goal of pesticide residue analysis via the market basket 

survey is to provide a weekly picture of the levels of pesticides the average consumer is 

being exposed as part of their dietary intake. The market basket survey is not an effective 

method of preventing exposures to unusually high levels of pesticides, however, because 

by the time analysis is complete, the remaining commodities of sampled lots have already 

been sold. 

Data associated with the market basket method is often utilized as a research 

tool in literature and across many scientific disciplines. For example, large government 

health departments may utilize market basket data to study average grocery prices as 

compared to household incomes and average grocery bill amount per month 
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(Northern Territory Department of Health 2014). Scholars also use market basket survey 

data to investigate not only levels of pesticide residues in various agricultural 

commodities (Newsome et al. 2000; Bempah et al. 2012), but also other food 

contaminants such as trace levels of metals like lead, cadmium, copper, zinc, and arsenic 

(Radwan and Salama 2006; Williams et al. 2007). 

Pesticide Data Program 

The Pesticide Data Program (PDP) employs a different method of screening 

agricultural commodities for pesticide residue levels. In this annual survey sponsored by 

a branch of the U.S. Department of Agriculture, state population figures and other census 

data are used to determine a schedule for sampling commodities before they are 

distributed to retail locations. Sampled commodities are also predetermined prior to 

collection. That is, sample collectors in this survey do not have the freedom to sample 

whichever commodities they choose as compared to the market basket method. Rather, 

they are sent to specific locations and are told how much of each commodity of interest to 

collect. 

Much like the market basket survey, PDP data has also been used in recent 

scientific literature. Most often, PDP data is used as a complementary or supplementary 

dataset for identifying historical trends of human pesticide exposure. For example, in 

2002, Baker et al. investigated differences among three agricultural harvesting techniques 

with respect to pesticide residues detected using data from the PDP, the California 

Department of Pesticide Regulation, and a private testing organization. Several studies 

have also either used PDP generated data directly or as a reference in recent years to try 
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to quantify human exposure to various pesticides in concentrated geographical areas (Lu 

et al. 2006; Schechter et al. 2010). 

Food Safety Modernization Act (2011) 

Americans experienced a surge in foodborne illness within the first decade of 

the 21st century. There were an estimated 9.4 million annual occurrences of foodborne 

illnesses caused by 31 major known pathogens alone (CDC.gov; “Estimates of 

Foodborne Illness in the United States”). Additionally, some studies estimated another 

38.4 million annual episodes of foodborne illness were caused by “unspecified agents” 

(Scallan et al. 2011). Coupled with these statistics, there had been increasing bioterrorism 

concerns among the American public after the attacks on the World Trade Center in New 

York City in 2001. As a result, Congress and President Obama’s first administration 

worked together to propose the first major overhaul of the nation’s food safety laws since 

1938, the Food Safety Modernization Act (FSMA) of 2011 (National Sustainable 

Agriculture Coalition; “Overview and Background”). According to the FDA, the 

regulating authority of FSMA, the legislation “aims to ensure the U.S. food supply is safe 

by shifting the focus from responding to contamination to preventing it” (FDA.gov; 

“FDA Food Safety Modernization Act”). 

Surprisingly, the FSMA “does not address food safety risks from genetically 

engineered crops, pesticide use, or antibiotic resistance” (National Sustainable 

Agriculture Coalition; “Overview and Background”). Apparently, the focus of the FSMA 

is on microbial pathogen contamination (such as Salmonella and E. coli) which would 

have the potential to adversely affect large numbers of people across the country from 

acute exposures (i.e. shredded lettuce contaminated with E. coli distributed to grocery 
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stores and/or restaurants in several geographic regions). Despite empirical evidence 

which suggests both long and short term pesticide exposures are associated with many 

chronic human health conditions (some examples will be discussed in the next section), 

the writers of the FSMA neglected to include any provisions related to the use of 

pesticides in the production of the nation’s food. Is it not within the realm of possibility 

that pesticide residues could account for at least some of the “unspecified agents” to 

which Scallan et al. associate nearly 40 million annual occurrences of foodborne illness? 

Pesticide Exposure 

Prolonged exposure to pesticides has long been associated with a multitude of 

chronic human health problems as well as long term damage to the environment and local 

ecosystems. A 1998 study by Mills found correlations between total pesticide use and 

certain cancer rates among black and Hispanic males in California. The scope of the 

study, however, did not include pesticide exposure at the individual level, nor did it 

account for the dormancy period between exposure and the initial cancer diagnosis. The 

significance, according to the author, was that many farm workers in the state were 

traditionally black and Hispanic males, and therefore, those cohorts of the population 

would be most at risk for long term pesticide exposures. 

In perhaps a more alarming study, Bertolote et al. discuss the frequency of 

suicide via pesticide ingestion in agricultural communities in low- and middle-income 

countries. Among the implications made by the authors is that “pesticide poisoning is 

(likely) the most frequently used method of suicide worldwide” (Bertolote et al. 2006). 

To put this into context, a preferred method of self-inflicted harm in much of the 

undeveloped world is to ingest the same substances that are used in food production, and 
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the most recent, sweeping overhaul of food safety laws in one of the world’s most 

developed countries makes little mention of concern about monitoring the continued use 

of these substances. 

Static Toxins 

On a global scale, both human and environmental life are exposed to many 

toxic substances every day. Pesticides, pharmaceuticals, mycotoxins, bacteria, etc. can be 

introduced to organisms via many naturally occurring avenues. Similar to background 

radiation, “background” or “static toxins” are not only detected in various foodstuffs, but 

they are also found (in occasionally elevated traces) in water supplies and air. In 2010, a 

literature review by Murray et al. compiled data on trace detections of organic chemicals 

in freshwater environments for comparison to human specific acceptable daily intakes 

(‘ADIs’). Bifenthrin, cypermethrin, and dieldrin are just a few of the pesticides 

investigated by Murray et al. which are common to this study. Murray et al. concluded 

there is an inverse relationship between occurrence data and toxicity data. In other words, 

occurrence data was not well documented for those compounds with established ADIs, 

and toxicity data were scarce for those compounds which were most often detected in 

freshwater environments. 

Another study which investigated the occurrence of static toxins was conducted 

by Harner et al. in 2006. In this pilot study, passive air sampling disks were arranged at 

“global background sites to test logistical issues associated with a global monitoring 

network for persistent organic pollutants (POPs).” The findings identified spatial 

distribution trends of several pesticides, among them are lindane, chlordane, dieldrin and 

endosulfan as well as some of their primary component compounds. Concentrations in air 
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were in the picogram per cubic meter range and were occasionally elevated (i.e. 600-800 

pg/m3) and varied with latitude and geographic seasonality. Harner et al. made inferences 

regarding global air streams and currents to partially attribute to the distribution of 

pollutants. 

If research such as that of Harner et al. and Murray et al. demonstrate anything, 

it is the need for further static pollutant occurrence studies to be conducted more 

frequently and on a global scale. What these studies indicate is that pesticides and other 

toxins occur much more frequently than most people might assume, and, in some cases, 

they are found in surprising concentrations in a seemingly harmless location, like a park. 

Pesticides are commonly associated with produce, however the fact that humans can get 

substantial exposures to them by just breathing or drinking water in some locations 

should be considered a serious public and environmental health concern. Further, if 

chronic exposure via static toxins is virtually unavoidable, that places more emphasis on 

the need for the generation of acute exposure data on a large scale. 
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CHAPTER 3 

SAMPLING COMPARISON 

While both the PDP and the SCDA randomly sample and screen common 

agricultural commodities for pesticide residues, the objectives and procedures of each 

program’s sampling method are quite different when examined in detail. Let’s begin with 

an in-depth view of the PDP sampling method. For this research, all available PDP data 

beginning with calendar year 2001 was collected. While sampling procedures may vary 

slightly from year to year, PDP’s 2011 Annual Summary arbitrarily serves as reference 

for the initial sampling method overview described in this section. 

PDP Sampling Introduction 

In 2011, 11 States provided sampling services for the PDP (California, 

Colorado, Florida, Maryland, Michigan, New York, North Carolina, Ohio, Texas, 

Washington, and Wisconsin). Collectively, these States represent roughly 50 percent of 

US population and span all 4 census regions. Additionally, the included states are major 

sources of domestic produce commodities. The USDA’s Agricultural Marketing Service 

(AMS), working closely with the EPA, carefully select the commodities for sampling to 

“represent the highest U.S. consumption, with an emphasis on foods consumed by infants 

and children” (2011 Annual Summary, 1). Unlike State and Federal enforcement 

programs (such as SCDA), participation as a PDP sampling site is entirely voluntary. In 

2011, about 600 sites “granted access and provided information, including site volume 
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data, to sample collectors. Voluntary cooperation is important to the Pesticide Data 

Program and makes it possible to adjust sampling protocols in response to fluctuations in 

food distribution and production” (2011 Annual Summary, 3). “Commodities are cycled 

through the program approximately every five years. High consumption fresh fruit and 

vegetable commodities remain in the program for two years” in order to “capture two full 

growing seasons, thereby capturing any changes due to seasonality or year-to-year 

variations” (2011 Annual Summary, 1-3). 

“Fruit and vegetable samples are collected at terminal markets and large chain 

store distribution centers from which food commodities are supplied to supermarkets and 

grocery stores” (2011 Annual Summary, 3). This allows for a wide range detection of 

residues from crop production applications of pesticides as well as anything that may 

have been applied post-harvest (such as fungicides, growth regulators, and sprouting 

inhibitors). This also allows PDP to account for residue degradation during storage of the 

commodities (2011 Annual Summary, 3). 

Pesticides screened in the participating laboratories include those with “current 

registered uses and compounds for which toxicity data and preliminary estimates of 

dietary exposure indicate the need for more extensive residue data (2011 Annual 

Summary, 4). Also monitored are “pesticides for which the EPA has modified use 

directions (i.e. reduced application rates or frequency) as part of risk management 

activities (2011 Annual Summary, 4). Additionally, the PDP screens for pesticides which 

don’t have established domestic tolerance levels, but which are used in other countries 

that have commodity trade agreements with the U.S. Specific pesticides tested by the 

PDP can be found in appendices listed at the end of each year’s Annual Summary Report. 
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PDP Sampling Operations 

“The goal of the PDP sampling program is to obtain a statistically defensible 

representation of the U.S. food supply” with the data reflecting a citizen’s “actual 

pesticide residue exposure from food” (2011 Annual Summary, 4). The statistical 

structure and methods of the PDP are meant to “ensure samples are randomly selected 

from the national food distribution system and reflect what is typically available to the 

consumer” (2011 Annual Summary, 4). 

“In 2011, fruit and vegetables were randomly collected by trained State 

inspectors at terminal markets and large chain store distribution centers” in the 

participating States (2011 Annual Summary, 4). Occasionally, when commodities of 

interest are unavailable at these sites, the samples had to be collected at surrogate or 

“proxy” sites (i.e. retail markets). Under these circumstances, the commodity would be 

sampled “in the rear storage area of the retail facility” to rule out any possible consumer 

contamination as well as to facilitate the inspector’s documentation of necessary sample 

information from the product boxes. Of the total PDP sampling (which includes egg and 

milk samples in addition to produce), roughly 34% was collected at proxy sites in 

calendar year 2011. The most often proxy-collected commodities were baby foods (green 

beans, pears, and sweet potatoes), canned beets, and canned and frozen spinach (2011 

Annual Summary, 4). 

Regardless of the sampling site, information regarding the identity and source 

of the sample is typically available and is “captured at the time of collection for inclusion 

in the PDP database. A comparison of PDP sample origin data to State production and 

import data by USDA’s NASS shows PDP sampling is representative of the U.S. food 
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supply” (2011 Annual Summary, 4). Sampling operations are adjusted to coincide with 

product availability, and the number of produce samples collected in participating States 

is determined by State population numbers (2011 Annual Summary, 4). 

Sample collectors for the PDP are trained to follow detailed SOPs which give 

specific conditions and criteria for site selection, sample selection, sample shipping and 

handling, and chain-of-custody. SOPs are updated as needed and are available to the 

public via the AMS website (ams.usda.gov). Sample collectors are given Fact Sheets and 

Quick Reference Guides for use in the field that provide collection details for specific 

commodities as they are introduced into the program (2011 Annual Summary, 5). 

Sample collectors ship samples that are temperature sensitive in “heavy-duty, 

temperature-controlled containers” and include adequate freezer packs to maintain 

desired temperatures throughout transit. Temperature controlling parameters are not 

needed for non-temperature sensitive samples, however such samples are still shipped in 

“heavy-duty, well-cushioned containers” and, when possible, are shipped on the same 

day as sample collection to preserve sample integrity. “Non-refrigerated processed 

commodities (canned beets, baby foods, and canned spinach) are often shipped by ground 

transportation to reduce shipping costs. Grain samples are collected in pesticide-free 

polyethylene bags and are shipped in canvas pouches or boxes to the laboratory where the 

samples are refrigerated pending analysis” (2011 Annual Summary, 6). 

“e-SIFs are used for chain-of custody and to capture information needed to 

characterize the sample” (2011 Annual Summary, 6). Collectors use mobile devices to 

capture the necessary information which, when combined by computer software, generate 

a PDP identification number unique to each sample. Any other information available to 



13 

the collector regarding each sample is also captured and electronically mailed with the e-

SIF the same day as sample collection or, at the very latest, by the next morning so as to 

ensure that the e-SIF is received by the laboratory prior to the sample itself (2011 Annual 

Summary, 6). 

“Participating State agencies compile and maintain lists of sampling sites. In 

2011, approximately 600 sites granted access and provided information, including site 

volume data, to sample collectors. The States, in turn, provide AMS and NASS with 

annual volume information for commodities distributed at each site. This information is 

used to weight the site to determine the probability for sample selection. For example, a 

weight of 10 may be given to a site that distributes 100,000 pounds of produce annually 

and a weight of 1 is given to a site that distributes 10,000 pounds. The probability-

proportionate-to-size method of site selection then results in the larger site being 10 times 

more likely to be selected for sampling than the smaller site” (2011 Annual Summary, 6). 

“Participating States work with NASS to develop statistical procedures for site 

weighting and selection. States are also given the option to have NASS perform their 

quarterly site selection. The number of sampling sites and the volume of produce 

distributed by the sites vary greatly among the States. Sampling plans that include 

sampling dates, sites (primary and alternate), targeted commodities, and testing 

laboratories are prepared by each State on a quarterly basis. Collection of commodities is 

randomly assigned to weeks of the month, prior to selection of specific sampling dates 

within a week. Because sampling sites are selected for an entire quarter, States may 

assign the sites to particular months based on geographic location” (2011 Annual 

Summary, 6). 
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“State population figures were used to assign the number of fruit, vegetable, 

and other specialty samples schedule for collection each month. These population- and 

distribution-network-based numbers result in the following monthly collection 

assignments for each State” (See Table 3.1). In 2011, PDP’s monthly sampling target was 

62 samples per commodity or 744 samples per commodity annually (2011 Annual 

Summary, 6). 

Table 3.1: PDP Monthly Sample Collection Totals 

  

State 

Samples Collected per 

Commodity per Month 

California 13 

Colorado 2 

Florida 7 

Maryland 4 

Michigan 6 

New York 9 

Ohio 6 

Texas 9 

Washington 4 

Wisconsin 2 

Total 62 

 

SCDA Sampling Introduction 

Under the South Carolina Department of Agriculture’s mission statement, the 

agency aims to “promote and nurture the growth and development of South Carolina's 
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agriculture industry and its related businesses while ensuring the safety and security of 

the buying public” (South Carolina Department of Agriculture; “Our Mission”). 

As part of the agency’s mission to ensure the safety of the buying public, the 

SCDA operates a Consumer Protection Division, which includes a Laboratory Services 

department. The laboratory is divided into four sections – Chemical Residue, Food & 

Feed, Petroleum, and Seed – each of which is responsible for checking behind 

manufacturer labeling to ensure the consumer is getting what they pay for in a given 

commodity. For example, the petroleum lab might test a sample of gasoline advertised as 

“Premium without ethanol” to ensure that the octane rating is accurate and to confirm that 

ethanol is not present. Additionally, the petroleum lab would also test for the presence of 

water and/or sediment in the gas sample to ensure that nothing other than the advertised 

gasoline is coming through the line at that particular pump. The lab’s analytical test 

results allow the SCDA to act as a regulatory authority and, as such, levy fines, issue 

stop-sales, or shut down entire stores. 

A significant part of the lab’s sample load comes directly from concerned 

consumers, who may request laboratory analyses on their submitted samples free of 

charge as long as they reside in, and pay taxes to, the state of South Carolina. Results on 

submitted samples are considered as “for information only.” The bulk of the laboratory’s 

workload is collected and either shipped or hand-delivered to the lab by any of the 

agency’s 20 official inspectors. If a consumer wants a marketed commodity tested, he/she 

must file a complaint which will prompt official sample collection by an agency 

inspector. A sample is only considered “official” if the sample is collected by an agency 
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inspector and chain-of-custody is maintained throughout the sample’s transit to the 

laboratory. The agency can take regulatory action only on official samples. 

Sampling Procedures 

In stark contrast to the rigidity of PDP sampling guidelines, SCDA inspectors 

follow a much less rigorous structure. In a typical workweek, the chemical residue 

laboratory receives 20 official samples. The lab also occasionally receives submitted 

samples directly from consumers and participates in a soil testing program for pesticide 

residues. Adjustments are made accordingly when the lab is short-staffed as there are 

only two analysts. 

As stated previously, SCDA’s Consumer Protection Division staffs 20 official 

inspectors. Most inspectors cover two to three counties (or portions thereof), or as little as 

one county in the state’s more densely populated regions. In largely rural parts of the 

state, an inspector may cover up to 5 counties. For sample collection, inspectors are 

assigned, on a weekly basis, which lab to pull samples for. According to Consumer 

Protection administrative staff, who assign the sample collection duties weekly, the 

inspectors are assigned produce sampling once every four to five weeks, or roughly once 

per month. Unlike PDP sampling guidelines, SCDA’s inspectors have a great deal of 

liberty in choosing from where to collect their samples, what commodities to sample, and 

how much sample to collect. 

Whereas the PDP samples from distribution centers (closer to commodity 

origin), SCDA samples from retail stores (closer to commodity consumption). The PDP’s 

sampling sites are predetermined while SCDA’s are randomly chosen entirely by the 

inspector. In choosing from which store to collect samples, a SCDA inspector often 
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selects from any of the locations he/she already plans to be visiting during the workweek. 

Other job duties of SCDA inspectors include checking the accuracy of all scales used at 

points of sale within their assigned territories. It is this particular job duty that typically 

defines from where an inspector is going to sample produce. When an inspector is 

assigned sampling for the Chemical Residue lab, they usually sample from whichever 

store(s) they had already planned to be working at during that particular week (checking 

scale accuracy). There is no managerial guidance which dictates from which store they 

should sample. Other than the criteria that the store be located within their territory, the 

sampling location is entirely at the inspector’s discretion. 

Also at the discretion of the inspector is the choice of which commodities to 

sample. You may recall that PDP’s sample collectors are told specifically which fruits, 

vegetables, or canned goods are to be collected. By contrast, SCDA’s inspectors are at 

liberty to choose from any of the produce options available at their sampling site. Their 

only restrictions are: (1) to not sample onions (due to matrix complications which result 

in poor data), and (2) to only sparingly sample berries (simply because in recent years, 

commodities such as strawberries, blackberries, and raspberries were sampled too often). 

Inspectors are asked to collect at least 16 ounces per sample and must collect from the 

front of the store where the commodities are available to consumers. Inspectors should 

only be entering storage areas in the back of the store if they need to collect any 

additional information pertaining to a commodity’s origin or identity. Samples are then 

paid for (at the store’s posted rate) with a department-issued credit card. 

After collection, samples are transported to the SCDA Consumer Protection 

Lab for pesticide residue analysis. Sample integrity is maintained via thermo-insulated 
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shipping boxes complete with freezer packs. Inspectors working local to the lab usually 

hand deliver their samples within 24 hours. Those working farther away transport their 

samples to county collection points where they are picked up daily by a state-sponsored 

inter-agency courier. Samples usually arrive to the laboratory one day after collection, but 

may also arrive as quickly as the same day, or as late as two days after collection in rare 

cases. Table 3.2 on the following page displays a summary of the major differences 

between PDP and SCDA sampling operations and program objectives. 

Sampling Bias 

The liberty that sample collectors are given in the market basket survey allows 

for a source of selection bias which is not inherently present in the PDP’s sampling 

method. For example, an inspector might be more likely to sample from a batch of apples 

if the apples either appear exceptionally fresh or exceptionally rotten. Perhaps if a 

selection of produce looks somewhat tainted to the naked eye, a market basket collector 

may assume there is a higher probability that the commodity contains elevated levels of 

pesticide residues. Alternatively, if a batch of a given commodity appeals as visually 

appetizing to an inspector, then maybe he or she inherently feels less of a need to sample 

said commodity as it is less likely to contain detectable levels of residues. However, the 

question of – “Who would intentionally purchase and eat food that is visibly rotten or 

which is otherwise visually undesirable?” – should be kept in mind. If the market basket 

survey were intended simply to detect as many chemical residues as possible on all food 

regardless of appearance, then of course a selection bias would play a significant role in 

an inspector’s choice of commodities to sample. However, because the goal of the market 

basket survey is consumer protection as per the SCDA’s mission statement, then 
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Table 3.2: Summary of Major Sampling Method Differences 

   

 PDP SCDA 

Program Goal(s): 

• Obtain data about nation’s food 

supply. 

• Establish tolerance limits for new 

pesticides. 

• Help ensure safety of the consumer. 

Sampling Sites: 

• Volunteering terminal markets & 

distribution centers. 

• Retail stores – alternate sites. 

• Retail stores at inspectors’ discretion 

within assigned territories. 

Food Supply Position: • Sampled closer to point of origin. • Sampled at point of sale. 

Transport to Lab: 

• Shipped in thermally insulated 

containers. 

• Arrival time – 1 day. 

• Shipped or hand delivered in thermally 

insulated containers. 

• Arrival time ~ 1 day or less. 

Commodities Sampled: 

• Determined annually by AMS & EPA. 

• Emphasis given to foods consumed by 

infants and newborns. 

• At inspector’s discretion with little 

instruction. 
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inspectors should be sampling foods that are likely to be purchased by the typical 

consumer (i.e. the “cleanest” appearing commodities available). Therefore, if commodity 

appearance is indicative of pesticide contamination, then any selection bias that exists the 

market basket method is likely biased towards the most visually appealing foodstuffs 

(against likely detections of residues). How much this source of bias might influence 

outcomes in the market basket survey remains to be seen and is likely undeterminable by 

the scope of this study.
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CHAPTER 4 

MATERIALS AND METHODS 

For this research, PDP annual summary reports for calendar years 2001-2014 

(most recent) were collected. Each year’s report begins with a detailed introduction 

describing which commodities were chosen for sampling that year, which states were 

participating in the PDP that year, as well as information on how participating state 

population figures were used to determine the number of samples to be collected. The 

introduction also describes the sample collection and transport processes, shipping to 

participating laboratories, and laboratory analytical methodology. Following the 

introduction are datasets in multiple, but somewhat redundant formats. First the data is 

sorted by chemical compound detected and lists all the commodities in which each 

compound was detected along with the relevant descriptive statistics which are described 

below. Following, the data is then sorted by commodity and lists each compound 

detected specific to each commodity along with similar descriptive statistics. Listed in all 

datasets are: 

(1) The number of times a compound was detected specific to commodity. 

(2) The total number of samples. 

(3) A range of LOD (lowest detection – highest detection). 

(4) EPA established tolerance (if any). 

Beyond the primary dataset, the PDP Annual Summary also contains appendices which 

separate the year’s data by country of origin, sort detections by organic vs. non-organic 
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product labels, and present special studies results such as residue analyses on water, soil, 

meat, and fish. 

A digital database containing the entire PDP history was also obtained. The 

user-friendly interface of the PDP Search Utility enables searching by compound or 

commodity (or combination thereof) and allows for several different results displays. Due 

to its ease of historical searching, the digital PDP Search Utility was used most often to 

find data, while the hardcopy summary reports were used as reference or to find 

additional info as needed. 

For comparison to the PDP datasets, Annual Reports from the SCDA’s 

Chemical Residue Lab beginning with fiscal year 2001-02 have been gathered. This 

brings about a major assumption that needs to be addressed before going forward: 

Because the annual reports of interest are somewhat staggered with respect to time, it will 

be necessary to assume that SCDA fiscal year 2001-02 corresponds with PDP calendar 

year 2001, and so forth. From this point forward, any SCDA fiscal year will be referred 

to by its leading calendar year date. 

The SCDA annual report begins with a brief summary of the major findings 

over the year and the summary data then follows in spreadsheet format. Data is sorted 

alphabetically by chemical compound. Listed for each compound are: 

(1) any commodities for which detections were made. 

(2) a range of LOD specific to the commodity. 

(3) EPA tolerance (if any). 

After the summary data, there is a small table containing any compounds which were 

detected in ‘over-tolerance’ levels along with the respective commodity(-ies) the 
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compound was found in, the detected concentration(s), and the listed EPA tolerance(s), if 

any. Detections of compounds without an established tolerance level are also found in 

this table. 

The data contained within both databases are presented in nearly an identical 

fashion with respect to the number of detections of a compound within a commodity as 

well as the range of detected concentrations. The following table illustrates how the data 

are presented in each of the annual reports of these two residue monitoring programs 

(using hypothetical data and EPA tolerances). 

Table 4.1: Example of Surveys’ Annual Data. 

 

SCDA 

Residue Matrix Frequency Range (ppm) Tolerance (ppm) 

Acephate 
Strawberries 6 0.07 – 0.15 0.2 

Tomatoes 3 0.10 – 0.19 1.0 

 

PDP 

Residue Matrix Frequency Range (ppm) Tolerance (ppm) 

Acephate 
Onions 40/700 0.50 – 2.50 5.0 

Tomatoes 23/550 0.06 – 0.27 1.0 

 

The information contained within the respective databases is suitable for 

comparing the detected concentrations between the two surveys of all compounds for 

which there were any detections. For example, in the table above, acephate was detected 

in tomatoes across both surveys. Therefore, the detected concentrations are paired for 

comparison. If the SCDA data yields similar detected concentrations when compared to 

PDP, that would be indicative of an effective market-basket survey. Notice, however, that 

the same compound was detected in onions in the PDP, but not by the SCDA. Therefore, 

if it can be determined through an historical record search that onions were sampled 
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during the fiscal year of interest, then a detection of zero can be assigned for that 

particular compound in onions. Such a finding would not necessarily be indicative of an 

ineffective market-basket survey, but should be noted nonetheless. 

The SCDA annual reports do not indicate the total number of times each 

commodity was sampled. All that is listed is how many times a particular residue was 

detected in a given commodity. For example, from the table on the previous page, 

acephate was detected 6 times in strawberries. What is not shown is how many times 

strawberries were sampled and analyzed that year. For example, using the same 

hypothetical table above, PDP data indicates acephate was found 23 times in 550 

samples, or roughly in 4.2% of all tomatoes sampled. SCDA data however only indicates 

the total number of detections of acephate in tomatoes (3). Also listed in the PDP 

databases, and not in SCDA reports, are compounds’ mean detected concentrations. It 

should be noted, however, that non-detects are not weighted in a compound’s mean 

detection. For example, again using the table above, the mean would be interpreted as: 

“Acephate was detected in 4.2% of tomatoes at a mean of 0.1 ppm.” The digital PDP 

Search Utility, provided individual detected concentrations for use in calculating standard 

deviations when necessary. 

Fortunately, several years of SCDA archived paperwork were available in 

storage. The archived information was researched for total sample counts and separated 

by commodities of interest to the relevant year. From the total counts obtained by the 

paperwork and the number of detections in the annual report, a detection rate was then 

calculated. Corresponding laboratory identification numbers from the archived 

paperwork were used to find detection data which allowed for mean and standard 
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deviation calculations. Unfortunately, the archived paperwork only dates from year 2014 

to year 2009. As such, neither SCDA detection frequencies nor mean detections could be 

obtained for the earlier years and, therefore, data from years 2001 through 2008 were 

discarded from this study. 

Database Filtering 

Considering the volume of data available in each database, the numbers of 

years of interest, and the differences between the two databases with respect to 

commodities sampled and analyzed, the data must be filtered in some manner. The 

process of comparing these databases provides for the data to filter itself. 

Recall that the PDP surveys predetermined commodities while the SCDA 

samples potentially any commodity available for consumer purchase. The logical 

approach, therefore, is to filter the SCDA summary reports by detections on commodities 

which were also sampled by the PDP. Table 4.2 on the following page illustrates this 

approach to database filtering using the commodities sampled by PDP in 2011. 

Therefore, all detections from the commodities common to both databases are 

matched for comparison. Where applicable, SCDA’s archives were searched to separate 

data by commodity variety (For example, SCDA Annual Report only lists detections in 

“peppers”). To get the most accurate pairing, archived paperwork was searched for 

sample identification information in order to separate detections in “hot peppers” from 

those in “bell peppers.” This study will only focus on positive detections and therefore 

the unmatched PDP commodities (Cabbage, Cantaloupe, etc.) were discarded.  
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Table 4.2: Commodity Filtering Approach 

  

PDP Sampled Commodities: 

Cabbage 

Cantaloupe 

Cauliflower 

Cherry Tomatoes 

Hot Peppers 

Lettuce 

Mushrooms 

Onions 

Papaya 

Plums 

Snap Peas 

Sweet Bell Peppers 

Tangerines 

Winter Squash 

 

Of the above, SCDA detected residues on: 

Lettuce 

Mushrooms 

Peppers 

Plums 

 

 

Snap Peas 

Squash 

Tomatoes 

 

 

 

After matching the commodities in which detections were made across both 

surveys, the remaining data was filtered according to which compounds were detected. 

SCDA’s lab only screens for just over 120 chemical compounds, while the PDP screens 

for upwards of 500 compounds. In addition, certain residues are metabolites of parent 

pesticides. Therefore, only detected concentrations of identical compounds or their 

metabolites were paired for analysis. This second step filtered the data further. Table 4.3 

on page 27 illustrates this second approach to filtering using hypothetical compounds 

detected in samples of apples as an example. 

Therefore, any compounds which were detected by the PDP, but were not 

screened for by SCDA were discarded. Now, each year’s data has been filtered twice – 

first with respect to commodity and again with respect to chemical compound. This 

leaves a significantly smaller dataset to work with for each year of interest.  
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Linear Regression Modeling 

If the hypothesis that these two databases yield similar results is true, then the 

outcome of one method could predict the outcome of the other. Therefore, this tool is the 

most obvious and logical approach with which to begin comparing the datasets. 

Regression models were constructed from the mean detected concentrations of matching 

compounds in each commodity, per each year and over all years of interest to the study. 

In all regression models, SCDA values serve as the dependent variable. 

Additionally, compound detection frequencies were paired and plotted in a 

similar manner as described above. Regression models were made for each of the 

following: 

(1) Detection frequencies per commodity. 

(2) Overall detection frequencies per year. 

This approach paints a broad picture of the overall efficacy of the market-basket survey 

as compared to the robust PDP program design as an attempt to answer the question 

“How often does the SCDA method detect the same compounds as the PDP?” 

T-Test 

Another statistical tool of interest to this study is the Student’s T-test. This was 

used to investigate whether SCDA’s mean detected concentration for a given chemical 

Table 4.3: Compound Filtering Approach 

 

Residue Detections in Apples in 2011: 

Compound PDP detections? In SCDA screen? Accept/Discard 

X Yes Yes Accept 

Y Yes No Discard 

Z (parent of A) Yes No Accept 

(Conditionally) A (metabolite of Z) No Yes 
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compound found in a given commodity differs significantly from the analogous PDP 

value. For example, let PDP’s mean detected concentration of acephate found in apples = 

Y̅0 and let SCDA’s mean detected concentration of acephate found in apples = Y̅1. The t-

test investigates whether the two mean detected concentrations differ significantly from 

each other. 

Data Pairing and SAS 

Microsoft Excel was used to construct a tabular format of the paired data for all 

years of interest. Where applicable and necessary, a separate spreadsheet was also used 

for calculating means and standard deviations for certain compound/matrix detections. 

After data pairing was completed, most of the values were transferred to a new 

spreadsheet and resorted for upload to Statistical Analysis System (SAS) University 

Edition Online Studio. A period symbol was used and inserted for any missing values. 

SAS was used to sort, group, and analyze the multivariate data. The software’s 

“proc reg” and “proc ttest” function codes were used to obtain linear regression models 

and t-test results, respectively. Microsoft Excel was used again to tabulate and summarize 

the SAS result output. 
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CHAPTER 5 

RESULTS 

The SAS output for simple linear regression models contains an abundance of 

information. As such, it would be impractical to list all the data associated with each 

regression model output. Recall that a primary goal of this study is to ascertain whether 

the outcome of one survey can predict the outcome of the other. For each regression 

model, PDP data serves as the predictor (X axis) and SCDA data is the response, or 

dependent, variable (Y axis). The following data, parameter estimates and measures of fit 

will be presented in tabular form for each regression model: 

(1) n – the number of observations used to make each model. 

(2) Y-int – the height of the regression line when it crosses the Y axis (with 

error). 

(3) Slope – an estimate of the amount of increase in the SCDA data for 

each 1 unit increase in the PDP data (with error). 

(4) r2 – the proportion of total variance in the SCDA data explained by the 

regression on the analogous PDP data. 

(5) Root MSE – the standard deviation of the error between observed 

values and the regression model. Low Root MSE indicates a better 

model fit to the individual observations. 

As with the linear regression models, a SAS t-test result output also contains a 

wealth of information. Each t-test examines whether the two surveys’ means differ 

significantly from each other when considering certain conditions. The common 
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significance level of alpha = 0.05 (or 5% significance) was pre-determined for each t-test. 

Thus, there is 95% confidence in each t-test, and the study assumes a 5% chance of 

wrongly concluding that two tested means differ significantly (a Type I error). The 

following data will be listed for each t-test: 

(1) n – the number of observations (the number of different compounds 

with paired detection means). 

(2) t – the computed test statistic. 

(3) p-value – the probability of observing a greater absolute value of t if the 

two means don’t differ significantly. 

 

Finally, when observing the results of these analyses, it is important to 

remember that this is a longitudinal, broad based, multi-condition study, and in many 

cases, one or more parameters must be removed from the result display at a time. For 

example, in the following Table 5.1, linear regression results per individual matrix 

(commodity) are displayed. Neither the detected compounds nor their associated 

detection means are shown. Therefore, these results are presented as “Compound-

Removed.” To interpret the data, consider the first row in table 5.1. There were eight 

different compounds detected in apples in 2009 by both surveys. Recall that a PDP mean 

might represent tens to hundreds of detections while the analogous sample size for SCDA 

is usually 10 or less. Each data point represents one PDP mean detection (X-axis) and one 

SCDA mean detection (Y-axis). Models were only made when the number of 

observations was greater than two. 

On the surface, the results in Table 5.1 seem to represent more coincidence as 

they don’t appear to follow a pattern. 61% of the generally positive slopes are also greater 

than one. Therefore, for a one-unit increase in a PDP mean, 61% of the models predict 
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greater than one-unit increase in a SCDA mean. This is likely accounted for by extreme 

observations in low sampling counts which certainly influence each SCDA mean. Nearly 

half (11 of 23) of the models have correlation coefficients greater than 0.50 and there 

seems to be more occurrences of better correlation in years 2009-2011. The number of 

observations per plot also seems not to be associated with better correlation between the 

two means. Just five of 12 models with n  5 also had r2  0.9. 

Table 5.1: Regression of Mean Detections by Matrix (Compound-Removed) 

         

Year Matrix n Y-int (error) Slope (error) r2 Root MSE 

2009 

Apple 8 0.03 (0.04) 3.06 (0.20) 0.97 0.0841 

Grape 3 -0.28 (1.46) 16.25 (13.42) 0.59 1.5344 

Pear 4 0.08 (0.03) -0.23 (0.17) 0.48 0.0426 

Spinach 3 0.90 (0.99) 1.09 (0.66) 0.73 1.1058 

Strawberry 5 0.04 (0.13) 3.45 (0.39) 0.96 0.2413 

2010 
Apple 4 -0.08 (0.23) 1.33 (0.86) 0.55 0.2947 

Bell Pepper 4 -0.13 (0.16) 4.88 (2.35) 0.68 0.1569 

2011 
Bell Pepper 5 0.06 (0.04) -0.11 (0.69) 0.01 0.0542 

Snap Pea 3 -0.04 (0.04) 1.46 (0.11) 0.99 0.0490 

2012 Bell Pepper 4 0.14 (0.05) -0.31 (1.04) 0.04 0.0562 

2013 

Bean 5 0.05 (0.01) -0.36 (0.32) 0.29 0.0232 

Peach 8 0.08 (0.08) 2.14 (0.02) 0.96 0.1658 

Raspberry 5 0.10 (0.04) 0.76 (0.12) 0.94 0.0638 

Squash 4 0.02 (0.01) 0.27 (0.47) 0.14 0.0170 

2014 

Apple 5 0.03 (0.75) 3.60 (3.27) 0.29 0.8861 

Bean 5 0.02 (0.06) 1.01 (0.28) 0.81 0.0862 

Blueberry 9 -0.21 (0.51) 4.24 (3.87) 0.15 0.5702 

Broccoli 4 0.23 (0.15) -0.54 (0.82) 0.18 0.2187 

Celery 4 0.28 (2.13) 9.08 (24.31) 0.07 1.7186 

Peach 7 0.34 (0.18) 0.61 (0.53) 0.21 0.3357 

Squash 3 0.23 (0.21) -3.43 (4.70) 0.35 0.1016 

Strawberry 10 0.03 (0.04) 1.72 (0.14) 0.95 0.1139 

Tomato 6 0.17 (0.29) 2.12 (10.72) 0.01 0.3610 
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The regression models in Table 5.1 are complemented by t-tests of the same 

data pairings, the results of which are displayed in the next table. 

Table 5.2: T-test by Matrix (Compound-Removed) 

 

Year Matrix n t p-value 

2009 

Apple 8 2.44 0.0448 

Cucumber 2 3.00 0.2048 

Grape 3 1.10 0.3847 

Pear 4 -0.83 0.4685 

Spinach 3 2.20 0.1593 

Strawberry 5 1.46 0.2191 

2010 

Apple 4 -0.10 0.9264 

Bell Pepper 4 0.96 0.4061 

Cucumber 2 -1.00 0.5000 

2011 

Bell Pepper 5 0.07 0.9478 

Lettuce 2 1.02 0.4933 

Mushroom 2 1.33 0.4097 

Snap Pea 3 0.87 0.4771 

2012 

Bell Pepper 4 2.77 0.0696 

Mushroom 2 1.14 0.4576 

Plum 2 -0.84 0.5570 

2013 

Bean 5 0.51 0.6370 

Mushroom 2 0.89 0.5385 

Peach 8 2.63 0.0340 

Raspberry 5 1.45 0.2200 

Squash 4 0.24 0.8240 

2014 

Apple 5 1.43 0.2261 

Bean 5 0.54 0.6183 

Blueberry 9 0.96 0.3654 

Broccoli 4 0.30 0.7811 

Celery 4 1.28 0.2906 

Nectarine 2 0.89 0.5353 

Peach 7 2.00 0.0923 

Squash 3 0.64 0.5857 

Strawberry 10 2.35 0.0436 

Tomatoes 6 1.45 0.2062 
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Unlike the corresponding regression models, t-tests were computed for n = 2 

observations and included in the resulting dataset. At the alpha = 0.05 significance level, 

90% of all t-tests do not detect a difference in the true mean detection of a given residue 

between the two surveys. There are only three instances of a t-test offering sufficient 

evidence to reject the hypothesis that the means don’t differ. Those three instances occur 

in the four datasets with the largest number of observations. The following table 

summarizes Tables 5.1 and 5.2 across all years when the number of observations was 

greater than seven in compound-removed results. 

Table 5.3: Regression/T-test Summary for Large n (Compound-Removed) 

 

Year Matrix n t p-value Y-int (err) Slope (err) r2 RMSE 

2009 Apple 8 2.44 0.04 0.03 (.04) 3.06 (0.20) .97 0.08 

2013 Peach 8 2.63 0.03 0.08 (.08) 2.14 (0.02) .96 0.17 

2014 
Blueberry 9 0.96 0.37 -0.21 (.51) 4.24 (3.87) .15 0.57 

Strawberry 10 2.35 0.04 0.03 (.04) 1.72 (0.14) .95 0.11 

 

Table 5.3 is strong evidence of a difference between the long run mean 

outcomes of the sampling surveys. The t-tests provide enough evidence that the true 

means do in fact differ, while the positive, greater than one pattern displayed by the 

slopes predicts a greater increase in a SCDA mean detection per one unit increase in a 

PDP mean. Due to the differences in food supply sampling locations created by each 

survey, it’s reasonable to assume that both – (1) residues on SCDA samples should be 

smaller on average than in PDP sampling since the residues have longer to volatilize, and 

(2) there are sufficient chances of further contamination before the commodities reach 

store shelves which would suggest that the average detection is larger in the SCDA 

market-basket method. 
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A more comprehensive compound-removed result dataset is obtained by a t-test 

of detection means over all matrices with no temporal dimension as shown in the next 

table (Table 5.4). While thorough, the data are not particularly indicative of anything 

new. At the alpha = 0.05 significance level, there is sufficient evidence of differing 

detection means within the same 3 commodities as previously described in Table 5.3 

(apples, peaches, and strawberries). 

Table 5.4: Cumulative T-test by Matrix (Compound-Removed) 

 

Matrix n t p-value 

Apple 17 2.26 0.0383 

Bean 10 0.78 0.4565 

Bell Pepper 13 1.71 0.1131 

Blueberry 9 0.96 0.3654 

Broccoli 4 0.30 0.7811 

Celery 5 1.29 0.2657 

Cucumber 4 -0.19 0.8614 

Grape 3 1.10 0.3847 

Lettuce 3 1.03 0.4106 

Mushroom 6 2.03 0.0980 

Nectarine 3 0.92 0.4556 

Peach 15 3.34 0.0048 

Pear 5 -0.42 0.6972 

Plum 4 0.47 0.6731 

Raspberry 5 1.45 0.2200 

Snap Pea 3 0.87 0.4771 

Spinach 3 2.20 0.1593 

Squash 8 0.87 0.4140 

Strawberry 15 2.25 0.0412 

Sweet Potato 2 3.60 0.1725 

Tomato 6 1.45 0.2062 

 

Table 5.5 on the following page shows the regression model outputs of paired 

detection rates. To interpret these results, each data point represents the frequency of 
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which a compound was detected in all samples of a given matrix. For example, in 2010 

SCDA detected the residue dicloran in 33% of sampled sweet potatoes. PDP detected the 

same residue in 46% of their sampled sweet potatoes (There is no regression model for 

sweet potatoes, however as dicloran was the only observation that year, which is 

somewhat remarkable on its own). 

Table 5.5: Regression of Detection Frequencies (Compound/Mean-Removed) 

 

Year Matrix n Y-int. (error) Slope (error) r2 Root MSE 

2009 

Apple 8 8.28 (6.56) 0.10 (0.17) 0.06 13.9277 

Grape 3 26.81 (5.47) -0.52 (0.55) 0.47 7.6730 

Pear 4 10.84 (2.73) -0.33 (0.35) 0.31 3.6462 

Spinach 3 -8.59 (11.00) 1.07 (0.34) 0.91 11.0128 

Strawberry 5 -11.89 (12.56) 1.68 (0.52) 0.78 16.3650 

2010 Apple 4 1.25 (13.30) 0.22 (0.23) 0.32 16.4995 

2011 Bell Pepper 5 7.20 (0.61) -0.20 (0.06) 0.77 0.7774 

2012 Bell Pepper 4 1.76 (2.68) 0.70 (0.22) 0.83 3.0748 

2013 

Bean 5 3.03 (2.92) 0.80 (0.47) 0.50 5.0726 

Peach 8 5.03 (2.18) 0.17 (0.06) 0.55 3.9245 

Raspberry 5 4.02 (6.06) 0.72 (0.41) 0.50 7.4422 

2014 

Apple 5 9.22 (12.48) 0.33 (0.34) 0.24 16.6007 

Bean 5 16.70 (13.44) -0.31 (1.18) 0.02 17.3977 

Blueberry 9 4.79 (4.61) 0.64 (0.23) 0.52 8.1824 

Celery 4 5.99 (5.06) 0.03 (0.17) 0.02 3.3647 

Peach 7 19.26 (4.94) -0.23 (0.17) 0.27 8.7564 

Squash 3 6.88 (5.31) 0.24 (1.14) 0.04 5.3320 

Strawberry 10 1.79 (6.51) 0.32 (0.17) 0.31 11.8515 

Tomato 6 1.66 (1.43) 0.20 (0.17) 0.27 2.1697 

 

As seen in an earlier dataset of compound-removed regression models, the 

squared correlation coefficients in Table 5.5 in general are greater than 0.5 initially, and 

then correlations appear to fall off with increasing year. Data points in this regression set 

were further restricted as the SCDA data might have multiple detections in one sample 
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per matrix for the entire year. Such an instance leads to identical values of y plotted 

against varying values of x. For example, in 2014, bifenthrin, boscalid, cypermethrin and 

permethrin were each detected once out of 15 samples of broccoli for a frequency of 

6.67% each. PDP found the same compounds in 0.7%, 1.83%, 1.12%, and 1.4%, 

respectively, of all broccoli sampled in 2014. Such a dataset when plotted yields a 

horizontal line through y=6.67 with a slope of zero. 

63% of the slopes in Table 5.5 are between zero and one which predicts that 

most SCDA detection frequencies increase by only a fraction per one-unit of increase in 

corresponding PDP frequencies. This observation is somewhat expected due to 

differences in the surveys’ sampling volumes alone. However, like extrema effects on 

means of small sample sizes, a SCDA detection frequency can be easily skewed for those 

lesser sampled commodities (i.e. a compound detected once in only two samples yields 

50% detection rate of the compound in the matrix). 

Perhaps a more informative approach in analyzing detection rates is to examine 

which compounds were repeatedly detected in the same matrix longitudinally over 

multiple years. Such an approach is illustrated in Table 5.6 on the next page. For 

example, the residues diphenylamine (DPA) and thiabendazole were each detected in 

apples in both surveys in 2009, 2010, and 2014 (apples were not sampled by PDP in 

years 2011-2013). After filtering the complete dataset for compounds which were 

detected in the same matrix more than twice over the entire time frame, only six such 

instances were found. To interpret this data, SCDA detected thiabendazole in apples in 

frequencies of 4.3% (2009), 2.4% (2010), and 10.5% (2014). The PDP’s detection 

frequencies were 75.4%, 80.8%, 48.6%, respectively. 
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From these results, two assumptions can reasonably be made. First, 

thiabendazole is a compound that is frequently applied on apples. There’s clear evidence 

across a six-year time frame to support a frequent association of the compound with the 

commodity. Secondly, this compound’s residue diminishes significantly during transport 

between PDP sampling sites and retail store shelves. Reasons to support this finding are 

unknown. Inherent characteristics of matrices and compounds will be briefly examined a 

little later. The data for dieldrin found in squash follow a similar regression model as 

thiabendazole in apples, though that data would suggest that dieldrin’s detection 

frequency in squash decreases by three units per one-unit increase in PDP detection 

frequency. 

 

Table 5.6: Regression of Detection Frequencies by Matrix-Compound (Year-Removed) 

 

Matrix Compound n Y-int (error) Slope (error) r2 Root MSE 

Apple 
DPA 3 40.14 (33.95) -0.09 (0.46) 0.04 6.9421 

Thiabendazole 3 22.58 (1.13) -0.25 (0.02) 1.00 0.3947 

Bell Pepper Cyhalothrin 3 7.71 (4.52) -0.52 (0.80) 0.30 1.4999 

Mushroom Chlorothalonil 3 10.94 (6.17) -25.39 (46.42) 0.23 6.3764 

Plum Iprodione 3 13.91 (52.25) 1.07 (1.40) 0.37 52.4817 

Squash Dieldrin 3 12.12 (0.90) -3.08 (0.38) 0.98 0.7234 

 

To complement these regression models, paired t-tests of the detection means 

were again computed for the same conditions and are displayed in the following Table 

5.7. All t-tests support the hypothesis that the mean detections do not differ significantly 

for alpha = 0.05. Recall that the opposite result was determined for apples in prior t-tests 

when compounds were removed as a test parameter. Tables 5.6 and 5.7 are more strong 

evidence to support (1) the effectiveness of the market-basket survey, and (2) the 
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similarities in survey outcomes (especially for those commodities which are sampled 

most often). 

Table 5.7: T-Tests of Longitudinal Detection Means 

 

Matrix Compound n t p-value 

Apple 
DPA 3 1.92 0.1942 

Thiabendazole 3 1.09 0.3885 

Bell Pepper Cyhalothrin 3 0.00 1.0000 

Mushroom Chlorothalonil 3 0.65 0.5799 

Plum Iprodione 3 0.41 0.7225 

Squash Dieldrin 3 -0.46 0.6914 

 

In a longitudinal look at detection means by chemical compound (matrix-

removed), other inferences can be made (see Table 5.8 on the following page). To 

interpret the data, consider captan detections in 2009. Each survey had a mean detection 

of captan occurring in four different matrices, whether it was detected just once or many 

times throughout the sampling period (For reference, 2009 saw 13 overall matching 

commodities between the surveys, eight of which had matching detections). There is just 

one occurrence of a p-value low enough to conclude differing detection means (cyfluthrin 

– 2009) though 3 others come close (malthion – 2009, cyhalothrin – 2012, and 

cypermethrin – 2013). 

The data when presented in this fashion give some idea of the distribution and 

overall variety of compounds throughout the population of all commodities and is 

somewhat indicative of indiscriminant usage of many pesticides in application processes. 

For example, revisit Table 5.2 on page 31. In 2009, there were eight different compounds 

detected by both surveys in apples, five paired detections in strawberries and four in   
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Table 5.8: T-test by Compound (Matrix-Removed) 
 

Year Compound n t p-value 

2009 

Azinphos Methyl 2 0.67 0.6257 

Captan 4 0.90 0.4366 

Cyfluthrin 2 18.00 0.0353 

Malathion 2 8.33 0.0760 

Phosmet 2 0.41 0.7537 

Thiabendazole 2 3.10 0.1989 

2010 
Bifenthrin 2 0.00 1.0000 

Dursban 3 0.85 0.4846 

2011 

Cyhalothrin 2 -0.33 0.7952 

Cypermethrin 2 -5.00 0.1257 

Iprodione 2 1.27 0.4240 

Permethrin 3 1.45 0.2832 

2012 
Boscalid 2 1.25 0.4296 

Cyhalothrin 2 7.00 0.0903 

2013 

Boscalid 4 0.62 0.5791 

Captan 2 0.71 0.6051 

Cyhalothrin 2 1.80 0.3228 

Cypermethrin 2 11.00 0.0577 

Esfenvalerate 2 1.00 0.5000 

Iprodione 3 1.93 0.1930 

Malathion 2 4.20 0.1488 

2014 

Acephate 2 0.96 0.5145 

Bifenthrin 7 0.83 0.4362 

Boscalid 8 1.35 0.2190 

Chlorothalonil 3 0.51 0.6613 

Cypermethrin 4 -1.24 0.3039 

Cyprodinil 3 1.61 0.2479 

Fludioxinil 5 2.02 0.1132 

Iprodione 2 2.45 0.2465 

Malathion 3 2.05 0.1770 

Myclobutanil 3 2.51 0.1286 

Phosmet 3 0.12 0.9172 

Propicanazole 2 1.29 0.4190 
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pears. As Table 5.8 shows, there were only six compounds found in at least two matrices 

that year (azinphos methyl, captan, cyfluthrin, malathion, phosmet, and thiabendazole). 

Presumably, if evidence suggests that two chemical compounds which are 

applied to apples during harvest are not also applied to other commodities, then the need 

for the other six compounds in treating apples is questionable. Alternatively, 2014 results 

indicate 12 compounds were detected in multiple matrices (there were only 11 different 

commodities sampled that year). Table 5.9 below filters the preceding table for t-test 

results when the number of observations was greater than two. 

Table 5.9: T-tests by Compound for n > 2 (Matrix Removed) 

 
Year Compound n t p-value 

2009 Captan 4 0.90 0.4366 

2010 Dursban 3 0.85 0.4846 

2011 Permethrin 3 1.45 0.2832 

2013 
Boscalid 4 0.62 0.5791 

Iprodione 3 1.93 0.1930 

2014 

Bifenthrin 7 0.83 0.4362 

Boscalid 8 1.35 0.2190 

Chlorothalonil 3 0.51 0.6613 

Cypermethrin 4 -1.24 0.3039 

Cyprodinil 3 1.61 0.2479 

Fludioxinil 5 2.02 0.1132 

Malathion 3 2.05 0.1770 

Myclobutanil 3 2.51 0.1286 

Phosmet 3 0.12 0.9172 

 

Finally, a cumulative look at the t-test by compound result dataset is shown in 

Table 5.10 on the next page.  
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Table 5.10: Cumulative T-test by Compound (Matrix/Year-Removed) 

 

Compound n t p-value 

Acephate 2 0.96 0.5145 

Azinphos Methyl 3 0.30 0.7892 

Bifenthrin 12 0.54 0.5993 

Boscalid 15 1.73 0.1061 

Captan 9 1.41 0.1960 

Chlorothalonil 6 0.74 0.4911 

Cyfluthrin 5 2.49 0.0674 

Cyhalothrin 8 1.64 0.1443 

Cypermethrin 10 0.75 0.4696 

Cyprodinil 3 1.61 0.2479 

Dicloran 3 1.19 0.3573 

Dieldrin 4 -0.23 0.8361 

DPA 3 1.92 0.1942 

Dursban 6 0.98 0.3700 

Esfenvalerate 4 2.23 0.1115 

Fludioxonil 6 2.54 0.0519 

Iprodione 9 2.23 0.0565 

Malathion 7 5.10 0.0022 

Myclobutanil 5 2.53 0.0650 

Permethrin 5 2.62 0.0589 

Phosmet 8 1.14 0.2901 

Propiconazole 4 1.73 0.1817 

Thiabendazole 6 2.48 0.0557 

 

As observed in Table 5.8, most of the data is not supporting evidence of 

significantly different detection means. At the alpha = 0.5 significance level, just one of 

the 23 different compounds with matching detections over six years of paired data shows 

evidence of a significantly different detection mean from one survey to the next. On a 

broad scale, this is evidence (1) to further support the effectiveness of SCDA’s market 

basket survey, and (2) of the overall surveys’ abilities to detect a broad number of 
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compounds in similar mean concentrations. However, the sample size might also be too 

small to detect any differences that may exist. 

Matrix & Compound Property Effects 

The only conclusions that can be drawn from the linear regression models and 

t-tests presented thus far are broad. At best, the t-test results imply that the two pesticide 

survey methods don’t differ significantly with respect to both matrix and compound, 

except in several scenarios with the largest number of observations (Tables 5.3 & 5.4). 

Regression models offer some means of predictability of one survey’s outcome, but 

typically the models’ parameter estimates have relatively large standard errors. Therefore, 

certain intrinsic characteristics of the individual residues as well as properties of the 

commodities they were found in were examined as an attempt to observe the underlying 

reasons for significant differences detection between the two surveys. 

To begin, the most recent paired dataset was isolated (2014). Sample standard 

deviations were calculated for each specific matrix-compound pair in each survey 

(provided that there were at least two detections in the SCDA method; the PDP method 

most often had sufficient detections). Corresponding relative standard deviations (RSD) 

were then obtained to ensure positive, dimensionless values (RSD is also known as the 

“Coefficient of Variation”). Finally, the difference between the two surveys’ RSDs was 

calculated and absolute value was taken to maintain positive numbers. For example, in 

2014 SCDA detected the compound boscalid seven times in apples at a mean 

concentration of 0.04 ppm with standard deviation of almost 0.03 ppm (rounded) and a 

large RSD of 69%. The analogous RSD for the same matrix-compound pair in the PDP 

survey was 135% for an absolute difference of 66% RSD. This indicates the detections 
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were nearly twice as variable in the PDP method as compared to the SCDA method. The 

RSDs of the PDP detections were larger than those in the SCDA method roughly two-

thirds of the time. 

Properties of the compounds of interest were obtained by searching an EPA 

database of physical/chemical property and environmental fate estimation known as 

Estimation Programs Interface Suite (EPI Suite). The properties of interest for each 

compound are: 

(1) Water solubility – the mass of a compound that will dissolve in 1 liter of 

water at room temperature (in mg/L). 

(2) Volatility – the tendency of a substance to evaporate at room temperature 

(in atm*m3/mol). 

(3) Vapor Pressure – the pressure exerted by a substance’s vapor when in 

equilibrium with its condensed phase at room temperature (in mm Hg). 

(4) Log KO-W – an estimate of a chemical’s tendency to partition itself between 

an organic phase and an aqueous phase (dimensionless). 

Matrix properties were obtained via the Food Composition Database 

maintained and published online by the USDA’s Agricultural Research Service. The 

properties of interest for each matrix are (each listed as a percentage – grams per 100 

grams of matrix): 

(1) Water content. 

(2) Total lipids (fat). 

The properties described above were tabulated in Microsoft Excel along with 

the corresponding calculated absolute differences in RSD (RSD). The SAS Online 

Studio was used again to make linear regression models with RSD as the dependent 

variable against the various properties. Because of detections of each compound in 

multiple matrices, the regression models must again be sorted by matrix. A 
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comprehensive regression model yields no useful information since there’s too often 

multiple y values per each x value. For example, there are five differences in RSD for the 

compound boscalid (one for each matrix in which it was detected). A plot of each of the 

five absolute RSD differences against the same log KO-W would yield a vertical line with 

undefined slope. The regression models can be found in Table 5.11 on the following 

page. 

Much like the regression models of paired detection means discussed earlier in 

this chapter, the results of Table 5.11 don’t seem to indicate any significant trends. 

However, when viewing the result data, it is important to remember the scope of what the 

models represent. Alone, RSD is the difference in how precise each survey method’s 

data is. Therefore, a small RSD would indicate that the variance in each survey’s 

detections for a specific matrix-compound combination were relatively similar. That is, 

both methods had detections either tightly clustered around the mean or were both fairly 

spread out. Alternatively, a large RSD would indicate that one survey’s detections 

were significantly more precise than the other. RSD ranged from as low as 1.5% to as 

much as 155% and there’s little evidence of either compound- or matrix-specific trends in 

RSD. A positive slope in these regression models would indicate that the difference in 

the surveys’ RSD grows with increasing numerical value of the property being modeled. 

The models for both compound vapor pressure and volatility are similar in that the 

estimated slopes and their associated errors are all extremely large which makes sense as 

the two properties are related to one another (the higher a substance’s vapor pressure, the 

higher its volatility). What’s curious is why the signs of the slopes for the bean matrix do 

not mimic one another but do match for all other matrices. The models for log KO-W and   
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Table 5.11: Regression Models per Intrinsic Properties (Compound-Removed) 

 

RSD vs. Compound Vapor Pressure 

Matrix n Y-int (error) Slope (error) r2 Root MSE 

Apple 3 90.50 (24.52) 6.7E+04 (4.4E+04) 0.70 34.6807 

Bean 5 33.13 (9.08) -4.02E+02 (3.0E+02) 0.38 18.1550 

Blueberry 8 61.39 (19.32) -7.4E+04 (4.2E+05) 0.01 48.8731 

Peach 3 32.18 (9.45) -7.7E+05 (4.1E+05) 0.78 13.3115 

Strawberry 5 17.52 (12.08) 1.7E+06 (6.8E+05) 0.69 23.7386 

 
RSD vs. Compound Volatility 

Matrix n Y-int (error) Slope (error) r2 Root MSE 

Apple 3 90.50 (24.52) 2.4E+07 (1.6E+07) 0.70 34.6805 

Bean 5 21.93 (11.36) 2.0E+07 (2.3E+07) 0.20 20.5871 

Blueberry 8 61.52 (20.73) -3.7E+06 (2.6E+07) 0.00 48.9132 

Peach 3 41.61 (5.50) -4.9E+08 (1.1E+08) 0.96 5.9917 

Strawberry 5 25.51 (20.18) 3.2E+07 (4.5E+07) 0.14 39.4535 

 
RSD vs. Compound log KO-W 

Matrix n Y-int (error) Slope (error) r2 Root MSE 

Apple 3 167.12 (129.94) -17.74 (40.54) 0.16 58.1260 

Bean 5 21.40 (12.72) 1.87 (2.55) 0.15 21.1606 

Blueberry 8 81.12 (43.47) -4.51 (8.49) 0.04 47.8876 

Peach 3 43.31 (53.07) -5.16 (12.24) 0.15 26.0898 

Strawberry 5 1.58 (50.87) 6.59 (10.20) 0.12 39.8768 

 
RSD vs. Compound Water Solubility 

Matrix n Y-int (error) Slope (error) r2 Root MSE 

Apple 3 105.54 (51.00) 0.05 (0.26) 0.03 62.3954 

Bean 5 34.14 (11.70) -4.75E-05 (5.3E-05) 0.21 20.4593 

Blueberry 8 67.13 (22.64) -0.33 (0.67) 0.04 48.0651 

Peach 3 10.64 (16.35) 0.54 (0.56) 0.49 20.2121 

Strawberry 5 64.70 (29.85) -2.36 (1.87) 0.35 34.3856 

 

solubility display a similar trend with respect to slope as they should since these two 

intrinsic properties are also closely related (substances with higher KO-W are more 
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hydrophobic). The corresponding slope values of these two regression models generally 

differ by at least one order of magnitude and take on opposite signs except in the case of 

the blueberry matrix. 

Of all the models displayed in Table 5.11, there is just one incidence of good 

correlation. The model for compound volatility in peaches has correlation coefficient of 

0.96 and a fairly small RMSE of about 6 (rounded) which indicates that the individual 

observations fit pretty well to the predicted regression line. If the model is accurate, the 

difference in the two surveys’ RSD decreases quickly with increasing compound 

volatility. Recall however, that this only implies that both SCDA and PDP compound 

detections in peaches tend to behave in the same manner relative to each compound’s 

respective mean detection. 

In the following Table 5.12, the same RSD values are modeled by compound 

rather than matrix. Nearly all parameter estimates’ standard errors are larger in numerical 

magnitude than the estimates themselves (some of which are many times larger). Again, 

there is only one instance of a nicely correlated predictive model with relatively small 

standard errors, a relatively small RMSE, and a squared correlation coefficient of 0.99. 

The data support that the absolute difference between the two surveys’ RSD of cyprodinil 

detections in all matrices is related to the matrices’ inherent total lipid percent. According 

to the model, 99% of the total variance in RSD of cyprodinil detections can be 

explained by the regression on matrix total lipid percentage. Whether the regression 

correlation of RSD of this particular residue with matrix lipid percentage is anything 

more than coincidental remains to be seen.  
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Table 5.12: Regression Models per Intrinsic Properties (Matrix-Removed) 

 

RSD vs. % Water 

Compound n Y-int (error) Slope (error) r2 Root MSE 

Bifenthrin 5 -0.46 (391.70) 0.54 (4.30) 0.01 36.5673 

Boscalid 5 243.88 (452.08) -2.08 (5.07) 0.05 42.6277 

Chlorothalonil 3 330.95 (393.49) -3.17 (4.30) 0.35 38.0570 

Cyprodinil 3 1302.85 (1539.79) -13.88 (17.49) 0.39 85.3505 

 
RSD vs. % Lipid 

Compound n Y-int (error) Slope (error) r2 Root MSE 

Bifenthrin 5 66.47 (70.08) -71.43 (277.16) 0.02 36.2649 

Boscalid 5 79.44 (80.00) -85.38 (318.10) 0.02 43.2901 

Chlorothalonil 3 -9.64 (71.13) 223.72 (298.62) 0.36 37.8509 

Cyprodinil 3 -476.22 (41.08) 1901.34 (139.17) 0.99 7.9543 
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CHAPTER 6 

CONCLUSIONS AND DISCUSSION 

The results presented in the previous chapter do not allow for many concrete, 

definitive conclusions to be drawn regarding whether one method of pesticide surveying 

is any better or worse than the other. There were plenty of instances where both surveys 

detected a chemical compound in a commodity at a similar frequency of detection and/or 

an average detected concentration. And to that end, such instances are pretty remarkable 

when considering the differences in sampling volumes between the two programs and the 

challenges associated with comparing results of datasets whose number of observations 

differ by one or two orders of magnitude. There were also sufficient cases of dissimilar 

pairing – those instances in which the surveys’ paired frequencies and means were not 

even close in numerical values. Yet, in either case, when multiple paired observations 

were combined to make a regression model, some semblances of underlying trends and 

patterns start to emerge. Those patterns seem to self-enhance as the number of paired 

observations grows. Therefore, comparative studies like this one can only be 

strengthened by having a larger pool of data from which to work. From stronger 

comparative studies come more robust models and a greater ability for those in the proper 

positions to make the best possible decisions regarding public and environmental health 

and, hopefully, the future of our nation’s food safety legislation. 

In order to generate more robust models, greater attention needs to be given to 

programs such as South Carolina Department of Agriculture’s market-basket survey.
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Considering that agribusiness is a nearly $42 billion industry in South Carolina, the 

relevance of studies like this one and the significance of the relationships that can be 

uncovered in their pursuit should be self-evident (London 2015). 

If the PDP’s survey results are considered the national standard with respect to 

pesticide residue monitoring as described in chapter one, then this study highlights, if 

only superficially, those areas where the market-basket survey either meets or does not 

meet the national standard. Though it may often be difficult to convince legislative bodies 

to increase annual fiscal budgets, the results of this study would indicate that programs 

like the SCDA’s market-basket survey perform at their absolute best when sampling 

volumes are high. This study is justification enough for the need for increased attention to 

be given to several areas of the SCDA’s Consumer Protection Division. The only feasible 

way to increase sampling volumes is by the addition of both sample collectors and lab 

analysts. 

The State’s fleet of inspectors is understaffed and overworked. The 

responsibilities given to one just inspector who is assigned to two counties are a daunting 

set. In addition to inspecting all scales and gasoline pumps, an inspector may be asked to 

stop mid-shift to drive two or more hours to investigate a consumer complaint. It is 

certainly easy to understand why some of the agency’s annual inspection targets often go 

unmet. The department should seriously consider trying to add at least five to ten 

inspector positions over the next several years, assigning them to the counties 

surrounding the state’s most densely populated areas. These areas are more likely to 

receive a high volume of complaints which slows the work progress of the local 

inspectors. 
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There is an equally great need to increase staffing in the chemical residue lab. 

If the agency were to increase sampling by strengthening the inspector staffing, the two 

laboratory analysts would then be overworked. As it stands now, the lab’s workload is 

severely impacted by absences, whether expected or unexpected, and virtually inoperable 

when both analysts have to use leave. Laboratory instrumentation is sufficient as long as 

the lab’s results on a standard reference material continuously fall within known 

parameters. 

One area in need of major attention is in the protocols of the initial commodity 

sampling procedures. Unwritten guidelines or requests to not sample strawberries very 

often are counterproductive. The only guidance that should be given in the way of 

commodity choice is a mandate that PDP commodities should always make up a portion 

of an inspector’s sample collection (recall again that PDP commodities are pre-

determined). For example, assume that in a given year, PDP samples apples, lettuce, 

grapes, green beans, and carrots. SCDA inspectors should then sample at least a majority, 

if not all, of those commodities weekly. This approach would boost the number of paired 

observations between the two surveys while still allowing for SCDA (and similar state 

agencies) to collect a handful of data on other commodities. 

Comparisons of the laboratory analytical methods which used to obtain the 

original detection data were not even addressed. Though differences certainly exist in 

residue analyses with respect to laboratory instrumentation, analytical reagents, and 

extraction procedures, there also exists a simpler commonality shared by all labs whose 

data was used in this study. Samples arrive at a lab in their original, as sold conditions 

with little chance of adulteration during transport between the collection sites and 
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laboratories. Test portions are measured and combined with a solvent into some sort of 

homogenization device (i.e. a high speed blender). The resulting blend is then filtered for 

particulates and concentrated which leaves a small vial containing only a few milliliters 

of sample extract for instrument analysis and the ultimate detection of any lingering 

chemical residues. So, a future study may elect to examine the intimate differences 

between laboratory analytical methods for further insight. 

On this topic, a crucial necessity that should be addressed before going forward 

is the need for standard reference material development and/or improvement where it 

already exists. Without such a material, there is no definitive way to ascertain the validity 

of an individual lab’s results. This is probably best evidenced by the regression models 

made on the differences in the two surveys’ relative standard deviations versus 

characteristic properties of both matrix and compound. Of the 29 observations in that 

dataset, there were just seven occurrences (less than 25%) of a RSD being less than 

10%. Recall that a small difference in absolute RSD means that the data generated by 

both surveys had RSDs that were either equally small or equally large. In either case, 

RSDs that differ by only 10% or less would indicate uniform laboratory precision. 

Instead, 41% of the observations in that same dataset had a RSD of 50% or greater, 

with several of those being well above 100% absolute difference in relative standard 

deviation. The t-tests discussed in the previous chapter seldom indicate evidence of 

significant differences in mean detections, but more often than not, the RSD 

calculations demonstrate large differences in the distributions of individual detections 

about their respective means. When combined, this is evidence of either or both of two 

things being true: (1) the overall distribution of pesticide residues in the population of all 
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commodities covers a wide concentration range, and/or (2) the analytical methods used 

by each of these survey methods in detecting the residues, whether internally precise or 

not, are often not as precise in comparison to each other. Therefore, the development and 

use of a standard reference material would help to ensure that differences in laboratory 

precision could be attributed more to substantial analyte variance rather than to 

differences in laboratory analytical methods. 

A primary goal of this study was to examine whether the findings of these two 

survey programs mimic one another in terms of (1) the frequency in which they find a 

given compound in a particular agricultural commodity, and (2) the average detected 

residue concentration. While there isn’t conclusive evidence to support that a definite 

correlation exists, there also isn’t conclusive evidence to indicate significant differences 

in the historical outcomes. The t-test results and linear regression models generally 

indicate that both surveys make similar findings over an entire year’s worth of 

monitoring. 

The filtering imposed on the original databases placed significant restrictions 

on the data in certain years. For example, recall that at least three paired observations 

were needed to construct linear regression models, and at least two paired observations 

were needed to employ the t-test. There were only seven matching commodities in 2010, 

four of which had only one matching compound detection. Two of the remaining three 

commodities had more than two residue detections in common. That left just two 

matrices with which to construct the compound-removed linear regression models, and 

three matrices with which to use a t-test for that year of interest. So, when considering 

how much data had to be left out due to insufficient numbers of observations, it is 
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somewhat remarkable that the models turned out as well as they did and indicative that an 

increase in available data for future comparative analyses may produce some very useful 

information. 

A feasible way of obtaining more useful data would be through an ongoing 

interagency collaboration program, both between the States themselves and between the 

States and the USDA. To achieve this, the overall structure of each agency’s sample 

collection methods, analytical laboratory techniques and SOPs need not be disturbed 

(save from the addition of a standard reference material as previously discussed). For 

example, currently the SCDA doesn’t use its detection data beyond the data’s immediate 

intended purpose which is to randomly screen agricultural commodities for pesticide 

residues and protect the safety of the South Carolina consumer by stopping sale of any 

commodity in which excessively high levels of pesticides are found. In general, once 

results leave the laboratory, no one within the agency archives it for tracking and trend-

identifying purposes (The same is true, in general, of each of the other labs’ annual data). 

As is usual at the state government level, resource restraints (mainly financial) as well as 

the primary need to uphold the agency’s mission statement prevent justification of a 

dedicated archivist position. To summarize, gathering, storing, and tracking data simply 

for historical analyses doesn’t figure into the goals of the SCDA’s Consumer Protection 

Division. 

The PDP however, does exist purely for historical and informative purposes. 

Therefore, the PDP could be greatly enhanced by including the residue detection data of 

all State Departments of Agriculture (or analogous agencies where applicable), and/or 

any private labs who would choose to participate. All that would be needed is the 



 

54 

infrastructure of a simple internet-accessible database for continuous upload of the 

detection data by participating labs. 

Consider the design of the PDP with respect to (1) commodity sampling 

selection, (2) sampling volume, and (3) sampling geographical layout (review Table 3.1 

on page 14 as an example). The architects behind the PDP aim to create a representative 

sample of the U.S. food supply year after year. The reality, however, is that even though 

the PDP’s sampling volume dwarfs those of State monitoring programs such as SCDA’s, 

it’s still a very small sample of an enormous population – the population of all produce 

available for sale and consumption throughout the United States. Through a multistate, 

collaborative, data-sharing program, both sampled commodities and volume of data 

generated annually would increase exponentially with little to no adverse effects on the 

resources of either the PDP or other monitoring programs such as SCDA’s market basket 

survey. And because the PDP’s goal is primarily to collect information on the nation’s 

food supply, it seems obvious that more data would only increase information thereby 

allowing for the best domestic policy decisions, and facilitating future public and 

environmental health studies. 

The design of such a program could be very simple. First and foremost, both 

the PDP and State monitoring programs carry on their respective surveys just as they 

have been. However, the PDP would relay to all participating labs which commodities 

have been selected for surveying ahead of the commencement of sampling exercises. 

Labs would be encouraged, but not required, to sample some (or all) of the same 

commodities as frequently as possible (rotational schedules could be established) while 

also continuing to sample commodities not listed on the PDP’s scope. As labs analyze the 
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samples, their detection data (including non-detects) can concurrently be entered to an 

online database. 

Such a program would auto-generate data continuously and in less than a few 

years, the PDP would likely have collected more information about the nation’s food 

supply than it has since the program began in 1991. If many labs were to participate, over 

time the PDP could track geographical trends which could be used by many researchers 

studying public and environmental health. Similarly, regression models such as those 

made in this study could be made and continuously improved upon as researchers 

develop a better understanding of how pesticide residues behave both overall and with 

respect to individual matrices, climate patterns, spatial or temporal boundaries, or any 

other unknown factors. As regression models improve, priority can be assigned to 

investigate health and environmental impacts of those compounds with best regression 

correlation. For example, if a good regression model can be constructed of a compound 

commonly detected in baby food, then longitudinal cohort studies based on that model 

can be designed and conducted in the following years. 

To protect the integrity of the data and to maintain high numbers of distributor 

participation, it is imperative for the sample origin information to be kept blind on both 

sides of the database. That is, the participating labs should know nothing of the origin of 

PDP sampled commodities just as the PDP should not collect the same information (save 

for perhaps country of origin, if different than the U.S.) when data is uploaded. A 

cornerstone trait of the PDP is that sampling sites volunteer their participation, and 

avenues that might discourage such participation should be avoided. 
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One area of research this study did not address is in the non-detection of 

pesticide residues. Observations were justifiably discarded if a compound which was 

detected by the PDP was not even screened for by SCDA. However, occasionally, certain 

compounds were detected by the SCDA which were not screened for by the PDP. 

Reasons for this anomaly are unknown, but it is somewhat confusing given the more 

sensitive and sophisticated detection abilities of PDP’s participating labs. For example, 

SCDA had detection data for the compound chlorothalonil 21 times among all paired 

commodities over the entire study (more often than any other compound) in 

concentrations as high as 0.5 ppm and as often as 50% in some matrices. Yet the PDP 

only had matching detection data in six of those 21 instances. The other 15 times, the 

compound was not even screened for by PDP. The chemical is a used as broad-spectrum 

fungicide on crops such as tomatoes, onions, and potatoes among others (Toxipedia; 

“Chlorothalonil”), and is also linked to the decline in honeybee populations in that it may 

alter the bees’ susceptibility to a certain gut pathogen (Pettis et al. 2013). 

Combined results of programs such as the PDP and the market basket survey 

could also have important economic consequences for the U.S. and its involvement in 

international trade agreements. Some chemicals are banned from worldwide usage while 

others are only banned in certain countries. If a commodity is imported from parts of the 

world where new or U.S.-banned substances are permitted for use, yet that commodity 

isn’t on the PDP’s annual sampling radar, then State monitoring programs are the 

nation’s only way of gathering residue data. 

At a very basic level, this study demonstrates the need to continue each of these 

government-funded monitoring programs. The results also indicate that there is data 
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valuable to many parties (both public and private) to be discovered and relationships that 

can begin to be better understood with a small investment in the infrastructure of a 

shareable database. Beyond that, more comparative examinations on multiple pesticide 

surveys’ results could hopefully lead to a statistically defensible comparison which could 

continue in perpetuity as the world faces future food production demands. Regression 

models using multiple factors to study matrix and compound property effects might also 

lead to the development of commodity-specific compounds rather than the broad-

spectrum chemicals which are currently being used. 
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